
September 20-24, 2021
Linköping, Sweden

P R OC E E D I N G S

The 14th International Modelica Conference is sponsored by:

The 14th International Modelica Conference is organized by:

.

Proceedings of 14th Modelica Conference 2021
Linköping, Sweden, September 20-24, 2021

Editors:
Martin Sjölund, Linköping University
Lena Buffoni, Linköping University
Adrian Pop, Linköping University
Lennart Ochel, RISE Research Institutes of Sweden AB

Published by:
Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7929-027-6
Series: Linköping Electronic Conference Proceedings, No. 181
ISSN: 1650-3686
eISSN: 1650-3740
DOI: https://doi.org/10.3384/ecp21181

Organized by:
Linköping University
SE-581 83 Linköping
Sweden

In cooperation with:
Modelica Association
c/o PELAB, Linköpings University
SE-581 83 Linköping
Sweden

Conference location:
Virtual conference
https://2021.international.conference.modelica.org/

Front cover photo
Used with permission: Fair at the piazza outside Linköping Konsert & Kongress.
Copyright 2015 Visit Linköping & Co. https://visitlinkoping.mediaflowportal.com/

Copyright © Modelica Association, 2021

2 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

https://doi.org/10.3384/ecp21181
https://2021.international.conference.modelica.org/
https://visitlinkoping.mediaflowportal.com/

Preface

The Modelica Conference is the main event for users, library developers, tool vendors and language
designers to share their knowledge and learn about the latest scientific and industrial progress related
to Modelica, the Functional Mockup Interface (FMI), System Structure & Parametrisation (SSP), Dis-
tributed Co-Simulation protocol (DCP) and eFMI.

Since the start of the collaborative design work for Modelica in 1996, Modelica has matured from
an idea among a small number of dedicated enthusiasts to a widely accepted standard language for the
modeling and simulation of cyber-physical systems. The Modelica language was standardized by the
non-profit organization Modelica Association which enabled Modelica models to be portable between
a growing number of tools. Modelica is the language of choice for model-based systems engineering
and is now used in many industries including automotive, energy and process, aerospace, and industrial
equipment.

The Modelica Association has since grown to include several projects supporting modeling and simu-
lation, creating a family of inter-related standards complementing each-other. FMI is an open standard
that defines a container and an interface to exchange dynamic models using a single file (an FMU). SSP
is a tool-independent standard to define complete systems consisting of one or more FMUs including
its parameterization that can be transferred between simulation tools. DCP is a platform and standard
for the integration of models or real-time systems into simulation environments. eFMI tooling enables
the automatic transformation of higher-level acausal model representations (such as Modelica) to causal
solutions suitable for integration in embedded systems.

Highlights of the conference include:

� 69 oral presentations, 4 libraries for the Modelica Library Award

� 2 Keynotes

� 5 Tutorials and 2 Industrial User Presentations Sessions

� 9 Vendor Sessions and 9 Sponsors

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

3

4 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Welcome

We would have loved to Welcome you in Linköping at the Concert and Congress hall pictured on the
front page, but unfortunately even after delaying the conference by 6 months, we have made the decision
to move the conference online due to the pandemic. We decided to turn this into an opportunity, by
waiving registration fees so that more people would get the opportunity to get involved in the community.
We are grateful to our sponsors and the Modelica Association for making this possible.

Another change we have made this year is to extend the conference over the whole week, and we have
dedicated half of each day to scientific papers and half to tutorials, vendor sessions and industrial user
sessions. Two half-days are dedicated to Industrial User Presentation Sessions, that are not part of the
proceedings, but an opportunity for actual users to exchange their experience with the community. This
year we have received a total of 81 submissions, all throughly reviewed by our program committee.

Lena Buffoni Martin Sjölund Lennart Ochel Adrian Pop

Modelica News

In the name of the Modelica Association that is co-organizing this event, I also would like to welcome
you. It is now already the 14th conference on the Modelica Language, the Functional Mockup Interface
and related technology.

Since the number of projects and standards of the Modelica Association is growing, we will give
a short overview about the current status in the opening session on Monday afternoon (13:30 – 14:15
CEST) under the traditional heading “Modelica Association News”.

Prof. Martin Otter
DLR, Oberpfaffenhofen, Germany
Chairperson of Modelica Association

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

5

6 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Keynote Speakers

Dr. Viral Shah
Co-founder and CEO
Julia Computing

Dr. Chris Rackauckas
Director of Modeling and Simulation
Julia Computing

Dr. Chris Laughman
Principal Research Scientist
Mitsubishi Electric Research Laboratories

Dr. Michael Wetter
Berkeley Lab

Energy Technologies Area
Building Technology & Urban Systems Division

New Horizons in Modeling and Simula-
tion with Julia

How can the Modelica community sup-
port the transition to decarbonized, grid-
flexible buildings?

As modeling has become more ubiquitous, our
models keep growing. The time to build mod-
els, verify their behavior, and simulate them is
increasing exponentially as we seek more precise
predictions. How will our tools change to accom-
modate the future?

Julia’s language design has led to new op-
portunities. The combination of multiple dis-
patch, staged compilation, and Julia’s compos-
able libraries have made it possible to build a next
generation symbolic-numeric framework. Julia’s
abstract interpretation framework enables capa-
bilities such as automatic differentiation, auto-
matic surrogate generation, symbolic tracing, un-
certainty propagation, and automatic parallelism.
These features have allowed us to build various
applications in pharmaceuticals, aerospace, en-
ergy, materials, circuits, and much more - demon-
strating performance that is many orders of mag-
nitude better.

Due to climate change, the energy sector is
undergoing a rapid, fundamental transition. The
building sector contributes more CO2 emissions
than transportation or industry. To mitigate cli-
mate change, building energy systems need to be-
come increasingly electrified and contribute to in-
tegration of renewables and storage at scale, while
being resilient in view of extreme weather events.

This will lead to new system architectures and
controls, and new design flows that can manage
the increased complexity. After laying out these
challenges and their implications, we will present
recent progress on new generation computational
tools for building and district energy and control
systems design, deployment and operation. The
presentation closes with needs that the Modelica
community can address to better and faster sup-
port the decarbonization of the building sector.

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

7

8 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Program Committee

Conference Chairs

Dr. Lena Buffoni, Linköping University, Linköping, Sweden
Dr. Lennart Ochel, RISE AB, Linköping, Sweden

Program Chairs

Dr. Martin Sjölund, Linköping University, Linköping, Sweden
Dr. Adrian Pop, Linköping University, Linköping, Sweden

Conference Board

Dr. Lena Buffoni, Linköping University, Linköping, Sweden
Dr. Lennart Ochel, RISE AB, Linköping, Sweden
Dr. Martin Sjölund, Linköping University, Linköping, Sweden
Dr. Adrian Pop, Linköping University, Linköping, Sweden
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Dr. Hilding Elmqvist, Mogram, Lund, Sweden
Prof. Peter Fritzson, Linköping University, Linköping, Sweden
Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany
Dr. Michael Tiller, Ricardo, Inc., Michigan, USA

Program Committee

Prof. Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany
Dr. John Batteh, Modelon, Ann Arbor, Michigan, USA
Dr. Albert Benveniste, INRIA, Rennes, France
Christian Bertsch, Robert Bosch GmbH, Stuttgart, Germany
Volker Beuter, VI-grade GmbH, Darmstadt, Germany
Thomas Beutlich, Germany
Torsten Blochwitz, ESI ITI GmbH
Dr. Scott Bortoff, Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Dr. Timothy Bourke, INRIA, Paris, France
Daniel Bouskela, Électricité de France, Paris, France
Dr. Robert Braun, Linköping University, Linköping, Sweden
Dr. Lena Buffoni, Linköping University, Linköping, Sweden
Felix Bünning, Empa/ETH Zürich, Zürich, Switzerland
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Prof. Massimo Ceraolo, University of Pisa, Pisa, Italy
Dr. Yan Chen, Pacific Northwest National Lab. Portland, Oregon, USA
Dr. Massimo Cimmino, École Polytechnique de Montréal, Quebec, Canada
Christoph Clauss, Dresden, Germany
Dr. Johan de Kleer, Palo Alto Research Center, Inc., Palo Alto, California, USA
Dr. Hilding Elmqvist, Mogram AB, Lund, Sweden
Dr. Atiyah Elsheikh, Mathemodica.com
Dr. Olaf Enge-Rosenblatt, Fraunhofer IIS EAS, Dresden, Germany
Prof. Gianni Ferretti, Politecnico di Milano, Milano, Italy
Prof. Peter Fritzson, Linköping University, Linköping, Sweden
Leo Gall, LTX Simulation GmbH, München, Germany
Dr. Virginie Galtier, CentraleSupélec, Paris, France
Prof. Anton Haumer, OTH Regensburg, Regensburg, Germany
Dr. Dan Henriksson, Dassault Systèmes AB, Lund, Sweden
Dr. Yutaka Hirano, Woven Planet Holdings, Inc., Tokyo, Japan
Dr. Andreas Junghanns, Synopsys, Inc., Berlin, Germany

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

9

Jochen Köhler, ZF Friedrichshafen AG, Friedrichshafen, Germany
Dr. Christian Kral, Electric Machines, Drives and Systems
Dr. Imke Krüger, Dassault Systemes Deutschland GmbH
Dr. Christopher Laughman, Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Dr. Mareike Leimeister, Fraunhofer Institute for Wind Energy Systems IWES, Bremerhaven, Germany
Kilian Link, Siemens Energy AG, München, Germany
Dr. Alessandro Maccarini, Aalborg University, Aalborg, Denmark
Kristin Majetta, Fraunhofer IIS EAS, Dresden, Germany
Dr. Marek Matejak, Charles University, Prague, Czech Republic
Dr. Alexandra Mehlhase, Arizona State University, Arizona, USA
Dr. Ramine Nikoukhah, Altair Engineering, Paris, France
Dr. Henrik Nilsson, University of Nottingham, Nottingham, UK
Prof. Thierry S Nouidui, The United African University of Tanzania, Dar es Salaam, Tanzania
Prof. Christoph Nytsch-Geusen, Universität der Künste Berlin, Berlin, Germany
Dr. Lennart Ochel, RISE AB, Linköping, Sweden
Dr. Hans Olsson, Dassault Systèmes AB, Lund, Sweden
Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany
Dr. Kaustubh Phalak, Ingersoll Rand, Davidson, North Carolina, USA
Dr. Adrian Pop, Linköping University, Linköping, Sweden
Johan Rhodin, ModSimTech, LLC, St. Louis, Missouri, USA
Dr. Lisa Rivalin, Facebook, Menlo Park, California, USA
Clemens Schlegel, Schlegel Simulation GmbH, Freising, Germany
Prof. Gerhard Schmitz, Hamburg University of Technology, Hamburg, Germany
Dr. Peter Schneider, Fraunhofer IIS EAS, Dresden, Germany
Prof. Stefan-Alexander Schneider, University of Applied Sciences Kempten, Kempten, Germany
Dr. Gerald Schweiger, TU Graz, Graz,Austria
Dr. Elena Shmoylova, Maplesoft, Waterloo, Ontario, Canada
Dr. Michael Sielemann, Modelon, München, Germany
Dr. Giorgio Simonini, Électricité de France, Paris, France
Dr. Martin Sjölund, Linköping University, Linköping, Sweden
Dr. Ed Tate, Dassault Systèmes, Grand Blanc, Michigan, USA
Dr. Wilhelm Tegethoff, TLK-Thermo GmbH, Braunschweig, Germany
Dr. Bernhard Thiele, DLR, Oberpfaffenhofen, Germany
Dr. Matthis Thorade, Modelon, Germany
Dr. Michael Tiller, Ricardo, Inc., Michigan, USA
Dr. Jakub Tobolar, DLR, Oberpfaffenhofen, Germany
Dr. Hubertus Tummescheit, Modelon, Hartford, Connecticut, USA
Dr. Alfonso Urquia, Universidad Nacional de Educación a Distancia, Madrid, Spain
Dr. Luigi Vanfretti, Rensselaer Polytechnic Institute, Troy, New York, USA
Volker Waurich, TU Dresden, Dresden, Germany
Dr. Michael Wetter, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Dietmar Winkler, University of South-Eastern Norway
Stefan Wischhusen, XRG Simulation GmbH, Hamburg, Germany
Dr. Dirk Zimmer, DLR, Oberpfaffenhofen, Germany
Philipp Zofer, LTX Simulation GmbH, München, Germany
Dr. Wangda Zuo, University of Colorado Boulder, Boulder, Colorado, USA
Dr. Johan Åkesson, Modelon, Lund, Sweden

10 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Contents
Session 1A: Open standards (1) FMI/SSP 17

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications 17
The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations 27
Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard 37
Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback 49
eFMI: An open standard for physical models in embedded software . 57

Session 1B: Julia 73
Modia - Equation Based Modeling and Domain Specific Algorithms 73
Modia and Julia for Grey Box Modeling . 87
Composing Modeling and Simulation with Machine Learning in Julia 97
OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting Model-

ingToolkit.jl . 109

Session 2A: Initialization & parametrization 119
Investigating Steady State Initialization for Modelica models . 119
New Equation-based Method for Parameter and State Estimation . 129
Efficient Parameterization of Modelica Models . 141
Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python 147

Session 2B: Applications (1) 155
Aircraft Mission Simulation with the updated FlightDynamics Library 155
Modelica-Based Modeling on LEO Satellite Constellation . 163
Guidance, Navigation, and Control enabling Retrograde Landing of a First Stage Rocket 171
An Ice Storage Tank Modelica Model: Implementation and Validation 177

Session 3A: Libraries 187
Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems 187
DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning 197
Towards a Modelica OPC UA Library for Industrial Automation . 205
A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries 215
The DLR ThermoFluidStream Library . 225

Session 3B: Digital twins 235
The Potential of FMI for the Development of Digital Twins for Large Modular Multi-Domain Systems 235
Object-Oriented Models of Parallel Manipulators . 241
A Modelica Library for Modelling of Electrified Powertrain Digital Twins 249
Development of a real-time test bed for indoor climate simulation in a VR environment using a digital

twin . 263
A first principles thermal losses model of the TCP-100 parabolic trough collector based on the Modelica

Standard Library . 271

Session 4A: Applications (2) 277
Electromagnetic Transient Simulation of Large Power Networks with Modelica 277
Seismic Hybrid Testing using FMI-based Co-Simulation . 287
NeuralFMU: Towards Structural Integration of FMUs into Neural Networks 297
Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling

Strategy . 307

Session 4B: Buildings 315
Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control 315
Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of En-

ergyPlus . 325
Coupling physical and machine learning models: case study of a single-family house 335
Underfloor heating system model for building performance simulations 343

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

11

Session 5A: Testing 351
ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Perfor-

mance on Large-Scale Power System Test Cases . 351
Continuous Development and Management of Credible Modelica Models 359
Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica 373
Modelica Models as Integral Part of the Building Design Process . 383

Session 5B: Open standards (2) FMI/DCP 393
A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI 393
Python Framework for Wind Turbines Enabling Test Automation of MoWiT 403
A Graph-Based Meta-Data Model for DevOps in Simulation-Driven Development and Generation of

DCP Configurations . 411
Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU 419

Session 6A: Interoperability 425
General Purpose Lua Interpreter for Modelica . 425
Object Manipulation and Assembly in Modelica . 433
A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly . . 443
New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro 453

Session 6B: Applications (3) 463
Use of Modelica to predict risk of Covid-19 infection in indoor environments 463
Model-Based Development of the RespiraWorks Ventilator with Modelon Impact 471
In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for

current challenges in biosciencies . 485
Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing 497

Session 7A: Modelica Language 507
Handling Multimode Models and Mode Changes in Modelica . 507
A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models 519
Evaluating a Tree Diff Algorithm for Use in Modelica Tools . 529
Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica539
Compile-Time Impulse Analysis in Modelica . 549

Session 7B: Energy (1) 561
A Modular Model of Reversible Heat Pumps and Chillers for System Applications 561
Modelica Modeling and Simulation for a Micro Gas-Cooled Reactor 569
Energy-based Method to Simplify Complex Multi-Energy Modelica Models 577
A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant . 587
Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic

Residential Complexes . 597

Session 8A: Energy (2) 607
Modelling the Synchronisation Control for a Hydro Power Controller 607
Developing Protective Limiters for a Hydro Power Controller in Modelica 617
An Approach for Reducing Gas Turbines Usage by Wind Power and Energy Storage 627
Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator

Models in Modelica . 633
Modeling of Recompression Brayton Cycle And CSP Plant Architectures for Estimation of Performance

& Efficiency . 643

Session 8B: Applications (4) FMI 649
Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes . 649
Towards an automated generator of urban building energy loads from 3D building models 659
Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger

Non-Residential Buildings Based on BIM as Single Source of Truth 665
Accurate Robot Simulation for Industrial Manufacturing Processes using FMI and DCP Standards . . 673
Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation 681

12 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Author Index

Abbiati, Giuseppe 287
Afshari, Alireza 659
Alfalouji, Qamar 335
Allmaras, Moritz 443
Anantharaman, Ranjan 97
Bao, Ran 249
Batteh, John 471
Becker, Christian 187
Bellmann, Tobias 197, 425
Benedikt, Martin 649, 673
Benne, Kyle 325
Benveniste, Albert 507, 519, 549
Bertsch, Christian 17, 27
Beutlich, Thomas 141
Bhusal, Khemraj 607
Birngruber, Gerald 497
Blaesken, Matthias 17
Blesken, Matthias 27
Blochwitz, Torsten 17, 27
Bode, Carsten 187
Bogodorova, Tetiana 147
Botero Halblaub, Andrès 443
Bouskela, Daniel 129, 453
Braun, Robert 37
Bruder, Frederic 87
Brunnemann, Johannes 539, 597
Bürger, Christoff 57
Buse, Fabian 425
Caillaud, Benoît 507, 519, 549
Campanini, Paolo 241
Canham, Christian 171
Casella, Francesco 351
Chaleff, Ethan 471
Chan, Liu 163
Chiu, Edwin 471
Coïc, Clément 49
Cordoba Lopez, Diego 665
Corona Mesa-Moles, Luis 129
de Castro Fernandes, Marcelo 147
Dorado-Rojas, Sergio A. 147
Edelman, Alan 97
Eek, Magnus 37
Eklund, Miro 681
El Feghali, Joy 577
Elmqvist, Hilding 73
Exenberger, Johannes 335
Faille, Damien 577
Falay, Basak 335
Fan, Chengliang 587
Fanli, Zhou 163, 569
Ferretti, Gianni 241
Fluch, Jürgen 497
Fotias, Nikolaos 249
Frey, Georg 393
Fricke, Johannes 403
Frisch, Jérôme 665

Fu, Yangyang 177
Gall, Leo 359
Gautier, Antoine 587
Göbel, Stephan 343
Golubkov, Andrej W. 215
Gomes, Cláudio 17, 27, 287
Gowda, Shashi 97
Groß, Christian 215
Guéguen, Hervé 577
Gühmann, Clemens 373
Guironnet, Adrien 277, 351, 633
Gwozdz, Maja 97
Haessig, Pierre 577
Haiming, Zhang 569
Hallo, Ludovic 307
Hällqvist, Robert 37
Hasmukhbhai Shah, Nihar 673
Heckel, Jan-Peter 187
Heggelund, Yngve 627
Held, Harald 443
Hellborg, Jonatan 607
Hellerer, Matthias 197
Helsen, Lieve 315
Henningsson, Erik 119, 129
Hentschel, Alexander 383
Heuermann, Andreas 109
Hinkelman, Kathryn 587
Hippmann, Gerhard 73
Holzinger, Franz 649
Huimin, Zhang 569
Hussmann, Michael 57
Ingleby, Adam 249
Jain, Anand 97
Jansen, David 561, 665
Jardin, Audrey 129, 453
Ji, Ding 569
Jorissen, Filip 315
Jun, Wang 569
Junghanns, Andreas 17, 27
Karhela, Tommi 681
Kather, Alfons 187
Kircher, Josef 297
Koch, Thomas 539
Kotte, Oliver 27
Krammer, Martin 673
Krus, Petter 37
Kümper, Sebastian 197
Laera, Giuseppe 147
Larsen, Peter Gorm 287
Laughman, Chris 97
Le Bihan, Pierre 57
Le Henaff, Perig 673
Leimeister, Mareike 403
Lenord, Oliver 57
Leusbrock, Ingo 335
Li, Guowen 177

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

13

Li, Lixiang 471
Li, Wang 569
Li, Zhirou 373
Liping, Chen 163, 569
Lohr, Sören 633
Long, Nicholas 587
Looye, Gertjan 155
Lukkari, Antti 681
Ma, Yingbo 97
Maccarini, Alessandro 659
Mahseredjian, Jean 277
Mai, Pierre R. 17, 27
Malandain, Mathias 507, 519, 549
Manoranjan, Luxshan 617
Mans, Michael 659
Márquez, Francisco M. 271
Martinuzzi, Francesco 97
Masoom, Alireza 277
Mathur, Kushagra 263
May, Marc 155
McGahan, Paul 249
Mehrfeld, Philipp 343, 561, 665
Meißner, Michael 225
Mendo, Juan Carlos 49
Meyer, Tobias 235
Mikelsons, Lars 87, 297
Møldrup Legaard, Christian 335, 419
Montemurro, Marco 307
Mueller, Reiko 155
Müller, Dirk 343, 561, 665
Munjulury, Raghu Chaitanya 37
Murton, Adrian 49
Najafi, Masoud 17, 27
Neumayr, Andrea 73
Niere, Jörg 57
Niu, Hui 249
Norrefeldt, Victor 463
Nuschke, Maria 633
Nytsch-Geusen, Christoph 263
Ochel, Lennart 453
Olsson, Hans 119, 129
O’neill, Zheng 177
Otter, Martin 57, 73, 359
Ould-Bachir, Tarek 277
Pal, Avik 97
Palanisamy, Arunkumar 453
Panettieri, Enrico 307
Pathak, Arnav 463
Pérez, Julia 271
Pertzborn, Amanda 177
Pfeiffer, Andreas 57
Picard, Damien 315
Pillekeit, Andreas 17
Podlaski, Meaghan 171
Pop, Adrian 109, 453
Prado-Velasco, Manuel 485
Rackauckas, Chris 97
Rajput, Utkarsh 97

Ravache, Baptiste 325
Ravi, Ashok Kumar 643
Reicherdt, Robert 57
Reiner, Matthias 359
Reiser, Robert 433
Reiterer, Stefan H. 411
Requate, Niklas 403
Ribas Tugores, Carles 497
Richter, Veronika 665
Ruan, Diwang 373
Saadallah, Nejm 627
Saba, Elliot 97
Sandou, Guillaume 577
Saugier, Marianne 633
Savolainen, Jouni 681
Schäfer, Matthias 359
Schenk, Tim 443
Schiffer, Clemens 411, 673
Schindhelm, Lucas 597
Schmitt, Elaine 343
Schmitz, Gerhard 187
Schneider, Kilian 463
Schranz, Thomas 335, 419
Schuch, Klaus 17, 27, 649
Schülting, Oliver 187
Schulze, Christian 17
Schwan, Torsten 383
Schweiger, Gerald 335, 419, 497
Senkel, Anne 187
Shah, Viral 97
Shuhong, Du 569
Six, Kristoff 315
Sjölund, Martin 109, 529
Sommer, Torsten 17, 27
Sørensen, Christian Grau 659
Srinivasan, Raja Vignesh 643
Stüber, Moritz 393
Swatek, Angelika 497
Thiele, Bernhard 205
Thomas, Philipp 235
Thummerer, Tobias 297
Tiller, Michael 249
Tinnerholm, John 109
Tobolar, Jakub 359
Tola, Daniella 419
Tollefsen, Tonje 607
Tummescheit, Hubertus 49
Unger, René 383
van Treeck, Christoph 665
Vanfretti, Luigi 147, 171
Velut, Stephane 643
Vojacek, Ales 539, 597
Vuillod, Bruno 307
Wang, Jing 587
Watzenig, Daniel 649
Weber, Niels 225
Wen, Jin 177
Wernersson, Karl 17, 27

14 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Werther, Kai 57
Westermann, Lucas 263
Wetter, Michael 325, 587
Wicke, Monika 383
Wiens, Marcus 235, 403
Wilfling, Sandra 335
Williams, Mark 49
Winkler, Dietmar 141, 607, 617
Woodham, Kurt 49
Wüllhorst, Fabian 561
Yan, Qu 163
Yangyang, Liang 569
Yebra, Luis J. 271
Yikai, Qian 163
Zacharias, Irina 17, 27
Zimmer, Dirk 225
Zufiria, Pedro J. 271
Zuo, Wangda 587

DOI
10.3384/ecp21181

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

15

16 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

The Functional Mock-up Interface 3.0 -
New Features Enabling New Applications

Andreas Junghanns1 Torsten Blochwitz2 Christian Bertsch3 Torsten Sommer4

Karl Wernersson5 Andreas Pillekeit6 Irina Zacharias6 Matthias Blesken6 Pierre R. Mai7

Klaus Schuch8 Christian Schulze9 Cláudio Gomes10 Masoud Najafi11

1Synopsys, Germany, Andreas.Junghanns@synopys.com
2ESI ITI GmbH, Germany, Torsten.Blochwitz@esi-group.com

3Robert Bosch GmbH, Germany, Christian.Bertsch@de.bosch.com
4Dassault Systemes GmbH, Germany, Torsten.Sommer@3ds.com

5Dassault Systemes AB, Sweden, Karl.Wernersson@3ds.com
6dSPACE GmbH, Germany {APillekeit,IZacharias,MBlesken}@dspace.com

7PMSF IT Consulting, Germany, pmai@pmsf.de
8AVL List GmbH, Austria, Klaus.Schuch@avl.com

9TLK-Thermo GmbH, Germany, c.schulze@tlk-thermo.com
10Aarhus University, Denmark, claudio.gomes@ece.au.dk

11Altair, France, masoud@altair.com

Abstract
The Functional Mock-up Interface (FMI) (Modelica As-
sociation 2021b) is a tool independent standard for the ex-
change of dynamic models and for co-simulation. FMI
2.0, released in 2014, is recognized as the de-facto stan-
dard in industry for exchanging models and tool coupling,
and is currently supported by more than 160 simulation
tools. Version 3.0 of the standard brings many new fea-
tures that allow for advanced co-simulation algorithms
and new use cases such as packaging and simulation of
highly accurate virtual Electronic Control Units (vECUs).
Besides Model-Exchange and Co-Simulation, a third in-
terface type, Scheduled Execution, is defined for purely
discrete, RTOS-like, simulation and supports preemption.
Clocks allow the synchronization of events between Func-
tional Mock-up Units (FMUs) and the importer. There
is better support for data types including binary data and
arrays. Advanced co-simulation approaches are enabled
by intermediate variable access between communication
points and allowing event handling. The composition of
systems from FMUs is simplified by terminals that can
bundle multiple signals. The concept of layered standards
allows the extension of the FMI standard.
Keywords: FMI, FMU, Functional Mock-up Interface

1 Motivation
FMI 1.0 (Blochwitz 2011) and FMI 2.0 (Blochwitz 2012)
were successfully adopted by industry and are currently
supported by more than 160 simulation tools (Modelica
Association 2021c). For many years stability was an im-
portant success factor of FMI, resulting in maintenance
releases of FMI 2.0. However, it became clear that new
use cases require improved capabilities that are addressed

by the new version of the standard (Modelica Association
2021a), summarized next.

Virtual Electronic Control Units (vECUs). The ability
to package control code into Functional Mock-up Units
(FMUs) required some workarounds in FMI 2.0. With
FMI 3.0, virtual electronic control units (vECUs) can be
exported as FMUs in a more natural way using the fol-
lowing new and/or improved features: Terminals (subsec-
tion 3.3), clocks (subsection 3.6), new integer types and
the new binary type (subsection 3.1), array variables and
structural parameters (subsection 3.2), and the new inter-
face type Scheduled Execution (subsection 2.3).

Advanced Co-Simulation. FMI 3.0 introduces, in its
Co-Simulation interface type, the Event Mode (sub-
section 3.4), early return from fmi3DoStep (subsec-
tion 3.4), and the Intermediate Update Mode (subsec-
tion 3.5).

Improved Event Handling across FMUs. The new
version of FMI provides an API to enable more flexi-
ble event handling and communication: the Synchronous
Clocks API (subsection 3.6). For scenarios that are driven
by events (e. g., supervisor control systems, engine control
systems triggered by crankshaft angle sensors), the clocks
API allows FMUs to communicate to the importer detailed
information about the timing and cause of events. More-
over, the exact timing that events should happen is com-
municated unambiguously between FMU and importer,
bypassing floating point representation issues. Most of
these features are optional to not exclude simulation do-
mains where such features are out of scope and tools that
are not able to implement these optional features.

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

17

AI models. In Machine Learning and Artificial Intelli-
gence (AI) new modeling and model training frameworks
emerge. More and more, the created models shall interact
with established modeling and simulation tools. FMI is
a natural means to encapsulate and exchange AI-models
with them. This can also lead to hybrid models formed
of both physics-based- and AI-models. In order to enable
the efficient training of AI-models encapsulated as FMUs,
adjoint derivatives are needed, see subsection 3.7.

The following section gives an overview of the differ-
ent interface types, and the main use cases they apply to.
Then, section 3 details the new features. Section 4 intro-
duces some examples that use the new features, and sec-
tion 5 discusses the measures taken to improve the quality
of the standard. Finally, section 6 concludes.

2 Interface Types
FMI 3.0 defines three main interface types: Co-Simulation
(CS), Model Exchange (ME), and Scheduled Execution
(SE). An FMU may implement one or more of the three
interface types. It is a ZIP archive containing: an XML
file, describing the model variables and structure; binary
and/or source code implementations of the FMI API of the
supported interface types; miscellaneous resources; and
other related data.

All interface types share common functionality, such as
the way variables and clocks are declared/interacted with,
or common optional features like store/restore the com-
plete FMU state, or definitions of terminals and icons.

Figure 1 ranks the different interface types according to
their simplicity and flexibility trade-offs.

An implementation that interacts with an FMU using
the FMI API is called importer.

Co-Simulation

Model Exchange Scheduled Execution

simplicity

flexibility

Figure 1. Comparison of interface types

2.1 Model Exchange
The Model Exchange interface exposes a simulation
model as a hybrid ordinary differential equation (ODE)
to a solver of an importer. Models are described by differ-
ential, algebraic and discrete equations, interleaved with
time-, state- and step-events. The integration algorithm of
the importer is responsible for advancing time, computing
state variables, handling events, etc. Figure 2 shows the
data flow for Model Exchange.

2.2 Co-Simulation
The Co-Simulation interface is designed both for the cou-
pling of simulation tools, and the coupling of subsystem
models, exported by their simulators together with their
solvers as runnable code. The data exchange between

FMU

Solver

User

time
parameters
inputs
outputs
local variables
event indicators
continuous states
discrete-time states
hidden states (buffers)

t
p
u
y
w
z
xc
xd
b

p w

xc ẋc, zt

u y

Figure 2. Schematic view of data flow between user, the solver
of the importer and the FMU for Model Exchange.

FMUs is restricted to discrete communication points. In
the time between two communication points the subsys-
tem inside an FMU is solved independently by internal
means. For FMI for Co-Simulation, the co-simulation al-
gorithm is shielded from how the FMU advances time in-
ternally.

Figure 3 shows the data flow for Co-Simulation.

2.3 Scheduled Execution
The Scheduled Execution interface exposes individual
model partitions (e. g., tasks of a control algorithm), to be
orchestrated by a scheduler provided by the importer. The
scheduler is responsible for advancing the overall simula-
tion time, activating time-based and triggered clocks (for
an explanation of clocks see subsection 3.6) for all ex-
posed model partitions of a set of FMUs, and to activate
the respective model partition. The Scheduled Execution
interface addresses simulation use cases with the follow-
ing properties, that typically hold when the importer has
to communicate with external event sources/sinks that op-
erate on independent individual timing schemes (e. g., real
hardware, controller tasks on simulated or real controller
units):

1. at any time (even for unpredictable events), an event
shall be signaled to an FMU,

2. communication constraints (e. g., execution times,
communication deadlines) that are not apparent at
FMU simulation level but lead to timing require-
ments have to be fulfilled by the simulation algo-
rithm,

3. priority information provided by the FMUs has to be
evaluated and merged to an overall priority for avail-
able model partitions,

4. data shall move between the different FMU model
partitions for the same or next activation time.

To address these properties, the Scheduled Execution
interface provides support for preemptive multitasking:
concurrent computation of model partitions of an FMU

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

18 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117

User

FMU

Solver

Co-Simulation Algorithm

t, h

time
step-size
parameters
inputs
outputs
local variables
event indicators
continuous states
discrete-time states
hidden states (buffers)

t
h
p
u
y
w
z
xc
xd
b

p w

xc ẋc, zt

u y

Figure 3. Schematic view of data flow between user, the co-
simulation algorithm of the importer and the FMU for Co-
Simulation. Compared to Figure 2, the solver is part of the FMU,
and not part of the importer.

(i. e., a support of multiple rates) on a single computa-
tional resource (e. g., CPU-core). In the rare cases that the
FMU has to be able to restrict the preemption for particu-
lar code sections, lock/unlock callback functions are pro-
vided by the importer. Note that cooperative multitasking
for model partitions of an FMU is currently not covered
by the interface description, and parallel computation of
model partitions is therefore not part of the FMI 3.0 API.
However, an FMU may internally use parallel computa-
tion on multiple cores, but this results in a binding to a
supported operating system.

The FMU must declare the priorities of its model parti-
tions, enabling a global computation order and preemption
policy for model partitions across FMUs.

The Scheduled Execution interface has a different tim-
ing concept compared to FMI for Co-Simulation: a sched-
uler’s activation of a model partition will compute the re-
sults of the model partition defined by an input clock for
the current clock tick time ti (and not for ti + hi, as de-
fined for fmi3DoStep in FMI for Co-Simulation). This
is required to handle activations of triggered input clocks
which may tick at a time instant that is unpredictable
for the simulation algorithm. Typically, hardware I/O or
vECU software events belong to this category.

Figure 4 shows the data flow for Scheduled Execution.

3 New Features
3.1 Data Types
FMI 1.0 and FMI 2.0 used a minimal number of nu-
meric data types for interface variables: fmi2Boolean,

FMU

User

Scheduler

t

Model PartitionModel Partition
time
parameters
inputs
outputs
local variables
event indicators
states
hidden states

t
p
u
y
w
z
x
b

...

... t

time
parameters
inputs
outputs
local variables
event indicators
states
hidden states

t
p
u
y
w
z
x
b

p w

u y

Figure 4. Schematic view of data flow between user, the sched-
uler of the importer and the FMU for Scheduled Execution

fmi2Integer and fmi2Real. When packaging nu-
meric codes representing physical processes, these types
and the fmi2String type, were sufficient.

System simulation has enlarged its focus to include
controller code (vECUs) to achieve high-quality cyber-
physical systems simulations. While packing vECUs as
1.0 or 2.0 FMUs has been practiced since 2010, the restric-
tions in interface data types introduced noticeable over-
head for conversion and copying. Moreover, new auto-
motive applications for system simulation, like Advanced
Driver Assistant Systems and Autonomous Drive system
components exchange more and more non-numeric data,
like object lists, images or even video streams.

Therefore, FMI 3.0 now supports a large set of integer
types (signed and unsigned, from 8 to 64 bit) and both 32-
and 64-bit floating-point variables. Moreover, binary vari-
ables have been introduced to allow the efficient exchange
of non-numeric values. Binary variables can be attributed
in the modelDescription.xml with a mimeType to
allow proper interpretation of their content.

3.2 Array Variables
In former versions of FMI, only scalar variables
were supported; array variables had to be expressed
using naming conventions. FMI 3.0 supports ar-
ray variables natively: Each variable (defined in the
modelDescription.xml) can have a constant num-
ber of dimensions (thus making the variable a multidimen-
sional array variable). The size of a dimension can either
be constant or may reference a structural parameter.

A simple example for using arrays would be a generic
matrix multiplication FMU. Such an FMU would ex-
pose two structural parameters, defining the size of the 1-
dimensional input variable, the size of the 1-dimensional
output variable and the sizes of the 2-dimensional array
(matrix) parameter variable.

A structural parameter can be, like any other parameter,
constant, fixed, or tunable. Changes to structural
parameters are restricted to special simulation modes:

• Configuration Mode allows changes to fixed and

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

19

tunable structural parameters and can be reached
from the mode Instantiated (before Initialization
Mode).

• Reconfiguration Mode allows changes to tunable
structural parameters. This mode can be reached
from Event Mode in Model Exchange, from Step
Mode in Co-Simulation and from Clock Activation
Mode in Scheduled Execution.

Hence, the sizes of the matrix FMU example do not need
to be “constant” after the FMU got generated but could
be “fixed” after the FMU gets instantiated or even “tuned”
during simulation.

Note that changing the value of a structural parame-
ter might also change the number of continuous states or
event indicators.

While the primary use case for structural parameters
is for arrays with variable dimension sizes, there can be
structural parameters that are not used in dimension ele-
ments, e. g., an fmi3String containing a file name to
read data from.

FMI 3.0 defines serialization orders for accessing array
variables (as well as corresponding derivatives or depen-
dencies).

3.3 Terminals and Icons
Terminals define semantic groups of variables to ease con-
necting compatible signals on system level. This defini-
tion adds an additional layer to the interface description
of the FMUs. It does not change the causality of the vari-
ables (i. e., inputs and outputs), but enables the definition
of physical and bus-like connectors that require special
handling on the system level by the importer (e. g., bus
frames, flow and stream variables). Terminals can contain
terminals to form hierarchies.

The matching rule of a terminal describes the rules for
variable matching in a connection of terminals. There
are three predefined matching rules: plug, bus, and
sequence. The terminal kind can be used to define do-
main specific member variable sequences, member names
and order, or high level restrictions for connections. A
member variable always refers to a variable declaration
in the ModelVariables element. The variable kind
of a terminal member variable defines how the connec-
tion of this variable has to be implemented. There are
three predefined matching rules: signal (i. e., com-
mon signal flow), inflow and outflow (i. e., Kirch-
hoff’s current law). Finally, the concept of stream con-
nectors is utilized (Rüdiger Franke et al. 2009). The
TerminalStreamMemberVariable is used for vari-
ables which fulfill the balance equation for transported
quantities.

To define domain-specific terminals, additional
information, like the specific physical meaning of a
TerminalMemberVariable or sign conventions,
must be standardized. The FMI 3.0 standard itself
does not define such domain specific terminals but
enables other (layered) standards (see section 3.7)

to do so. The XML attributes matchingRule,
terminalKind and variableName, are de-
fined as xs:normalizedString and not as
xs:enumeration which would restrict their ex-
tensibility. The FMI 3.0 specification defines a certain
set of values for these attributes (e. g., "signal" or
"inflow") and a dedicated semantics. Other standards
might introduce other values and other semantics. Im-
porters which do not understand such definitions can
ignore them and use the traditional input/output approach
specified by the causality attribute of FMI variables.
So if a specific vendor definition is not supported, then
the importer can ignore the terminal definition and rely on
the information in the ModelVariables element.

The graphical representation of the FMU icon can be
provided as png file. Additionally a coordinate system, the
FMU icon extent, and the placement of each terminal can
be defined. The graphical representation of each terminal
is also provided as png file. In addition to the png files,
svg files can be provided for high quality rendering.

Both, the terminal definitions and the graphical
representations are defined in the optional XML file
terminalsAndIcons.xml.

3.4 Event handling in Co-Simulation
The Co-Simulation interface of FMI 1.0 and FMI 2.0 is
popular because many different simulation mechanisms
can be abstracted into one function call fmi2DoStep to
let the FMU execute one communication time step. FMI
3.0 extends the Co-Simulation interface with a number
of mechanisms to more flexibly control execution of the
FMU over time.
Event Mode – The importer can interrupt the Step Mode

to transition the FMU into Event Mode. In Event
Mode a different set of equations is active inside the
FMU and discrete variables may change their val-
ues. The importer can solve algebraic loops of the
system the FMU is part of and may step the FMU
through a series of super-dense time instants, each
such step potentially using a different discrete state
of the FMU.

Early Return – In order to allow for larger hi time steps
in fmi3DoStep calls, importer and FMU must be
able to interrupt such long fmi3DoStep before
reaching ti + hi, in case something “special” hap-
pened:

1. The FMU can return from fmi3DoStep
early, announcing an internal event and re-
questing a transition to Event Mode.

2. The importer can request the FMU to return
early from fmi3DoStep during Intermedi-
ate Update Mode (see next Section) to prevent
the FMU from computing beyond an event re-
cently discovered by the importer (e. g., trig-
gered by another FMU).

The FMU indicates via the capability flag
hasEventMode if it supports Event Mode.

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

20 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117

The importer informs the FMU via argument
eventModeUsed and earlyReturnAllowed
of function fmi3InstantiateCoSimulation if it
supports event handling.

3.5 Intermediate Update Mode
The order of the error in a co-simulation is dominated by
the order of the errors made due to the approximation of
inputs (Arnold, Clauß, and Schierz 2014). At the same
time, higher order input approximation schemes may lead
to instabilities, depending on the system being simulated.
As such, it is important to provide some degree of control
over the input approximations being performed, and allow
the importer to obtain some of the intermediate outputs of
the FMU. Additionally, the importer may change contin-
uous and discrete input variables between fmi3DoStep
calls in a way that is hard for the FMU to predict. This
causes problems such as excessively small internal solver
stepping (due to the discontinuities introduced at commu-
nication times) and loss of accuracy (Busch 2016).

FMI 3.0 introduces the Intermediate Update Mode
to alleviate these issues, allowing the Importer and
FMU to exchange intermediate values for variables.
The FMU can call back into the importer to enter this
Intermediate Update Mode and ask the importer to update
its continuous input variables and allow it to query
its continuous output variables (e. g., to supply other
FMUs with updates to their inputs). This mechanism
replaces fmi2SetRealInputDerivatives for
input interpolation. This callback mechanism allows
the FMU to maintain its internal solver state while
new continuous inputs are being set. The FMU can
hint to the importer to keep the changes to the contin-
uous input variables within a certain smoothness (see
recommendedIntermediateInputSmoothness)
to optimize convergence.

The Intermediate Update Mode serves a number of
other purposes as well:

1. FMUs can inform the importer about pending events.
2. The importer can ask the FMU to return early from

an fmi3DoStep (see previous Section).
3. In Scheduled Execution, the FMU can inform the im-

porter/scheduler about a clock activation.
The FMU signals via the capability flag

providesIntermediateUpdate if it supports
this feature. The importer provides the pointer to the call-
back function via argument intermediateUpdate
of functions fmi3InstantiateCoSimulation
and fmi3InstantiateScheduledExecution as
non-NULL if it supports this feature.

3.6 Clocks
System simulation requires the coordination of events
across simulation components, in both Model Exchange
and Co-Simulation. If these components are packaged
as 1.0 or 2.0 FMUs, the importer and FMUs need to use
floating point time and epsilon environments with all the

known issues to locate such global events. Rüdiger Franke
et al. (2017) proposed how to introduce clocks in FMI.

In FMI 3.0, clocks are introduced to allow precise coor-
dination of global events, see Cláudio Gomes et al. (2021).
An FMI clock is a special variable that can be active or in-
active. When active, the corresponding model partition
(a set of equations associated to a clock) becomes active
while in Event Mode or Clock Activation Mode.

FMU variables that change only when a specific clock
ticks are called clocked variables and are assigned to this
clock in the modelDescription.xml.

With clocks synchronized across FMUs, algebraic
loops can now be solved properly during such global
events.

FMI 3.0 distinguishes between time-based clocks and
triggered clocks. The latter are raised when something
unexpected (e. g., a state event) happens and can be con-
nected to other triggered clocks. The importer forwards
that clock activation to the triggered input clocks during
Event Mode or Clock Activation Mode.

Time-based clocks come in a few different flavors (see
standard document for details) and all require the importer
to determine the proper time instant when to activate such
clocks - even if the FMU receiving such a time-base input
clock defines the period or next event time itself. This
is an important distinction to note: the FMU defines the
period or next activation, but the importer has the final say
at which time instant to actually activate the clock. This
is especially important for fixed-step solvers where some
flexibility might be required to transition events to one of
the communication points.

3.7 Adjoint derivatives
FMI 3.0 offers an additional interface function to cal-
culate partial derivatives. While directional derivatives
calculating vsensitivity = J · vseed for the Jacobi matrix J
where already supported in FMI 2.0, now also adjoint
derivative calculation is supported by the new interface
function fmi3GetAdjointDerivative, calculating
vT

sensitivity = vT
seed · J. They are used, e. g., in AI frame-

works, where they are called “vector gradient products”
(VGPs). There adjoint derivatives are used in the back-
propagation process to perform gradient-based optimiza-
tion of parameters using reverse mode automatic differen-
tiation (AD). Typically, reverse mode automatic differenti-
ation is more efficient for this use case than forward mode
AD, as explained in (Baydin et al. 2015).

3.8 Support for Layered Standards
In order to enable the backward-compatible extension of
the FMI standard in minor releases and between minor
releases, the FMI project intends the use of the layered
standard mechanism to introduce new features in a fully
backward-compatible and optional way. A layered stan-
dard defines extensions to the base FMI standard by spec-
ifying either standardized annotations, standardized extra
files in the FMU, and/or support for additional MIME

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

21

types, e. g., for the interpretation of variables of type
fmi3Binary.

A layered standard can include a single or combined set
of extension mechanisms from this set. The layered stan-
dard is thus considered to be layered on top of the defini-
tions and extensions mechanisms provided by the respec-
tive FMI base standard.

Layered standards can fall into three categories:
1. Layered standards defined by third parties, without

any representations by the FMI project for their suit-
ability or content, or even knowledge by the FMI
project about their existence.

2. Layered standards defined by third parties that are
endorsed by the FMI project and listed on the FMI
project website.

3. Layered standards can be defined/adopted and pub-
lished by the FMI project itself, making them FMI
project layered standards.

Layered standards that have achieved enough adoption
or importance to be included into the base standard set
could be incorporated into a new minor or major release
version of the base standard as an optional or mandatory
appendix, making support for this layered standard op-
tional or required for conformance with the newly pub-
lished minor release version of the base standard.

Examples for layered standards currently developed by
the FMI Project will support XCP (ASAM 2021) and Au-
tomotive Networks. Further layered standards could de-
fine standardized terminals for certain domains.

3.9 Build Configuration for Source Code
FMUs

To better support the exchange of FMUs with source code
implementations, FMI 3.0 introduces build configurations
consisting of an XML document that specifies a set of
source files and abstracted build information, like pre-
processor definitions, include paths or library dependen-
cies that are needed for building the supplied source code.
These can be cross-platform or platform-specific, which
gives the importer the ability to choose the correct build
configuration for a certain platform.

Here is an example for a build configuration:

<BuildConfiguration modelIdentifier="
PlantModel" description="Build
configuration for desktop platforms">

<SourceFileSet language="C99">
<SourceFile name="fmi3Functions.c"/>
<SourceFile name="solver.c"/>

</SourceFileSet>
<SourceFileSet language="C++11">
<SourceFile name="model.c"/>
<SourceFile name="logging/src/logger.c"/>
<PreprocessorDefinition name="FMI_VERSION"

value="3"/>
<PreprocessorDefinition name="LOG_TO_FILE"

optional="true"/>
<PreprocessorDefinition name="LOG_LEVEL"

value="0" optional="true">
<Option value="0" description="Log infos,

warnings and errors"/>

<Option value="1" description="Log
warnings and errors"/>

<Option value="2" description="Log only
errors"/>

</PreprocessorDefinition>
<IncludeDirectory name="logging/include"/>

</SourceFileSet>
<Library name="hdf5" version=">

;=1.8,!=1.8.17,<1.10" external="true"
description="HDF5"/>

4 Examples
In this section, we show some examples where the fea-
tures, introduced in the previous section, are used. Some
of these examples are being developed as reference FMUs,
with their source code made available online1.

4.1 Supervisory Control System
We start with an example that highlights the use of new
features of FMI for CS. Consider the example scenario
shown in Figure 5, where the FMUs are connected in a
typical feedback control loop, with a monitoring and adap-
tation loop, and the plant has been decoupled into two
FMUs. Using the new data types, structured information
can be communicated from the controller to the supervi-
sor, and using array variables or terminals, the connec-
tions between the controller and plant can be simplified.
Thanks to the intermediate value update and early return
mechanisms, the rate of sampling of the Controller can
be decoupled from the rate of sampling of the supervisor,
which in turn can be decoupled from the step size used in
the co-simulation.

The intermediate value update enables setting inputs
and accessing outputs between the communication points.
It can be used to implement advanced co-simulation algo-
rithms to increase stability and reduce the coupling errors
between the two plant FMUs. Some examples are given
below:

1. The plant inputs can be extrapolated ensuring conti-
nuity of signals (Busch 2016).

2. If a conserved quantity such as energy is transported
between the plant FMUs, then the additional in-
formation enables a reduction of the coupling er-
rors. One available algorithm is the nearly energy-
preserving coupling element (Benedikt et al. 2013;
Sadjina et al. 2017).

3. Transmission Line Modelling (TLM) systems con-
tain TLM connections which can be interpreted as
physically-motivated delayed connections. So intro-
ducing a delay between the FMUs, trajectories in-
stead of scalars can be exchanged between the plant
FMUs to improve stability and performance (Fritz-
son, Ståhl, and Nakhimovski 2007; Ochel et al.
2019).

For more advanced co-simulations algorithms, we refer
the reader to Cláudio Gomes et al. (2018, Section 4).

1https://github.com/modelica/Reference-FMUs

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

22 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117

Controller FMU PlantA FMU

Supervisor FMU

Structured data

Array and
Terminal connection

Intermediate value update
controls sampling rate

Can trigger early return
and event handling

PlantB FMU

Intermediate value update
can improve accuracy

Figure 5. Example supervisory control system and how the new
features of FMI CS can improve its simulation.

Finally, the Supervisor FMU may reconfigure the Con-
troller FMU when a certain condition is met. When this
happens, the Supervisor FMU may signal that stepping
phase needs to be halted, and event handing is needed.

4.2 Clocked System
When it is important to make explicit the sampling rate
of different subsystems, the Synchronous Clocks API can
be used. To illustrate this, consider Figure 6, that shows
a variant of the scenario of Figure 5, except the controller
FMU has been partitioned across different FMUs. The
figure sketches the CtrlFMU equations, but note that the
importer has no access to these (it can only query the FMU
for the values of the output variables). The CtrlFMU, ev-
ery 1/r seconds (with r denoting both a clock r and its
frequency), gets a sample from the Plant (produced by
the Sensor), and calculates its next state, based on the
previous state pre(u_r), the sampled value x_r, and
some configuration parameter a that is calculated by the
Supervisor. The latter, depending on the Plant dy-
namics, the sampling rate of which we ignore, may decide
to reconfigure the Controller. By introducing a trig-
gered input clock s and a time-based input clock r, it is
made clear who is responsible for the unambiguous acti-
vation of the clocks: the Supervisor controls s, and
the importer controls when to activate r (even though, de-
pending on the clock attributes, the CtrlFMUmay recom-
mend a sample rate that the importer will then obey). Fur-
thermore, no approximate floating point comparisons are
needed to know which equations have to be active when
entering Event Mode.

We refer the reader to (Cláudio Gomes et al. 2021)
and the FMI standard, for more details about Synchronous
Clocks.

4.3 Terminals
This section illustrates an exemplary terminal definition of
an electrical pin in the FMU XML file.
<Terminal name="Pin1" matchingRule="plug">
<TerminalMemberVariable
variableKind="inflow"
memberName="i"
variableName="Current" />

<TerminalMemberVariable
variableKind="signal"

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s clock s

clock r

Figure 6. Example clocked control system.

memberName="v"
variableName="Voltage" />

</Terminal>

"Voltage" and "Current" reference to the follow-
ing FMU-variables:

<Float64
name="Current"
valueReference="2"
description="Current output"
variability="continuous"
causality="output" />

<Float64
name="Voltage"
valueReference="1"
description="Voltage input"
variability="continuous"
causality="input"
start="0" />

The variableKind attribute indicates to the im-
porter that Kirchhoff’s current law should be applied to
the variable Current, while Voltage should be treated
as common signal.

A Modelica tool, for example, can
use this XML description to generate a
connector which automatically matches to
Modelica.Electrical.Analog.Interfaces.Pin
of the Modelica Standard Library since the same names
for the member variables are used and "i" is marked
as flow variable. Similar mechanisms are possible with
VHDL-AMS or other tools which support a terminal or
bus concept which goes beyond single signals.

Even though the FMU can be imported into acausal
tools/languages such as Modelica, the FMU itself is
causal. An acausal model can be used to generate sev-
eral FMUs with different computational causality. The
computational causality of the FMU is defined by the
causality attributes in the XML file. In the example above
"current" is always an output of this specific FMU.
Cases where the importer prefers a different computa-
tional causality than provided by the FMU have to be han-
dled by the importer.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

23

4.4 Virtual Electronic Control Unit
The following example illustrates how FMI 3.0 features
can be used for packaging vECUs inside FMUs. It is a re-
duced version of the example used in the layered standard
proposal for automotive network communication.

This layered standard proposal uses clocks, binary vari-
ables, naming conventions for variable names and termi-
nals to use FMI 3.0 mechanisms as transport layer for
automotive network communication between simulation
components. Clocks describe the timing of their respec-
tive network frames, to exactly communicate the sending
of each frame. Terminals are used to describe the com-
position of these network frames from PDUs and signals,
hierarchically, allowing simplified handling of entire sig-
nal groups in system composition tools. Binary signals are
used to represent frames in their raw network specific en-
coding, serializing internal PDUs and signals. For consis-
tent encoding and decoding of these binary signals, stan-
dardized network description files are included inside the
FMU in the /extra directory. Referencing existing stan-
dard description files allows reusing existing tools for both
exporting and importing such FMUs, while ensuring the
same semantics are used for both sender and receiver of
signals encoded according to these standards.

The example shows how to describe a CAN message
that updates 2 signals, each represented as a Float32
variable. Naming conventions, described in the layered
standard, can be used to match the signals, the corre-
sponding binary variable representing the raw frame data
and the clock variable determining the timing of the CAN
message (here POWERTRAIN::tcuSensors_FRAME
and their corresponding triggered Clock variable
POWERTRAIN::tcuSensors_CLOCK). The triggered
clock variable controls the time at which a message is set,
and should be connected to another clock at the source of
the message.

<fmiModelDescription fmiVersion="3.0-alpha.6"
modelName="Network4FMI"
instantiationToken="Network4FMI">
<ModelVariables>
<Float32 name="POWERTRAIN::tcuSensors::

tcuSensors::vCar"
valueReference="1001" causality="input"
variability="discrete" start="0" clocks="

1004"/>
<Float32 name="POWERTRAIN::tcuSensors::

tcuSensors::oilTemp"
valueReference="1002" causality="input"
variability="discrete" start="20" clocks=

"1004"/>
<Binary name="POWERTRAIN::tcuSensors_FRAME

"
valueReference="1003" causality="input"
variability="discrete" clocks="1004"/>

<Clock name="POWERTRAIN::tcuSensors_CLOCK"
valueReference="1004" causality="input"
variability="clock" interval="triggered"/

>
...
</ModelVariables>

</fmiModelDescription>

<fmiTerminalsAndIcons fmiVersion="3.0-alpha6"
>

<Terminals>
<Terminal terminalKind="bus" name="

POWERTRAIN" matchingRule="bus"
description="Powertrain CAN bus defined

with dbc file">
<Terminal terminalKind="frame" name="

tcuSensors" matchingRule="bus">
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::

tcuSensors_FRAME" />
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::

tcuSensors_CLOCK" />
<Terminal terminalKind="pdu" name="

tcuSensors" matchingRule="bus">
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::tcuSensors

::tcuSensors::vCar"
memberName="vCar" />

<TerminalMemberVariable variableKind="
signal"

variableName="POWERTRAIN::tcuSensors
::tcuSensors::oilTemp"

memberName="oilTemp" />
</Terminal>

</Terminal>
</Terminal>
...

</Terminals>
<Annotations>
<Annotation type="ECU" />

</Annotations>
</fmiTerminalsAndIcons>

4.5 Scheduled Execution
In order to illustrate the preemption support, we consider
the example of a single FMU, illustrated in Figure 7,
where an FMU declares three input clocks and one out-
put clock. Each input clock, when activated, instructs the
importer, that acts as a task scheduler, to execute the cor-
responding model partition as soon as possible.

A model partition, or just partition, represents code that
should be scheduled (e.g on a real-time simulator or offline
simulator running real-time scenarios) as soon as an input
clock ticks. Partitions contain arbitrary code that reads the
inputs of the FMU, writes to the FMU’s local variables
(which can be shared among tasks) and outputs, and can
trigger other clocks or update their interval. The inputs to
each partition are set by the importer immediately before
executing that partition. In Figure 7, uc

m’s partition reads
and writes the shared variable xm, and either updates the
interval of vc

m or ticks yc
m.

In Figure 7, input clock uc
m ticks every 10 ms and wc

m
ticks every 50 ms, therefore, every 5th tick, both clocks
will tick simultaneously. When that happens, the sched-
uler needs to know whose task has the highest priority. As
a result, the FMU needs to declare a priority level for each
input clock. In Figure 7, uc

m’s task (the one executing Par-
tition 1) should be executed before wc

m’s (Partition 3).

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

24 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117

m

when :

Clock attributes:
 - Period 10ms, Priority 1
 - Countdown, Priority 2

 - Period 50ms, Priority 3
 - Triggered, Priority --

Local vars:

when :

 if (...) then
 setInterval()
 else
 tick()

Partition 1

when :

Partition 2

Partition 3

Figure 7. Example FMU implementing the SE interface.

Because tasks can be preempted, in rare cases, the FMU
has to be able to restrict the preemtion for particular sec-
tions, such as updating a shared variable. As such, the
FMU must inform the importer of when it should not be
interrupted, to avoid race conditions. Since partitions can
trigger and update the interval of other clocks, the FMU
may use the Intermediate Update Mode, in the middle of
the calculation of a partition, to inform the importer that
a clock is about to tick or has a new interval, so that the
importer can schedule the corresponding tasks.

Figure 8 illustrates a possible execution trace of the
tasks corresponding to the partitions declared in Figure 7.
At the initial wall-clock time, both Task 1 and 3 are sched-
uled to execute. Since Task 1 has higher priority, it runs
first, and Task 3 is delayed. While executing Task 1, the
FMU informs the importer that vc

m’s task (Task 2) should
be scheduled to run at wall-clock time t2. At wall-clock
time t2, Task 1 is still executing, so Task 2 is delayed until
wall clock time t3. At wall-clock time t3, Task 2 starts ex-
ecuting, but note that the activation time of Task 2 is still
its scheduled time t2. This is where the wall-clock time
t3 differs from the simulated time t2. At t4, Task 2 is pre-
empted, because of Task 1. Finally, after being delayed
substantially, Task 3 gets to execute, with its simulated
time t0.

We refer the reader to (Cláudio Gomes et al. 2021) and
the FMI standard, for more details about the Scheduled
Execution API.

5 Quality Improvement Measures and
Prototypical Implementations

The development of new features followed the FMI de-
velopment process (Modelica Association 2015) with the
creation of FMI Change Proposals (FCP) providing the
use cases, suggested changes and partial prototypes.

During the development of the FMI 3.0 standard, the
text was completely restructured and several concepts
were unified between the different interface types in a
common concepts section. The state machines were uni-

Wall-clock time (ms)

activate(,)

Ta
sk

 2

setInterval(,)

schedule Task 2 delay

delayed

suspend

activate(,)
activate(,) activate(,)

Ta
sk

 3
Ta

sk
 1

Legend:
 - Wall-clock time
 - Simulated time

Figure 8. Example execution trace of Figure 7. Task N corre-
sponds to execution of partition N, as detailed in Figure 7.

fied between the different interface types.

In order to streamline the standard text, implementation
specific hints will be singled out in an FMI implementers
guide.

Reference FMUs (Reference FMUs 2021) were created
to showcase and test certain features of FMI. These FMUs
and code snippets extracted from them, are continuously
compiled and example XML files automatically validated
against the schema files in a continuous integration envi-
ronment to ensure correctness of the examples included
into the standard document.

Several tools were used to validate prototypes of FMI
3.0 features: Altair Activate, Dymola, fmpy (fmpy 2021),
Model.CONNECT™, Silver, SimulationX, among others.

6 Summary and Outlook

The success of the Modelica Association’s FMI standard
1.0 and 2.0 has created the desire to improve simulation ef-
ficiency and accuracy, as well as to enable new use cases.
FMI 3.0 introduces a number of new features and im-
provements to address many of the needs found in cur-
rent industrial and research applications. More impor-
tantly, opening up to layered standards will help to address
many of the future needs not yet envisioned and to address
industry specific requirements best addressed by special-
purpose extensions without weighting down the core FMI
standard document.

The developers of the current version of FMI are well
aware of the current challenges of the simulation commu-
nity. In particular, simulation efficiency will be the focus
of future FMI development.

Another important drive for future FMI versions is har-
monization with other complementary Modelica Associ-
ation standards, such as SSP, DCP and eFMI. Finding
structural ways to make these standards more compatible
and therefore easier to implement, will increase each stan-
dard’s added value.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

25

Acknowledgements
The authors wish to thank all the contributors to the FMI
specification. Contributions of ESI ITI GmbH were car-
ried out within the project FMI4BIM, funded by the Ger-
man Federal Ministry for Economic Affairs and Energy.

References
Arnold, Martin, Christoph Clauß, and Tom Schierz (2014).

“Error Analysis and Error Estimates for Co-Simulation in
FMI for Model Exchange and Co-Simulation v2.0”. In:
Progress in Differential-Algebraic Equations. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 107–125. ISBN: 978-3-
662-44926-4. DOI: 10.1007/978-3-662-44926-4_6.

ASAM (2021). ASAM MCD-1 XCP Standard. URL: https : / /
www.asam.net /standards/detail /mcd- 1- xcp/wiki/ (visited
on 2021-04-18).

Baydin, Atilim Gunes et al. (2015). Automatic differentiation in
machine learning. URL: https : / / arxiv.org /abs /1502 .05767
(visited on 2021-05-06).

Benedikt, M et al. (2013-06). “NEPCE-A Nearly Energy Pre-
serving Coupling Element for Weak-Coupled Problems and
Co-Simulation”. In: IV International Conference on Compu-
tational Methods for Coupled Problems in Science and Engi-
neering, Coupled Problems. Ibiza, Spain, pp. 1–12.

Blochwitz, Torsten et al. (2011). “The Functional Mockup Inter-
face for Tool independent Exchange of Simulation”. In: 8th
International Modelica Conference. URL: http://www.ep.liu.
se/ecp/063/013/ecp11063013.pdf.

Blochwitz, Torsten et al. (2012). “Functional Mockup Interface
2.0: The Standard for Tool Independent Exchange of Simu-
lation Models”. In: 8th International Modelica Conference.
URL: https://lup.lub.lu.se/search/ws/files/5428900/2972293.
pdf.

Busch, Martin (2016-09). “Continuous Approximation Tech-
niques for Co-Simulation Methods: Analysis of Numerical
Stability and Local Error”. In: Journal of Applied Mathemat-
ics and Mechanics 96.9, pp. 1061–1081. ISSN: 00442267.
DOI: 10.1002/zamm.201500196.

fmpy (2021). URL: https://github.com/CATIA-Systems/FMPy
(visited on 2021-04-20).

Franke, Rüdiger et al. (2009). “Stream Connectors – An Exten-
sion of Modelica for Device-Oriented Modeling of Convec-
tive Transport Phenomena”. In: Proceedings of the 7th Inter-
national Modelica Conference (Como, I, September 20–22,
2009). Ed. by Francesco Casella. Linköping Electronic Con-
ference Proceedings. Linköping: Linköping University Elec-
tronic Press, pp. 108–121. DOI: 10.3384/ecp09430078. URL:
http://dx.doi.org/10.3384/ecp09430078.

Franke, Rüdiger et al. (2017). “Discrete-time models for control
applications with FMI”. In: Proceedings of the 12th Interna-
tional Modelica Conference, Prague, Czech Republic, May
15-17, 2017. 132. Linköping University Electronic Press,
pp. 507–515. URL: https : / / 2017 . international . conference .

modelica.org/proceedings/html/submissions/ecp17132507_
FrankeMattssonOtterWernerssonOlssonOchelBlochwitz.pdf.

Fritzson, Dag, Jonas Ståhl, and Iakov Nakhimovski (2007).
“Transmission Line Co-Simulation of Rolling Bearing Appli-
cations”. In: 48th Conference on Simulation and Modelling.
Göteborg, Sweden: Citeseer, pp. 24–39.

Gomes, Cláudio et al. (2018). “Co-Simulation: A Survey”. In:
ACM Computing Surveys 51.3, 49:1–49:33. DOI: 10 . 1145 /
3179993.

Gomes, Cláudio et al. (2021). “The FMI 3.0 Standard Interface
for Clocked and Scheduled Simulations”. In: Proceedings
of the 14th International Modelica Conference. 14th Inter-
national Modelica Conference. online: Linköping University
Electronic Press, Linköpings Universitet, to be published.

Modelica Association (2015-07). FMI Development Process
And Communication Policy. URL: https : / / github . com /
modelica / fmi - standard . org / blob / master / assets / FMI _
DevelopmentProcess_1.0.pdf.

Modelica Association (2021a-04). Functional Mock-up Inter-
face Specification, v3.0beta.1. URL: https : / / github . com /
modelica/fmi-standard/releases/tag/v3.0-beta.1.

Modelica Association (2021b). FMI Website. URL: https://fmi-
standard.org/ (visited on 2021-04-18).

Modelica Association (2021c). FMI Website. URL: https://fmi-
standard.org/tools/ (visited on 2021-04-18).

Ochel, Lennart et al. (2019-02). “OMSimulator - Integrated FMI
and TLM-Based Co-Simulation with Composite Model Edit-
ing and SSP”. In: The 13th International Modelica Confer-
ence, Regensburg, Germany, March 4–6, 2019, pp. 69–78.
DOI: 10.3384/ecp1915769.

Reference FMUs (2021). URL: https : / / github. com /modelica /
Reference-FMUs (visited on 2021-05-02).

Sadjina, Severin et al. (2017-07). “Energy Conservation and
Power Bonds in Co-Simulations: Non-Iterative Adaptive Step
Size Control and Error Estimation”. In: Engineering with
Computers 33.3, pp. 607–620. ISSN: 1435-5663. DOI: 10 .
1007/s00366-016-0492-8.

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

26 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117

The FMI 3.0 Standard Interface for
Clocked and Scheduled Simulations

Cláudio Gomes1 Masoud Najafi2 Torsten Sommer3 Matthias Blesken4 Irina Zacharias4

Oliver Kotte5 Pierre R. Mai6 Klaus Schuch7 Karl Wernersson8 Christian Bertsch5

Torsten Blochwitz9 Andreas Junghanns10

1Department of Electrical and Computer Engineering, Aarhus University, Denmark, claudio.gomes@ece.au.dk
2Altair, France, masoud@altair.com

3Dassault Systemes GmbH, Germany, Torsten.SOMMER@3ds.com
4dSPACE GmbH, Germany, {MBlesken,izacharias}@dspace.de

5Corporate Research, Robert Bosch GmbH, Renningen, Germany,
{Oliver.Kotte,Christian.Bertsch}@de.bosch.com

6PMSFIT, Germany, pmai@pmsfit.de
7AVL, Austria, klaus.schuch@avl.com

8Dassault Systemes AB, Sweden, karl.wernersson@3ds.com
9ESI ITI, Germany, Torsten.Blochwitz@esi-group.com

10Synopsys, Germany, Andreas.Junghanns@synopsys.com

Abstract
This paper gives an overview of the FMI 3.0 support
for two kinds of clock-based simulations: Synchron-
ous Clocked Simulation, and Scheduled Execution. The
former is used when the information about multiple simul-
taneous events (cause and exact time of occurrence) can be
unambiguously conveyed. The later facilitates real-time
simulations comprising multiple black-box models, by al-
lowing fine grained control over the computation time of
sub-models. A formalization is presented along with ex-
ample application scenarios, meant as an introduction to
the conceptualization of clocks in the FMI Standard.
Keywords: functional mockup interface, synchronous
clocks, reactive systems, real-time simulation, scheduling,
real-time operating system.

1 Introduction
As more and more Modeling and Simulation (M&S) tools
are used in system engineering processes, it becomes clear
that standards are needed to improve the interoperability
of such tools. The Functional Mockup Interface (FMI)
Standard (2.0 2014) aims at enabling the exchange and
cooperative simulation of black-box models. Version 2.0
of the standard strikes a balance between supporting the
most common features across the plethora of M&S tools,
and enabling the advanced simulation scenarios. Its wide
adoption has, however, placed pressure in supporting two
important use cases are: simulation scenarios where timed
and state events play a frequent role in synchronizing a
subset of the participating models (e.g., controller code
with tasks running at different rates); and scenarios where
the goal is to control the computation time of the different
models, so that a real-time co-simulation can be achieved.

Contribution. This paper gives an overview of the FMI
3.0 support for two kinds of clock based simulations: Syn-
chronous Clocked Simulation (SC), and Scheduled Execu-
tion (SE). The former aims at scenarios where the cause
and exact time of occurrence of multiple simultaneous
events can be unambiguously conveyed. The later facil-
itates real-time simulation among black-box models, by
allowing a finer grained control (compared to version 2.0)
over when/which model partitions can be executed.

Structure. The next section will introduce the common
concepts and the interface elements that are common to
SC and SE. Then in Section 3 SC is detailed, along with
a motivating example. Section 4 focuses on SE, following
the same structure as Section 3. In Section 5, we discuss
some of the relevant related works, and in Section 6 we
summarize and conclude.

2 Common Interface and Concepts
Co-simulation is a technique to combine multiple black-
box simulation units to compute the combined models’
behaviour. See Kübler and Schiehlen (2000) and Gomes
et al. (2018), for an introduction. The simulation units,
often developed and exported independently from each
other in different M&S tools, are coupled using an or-
chestration algorithm, often developed independently as
well, that communicates with each simulation unit via its
interface. This interface, an example of which is the FMI
Standard interface for Co-Simulation, comprises functions
for setting/getting inputs/outputs and computing the asso-
ciated model behaviour over a given time interval.

The FMI 3.0 defines three interface types: the Co-
Simulation (CS), the Model Exchange (ME), and the
Scheduled Execution (SE). In the FMI, a simulation unit is

DOI
10.3384/ecp2118127

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

27

called a Functional Mockup Unit (FMU), and it may im-
plement one or more of the three interfaces. An FMU is a
zip containing: binaries and/or source code implementing
the API functions; miscellaneous resources; and an XML
file, describing the variables, model structure, and other
data.

For each interface type, the FMU may implement op-
tional features, such as declaring synchronous clocks (in
case of ME or CS), or scheduled execution clocks (in case
of SE). Figure 1 summarizes the different interface types
and the main concepts relevant to this paper. All three in-
terfaces (CS, ME, and SE) share common functionality,
such as the declaration and usage of variables and clocks.

The differences between the three interface types can
be seen on the left hand side of Figure 1. The Importer
refers to the software that imports the FMU. We distin-
guish three importers, each corresponding to one of the in-
terface types, and each with different responsibilities. The
ME importer often needs to provide a differential equa-
tion (ODE) solver, and must handle events. In contrast,
the CS importer does not need to provide an ODE solver,
because such a solver can be implemented inside the CS
FMU. Finally, the SE importer needs a task scheduler that
will determine exactly when each task implemented in the
FMU will be executed.

The ME and CS both contain mechanisms to commu-
nicate events to the importer, and, as we detail later, both
enable Synchronous Clocked (SC) simulation.

Broadly, a simulation involving multiple connected
FMUs goes through the following modes1:
Initialize – The FMUs are instantiated and their initial

state/inputs/outputs/parameters are calculated or set
by the importer.

Step – The simulation is progressing in simulated time,
and FMUs that represent ODEs are being numeric-
ally integrated.

Event – The simulated time is stopped and events (e.g.
clock ticks, parameter changes) are being processed.

Terminate – The simulation has finished and all re-
sources are freed.

The Step and Event modes come after the Initialize mode,
and are interleaved.

In the following sub-sections, we introduce FMI3.0
clocks, how they are declared, connected, and interacted
with, as well as common constraints imposed by the stand-
ard. These are common to the SC and SE clock interpret-
ations.

2.1 Clock Taxonomy
Clocks represent an abstraction of activities whose occur-
rence is tied to specific points in time. They appear in
many modeling formalisms for systems that interact with
the real world (Benveniste et al. 2003; Modelica Associ-
ation 2021), where it is important to represent computa-

1This is a simplification of the states or modes defined in the state
diagrams of the FMI 3.0 standard.

tions that happen at different rates, or as a result of con-
ditions observed in the environment. Conceptually, each
clock represents a sequence of instants in time where the
clock is active, called ticks. From the entities that can in-
teract with a clock, we highlight the FMU and the importer
(recall Figure 1). The FMU is the entity that declares the
clock, while the importer is the code activating the clock
in the FMU.

Clocks are declared in the XML file, and can be seen
as a special kind of variable. The XML description for
each clock contains, among others, an identifier called the
value reference, a causality attribute (whether the clock is
an input or output, as we will discuss later), and an interval
attribute (declaring the type of clock, discussed later). Dy-
namically, during the simulation, each clock can be either
active or inactive (denoted as the clock’s state), and its
state can be either set or get by the importer, depending on
the clock type and its causality (see below).

There are two main types of clocks: time-based and
triggered. Time-based clocks are associated with an inter-
val, dictating, at any moment in simulated time, the inter-
val (in simulated time units) between the last tick and the
next tick. Such intervals can be queried or set by the im-
porter, depending on the clock’s interval attribute (see be-
low). In contrast, triggered clocks have no a priori known
interval. The FMU or importer has to set/get the (activa-
tion) state of the clock. The different clock types are listed
in Table 1 according to who calculates the intervals and
ticks the clock.

Before discussing the causality of clocks, it is important
to distinguish between the entity that dictates the clock in-
terval vs. the entity that actually activates the clock. This
distinction is important in the context of the FMI because
the simulated time is a real-valued quantity, represented
by a finite-resolution variable. For example, the FMU may
declare the interval of a periodic clock in the XML, but it
is the importer that will decide exactly at which simulated
time the clock ticks. Due to numerical inaccuracies, it may
happen that the interval (in simulated time) between clock
ticks does not match exactly the interval declared by the
FMU.

Time-based clocks are always input clocks, since it is
always the importer that is responsible for activating the
clock (even though the clock interval information may
come from other entities, as shown in Table 1). Triggered
clocks, on the other hand, can be input or output clocks.
Triggered input clocks, just like time-based input clocks,
can only be set by the importer, whereas triggered out-
put clocks are set internally by the FMU, and can only be
queried by the importer. The causality therefore plays a
role in determining how clocks can be connected.

2.2 Clock Variables and Dependencies
Just like any other variable, an output clock can be con-
nected to an input clock. It is also possible to connect
two input clocks or even have one input clock connected
to two different output clocks. A connection from clock

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

28 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127

package Synchronous Clocks interfacesME FMU

ME Importer

interface Model Exchange
ME Exporter

exports

interacts with

package Common Features

Variables

Clocks

<<refine>>

<<refine>>

interface Co-simulation

interface Scheduled Execution

<<refine>>CS FMU

CS Exporter

exports

ODE Solver Event Handler

<<import>>

Algebraic Eq.
Solver

CS Importer <<import>>

interacts with

Event HandlerAlgebraic Eq.
Solver

<<refine>>

<<refine>>

<<refine>>

<<refine>>

SE FMU

SE Exporter

exports

SE Importer <<import>>

interacts with

Task Scheduler

External FMI Standard

Events

ODE

Figure 1. Overview of relevant concepts. Note that there might be domain specific importers which do not need an ODE solver
because the supported FMUs do not contain continuous variables. This figure attempts to illustrate the most common differences
between the interface types.

wc to clock vc means that whenever clock wc ticks, then
clock vc should also tick. For triggered clocks, that is rel-
atively easy to enforce: whenever one clock activates, the
other should be activated. For time-based clocks, the im-
porter must take into account the interval attributes of the
clocks and decide whether such connection makes sense
or not. For example, if one clock has a constant interval,
and another clock has a fixed interval, then the importer
may simply set the correct period for the second clock.

FMUs can declare the internal dependencies between
their output and their input variables in the XML section
denoted as Model Structure. An output variable y depends
on an input variable u when the computation of y’s value
requires the value of u. For example, in Figure 2, ym is
computed from, among other dependencies, um.

Each output clock yc can also depend on one or more
input clocks or variables. The meaning is that the state
of such input clocks or the value of the input variables
is taken into account when deciding whether yc will tick.
For example, in Figure 2, yc

m may tick when uc
m ticks, or

because of the value change of um. Note that it is not ne-
cessarily the case that yc will tick whenever an input clock,
that yc depends on, ticks.

When a clock wc ticks (we use wc when the causality
of the clock is irrelevant), there is a set of variables whose
values are computed. We denote that set by “wc’s vari-
ables”, or “clocked variables” when the specific clock is
unimportant. FMI imposes few constraints on the clocked
variables. However, the FMU can declare in its XML, for

each variable, which clocks wc depends on (usually one).
For example, in Figure 2, ym is computed when uc

m ticks.
Lacking such declaration, the importer needs to assume
the worst case: all output variables are computed when wc

ticks. The value of wc’s variables should only be accessed
when (one of the) wc is active, i.e., is ticking. Accessing
the wc’s variables when wc is not ticking results in un-
defined behaviour.

m n

Legend:

 is computed from when ticks.

 may tick because of ticking
or changing value.

 is transitively connected to .

Figure 2. Example clock connections and dependencies. The
symbols m and n refer to FMUs.

3 Synchronous Clocked Simulation
In this section, we describe the Synchronous Clock (SC)
interpretation of the clocks interface, introduced in the
previous section. This interpretation is inspired by the

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118127

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

29

Table 1. Overview of clock types and their attributes.

Clock Type Period Interval Interpretation

time-based
periodic

constant FMU declares period in XML.
fixed Importer sets the interval during Initialize.
calculated FMU calculates period in Initialize mode.
tunable FMU calculates period in Event mode (CS) or after executing model parti-

tion (SE).

aperiodic changing FMU calculates interval after each clock tick.
countdown FMU calculates interval after an event.

triggered – triggered There’s no known interval. The clock ticks unpredictably, either due to
FMU current state/inputs, or due to events.

clock implementation in the Modelica specification (Mod-
elica Association 2021) and existing synchronous clock
theories such as Benveniste et al. (2003), but had to be ad-
apted to reflect the constraints of black-box co-simulation.
As such, we offer no guarantees of semantic equivalence.

We start with detailing the main simulation modes for
both ME and CS FMUs, as if no clocks were declared. In
order to focus on the essential mechanisms, we abstract
away from the ME and CS interfaces, and present them
in a unified manner using set theoretic constructs, while
referring the reader to the standard for more details.

3.1 Background on CS and ME
Following the super-dense time formulation as in Lee and
Zheng (2005), the simulation time is a tuple t = (tR, tI)
where tR ∈ R≥0, tI ∈ N≥0. In Step mode, the real part of
time tR is increasing and tI = 0, and during Event mode,
the integer part of time tI is increasing while tR is held
constant. Figure 3 illustrates a possible trajectory for the
values of a variable v under super-dense time. As can be
seen, the Step mode produces a continuous evolution for
the value of v, while the Event mode introduces discon-
tinuities in the calculation of v. Under Event mode, a vari-
able may acquire multiple values, each computed by one
iteration of the Event mode, discerned by the tI part of the
timestamp.

3

(3,0)

(3,1)

(3,2)

(3,3)

(2,0)

Step Mode Step Mode

Event Mode

Figure 3. Example variable trajectory under super-dense time.

In Step mode, the FMU and importer cooperate in ap-
proximating the solution of a system of differential equa-

tions, described by the FMU. In the case of ME, the FMU
provides the derivatives and the importer provides the in-
puts and solver, whereas in CS, the importer provides the
inputs, and the FMU provides the derivatives and solver
(recall Figure 1).

The importer may then switch the FMU to Event mode
if one or more of the following situations occur2:

Time events – the simulated time t = (tR,0) reached a
value tR that was known at the end of the last Event
mode;

State events – The value of some variable crossed a
threshold that is known to the FMU;

Input events – The value of an input variable changed in
a discrete way, introducing a discontinuity.

In version 3 of the FMI Standard, both ME and CS in-
terfaces describe the mechanism by which the FMU com-
municates the occurrence of events to the importer, so we
will not discuss these mechanisms here. It suffices to as-
sert that the importer is able to determine that the FMU
should switch to Event mode at the appropriate simulated
time.

During Event mode, the FMU and importer cooperate
in solving a set of algebraic equations that are associated
with the event that triggered the Event mode, known to the
FMU. To solve the equations, the importer will typically
construct a dependency graph between the output and in-
put variables, using the Model Structure declared by the
FMU. Note that the FMU may be part of a larger sim-
ulation model, where external variables form its inputs,
and can also depend on its outputs. Therefore the depend-
ency graph may involve not just the FMU variables, but
other relevant external variables. As a result, there might
exist cyclic dependencies between variables of the FMU.
These manifest in the form of non-trivial strongly connec-
ted components in the dependency graph (Tarjan 1971). It
is up to the importer to solve the algebraic loop, by setting
and querying the variables of the FMU. The FMU plays its
role by recomputing any output variable that might change

2There are other kinds of events, but for simplicity we highlight the
main ones.

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

30 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127

as a result of new values for the input variables set by the
importer. The important outcome is that all variables of
the FMU have acquired a value.

The FMU may remain in Event mode, and perform a
new iteration, if more events occur. These new events may
be caused by the importer or by a new value for some vari-
able. The FMI defines the mechanism by which the FMU
or importer agree that a new event iteration is needed.
Each new event iteration corresponds to one increment in
the integer part of the simulated time. If no more event
iterations are needed, Event mode is finished.

Note that, in Event mode, as part of the procedure to
solve non-linear equations, there may be hundreds of iter-
ations to converge and obtain a solution. These interme-
diate values are not shown in Figure 3 and do not cause
the integer part of super-dense time to increment because
they happen within one super-dense time instant. There-
fore in Figure 3 there are three event handling iterations.
When switching back to Step mode, the FMU also informs
the importer of the next time-based event (if such event is
defined).

3.2 Discerning Events
The basic event signaling mechanism offered by FMI 2.0
is adequate for most applications that do not rely on many
events. However, they are insufficiently expressive for
simulations with many simultaneous events. We illustrate
this with a simple example shown in Figure 4, devised
to motivate the need for clocks. The example shows a
closed loop control system, where the CtrlFMU is spe-
cified as an FMU, and the remaining sub-models are spe-
cified in some other language. We sketch the CtrlFMU
equations, but note that the importer has no access to these
(it can only query the FMU for the values of the output
variables). The CtrlFMU, every 1/r seconds (we ab-
use the notation r to denote both a clock r and its fre-
quency), gets a sample from the Plant (produced by
the Sensor), and calculates its next state, based on the
previous state pre(u_r), the sampled value x_r, and
some configuration parameter a that is calculated by the
Supervisor. The latter, depending on the Plant dy-
namics, the sampling rate of which we ignore, may decide
to reconfigure the Controller.

Using only the basic event mechanism of FMI, it is
cumbersome to simulate Figure 4, for the following reas-
ons:

• If it is the FMU that decides when to sample, there
is no way for the importer to know the sample rate
r. The importer only receives information about
the next time event, after each Event mode of the
CtrlFMU.

• There is no way for the FMU to know exactly which
equations to enable when entering Event mode.
When the Supervisor computes a new value for
a_s, the CtrlFMU must be in Event mode, because
of the input event. Then CtrlFMU must rely on ap-
proximate floating point comparisons to know that

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s

Figure 4. Motivating example with supervisor controller.

only the Config equation is to be enabled. Con-
versely, when a new sample x_r is available, the
CtrlFMU must know that the Config equation
must remain disabled.

Figure 5 shows how clocks address the limitations high-
lighted by the example in Figure 4. By introducing a
triggered input clock s and a time-based input clock r,
it is made clear who is responsible for the unambiguous
activation of the clocks: the Supervisor controls s,
and the importer controls r. Furthermore, no approxim-
ate floating point comparisons are needed to know which
equations have to be active when entering Event mode.

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s clock s

clock r

Figure 5. Clocked version of Figure 4.

3.3 Synchronous Clocks Semantics

We now detail the main functions that interact with clocks.
In order to do so, we must define a compact FMU abstrac-
tion. Without loss of generality, we can focus on form-
alizing what happens in a simulation where the FMU is
in Step mode, switches to Event mode, and then resumes
Step mode.

Definition 1 (SC FMU Instance). An SC FMU instance

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118127

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

31

with identifier m is represented by the tuple

⟨Sm,Um,Ym,Uc
m,Y

c
m,setm,getm,

setc
m,get

c
m,commit

c
m,stepTm,stepEm,nextTm⟩

where:
• Sm represents the abstract set of possible FMU states.

A given state sm ∈ Sm of m represents the complete
internal state of m: active clocks, active equations,
current mode (Step or Event mode) current valu-
ations for input and output variables, etc.

• Um and Ym represent the set of input and output vari-
ables, respectively.

• Uc
m and Y c

m represent the set of input and output
clocks, respectively.

• setm : Sm ×Um ×V → Sm and getm : Sm ×Ym →
Sm × V are functions to set the inputs and get the
outputs, respectively (we abstract the set of values
that each input/output variable can take as V). Both
setm and getm return a new state because both can
trigger the computation of equations.

• setc
m : Sm ×Uc

m ×B → Sm and getc
m : Sm ×Y c

m →
Sm × B are the functions that (de-)activate the in-
put clocks and query the output clocks (returning
the activation status), respectively, and B denotes the
boolean set.

• commitc
m : Sm ×W c

m → Sm is a function that updates
the clocked states of a given input/output clock in
the set W c

m = Uc
m ∪Y c

m. Clocked states are clocked
variables whose value depends on the previous value
(e.g., u_r in Figure 4).

• stepTm : Sm ×R≥0 → Sm ×R≥0 ×B is a function
representing the Step mode computation. If m is
in state sm at simulated time (tR, tI), (sm

′,h,b) =
stepTm(sm,H) approximates the state sm

′ of m at
time (tR + h,0), with h ≤ H. When b = true, we
know that the importer and m have agreed to inter-
rupt the Step mode prematurely, and m is ready to go
into Event mode.

• stepEm : Sm → Sm ×B represents one super-dense
time iteration of the Event mode. If m is in state sm
at time (tR, tI), then (sm

′,b) = stepEm(sm) repres-
ents the computation of m’s internal super-dense step
transition, where sm

′ represents the state at (tR, tI +1)
and b informs the importer whether one more Event
iteration is needed.

• nextTm : Sm ×Uc
m → R≥0 ∪{NaN} is the function

that allows the importer to query the time of the next
clock tick. This function is only applicable to tun-
able, changing, and countdown clocks, and the re-
turned value is calculated according to the clock type
as discussed in Table 1. The value NaN can be re-
turned for countdown clocks, and it means that the
clock currently has no schedule.

The major differences between above formalization and
the FMI interface are as follows.

• There is no explicit representation of state. Most
FMI functions take an FMU instance as an argument,
and the manipulations to the instance are performed
implicitly. We choose to make state explicit so as to
explicitly convey which functions change the state of
the instance.

• The FMI describes the callback function by which, in
CS, the FMU and importer may decide when to pre-
maturely terminate the invocation to stepTm. For
ME, the importer is responsible for implementing
stepTm (recall Figure 1).

We now discuss informally the semantics of each func-
tion implemented in an FMU instance m, with a focus on
the clock functions. Since clock operations happen only
in Event mode, we will focus on that mode. Moreover, we
present the semantics in the order that a generic importer
would interact with the FMI instance m.

Entering Event Mode. Clocks can only tick in Event
mode. During Step mode, the FMI provides mechanisms
for the FMU and importer to agree that there’s a clock
that needs to tick, and will therefore switch the FMU to
Event mode at the appropriate time. Such mechanisms
are represented by (sm

′,h,b) = stepTm(sm,H), when b =
true. In this case, sm

′ represents the state of the FMU ready
to begin the Event mode, at super-dense time (tR + h,0),
where tR is the real part of the time of sm. As discussed in
Section 3.1, the causes of b = true can be many.

Ticking Clocks. In Event mode, m in state sm ∈ Sm
may activate any triggered output clock yc

m ∈ Y c
m, a fact

that can be communicated to the importer via the function
call getc

m(sm,yc
m). Conversely, any input clock uc

m ∈ Uc
m

that needs to be ticked (according to the interval inform-
ation), is activated by the importer, through the function
call setc

m(sm,uc
m, true).

Enabling/Disabling Clock Equations. Let sm ∈ Sm de-
note the state of m right after a clock wc

m (input or out-
put) has been activated, and let (tR, tI) represent the current
super-dense time. When wc

m is activated, there is a set of
equations, associated to wc

m, that becomes active (are en-
abled) for the current super-dense time instant (tR, tI). The
set of output variables whose value is computed by wc

m’s
equations is denoted as “wc

m’s variables”. While wc
m is

active, invocations to getm on wc
m’s variables will trigger

their computation according to wc
m’s equations. However,

the values that wc
m’s variables acquire while wc

m is active
are only made permanent when commitc

m is invoked. If
setc

m is invoked to de-activate an active clock wc
m at time

(tR, tI) (before commitc
m is invoked), then m should en-

sure that wc
m’s variables return to the values they had im-

mediately before wc
m became active (this is not a strict re-

quirement, since those variables should not be consulted
once wc

m became inactive). When stepEm is invoked, wc
m

becomes inactive along with its equations, and the super-
dense time instant becomes (tR, tI + 1). If stepEm is in-
voked before commitc

m is invoked, then commitc
m is in-

voked by m.

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

32 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127

Propagating Clock Activations. In Event mode, if a
clock wc

m is (in-)active at super-dense time (tR, tI), then
the importer must ensure that all other clocks that are
connected to wc

m must also be (in-)active for time (tR, tI).
Triggered output clocks may activate during a super-dense
time instant, or after a call to stepEm. Therefore, the im-
porter must query triggered output clocks to monitor ac-
tivations. FMI allows declaring the variables in the XML
file that may influence a triggered output clock (recall Fig-
ure 2). It is outside the scope of FMI to ensure that a sim-
ulation scenario is well defined (e.g., it does not result in
an infinite number of (de-)activations).

Scheduling Time-Based Clocks. In Event mode, after
a call to stepEm, at super-dense time (tR, tI), m must be
able to inform the importer of the time of the next tick of
each clock uc

m ∈ Uc
m that is tunable, changing, or count-

down. This is done through function nextTm, when uc
m

satisfies one of the following conditions: 1. uc
m is a count-

down clock; or 2. uc
m is not a countdown clock, and uc

m was
active in the super-dense time that was just concluded, at
time (tR, tI −1). The Importer should use this information
to schedule the next Event mode. If nextTm returns 0,
then the importer must do a new event iteration.

Generic Clocked Simulation Algorithm. The follow-
ing summarizes the Event Mode algorithm that coordin-
ates the simulation with multiple FMU instances, with
connected inputs/outputs and clocks. Let M denote the
set of FMU instances participating in the simulation. We
assume that one FMU instance m ∈ M or the importer has
requested to enter Event mode. Therefore we assume that
every other instance m′ ∈ M∧m′ ̸= m has been stepped up
to the same super-dense time (tR,0). In the following, we
use _ to denote an non-important argument.

1. Every m ∈ M enters Event mode (super-dense time instant
is tI = 0);

2. Activate any time-based clocks scheduled to tick at (tR,0),
by invoking setc

m′(_,wc
m′) for any input/output clock wc

m′ ∈
W c

m′ and any instance m′ ∈ M;
3. Construct and solve system of equations for tI :

(a) For all yc
m ∈ Y c

m of any instance m ∈ M, forward ac-
tivation state of triggered clocks:

i. Invoke getc
m(_,y

c
m), and setc

m′(_,uc
m′) or

getc
m′(_,yc

m′), for any other clock uc
m′ ∈Uc

m′ or
yc

m′ ∈ Y c
m′ and instance m′ ∈ M that is transit-

ively connected to yc
m or has become active as

a result of the clock activations;
ii. Invoke commitc

(,w
c) for any active in-

put/output clock wc whose input variables have
been set.

(b) Invoke getm′(_,ym′) and setm′(_,um′ ,_) in the ap-
propriate order, for any instance m′ ∈ M.

4. Invoke stepEm(_) for m ∈ M (signals end of Event itera-
tion tI).

5. Schedule clocks by invoking nextTm on every relevant
clock, for m ∈ M.

6. If any m ∈ M wishes to repeat the event iteration, or if a
clock returned a zero interval, go to Step 3 (start iteration
tI +1).

The goal of Step 3 is to solve the system of equations
that became active due to the clock activations. There are
no guarantees that such a system has a solution, or that the
clock activations will stabilize. It is up to the Importer to
determine this, so we leave it intentionally unspecified.

4 Scheduled Execution
SE and SC have the following in common: they use the
same clock types, as introduced in Section 2; directly con-
nected clocks (e.g., yc

m and uc
n in Figure 2) will tick at the

same simulated times (although the corresponding equa-
tions will be executed at different wall-clock times, see
below); after a clock tick, there may be more clock ticks,
either at the same time, or at some time in the future. How-
ever, there are differences, detailed later:

• Each SE clock w, when activated at simulated time
tR ∈R≥0, represents a task that needs to be executed.
In contrast, in SC, w merely enables a set of equa-
tions that are subsequently solved.

• In SE, there is a clear distinction between the wall-
clock time, and the simulated time. For example, two
clocks may tick at the same simulated time tR ∈ R≥0
(because they are connected, or because they have
the same period), but their corresponding tasks will
execute at different wall-clock times. However, the
two tasks will be computed with simulated time tR.

• In SE, the execution of a task can be pre-empted by
a higher priority task. This has the important con-
sequence that the FMU must inform the importer of
when a task should not be pre-empted.

The main goal of SE is to facilitate real-time simulation.

4.1 Motivating Example
Figure 6 shows an abstract example, where an FMU de-
clares three input clocks and one output clock. Each input
clock, when ticked, instructs the importer, who acts as a
task scheduler (recall Figure 1), to execute the correspond-
ing model partition (defined next) as soon as possible.

A model partition, or just partition, represents code
that should be executed as soon as (in real time) an input
clock ticks. Partitions contain arbitrary code that reads
the inputs of the FMU, writes to the FMU’s local vari-
ables (which can be shared among tasks) and outputs, and
can trigger other clocks or update their interval. The in-
puts to each partition are set by the importer immediately
before executing that partition, as part of the task corres-
ponding to that partition. In Figure 6, uc

m’s partition reads
and writes the shared variable xm, and either updates the
interval of vc

m or ticks yc
m.

We stress the distinction between model partition and
a task: the former represents code that is executed within
the context of the later. So a task T contains code that
sets the inputs of the FMU, invokes the model partition P,
and reads the outputs. Such a task will simply be denoted
as “P’s task”. For example, in Figure 6, when execution
Partition 1’s task, the importer sets the values for input um
before executing Partition 1.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118127

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

33

In SE, there is a need for a function that the importer in-
vokes, to tell the FMU to execute a partition. Note the dif-
ference between the partition activation function (defined
later) and the clock set/get functions: the later inform the
importer that a task should be scheduled, while the former
executes as part of the previously scheduled task.

In Figure 6, input clock uc
m ticks every 10ms and wc

m
ticks every 50ms, so every so often, the two clocks will
tick simultaneously. When that happens, the scheduler
needs to know whose task has the highest priority. As a
result, the FMU needs to declare a priority level for each
input clock. In Figure 6, uc

m’s task (the one executing Par-
tition 1) should be executed before wc

m’s (Partition 3).

m

when :

 if (...) then
 setInterval()
 else
 tick()
 ...

Clock attributes:
 - Period 10ms, Priority 1
 - Countdown, Priority 2
 - Period 50ms, Priority 3
 - Triggered, Priority --

Partition 1

Task 1when :

when :

Local vars:

Partition 2

Partition 3

Figure 6. Motivating example, where an FMU declares three
input clocks and one output clock.

Output clocks, in SE, are never directly associated to
a partition of the FMU where they are declared. Instead,
these can be connected to input clocks (including the ones
of the owning FMU).

Because tasks can be pre-empted, certain operations,
such as updating a shared variable, must be atomic (see
example below). As such, the FMU must inform the im-
porter of when it should not be interrupted, to prevent
mixed resource access that would create inconsistent val-
ues.

Since partitions can trigger and update the interval of
other clocks, there must be a mechanism for the FMU, in
the middle of the calculation of a partition, to inform the
importer that a clock has ticked or has a new interval, so
that the importer can schedule the corresponding tasks.

Figure 7 illustrates a possible execution trace of the
tasks corresponding to the partitions declared in Figure 6.
At the initial wall-clock time, both task 1 and 3 are sched-
uled to execute. Since Task 1 has higher priority, it runs
first, and Task 3 is delayed. While executing Task 1, the
FMU informs the importer that vc

m’s task (Task 2) should
be scheduled to run at wall-clock time t2. At wall-clock

time t2, Task 1 is still executing, so Task 2 is delayed until
wall clock time t3. At t3, Task 2 starts executing, but note
that the activation time of Task 2 is still its scheduled time
t2. This is where the wall-clock time t3 differs from the
simulated time t2 . At t4, Task 2 is pre-empted, because
of Task 1. Finally, after being delayed substantially, Task
3 gets to execute, with its simulated time t0 .

Wall-clock time (ms)

activate(,)

Ta
sk

 2

setInterval(,)

schedule Task 2 delay

delayed

suspend

activate(,)
activate(,) activate(,)

Ta
sk

 3
Ta

sk
 1

Legend:
 - Wall-clock time
 - Simulated time

Figure 7. Example execution trace of Figure 6.

4.2 Scheduled Execution Semantics
The following formalization is a simplification meant to
highlight the main functions defined in the FMI Standard.
The main concepts being formalized are tasks, clocks, and
activation of model partitions.

Definition 2 (SE FMU Instance). An SE FMU instance
with identifier m is represented by the tuple

⟨Sm,Um,Ym,Uc
m,Y

c
m,

setm,getm,get
c
m,activatem,nextTm⟩

where:
• Sm, Um, Ym, Uc

m, and Y c
m, are defined as in Defini-

tion 1.
• setm : Sm ×Um ×V → Sm and getm : Sm ×Ym → V

are functions to set the inputs and get the outputs,
respectively. In contrast with the SC FMU in Defini-
tion 1, getm does not alter m’s state because any non-
trivial computation of outputs should be done in the
partitions associated with the input clocks, executed
through the invocation of the activatem function.

• getc
m : Sm ×Y c

m → Sm ×B queries the output clocks.
Note that, in contrast to SC, getc

m(_,y
c
m) changes the

state of m, because it automatically de-activates yc
m

(the justification is provided below).
• activatem : Sm × Uc

m × R≥0 → Sm is a func-
tion representing the computation of a partition.
If m is in state sm at wall-clock time ti, sm

′ =
activatem(sm,uc

m, ti) represents three successive
steps: the activation of clock uc

m, the computation of
the partition associated to clock uc

m, and de-activation
of clock uc

m. In state sm
′, clock uc

m will be inactive.
• nextTm : Sm ×Uc

m → R≥0 ∪{NaN} is the function
that allows the importer to query the time of the next
clock tick. It is defined as in Definition 1.

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

34 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127

In addition, we will use the notation task(uc
m), for uc

m ∈
Uc

m, to denote the task that will execute uc
m’s partition.

Scheduling Tasks. In SE, the importer operates as a
scheduler of tasks that will activate the model partitions.
As summarized in Table 1, clocks can be ticked by the
FMU or importer, but we will focus on input clocks,
since these are the ones that can be associated to a parti-
tion (when an output clock ticks, the importer is respons-
ible for ticking all connected input clocks and therefore
scheduling the corresponding tasks). Right after invoking
(sm

′, true) = getc
m(_,y

c
m) on an output clock yc

m that is act-
ive, the clock yc

m should be inactive in state sm
′.

An input clock uc
m may tick, and its period may be

updated, in the middle of an activatem computation.
Because task(uc

m) may be of high priority, the importer
must not wait until the end of activatem to schedule
task(uc

m). As such, the importer implements a function
updatem : Sm → Sm defined by the FMI, that the FMU can
invoke (in the FMI Standard, this is implemented as a call-
back mechanism). The importer, inside updatem, may
consult the status of clocks and their intervals (through
getc

m and nextTm functions), and schedule the corres-
ponding tasks accordingly.

The time at which the importer schedules task(uc
m) is

computed according to: uc
m’s declared interval; function

nextTm; or through the getc
m′(_,yc

m′) function of some
other clock yc

m′ and FMU instance m′. In the last case,
task(uc

m) is scheduled to execute as soon as possible, ac-
cording to the priorities known to the importer.

Executing Tasks. A task task(uc
m) that is scheduled

to time ti, due to the priorities chosen and consequent
delays incurred, may only execute at a later wall-clock
time t j > ti. When task(uc

m) is executed, it should set
the relevant inputs through function setm (the importer
knows the relevant inputs through the XML of m), ac-
tivate the partition trough function activatem(_,uc

m, ti),
and possibly read the calculated outputs, through getm.

Safeguarding Pre-emption. Unless otherwise stated by
the FMU or importer, a task can be pre-empted at any mo-
ment. In order to allow the FMU to inform its environment
that the currently executing task should not be pre-empted,
the FMI defines two functions: lockP and unlockP that
the FMU and importer can invoke, and are implemented
by the importer. lockP informs the environment that a
task cannot be pre-empted until unlockP is invoked.

Generic Scheduled Execution Algorithm. Let M de-
note a set of FMU instances, assumed to be initialized.

1. Schedule task(uc
m), for all uc

m ∈ Uc
m and all m ∈ M,

if interval of uc
m is constant fixed, or calculated;

2. When updatem(_) is invoked, do:
(a) Lock pre-emption with lockP;
(b) If (_, true) = getc

m(_,y
c
m), schedule task(uc

m′)
for any clock uc

m′ that is transitively connected
to yc

m.
(c) Unlock pre-emption with unlockP;

3. Each task task(uc
m) is implemented as:

(a) Set the inputs of m using setm (locking pre-
emption with lockP and unlockP if needed);

(b) Invoke activatem(_,uc
m, ti), where ti is the

simulated time that task(uc
m) was scheduled

to execute.
(c) Get the outputs of m using getm (locking pre-

emption with lockP and unlockP if needed);

5 Related Work
Synchronous clocks are one of the solutions proposed to
tackle the more general challenge of co-simulating hy-
brid systems. Other proposals have been made in the
state of the art, but none of them tackle the problem of
discerning different simultaneous events in the context of
co-simulation. For instance, Cremona et al. (2016) pro-
poses a master algorithm for hybrid co-simulation. The
proposal includes support for absent signals, mandatory
implementation of rollback, zero duration step size, co-
simulation FMUs supporting feed-through, and predict-
able step sizes. However, it excludes algebraic loops, due
to the introduced non-determinism. Our proposed inter-
faces enables algebraic loop resolution, even when clocks
are involved, but does not provide guarantees of conver-
gence.

An extensive study of hybrid system simulation chal-
lenges was carried out in Mosterman and Biswas (2000),
and includes, for example, the possibility of an event it-
eration driving the system into chattering. And Tripakis
and Broman (2014), Broman et al. (2015) and Liboni et
al. (2018) focus such discussion in the context of the FMI
Standard, providing solutions to some of these challenges.
These works complement ours by helping importers assess
whether a given simulation scenario is well behaved. We
refer the reader to Gomes et al. (2018) for more references
in co-simulation of hybrid systems.

The goal of this paper is to describe the main mech-
anisms standardized in the FMI Standard that enable syn-
chronous clocked simulation and scheduled execution. We
can therefore highlight related work that share the same
goals.

Regarding SC simulation, we highlight the work in Ot-
ter, Thiele and Elmqvist (2012) and Elmqvist, Otter and
Mattsson (2012), that introduce the synchronous clocks
constructs used in the Modelica language, specified in
Modelica Association (2021). Such work, and references
thereof on synchronous languages (Benveniste et al. 2003;
Colaço and Pouzet 2003), were used as basis for the defin-
ition of the SC approach described here. The main differ-
ence is that an SC clock does not enforce a partition on
the equations that can be written by it. These differences
make it more difficult to ensure well-formedness of co-
simulation scenarios, but provide more flexibility, reflect-
ing the heterogeneous use cases of FMI.

In the domain of scheduled execution, we highlight the
OSEK/VDX (ISO 17356-3:2005 2005) and AUTOSAR

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118127

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

35

Standards, which enable different suppliers to develop and
test software independently, and subsequently integrated
the different applications. Such work complements the
SE Interface by standardizing the importer environment,
where FMU SE instances can execute.

6 Conclusion
This paper summarizes the results of the FMI project de-
veloping interfaces to interact with clocks. This is a chal-
lenging task, because the kinds of simulation scenarios
covered can combine traditional events with clock ticks,
and may possibly be ill-defined while still conforming to
the FMI Standard. This is intentional, as the FMI aims at
flexibility, placing the burden of ensuring well-formedness
on the importer.

We have presented two interpretations of clocks. The
main differences between them lie in the degree of con-
trol that the importer has over the duration of computa-
tions, and on the behavior of the independent variable
with respect to the wall clock time. The formalization
provided is meant as an introduction to the clocks and their
conceptualization in the FMI Standard. The FMI Stand-
ard document is continuously being improved, and there-
fore remains the source of truth. We refer the reader to
(Junghanns et al. 2021) for an account of the most import-
ant features being developed for the FMI 3.0.

Acknowledgements
Cláudio Gomes is grateful to the Poul Due Jensen Found-
ation, which has supported the establishment of a new
Centre for Digital Twin Technology at Aarhus University.

We are thankful to Simon Thrane Hansen, Peter Gorm
Larsen, and Casper Thule, for their helpful comments on
this paper.

Finally, we are thankful to the Modelica association for
the continued support to the FMI Project.

References
2.0, FMI (2014). Functional Mock-up Interface for Model Ex-

change and Co-Simulation. URL: https:/ /fmi- standard.org/
downloads/ (visited on 2019-09-15).

Benveniste, A. et al. (2003-01). “The Synchronous Languages
12 Years Later”. In: Proceedings of the IEEE 91.1, pp. 64–
83. ISSN: 0018-9219. DOI: 10.1109/JPROC.2002.805826.

Broman, David et al. (2015). “Requirements for Hybrid Cosim-
ulation Standards”. In: 18th International Conference on Hy-
brid Systems: Computation and Control. HSCC ’15. Seattle,
Washington: ACM New York, NY, USA, pp. 179–188. ISBN:
978-1-4503-3433-4. DOI: 10.1145/2728606.2728629.

Colaço, Jean-Louis and Marc Pouzet (2003). “Clocks as First
Class Abstract Types”. In: Embedded Software. Ed. by Rajeev
Alur and Insup Lee. Red. by Gerhard Goos, Juris Hartmanis
and Jan van Leeuwen. Vol. 2855. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 134–155. ISBN: 978-3-540-20223-3 978-3-540-
45212-6. DOI: 10.1007/978-3-540-45212-6_10.

Cremona, Fabio et al. (2016-11). “Step Revision in Hybrid Co-
Simulation with FMI”. In: 14th ACM-IEEE International
Conference on Formal Methods and Models for System
Design. Kanpur, India: IEEE.

Elmqvist, Hilding, Martin Otter and Sven Erik Mattsson (2012).
“Fundamentals of Synchronous Control in Modelica”. In: 9th
International Modelica Conference. URL: https://elib.dlr.de/
78420/.

Gomes, Cláudio et al. (2018). “Co-Simulation: A Survey”. In:
ACM Computing Surveys 51.3, 49:1–49:33. DOI: 10 . 1145 /
3179993.

ISO 17356-3:2005 (2005). Road Vehicles — Open Interface for
Embedded Automotive Applications — Part 3: OSEK/VDX
Operating System (OS). ISO 17356-3:2005, p. 61. URL: https:
//www.iso.org/standard/40079.html.

Junghanns, Cláudio et al. (2021). “The FMI 3.0 Standard Inter-
face for Clocked and Scheduled Simulations”. In: Proceed-
ings of the 14th International Modelica Conference. 14th In-
ternational Modelica Conference. online: Linköping Univer-
sity Electronic Press, Linköpings Universitet, to be published.
URL: https: / /ep.liu.se/en/conference- article.aspx?series=
ecp&issue=169&Article_No=16.

Kübler, R. and W. Schiehlen (2000). “Two Methods of Simulator
Coupling”. In: Mathematical and Computer Modelling of Dy-
namical Systems 6.2, pp. 93–113. ISSN: 1387-3954. DOI: 10.
1076/1387-3954(200006)6:2;1-M;FT093.

Lee, Edward A. and Haiyang Zheng (2005). “Operational Se-
mantics of Hybrid Systems”. In: Hybrid Systems: Computa-
tion and Control. Vol. 3414. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 25–53. ISBN: 978-3-
540-25108-8. DOI: 10.1007/978-3-540-31954-2_2. pmid:
20646090.

Liboni, Giovanni et al. (2018-01). “Beyond Time-Triggered Co-
Simulation of Cyber-Physical Systems for Performance and
Accuracy Improvements”. In: 10th Workshop on Rapid Sim-
ulation and Performance Evaluation: Methods and Tools.
Manchester, United Kingdom. URL: https://hal.inria.fr/hal-
01675396.

Modelica Association (2021). Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling. Lan-
guage Specification Version 3.5. Modelica Association.

Mosterman, Pieter J and Gautam Biswas (2000-08). “A Compre-
hensive Methodology for Building Hybrid Models of Phys-
ical Systems”. In: Artificial Intelligence 121.1–2, pp. 171–
209. ISSN: 0004-3702. DOI: http : / / dx . doi . org / 10 . 1016 /
S0004-3702(00)00032-1.

Otter, Martin, Bernhard Thiele and Hilding Elmqvist (2012). “A
Library for Synchronous Control Systems in Modelica”. In:
9th International Modelica Conference. URL: https://elib.dlr.
de/79763/.

Tarjan, Robert (1971-10). “Depth-First Search and Linear Graph
Algorithms”. In: 12th Annual Symposium on Switching
and Automata Theory (Swat 1971). Vol. 1. 2. East Lans-
ing, MI, USA. ISBN: SMJCAT000001000002000146000001.
DOI: 10.1109/SWAT.1971.10.

Tripakis, Stavros and David Broman (2014). Bridging the Se-
mantic Gap Between Heterogeneous Modeling Formalisms
and FMI.

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

36 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127

Engineering Domain Interoperability Using the System Structure
and Parameterization (SSP) Standard

Robert Hällqvist1,4 Raghu Chaitanya Munjulury2,4 Robert Braun4 Magnus Eek3 Petter Krus4

1System Simulation and Concept Development, Saab Aeronautics, Sweden, robert.hallqvist@saabgroup.com
2Technical Management & Maintenance, Saab Aeronautics, Sweden
3Technology & Innovation Management, Saab Aeronautics, Sweden

4Division of Fluid and Mechatronic Systems (FLUMES), Linköping University, Sweden

Abstract
Establishing interoperability is an essential aspect of the
often-pursued shift towards Model-Based System Engi-
neering (MBSE) of, for example, aircraft. If models are to
be the primary information carriers during development,
the applied methods to enable interaction between engi-
neering domains need to be modular, reusable, and scal-
able. Given the long life cycles and often large and het-
erogeneous development organizations in the aircraft in-
dustry, one possible solution is to rely on open standards
and tools. In this paper, the standards Functional Mock-
up Interface (FMI) and System Structure and Parameter-
ization (SSP) are exploited to exchange data between the
disciplines of systems simulation and geometry modeling.
A method to export data from the 3D Computer Aided
Design (CAD) Software (SW) CATIA in the SSP format
is developed and presented. Analogously, FMI support
of the Modeling & Simulation (M&S) tools OMSimula-
tor, OpenModelica, and Dymola is utilized along with the
SSP support of OMSimulator. The developed technology
is put into context by means of integration with the M&S
methodology for aircraft vehicle system development de-
ployed at Saab Aeronautics. Finally, the established inter-
operability is demonstrated in an industrially relevant use-
case. A primary goal of the research is to prototype and
demonstrate functionality, enabled by the SSP and FMI
standards, that could improve on MBSE methodology im-
plemented in industry and academia.
Keywords: FMI, SSP, Modeling and Simulation, CATIA,
OMSimulator, OpenModelica, Dymola

1 Introduction and Motivation
Each engineering domain has its preferred methods and
tools for design and analysis, implying that different but
often overlapping views of one single system are modeled
using several different tools. For some applications, man-
aging all views of interest in a tool suite provided by a sin-
gle tool vendor may be possible, but for other applications,
this may be neither feasible nor desirable. Exchanging in-
formation between engineering domains using tool-to-tool
connections introduces a set of unwanted drawbacks that
may increase in significance with increased product life

cycle length. Such connections are fragile and may re-
quire significant maintenance. This motivates the utiliza-
tion of standards to ensure continuity and consistency in
the digital thread.

Traditionally at Saab, in-house standardized interface
formats are used for the manual exchange of data between
different engineering domains. Even though the applied
MBSE methods are generally considered successful, such
processes are error-prone, tedious, and difficult to main-
tain; particularly considering the previously mentioned
long life cycles of aircraft and aircraft sub-systems. As a
result, there is a risk that data may be exchanged less fre-
quently than it should be. This may be a limiting factor in
M&S credibility and the risk of taking sub-optimal model-
based design decisions is increased as a consequence.

At Saab Aeronautics, aircraft vehicle system models are
developed according to the Saab Aeronautics Handbook
for Development of Simulation Models (Andersson and
Carlsson 2012). This handbook highlights aspects such
as the definition of model specifications, intended use(s),
and the importance of conducting Verification & Valida-
tion (V&V). These activities are all highlighted as essen-
tial in the literature (Roza, Voogd, and Sebalj 2012; Roy
and Oberkampf 2011; International Council on Systems
Engineering 2015).

The process described in the handbook can largely be
described by the workflow visualized as the Sub-system
Model abstraction level of Figure 1. Furthermore, the
cornerstones of Sub-system Model development are anal-
ogous to Simulator and Component Model development if
viewed at the level of detail presented in Figure 1. The
artifacts at each level of abstraction are executable sim-
ulation models, or simulators, of the mathematical sort
(Ljung and Glad 2004; Peter Fritzson 2004).

The SSP (Modelica Association 2019) and FMI (FMI
Development Group 2020) standards provide standardized
formats for establishing interoperability between the dif-
ferent levels of abstraction. The FMI standard concern the
export of models for integration in simulator (Hällqvist
2019) applications and the SSP standard primarily focuses
on the definition and export of simulators for integration
into simulator applications at a higher level of abstraction
or for exploitation in different frames of reference.

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

37

Component

Model

Simulator

Use

Use

Use

Specification

Specification

Specification

Development

Development

Development

V&V

V&V

V&V

E
xp

or
t

E
xp

or
t

L
ev

el
of

in
te

gr
at

io
n

in
ai

rc
ra

ft

E
xp

or
t

Sub-system

Model

Figure 1. Simulation application development process connecting the Component Model, Sub-system Model, and Simulator levels
of abstraction. The term Model here refers to mathematical simulation models as specified by Ljung (Ljung and Glad 2004) and
Fritzon in (Peter Fritzson 2004). A simulator here is also seen as a mathematical simulation model composed of several connected
models or simulators exported from a lower level of hierarchy (Hällqvist 2019). The V&V activities are seen as bottom up, a view
that is in line with the Validation Level per Level approach as described by (International Council on Systems Engineering 2015).
The natural connection between the two standards, FMI and SSP, and the activities of the simulation application development
process are highlighted in the figure.

SSV

XML SSV

SSMSSD SSM

SSV

SSD

SSV
Sub-system

Model

Engineering
Input

Model

Geometry
Model

Development

FMU FMU

SSP (Generic) SSP (Instatiated)

Geometry
Model

Systems

Model

Domain

Define

Simulation

Knowledge

Mapping

Figure 2. Expansion of the development activity specified in Figure 1. The workflow is designed to be applicable to the three
system levels shown in Figure 1: the Component Model, Sub-System Model, and Simulator levels of abstraction. The colors in
the figure indicate the source of the information. The rightmost SSP in the figure, SSP (Instantiated), conforms to a executable
specified using information from all the relevant engineering domains.

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

38 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

Additionally, the SSP standard provides a standardized
format for specifying the parameters of M&S artifacts rep-
resenting more than a single realized aircraft system, sub-
system, or component. The approach taken here is to ex-
ploit these parts of the standard, at all of the presented
levels of abstraction, to enable a tool agnostic method
to exchange information concerning geometrical param-
eters and their bindings to the corresponding mathemati-
cal simulation models and simulators. As a consequence,
Figure 1 is complemented by Figure 2 which is described
in detail in Section 4.

This paper is structured as follows. In Section 2, the
enablers of the work are introduced and related to the
presented research. Furthermore, geometry modeling is
related to the targeted standards in Section 3. The pro-
posed refinement of the existing M&S application devel-
opment methodology implemented at Saab is described in
Section 4. In Section 5, the relevant details of the selected
application example are described; this application exam-
ple is then subjected to a use-case presented in Section 6.
The use-case results are presented and discussed in Sec-
tion 7. Finally, the conclusions of the work are stated in
Section 8.

2 Interoperability via open tools and
standards

Standardized and automated connections of CAD to other
interdependent engineering domains is by no means a new
research area and a plethora of solutions have been pro-
posed in the literature, including published research led
by Saab (Lind and Oprea 2012).

In 1999, Engelson et al. formulated a method to trans-
form mechanical domain SolidWorks geometry models
into the format of the standardized multi-domain M&S
language Modelica (Engelson, Larsson, and P. Fritzson
1999). Similarly, Elmqvist et al. developed a tool for
the automatic translation of CATIA multibody models into
Modelica code (Elmqvist, Mattsson, and Chapuis 2009).
Remond et al. employ a similar approach to generating
Modelica models of thermo-fluid piping networks based
on CAD data from CATIA (Remond, Gengler, and Cha-
puis 2015).

Furthermore, Baumgartner et al. developed Dymola
functionality for generating Modelica models from CA-
TIA multibody models. Their approach explicitly includes
the storing of parameter values in a separate text format
such that the geometrical data can be modified and up-
dated without re-generating the complete model or pack-
age (Baumgartner and Pfeiffer 2014). This conscious sep-
aration is of particular interest during the development of
aircraft models because such models and libraries often
have long life cycles spanning a significant period of the
aircraft’s development and operation.

These publications all primarily focus on exchanging or
generating complete executable models detailed with the
geometry model information expressed in the CAD tool

of the author’s choice. However, during development, and
later life cycle stages, the overall structure of the models is
less prone to change. A component may be enhanced, the
dimensions of a pipe may be modified, but what compo-
nents are used and what parameters need to be exchanged
is likely to be well established information. Lind et al.
present such a use-case where the modeled geometry of
aircraft fuel tanks is exploited in order to automatically
increase the fidelity of the corresponding Modelica mod-
els by means of fitting Radial Basis Functions (RBFs) net-
works to the extracted data (Lind and Oprea 2012).

Even though it is similar, the focus of the research pre-
sented here is instead on only exchanging model param-
eters. That way, the domain specific engineering tools
can be used as originally intended but with relevant, and
up-to-date, information from the application specific rele-
vant neighboring engineering domains. The SSP standard
format is identified as an applicable solution to the above
mentioned problem.

2.1 System Structure and Parameterization
(SSP)

Three of the SSP Extensible Markup Language (XML)
formats are the focal point of the research presented
here: the System Structure Description (SSD), System
Structure Parameter Values (SSV), and System Structure
Parameter Mapping (SSM). The SSD is an XML file
primarily specified to describe the architecture of a set
of coupled mathematical models, henceforth referred to
as a simulator. In the SSV file, it is possible to specify
the values of the parameters of the simulator constituent
model’s. However, the SSV file does not necessarily
define the mapping between the parameter values and
the parameter names. These bindings can instead be
specified in a SSM file. Within this approach, the SSM
file is specified once for each constituent model version;
changes only need to be made if the parameter interface
is modified. The SSV files are changed as soon as the
parameter values are modified. A highly parametric
model can represent many different physical systems,
sub-systems, or components using various SSV input files.

2.2 Use, exchange, and manipulation of SSPs
The FMI and SSP standards are both utilized together with
Transmission Line Modeling (TLM) (Auslander 1968;
Krus et al. 1990) in the simulation environment OMSim-
ulator. The OMSimulator is an open-source master simu-
lation tool originally developed during the ITEA3 project
OpenCPS (OpenCPS Project Partners 2019). It is based on
a simulation framework developed by the Swedish bearing
manufacturer SKF for connecting models of bearings with
models from external tools (Peter Fritzson et al. 2020;
Ochel et al. 2019). The OMSimulator is a stand-alone
M&S tool maintained by the Open Source Modelica Con-
sortium (OSMC). It is available as a plugin to the OMEdit
Graphical modeling tool which enables graphical, and tex-

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

39

tual, development of simulators. Other tools with similar
support are available; however, they are few in number be-
cause the SSP standard is still young. A list of the tools
officially supporting the SSP standard is provided at the
SSP project web page (Modelica Association Project Sys-
tem Structure and Parameterization 2021).

The OMSimulator is used as an integrating simulation
tool as it supports both of the two targeted standards. Be-
ing open-source, it is also used as a platform for imple-
menting the necessary prototype SSP manipulation func-
tionality that is required for the approach described in
Section 4.

OMSimulator functionality, using either the available
Lua or Python Application Programming Interface (API)
to export template SSM and SSV files is available. A sub-
set of the OMSimulator Python API specifically relevant
to the presented research is provided in Listing 1.

Listing 1. OMSimulator Python API commands particularly relevant
for the presented research

1) oms.exportSSMTemplate("<submodel>.fmu",
"<submodel>.ssm")
2) oms.exportSSVTemplate("<submodel>.fmu",
"<submodel>.ssm")
3) oms.export("<model>", "<model>.ssp")
4) oms.exportSnapshot("<model>")
5) oms.importFile("<model>.ssp")

The API command oms.exportSSMTemplate
triggers the export of all signals in the <submodel>.fmu,
that have a start attribute, to an SSM file. The extract of
an example SSM file generated using the API command
is presented in Listing 2. One MappingEntry is generated
for each parameter. Each MappingEntry has a target and a
source attribute. The target is mapped to the name of each
<submodel>.fmu parameter and the source is left unspec-
ified. The source attribute allows for the manual specifica-
tion of the mapping to the corresponding parameter value
in an SSV file. If a source in the generated SSM is left
unspecified, then the <submodel>.fmu parameter is left at
its default value as presented in the Functional Mock-up
Unit (FMU) <ModelDescription>.xml file.

Listing 2. Example of SSM file template generated using the OMSim-
ulator API command oms.exportSSMTemplate

<ssm:ParameterMapping xmlns:ssc="http://ssp-
standard.org/SSP1/SystemStructureCommon"
xmlns:ssm="http://ssp-standard.org/SSP1/
SystemStructureParameterMapping" version="
1.0">

<ssm:MappingEntry source="" target="<submodel.
parameterA>"/>

</ssm:ParameterMapping>

The API command oms.exportSSVTemplate en-
ables the default parameter values of the <submodel>.fmu
to be exported to an SSV file. An extract of an example
SSV file generated using the API command is presented
in Listing 3. A Parameter entry is generated for every
signal with a start attribute in the FMU <ModelDescrip-
tion>.xml file. Each parameter entry has a name attribute
corresponding to the <submodel>.fmu parameter name, a

unit attribute, and a value attribute corresponding to the
default parameter value, i.e. the value of the <ModelDe-
scription>.xml start attribute. The SSV file parameters are
mapped via name matching to the FMU parameters if a
SSM file is unavailable.

Listing 3. Example of SSV file template generated using the OMSim-
ulator API command oms.exportSSVTemplate

<ssv:ParameterSet name="
modelDescriptionStartValues">

<ssv:Parameters>
<ssv:Parameter name="<submodel.parameterA>">
<ssv:Real value="<submodel>.<ModelDescription

>.parameterA.value>" />
</ssv:Parameter>
</ssv:Parameters>

</ssv:ParameterSet>

Additionally, In Listing 1, the Python API command
for exporting an SSD description of the architecture
(oms.exportSnapshot) is presented, along with the
command for exporting, and importing, a complete SSP
package (oms.export). An extract of an example SSD
file generated using either of the two export APIs is pre-
sented in Listing 4. The SSD extract visualizes how the
SSV and SSM files are incorporated into the model or sim-
ulator architecture. The ssd:ParameterBinding element
has a source="resources/<values>.ssv" attribute point-
ing to the SSV file used. This element also has a child
that, again via the source="resources/<bindings>.ssm"
attribute, specifies the SSM file used. A complete de-
scription of all the available OMSimulator API functions
is provided in the user manual (Ochel 2021).

Listing 4. Example of SSD file generated using the OMSimulator API
command oms.exportSnapshot. The SSD file connects the FMU
parameters to the parameter values in the SSV file via the mappings
expressed in the SSM file.

<ssd:SystemStructureDescription
<ssd:System name="root">
<ssd:ParameterBindings>

<ssd:ParameterBinding source="
resources/<values>.ssv">
<ssd:ParameterMapping source="

resources/<bindings>.ssm"/>
</ssd:ParameterBinding>

</ssd:ParameterBindings>
</ssd:System>

</ssd:SystemStructureDescription>

3 Geometry modeling and SSP
At Saab Aeronautics, geometry models are developed
according to the Knowledge-Based Engineering (KBE)
methodology MOKA (Stokes 2001). MOKA specifies an
iterative process whereby the developed models can be
added or updated in steps at each stage of the method-
ology. The geometry models created are parametric in
nature. For example, the sizes of all the components in
the application example coolant distribution system can be
modified alongside any changes in the specification. The
User Defined Features (UDF) created in CATIA encap-
sulate the design intent and design automation is applied

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

40 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

to instantiate the pipes based on the input points. All the
parameters needed for simulation are computed automat-
ically because the knowledge/calculations are embedded
in the UDF.

Inspired by the previous work conducted at Saab and
Linköping University (Lind and Oprea 2012; Munjulury
et al. 2016; Munjulury 2017), Visual Basic for Applica-
tions (VBA) is exploited to extract parameter information
from CATIA via a set of macros. Additionally, the imple-
mented macros convert the extracted information to the
SSV format.VBA macros can either be executed directly
from CATIA or via, for example, a User Interface (UI)
in Microsoft Excel. Application-specific mapping, as de-
scribed in Section 3.2, is applied to the intermediate XML.

3.1 Parameter extraction and SSP support
An approach similar to that of Munjulury et. al. (Munju-
lury et al. 2016), exploiting the Document Object Model
(DOM) objects available in VBA, is used to create an in-
termediate CATIA XML. This intermediate CATIA XML
conversion is tailored to reduce the number of data inter-
faces enabling a robust and seamless exchange to other
formats, such as SSV. For every entity (point, line, plane,
surface, etc.,) at least three parameters are created when
designing a component in CATIA. The functionality to
extract and save all the geometry model parameter val-
ues into an XML file is available in, for example, 3D ex-
perience; however, it is all the more challenging to find,
extract, and store specific parameters. First of all, the lat-
ter requires a list of identifiers. Identifiers in this scenario
are the Parameter sets or Geometrical sets that contain the
parameters in the respective identifier list to help narrow
down the search. The following are the steps involved in
creating the SSV file.

• The user provides the Identifiers in the UI in order
to narrow down the total number of parameters that
need to be saved to the intermediate CATIA XML.

• A first VBA macro is executed which reads all the
parameters available in the CATIA geometry model.
The parameters specified in the identifier list men-
tioned above are then extracted from the geome-
try model and saved in the CATIA XML. The CA-
TIA XML structure maps to the CATIA Product tree
structure.

• A second VBA macro converts the CATIA XML to
an SSV file.

3.2 Integration of application specific func-
tionality

Functionality enabling application specific mappings has
been developed. This functionality is kept separate from
the SSP support macros such that aggregation methods
can be exchanged and tailored to different applications.
The methodology to instantiate pipes and insulation us-
ing the UDF is an add on to the methodology currently

used at Saab Aeronautics to create the respective compo-
nents. This add on reduces the time needed for the design
process as most of the process is successfully automated;
the only additional modeling requirement is to include the
bend points of the pipes. With this automation, the param-
eters needed by the mathematical models of the applica-
tion example are created and recursively used to compute
the aggregated parameter values needed for the lumped
parameters. The developed application specific function-
ality is,

• The combination of parameter values, such as fluid
pipe lengths, enabling lumped parameter dynamic
simulation components

• Unit transformations,

• Interpolating in application specific interpolation ta-
bles used to, for example, convert bends in pipes to
pressure loss coefficients.

4 Proposed concept
This section describes the proposed methodology for ex-
ploiting the established connection between the domains
of geometrical modeling to that of mathematical modeling
and system simulation. The methodology is here related
to the general simulation application development process
presented in Figure 1. In Figure 2, the proposed addi-
tions to the Development activity of Figure 1 are described
in detail. The process visualizes, see the light blue arti-
facts in the figure, how the simulation application is first
exported in the SSP format, including an SSD architec-
ture description, an SSV file containing default parameter
values of the parameterized simulator, sub-system model,
or component model, and a template SSM file contain-
ing empty bindings to the aforementioned parameters. In
parallel, the parameter values of the corresponding geom-
etry model are expressed in the SSV format, visualized as
green artifacts in the figure. In the next step, the SSM file
is populated with the geometry model names of the corre-
sponding simulation application parameters such that the
geometry model SSV file is specified as the source of the
parameter values. Please note that the process of Figure 2
needs to be iterated. However, the user input specified
SSM file only needs to be updated if the parameter inter-
face is modified. The rightmost SSP in the figure corre-
sponds to a set of fully specified executable entities ready
for V&V, as-is use, and integration into a simulation ap-
plication at a higher level of abstraction.

The process of Figure 2 is described as applicable for
the development activities at all of the levels of abstrac-
tion presented in Figure 1. However, the work here is
primarily focused on the Sub-system Model and Simula-
tor levels. The available tool support of the SSP standard
is primarily focused on FMI applications. If parameters
in components, present in for example Modelica compo-
nent libraries, are to be specified using the SSP standard,

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

41

then tool support for this type of functionality, in the rel-
evant simulation application modeling tools, could render
a more efficient exchange of information.

Environmental Coolant
Radar

Controlling

Control System Distribution
System

Software

Accumulator

Pump

Air-to-liquid Pipes

Inlet AirOutlet Air

Heat Exchanger

(a) Application example schematic description. The dashed
Coolant Distribution System is highlighted as its parameters are
specified in the geometry modeling domain and exchanged us-
ing the concepts of the SSP standard. The individual parts of the
application example are exported using the FMI standard.

HW.fmu

SW.fmu

Radar.fmu

AppEx.ssp AppEx.ssd

Resources

HW.ssm

Conf1.ssv

Conf2.ssv

(b) Application example SSP file structure. The SSP file repre-
sents two different simulator geometrical configurations via the
two different incorporated SSV files Conf1.ssv and Conf2.ssv.
The simulator architecture is described in the AppEx.ssd file.

Figure 3. Application example description. A schematic de-
scription of the application example architecture and its con-
stituent executable models is provided in Figure 3a. The struc-
ture of the resulting application example SSP file is provided in
Figure 3b.

5 Application example
The application example incorporates the targeted engi-
neering domains and M&S tools; a schematic overview is

provided in Figure 3. The application example is sepa-
rated into three different main parts; each of these parts is
exported as an FMU from its original development tool.
The modeled Coolant Distribution System is highlighted
in as dashed and blue in Figure 3a as it here is the target
of the established interoperability between systems simu-
lation and geometry modeling.

The FMUs of the application example are packaged in a
SSP file providing a complete and executable description
of the targeted simulator configurations, see Figure 3b.
The depicted SSP file includes two different geometrical
configurations. These configurations are specified through
the two included SSV files Conf1.ssv and Conf2.ssv.

5.1 Mathematical modeling
Two of the three constituent parts of the application exam-
ple are individual models of the mathematical sort. These
two mathematical models include an interpolation based
representation of a Environmental Control System (ECS),
a liquid coolant distribution system, and a consumer of
generated cooling power. The first two modeled coupled
sub-systems, the ECS and the liquid coolant distribution
system, are lumped together in a single exported FMU,
whereas the consumer is separated from the other two, see
Figure 3. The development of these aircraft sub-systems
is typically conducted by different departments at Saab,
or by suppliers, and this partitioning is intended reflect a
likely situation during development.

Even so, all three modeled sub-systems are developed
using components from the Saab Aeronautics in house
Modelica library Modelica Fluid Light (Eek, Gavel, and
Ölvander 2017) and the Modelica Standard Library (The
Modelica Association 2019). The mathematical modeling
is conducted in the Dymola and OpenModelica SW.

5.1.1 Environmental Control System (ECS)

A simulator enabling detailed studies of pilot thermal
comfort was presented in (Hällqvist et al. 2018). The
ECS presented here is based on the aircraft cooling sys-
tem of that simulator. The ECS model incorporated in the
application example is intended to provide a connection
between the operating conditions and the cooling power
available for distribution to the included consumer.

The results of maximum available steady-state relative
cooling power ˙Qrel , along with the corresponding avail-
able mass flow of conditioned cold air ṁ, are exploited in
an interpolation based Modelica component, see Figure 4a
and Figure 4b. Provided the characteristics of Figure 4,
the minimum possible cold air temperature can be calcu-
lated as

T min
in = Tout −

Q̇current
max

ṁ ·Cp
(1)

where Tout is the current exhaust air temperature and
Q̇current

max = Q̇rel · Q̇max. The parameter Q̇max specifies the
maximum available cooling power independent of the op-
erating conditions. The specific heat at constant pressure
is denoted Cp in Equation 1. The ECS is here modeled

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

42 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

0.2
Mach Number [-]

0

A
lti

tu
de

[k
m

]

0

0

0

20

20

30

30

40
40

50

50

50

50

50

60

60

60

60

60

70

70

70

70

70 80

80

80

80

90

90

90

90

10
0

100

10
0

100

10
0

Relative Cooling Performance [%]

0.4 0.6 0.8 1.0 1.2 1.4 1.6

2

4

6

8

10

12

14

16

18
0

(a) ECS available relative cooling power (˙Qrel) as function of
altitude and Mach number

0.02

0.
02

0.03

0.
03

0.04

0.
04

0.05
0.05

0.
05

0.06

0.06

0.
060.06 0.07

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mach Number [-]

Coolant Air Flow [kg/s]

0

A
lti

tu
de

[k
m

]

2

4

6

8

10

12

14

16

18

(b) ECS available coolant flow (ṁ) as function of altitude and
Mach number.

Figure 4. Steady-state characteristics of the application example
ECS

as a source with a prescribed mass flow corresponding to
that of ṁ. The temperature of the air expelled from the
source is regulated by the incorporated control system, see
Figure 3; however, a lower bound corresponding to that of
T min

in is specified in the ECS model.

5.1.2 Coolant distribution system

The application example’s coolant distribution system is
schematically described as the dashed and highlighted
model in Figure 3. The cooling distribution system in-
terfaces the modeled ECS via the Air-to-Liquid Heat Ex-
changer (LHEX). The LHEX transfers heat from the liquid
circulated by the included pump to the ECS coolant air.

The Modelica components with parameters specified by
the geometry model are all part of the Modelica Fluid
Light library. The considered modeled components are a
pipe, a pump, an LHEX, and an accumulator. The parame-

Pipe Dh l z
Accumulator Vacc
LHEX h b l

Table 1. Summary of the parameters that are exchanged in the
application example. The pipe parameters Dh and z represent the
pipe hydraulic diameter and its lumped pressure loss coefficient.
The pressure loss coefficient is a result of pipe bends and con-
tractions/expansions. The parameter l represents pipe or LHEX
length. The LHEX height and width are denoted h and b and the
accumulator volume Vacc.

ters of each modeled library component, here specified via
the application example’s geometry model, are presented
in Table 1. A sub-set of the included model component
equations are described in detail in the following para-
graphs, in order to highlight how the selected parameters
impact upon the characteristics of the coolant distribution
system model.

The pipe model algebraic equation relating the compo-
nent parameters to mass flow (ṁ) and pressure drop (∆p)
is

∆p =
(z+ c · l/Dh)

A2 ·2ρ
ṁ2 (2)

where A is the pipe’s cross sectional area, Dh is the hy-
draulic diameter, and l is the pipe length (Miller 1990).
The friction coefficient is denoted by c. The one-time
pressure losses occurring as a result of pipe bends and
contractions/expansions are incorporated via the param-
eter z. The pipe component parameters of Table 1 also
impact upon the relationship between the air temperature
surrounding the pipe and the specific enthalpy of the fluid
itself. This relationship is described by a system of differ-
ential and algebraic equations:

qep = Aohep(Te −Tp),

qp f = Ahp f (Tp −Tf),

Ṫp = (qep +qp f)/(Cp ·M),

ḣ = ṁ/(ρ ·V)(hin −h),

(3)

where the pipe hull outer surface area is Ao = πDoL and
the pipe hull inner surface area is A = πDhL. The spe-
cific enthalphy h is modeled as a nonlinear function of the
fluid temperature T . The pipe input specific enthalpy is
denoted by hin. The variable Te represents the temperature
of the media surrounding the pipe’s outer surface whereas
the variable Tp represents the pipe’s hull temperature. The
intermediate variables qep and qp f represent the heat trans-
ferred from the pipe’s external environment to its hull and
from the pipe’s hull to the fluid, respectively.

The modeled accumulator component exploits the
Modelica inner/outer concept to access temperature de-
pendent information concerning the system’s total vol-
ume. The accumulator pressure is then related to the fluid
temperature via linear interpolation as

p =
p f − pe

Vacc

[
N

∑
i=1

(Vi(T)−Vi(T0))+Vacc(T0)

]
+ pe (4)

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

43

where Vi(x) is the fluid volume in connected component
model i, at the current temperature x = T or the temper-
ature at filling x = T0. The pressure in the accumulator
when it is full and empty are denoted p f and pe respec-
tively. The two accumulator parameters Vacc and Vacc(T0)
represent the total accumulator volume and the volume of
liquid in the accumulator at filling temperature.

The LHEX is a plate fin cross-flow type heat exchanger
where the model parameters length, width, and height de-
termine the total heat transfer area of both the hot and cold
side. Such a heat exchanger is a common and appropriate
selection for gas-to-liquid applications, where the optimal
arrangement conforms to maximizing the surface area on
the gas side. The presented component model is founded
on the theory presented by Kays et al. in (Kays and Lon-
don 1984).

The assumed flow arrangement in this model compo-
nent is that of one fully mixed fluid (the gas) and one un-
mixed fluid (the liquid). This assumption translates to that
the gas temperature is constant perpendicular to the direc-
tion of the flow. The hot and cold side, i = h and i = c
respectively, heat transfer rates can be expressed as

hi =

[
CpStṁ 4l

Dh

A

]
i

(5)

where Ai is the total heat transfer area of side i. The Stan-
ton number St in Equation 5, named after Thomas Stan-
ton, is a heat transfer modulus that is used to characterize
heat transfer (Ackroyd 2007). In this particular model,
the Stanton number is seen as a tunable exponential func-
tion of the Reynolds number that is calibrated against ef-
ficiency measurements.

The LHEX overall thermal resistance can now be ex-
pressed as

R =
h

∑
i=c

1
hiAi

. (6)

assuming negligible thermal resistance of the walls and no
extended fin surface on either the hot or cold sides of the
LHEX.

The thermal efficiency, for a heat exchanger with this
particular assumed flow arrangement, is expressed as ei-
ther

ε = 1− e
−

[
1−e

−Ntu
Cmin
Cmax

]
Cmax
Cmin (7)

or

ε =
Cmax

Cmin

[
1− e−[1−e−Ntu] Cmin

Cmax

]
(8)

depending on which of the side’s flow capacity rates C that
are limiting. If Cmin =Cc = ṁcCpc then Equation 7 is ap-
plicable, and if Cmin =Ch = ṁhCph then Equation 8 is ap-
plicable. The thermal resistance influences the efficiency
via the heat transfer parameter

Ntu =
1

RCmin
(9)

which connects the geometrical parameters to the effi-
ciency. In the application example LHEX model lh = 2 ·b,
as the hot liquid passes the cold side surface twice, and
lc = l. Additionally, the parameters b, h, and l affect the
efficiency through St which here is modeled as an expo-
nential function of the Reynolds number. This exponen-
tial function is tuned such that the model complies with
supplier data.

Finally, the LHEX hot side outlet temperature T out
h can

be described as function of the efficiency

T out
h = T in

h − ε(T in
h −T in

c) (10)

where the superscipt indicates inlet or outlet temperature.

5.2 Geometrical representations

(a) Geometry model of cooling power distribution system rout-
ing option one (Configuration 1). The ECS is located in the aft
of the aircraft.

(b) Geometry model of cooling power distribution system rout-
ing option two Configuration 2. The ECS is located immediately
behind the aircraft’s cockpit.

Figure 5. Use-case geometry models representing the two dif-
ferent routing options under investigation. The piping reaches
from the LHEX to the front of the aircraft where the radar is lo-
cated. The radar is not included in either Figure 5a or Figure 5b.

Two different configurations of the coolant distribution
system are modeled in CATIA, see Figure 5. The resulting
geometry models include geometrical representations of
all the parts of the coolant distribution system model. The
main components, the LHEX, Pump, and Accumulator are
the same in both configurations.

In both configurations, the piping reaches from the
LHEX to the front of the aircraft where the radar is lo-
cated. The main difference between the configurations

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

44 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

lie in the positioning of the ECS and coolant distribution
system core, i.e. the accumulator, pump, and LHEX. In
Configuration 1, the routing extends from the aft, via the
aircraft ridge, to the radar. This configuration results in
a significantly longer routing with more bends compared
to Configuration 2, where the ECS is located immediately
behind the cockpit. Both configurations have advantages
and disadvantages. For example, the potential increased
pressure drop of Configuration 1 could be outweighed by
the reduced need for transporting engine bleed air to the,
in this case, bleed-air-driven ECS.

6 Use-case
A use-case, presented in this section, is formulated to
demonstrate the functioning and benefits of the developed
technology. An Operational Concept (OpsCon) (Interna-
tional Council on Systems Engineering 2015) mission,
along with a sub system requirement posed by the hy-
pothetical developer of the application example radar, to-
gether compose the use-case requirements on the coolant
distribution system.

6.1 Prerequisites
The application example described in Section 5 naturally
serves as the primary use-case prerequisite. Here, the ap-
plication example is available in the form of a generic SSP,
including a template SSM file generated using the func-
tionality provided in Listing 2.

In addition, the OpsCon mission is seen as a top-level
requirement which the application example should fulfill.
The application example boundary conditions of the Op-
sCon mission is presented in Figure 6. The mission alti-
tude and Mach number profiles are presented in Figure 6a,
and the radar heat load and SW input aircraft state in
Figure 6b.

The application example aircraft leaves the runway af-
ter approximately 100 s with the goal of identifying an un-
known aircraft known to be present approximately 115 km
from the base. A climb and acceleration to cruise condi-
tions are then initiated and realized. The aircraft operates
at cruise conditions until it reaches the specified location.
A loitering phase is commenced and the radar is shifted
from stand-by to active, see the power transient depicted in
Figure 6b. The aircraft being sought is located after 60 s of
searching and the operating conditions are then matched
to those of the foreign aircraft via a speed increasing dive.
Once contact has been established, the radar is shifted to
stand by mode and the aircraft is returned to base via a
second low fuel consumption cruise phase.

The OpsCon mission specifies the use and functioning
of a radar. This radar functions provided that the sub-
system requirement

• The difference in radar coolant inlet and outlet tem-
perature shall not exceed 13◦C

is fulfilled throughout the OpsCon mission.

M
ac

h
N

um
be

r[
-]

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
00

2000

4000

6000

8000

10000

A
lti

tu
de

[m
]

Altitude
Mach Number

600 8000 200 400 1000 1200
Time [s]

(a) Altitude and Mach number of the OpsCon mission profile

A
ir

cr
af

tS
ta

te
[-

]

R
ad

ar
H

ea
tL

oa
d

[W
]

600 8000 200 400 1000 1200
Time [s]

0

1

3

2

4

5
Radar Heat Load
Aircraft State

0

1000

2000

3000

4000

5000

(b) Heat load exerted by the application example radar compo-
nent during the OpsCon mission. The radar can here operate in
two different discrete modes: a stand by mode corresponding to
500 W of power and a active mode corresponding to 3500 W.
The dashed line represents the SW input signal AircraftState
which indicates whether the aircraft is situated on the ground
(AircraftState= 1), or if it is airborne (AircraftState= 4).

Figure 6. Boundary conditions corresponding to the specified
OpsCon mission profile

6.2 Sunny day scenario and expected outcome
The engineering team responsible for the acquisition and
tailoring of the ECS to be used in the aircraft, in collabo-
ration and agreement with the ECS supplier, has identified
two different possible system locations: below the fin in
the aft of the aircraft, and immediately behind the cockpit.

Each ECS position results in a different routing of
the liquid coolant distribution system as the consumer of
coolant power is located in the nose of the aircraft. The
engineer responsible for specifying the installation of the
liquid coolant distribution system is proposing two differ-
ent routing options, see Figure 5 and Section 5.2. Geom-
etry models are developed for both of the two different
routing options and the corresponding parameters are ex-
ported, using the functionality presented in Section 3, as
two different SSV files. These SSV files are placed in

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

45

the resources of the application example SSP as shown
in Figure 3b. An extract of the exported geometry infor-
mation in the SSV format is provided in Listing 5. An
extract of the corresponding intermediate CATIA XML is
provided in Listing 6. The presented parameter value is
common to both Configuration 1 and Configuration 2.

Listing 5. Extract of application example geometry information in the
SSV format.

<ssv:ParameterSet name="product_ECS">
<Units>
<Unit name="m">

<BaseUnit m="1"/>
</Units>
<ssv:Parameter name="part_LHEX.

parameterSet_inputParameters.
parameter_width">

<ssv:Real unit="[m]" value="0.3"/>
</ssv:Parameter>

</ssv:ParameterSet>

Listing 6. Extract of application example geometry information in the
intermediate XML format described in Section 3.1.

<product name="ECS">
<part name="LHEX">
<parameterSet name="inputParameters">

<parameter name="width" type="Double">
<value>300</value>
<unit>[mm]</unit>

</parameter>
</parameterSet>

</part>
</product>

In parallel, the involved stakeholders agree upon a map-
ping between parameter values and the parameters of the
FMUs relevant to the application example; thus updating
the SSM from template to the final version of the instanti-
ated SSP.

The sub-system requirements need to be verified during
the presented OpsCon. The analysis is suggested to pro-
vide feedback on the design in terms of suggestions con-
cerning the ECS positioning and the accompanying rout-
ing. The feasibility is determined with respect to the pre-
sented system and sub-system level requirements.

7 Results and discussion
The application example is simulated for the mission pro-
file described in Section 6.1. The geometry settings of the
two different modeled configurations are summarized in
Table 2 and Table 3. The parameters that differ between

Feed line
piping

Return line
piping

l[m] z[-] l[m] z[-]
Configuration 1 7.393 2.491 7.412 2.417
Configuration 2 4.614 0.985 4.571 0.880

Table 2. Summary of parameter values that differ between the
two configurations. The cooling distribution system routing is
subject to modification. The remaining coolant distribution sys-
tem components, along with their constituent parameters, re-
main unchanged

Dh[m] h[m] b[m] l[m] Vacc[m3]
Piping 0.01
Acc. 1.71 ·10−3

LHEX 0.3 0.3 0.3

Table 3. Summary of parameter values that are specified by the
geometry model but identical for the two different configura-
tions.

configurations are presented in Table 2. Parameter values
that remain unchanged in the different configurations, but
are specified by the geometry models, are presented in Ta-
ble 3. The remaining system simulation model parameters
are kept at their default values, as specified in their origi-
nal M&S development environment.

0

1

3

2

4

5

6

Available Cooling Power
Available Cooling Air Mass FlowA

va
ila

bl
e

C
oo

lin
g

Po
w

er
[W

]

A
va

ila
bl

e
C

oo
lin

g
A

ir
M

as
s

Fl
ow

[k
g/

s]

600 8000 200 400 1000 1200
Time [s]

0

1000

2000

3000

4000

5000

6000

Figure 7. ECS model available cooling power (solid) and the
available coolant mass flow as (dashed) for the OpsCon simula-
tions

The simulation results used to assess the feasibility of
the two different configurations, with respect to the re-
quirements, are shown in Figure 7 and Figure 8. Figure 7
quantifies the performance limits of the included ECS
model. The available cooling power is shown as solid in
the figure and the available coolant mass flow as dashed.
Note that the available cooling power is significantly
greater than the OpsCon radar heat load, see Figure 6b,
indicating that the ECS performance is sufficient for exe-
cuting the mission.

The simulated radar inlet mass flow is shown in
Figure 8a and the temperature increase over the radar
in Figure 8b. The temperature increase remains below
the required differential temperature level, dotted line in
Figure 8b, throughout the simulated OpsCon for both con-
figurations. Even so, the temperature increase is shown as
significantly higher for Configuration 1 than Configura-
tion 2. This is a result of the corresponding lower levels of
coolant mass flow, see Figure 8a. The coolant distribution
mass flow depends on the pipe length l and pressure loss
coefficient z, according to Equation 2, that are presented
in Table 2.

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

46 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

600 8000 200 400 1000 1200
Time [s]

Configuration 2
Configuration 1

0.1

0

0.2

0.3

0.4
M

as
s

Fl
ow

[k
g/

s]

(a) Coolant distribution system mass flow during the two Op-
sCon simulations

∆
T R

ad
ar

[◦
C

]

600 8000 200 400 1000 1200
Time [s]

0

2

4

6

8

10

12

14

Configuration 2
Configuration 1
Requirement

(b) Temperature increase over the radar during the two OpsCon
simulations

Figure 8. Compilation of simulation result relevant during use-
case requirement verification. The results stem from simulations
of the two different configurations. Configuration 1 is depicted
as dashed, and Configuration 2 as solid

8 Conclusions
There is much to gain already in adopting a single estab-
lished standardized format for information exchange inter-
nally, within the confines of the organization, that can be
version controlled and compared to previous versions us-
ing well established tools. This benefit can be increased if
the standardized format is supported by the modeling tools
such that the parameters can be automatically exchanged
at manually, or automatically, generated events such as the
commit of a model update to a repository.

The results of the research presented here indicate that
the FMI and SSP standards show great promise for achiev-
ing such an automated simulation application develop-
ment method. A method for exchanging parameter infor-
mation between the engineering domains of system simu-
lation and CAD has been established exploiting the, in this

context, suitable open tools and standards. The method
has been developed while keeping the aim of minimizing
the impact on the modeling methodologies, mathematical
or geometrical, in mind. The application example’s aggre-
gated pressure loss coefficients, for example, could have
been computed in the components of the modeling library
compared to in the developed VBA macros, see Section
3. This would, however, constitute a major change to any
library that is mature and used in several different models.

The presented method has been contextualized to the
simulation model development and maintenance pro-
cesses currently deployed at Saab Aeronautics. Further-
more, the work has resulted in the specification of neces-
sary functionality for manipulating SSPs. Prototype func-
tionality is implemented in, and tested using, the OM-
Simulator tool. The presented methodology would benefit
greatly if the presented functionality were made available
in the modeling tools best suited for each considered mod-
eling domain.

Additionally, the presented work targets the exchange
and specification of parameters exposed at the interface of
FMUs. An FMU generated from Modelica only allows
modification of non-structural parameters, i.e. parameters
that do not impact upon the internal structure of the sys-
tem of equations. This delimitation could be avoided if
the available M&S tools developed SSP support not only
coupled to FMI but also to the tool’s native modeling lan-
guage. In such a case, the parameters could be exchanged
prior to code generation and compilation.

Acknowledgements
The presented research was conducted within the frame
of the ITEA3 project EMBrACE and the NFFP7 project
Digital Twin for Automated Model Validation and Flight
Test Evaluation. The research was funded by Vinnova and
Saab Aeronautics. The authors would specifically like
to thank Lennart Ochel and Arunkumar Palanisami for
their help in implementing the necessary OMSimulator
functionality. In addition, the authors would like to
thank Dan Louthander for his help with the details of the
application example and reviewing of the manuscript.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118137

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

47

References
Ackroyd, J. A. D. (2007). “The Victoria University of Manch-

ester’s contributions to the development of aeronautics”. In:
The Aeronautical Journal (1968) 111.1122, pp. 473–493.
DOI: 10.1017/S0001924000004735.

Andersson, Henric and Magnus Carlsson (2012). Saab Aeronau-
tics Handbook for Development of Simulation Models : Pub-
lic Variant. Tech. rep. 12/00159. Linköping University, Ma-
chine Design.

Auslander, D. M. (1968). “Distributed System Simulation With
Bilateral Delay-Line Models”. In: Journal of Basic Engineer-
ing 90.2. DOI: https://doi.org/10.1115/1.3605079.

Baumgartner, Daniel and Andreas Pfeiffer (2014-03). “Auto-
mated Modelica Package Generation of Parameterized Multi-
body Systems in CATIA”. In: Proceedings of the 10th In-
ternational Modelica Conference, March 10-12, 2014, Lund,
Sweden. Linköping University Electronic Press. DOI: 10 .
3384/ecp14096913.

Eek, Magnus, Hampus Gavel, and Johan Ölvander (2017-02).
“Definition and Implementation of a Method for Uncertainty
Aggregation in Component-Based System Simulation Mod-
els”. In: Journal of Verification, Validation and Uncertainty
Quantification 2.1. DOI: https://doi.org/10.1115/1.4035716.

Elmqvist, Hilding, Sven Erik Mattsson, and Christophe Cha-
puis (2009-10). “Redundancies in Multibody Systems and
Automatic Coupling of CATIA and Modelica”. In: Pro-
ceedings of the 7 International Modelica Conference Como,
Italy. Linköping University Electronic Press. DOI: 10.3384/
ecp09430113.

Engelson, V., H. Larsson, and P. Fritzson (1999). “A design,
simulation and visualization environment for object-oriented
mechanical and multi-domain models in Modelica”. In: 1999
IEEE International Conference on Information Visualization
(Cat. No. PR00210). IEEE Comput. Soc. DOI: 10.1109/ iv.
1999.781557.

FMI Development Group (2020-12-15). Functional Mock-up In-
terface for Model Exchange and Co-Simulation. Report 2.0.2.

Fritzson, Peter (2004-01). Principles of Object Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-IEEE Press.
ISBN: 9780470545669. DOI: 10.1109/9780470545669.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control: A Nor-
wegian Research Bulletin 41.4, pp. 241–295. DOI: 10.4173/
mic.2020.4.1.

Hällqvist, Robert (2019). “On Standardized Model Integration
: Automated Validation in Aircraft System Simulation”. Li-
centiate Thesis. Linköping University, Faculty of Science and
Engineering. ISBN: 9789179299293. DOI: 10.3384/lic.diva-
162810.

Hällqvist, Robert et al. (2018). “A Novel FMI and TLM-based
Desktop Simulator for Detailed Studies of Thermal Pilot
Comfort”. In: Proceedings of the 31st Congress of the Inter-
national Council of the Aeronautical Sciences. International
Council of the Aeronautical Sciences. ISBN: 978-3-932182-
88-4.

International Council on Systems Engineering (2015). Systems
Engineering Handbook. 4th ed. John Wiley and Sons, Inc.
ISBN: 9781118999400.

Kays, W.M. and A.L. London (1984). Compact heat exchangers.
Krieger. ISBN: 9781575240602. URL: http://books.google.de/
books?id=A08qAQAAMAAJ.

Krus, Petter et al. (1990-01). “Distributed Simulation of Hy-
dromechanical Systems”. In: Third Bath International Fluid
Power Workshop.

Lind, Ingela and Alexandra Oprea (2012-11). “Detailed geomet-
rical information of aircraft fuel tanks incorporated into fuel
system simulation models”. In: Proceedings of the 9th Inter-
national MODELICA Conference, September 3-5, 2012, Mu-
nich, Germany. Linköping University Electronic Press. DOI:
10.3384/ecp12076333.

Ljung, Lennart and Torkel Glad (2004). Modelbygge och Simu-
lering. Vol. 2. Studentliteratur. ISBN: 91-44-02443-6.

Miller, Donald (1990). Internal Flow Systems. Cranfield, Bed-
ford: BHRA (Information Services. ISBN: 978-0956200204.

Modelica Association (2019-03-05). System Structure and Pa-
rameterization. Report 1.0.

Modelica Association Project System Structure and Parameter-
ization (2021). System Structure and Parameterization. URL:
https://ssp-standard.org (visited on 2021-05-08).

Munjulury, Raghu Chaitanya (2017). “Knowledge-Based In-
tegrated Aircraft Design : An Applied Approach from
Design to Concept Demonstration”. Linköping. ISBN:
9789176855201.

Munjulury, Raghu Chaitanya et al. (2016). “A knowledge-based
integrated aircraft conceptual design framework”. In: CEAS
Aeronautical Journal 7.1, pp. 95–105.

Ochel, Lennart (2021). OMSimulator’s documentation. Ac-
cessed: 2021-02-18. URL: https : / / openmodelica . org / doc /
OMSimulator/master/html (visited on 2021-02-18).

Ochel, Lennart et al. (2019-03-04). “OMSimulator – Integrated
FMI and TLM-based Co-simulation with Composite Model
Editing and SSP”. In: Proceeding of the 13th International
Modelica Conference. DOI: 10.3384/ecp1915769.

OpenCPS Project Partners (2019). Project 14018:Open Cyber-
Physical System Model-Driven Certified Development. Ac-
cessed: 2018-06-21. URL: https://www.opencps.eu/ (visited
on 2019-11-15).

Remond, Xavier, Thierry Gengler, and Christophe Chapuis
(2015-09). “Simulation of Piping 3D Designs Powered by
Modelica”. In: Proceedings of the 11th International Model-
ica Conference, Versailles, France, September 21-23, 2015.
Linköping University Electronic Press. DOI: 10 . 3384 /
ecp15118517.

Roy, Christopher J. and William L. Oberkampf (2011-06). “A
comprehensive framework for verification, validation, and
uncertainty quantification in scientific computing”. In: Com-
puter methods in applied mechanics and engineering 200.25-
28, pp. 2131–2144. DOI: 10.1016/j.cma.2011.03.016.

Roza, Manfred, Jeroen Voogd, and Derek Sebalj (2012-10).
“The Generic Methodology for Verification and Validation to
support acceptance of models, simulations and data”. In: The
Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology 10.4, pp. 347–365. DOI: 10.1177/
1548512912459688.

Stokes, Melody (2001). Managing engineering knowledge
: MOKA: methodology for knowledge based engineer-
ing applications. Professional Engineering Publ. ISBN:
1860582958.

The Modelica Association (2019). Modelica and the Model-
ica Association. Accessed: 2018-06-21. URL: https:/ /www.
modelica.org/ (visited on 2019-11-15).

Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard

48 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118137

Modelica, FMI and SSP for LOTAR of

Analytical mBSE models: First

Implementation and Feedback

Clément Coïc1 Adrian Murton2 Juan Carlos Mendo3 Mark

Williams3 Hubertus Tummescheit1 Kurt Woodham4
1Modelon, Sweden, {clement.coic, hubertus.tummescheit}@modelon.com

2Airbus Operations Ltd. United Kingdom, adrian.murton@airbus.com
3The Boeing Company, USA, {juan.c.mendo, mark.williams}@boeing.com

4NASA Langley Research Center, USA, kurt.woodham@nasa.gov

Abstract
LOng Time Archiving and Retrieval (LOTAR) of models

is key to using the full capabilities of model-Based

System Engineering (mBSE) in a system lifecycle –

including certification. The LOTAR MBSE workgroup is

writing the EN/NAS 9300-Part 520 to standardize the

associated process, in the aeronautics industry, and

suggests the usage of Modelica, FMI and SSP standards

for its purpose. Acceptance of such a process requires a

match between industrial needs and software vendor

implementations. This is helped by a tool-agnostic

implementation of the process and following specific

adaptations within the Modelon Impact software. This

initiative – inside the LOTAR workgroups – highlights

the suitability of such a process but also points at flaws

or overhead due to the lack of connection between the

Modelica, FMI and SSP standards, as well as the

MoSSEC (ISO 10303-243) standard. The

recommendations proposed in this document could have

a significant impact on the final adoption of the LOTAR

standard – relying on Modelica, FMI and SSP standards.

Keywords: Archiving, Retrieval, LOTAR, mBSE,

MoSSEC, FMI, SSP

1 Introduction

Contrary to the software industry where end-of-life is

programmed and conversion to a newer alternative is

“enforced,” the industrial products containing complex

cyber-physical systems have longer lifecycles and

associated maintenance.

In the aerospace industry, designing an aircraft takes

about a decade. The production cycle averages three

decades, and their service life extends for another three

decades. Deciding to develop a new aircraft is a choice

that impacts two thirds of the next century. The

technology and design choices, the system and

component sizing, the rationale and arguments in each

decision taken shall be stored and kept accessible during

the aircraft’s entire lifecycle. This enables its potential

evolutions and design reuse opportunities. It capitalizes

on the work and knowledge and supports a response to

future questions. Other key aspects of data archiving and

retrieval in the aerospace industry is to provide a basis

for the certification of future modifications, address

component obsolescence, and support accident

investigations.

These are the challenges that the LOTAR international

consortium of Aerospace manufacturers –jointly

facilitated by AIA, ASD-Stan, AFNeT, prostep ivip and

PDES, Inc. – are facing through the creation and

deployment of the EN/NAS 9300 series of standards for

long-term archiving and retrieval of digital data. To

ensure industry adoption, the resulting process must be

based on standardized practices and proven solutions,

listed on the website (LOTAR International 2021). The

authors of this papers are active members of the “MBSE

workgroup” within the LOTAR consortium.

Model-Based System Engineering (MBSE) definition,
“the formalized application of modeling to

support system requirements, design,

analysis, verification and validation

beginning in the conceptual design phase

and continuing throughout the development

lifecycle” (INCOSE Operations 2007) is widely used

in the aerospace industry.

While MBSE includes all types of models, the authors

previously introduced the acronym “mBSE” [or “little m

BSE” as opposed to the “big M BSE”] to narrow the

focus on the preservation of system-descriptive and

analytical models that are explicit, coherent, and

consistent (Nallon 2021). The integrated models provide

high-fidelity, rich representations – potentially of

different granularity of sub-systems. These models are

viewpoints that support the decisions affecting the

product’s architecture, new technologies, or component

sizing. This distinction is necessary to separate this work

from other types of models, e.g. 3D CAD models. (This

does not mean that these models should be decoupled.)

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

49

The archiving and retrieval of the models developed is

mandatory to utilize the efforts and rationales the model

served throughout the lifecycle of the (cyber-physical)

system it represents. mBSE data is also applicable to the

certification process and in-service maintenance of

Aerospace products. The need for long-term archiving is

an existing regulatory requirement. As many design

representations shift to a digital format the urgency of

defining archiving standards is in response to a critical

industry need. EN/NAS 9300 Part 520 standardizes the

long-term archiving and retrieval process for analytical

mBSE models.

Section 2 of this paper concisely introduces the

suggested steps for archiving and retrieval and discusses

the supplemental needs of the data archive and model

manifest. Section 3 presents a tool-agnostic

implementation and its integration within Modelon

Impact. Section 4 discusses the prototype results and

proposes specific recommendations for the standards

being used.

2 Archiving and retrieval process
2.1 Abstract and Keywords

While the EN/NAS 9300 Part 520 describes the

archiving and retrieval process in more detail, the main

points are listed below.

Archiving

• Develop and validate an mBSE model,

• Create an associated meta-data manifest,

• Export the model as an FMU or SSP,

• Include the manifest in the “extra” folder of the

FMU or SSP

• Archive the FMU or SSP, together with its

manifest, in the archiving platform/repository,

• Populate the AIP (Archive Information Package)

with information from the manifest

Retrieval

• Access the AIPs on the archiving platform

• Select the desired archived FMU/SSP by

examining the repository’s AIPs

• Retrieve the FMU/SSP

• Consult the associated manifest to validate the

retrieval results

• Verify that the model is not corrupt

For this standard to be easily deployable, the emphasis

is on the archiving and retrieving process of the model,

not its creation. A tool vendor is welcomed and even

encouraged to implement some of these steps earlier in

the modeling process. In a typical scenario, the model

manifest is populated early in the model’s lifecycle. The

population process is typically iterative throughout the

product design phase and could be optimized to support

additional goals such as model exchange. These steps

will typically happen prior to the model’s export as an

FMU for archival purposes. However, as long as the

consistency of the model and the meta-data is sustained,

the order of operations is not imposed.

2.2 Relying on existing standards

The LOTAR MBSE workgroup made an extensive effort

to reference and map most related standards, their

applicability, usage, and maintenance (Williams 2021).

One aim was to define which standards to rely on for the

archive and manifest formats. The first consideration was

a neutral format with the widest potential tool support for

long term archiving. The second consideration was

endorsement by the Aerospace OEMs. It was found that:

• The FMI standard has reached a level of maturity

and availability that supports model archiving and

preservation.

• The SSP standard – being the structured system

variant of the FMI standard – is also a

recommended alternative for system model

archiving and preservation.

• The ISO STEP AP243 (MoSSEC 2021) standard, in

a format similar to the Model Identity Card (MIC),

is the recommended format for the model manifest.

These mature tool-agnostic standards form a solid

base for the Part 520 standard on which any tool vendor

can build a marketable solution.

2.3 LOTAR manifest

The LOTAR manifest is the identity card that enables

each model to travel and be identified uniquely. In the

first tool-agnostic implementation presented by this

paper the manifest is stored as an XML (W3C 2006) file

with tags arranged in various categories, which gather

attributes and associated values.

As represented in Listing 1., the simplicity of the

XML mark-up language makes it a suitable candidate for

parsing of the manifest or performing further action on it

– e.g. generation of a graphical representation, or

populating repository attributes.

Listing 1. A short extract from a sample manifest:

<LOTAR_Manifest>

 <GeneralPLM>

...

 </GeneralPLM>

 <DevelopmentIntegrationAndExecution>

...

 </DevelopmentIntegrationAndExecution>

 <PhysicsContentAndUsage>

 <PhysicsContentProperties

 Dimension=""

 PhysicsDomain=""

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

50 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

 Timescale=""

 Linearity=""

 ModelType_Usage="">

 </PhysicsContentAndUsage>

 <ValidityRange

 ValidityRange="">

 </ValidityRange>

 <ModelFidelity

 RepresentedPhenomena=""

 NeglectedPhenomena="">

 </ModelFidelity>

 </PhysicsContentAndUsage>

...

 <ModelVariables

 </ModelVariables>

 <VerificationAndValidation

...

 </VerificationAndValidation>

</LOTAR_Manifest>

The different categories in the manifest aim to capture

the design intent of the model (what), the rationale and

purpose for creating the model (why), the content,

fidelity, and format of the model (what/how), as well as

its provenance (who/when).

These specific metadata categories can be mapped to

ISO STEP AP243 (MoSSEC), and they are used to

capture the systems engineering context around each

model to be archived. The MoSSEC specification

standardizes such context. Sharing or archiving, the

MoSSEC-styled metadata information facilitates every

model’s availability, retrieval, and reusability

3 First implementation

The LOTAR mBSE workgroup solicited Modelon to

implement a tool-agnostic version of the archive and

retrieval process. The aim was to detect the “paper cuts”

in the process that could hinder the standard’s adoption.

Performing this type of early prototyping, prior to the

standard’s initial release, verifies the viability of the

identified mBSE data standards and the associated

workflow needed for archiving, sharing, and retrieving

analytical models.

3.1 Definition of the prototype system

As this work focuses on the archiving and retrieval

process, the prototype system is made as simple as

possible while still illustrating the optional process steps.

The LOTAR mBSE workgroup selected the Regulated

Actuator system represented in Figure 1 for their proof of

concept.

Figure 1. Regulated Actuator System

The diagram represents a system whose goal is to

control the position of a flight control surface to simplify

the (auto) pilot’s response when facing external loads.

The system is composed of three subsystems:

• The controller, a simple PID (proportional,

integral, derivative) controller that receives the

(auto) pilot position commands and the measured

actuator position. It then outputs a command

based on the errors detected between both.

• The plant model gathers both the actuator and

load models. An output is the actual surface

position.

• A sensor model inserts a delay in the

measurement.

The three models are highly simplified representations

of the physics involved. The focus is to define a common

process independent of the tools and potentially different

environments that could be used by different teams.

Furthermore, each subsystem is modeled separately and

exported as an FMU; the overall system can be exported

as a SSP – by composition of the previously built FMUs.

3.2 A tool-agnostic implementation

3.2.1 Modelica models and FMU generation

The three models described in section 3.1 and presented

in Figure 1 are developed using the Modelica language.

Once more, the reason is not to take advantage of the

language capabilities but to take advantage of its

openness. Indeed, the models are deliverables to the

prototyping effort and can be shared in text format for

further use. A derived advantage is the inclusion of the

documentation-annotation provisions in MLSv35r0

(Modelica Association 2021) that enables embedding the

model description and experimental frame, within the

model itself, in HTML format.

The FMUs (Functional Mockups Units) are generated

using the Modelon compiler included in Modelon Impact

but could have been generated by any other Modelica

compiler, e.g., OpenModelica. They have been generated

in both the Model Exchange and Co-Simulation formats

for further study and use.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

51

Note: for LOTAR purposes, a co-simulation FMU has

a clear advantage because the solver is stored within the

FMU – by definition. This is a highly relevant point for

long term archiving. Which solvers will be available in

50 years from now? How will one be able to couple them

with another FMU? Nevertheless, the model exchange

FMU also has obvious advantages because they are great

candidates for a direct coupling into an SSP prior to

archiving. The results of this prototype will be analyzed

by the LOTAR team to understand the preferred archive

alternatives, and the best potential formats for archiving.

A Modelica language tool may not always provide the

source, and entire repositories of archived formats may

need to be converted to alternative standards in the

future.

The following steps of the process are achieved by

relying on Python scripts – using open-source or, at least,

free of use packages. As a reminder, this is an

implementation that helps to bring the standard to life

but not the standard itself – anyone is free to implement

it using different means.

3.2.2 Creation of the LOTAR manifest

The LOTAR manifest being written is an XML file

(W3C 2021), created using the Python module

xml.etree.ElementTree. The XML tree structure is built

first and then attributes are set to their values. Unknown

values are left as empty strings.

In the future envisioned process, populating the

manifest metadata should be a semi-automatic process

using a tool specific implementation that occurs prior to

the start of the archival process.

However, the EN/NAS 9300 Part 520 standard has not

been formally released yet, so this is currently performed

manually. Nevertheless, this first implementation

highlighted many commonalities with the

“modelDescription,xml” file contained in the FMUs. The

PyFMI (PyFMI 2020) package is used to load and

interact with the FMU in its most basic form: accessing

the modelDescription information. This way, many fields

of the manifest are automatically populated by the

Python script. A simple extract is defined in Listing 2.

Listing 2. A short extract from a sample manifest:

Root

manifest=ET.Element('LOTAR_manifest')

LOTAR_manifest > GeneralPLM

GeneralPLM=ET.SubElement(manifest,'GeneralPLM')

LOTAR_manifest > GeneralPLM > ...

ProvenanceOwnershipDate=ET.SubElement(GeneralPLM,

'ProvenanceOwnershipDate')

Populate creation date

ProvenanceOwnershipDate.set('Created_on',

model.get_generation_date_and_time())

Note that another option would be to extract and parse

the XML file directly. This would be, however, more

laborious and the solution presented relies on maintained

python packages, and thus is more convenient.

At this point, it becomes important to note that a

subset of model manifest fields can be taken straight

from the “modelDescription.xml”. However, the model

manifest offers extra metadata that travels with the

original model, regardless of its format: FMU or native.

3.2.3 Inclusion of the manifest in a Functional

Mockup Unit

Because the FMU is a zip file, the inclusion of the

manifest can be performed automatically with a Python

module such as zipfile (Pyhton Software Foundation

2021). Three specific points are listed here:

• To prevent conflicts, the naming of the manifest

uses reverse domain notation such as
extra/org.mossec/
LOTAR_Manifest.xml

• Ensure the manifest is added in the “extra” folder

of the FMU recently available FMIv2.0.2

(Modelica Association, 2020) in the standard.

• To minimize the file corruption risks, it is

recommended to open the FMU in a mode in

which it is only possible to append new files, not

to modify existing ones.

The FMU is now ready for archiving on the platform.

3.2.4 Accessing the manifest

Once the FMU is archived, the manifest should be

accessible by the repository, so the contained

information enables the user to identify the correct model

needed for retrieval. The selected implementation

consists of inverting the previous process: open the zip in

read only mode, extract a copy of the manifest in a

preselected location in the repository and then access this

copy. This can be achieved with the same Python module

zipfile.ZipFile.

Note that one recommendation for the repository

could be to perform this manifest manipulation when

archiving the FMU, keeping a pointer toward the original

source file – thus collecting an organized set of

manifests. Retrieval could then consist of browsing the

set of stored manifests and selecting the correct one. The

archiving platform could then access the related FMU,

verify that the same manifest is included and perform the

retrieval. From a LOTAR perspective, the manifest is

very similar to the AIP mentioned previously and could

be replicated accordingly. This would ensure the model

metadata would exist both internally and externally to

the FMU zipfile.

3.2.5 Repeating the process at system level

The prototype was designed so that a system level

example could be studied and refined. The regulated

actuator model is built as an SSP by composition of the

existing FMUs. The manifest template, as defined in the

first version of the EN/NAS 9300-Part 520, applies

primarily to subsystem level component models and is

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

52 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

not directly applicable yet to system level simulations or

setups. The Python scripts were adapted to reach the

manifests inside the FMU zip files when archiving. In

the future, the manifest of a structured system model

should be defined and stored in the “extra” folder of the

SSP – for consistency.

3.2.6 Availability of developed models and code

The LOTAR MBSE workgroup and Modelon agreed to

make these models and Python code available to the

LOTAR and eventually to the broader community. This

is an added benefit of this first implementation: publicly

available basic models and Python scripts – relying on

open-source or free of use packages – that follow and

implement the process from the draft Part 520 standard.

This way, there are no proprietary restrictions preventing

a tool vendor from implementing the standard. Modelon

illustrates this fact with the addition of a custom function

within Modelon Impact to write and add the manifest

when exporting an FMU.

3.3 A tool-specific implementation

3.3.1 Modelon Impact in four sentences

Modelon Impact is a cloud native based modeling and

simulation environment relying on and enhancing open

technologies such as Modelica, FMI or Python (Modelon

2020). Modelon Impact is aimed at democratizing

simulation to a broader audience by providing a user

friendly, yet powerful interface to develop and simulate

models or utilize them in a very narrow context,

including the use of web applications (Coïc 2020a).

Modelon Impact offers both steady-state and dynamic

simulation capabilities (Coïc 2020b), which exposes

more opportunities to the model developer to make a

model best suited to the model user. Finally, it is

possible to implement user specific workflows in

Modelon Impact through Python-based custom functions

which can interact with the Modelon Impact API.

3.3.2 A custom function for the manifest generation

One convenient way to implement a Modelon Impact

specific implementation of this process is to develop a

dedicated custom function that would write and add the

manifest to the FMU when compiling a model.

The tool-agnostic prototype is Python-based and

relying uniquely on open-source technologies. The step

to implement a Modelon Impact custom function is thus

minor as these also rely on the Python language.

Custom functions are available in Modelon Impact by

hovering over the simulate button (see Figure 1) or by

selecting the dedicated function in the experiment mode

(see Figure 2). In the latter case, more actions are

possible through user inputs. For example, it was decided

to add the “Author name” and “Organization” as a user

input fields so that this information would always be

added to the manifest.

Figure 1. Direct generation of LOTAR manifest in

Modelon Impact

Figure 2. Generation of the LOTAR manifest after optional

user input provision, in Modelon Impact

Notes:

• This is hard to demonstrate in a paper, but a short

demonstration of the python interface using

PyFMI (PyFMI 2020) is available.

• The rest of the process is independent of the

modeling and simulation environment but occurs

on the archiving platform. Therefore, Modelon

limits their tool-specific implementation to this

step.

4 Discussions and recommendations
The completion of this prototype, prior to the release of

the Part 520 process standard, brought great insights on

the applicability of the representative workflow and the

potential need for future improvements. The following

recommendations and criticisms concern both the

Part 520 and the Modelica, FMI and SSP data standards.

This paper is directed toward the users of these

technologies.

4.1 Self-criticism

Constructive criticism is what ensures quality of work.

This prototype was developed with this in mind: stress-

test the process in order to spot any inconvenient or non-

finalized steps. Listed below is a list of items that were

identified as sources of improvement. The items are

tagged with “minor” and “major” keywords to highlight

their criticality. However, a “minor” item is not

irrelevant as in the long run it could be a paper cut that

prevents the standards future adoption.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

53

• [Major] Create a proper mapping between the

FMI “modelDescription.xml” and the LOTAR

manifest. When filling out the manifest, many

items were extracted from the PyFMI API. While

this is convenient, this also shows some

redundancies. A proper mapping would highlight

whether the manifest should become a small

extension of the existing modelDescription or

remain a separate file.

• [Major] Define the content of the manifest for an

SSP. Many of the fields identified for the FMU

LOTAR manifest are less relevant at system level

– especially if each FMU contains its own

manifest. For example, what is the value of

identifying the physical domains involved in an

SSP if each FMU specifies its own? A substantial

effort is expended by the industrials, under the

guidance of prostep ivip to transform the “Glue

Particle” into a data standard. This should expand

the investigation of adding descriptive metadata

to an SSP.

• [Major] How to precisely specify the format of

the validation and verification scenarios. The

LOTAR manifest includes these attribute fields

but does not constrain their format. Specifying the

file type for reference results would be a key to

future success – especially when the validation

tests are performed several decades later after

retrieval from an archive.

• [Minor] Update the “Required” fields of the

manifest. The manifest identified some fields as

required (i.e. mandatory information) but the

current version is not easily adapted to the FMI

standard. For example, a field for

“TargetTool_Name” is required while one benefit

of the FMI standard is to be tool independent.

Nevertheless, this field is relevant if some

dedicated tests were performed in the future

targeting a specific tool. This information could

be maintained as a reference (although not

“required”).

• [Minor] Harmonize hierarchy and naming

convention. Both “snake_case” and “camelCase”

are used in the current LOTAR manifest sample.

Some attributes repeat words in their names. This

redundancy could be avoided by employing an

additional hierarchical layer. This change is

necessary to make the manifest more “attractive”

for users and to remove sources of errors by using

a formal naming convention.

• [Minor] Investigate how to add additional

metadata to the manifest. It is expected that

companies will need to define their own specific

metadata that they will need to store within the

manifest. This could be achieved in several

different ways – e.g. by adding new attributes to

existing tags or by defining new dedicated tags

(for example, an “extra” tag?). This

recommendation would be easy to implement.

4.2 Recommendations on used standards

The LOTAR MBSE workgroup remains confident that

FMI and SSP standards provide a solid basis for the

Part 520 standard. This makes the following constructive

criticism even more relevant, as any improvement on

these standards and/or associated tool implementations

would also benefit the Part 520 indirectly. The criticality

tags are also used here.

• [Major] Provide user entries for relevant metadata

fields. When compiling an FMU or SSP, many of

the “modelDescription” or “SystemStructure”

fields are not defined, and the user is not provided

with the choice to specify them. A simple

example is the author field – that can be reached

using PyFMI by “model.get_author()”, where

“model” represents the loaded FMU. For LOTAR

purposes, the author’s name is highly relevant, so

are many other missing fields. It would be

beneficial for the tool vendors to provide support

for the missing fields.

• [Major] Improve support of SSP. While the FMI

standard is highly supported by many tool

vendors, the SSP standard lacks application

support – only a few tools include the option.

Several use cases (Thomas 2015) would benefit

from wider SSP deployment. Long time archiving

and retrieval of structured system models would

offer additional options for the archivist.

• [Minor] Add a documentation bridge. Modelica is

seen by the LOTAR MBSE workgroup as one of

the main languages for model development. The

Modelica specification includes a documentation-

annotation that enables embedding the model

description and experimental frame. Nevertheless,

the effort the model developer expends when

creating a Modelica model is lost when exporting

the model as an FMU or SSP. The MoSSEC or

MIC information would be extremely valuable. A

path to explore would be the recommended

approach to “compile” the documentation as

HTML – similar to how it is done in libraries – in

the resource folder of the FMU or SSP. Exporting

only the top-level documentation would be

appreciated by the model consumers.

• [Minor] Contribute to the reference results format

specification. As discussed in the self-criticism

section, it is relevant to specify how an FMU or

SSP should be tested to validate its behavior and

verify its integrity. This seems as relevant for the

LOTAR purposes as it should be for the FMI and

SSP standards.

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

54 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

• [Suggestion] Better support of metadata in the

Modelica language. Allow the specification of

many of the metadata (e.g. LOTAR fields) in a

structured form in the Modelica model itself,

maybe by embedding such a manifest. Then the

manifest can be moved automatically from the

source, to the FMU, and parts extracted to the

SSP if needed. This would prevent changing the

FMU after its generation, to add the manifest in

the extra folder.

This section should act as a trigger for discussion or

call for cooperation on these topics. The LOTAR MBSE

workgroup would welcome any further joint actions with

the Modelica Association and its members.

4.3 Further discussion

Several additional points are currently under discussion

in the workgroup. Two are discussed here:

• In which form the model shall be archived? In the

first implementation of the archiving process,

Modelon included the Modelica source code as a

resource in the FMU. This brings advantages for a

future use of the model after retrieval. Nevertheless,

what format of the model shall be stored in the

archive is yet to be defined as this shall be generic to

any software and prevent model corruption in the

future.

• How can we ensure the framework to simulate the

model will be available in the future? There are

many dependencies for a model simulation: a

compatible operating system, python packages, etc.

Current discussions involve, for example, a

“dynamic” archiving platform – that could perform

regression tests of the stored at each dependency

update – or to store an image/container of the

dependencies together with the model. There seems

to be a trade-of between heavy platform

implementation and heavy archive files.

Validation and Verification of the LOTAR is another

highly relevant point, which could have its own paper.

5 Summary and conclusions
The LOTAR MBSE workgroup aims at standardizing the

long-term usage of models – driven by the aerospace

industry’s needs. The archiving process would also be

applicable and valuable to other industries. A proper

archiving and retrieval process would ensure model

capitalization and reusability. Modelica is seen as one of

the main languages for future model development, and

the FMI and SSP standards provide a solid foundation

for the EN/NAS 9300 Part 520 standard.

A prototype implementation of the process described

in the Part 520 was conducted in both a tool agnostic

way and within Modelon Impact – as a tool-vendor proof

of concept. This work proved the suitability of the

process and confirmed the LOTAR MBSE workgroup’s

recommendation of relying on FMI and SSP standards.

This work also enabled identifying the next lines of

actions on both the development of the Part 520 and the

standards used – especially FMI and SSP.

Recommendations addressed in this paper are from the

perspective of any general user who may need to

replicate this work. The LOTAR MBSE workgroup

would welcome any further joint actions on the identified

items.

References

Coïc C., Andreasson J., Pitchaikani A., Åkesson J. and

Sattenapalli H., (2020). “Collaborative Development and

Simulation of an Aircraft Hydraulic Actuator Model”.

Presentation: Asian Modelica Conference, Tokyo, Japan.

Coïc C., Hübel M. and Thorade M., (2020). “Enhanced Steady-

State in Modelon Jet Propulsion Library, an Enabler for

Industrial Design Workflows”. Proceedings of the American

Modelica Conference 2020, Boulder, Colorado, USA,

March 23-25, 2020.

INCOSE Technical Operations, (2007). Systems Engineering

Vision 2020, Version 2.03. International Council on Systems

Engineering, San Diego, CA, USA. Technical Publication:

INCOSE-TP-2004-004-02.

LOTAR International, (2021). “LOTAR Standard, Overview

on Parts”. URL: https://lotar-international.org/lotar-standard/

Modelon, 2020. Modelon Impact “Lowering barriers and

bridging gaps”. URL: https://www.modelon.com/modelon-

impact-introduction/

Modelica Association, (2021). Modelica – A Unified

ObjectOriented Language for Systems Modeling. Language

Specification Version 3.5, Revision 1. Tech. rep. Linköping:

Modelica Association. URL:

https://www.modelica.org/documents/MLS.pdf [MOD21]

Modelica Association, (2020). Functional Mock-up

Interface, Standard specification, Version 2.02. URL:
https://github.com/modelica/fmi-

standard/releases/download/v2.0.2/FMI-Specification-

2.0.2.pdf

MoSSEC, (2021). “Modelling and Simulation information in a

collaborative Systems Engineering Context, Developer’s

Overview”. Data Standard: ISO 10303-243. URL:

http://www.mossec.org/

PyFMI, (2020). “Python package for loading and interacting

with Functional Mock-Up Units”, Branch Version 2.6.x.

URL: https://github.com/modelon-community/PyFMI
Thomas, E., Thomas, O., Bianconi, R., Crespo, M. and

Daumas J., (2015). “Towards Enhanced Process and Tools

for Aircraft Systems Assessments during very Early Design

Phase”. Proceedings of the 11th International Modelica

Conference, Versailles, France.

Nallon J. & Williams M., (2020). “MBSE Tools Database

Update, and Integrate Models with Tools”. Presentation:

INCOSE International Workshop, TIMLM Working Group,

Torrance, CA, USA. URL:

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=

mbse:incose_mbse_iw_2020:iw2020_timlm_mbseworkshop

.pdf

W3C, (2006). “Extensible Markup Language (XML)”, Version

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

55

1.1 (Second Edition), World Wide Web Data Standard.

URL: https://www.w3.org/TR/2006/REC-xml11-20060816/

Williams M., Mendo J. and Nallon J., (2021). “Where is your

Roadmap for implementing MBSE Data Standards?”

Presentation: INCOSE International Workshop, TIMLM

Working Group, Torrance, CA, USA. URL:

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=

mbse:incose_mbse_iw_2021:iw2021_mbse-

standards_timlm.pdf

Python Software Foundation, (2021). “Working with zip

archives”. The Python Standard Library, Data Compression

and Archiving, documentation library. URL:

https://docs.python.org/3/library/zipfile.html

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

56 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

eFMI: An open standard for
physical models in embedded software

Oliver Lenord1 Martin Otter2 Christoff Bürger3 Michael Hussmann4
Pierre Le Bihan5 Jörg Niere4 Andreas Pfeiffer2 Robert Reicherdt6 Kai Werther7

1Robert Bosch GmbH, Germany, 2DLR-SR, Germany,
3Dassault Systèmes AB, Sweden, 4dSPACE GmbH, Germany, 5Dassault Systèmes SE, France,

6PikeTec GmbH, Germany, 7ETAS GmbH, Germany

Abstract
This paper summarizes the final research results of the
ITEA3 project EMPHYSIS (embedded systems with
physical models in the production code software). Its core
achievement is the new open eFMI Standard enabling
automated workflows from high-level mathematical
models of physical systems (referred to as physical
models) to automotive compliant embedded software.
eFMI (FMI for embedded systems) defines a container
architecture for model exchange and testing. Multiple
representations from an intermediate representation of
sampled algorithms (GALEC) to production and binary
code for specific embedded targets are maintained in a
traceable workspace. The successful integration of the
developed eFMI tooling is demonstrated by a
comprehensive open source Modelica test cases library
and industrial demonstrators. The readiness of the
proposed approach is proven by compliance checks
according to common automotive code quality standards
like MISRA C:2012 and a performance benchmark in
terms of runtime and resource demand in comparison with
state-of-the-art hand coded solutions.

Keywords: embedded software, model-based
development, code generation, model exchange,
Modelica, FMI, eFMI, GALEC

1 Introduction

1.1 Motivation
Software has become an innovation driver not only but
especially in the automotive industry. This has been
leading to new challenges in terms of maintainability of
the growing software stack for a growing number of ECUs
(Electronic Control Units) in vehicles.

In the field of application software, it is the growing
variability of the vehicles, increasingly demanding
regulations and new powertrain solutions that add to the
complexity of control and diagnosis functions. Original
equipment manufacturers (OEM) as well as Tier 1
suppliers are aiming to cope with these demands by using

mathematical models of physical systems (referred to as
physical models) as part of the control software. For
example, in Zimmermann et al. (2015) physical models
are considered essential to manage the growing
complexity of Diesel engine control as map-based
approaches lead to an overwhelming calibration effort to
satisfy the requirements of real driving emissions (RDE).
Englert et al. (2019) present a framework for embedded
non-linear model predictive controllers (NMPC) as a very
generic approach of integrating physical models into a
controller. With the increased computational power of
modern multi-core ECUs, like the Bosch MDG1 (Rüger et
al. 2014), these advanced approaches become relevant for
industrial applications. In addition, e.g. Bosch is holding
patents on methods for real-time applications of physical
models (e.g. Wagner et al. 2009) stressing the fact that
managing this type of applications is a differentiating
selling proposition.

Model-based development (MBD) is an established
paradigm for the development of control software for
embedded targets deemed to ease these challenges. In
practice the commonly used signal flow-oriented models,
restricted to a predefined set of blocks, do not scale to the
need. The models are rather a model of the software, than
a model of the physical system with poor means to reflect
variants of the underlying physical structure. The rather
low-level description requires a high level of expertise of
the modeler far beyond the physical behavior of the
system including floating-point arithmetic, embedded
software regulations, e.g. MISRA C:2012 rules (MISRA
2013-03) and target architectures, e.g. the AUTomotive
Open System Architecture (AUTOSAR) (AUTOSAR
Consortium 2021).

Despite valuable pioneering work on FMI (Functional
Mock-up Interface) (Modelica Association 2021-04) in
AUTOSAR, discussed in the following section, there is
today no simulation solution supporting the export of
physical models suitable for direct integration into
controls, and no standard of any kind supporting efficient
generation and integration processes from physical
models to embedded software.

The goal of FMI for embedded systems (eFMI) is to
overcome the known limitations of FMI, to enable new
ways of model-based development of embedded software

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

57

functions for arbitrary targets and architectures, based on
advanced physical models of the underlying system.

1.2 State of the art of FMI in AUTOSAR
In a case study by Bertsch et al. (2015) it has been
demonstrated that it is possible to wrap the C code from a
Source Code FMU (Functional Mock-up Unit), that has
been generated from a Modelica (Modelica Association
2021-02) physical model, as AUTOSAR ASW-C
(Application Software Component) and to execute it on a
Bosch ECU. This study also revealed the conceptual
weaknesses of FMI when it comes to embedded
automotive software and safety critical applications.

The probably most obvious weakness roots in the
purposeful design of FMI being a standardized interface
without being directive about the implementation of
interface functions, except of which entry level files to
provide and which headers to include. In contrast to that,
the widely accepted rules of the Motor Industry Software
Reliability Association (MISRA) are very specific about
how a function is to be implemented in the C language to
avoid ambiguities and runtime exceptions, while ensuring
readability of the code. The goals of maximum flexibility
for the exporting tool to produce any kind of simulation
code to be wrapped into a black box running on a personal
computer (PC) vs. high quality embedded production code
being subject to thorough code reviews before being
deployed to a dedicated target according to a certified
procedure are contradicting. FMI is not designed to
provide production code and binaries that are ready to
satisfy the requirements of automotive embedded software
quality gates. There are no mechanisms for the traceability
of the code and no attributes about the used compilers and
compiler settings to ensure the repeatability of the build
process of a binary targeting a dedicated application in a
specific runtime environment with the type of
microcontroller already defined.

The prototypical tooling developed by Bertsch et al.
(2015) enhanced by Neudorfer et al. (2017) is focusing on
the technical aspect of translating a Source Code FMU
into an AUTOAR SW-C. The aspects of which meta data
has to be provided to support an end-to-end tool chain
from the original model to the deployed binary is not
discussed and remains as an unresolved issue of the
prototypical work not intended for productive usage.

In terms of code quality Bertsch et al. (2015) state that
none of the inspected source codes of the evaluated tools
fulfilled their requirements and that the “C-code from
many commercial tools is not suitable to run on an ECU
due to its size and complexity since it was not intended to
run on an embedded system”.

The tooling presented by Bertsch et al. (2015) translates
in a first step the FMI modelDescription.xml file into
a corresponding AUTOSAR .arxml file, based on a
number of design decisions made on the desired
representation as SW-C. The second step involves the

translation of the C code of the Source Code FMU into C
code that can be processed by build tools from Bosch for
engine control software. After inspection of the source
code generated by three different Modelica tools certain
patterns were identified, such as: moving declarations to
public or private headers, exclusion of functions from,
e.g., stdio.h and math.h (ISO/IEC 2018-06) which are
not supported on embedded devices, taking care of proper
assignment of float values and avoiding implicit type
casts. This process had been automated to a large extent,
but made assumptions on the structure of the code and was
finally still relying on the expertise of an embedded
software developer to inspect the translated code and to fix
remaining issues before further compilation.

This involved procedure illustrates that, if the generator
of the C code is not giving any guarantees on its code, then
it is very difficult, if not impossible, for the consuming
tool to enforce these afterwards. From a workflow
perspective, it is also highly objectionable when only after
importing and processing of an FMU deficits are revealed
that have to be addressed by the exporting tool.

All these issues are only about just compiling the code;
but to fulfill the requirements of an embedded software the
following aspects regarding the behavior and resource
demand of the code have to be addressed as well:

• Limited data memory and code memory.

• Limited computation power of the target.

• Limitations on supported data types: 32-bit vs. 64-bit
floating-point precision, fixed-point arithmetic etc.

• Static memory allocation only.

• Guaranteed exception freeness: Programs never fail
due, e.g., unavailable/busy external devices, writing
read-only memory, accessing multi-dimensions out-
of-bounds, running out of stack memory etc.

• Guaranteed execution time within the limits of the
available target system resources and the minimal
sampling period required for correct physical
behavior.

• Proper error handling: Handling of Not a Number
(NaN) (IEEE 2019-07), mathematical functions that
are undefined for some arguments, linear systems
without unique solution etc.

• In bound guarantees of signals.

Simulation code generated by today’s FMU generating
tools is optimized for runtime performance on a PC. The
memory required by the FMU is allocated dynamically.
The sizes of the data and program code are not considered
limiting factors and therefore not minimized. This renders
existing FMI solutions unsuited for application in the
embedded domain.

For co-simulation FMUs (CS-FMU) there are no
restrictions for the type of solver being used. For real-time

eFMI: An open standard for physical models in embedded software

58 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

applications, variable-step-size solvers are not suitable, as
they cannot guarantee the execution time on an equidistant
time grid. Event handling and non-linear algebraic loops
are particularly challenging, since self-evident unbounded
iterative solutions of such cannot be used; instead, such
have to be expressed as upper-bounded iterative
algorithms with execution time guarantees. If this is not
possible, the system is not suited for embedded real-time.

Hence, the consumer of an FMU fully depends on the
modeler and exporting tool to have made appropriate
choices in setting up the model and making the settings for
the solver and the compiler to meet the basic runtime
requirements. An FMU by itself gives no guarantees
further processing can rely upon.

Furthermore, FMUs are expected to run in a simulation
or co-simulation environment that provides exception
handling mechanisms. Messages may be dumped into a
log file in case of exceeded value ranges based on the
assert statements in the code for the simulation engineers
to verify that they can trust the results. In safety critical
applications, there is no second attempt. The software
must guarantee exception free execution and a predictable
behavior under all circumstances. FMI does not provide
any means to cope with this requirement.

Despite the fact that one can find ways to translate the
C code from a Source Code FMU to compile and being
executed on an embedded target, one has to state that FMI
has no means to guarantee that the source code fulfills
basic prerequisites for embedded real-time execution, nor
does it provide a rich enough model description to support
an end-to-end build chain in terms of traceability,
transparency and repeatability of the process.

1.3 eFMI vs. FMI
eFMI helps to overcome the shortcomings of FMI,
explained in Section 1.2, for the development of
embedded software based on physical models. eFMI is not
just an extension of FMI; it is an orthogonal, new standard

that is maintained and further developed in a separate
Modelica Association Project. Entirely new concepts are
introduced, but at the same time, a high degree of
consistency with FMI has been achieved. Whereas FMUs
are ready-made “consumer” products for exchanging
simulation models, an FMU for embedded systems
(eFMU) is a shared development workspace for step-wise,
semi- and full-automatized refinement from a high-level
intermediate representation of a sampled algorithm (in the
GALEC language, see Section 2.4) to an implementation
of the algorithm for an embedded target. The development
of a single eFMU is shared between varying eFMI tools
and developers. Throughout its development, the eFMU
very likely is in intermediate stages not suited for
simulation. The developed final solution can be wrapped
by a respective FMI interface such that it behaves like a
regular FMU. Doing so, the outer FMI shell allows any
FMI supporting tool to load and execute the eFMU as CS-
FMU, accessing the actual production code through
appropriate wrappers. This enables verification and
validation (V&V) of the target code in a Software-in-the-
Loop (SiL) environment without restricting the target code
to satisfy a static C interface.

1.4 eFMI Workflow
Key differentiator of the proposed eFMI workflow (see
Figure 1) is a multistep approach reflected by different
types of so-called model representations that are stored in
containers within the same eFMU. Each model
representation addresses a different aspect and refinement
step of a physical model to embedded software in the
development process. The intention is to provide an
automatable workflow, where the model representations
can be generated, with tool-supported refinement along
the “Transform” boxes in Figure 1.

The Algorithm Code model representation (see Section
2.4) provides a target independent, intermediate
representation for upper-bounded algorithmic

Figure 1. eFMI workflow with its different model representations (red boxes).

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Model
(AMEsim, Modelica, syq, ...)

Algorithm Code
eFMU

(𝒚ାଵ,𝒙ାଵሻ ∶ൌ 𝒇ாௌ 𝒙,𝒖

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

Transform

• inputs + outputs
• integrator
• interfaces of services functions

• generic or specific target configuration
(access of variables, services functions, ...)

• extract prod. C-code
• link service functions
• compile + integrate

ECU, Realtime-PC,
AUTOSAR (Adaptive), ...

Simulations of
Model

Production Code
eFMU

production C/C++ Code +
FMI for Co-Sim. C-wrapper

Behavioral Model
eFMU

Reference results: (𝑡 ,𝒖 ,𝒚ሻ

csv-files + XML manifest

GALEC-code + XML manifest C/C++ code + XML manifest object-code +
XML manifest

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

59

computations. It serves as code generation target for
(physics-based) modeling tools, allowing them to
concentrate on the general concern of finding a sequence
of computations that satisfies real-time constraints, i.e., is
algorithmically well-defined with an upper-bound of
computational steps.

Such algorithmic solutions are further refined to actual
implementation code that is best suited for a specific target
environment in terms of performance, memory
consumption, software architecture and applicable rules
and regulations by Production Code model
representations (see Section 2.5). For a single Algorithm
Code container, several Production Code containers can
be given to address varying target platforms, e.g.,
alternative chip sets or customer specific code guidelines.

For each production code, arbitrarily many compiled
binaries, tailored for embedded system integration within
a specific ECU/target platform, can be included via Binary
Code model representations (see Section 2.6). Besides
defining a target specific build and integration, Binary
Code containers can also protect intellectual property by
only providing the binaries as such without sources.

Finally, validation and verification (V&V) is covered
by means of Behavioral Model model representations (see
Section 2.3), which allow to store reference results for
later back-to-back testing of other model representations
like Production and Binary Code containers.

Starting from an Algorithm Code container, there is no
further stringent order in which traceable containers must
be provided or updated throughout eFMU development
iterations. This enables full flexibility in the software
development process supporting all kinds of model and
software sharing schemes for OEMs and suppliers, with
eFMI as open standard giving maximum freedom in the
choice of tools. An eFMU is a standardized workspace for
collaborative development of embedded solutions from
(physical) models.

1.5 Structure of the paper
This paper gives a coarse introduction to the basic
concepts of the eFMI Standard (Section 2) and highlights
the achieved goals in terms of readiness and applicability
to industrial grade problems (Sections 3, 4), before
summarizing the future work and the conclusions
(Sections 5, 6).

2 eFMI Standard
The following description of the eFMI Standard is
according to version 1.0.0-alpha.4 (EMPHYSIS 2021-07)
published in February 2021; on the same web page an
example eFMU can be downloaded.

2.1 Mathematical description of eFMI
As described in Section 2.6, the starting point of eFMI
workflows are typically physical models for some

independent modeling and simulation environment, e.g., a
Modelica tooling (Modelica Association 2021-02). Such
original models can be described by (unsorted) equations,
algorithms or functions, which have to be transformed to
eFMI Algorithm Code model representations. This
requires a causal, discretized algorithmic solution to be
found for the acausal physics equations – hence the
modeling environment must provide a GALEC code
generation backend (see Section 2.6).

Mathematically, an algorithmic solution can be
described as a sampled input/output block with one
(potentially varying) sample period 𝑇 ൌ 𝑡ାଵ െ 𝑡 for the
whole block. Inputs 𝒖 ൌ 𝒖ሺ𝑡ሻ and previous block
internal states 𝒙 are provided at sample time 𝑡 whereas
outputs 𝒚 ൌ 𝒚ሺ𝑡ሻ and new states 𝒙ାଵare computed in
the block (see Figure 2).

Figure 2. Mathematical description of an algorithmic
solution as supported by eFMI Algorithm Code model

representations and the GALEC language.

All variables of the block have a defined type and all
statements of the block are sorted and explicitly solved for
a particular variable. Functions are provided to execute the
relevant parts of the block, especially to initialize it
(Startup() function) and to perform one step
(DoStep() function).

To find an upper-bounded algorithmic solution for
acausal equation systems is a non-trivial task, with
reasonable solution strategies highly depending on
characteristics of the original modeling language. The
eFMI Standard therefore is not covering, or in any way
restricting on how to find suited solutions; it solely
concentrates on defining how such solutions must look
like (see Section 2.4) to be processable by further eFMI
tooling like production code generators.

2.2 eFMU Container Architecture
The basic file structure of eFMUs is:

 /eFMU ; eFMU root directory
 /<directories> ; Model representations
 /schemas ; eFMI XML Schema definitions
 __content.xml ; eFMU content-manifest

The only mandatory file is the eFMU content-manifest
(__content.xml) at the root of the eFMU folder. In
addition, an eFMU includes the XML Schema files
defined by the eFMI Standard (/schemas) to become
self-contained; these XML Schemas restrict the structure
and content of the manifests of the varying eFMI model
representations and thereby enable automatic processing
of eFMUs and their content. All other directory and file
names within an eFMU can be freely chosen by the tools

eFMI: An open standard for physical models in embedded software

60 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

generating and processing the varying eFMI model
representations. The directories containing some model
representation, like an Algorithm Code or Production
Code container, are denoted in the eFMU content-
manifest, which also lists the type of model representation
and other meta information like checksums. Each model
representation further supplies its own manifest according
to its type of representation; manifests of model
representations typically list all files of the representation,
their checksums and other representation specific meta
information, like the in- and outputs of GALEC programs
(Algorithm Code containers) or the compiler settings used
to produce some binary code (Binary Code containers).

The structure of a typical eFMU could look like this:

 /eFMU
 /BehavioralModel
 manifest.xml ; Container manifest
 <other files>
 /AlgorithmCode
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Generic_C_Float32
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Generic_C_Float64
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Autosar_Float32
 manifest.xml ; Container manifest
 <other files>
 /schemas
 __content.xml ; eFMU content-manifest

An eFMU can be packed in different formats.

1. The eFMU root directory is a standard directory in the
file system. This is useful to hold an eFMU in a text-
based version control system, such as git or SVN.

2. The eFMU root directory is zipped with the eFMU-
content and is stored in a zip-file with the extension
.efmu. This is useful to ship or distribute an eFMU.

3. The eFMU root directory is path extra/org.efmi-
standard inside a standard FMU. The path is
defined according to the current FMI-3.0-beta.1 pre-
release of the FMI specification (Modelica
Association 2021-04). With attribute activeFMU
inside the eFMU content-manifest it is defined which
of the Algorithm, Production or Binary Code
representations is used as basis of the FMU. This
package format is useful to ship or distribute an
eFMU for Model/Software/Hardware-in-the-Loop
(MiL/SiL/HiL) simulation by further FMU tooling.

Note, that Algorithm Code, Production Code and Binary
Code representations can optionally store associated
FMUs. For example, Algorithm Code representations can
store a Model-in-the-Loop FMU and Production Code
representations for different targets can store Software-in-

the-Loop FMUs. To execute these FMUs, they must be
extracted from the respective model representation –
manually or by a tool. If an eFMU is organized according
to package format (3), a selected FMU from a model
representation has to be copied to the root level so that the
eFMU behaves as an ordinary FMU and can be simulated
by any FMI tool.

2.3 Behavioral Model Representation
The Behavioral Model representation of eFMI is designed
to describe functional and behavioral aspects of the
original (physical) model/system/controller with the goal
of enabling the validation of other generated model
representations within the same eFMU. The central
question is how to define and include reference behavior
for varying model representations and their respective
software? As an example, one can think about a controller
model in Modelica represented by ordinary or differential
algebraic equation systems that shall be exported as
eFMU. Reference result data may be important for several
use case scenarios, e.g. simulation runs of the controller
model in a Modelica tool:

• with a complex variable step-size integration
algorithm to define a highly accurate reference
solution,

• with a fixed step-size algorithm like the Explicit
Euler method and a fixed step-size to get a reference
solution of the discretized sampled data system,

• in different model setups like open and/or closed
loop scenarios to cover a broad range of possible
input value combinations,

• in other test scenarios to test specific
features/requirements of the controller – like unit
tests in software development – and

• all the tests may be run using the floating-point
precision typically used in offline simulations of 64-
bit or/and the more common precision for embedded
systems of 32-bit.

To structure this variety of possible reference data a rather
simple format with only two hierarchies (scenarios and
scenario parts) has been designed: An eFMI Behavioral
Model representation consists of scenario parts grouped in
one or more use case scenarios. Each scenario part
represents a single behavioral aspect of the original model
given by different time dependent input/output data in a
comma-separated values (CSV) file, e.g. a closed loop
scenario with an Explicit Euler discretization of the
controller model. Absolute and relative error tolerances or
time dependent lower and upper bounds can be defined for
each variable in the Behavioral Model manifest, to
account for deviations resulting from discretization
methods, implementation data types and floating-point
imprecision.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

61

Since variable names as well as data types might differ
between the different eFMI representations within the
same eFMU (e.g., different production code variants
might map GALEC variables to different C identifiers to
satisfy naming conventions of varying target
environments), every variable of a Behavioral Model
container is linked with its corresponding variable of the
Algorithm Code container such that reference result data
can be provided easily and fully automatic for each model
representation. This means for example, that later added
Production Code containers can be automatically tested
using existing Behavioral Model containers thanks to the
trace-links between variables of the manifests of
Behavioral Model and Production Code containers to the
manifest of the Algorithm Code container.

A typical validation approach consists of the execution
of compiled eFMI production or binary code with input
data from the CSV files. These simulation results are
compared with the expected output data of the Behavioral
Model representation according to the given error
tolerances or bounds to validate the contained eFMI
representations against the “behavior” of the source of the
generated eFMU. This approach enables tools (such as
testing tools) to perform a fully automatic validation of
other eFMI representations (Algorithm Code, Production
Code and Binary Code representations) within an eFMU
w.r.t. behavioral and functional equivalence to the
physical model using a back-to-back testing approach.

2.4 Algorithm Code Model Representation
All containers in an eFMU are related to the Algorithm
Code container of which exists exactly one in each eFMU.
It provides a high-level intermediate representation of a
sampled algorithm by means of a GALEC block and a
description of the block’s interface by means of an XML
manifest. The manifest is used by other containers to trace
their dependencies on the block and avoid processing
GALEC programs if just in need of a description of the
block interface. The GALEC block can define any kind of
finite sampled computation that is subject to embedded
integration (controller, virtual sensor etc.). In terms of the
Modelica language, a GALEC block is a causal solution
for the sampled system defined by a clocked partition.

GALEC is a new imperative programming language
part of the eFMI Standard. Its name is an abbreviation for
guarded algorithmic language for embedded control. It is
an intermediate representation between the (physics)
modeling and embedded programming domains.

GALEC Characteristics: The language characteristics
C1-11 of GALEC, making it a suitable intermediate
representation between modeling and embedded software,
are:

(C1) Target independence: Arithmetic and algorithms
are on an ideal machine, with built-in functions for
abstract handling of target dependent operations like

retrieving the fraction part of a real or checking if such is
Not a Number (NaN) (IEEE 2019-07).

(C2) Explicit language semantics: No implicit casts
between integer and real, no hidden side effects and no
default arguments; simple name space without shadowing,
overloading or polymorphic functions. These restrictions
are kind of language-enforced MISRA C:2012 rules.

(C3) Multi-dimensional arithmetic: Support for
vectors, matrices and higher dimensions with respective
scalar and matrix multiplication, addition etc. Production
code generators can leverage on (C4) to map multi-
dimensional operations to efficient implementations, for
example Streaming SIMD Extensions 4 (SSE4) machine
instructions (Intel Corporation 2021-06).

(C4) Powerful static evaluation: GALEC expressions
are separated into three kinds: (1) declarative sizes, (2)
algorithmic indexing and (3) algorithmic runtime
computations, with the former two being subject to static
evaluation for mandatory well-formedness analyses.
Algorithmic indexing hereby includes for-loop iterators
and static evaluation of their ranges. Indexing expressions
can depend on loop iterators but must not refer to any other
variables for their value. Otherwise, statically evaluated
expressions can be arbitrary complex, including calls of
built-in functions.

(C5) Upper-bounded: GALEC programs must be non-
recursive; the only iteration construct are for-loops,
which according to (C4) can be unrolled. Thus, every
program can be unfolded to an iteration-free sequence of
conditional assignments defining an upper bound of
algorithmic steps. This characteristic enables worst time
execution analyses and advanced optimizations.

(C6) Computational-safe: The static unfolding-
characteristics of (C4) and (C5) are used to guarantee all
indexing is within bounds. Production code generators can
avoid dynamic memory allocation, optimize the memory
mapping and eventually ensure a target’s resources are
always sufficient for exception-free program execution.

(C7) Control-flow integrated error signal handling:
Language constructs to signal errors and handle signaled
errors using ordinary control-flow conditions. All
potentially signaled errors must be handled or explicitly
exposed to the runtime environment; they cannot slip
through unnoticed. Automatic error signal propagation
enables delayed error handling, avoiding the need for
immediate checks of each operation that might fail.

(C8) Safe floating-point numerics: Guaranteed quiet
NaN and infinity propagation according to IEEE 754-2019
(IEEE 2019-07), with relational operations signaling pre-
defined errors when called with NaN arguments. Such
integration with the error signaling concept of (C7) means,
that NaNs can never slip through unnoticed.

(C9) Safe built-in functions: Rich set of safe built-in
functions for casting, numeric limits, rounding,
trigonometric operations, 1/2/3D interpolation, solving
systems of linear equations etc. If arguments are out of

eFMI: An open standard for physical models in embedded software

62 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

range, the error signaling of (C7) is used to denote so and
returned values are precisely defined (typically NaN or
infinity) to avoid undefined, implementation dependent,
behavior; in line with (C8), NaN arguments are preferably
silently propagated.

(C10) Call-by-value semantic with well-defined side
effects: Function arguments are passed by value; and,
although an imperative language, GALEC has well-
defined side-effect rules that guarantee (1) each
expression is free of competing side effects and (2) which
statements are mutual independent. Production code
generators can leverage on these characteristics for
automatic, lock-free program parallelization and to avoid
unnecessary copying of multi-dimensional values.

(C11) Block life-cycle with well-defined layers of
modification: GALEC supports a layered modification
concept distinguishing constants from semi-constant
tunable parameters from dependent parameters,
parameters from block in- and outputs and such from inner
states. Only tunable parameters and inputs can be directly
changed by the runtime environment, but only in-between
two sampling steps, never while sampling. Whenever
tunable parameters are changed, dependent parameters
must be recomputed based on the new tunable parameters
only (Recalibrate() interface function); dependencies
on states, in- or outputs are forbidden. In addition,
initialization is clearly encapsulated (Startup()
interface function) with mandatory data-flow analyses
guaranteeing every block variable is assigned an initial
value based only on literal values or already initialized
variables. Initialization code can contain arbitrary
complex algorithms; its clear encapsulation enables static
evaluation. The actual sampling code, which computes
new outputs for given inputs considering the current block
state, is encapsulated in the DoStep() interface function;
its implementation must not change inputs nor parameters.
All block interface functions automatically saturate
variables with declared ranges (ranged variables) at the
very beginning and ending of their execution. This
guarantees, for example, that inputs and outputs are
always within their ranges when DoStep() starts and
terminates, yielding the behavior of a saturated controller.
Not only block interface variables are saturated, but also
inner states if respectively ranged, or ranged parameters
when recalibrating. The whole block life cycle is formally
defined via a state machine.

For details, readers are encouraged to consult the public
alpha draft of the eFMI specification (EMPHYSIS 2021-
07).

GALEC Example: To give at least a glimpse on how
GALEC programs look like, particularly error handling, a
short artificial example is given in the following. A typical
GALEC block looks like the following ([[...]] denotes
removed code snippets):

block Controller
 // Block interface variables:

 input Real u[10] (min = -1.5, max = 1.5);
 output Real y[20] (min = -1.0, max = 1.0);
 parameter Real tP; // tunable parameter
 parameter Real tV[20];// tunable parameter

protected
 // Internal block variables and functions:
 parameter Real dP; // dependent parameter
 Real M1[20,10] // state
 (min = -1.0, max = 1.0);
 Real M2[10,20] // state
 (min = -1.0, max = 1.0);
 function checked_transpose
 signals UNDERFLOW, NAN [[...]];
 function sum [[...]];

public
 // Block interface functions:
 method Recalibrate
 signals INVALID_ARGUMENT [[...]];
 method Startup [[...]];
 method DoStep
 signals NO_SOLUTION_FOUND [[...]];
end Controller;

First, the block interface variables that can be set (inputs
and tunable parameters) and read (outputs) by the runtime
environment are declared. Like any variable, such can be
multi-dimensions and ranged. E.g., y is an output vector
of size 20, with each of its elements in the range [-1.0, 1.0].
Then the section with the internal block variables and
functions follows, first the dependent parameters, then the
states and finally functions. Note, that any errors a
function can signal to callees are part of its interface.
checked_transpose for example can signal
UNDERFLOW and NAN error signals. Finally, the section
with the block interface functions follows. These are
Recalibrate(), Startup() and DoStep(). Note,
that in the example, a sampling step can signal that no
solution has been found via the NO_SOLUTION_FOUND
signal; the signal is used in the example to denote that a
fallback controller has been used due to an unexpected
error. The INVALID_ARGUMENT of the Recalibrate()
function is used to denote to the runtime environment that
given new tunable parameters are invalid and another
recalibration is required. Of course, these error signals are
just examples; the interface functions of other blocks may
signal different, or no errors at all.

Assume checked_transpose is defined as follows:

function checked_transpose
 signals UNDERFLOW, NAN;
 input Real In[:, :];
 output Real Out[size(In, 2), size(In, 1)];
algorithm
 for i in 1 : size(I, 1) loop
 for j in 1 : size(I, 2) loop
 Out[j, i] := In[i, j];
 // Signals NAN if any argument is NAN:

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

63

 if absolute(In[i, j]) <
 epsReal() * self.dP
 then
 signal UNDERFLOW;
 end if;
 end for;
 end for;
end checked_transpose;

Its in- and output are any matrices of reversed
dimensionality. If used in a context where the output is not
an 𝑛 ൈ 𝑚 matrix for an 𝑚 ൈ 𝑛 input, static dimensionality
analyses will fail with an error (cf. (C6)). The for-loop
uses the matrix dimensions to traverse all elements; it
computes the transpose of In in Out. Thereby every
element is checked to be non-zero around an epsilon based
on the target machine’s minimal precision (epsReal()
built-in function) and the block’s dependent parameter dP;
the latter is accessed directly via self.dP. If the check
fails, UNDERFLOW is signaled. The < check itself will
signal NAN if any of its arguments is NaN. This behavior
is guaranteed by GALEC (cf. (C8)). Since neither of both
signals is handled within checked_transpose, both
must be exposed to callees as denoted in the function’s
interface (the signals UNDERFLOW, NAN; following
the function name).

Assume the sampling function is:

method DoStep
 signals NO_SOLUTION_FOUND;
algorithm
 self.M1 := sum(self.u) /
 real(size(self.u, 1)) * self.M1;
 self.y := solveLinearEquations(
 self.dP * self.M1 * self.M2,
 self.tV);
 self.M2 := checked_transpose(self.M1);
 // Catch any error signals
 // or NaN/∞ in self.y:
 if signal or not(allFinite(self.y)) then
 [[...fallback controller code...]]
 // Expose use of fallback controller:
 signal NO_SOLUTION_FOUND;
 end if;
end DoStep;

At the very end of all computations, a simple conditional
control-flow checks for any kind of errors, and in case of
any error, uses some fallback controller and signals its
usage by exposing the NO_SOLUTION_FOUND signal to the
runtime environment. This delayed error handling is
achieved by the conditional:

 if signal or not(allFinite(self.y))

The if signal construct can be used to check for any,
only specific or any except certain error signals (if
signal, if signal in E1, E2, …, En and if
signal not in E1, E2, …,En respectively). The body
of the check is executed if any of the checked signals was

set; if so, the signals are automatically unset. In the
example’s case, all error signals are handled. The or
condition is optional; it is used in the example to check if
any value of the block’s output vector y is NaN or +/-∞
via the allFinite built-in function. Error signal checks
are ordinary control-flow conditionals and can be
combined with any other if, elseif and else
conditioned branches. In the example, errors might be
signaled by the checked_transpose call or the
solveLinearEquations call. The latter built-in
function fails with a predefined error if the linear equation
system Ax = b cannot be solved, with A being its first
argument, b the second and x its result. Note, that in the
example, the first argument is computed using multi-
dimensional arithmetics: the scalar dependent parameter
dP is multiplied to the 20 ൈ 10 matrix M1, the resulting
20 ൈ 10 matrix in turn is multiplied to the 10 ൈ 20 matrix
M2 yielding a quadratic 20 ൈ 20 A matrix as required by
solveLinearEquations. Finally, DoStep() will
according to (C11) implicitly, at the very end, saturate the
block output y and all elements of matrices M1 and M2 to
be in the range [-1.0, 1.0], as it will implicitly saturate the
block input u to be in range [-1.5, 1.5] at its very beginning
(since these block variables are declared with ranges). Of
course, only non-NaN values can be saturated; NaNs stay.

Tool challenges: A Modelica tool (or any other
modeling tool) targeting GALEC for code generation can
concentrate on the actual computation by leveraging on its
high-level abstractions for multi-dimensional arithmetic,
whereas embedded tooling benefits from the inherent
language guarantees every GALEC program will satisfy
and these are of uttermost importance for embedded
software (like guaranteed termination with upper-bound
of algorithmic steps or exception-freeness). Of course, a
major challenge for Modelica tools is to actually find an
upper-bounded causal solution for a given acausal
equation system; this is a non-trivial task with many
challenges on developing suited integration schemes.
Once developed, respective approaches are however
naturally/conveniently expressed as GALEC programs.

2.5 Production Code Model Representation
The previously described formal representation of a
control algorithm in the GALEC language must be
transformed into executable code for a target machine. For
the generation of this code (production code) there are
many degrees of freedom. In contrast to FMI, eFMI does
not enforce a strict code and API format but allows the
actual Production Code representation of an algorithm to
be adjusted to the context in which the code is to be
integrated into. The container architecture of an eFMU
allows to hold several such Production Code model
representations. An integrator of production code can pick
the one that is suitable for his integration context.

The integration context determines several
characteristics including the available bit size (e.g. integer

eFMI: An open standard for physical models in embedded software

64 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

as well as single or double precision floating-point),
different data interfaces (e.g. functions without arguments
working on global data vs. functions with arguments),
target and compiler specific optimization, as well as
completely different platforms (such as e.g. AUTOSAR
vs. plain C code). The different production codes for the
same GALEC program and their integration contexts are
described in their respective manifest. Each manifest
contains all information to enable an integration of its
production code into a test or execution environment.

We would like to illustrate the impact of the integration
context onto the actual production code by giving
alternative C18 (ISO/IEC 2018-06) code realizations for
the GALEC example of Section 2.4. In the first “software
architecture”, all block variables are realized as global
variables:

 float u[10];
 float y[20];

 float tP;
 float tV[20];
 float dp;
 float M1[20][10];
 float M2[10][20];

 unsigned int DoStep(void)
 {
 unsigned int signals = 0U;
 [[...]]
 return signals; /* NO_SOLUTION_FOUND? */
 }

In the second architecture below, the input-output notion
of the block is mapped to an input/output of the DoStep
function itself and the block state (parameters and inner
states) is encapsulated in a passed struct which must be
allocated by the embedded runtime environment (note that
the block state and output are passed by reference, thus are
writeable by DoStep):

 typedef struct
 {
 unsigned int signals;
 float tP;
 float tV[20];
 float dp;
 float M1[20][10];
 float M2[10][20];
 } BlockState;

 void DoStep(
 BlockState* const state,
 const float const u[10],
 const float y[20])
 {
 state->signals = 0U;
 [[...]]
 }

This scheme allows multiple, independent instances of the
block to be allocated by the runtime environment
(DoStep itself is stateless).

A third architecture could be the AUTOSAR Classic
Platform. Here, variables are accessed using macros
provided by a centrally generated middleware.

Note, that independent of the software architecture,
many characteristics of GALEC (e.g. no need for dynamic
memory allocation, bounded execution time with bounded
loop iterations) are intrinsically also properties of derived
production code.

Other characteristics such as the handling of error
signals or the support of multi-dimensional arithmetic let
more room for production code generating tools to exploit
different solution alternatives and are not straightforward.
For multi-dimensional arithmetic, specific libraries could
be included, and for error signal handling a low-level
mapping using bit masking logic can be performed in the
transformation process from GALEC to production code.

The representation of error signals using bit-masking
logic, for example, allows for fast (simultaneous) check of
several conditions and the efficient setting and resetting of
all concerned signal values. A GALEC snippet like

 if signal in OVERFLOW, NAN then
 y := y + 1.0;
 end if;

could be translated into C18 production code like

 if ((signals & 0x6U) != 0U)
 {
 /* First, reset the checked signals: */
 signals = signals & 0xfffffff9U;
 /* Then, proceed with body: */
 y = y + 1.0F;
 }

with proper encoding of the signal values for OVERFLOW
and NAN in bit positions 2 and 3.

For multi-dimensional arithmetic and interpolation
routines, usually libraries optimized for the target platform
will be used. The production code generator has to make
sure that used data structures of matrices and vectors
match the format of the used libraries. Furthermore, the
production code generator has to take care that the value-
semantic of the GALEC language is preserved by taking
adequate precaution like copying data when using library
algorithms that alter the input data (e.g. when solving
linear systems). Data flow analysis on the GALEC
program enables optimizations that can avoid unneeded
copy operations. Operations that are “simple/atomic” in
GALEC code (like chained arithmetic expressions on
multidimensional elements) may require a “flattening” in
the generated production code and a proper non-trivial
management of intermediate results.

In the example of Section 2.4, the multi-dimensional
arithmetic expression

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

65

self.y := solveLinearEquations(
 self.dP * self.M1 * self.M2,
 self.tV)

for example requires to store the intermediate result of
multiplying the scalar dP with the 20 ൈ 10 matrix M1; the
resulting 20 ൈ 10 matrix has to be multiplied with the 10 ൈ
20 matrix M2, yielding a temporary 20 ൈ 20 matrix which
is passed as A argument to solveLinearEquations.

Other optimizations on the production code generator
side include analysis of value ranges to be able to omit
unnecessary saturation operations for in-, outputs and
states in case it can be determined that the values are
always within bounds.

Another aspect of the production code generation step
is to make the generated production code accessible and
interpretable by consumers of it in subsequent phases like
testing or integrating into an ECU SW. With the large
degrees of freedom in generating production code for a
given GALEC program, the structure of the production
code may vary greatly, but must be described
unambiguously at least in the interface parts and must be
made accessible to anyone who would like to interact with
it. This is made possible by the Production Code manifest,
which precisely describes the code structure and interfaces
(e.g. types, variables, functions) as well as their
association to the corresponding elements of the GALEC
code. This association is important to map information
available only on the GALEC level also to the production
code elements and enable traceability of the multi-step
generation process. For example, stimulation data in a
Behavioral Model container that is mapped to GALEC
block variables can be applied also to their counterparts in
the production code, or attributes of these variables (like
ranges, units) can be associated to their respective
production code counterparts. The required cross-
referencing between different eFMU containers, e.g., to
the manifest of the Algorithm Code container, uses a
unified referencing scheme.

Besides the integration interface, Production Code
manifests give, for example, a precise description of the
target (like target language, target platform, target type,
compiler and linker options) and the code files that make
up the production code. The content of such code files is
described in terms of XML elements and attributes like
Includes, TypeDefs, Macros, Variables and Functions
with FormalParameter and ReturnParameter, including
both a mapping to target specific realizations (e.g. target
types) as well as a “backward” reference to the
corresponding elements in the Algorithm Code container.

With the help of the meta information of Production
Code manifests, other widely used standards like
AUTOSAR and FMI can be supported. In case of an
AUTOSAR platform, the code files are complemented
with specific description files that contain all information
to integrate the production code w.r.t. the used AUTOSAR
standard. In case of the AUTOSAR Classic Platform for

example, such description files are the .arxml files
shipped with the software component.

2.6 Binary Code Model Representation
The eFMI Binary Code model representation contains
binaries that have been derived from a Production Code
representation for a dedicated target architecture. It mainly
serves two purposes:

1. Support the creation (build process) and integration
of binaries on an embedded ECU target.

2. Protect intellectual properties when software
artifacts are shared in a collaborative development
process with multiple parties.

The first purpose is achieved by providing (a) the actual
binaries and (b) the relevant build information like
compilation and linking steps to create these binaries for a
certain target platform. (b) is done in the manifest of the
respective Binary Code container and can also be used to
rebuild the binaries in case they are stale due to later
production code changes, whereas production code cross-
referencing with mandatory checksums enables to
automatically deduce if binaries are stale. Note, that
existing compiler and linker information of production
code manifests can be referenced and further refined by
the manifests of Binary Code containers, enabling a
stepwise specialization and dedication towards a target
platform. Integrators can use the build information to
integrate the binaries on their embedded target ECUs.
Additionally, the manifest can list run time compliance
information such as execution times and further
information relevant for the integration (e.g., a calibration
file describing memory addresses and value ranges for
calibration).

Intellectual property protection is achieved by
removing the source code of the Algorithm Code and
Production Code containers a Binary Code container is
derived from, such that they are left with their manifest
files only. Doing so, binary implementations can be shared
without exposing actual source codes to third parties,
whereas the meta information required for embedded
software integration are still provided by the manifests.

An example for the stepwise derivation of dedicated
binaries is the AEBS demonstrator mentioned in
Section 4.1, where a generic production code is refined
with integration code for the AUTOSAR Adaptive
Platform, from which eventually platform-specific
binaries with accompanying AUTOSAR Adaptive
Platform manifests are generated.

3 eFMI Readiness

3.1 eFMI Tool Support
The EMPHYSIS Consortium (EMPHYSIS 2021) with its
25 partners from Belgium, Canada, France, Germany and

eFMI: An open standard for physical models in embedded software

66 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

Sweden covered the entire value chain from vendors of
modeling and simulation tools, code generators and V&V
tools over embedded software developers and integrators
to automotive Tier 1 suppliers and OEMs. This allowed to
develop the eFMI specification along with reference
implementations that have been thoroughly tested (cf.
Section 3.2) and applied to challenging industrial
applications (cf. Section 4).

By the end of the project in February 2021, already 13
different tools covering the entire eFMI workflow plus the
open source eFMI Compliance Checker were available as
prototypes. Soon after the official release of the eFMI
Standard, these tools are expected to be available on the
market.

3.2 Test Cases and Coverage
A set of dedicated test cases has been extensively used for
testing the eFMI workflow with implementations in
different prototype tools during the EMPHYSIS project.
Most of the test cases are part of the Modelica library
eFMI_TestCases that has recently been published under a
3-Clause BSD license (Modelica Association 2021-07). A
few other test cases are AMEsim models or manually
implemented Algorithm Code containers. For each of the
test cases automatically generated reference results are
provided in respective Behavioral Model containers.

By altogether 48 test cases (including variants) the
following partially very advanced features are covered:
non-linear inverse models, feedback linearization based
controllers, explicit and implicit integration schemes,
event-based re-initialization of continuous states, neural
networks, error handling, implicit saturation and
important built-in functions like solving linear equation
systems as well as 1-D and 2-D interpolation tables. Each
feature is supported by at least one eFMI prototype tool
generating Algorithm Code containers.

All generated Algorithm Code containers have been
successfully imported by the involved production code
tools. For each Algorithm Code container, two production
code variants have been generated: A double precision
floating-point (64-bit) and a single precision floating-
point (32-bit) version, each with respective
implementations of higher-level built-in functions.

A testing tool chain has been set up to automatically
check all generated production code variants, create test
harnesses, compile the code, execute it and compare the
results with the reference results contained in the
Behavioral Model containers of each eFMU with respect
to given error tolerances. In total, 538 execution runs are
necessary to assess all production code variants generated
by the varying combination of tools along the eFMI
workflow. More than 96% of these runs successfully
passed. The unsuccessful tests are all a result of a currently
incomplete initialization mechanism in one test case and
its variations that will be the subject of investigation in
future work. Nevertheless, the very positive test rate

impressively shows the maturity of the tool prototypes and
their compatibility.

3.3 Performance Benchmarks
Performance benchmarks of the generated production
code against state of the art manually implemented C
solutions have been conducted. The target was the Bosch
Multicore ECU MDG1 (Rüger et al. 2014). Six test cases
addressing known difficulties of physical models on ECUs
by using automatic model to code transformations have
been contributed to the eFMI_TestCases library. In the
following, these test cases are denoted by their IDs in
eFMI_TestCases; the addressed challenges, in ascending
order w.r.t. difficulty, are:

• DC motor speed control with PID controller
(M03_B): Minimal footprint of code with saturated
inputs and outputs.

• Air system controller (M15_A): Stiff ODE with
delay operator.

• Drivetrain torque controller based on inverse model
(M04_A): Linear inverse physical model.

• Inverse slider crank (M10_B): Non-linear inverse
physical model (DAE Index-1).

• Reduced order model of a thermal heat transfer
(M16_A): Efficient handling of matrix operations
and large two-dimensional maps.

• Ideal rectifier (M14_A/B): Advanced symbolic
transformation to derive a compact state space form.

All models are tested in an open loop setup using the
recorded data from their Behavioral Model container as
stimulus. The execution time is captured based on the
CPU ticks elapsed, right from the start of calling the model
interface function (e.g. DoStep) until the function
execution is completed (note, that the MDG1 ECU enables
precise and reliable counting of elapsed CPU cycles
without any caching effects). As they have a significant
impact, boundary and error checks are considered.
Boundary checks saturate the in- and outputs to their limit
values. Error handling will check for non-plausible values
like NaN and infinity. More details are provided in
Armugham et al. (2021).

Figure 3. Run time measurements of eFMU production

code with respect to manually coded solutions

73% 79%

43%

110%

67%

93%
101%

0%

20%

40%

60%

80%

100%

120%

eFMU

Manual

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

67

The results of the performance benchmarks are shown in
Figure 3. In 4 out of 6 examples (counting M14_A and
M14_B as one), there is at least one eFMI tool chain setup
that outperforms the manual implementation.

In case of M10_B, the manually derived solution of the
inverse slider crank mechanism did not show a stable
behavior unless two of the state variables were computed
in double precision, while the auto-generated solution
worked fine in single precision due to a more appropriate
state selection.

The eFMU derived from the component-oriented
rectifier model (M14_A) did not lead to the desired most
compact and efficient formulation of the problem but gave
very good results after reformulating the problem in the
Modelica code (M14_B).

The reduced order model (ROM) of a thermal heat
transfer test case (M16_A) has been processed by the tool
chain starting from a manual implementation of the matrix
equation system in GALEC code. As discussed in Agosta,
et al. (2019), rigid scalarization, as applied by today’s
Modelica compilers, leads to an undesired code
expansion. Here is room for improvement of the GALEC
code generating tools. However, as the results show, the
GALEC language is expressive enough to formulate this
type of problem in a way that can be handled by the
production code generating tools in a highly efficient way
(the manually written GALEC code leverages on multi-
dimensional arithmetic to avoid scalarization of the two-
dimensional maps of the test case).

3.4 Code Quality Assessment
For all the test cases in Section 3.1, the code quality of the
generated C code has been assessed by a static code
analysis tool to find runtime issues such as variable
overflows, possible division by zero, array index out of
bounds, etc. or prove their absence. Also, the compliance
of the code with the MISRA C:2012 rules has been
checked. A static analysis is sound, but not necessarily
complete. Hence, checked errors and rule violations are
never overlooked, but may yield false alarms. Manual
inspections resolved many of the false alarms so that in the
402 Production Code containers finally only 1% definite
errors and 9% rule violations were detected. The main part
of rule violations was detected in the implementations of
built-in functions not being in the focus so far. It was
assumed, that target-specific libraries realizing built-in
functions will be used. Since then the tool prototypes have
been further improved aiming for a full coverage of the
MISRA C:2012 rules relevant for generated code.

3.5 Gain in Productivity
Aiming to put the time saving of an automated tool chain
into perspective of the overall development effort of an
embedded function, the working hours for modeling,
implementation in C and validation of the results on the

ECU have been counted for both the eFMI workflow and
the manual development for the six benchmark examples.

The comparison of the results shows that in those cases
based on a component-oriented modeling (M03_B,
M04_A and M10_A) with a high level of reuse, the eFMI
workflow took about 10 times less effort. For M15_A and
M16_A the models have been implemented from scratch
in Modelica based on a known state space formulation, but
still gave a gain by a factor of 2.0 and 1.2 respectively.
This stresses the high business value of eFMI for
embedded software development especially for advanced
physics-based control functions.

4 eFMI Applications

4.1 EMPHYSIS Demonstrators
The developed demonstrators, presented to the ITEA
review board on Feb. 10, 2021 and summarized in the final
demonstrator report of EMPHYSIS (2021-08), illustrate
the application of the eFMI tool chain in concrete and
realistic usage scenarios. These cover the domains vehicle
dynamics, powertrain (internal combustion engine,
battery electric vehicle, hybrid electric vehicle) and
thermal systems and they are applied to advanced non-
linear controllers, model-based diagnosis, virtual sensors
and HiL simulation.

Renault demonstrated in two applications how a neural
network trained by a high-fidelity model can be integrated
as very accurate approximation into the embedded
software running on a car by using the eFMI tool chain.

DLR-SR realized an advanced vertical dynamics
controller and observer for semi-active damping (see
Figure 4) using an inverse non-linear model and a non-
linear Kalman filter running on a small series ECU in real
driving tests. Never before for the institute, C code derived
from a Modelica model has been directly integrated into
the application software as in this case from the generated
eFMI Production Code container.

GIPSA-lab demonstrated how eFMI can be utilized to
derive a parametric Non-linear Model Predictive
Controller (pNMPC) and deploy its production code to a
dSPACE MicroAutoBox II ECU. The developed
controller uses a neural network model to predict the
future behavior of the car like the response of chassis and
wheel to a given road profile and suspension parameter;
this prediction is used for suspension control.

Volvo Cars demonstrated the development of an
embedded virtual sensor for electric machine control
based on a Modelica transmission model. The virtual
sensor provides vehicle state estimation used to mitigate,
e.g., backlash in the electric driveline, and thereby
increase the overall performance of the whole electric
driveline. The transmission model physics comprise non-
linearities and discrete events for handling brake-torques
at low speeds, resulting in a stiff discontinuous system
with mixed equations that has been successfully

eFMI: An open standard for physical models in embedded software

68 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

transformed by Modelica-tooling to a real-time suited
GALEC solution.

Dassault Systèmes demonstrated the generation and
validation of an AUTOSAR Adaptive Platform
component starting from a Modelica model via a seamless,
eFMI-based tool chain, for an advanced emergency
braking (AEBS) controller. The AEBS controller is
modeled in a classic block-diagram style with embedded
physics. The blocks include enabled subsystems and
signal locks, whereas the side effects of such are correctly
handled using Modelica state machines.

4.2 OEM Advisory Board Feedback: Dual-
clutch Transmission Demonstrator

The EMPHYSIS project has been accompanied by the so-
called OEM Advisory Board with representatives from
European and Japanese automotive OEMs. During half-
day workshops, intermediate results of the project have
been presented and discussed. An OEM Advisory Board
usage scenario – a virtual sensor for a dual-clutch
transmission – has been defined and a corresponding
demonstrator implemented and evaluated in close
collaboration between EMPHYSIS partners and the
experts at Mercedes-Benz AG that provided the plant
model of the dual-clutch transmission.

The objective of the virtual sensor is to use the physical
model of a dual-clutch transmission to estimate the torque
of clutches during shifting to avoid, for example, clutch
over-burn and improve the driving-comfort during
transmission shifting. The used transmission model had
been derived from an existing high-fidelity system
simulation model used in the product development of
Mercedes-Benz AG; the most challenging system
properties for a real-time application are therefore
preserved. This includes the stiff dynamics of a hydraulic
piston being tightly coupled with the discontinuous mode
switching behavior of the clutches due to Coulomb
friction, yielding a mixed equation system with undesired

1 The model has been used for real-time simulation by
Mercedes-Benz AG before, but not for developing a software

jittering even at a very small step-size of 0.1 ms with
Explicit Euler.

By using a Rosenbrock method of order 1 (Hairer 1996)
this problem could be drastically relaxed towards a jitter
free behavior at a fixed step-size of 0.1 ms and robust but
slightly jittering at a step-size of 10 ms. Compared to
Explicit Euler, the Rosenbrock method therefore enables
a factor 100 lower sampling rate, enabling the usage of the
dual-clutch transmission model for embedded1 real-time
simulation for the very first time.

According to Mercedes-Benz AG, this result was
considered a big progress towards using eFMI to derive
very accurate plant models for SiL, HiL and embedded
observer applications in a seamless fashion from a high-
fidelity system simulation. It was confirmed that there is
currently no better automated solution available for this
task. As of today, a dedicated real-time model must be
derived and individually fitted for each application
causing significant repeated effort.

The eFMI container architecture with its built-in
traceability and safety mechanisms has been praised by all
members of the OEM Advisory Board as making eFMI a
promising candidate to become the prescribed format for
embedded software deliverables in OEM supplier
collaborations. Especially for advanced functions like
observers, the proposed eFMI workflow was considered
as game changing technology to revolutionize the
embedded software development.

5 Future Work
From the very beginning of the EMPHYSIS project
(Lenord, 2019), also an Equation Code model
representation has been investigated as an optional first
intermediate target representation for acausal equation-
based modeling tools. The motivation is that on the one
hand Algorithm Code model representations can be
generated from such a standardized, universal – but still
simple – equation language, whereas on the other hand
further equation analysis tooling could be integrated to

solution that can be deployed on the embedded device; this
became possible only with eFMI.

Figure 4. High fidelity vehicle model and advanced non-linear semi-active damping controller.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

69

refine equations or derive system characteristics of interest
in the embedded domain like fault-behavior/safety,
numeric stability etc.

To that end, a collaborative working group between
EMPHYSIS partners and the Modelica Language working
group has been formed, with the objective to define a
proposal of a standardized Flat Modelica language as
basis for a more restricted equation code language. A
subset of Modelica keywords and a modified grammar
have been proposed (Modelica Association 2021-06).

By implementing a prototypical Flat Modelica parser
and pretty-printer for a non-Modelica tool within a few
person months, it was demonstrated that other, already
existing equation-based modeling tools (with their
existing model representations, analyses capabilities and
code generation back ends) can be integrated into the
acausal modeling process with comparatively small effort.
This early prototype tooling has been applied to two Bosch
use cases: (1) inversion of a plant model of a drivetrain
and (2) structural analysis of a thermal system to evaluate
the detectability of system faults (EMPHYSIS 2021-08).

The work on a standardized Flat Modelica language
and Equation Code model representation is planned to be
continued and incorporated into a later version of the
eFMI Standard.

6 Conclusions
This paper presented eFMI, a new workflow and open
standard for the automatic generation of embedded
software from physical models. The novelty of eFMI is its
tooling-open, standardized exchange format by means of
a container architecture with various standardized,
traceable model representations for behavioral reference
results, abstract algorithmic solutions, actual production
codes and target-specific binary codes, bridging the gap
between physics-modeling and embedded software.

A broad set of test cases, including technically
challenging models, has been used to rigorously test and
crosscheck the developed prototypical eFMI tools and
their interoperability in the eFMI workflow. Together with
performance benchmarks and code quality assessments, a
high level of maturity has been testified.

The eFMI container architecture, with its various model
representations, has been successfully applied to industrial
usage scenarios. Automotive OEMs and Tier 1 suppliers
confirmed the benefits of the proposed workflow over the
state-of-the-art development processes in terms of
repeatability, traceability and overall gain in productivity
for embedded software development.

The work of EMPHYSIS and the eFMI Standard is
continued in a new Modelica Association Project eFMI
(MAP eFMI), successfully founded by core partners of the
EMPHYSIS project. The work to further develop the
eFMI specification towards a first official release
according to established Modelica Association processes
has already started. Companies and other organizations

are encouraged to join MAP eFMI, leverage on the already
developed tooling and foster the eFMI ecosystem.

Acknowledgements
This work is the result of the European ITEA3 Call2
EMPHYSIS (project number 15016). The work was
funded by the German Federal Ministry of Education and
Research (BMBF, grant numbers 01|S17023(A-H)),
Sweden’s Innovation Agency (VINNOVA, project
number: 2017-05121), the French Directorate General for
Enterprise and the Belgian agency Flanders Innovation &
Entrepreneurship. The authors are responsible for the
content of this publication.

The authors would like to thank the members of the
EMPHYSIS OEM Advisory Board: BMW, Mercedes-
Benz AG, Mazda, Volvo Trucks, JSAE for their use case,
feedback and directions and the numerous persons that
have worked in the EMPHYSIS project on the
development of the eFMI Standard and/or evaluated it
with tool prototypes, benchmarks and test cases as listed
in appendix A of the eFMI specification.

References
Agosta, Giovanni, Emanuele Baldino, Francesco Casella,

Stefano Cherubin, Alberto Leva and Federico Terraneo
(2019). “Towards a High-Performance Modelica Compiler.”
In: Proceedings of the 13th International Modelica
Conference. Modelica Association, pp. 313–320. DOI:
10.3384/ecp19157313.

Armugham, Siva Sankar, Christian Bertsch, Karthikeyan
Ramachandran, Oliver Lenord and Kai Werther (2021).
“eFMI (FMI for embedded systems) in AUTOSAR for Next
Generation Automotive Software Development”. In:
Symposium on International Automotive Technology 2021.
SAE International. Accepted March 31, 2021.

AUTOSAR Consortium (2021). AUTOSAR (AUTomotive Open
System ARchitecture). URL: http://www.autosar.org/.

Bertsch, Christian, Jonathan Neudorfer, Elmar Ahle, Siva
Sankar Arumugham, Karthikeyan Ramachandran and
Andreas Thuy (2015). “FMI for Physical Models on
Automotive Embedded Targets”. In: Proceedings of the 11th
International Modelica Conference. Modelica Association,
pp. 43–50. DOI: 10.3384/ecp1511843.

EMPHYSIS (2021). EMPHYSIS (Embedded systems with
physical models in the production code software). URL:
https://emphysis.github.io/.

EMPHYSIS (2021-07). Functional Mock-Up Interface for
embedded systems (eFMI). Version 1.0.0-alpha.4, Tech. rep.:
EMPHYSIS Consortium. URL:
https://emphysis.github.io/downloads.

EMPHYSIS (2021-08). eFMI for Physics-Based ECU
Controllers. Tech. rep. D7.9, EMPHYSIS project
deliverables: EMPHYSIS Consortium. URL:
https://emphysis.github.io/downloads.

Englert, Tobias, Andreas Völz, Felix Mesmer, Sönke Rhein and
Knut Graichen (2019). “A Software Framework for
Embedded Nonlinear Model Predictive Control Using a
Gradient-Based Augmented Lagrangian Approach

eFMI: An open standard for physical models in embedded software

70 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

(GRAMPC)”. In: Optimization and Engineering 20 (3), pp.
769–809. Springer. DOI: 10.1007/s11081-018-9417-2.

Hairer, Ernst and Gerhard Wanner (1996). Solving Ordinary
Differential Equations II. 2nd ed. Springer. ISBN: 978-3-540-
60452-5.

IEEE (2019-07). IEEE Standard for Floating-Point Arithmetic.
Institute of Electrical and Electronics Engineers. ISBN: 978-1-
5044-5924-2.

Intel Corporation (2021-06). Intel® 64 and IA-32 Architectures
Software Developer’s Manual – Combined Volumes: 1, 2A,
2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Tech. rep.: Intel
Corporation. Order Number: 325462-075US.

ISO/IEC (2018-06). ISO/IEC 9899:2018 — Information
technology — Programming languages — C. International
Organization for Standardization.

Lenord, Oliver (2019). “Standardizing eFMI for Embedded
Systems with Physical Models in the Production Code
Software”. Presented at: Jubilee Symposium: Future
Directions of System Modeling and Simulation. Medicon
Village, Lund, Sweden, September 30, 2019. URL:
https://modelica.github.io/Symposium2019/.

MISRA (2013-03). MISRA C:2012 – Guidelines for the use of
the C language in critical systems. MISRA Consortium
Limited. ISBN: 978-1-906400-10-1.

Modelica Association (2021-02). Modelica® – A Unified
Object-Oriented Language for Systems Modeling – Language
Specification – Version 3.5. Tech. rep.: Modelica
Association. URL: https://modelica.org/documents/MLS.pdf.

Modelica Association (2021-04). Functional Mock-up Interface
for Model Exchange and Co-Simulation. Tech. rep.: Modelica
Association. URL: https://fmi-standard.org/downloads/.

Modelica Association (2021-06). “Modelica Language Change
Proposal 31 (MCP 31)”. URL:
https://github.com/modelica/ModelicaSpecification/tree/MC
P/0031/RationaleMCP/0031.

Modelica Association (2021-07). “Official eFMI test cases for
demonstrating and evaluating eFMI tooling”. URL:
https://github.com/modelica/efmi-testcases.

Neudorfer, Jonathan, Siva Sankar Armugham, Mathews Peter,
Naresh Mandipalli, Karthikeyan Ramachandran, Christian
Bertsch and Isidro Corral (2017). “FMI for Physics-Based
Models on AUTOSAR Platforms”. In: Symposium on
International Automotive Technology 2017. SAE
International. DOI: 10.4271/2017-26-0358.

Rüger, Johannes-Joerg, Alexander Wernet, Hasan-Ferit Kececi
and Thomas Thiel (2014). “MDG1: The New, Scalable, and
Powerful ECU Platform from Bosch”. In: Proceedings of the
FISITA 2012 World Automotive Congress. Vol. 6. Vehicle
Electronics. Springer.

Wagner, Alexandre, Thomas Bleile, Slobodanka Lux and
Christian Fleck (2009). “Method for real time capability
simulation of an air system model of an internal combustion
engine”. Patent: United States US8321172B2, filed
November 19, 2009.

Zimmermann, Michael, Thomas Bleile, Friedrun Heiber and
Alexander Henle (2015). “Komplexitätsbeherrschung von
Motorsteuerungs-Funktionalitäten”. In: MTZ -
Motortechnische Zeitschrift 76 (1), pp. 60–64. Springer. DOI:
10.1007/s35146-014-2003-z.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

71

72 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Modia – Equation Based Modeling
and Domain Specific Algorithms

Hilding Elmqvist1 Martin Otter2 Andrea Neumayr2 Gerhard Hippmann2

1Mogram AB, Sweden
2DLR Institute of System Dynamics and Control, Germany

Abstract
A new design of the Modia experimental modeling lan-
guage based on Julia is presented. It has simple yet pow-
erful syntax and semantics. A unified means of describ-
ing the fundamental semantics, which is similar to Mod-
elica, is outlined. Furthermore, it is shown how domain
specific algorithms can be combined with equation based
modeling. It is demonstrated for multibody systems and
enables more efficient translation since much repetitive
analysis and transformations are avoided and faster simu-
lation. The drive train of a robot model was automatically
translated from Modelica to Modia. Modern simulation
algorithms from the Julia community allow working with
automatic differentiation and uncertainties.
Keywords: Modelica, Julia, Modia, Uncertainties, Multi-
body

1 Introduction
Modelica1 (Modelica Association 2021), the equation and
object oriented modeling language makes it easy to model
large industrial systems with millions of equations. How-
ever, the transformation of the equations to executable
form does not scale well since the current transformation
technology is based on flattening of the hierarchical model
structure. This means that certain structural and symbolic
algorithms have to make repetitive work since the inherent
structure is lost in the flattening process.

Furthermore, in the design of Modelica, several com-
promises needed to be made, for example, for multibody
systems to handle spanning trees, closed kinematic loops,
planar loops, over-determinism with quaternions, and re-
versing and zero flows for fluid systems. But even with
these compromises, non-optimal performance of model
transformation and simulation speed is achieved. On the
other hand, the multibody community has designed meth-
ods for efficient simulation based on the manual conver-
sion of the basic equations of motion and constraints to
efficient algorithmic code, see e.g. (Arnold 2016).

Modelica also has the restriction that the number of
equations and the number of states must be constant and
that array dimensions of variables, even parameters, must
be constant. There is a need for varying structure model-

1https://modelica.org/modelicalanguage.html

ing to enable robot gripping, satellite docking, turning off
parts of a fluid system, etc.

In this paper, we propose a hybrid solution: combin-
ing equation and object-oriented modeling with special-
ized algorithmic treatment of certain domains such as
multibody and fluid systems. This approach relies on the
powerful and fast programming language Julia2 (Bezan-
son et al. 2017). The Julia package Modia3 provides a
modeling language that is based on hierarchical collec-
tions of name/value pairs. A unifying semantics has been
defined for hierarchical modifiers à la Modelica and in-
heritance. Certain model instances are recognized as al-
gorithmic models, i.e. calls to Julia functions are sorted
among the solved equations. This technique also opens
up for closed coupling to FEM and CFD models. Using a
general-purpose algorithmic language instead of Modelica
algorithms and functions enables use of more advanced
data structures such as trees, dictionaries, etc.

It is important to have a stable model standard enabling
encoding know-how available in books and articles in a
formal language in order that these models can be stored
and reused over a long time. The Modelica language was
designed for this purpose. However, Modelica also needs
to be enhanced due to various new needs within the mod-
eling and simulation community. Modia was introduced
to provide an experimental platform for extensions to the
Modelica semantics and for experimentation of new trans-
formation and simulation algorithms.

Since Modelica is a well-established modeling lan-
guage there exist ten-thousands of models and it is very
important to be able to reuse this huge model knowledge
base. For that reason a translator between (so far for a
subset of) Modelica and Modia is developed.

The presented modeling framework based on Julia has
the advantage of using a modern infrastructure around the
DifferentialEquations.jl package4 (Rackauckas and Nie
2017b). For example, it enables using dual number rep-
resentation for automatic differentiation and uncertainty
information. Julia is also used for modeling in the Model-
ingToolKit (Ma et al. 2021) and experiments are made to
use Julia instead of MetaModelica for the OpenModelica
implementation (Tinnerholm et al. 2020).

2https://julialang.org/
3https://github.com/ModiaSim/Modia.jl
4https://github.com/SciML/DifferentialEquations.jl

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

73

2 Modia Language
The Modia syntax and frontend has been redesigned since
(Elmqvist, Henningsson, and Otter 2017). The new de-
sign is completely based on hierarchical collections of
name/value pairs together with merging of such collec-
tions. This schema is used for models, variables, equations
and hierarchical modifiers.

2.1 Variables and models
Variables are implicitly defined by their references in
equations. A constructor Var allows defining variables with
attributes:

name = Var(attribute=value, ...)

Var is a function taking name/value pairs, building and return-
ing a corresponding dictionary.

Var(; kwargs...) = OrderedDict(kwargs)

Presently introduced attributes are: value, min, max, init,
start, and the Booleans: parameter, constant, input,
output, potential and flow. Example:

T = Var(parameter=true, value=0.2, min=0)

Some syntactically useful shortcuts using Var from ?? have
been defined:

Listing 1. Modia shortcuts.

Par(; kwargs...) =
Var(; parameter=true, kwargs...)

input = Var(input=true)
output = Var(output=true)
potential = Var(potential=true)
flow = Var(flow=true)

If the value has references to other declared variables in the
model, the expressions needs to be quoted that is enclosed
in :(). A parameter can also be defined by name =
literal-value. time is a reserved name for the indepen-
dent variable having unit s for seconds. The Julia package Unit-
ful5 provides a means for defining units and managing unit in-
ference and checking. Definition of units is done with a string
macro u"..." (see e.g., Listing 3). Units are given to inputs,
states (init-attribute) and if the model equations contain sys-
tems of simultaneous equations, then approximate guess values,
optionally with units, must be given as start-attribute to iter-
ation variables.

A model (Listing 2) is also defined as a collection of name/-
value pairs with the constructor Model (similar to Var, but hav-
ing a tag to enable better diagnostics).

Listing 2. Syntax of a Modia model.

name = Model(
<variable-or-component-definition>,
...,
equations = :[
<equation1>
<equation2>
...]

)

5https://github.com/PainterQubits/Unitful.jl

The equations have Julia expressions in both left and right
hand side of the equal sign. Note that the entire array of
equations is quoted since enclosed in :[]. This enables
later processing such as symbolically solving the equation since
an AST (abstract syntax tree) is built-up instead of evaluating
the expressions.

For example, in Modia a low pass filter can be defined as:

Listing 3. Modia model of a low pass filter.

LowPassFilter = Model(
T = Par(value=0.2u"s", min=0u"s")
u = input,
y = output,
x = Var(init=0),
equations = :[

T * der(x) + x = u
y = x]

)

This corresponds to the following Modelica model:

Listing 4. Modelica model of a low pass filter.

block LowPassFilter
import Modelica.Blocks.Interfaces;
parameter SIunits.Time T = 0.2;
Interfaces.RealInput u;
Interfaces.RealOutput y;
Real x(start=0.0, fixed=true);

equation
T * der(x) + x = u;
y = x;

end LowPassFilter;

2.2 Connectors
Models which contain any flow variable, a variable having an at-
tribute flow = true, are considered connectors. Connectors
must have an equal number of flow and potential variables, vari-
ables that contain an attribute potential = true, and have
matching array sizes. Connectors may not have any equations.
An electrical connector with potential v (in Volt) and current i
(in Ampere) is defined as:

Pin = Model(v = potential, i = flow)

2.3 Components
Components are declared by using a model name as a value in a
name/value pair.

An electrical resistor with two Pins p and n can be described
as follows:

Listing 5. Resistor model using Pins.

Resistor = Model(
R = 1.0u"Ω",
p = Pin,
n = Pin,
equations = :[

0 = p.i + n.i
v = p.v - n.v
i = p.i
R*i = v]

)

Modia - Equation Based Modeling and Domain Specific Algorithms

74 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

2.4 Merging
Models and variables are defined with hierarchical collections
of name/value pairs. Setting and modifying parameters of com-
ponents and attributes of variables are also naturally structured
in the same way. A constructor Map is used for that. For exam-
ple, modifying the parameter T of the LowPassFilter model
defined in Listing 3 can be made by:

lowPassFilter = LowPassFilter |
Map(T = Map(value=2u"s", min=1u"s"))

The achieved semantics is the same as for hierarchical modifiers
in Modelica and results in:

lowPassFilter = Model(
T = Var(parameter=true, value=2u"s",

min=1u"s")
...)

The used merge operator | is an overloaded binary operator
of bitwise or with recursive merge semantics6. In Listing 6 a
sketch of the recursive merging function is given:

Listing 6. Merge operator | is an overloaded bitwise or.

function Base.:|(x, y)
result = deepcopy(x)
for (key, value) in y
if typeof(value) <: AbstractDict &&

key in keys(result)
value = result[key] | value

elseif key in keys(result) &&
key == :equations

equa = copy(result[key])
push!(equa.args, value.args...)
result[key] = equa

end
result[key] = value

end
return result

end

Merging of equations is handled specially by concatenating
the equations vectors. More details, for example, about redeclar-
ing and deleting names are given in the Modia tutorial7.

2.5 Inheritance
Various physical components sometimes share common proper-
ties. One mechanism to handle this is to use inheritance. Modia
makes a semantic unification by using merging.

Electrical components such as resistors, capacitors and induc-
tors are categorized as oneports (Listing 7) that have two pins.
Common properties are: constraint on currents at pins and def-
initions of voltage over the component and current through the
component:

Listing 7. Oneport model for electrical components.

OnePort = Model(
p = Pin,
n = Pin,
equations = :[
0 = p.i + n.i
v = p.v - n.v
i = p.i]

)

6Python has also recently introduced the operator | for merging.
7https://modiasim.github.io/Modia.jl/stable/tutorial

Having such a OnePort definition (Listing 7) makes it con-
venient to define electrical component models by merging
OnePort with specific parameter definitions with default val-
ues and equations:

Listing 8. Electrical components merged with OnePort.

Resistor = OnePort | Model(R = 1.0u"Ω",
equations = :[R*i = v])

Capacitor = OnePort | Model(C = 1.0u"F",
v = Var(init=0.0u"V"),
equations = :[C*der(v) = i])

Inductor = OnePort | Model(L = 1.0u"H",
i = Var(init=0.0u"A"),
equations = :[L*der(i) = v])

ConstantVoltage = OnePort | Model(
V = 1.0u"V",
equations = :[v = V])

The resulting Resistor (Listing 8) defined by merging with
OnePort is identical to the Resistor defined in Listing 5
due to the concatenation of the equations vector performed
by the merge operator.

2.6 Connections
Connections are described as a special equation of the form:

connect(<connect-reference-1>,
<connect-reference-2>, ...)

A ’connect-reference’ has either the form ’connect instance
name’ or ’component instance name’.’connect instance name’
with ’connect instance name’ being either a connector instance,
input or output variable.

For connectors, all the corresponding potentials of the con-
nectors in the same connect statement are set equal. The sum
of all incoming corresponding flows to the model are set equal
to the sum of the corresponding flows into sub-components, i.e.
the same semantics as in Modelica.

Connected models
Having the electrical component models from Listing 8 enables
defining a filter (Listing 9), with internal resistance Ri of the
voltage source, by instantiating components, setting parameters
and defining connections.

Listing 9. Filter model defined with electrical components.

Filter = Model(
R = Resistor | Map(R=0.5u"Ω"),
Ri = Resistor | Map(R=0.1u"Ω"),
C = Capacitor | Map(C=2.0u"F"),
V = ConstantVoltage | Map(V=10.0u"V"),
equations = :[

connect(V.p , Ri.n)
connect(Ri.p, R.p)
connect(R.n , C.p)
connect(C.n , V.n)]

)

3 Transformation of Modelica models
to Modia

A recursive-descent parser for Modelica has been developed in
Julia by Hilding Elmqvist (Otter, Elmqvist, et al. 2019). It builds

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

75

an AST which is converted to the new Modia syntax.

Figure 1. RobotR3.oneAxis drive line model.

This paper focuses on combining equation based modeling
with algorithmic modeling of multibody systems. A good exam-
ple of this combined need is robot modeling with the multibody
part combined with rotational drive trains with inertias, gear-
boxes, springs, etc. and electrical motors with current amplifier
electronics. All this is complemented with input/output blocks
of the controllers. Such an example is available in the Modelica
Standard Library8 (Modelica Association 2020): Modelica.Me-
chanics.MultiBody.Examples.Systems.RobotR3. The Modelica
to Modia translator has been used to automatically translate the
drive line model RobotR3.OneAxis in Figure 1 to Modia. The
drive line consists of a path planning component, a P-PI con-
troller, an electrical motor with current controller, a gearbox
with friction, elasticity and damping and a rotational load iner-
tia. By this translation, the know-how stored as Modelica mod-
els (55 models, 700 lines of Modia code) can be reused in an
environment which enables more analyses than regular simula-
tion as is demonstrated below.

4 Symbolic transformations
The Modia model OneAxis is instantiated with Julia macro
@instantiateModel(OneAxis) that performs structural
and symbolic transformations based on the algorithms sketched
in (Otter and Elmqvist 2017), generates and compiles a function
called getDerivatives for calculation of derivatives and re-
turns a reference to the instantiated model where this function is
stored. Transformation is currently performed to ODE form (Or-
dinary Differential Equations in state space form) where deriva-
tives are explicitly solved for (x(t) is the state vector, p is a hier-
archical dictionary of parameters and t is time):

ẋ = f(x,p, t), x0 = x(t0) (1)

Physical models lead often to linear systems of equations, as
the Filter model in Listing 9. Modia generates very compact
code to built-up and solve linear systems of equations numeri-
cally during execution of the model, as shown for the Filter
model in Listing 10.

8https://github.com/modelica/ModelicaStandardLibrary

Listing 10. Generated function for model Filter.

function getDerivatives(_der_x,_x,_m,_time)
_p = _m.evaluatedParameters
_leq = nothing
time = _time * upreferred(u"s")
var"C.v" = _x[1] * u"V"
var"V.v" = (_p[:V])[:V]
var"C.p.v" = var"C.v" + -1var"V.v"
begin

local var"R.v", var"Ri.i", var"R.p.v"
_leq = _m.linearEquations[1]
_leq.mode = -3
while leqIteration(_leq, <more arg.>)

var"R.v" = _leq_mode.x[1]
var"Ri.i"= var"R.v"/((_p[:R])[:R]*-1)
var"R.p.v"= (_p[:Ri])[:R]*var"Ri.i"
append!(_leq.residuals, stripUnit(

var"R.v"-var"R.p.v"+var"C.p.v"))
end
_leq = nothing

end
var"der(C.v)" = -var"Ri.i" / (_p[:C])[:C]
_der_x[1] = stripUnit(var"der(C.v)")
if _m.storeResult

addToResult!(_m,_der_x,time,var"R.v",
var"R.p.v",var"Ri.i",var"C.p.v", var"

V.v")
end
return nothing

end

Assume a nonlinear equation system

0 = g(w,v) (2)

has been identified with unknowns w and variables v that are
known at this stage. If g is linear in w, the tearing algorithm of
(Otter and Elmqvist 2017) is applied to split this linear equation
system in an explicitly solvable part w2 and an implicit part w1:

w2 := g1(w1,v) (3)
r := g2(w1,w2,v) (= 0) (4)
= A(w2,v)w1 −b(w2,v) (5)

Since it is known that (2) is linear in w, it is possible to rear-
range (conceptually) equations (3,4) into the form (5). This is,
however, not actually done, because A has n2 elements and then
the size of the rearranged code would grow with O(n2). Instead,
only code is generated to compute the residual r, in order that
the code size grows with O(n):

while leqIteration(leq)
w1 := leq.x
w2 := g1(w1,v)
leq.r := g2(w1,w2,v)

end

Function leqIteration provides first leq.x = 0 and the while loop
computes leq.r := −b. This vector is copied into an auxiliary
vector inside the data structure leq. Afterwards, leq.x = ei is set
to the i-th unit vector and again the residual leq.r is computed.
When varying i from 1 to n, all columns of A are computed.
Afterwards the linear system Aw1 = b is solved and in a last

Modia - Equation Based Modeling and Domain Specific Algorithms

76 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

iteration the body of the while loop is again evaluated with the
solution to get w1 := leq.x and compute w2.

During symbolic processing it is analyzed whether A is only
a function of parameters p, so does not change after initializa-
tion. In this case, the LU-decomposition of A is computed once
during initialization and stored in the data structure leq. During
simulation, only a (cheap) backwards solution is applied to com-
pute the solution. If the residual equation has size one, a simple
division is used, instead of calling a linear equation solver.

By default, the linear equation solver of Julia package Recur-
siveFactorization.jl9 is used that implements the left-looking LU
algorithm of (Toledo 1997). This solver is used up to a dimen-
sion of n = 500, because a benchmark shows a large speed-up
with respect to the default linear solver based on OpenBLAS10

that would otherwise be used.
The ODE and DAE integrators of Julia package Differen-

tialEquations.jl11 (Rackauckas and Nie 2017a) are used with the
generated getDerivatives function. If a DAE integrator
is selected, the getDerivatives function is (automatically)
called as needed by the interface of the DAE integrator.

Additionally, a powerful feature is included: If a DAE inte-
grator is used and the size n of a linear equation system exceeds
a particular limit (by default n ≥ 50) and the unknowns w1 are
a subset of the derivatives of the DAE states, then the following
technique is used: During integration, the relevant DAE state
derivatives are used as solutions leq.x of the linear equation sys-
tem and the residuals leq.r are used as residuals for the DAE
solver. The effect is that during integration no linear equation
system is solved, but just the residuals leq.r of the linear equa-
tion system are computed once for every model evaluation. Dur-
ing events (including initialization), the linear equation system
is constructed and solved and provides consistent initial condi-
tions for the DAE solver. The big benefit is that simulation speed
can increase tremendously, see the benchmarks in section 7.

5 Operations on Modia models
5.1 Simulation with parameter merging
The Modia model OneAxis (Listing 11) is instantiated, simu-
lated and results plotted with the following commands:

Listing 11. Instantiate, simulate and plot results of model One-
Axis.

using Modia
@usingModiaPlot
oneAxis = @instantiateModel(OneAxis)
simulate!(oneAxis, Tsit5(),

stopTime=1.6u"s",
merge=Map(load=Map(J=12.0)))

plot(oneAxis, [..])

Function simulate! performs one simulation of the instanti-
ated model with a solver from the Julia package DifferentialE-
quations.jl12 (Rackauckas and Nie 2017b). This package con-
tains a large set of solvers. In Listing 11 the solver Tsit5 is
used. With various keyword arguments the simulation run can
be defined. Especially, the stop time is set in the example to
1.6 s. If no unit is given, a unit of seconds is assumed. Further-
more, parameters and initial values can be provided by a hierar-

9https://github.com/YingboMa/RecursiveFactorization.jl
10https://www.openblas.net/
11https://github.com/SciML/DifferentialEquations.jl
12https://github.com/SciML/DifferentialEquations.jl

chical Map that is merged with the current values via the merge
keyword. The simulation result is stored inside the instantiated
model and is plotted with function call plot.

Hierarchical parameters and initial values can also be read
from file, for example from a JSON file as shown in Listing 12.

Listing 12. JSON file for OneAxis parameterization.

{"axis": {
"gear": {

"ratio": 210.0,
"c" : 8.0,
"d" : 0.01,
"Rv0" : 0.5,
"Rv1" : 7.69e-4},

"motor": {
"J": 0.0013,
"k": 1.616,
"w": 5500.0,
"D": 0.6,
"w_max": 315.0,
"i_max": 9.0},

...
}

The parameters and initial values read with function
readMap(..) are stored in a hierarchical map that can
be directly merged in to the model before simulation starts:

simulate!(oneAxis, Tsit5(),
stopTime = 1.6u"s",
merge=readMap("oneAxisParameters.json"))

Units can be defined using dictionaries (value, unit) as shown in
Listing 13. These dictionaries are converted to Julia values with
units before the merging is done.

Listing 13. JSON structure for parameterization with units.

{"axis": {
"gear": {
"ratio": 210.0,

"c": {"value":8.0,"unit":"N/m"}
...

}

It is also possible to encode and decode such JSON parametriza-
tions which contains Julia expressions for parameter propagation
and calculations.

This offers new possibilities not available in the Modelica
language: Since parameters and initial values are stored in a
data structure, this data structure can be read from file or from
a database system, then manipulated and finally simply merged
into the model.

Typically, in Modelica parameter values are propagated and
changes are performed via modifiers. For larger model hierar-
chies it is always hard to figure out which of the parameters to
propagate and modify, because the set of parameters is too large.
Sometimes records are used for the model parameterization, but
then the corresponding models must be specially designed for
these records, and the modeler ends up with a large set of differ-
ent record types that cannot be conveniently utilized.

5.2 Simulation with different precisions
By default, a simulation is performed with 64 bit precision (Julia
type Float64). However, the generated getDerivatives
function does not depend on a particular type of the floating

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

77

point variables. Julia has a very elaborate type system and it
is very easy to utilize different types when calling a function,
provided a concrete type is not explicitly defined in the function
signature. Note, the concrete type signature is given when call-
ing the getDerivatives function from the solver, and then
the function is specially compiled for this signature.

There is, however, one restriction: The used integrator must
be prepared to use any type of floating point variables. This is
the case for solvers that are natively defined in Julia, such as
integrator Tsit5. DifferentialEquations.jl supports also exter-
nal solvers that are typically implemented in C or Fortran for
64 bit precision only. These solvers cannot be used with other
floating point types.

In Modia, the floating point precision is defined with the key-
word FloatType of macro @instantiateModel. For ex-
ample, the following definition simulates with 32 bit precision:

oneAxis = @instantiateModel(OneAxis,
FloatType = Float32)

simulate!(oneAxis, ...)

Simulation can also be performed with higher precision:

• FloatType = Double64 from package Double-
Floats.jl13 uses two Float64 numbers and double word
arithmetic to perform floating point operations with
roughly 30 significant digits in an efficient way.

• FloatType = BigFloat is a Julia built-in floating
point type wrapping the GNU Multiple Precision Arith-
metic Library (GMP)14 and the GNU MPFR Library15

to support computations with any type of desired float-
ing point precision. The drawback is that the computation
might be slow.

5.3 Simulation with uncertainties
Julia package Measurements.jl16 (Giordano 2016) provides cal-
culations with uncertainties described by normal distributions
using linear error propagation theory. This package allows to
define uncertain variables with nominal value and standard de-
viation. For example v = 2.0± 0.2 defines that variable v has a
nominal value of 2.0 and a standard deviation of 0.2. In other
words, with a probability of about 95 %, variable v is in the
range 1.6 ≤ v ≤ 2.4. The package overloads the Julia operators
on floating point operations to perform propagation of uncer-
tainties. This works also for functions, such as, solving linear
equation systems. An example is given in Listing 14:

Listing 14. Uncertainty modeling with Measurements.jl.

using Measurements

v1 = 2.0 ± 0.2
v2 = 3.0 ± 0.3
v3 = v1 + v2 # = 5.0 ± 0.36
v4 = v3 - v1 # = 3.0 ± 0.3
v5 = v1*v2 # = 6.0 ± 0.85

In order to utilize this feature in Modia, the setting FloatType
= Measurement{Float64} has to be used, defining that 64
bit floating point numbers with uncertainties are treated. Note,

13https://github.com/JuliaMath/DoubleFloats.jl
14https://gmplib.org/
15https://www.mpfr.org/
16https://github.com/JuliaPhysics/Measurements.jl

the uncertainty propagation again goes through all code, also
through the integration algorithms. Therefore, this approach
only works for solvers implemented in Julia. In Listing 15 this
type of uncertainty modeling is applied on the OneAxis model,
where uncertainties are defined for the load inertia J and the gear
stiffness c:

Listing 15. Uncertainty modeling for OneAxis model.

using Modia, Measurements
@usingModiaPlot

OneAxis2 = OneAxis | Model(
load = Map(J = 19.5 ± 4.0),
axis = Map(c = 8.0 ± 0.8),
angle_error = :(

axis.axisControlBus.angle_ref-load.phi)
)

oneAxis2 = @instantiateModel(OneAxis2,
FloatType=Measurement{Float64})

simulate!(oneAxis2, Tsit5(), stopTime=0.3)
plot(oneAxis2, "angle_error")

Function plot displays the nominal value as thicker line and
the standard deviation as a transparent area around the nominal
value, see Figure 2.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time [s]

0.0

0.5

1.0

1.5

2.0

1e 3 OneAxis2 (Tsit5, Measurement{Float64})

angle_error

Figure 2. Control error of OneAxis model with nominal value
(thick line) and standard deviation (transparent area).

Usage of the Measurements.jl package is attractive because,
with very small effort, uncertainties of many variables can be de-
fined and the propagated uncertainties of all variables computed
in a reasonably efficient way. The drawbacks of this approach
are that only normal distributions are supported and that uncer-
tainty propagation is performed with linear theory, based on the
analytic derivatives of all expressions. This means that larger
parameter uncertainties will not be properly described by this
approach and if the model contains discontinuous changes then
the calculated standard deviations might be questionable.

5.4 Monte Carlo Simulation
Monte Carlo Simulation is a standard technique to evaluate a
model with respect to uncertain parameters and initial values by
randomly generating parameter and initial values with respect
to given distributions and perform simulations for every ran-
domly selected value set. The Julia package MonteCarloMea-
surements.jl17 (Carlson 2020) provides a variant via the nonlin-

17https://github.com/baggepinnen/MonteCarloMeasurements.jl

Modia - Equation Based Modeling and Domain Specific Algorithms

78 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

ear propagation of arbitrary multivariate distributions by means
of method overloading. This approach is attractive because the
setup and usage is very simple, provided the underlying simu-
lation environment is prepared to operate on any floating point
type, as it is the case for Modia. A simple example of this pack-
age is given in Listing 16:

Listing 16. Example of MonteCarloMeasurements.jl.

using MonteCarloMeasurements, Distributions

uniform(vmin,vmax) = StaticParticles(5,
Distributions.Uniform(vmin,vmax))

v1 = uniform(2.0, 3.0) # v1.particles =
[2.7, 2.9, 2.3, 2.5, 2.1]

v2 = uniform(5.1, 8.3)
v3 = v1 + v2 # v3.particles =

[8.76, 10.24, 10.28, 9.2, 7.52]

Function uniform defines a uniform distribution between a
minimum and maximum value. It generates five random values
according to the given distribution and stores these five values
internally in a vector. The five random values are just for il-
lustration in this example. For realistic computations, typically
several thousand random values are generated. The Julia pack-
age Distributions.jl18 (Besançon et al. 2019) provides a large set
of probability distributions and functions operating on them and
can be used to generate a large variety of distributions for Mon-
teCarloMeasurements.jl.

The package overloads all operations for floating point num-
bers by replacing for example the addition of two scalars by the
addition of the two vectors, in which the randomly generated
values are stored. Furthermore, the package is implemented to
make effective use of SIMD19 instructions available on modern
processors. There is also support for computation on GPUs. To
handle some corner cases, a few instructions in Modia had to be
adapted to make Modia work with this package. In Listing 17,
this type of Monte Carlo Simulation is applied on the OneAxis
model, again, with uncertainties for the load inertia J and the
gear stiffness c using 100 samples per distribution:

Listing 17. OneAxis model with MonteCarloMeasurements.jl.

using Modia,
using MonteCarloMeasurements, Distributions
@usingModiaPlot

uniform(vmin,vmax) = StaticParticles(100,
Distributions.Uniform(vmin,vmax))

OneAxis3 = OneAxis | Model(
load = Map(J = uniform(11.5, 27.5),
axis = Map(c = uniform(6.6, 9.6),
angle_error = :(

axis.axisControlBus.angle_ref-load.phi)
)

oneAxis3 = @instantiateModel(OneAxis3,
FloatType=StaticParticles{Float64,100})

simulate!(oneAxis3, Tsit5(), stopTime=0.3)
plot(oneAxis3, "angle_error")

18https://github.com/JuliaStats/Distributions.jl
19Single Instruction, Multiple Data (= computers with multiple pro-

cessing elements performing the same operation on multiple data points
simultaneously).

Function plot displays the nominal value as thicker line and
the particles of the corresponding variable as transparent, thin
lines, see Figure 3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time [s]

0.0

0.5

1.0

1.5

2.0

1e 3 OneAxis3 (Tsit5, StaticParticles{Float64, 100})

angle_error

Figure 3. Control error of OneAxis model with mean value
(thick line) and 100 particles (transparent, thin lines).

Usage of the MonteCarloMeasurements.jl package is attrac-
tive because, with very small effort, uncertainties of a reasonable
amount of variables with large uncertainties can be defined for a
large variety of probability distributions and the nonlinear prop-
agation of these distributions is computed in an efficient way.

5.5 Linearization
An instantiated Modia model can be linearized:

using Modia
oneAxis = @instantiateModel(OneAxis)
(A0, x0) = linearize!(oneAxis)
(A1, x1) = linearize!(oneAxis, Tsit5(),

stopTime=1.0, analytic=true)
xNames = get_xNames(oneAxis)

The first linearize! call initializes model oneAxis, com-
putes the Jacobian of the state derivatives with respect to
the states x numerically with a central finite difference ap-
proximation using Julia package FiniteDiff.jl20, and returns
the Jacobian as matrix A0 together with the initial state vec-
tor x0 computed during initialization. The nonlinear Modia
model is hereby approximated at the initial state with the
linear differential equation system ∆ẋ = A0∆x, x ≈ x0 +
∆x. Linearization is performed with respect to the floating
point type as defined by FloatType. If FloatType =
Measurement{Float64}, the elements of matrix A are of
this type, that is, contain uncertainties. Further processing is
possible, especially with Julia package ControlSystems.jl21 that
also supports linear systems with uncertainties. In the near fu-
ture, instantiation and linearization will be also supported with
respect to top-level inputs and outputs of a Modia model.

The second linearize! call simulates the model
with method Tsit5 until the stop time, linearizes the sys-
tem analytically using Julia package ForwardDiff.jl22 (Rev-
els, Lubin, and Papamarkou 2016) and returns the Jacobian
as matrix A1 together with the state vector x1 at the stop
time. Analytic differentiation may not always work. For
example, an error is currently triggered if FloatType =

20https://github.com/JuliaDiff/FiniteDiff.jl
21https://github.com/JuliaControl/ControlSystems.jl
22https://github.com/JuliaDiff/ForwardDiff.jl

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

79

Measurement{Float64} is used. Furthermore, analytic
linearization takes some time, because the complete model is
analytically differentiated, code generated and compiled.

Function call get_xNames(instantiatedModel) re-
turns the names of the state vector x as a vector of strings. This
allows to interpret further operations on the linearized system
with respect to the nonlinear Modia model.

6 Modia with 3D models
6.1 Domain specific algorithms
Equation based modeling, for example with the Modelica lan-
guage (Modelica Association 2021), maps a hierarchical model
to a set of equations and transforms these equations appropri-
ately. The drawback of this approach is that if a model contains,
say, N instances of a body, the equations of the body are present
N-times in the generated code. As a result, this approach does
not scale for large models because the code size grows at least
proportionally with the number of instances (and their number
of equations) and therefore inherently limits the size of models
that can be practically handled.

Traditional, domain-specific software, such as an electrical
circuit simulator or a multibody program23, have a completely
different architecture: The equations of a component, say of a
body, are available in a few variants and every variant is hard-
coded in a function. If N bodies with the same variant are used,
then the corresponding function is called N times, and the equa-
tions of the body are present only once. Therefore, the code size
is independent from the size of the model. Additionally, special
algorithms can be used, for example, to treat 3-dimensional ro-
tations specially, handle over-determinism in planar kinematic
loops, or use special sparse matrix methods, such as an O(n)
multibody algorithm. The drawback of this approach is that the
introduction of new component types or the combination of sub-
models of different domains is orders of magnitude more diffi-
cult for a user to define than with equation based modeling.

In Modia, a new technique is utilized to combine the ad-
vantages of both approaches in a generic way, i.e., to combine
equation-based modeling with domain-specific software. This
approach is sketched and demonstrated in this section by com-
bining equation based modeling with a multibody program24.

In the simplest case, a multibody program for tree-structured
systems basically has the following structure in pseudo-code no-
tation, where q is the vector of generalized joint coordinates (for
example angles of revolute joints) and v is the vector of general-
ized joint velocities:

mbs= readAndInit("fileName")

q̇ = v
v̇ = h(mbs,q,v)

(6)

The multibody system is defined on file. This file is read with
function readAndInit(..) that returns an object reference
mbs (so basically a pointer) of an internal data structure that al-
lows fast evaluation of function h (6) which computes the deriva-
tive of v. In the following it is shown how three basic issues are
solved in Modia:

23https://uwaterloo.ca/motion-research-group/multibody-system-
dynamics-international-research-activities

24Modia uses an approach where one ODE-system is generated. The
alternative of using co-simulation of coupled ODE-systems has inherent
numerical issues and is not used.

• Replacing the definition of the multibody system on file by
a definition with the Modia language.

• Handle object references, such as mbs, in the Modia lan-
guage.

• Handle state constraints, DAE index reduction and sys-
tems of equations that might occur when combining a
multibody system with equation based models, for ex-
ample when a drive train without gear elasticity (say,
RobotR3.Utilities.AxisType2) is connected to a flange of
a revolute joint.

6.2 Modia3D
Modia3D25 (Neumayr and Otter 2018; Neumayr and Otter
2019a) is a Julia package that implements basically a multibody
program, so targeted for solvers with adaptive step-size to com-
pute results close to real physics, and combines this with the
generic component-based design pattern of modern game en-
gines. This allows a very flexible definition of 3D systems of
any kind. Hereby, a coordinate system located in 3D is used
as a primitive that has a container with optional components
(such as geometry, visualization, dynamics, collision properties,
light, camera, sound, etc.), see for example (Nystrom 2014)26,
Unity27, Unreal Engine28, three.js29.

From a user’s point of view, Modia3D provides a set of pre-
defined model components (= constructor functions that gener-
ates dictionaries). The core component is Object3D that de-
fines a coordinate system moving in 3D together with associated,
optional features, see Figure 4. An Object3D is described rela-

parent Object3D

Object3D

rotation

translation

feature

Figure 4. Object3D defined relative to its parent.

tive to an optional parent Object3D by vector translation
that defines the coordinates of the Object3D in its parent system
and by vector rotation that defines three rotation angles to
rotate the parent system into the Object3D system.

An example of a simple pendulum with damping in its joint
is shown in Listing 18. The Object3D object that has fea-
ture Scene is the root of all other Object3Ds and defines a
global inertial system. It is called world in the example.
Object3D body defines a solid part that has a mass of 1 kg.
On the body an Object 3D axle is defined that is trans-
lated 0.5 m along the negative x-axis of the body. Finally, a
RevoluteWithFlange joint, that is a revolute joint with a
flange, constrains the motion of axle with respect to world so
that axle can only rotate around its z-axis.

25https://github.com/ModiaSim/Modia3D.jl
26http://gameprogrammingpatterns.com/component.html
27https://docs.unity3d.com/Manual/GameObjects.html
28https://docs.unrealengine.com/en-us/Engine/Components
29https://threejs.org/docs/index.html#api/core/Object3D

Modia - Equation Based Modeling and Domain Specific Algorithms

80 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

Listing 18. Simple pendulum with damping in its joint.

Pendulum = Model(
Multibody components
world = Object3D(feature = Scene()),
body = Object3D(feature = Solid(

massProperties =
MassProperties(mass = 1.0))),

axle = Object3D(parent = :body,
translation=[-0.5, 0.0, 0.0]),

rev = RevoluteWithFlange(axis=3,
obj1=:world, obj2=:axis),

Equation based components
damper = Damper | Map(d=100.0),
fixed = Fixed,
equations = :[

connect(damper.flange_b, rev.flange),
connect(damper.flange_a, fixed.flange)]

)

pendulum = @instantiateModel(
buildModia3D(Pendulum),
unitless=true)

simulate!(pendulum, stopTime=3.0)
plot(pendulum, "rev.phi")

The remaining elements of the Pendulum use predefined
Models of a small Modia library that corresponds to the Mod-
elica.Mechanics.Rotational library. In particular a rotational 1D
Damper is connected to a fixed point on one side and on the
other side it is connected to the flange of the revolute joint.

Before calling @instantiateModel(..), the special
function buildModia3D must be called on the model to in-
troduce a few equations to the model that depend on the used
multibody components (details are given below). Additionally,
option unitless=true has to be given temporarily, because
units are not yet fully supported in Modia3D. The instantiated
model can be simulated and variables plotted as before.

Feature Visual introduces objects for 3D animation by
defining shapes like box, sphere, cylinder, 3D meshes on file
in different formats (3ds, dxf, obj, stl), text, grids, or coordi-
nate systems. A visualMaterial defines its visual proper-
ties. In Listing 19 an Object3D with a half transparent light blue
cylinder with radius 0.01 and height 0.12 is created. For further
details on visual objects see (Neumayr and Otter 2018, Section
2.2).

Listing 19. A visual Object3D with a light blue cylinder.

cylinder = Object3D(
feature = Visual(
shape = Cylinder(

diameter = 0.01, length = 0.12),
visualMaterial = VisualMaterial(
color = "LightBlue",
transparency = 0.5)))

)

Feature Solid defines solid bodies. Argument shape ac-
cepts primitive shapes and 3D meshes on file in obj-format.
There are several ways for defining massProperties, in-
cluding mass, center of mass, and inertia tensor of the solid:
The default setting computes the mass properties from the den-
sity defined with the optional solidMaterial keyword and
from the shape of shape. A solid object is considered in colli-
sion situations if keyword collision is set to true. Further-

more, it is possible to use keyword collisionMaterial to
define properties of the collision behaviour, for example sliding
friction coefficient and coefficient of restitution (Neumayr and
Otter 2019b). In Listing 20 one link of a KUKA YouBot robot is
defined as a solid 3D mesh with collision properties and its mass
properties are computed from shape geometry and mass.

Listing 20. A solid Object3D that is allowed to collide and mass
properties computed from shape geometry and mass.

body = Object3D(
feature = Solid(

shape = FileMesh(file =
"YouBot/arm_joint_2.obj"),

massProperties =
MassPropertiesFromShapeAndMass(

mass = 1.318),
collision = true)

)

Feature Scene provides many options. A few are shown
in Listing 21: With keyword gravity a uniform gravity field
is defined pointing in negative z-direction. Only if enable-
ContactDetection is set to true, collision handling is per-
formed for all solid Object3Ds with enabled collision option.

Listing 21. World Object3D with scene defining a uniform grav-
ity field pointing in negative z-direction and enabled contact de-
tection.

world = Object3D(
feature = Scene(

gravity = UniformGravityField(
g = 9.81, n = [0,0,-1]),

enableContactDetection = true)
)

For modeling of freely moving bodies, without any kinematic
constraint, Modia3D provides a FreeMotion joint with six de-
grees of freedom. It describes the orientation of Object3Ds by
Tait-Byran (or Cardan) angles with rotation sequence x-y-z with
respect to its parent Object3D, which is usually world. An ad-
vantage of this approach is that the state variables are illustrative
for the user. Furthermore, in contrast to quaternions, Tait-Byran
angles do not introduce nonlinear algebraic constraints and are
directly defined in ODE form. If the main rotation is approxi-
mately around one axis (frequently given in technical applica-
tions) Tait-Byran angles behave nearly linear, so that integrators
with adaptive step size selection can use larger steps compared
to a description with quaternions.

However, a significant drawback of Tait-Byran angles is gim-
bal lock: When the second rotation about the local y-axis is

α2 = 90◦+n ·180◦ n ∈ Z, (7)

x- and z-axes are parallel. In this configuration only the sum of
the first and third angle is unique. As a consequence, the model
equations become singular and simulation fails.

In Modia3D this situation is avoided by adaptive rotation se-
quence handling. For this, the second angle is monitored by a
zero crossing function which stops time integration, if the abso-
lute difference between its value and the gimbal lock condition
(7) falls below a certain limit. Before restart, the FreeMotion
joint is switched to the alternative rotation sequence x-z-y such
that its relative orientation remains unchanged. Since x- and z-
axes are nearly parallel, the new second Tait-Byran angle about

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

81

the local z-axis obviously is far away from a gimbal lock con-
figuration. After restart the same procedure is applied where the
second angle about z is monitored and a switch back to rotation
sequence x-y-z is triggered if the gimbal lock limit is reached
again.

6.3 Modia3D implementation
In this section a sketch is given how the internal Modia3D structs
and functions are interfaced with a Modia Model:

All Modia3D models, with exception of the joints, are defined
in the following way:

Listing 22. Modia3D interface definition.

Object3D(;kwargs...) = Par(;
_constructor =

:(Modia3D.Composition.Object3D),
kwargs...)

Visual(; kwargs...) = Par(;
_constructor =

:(Modia3D.Shapes.Visual), kwargs...)

Solid(; kwargs...) = Par(;
_constructor =
:(Modia3D.Shapes.Solid), kwargs...)

...

Par (see Listing 1) is a special Var provided by Modia and
states that all keyword arguments are treated as parameters.
The definition Object3D(; kwargs...)=Par(...) de-
fines a function Object3D that has an arbitrary number of
keyword arguments and calls Modia constructor Par with
these keyword arguments, together with _constructor =
:(Modia3D.Composition.Object3D). Therefore, call-
ing function Object3D returns a dictionary containing these
keyword arguments together with the _constructor key-
word argument.

For the code generation, Modia processes certain keywords
of a parameter, for example, to access the parameter value in the
generated Julia function. Other keywords, such as the Modia3D
keywords, are ignored for the code generation. Before simu-
lation starts, all parameters are evaluated. This means that the
hierarchical dictionary of the parameter definitions are traversed
recursively and parameter expressions and propagated parame-
ters are evaluated. Furthermore, whenever a _constructor
key is found, the corresponding constructor is called with the
keyword arguments defined in that dictionary, the generated
instance is compiled, and the value of the corresponding key
(which was previously a dictionary) is replaced with a reference
to the instance.

For example, body = Object3D(..) triggers a call
of the constructor of the mutable struct Object3D in mod-
ule Modia3D.Composition with the feature as key-
word argument and the returned instance is used as value
for key body. Some arguments of Modia3D components
reference other Modia3D components, for example axle =
Object3D(parent = :body, ...). Since :body is a
Julia Symbol, upper hierarchies of the hierarchical parameter
dictionary are searched for a key corresponding to this sym-
bol. Once found, the symbol used in parent is replaced by the
value of key body, so by the reference to the body instance. Af-
ter the parameter evaluation, the complete Modia3D data struc-
ture of this model is instantiated and available in the dictionary

of evaluated parameters. Note, all this is generic and not spe-
cific to Modia3D.

In order that state constraints can be defined and index re-
duction performed, the interface to the Modia3D functionality
is designed to define differential equations only on the Modia
side. Since all Modia3D states are a subset of the gener-
alized joint coordinates, part of the joint definition is done
with the Modia language. For example, the definition of the
RevoluteWithFlange joint is shown in Listing 23

Listing 23. Modia definition of a revolute joint with a flange.

RevoluteWithFlange(; obj1, obj2, axis=3,
phi=Var(init=0.0), w=Var(init=0.0),
canCollide=true) = Model(;

_constructor = Par(value =
:(Modia3D.Composition.Revolute),
_jointType = :RevoluteWithFlange),

obj1 = Par(value = obj1),
obj2 = Par(value = obj2),
axis = Par(value = axis),
canCollide = Par(value = canCollide),
flange = Flange, # defined in Rotational
phi = phi,
w = w,

equations = :[
phi = flange.phi
w = der(phi)]

)

This definition contains a _constructor variant, where only
parts of the elements are parameters (defined with Par) and
parts of the elements are Modia variables and equations. Only
elements _constructor, obj1, obj2, axis are included
in the parameter data structure. All other elements, especially
equations, are processed in the usual way by Modia.

Function buildModia3D(model), see Listing 18, re-
cursively traverses model, so a hierarchical dictionary, and
collects all information about the used joints (identified
by _constructor = Par(..., _jointType=xx) to-
gether with the path name of this joint. Based on this informa-
tion, the code from Listing 24 is merged to the model.

Listing 24. Code generated by buildModia3D(model).

model | Model(_id = rand(Int),
equations = :[

_mbs1 = initJoints!(_id,
instantiatedModel,
$ndofTotal, time)

_mbs2 = setJointStates!(_mbs1,
($jointStates...))

$jointForces = getJointForces!(_mbs2,
_leq, ($jointAccelerations...))

]
)

The value of a Julia expression preceded by $ is inserted in
the quoted expression, in this case, the ast of equations (see
the result in Listing 25). Variable _id is a random number to
provide a unique identification (details are given below). The
getDerivatives function generated by Modia for the Pen-
dulum example of Listing 18 is shown in Listing 25.

When the statement
_mbs1 = initJoints!(_p[:_id],_m,1,_time)

Modia - Equation Based Modeling and Domain Specific Algorithms

82 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

Listing 25. The getDerivatives function of the Pendulum
example of Listing 18.

function getDerivatives(_der_x,_x,_m,_time)
_p = _m.evaluatedParameters
_leq = nothing
var"rev.phi" = _x[1]
var"rev.w" = _x[2]
_mbs1 = initJoints!(_p[:_id],_m,1,_time)
_mbs2 = setJointStates!(_mbs1,

var"rev.phi", var"rev.w")
var"damper.tau" = (_p[:damper])[:d] *

var"rev.w"
begin
local var"der(rev.w)"
_leq = _m.linearEquations[1]
_leq.mode = -3
while leqIteration(_leq, <more arg.>)

var"der(rev.w)" = _leq.x[1]
append!(_leq.residuals,

getJointForces!(_mbs2, _leq,
var"der(rev.w)") -

SVector(-var"damper.tau"))
end
_leq = nothing

end
_der_x[1] = var"der(rev.phi)"
_der_x[2] = var"der(rev.w)"
...

is called the first time, it traverses the evaluated parameters dic-
tionary _m.evaluatedParameters until parameter _id
with the provided value (_p[:_id]) is found. Afterwards,
it inspects all Object3D instances in this subtree and checks
that they are correctly defined, for example that exactly one of
them has a Scene and that all Object3Ds are directly or indi-
rectly connected to this object. Finally, an internal data struc-
ture is instantiated in which all needed information is stored, in
particular references to the root Object3D world, and to the
Scene. A reference to this data structure is stored in the dic-
tionary _m.userObjects[:_id] by using _id as key. In
all subsequent calls, this data structure is retrieved by accessing
the dictionary. A reference to this data structure is returned as
_mbs1. The statement
_mbs2 = setJointStates!(_mbs1, ...)
copies the joint states in to the internal multibody data structure.
Function getJointForces!(_mbs2,...) computes the
generalized joint forces from the generalized joint accelerations
(here: der(rev.w)). Since the generalized joint accelerations
are unknowns, this function call has to be inverted. This is per-
formed by treating the function call as a residual equation of a
linear equation system and the technique sketched in section 4
is used to solve this linear equation system with the while loop
in Listing 25. If further equations are defined in the model as
function of the unknown joint accelerations, for example iner-
tias and ideal gear boxes connected to a flange of a joint, then
these equations show also up in the body of the while-loop.

Note, the essential part of the multibody-related code - the
three function calls - is independent of the size of the multibody-
system. However, all states, derivatives of states and generalized
forces of the joints are present in function getDerivatives,
so the code size is linearly dependent on the degrees of freedom
of the multibody system. But this code size is two to three orders
of magnitude smaller, as a corresponding code of a Modelica
multibody model.

6.4 Animation
Modia3D provides a generic interface to visualize simulation re-
sults with various 3D renderers:

• Both, the free community as well as the professional edi-
tion30 of the DLR Visualization library31 (Bellmann 2009;
Hellerer, Bellmann, and Schlegel 2014) are supported that
provide rendering during simulation and generation of
videos in different formats at the end of the simulation.

• Another option is the automatic generation of a three.js
JSON file at the end of the simulation. This file can be im-
ported in the three.js editor32 that allows flexible inspec-
tion of the animation and provides several ways for ren-
dering the scene with different cameras and light options.
Furthermore, the animation can be exported in the stan-
dard file format glTF33 or its binary glb version for which
many viewers are available. The initial configuration can
also be exported in obj, ply or stl format.

• Moreover, an interesting feature of Microsoft Office 2019
(e.g. Word or PowerPoint) is the importing and rendering
of these file formats. While for Office 2019 only a static
rendering is possible, the latest Office 365 Subscription
also supports playing the animation sequence.

6.5 Example: YouBot robot
The KUKA YouBot robot is a mobile robot with a 5 degree-
of-freedom arm that was manufactured by KUKA in the years
2010-2016. This robot is an attractive benchmark because a lot
of data, such as CAD drawings, visualization files, and solid
data is freely available from the youbot-store34. The YouBot
robot is modeled with Modia in a similar way as the Pendulum
example, see Listing 18. In Figure 5, one Youbot is handing over
a ball to another Youbot. The animation is stored in a JSON file,
imported into three.js, exported in glb format and can be viewed
with any glb viewer, such as the Windows 3D viewer included
in Windows 10. The video of this example is available in the
Modia3D tutorial35

7 Benchmarks
In order to evaluate the efficiency of Modia translations and sim-
ulations, the recursively defined benchmark model of figure 6 is
used. It consists of a tree of solid wooden boxes and wooden
spheres that are connected together with revolute joints in the
form of a mobile. In every joint damping is present defined
with Damper and Fixed components that are connected to the
flange of the respective joint. With parameter depth the depth
of the mobile model is defined and the Modia model36 is recur-
sively constructed. This model represents a reasonable mix of
Modia language and of multibody components. The essential
Modia code parts are shown in Listing 26.

30https://visualization.ltx.de/
31http://www.systemcontrolinnovationlab.de/the-dlr-visualization-

library/
32https://threejs.org/editor/
33https://www.khronos.org/gltf
34http://www.youbot-store.com/wiki/index.php/YouBot_3D_Model
35https://modiasim.github.io/Modia3D.jl/resources/videos/-

YouBotsGripping.mp4
36Modia3D/test/Profiling/Mobile.jl

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

83

Figure 5. One YouBot handing over a ball to another Youbot
(animation file in glb format, visualized with Windows 3D
Viewer).

Figure 6. Recursively defined benchmark model mobile (here
with depth=8).

Listing 26. Recursively defined benchmark model mobile.

function createMobile(depth)
if depth == 1
Model(

rod = Rod,
sphere = Object3D(

parent=:(rod.frame0), ...)
else
Model(

rod = Rod,
bar = Bar | Map(L=barLength(depth)),
sub1 = createMobile(depth-1),
sub2 = createMobile(depth-1),
rev0 = RevoluteWithDamping(

obj1=:(rod.frame2),
obj2=:(bar.frame0)),

rev1 = RevoluteWithDamping(
obj1=:(bar.frame1),
obj2=:(sub1.rod.frame1)),

rev2 = RevoluteWithDamping(
obj1=:(bar.frame2),
obj2=:(sub2.rod.frame1)))

end
end
mobile = Model(

world = Object3D(feature=Scene(..)),
top = createMobile(8), # depth = 8
rev0 = RevoluteWithDamping(

obj1=:world,
obj2=:(top.rod.frame1),
phi_start=0.2))

Since a Modia model is basically a hierarchical dictionary, it
can be constructed with the full power of the Julia programming
language, and in particular with a recursive function. Essen-
tial properties of the benchmark model are summarized in Ta-
ble 1. For various depths, simulations have been carried out

Table 1. Properties of the mobile benchmark.
#states are the number of ODE states.
#unknowns are the number of scalar unknowns of an equivalent
Modelica model before alias elimination (up to 3 digits).
#solids are the number of solid boxes and spheres.
#joints are the number of Revolute joints (= number of Damper
components).

depth #states #unknowns #solids #joints

1 2 603 4 1
2 8 1140 11 4
3 20 3590 25 10
4 44 7800 53 22
5 92 16300 109 46
6 188 33300 221 94
7 380 67000 445 190
8 764 135000 893 373
9 1532 271000 1790 766

10 3068 543000 3580 1534

for 5s with 500 communication points and a relative tolerance of
10−4. All parameters are evaluated and animation and plotting is
switched off. Equivalent Modelica models have also been con-
structed and simulations performed with OpenModelica37 and
two commercial Modelica tools. Comparing Modelica simula-
tion tools with Modia can only be done very roughly, because
the Modelica tools provide different timing information, or some
timing information is not available and needs to be estimated
with a stop watch. The timing given for Modia is the time to ex-
ecute @instantiate(..., logExecution=true) in
Table 2 and simulate!(..) in Table 3.

Timings until simulation starts are given in Table 2 (column
2 gives absolute time and columns 3-5 timing factors relative to
column 2).

The standard approach in Modia, M-ODE, provides the multi-
body equations in the form joint-forces = f1(joint-accelerations),
so given the generalized accelerations in the joints, the general-
ized joint forces are computed, see subsection 6.3. This single
equation can be combined with additional equations, for exam-
ple an inertia can be attached directly to a revolute flange and
then an additional equation is added that is a function of the joint
acceleration. Also, a joint can be rheonomic, so the movement
given. In all these cases, a linear system of equations is gener-
ated where the generalized joint accelerations, or angular accel-
erations in attached drive trains or generalized forces of rheo-
nomic joints are the unknowns. So, this approach is general and
allows to handle all cases that can appear in Modelica models.

The experimental approach M-DAE, provides instead the
multibody equations in the form joint-accelerations = f2(joint-
forces) and this function solves internally a linear system of
equations over function f1(..). An error is raised if this func-
tion call appears in a system of equations. The effect is that, for
example, it is no longer possible to attach an inertia of a drive

37https://www.openmodelica.org/

Modia - Equation Based Modeling and Domain Specific Algorithms

84 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

Table 2. Time-to-start-simulate including reading of model,
symbolic transformations and
Modia: Generation of one Julia function, eval(..) of this function
and executing this function twice.
Modelica tools: Generation of many C-Code functions, compi-
lation, generation of executable and starting the exectuable.
M-DAE: Modia code: joint-accelerations = f2(joint-forces)
M-ODE: Modia code: joint-forces = f1(joint-accelerations)
tool1: The better of the two commercial Modelica tools.
tool2: OpenModelica 1.17.0.

depth M-DAE M-ODE tool 1 tool 2

6 1.5s × 3 × 15 × 120
7 4s × 4.5 × 10 × 50
8 15s × 3.5 × 4.3 × 90
9 50s × 5 × 2.3 –

10 204s – – –

train directly to a joint flange (a drive train must be attached with
a compliant shaft). Also rheonomic joints cannot be used. The
benefit of M-DAE is that the symbolic engine does not longer see
an algebraic loop but only sortable statements, so the symbolic
processing is faster and the generated code is smaller. Note,
an alternative would be to use an O(n) algorithm, (Featherstone
1983) or (Brandl, Johanni, and Otter 1986), to compute the ac-
celerations. The drawback would be, that the same restrictions
as for M-DAE hold, e.g., it would not be possible to connect a
1D inertia to a joint flange.

As sketched at the end of section 4, when a DAE solver is
used, all linear equation systems that exceed a given size are
solved from the DAE solver during integration, provided all
the unknowns of the linear equation system are a subset of the
DAE state derivatives. The linear equation systems present for
M-ODE and M-DAE fulfill the pre-requisites of this approach.
The effect is that during integration no linear equation system is
solved, but just the residuals of the linear equation system are
computed.

For depth ≤ 5, the Time-to-start-simulate of the Modelica
tools is at least several seconds and is much longer as the ac-
tual simulation run, whereas the Modia simulation (both M-ODE
and M-DAE) starts nearly immediately. For depth ≤ 8, Time-
to-start-simulate is below 15s for M-DAE and a factor of 4-120
larger for the Modelica tools.

For depth > 10, Time-to-start-simulate is no longer reason-
able for M-DAE (and any other of the evaluated tools). The rea-
son is that the generated Julia function becomes larger than a few
thousand lines of code and then the quadratic increase of the Ju-
lia compilation time becomes dominant and limits the practical
usage. For depth = 10, the compilation of the generated Julia
code takes 174 seconds whereas the symbolic treatment of the
model takes only 30 seconds. This barrier can be removed, be-
cause the generated Julia code can still be made more compact
and also the technique of the Modelica tools can be used to split
the computation in several functions.

The timings for the simulation runs are sketched in Table 3.
As ODE integrator CVODE and as DAE integrator IDA from
the Sundials suite (Hindmarsh et al. 2005) is used. Modia uti-
lizes these solvers via Sundials.jl (Rackauckas and Nie 2017a).
As can be seen, the simulation time of M-DAE is 1-2 orders of
magnitude smaller than with the other solutions. The reason is

Table 3. Simulation times for mobile benchmark.
M-ODE and the Modelica tools use Sundials CVODE and solve
a linear equation system in the model.
M-DAE: Modia with Sundials.IDA() and residual algorithm.
M-ODE: Modia with Sundials.CVODE().
tool 1: The better of the two commercial Modelica tools.
tool 2: OpenModelica 1.17.0

depth M-DAE M-ODE tool 1 tool 2

6 0.1s × 30 × 30 × 240
7 0.3s × 80 × 80 × 110
8 1.8s × 100 × 180 × 120
9 10.5s – – –

10 55s – – –

that M-ODE, tool 1 and tool 2 solve a large, dense linear system
of equations in every model evaluation, whereas M-DAE just
computes the residuals of this equation system. The CVODE
and IDA integrators calculate and factorize the system Jacobian
for the benchmark simulation only about 10-20 times during one
simulation run. This is just a small fraction of the linear equa-
tion systems that are solved inside every model evaluation of
M-ODE, tool 1 and tool 2.

8 Conclusion and Outlook
The paper outlines a path for utilization of available Modelica
models in modern tools based on Julia, at the same time allow-
ing integration of domain specialized models, such as multibody
models, coded in Julia. In addition, the Modia language and new
symbolic and numerical treatment of DAEs provide an experi-
mental platform for developing new modeling capabilities. To
make this path feasible, the translator from Modelica to Modia
needs to be extended and be able to invoke domain specializa-
tions for multibody, fluid, media, etc. fully automatically.

It has been shown how simulation with uncertainties can be
performed efficiently. A natural next step is to use these solver
capabilities in the context of optimization and machine learning
for surrogate models for speeding up simulations utilizing avail-
able packages from the Julia eco-system.

The Modia prototype handles benchmark models consisting
of large multibody systems together with equation-based com-
ponents much more efficiently as the examined Modelica tools
- both for startup/compilation time as well as for simulation
speed.

References
Arnold, Martin (2016). DAE aspects of multibody systems. Mar-

tin Luther University Halle-Wittenberg, Report No. 01. URL:
http://sim.mathematik.uni-halle.de/reports/sources/2016/01-
2016.pdf.

Bellmann, Tobias (2009). “Interactive Simulations and advanced
Visualization with Modelica”. In: Proceedings of the 7th In-
ternational Modelica Conference. LiU Electronic Press. DOI:
10.3384/ecp09430056.

Besançon, Mathieu et al. (2019). “Distributions.jl: Definition
and Modeling of Probability Distributions in the JuliaS-
tats Ecosystem”. In: arXiv e-prints. arXiv: 1907 . 08611
[stat.CO].

Session 1B: Julia

DOI
10.3384/ecp2118173

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

85

Bezanson, Jeff et al. (2017). “Julia: A fresh approach to numer-
ical computing”. In: SIAM review 59.1, pp. 65–98. DOI: 10.
1137/141000671.

Brandl, Helmut, Rainer Johanni, and Martin Otter (1986). “A
Very Efficient Algorithm for the Simulation of Robots and
Similar Multibody Systems without Inversion of the Mass
Matrix”. In: Proceedings of IFAC/IFIP/IMACS International
Symposium on the Theory of Robots. Elsevier. DOI: 10.1016/
S1474-6670(17)59460-4.

Carlson, Fredrik Bagge (2020). “MonteCarloMeasurements.jl:
Nonlinear Propagation of Arbitrary Multivariate Distribu-
tions by means of Method Overloading”. In: arXiv e-prints.
arXiv: 2001.07625 [cs.MS].

Elmqvist, Hilding, Toivo Henningsson, and Martin Otter (2017).
“Innovations for Future Modelica”. In: Proceedings of the
12th International Modelica Conference. LiU Electronic
Press. DOI: 10.3384/ecp17132693.

Featherstone, R. (1983). “The Calculation of Robot Dynam-
ics Using Articulated-Body Inertias”. In: International Jour-
nal of Robotics Research 2.1, pp. 13–30. DOI: 10 . 1177 /
027836498300200102.

Giordano, Mosè (2016). “Uncertainty propagation with func-
tionally correlated quantities”. In: arXiv e-prints. arXiv:
1610.08716 [physics.data-an].

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library – Recent develop-
ment and applications”. In: Proceedings of the 10th Interna-
tional Modelica Conference. LiU Electronic Press. DOI: 10.
3384/ECP14096899.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396.

Ma, Yingbo et al. (2021). “ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing”. In: arXiv e-prints. arXiv: 2103.05244 [cs.MS].

Modelica Association (2020). The Modelica Standard Library,
Version 4.0.0. URL: https : / / github . com / modelica /
ModelicaStandardLibrary/.

Modelica Association (2021). Modelica – A Unified Object-
Oriented Language for Systems Modeling, Language Speci-
fication, Version 3.5. URL: https://specification.modelica.org/
maint/3.5/MLS.html.

Neumayr, Andrea and Martin Otter (2018). “Component-Based
3D Modeling of Dynamic Systems”. In: Proceedings of the
American Modelica Conference. LiU Electronic Press. DOI:
10.3384/ECP18154175.

Neumayr, Andrea and Martin Otter (2019a). “Algorithms for
Component-Based 3D Modeling”. In: Proceedings of the
13th International Modelica Conference. LiU Electronic
Press. DOI: 10.3384/ecp19157383.

Neumayr, Andrea and Martin Otter (2019b). “Collision Han-
dling with Elastic Response Calculation and Zero-Crossing
Functions”. In: Proceedings of the 9th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools. EOOLT’19. ACM, pp. 57–65. DOI: 10 .
1145/3365984.3365986.

Nystrom, Robert (2014). Game Programming Patterns. Gen-
ever Benning. ISBN: 978-0-9905829-0-8. URL: http : / /
gameprogrammingpatterns.com/.

Otter, Martin and Hilding Elmqvist (2017). “Transformation of
Differential Algebraic Array Equations to Index One Form”.

In: Proceedings of the 12th International Modelica Confer-
ence. LiU Electronic Press. DOI: 10.3384/ecp17132565.

Otter, Martin, Hilding Elmqvist, et al. (2019). “Thermodynamic
Property and Fluid Modeling with Modern Programming
Language Construct”. In: Proceedings of the 13th Interna-
tional Modelica Conference. LiU Electronic Press. DOI: 10.
3384/ecp19157589.

Rackauckas, Christopher and Qing Nie (2017a). “Differentiale-
quations. jl–a performant and feature-rich ecosystem for solv-
ing differential equations in julia”. In: Journal of Open Re-
search Software 5.1.

Rackauckas, Christopher and Qing Nie (2017b). “DifferentialE-
quations.jl – A Performant and Feature-Rich Ecosystem for
Solving Differential Equations in Julia”. In: The Journal of
Open Research Software 5.1. DOI: 10.5334/jors.151.

Revels, Jarrett, Miles Lubin, and Theodore Papamarkou (2016).
“Forward-Mode Automatic Differentiation in Julia”. In:
arXiv e-prints. arXiv: 1607.07892 [cs.MS].

Tinnerholm, John et al. (2020). “Towards an Open-Source Mod-
elica Compiler in Julia”. In: Proceedings of Asian Model-
ica Conference 2020. LiU Electronic Press. DOI: 10 .3384 /
ecp2020174143.

Toledo, Sivan (1997). “Locality of Reference in LU Decomposi-
tion with Partial Pivoting”. In: SIAM Journal on Matrix Anal-
ysis and Applications 18.4, pp. 1065–1081. DOI: 10 . 1137 /
S0895479896297744.

Modia - Equation Based Modeling and Domain Specific Algorithms

86 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118173

Modia and Julia for Grey Box Modeling

Frederic Bruder1 Lars Mikelsons1

1 Chair of Mechatronics, Augsburg University, Germany, {frederic.bruder,lars.mikelsons}@uni-a.de

Abstract
During the process of modelling an existing dynamic
physical system, it may be hard to capture some of
the phenomena exactly on the basis of only textbook-
equations. With measurement data from the real sys-
tem, approximators like artificial neural networks can help
improve the models. However, simulation and machine
learning are usually done in different software applica-
tions. A unified environment for modeling, simulation and
optimization would be highly valuable. We here present
a framework within the Julia programming language that
encompasses tools for acausal modeling, automatic differ-
entiation rsp. sensitivity analysis involving solvers for dif-
ferential equations. We use it to build and evaluate an eas-
ily interpretable model based on both physics and data.
Keywords: Grey Box Modeling, Hybrid Modeling, Scien-
tific Machine Learning, Modia, Julia

1 Introduction
1.1 Usefulness of Acausal Modeling
Equation-based acausal modeling like in Modelica has
considerable benefits for the model author when compared
to signal-based modeling.

It allows them to structure model equations and vari-
ables hierarchically, which greatly promotes later reuse of
the components. It lets the author focus on model topol-
ogy rather than signal flow and its direction within the
model. Connect equations instead of assignments permit
signal flow in both directions so that the compiler can de-
cide what the direction will be.

Well-established Modelica Compilers automatically
improve the numerical behaviour of the models, e.g. by
reducing the size of nonlinear systems with the help of
tearing or by reducing the index of Differential-Algebraic-
Equations (DAE).

In short: acausal modeling is highly useful because it
eases the job for authors of white box (i.e. mechanistic
physics-based) models.

1.2 Grey Box Modeling
In the case of GBM (‘Grey Box Modeling’ or ‘... Model’),
the author combines approximators like ANN (artificial
neural networks) with trusted white box model equations.
The goal of this technique is to transfer physical knowl-
edge into a model that can be improved with the help of
machine learning. Others referred to this field as ‘Scien-
tific Machine Learning’ (Rackauckas, Ma, et al. 2020),

‘Hybrid Physics Guided Machine Learning’ (Rai and Sahu
2020) or simply ‘Hybrid Modeling’ (Willard et al. 2020).
There are different motivations to do this:

• Known white box models may fail to describe the
dynamics of an existing system appropriately. In this
case the insertion of ANN into a model may help
to reduce model error w.r.t. ground truth data col-
lected the real physical system. Imagine a situation
in which you first model a physical system. Take, for
example, a simple model to predict the temperature
in a lake as in (Karpatne et al. 2018). Although you
stuck to well-known mechanistic equations, you see
that the prediction error is too high. Due to the na-
ture of the errors, you suspect a systematic error, not
a stochastic one. To improve your model, you have a
few options: You could try and improve your model
by altering the equations you used. You would have
to think about your model assumptions and whether
or not they hold. This may, after possibly a lot of
work, provide you with new physical insights. If you
are more interested in fast results or if your system
is just too complicated to fully grasp, you may con-
sider using a machine learning-assisted approach that
your initial model as a starting point and optimizes
the ‘flexible’ parts to improve the predictions.

• White box models may require more computa-
tional resources than their target platform offers.
Performance-critical parts may then be exchanged by
ANN in order to create more efficient surrogate mod-
els. Thus, this technique enables model authors to
trade model accuracy for better performance. An ex-
ample of this application can be found in (Ma et al.
2021).

There are some complications with well-established Mod-
elica compilers when it comes to GBM:

• Small modifications of existing Modelica models
may require substantial refactoring. For example,
you may have to declare a few new (abstract) com-
ponents if you just want to replace a single equation
in a model.

• It may be hard for a user to interpret or edit the struc-
ture of causalized models. This is problematic when
it is not yet clear where exactly the ANN shall be in-
serted into the model. ANN that are defined as math-
ematical functions typically have an ‘input layer’ that

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

87

is nonlinearly transformed to an ‘output layer’. Said
transformation may be arbitrarily complex. During
the causalization process of the model equations, sig-
nal flow may be ‘reversed’ w.r.t. the intended direc-
tion so that the ANN is bound to end up in a root
finding loop. This might lead to subpar numerical
performance. To prevent this situation, the model au-
thor may wish to decide where exactly the ANN is
included after the causalization process. It is, how-
ever, not very convenient to deal with C-Code output
from a Modelica compiler.

• Another issue is the ANN training process. ANN
are typically optimized w.r.t. their training/hyper pa-
rameters in languages that promote fast prototyping
(e.g. Python, Julia, R, ...) with the help of tools like
automatic differentiation. The latter kind of tools of-
ten requires that the function to be differentiated be
formulated in the same language as the prototyping
language.

It would be much more convenient to have modeling, sim-
ulation, automatic differentiation / sensitivity analysis and
optimization algorithms in a single unified environment
suited for rapid prototyping.

1.3 Julia
Julia (Bezanson et al. 2012) is one of such languages that
promote fast prototyping. Julia has become popular in the
scientific community because of the high level of perfor-
mance it can reach without the need to use precompiled
libraries created in a different language. The latter work-
flow is common e.g. in Python. On top of that, an ecosys-
tem of packages useful for scientific calculations has gath-
ered around it. Moreover, Julia offers metaprogramming
capabilities that make it possible to create DSL (domain-
specific languages).

1.4 Modia / TinyModia for GBM
Modia (Elmqvist and Otter 2017) is such a DSL that can
be used within Julia. Its authors describe it as a testbed for
new features for the Modelica language that ‘shall be both
simpler and more powerful than Modelica 3.3‘.

Modia offers features highly valuable to GBM since it
solves some of the issues listed in 1.2. In our present re-
search, we are, however, using TinyModia (Elmqvist and
Otter 2021) v.0.7.2 that had some features not yet present
Modia.

• Models are represented as hierarchical
NamedTuples. They can be modified with a
mechanism called ‘merging’, their Array fields can
even be manipulated directly. So, after a model has
been declared, it can be modified equation-wise.
This allows for a very convenient GBM workflow:
you can declare a base model and then derive differ-
ent versions of grey box models where different sets
of equations are modified.

Whereas in Modelica, one would typically have to
define new (replaceable) component Models with a
different set of equations and then derive simulation
Models as a combination of those new components.

• During model ‘instantiation’, a Julia method
(getDerivatives!) that calculates the state
derivatives of the model is generated with the help
of metaprogramming. Due to the open nature of
TinyModia, the AST (abstract syntax tree) that, when
evaluated, defines this new method, can be altered as
well.

Modelica Compilers, on the other hand, do not ex-
pose the AST of the simulation code to Julia. While
they output source code of the simulation model,
working with this representation would be less con-
venient: one would have to modify the output C-
Code manually, without Julia’s metaprogramming
functionality.

• With a modifiable method getDerivatives!,
the model author can take advantage of packages
other than TinyModia to simulate the model. With
this workflow, it even becomes possible to perform
AD through solvers using the scientific packages
available for Julia.

1.5 Structure of this Paper
This paper is structured as follows. In section 2, we de-
scribe a planar slip-based vehicle model which we mod-
ified to fit to our tests. Using this model as an example,
we elaborate how models can be turned into GBM by re-
placing a set of model equation terms by trainable neural
networks. In section 3, we proceed by detailling the time
horizon-based training scheme that we used to train said
neural networks. We then describe how we designed our
tests with the modified and optimized vehicle model in
section 4 and discuss the results. After that in 5, we de-
scribe the framework of tools we used to set up a GBM.
In addition, we describe possible features for TinyModi-
a/Modia that would have made our workflow a lot eas-
ier. Next, we name some of our future research perspec-
tives involving the mentioned tool set and the Grey Box
methodology. We then finish with a conclusion.

The main contribution of this paper is the detailed
framework of tools that we use for Grey Box Modelling.
We describe how to set up a model and enhance it with
artificial neural networks. We sketch a training loop that
is capable of optimizing such grey box models. We make
suggestions for new features that would have made this
process a lot more straight-forward.

2 GBM of a Single Track Vehicle
2.1 Original Model and our Modifications
We applied the ideas explained above to an NLSTM (non-
linear single track model). It makes use a well-known

Modia and Julia for Grey Box Modeling

88 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

slip-based tire model as in (Pacejka 2005). The original
model without suspension dynamics from (Velenis, Fraz-
zoli, and Tsiotras 2009), on which our model is based,
focusses on stability of cornering maneuvers, whereas we
needed a more general purpose model. So we chose an
alternative set of dynamic states uuu for our NLSTM:

uuu =
[
ẋ ẏ ψ ψ̇ x y ωF ωR

]T (1)

x and y denote the location of the center of mass of the
vehicle. ψ measures the yaw angle / heading direction of
the vehicle, ωF and ωR describe the rotational velocity of
the front and rear wheel. Furthermore, we modified the
original slip-based friction model to be less numerically
stiff. For this, each occurrence of the term on the RHS
(right-hand side) of

hard_pole(x) = |x|−1 (2)

was replaced by the RHS of

smooth_pole(x) =
{

|x|−1 if |x|> xi
− 1

2 |xi|−3x2 + 3
2 |xi|−1 else

}
(3)

with xi = 10−3. smooth_pole(x), as the name suggests,
is a symmetric continuously differentiable function that
replaces the actual ‘pole region’ of hard_pole(x) for
x ∈ [−xi,xi] by an inverted parabola tangent to the original
function. This modification effectively prevents divisions
by zero.

To have velocity-dependent friction in the model, a lin-
ear air drag force fff drag was applied to the center or mass
of the vehicle:

fff drag(xxx) = w ·
[
ẋ ẏ

]T (4)

Air drag parameter w was set to 30 Ns/m.
Apart from these three modifications, our RM (refer-

ence model) and the original model share the same equa-
tions and parameters. Note however, that xi was set arbi-
trarily. In a real application, it may be helpful to set this
parameter, introduced to enhance numerical performance,
based on collected data.

The model inputs are the same as those of the original
model:

iii(t) =
[
δ (t) TF(t) TR(t)

]T (5)

where δ is the steering angle, TF and TR are the engine
torques acting on the front rsp. the rear wheel.

2.2 Replaced Equations
In the original model, normal forces acting between the
ground and the wheels are denoted by fRz (rear wheel) and
fFz (front wheel). Based on the original model equations,
the following equations hold:

fRz =
mgA

A−hµRx + lR
(6)

fFz = mg− fRz (7)
A = h(µFxcos(δ)−µFysin(δ))+ lF (8)

m,g,h, lR and lF are fixed model parameters. A is a conve-
nience variable introduced for readability. The remaining
symbols in Table 1 are model variables which can change
during simulation.

Table 1. remaining model variables in Equations 8 to 7

Symbol(s) Meaning

δ steering angle
µFx,µFy friction quantities (front wheel)
µRx friction quantity (rear wheel)

Equations 8 to 7 can be restructured as:[
fRz
fFz

]
= fff Xz(h,µFx,δ ,µFy, lF ,m,g,µRx, lR) = fff Xz(vvv)

(9)

vvv is a convenience vector holding all the function argu-
ments. Like this, fff Xz calculates both fRz and fFz from
arguments vvv.

In order to turn the original model into a flexible GBM,
function fff Xz is replaced by an ANN named f̂ff Xz(θθθ ,vvv).
It depends on θθθ , a set of training parameters and vvv. It
was built from fully connected layers as depicted in Ta-
ble 2. This ANN was defined with the help of Flux.jl

Table 2. layers of ANN f̂ff Xz

layer # inputs # outputs activation

input 9 10 Relu
hidden 10 10 Relu
output 10 2 Identity

(Michael Innes et al. 2018) and is initialized using random
numbers drawn from a glorot_uniform distribution.

Note that the ANN takes as many inputs as the pair of
equations it replaces. This would not be neccessary, one
could exclude the fixed parameters and make the input
space 4-dimensional instead of 9-dimensional. The input
space is kept as large as that of fff Xz so that the knowledge
about which model variables change and which do not is
not required.

3 Model Training
3.1 Loss Function
The method into which the ANN was inserted specifies
the RHS of an ODE (ordinary differential equation). So,
getDerivatives! calculates ˙̂uuu(ûuu(t),θθθ , t).

In order to train the parameters of the ANN, a loss func-
tion l(θθθ) needs to be formulated. For this test, we chose
an MSE-based (mean squared error) function:

lMSE(θθθ ,C,S) =
1

|C| · |S| ∑
c∈C

∑
s∈S

(ûs(θθθ , t = c)−us(t = c))2

(10)

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

89

lMSE compares a single solution ûuu(θθθ , t) of the ODE to a
ground-truth solution uuu(t).

Normally, when ground-truth data is collected using
sensors from real physical systems, uuu(t) is only known
at specific points in time. We call these checkpoints and C
denotes the set of checkpoints relevant to lMSE .

S, on the other hand, is a set of states relevant to lMSE .
Typically, ground truth measurements cannot capture all
of the dynamic states that would be neccessary to fully
specify the state of an arbitrary model of the real system.
Our system state in Equation 1 has 8 entries. If you can
only measure, say, the planar position of the vehicle, S
would hold only 2 elements. us(t) rsp. ûs(t) denote the
trajectories of single elements of the system states in time.

3.2 Training Procedure
When we first tried to minimize lMSE with the full set of
available checkpoints, we would end up with with very
bad local minima. The solution trajectory to the model
ODE would look like an underfitting approximator: in-
stead of following the checkpoint trajectory closely, it
would resemble a smoothed cutting-corners version of the
checkpoint trajectory. This is due to the formulation of
our loss function: it compares the model ODE trajectory
against all of the measurements at the checkpoint times
at the same time and may reach local minima with the
last few checkpoints, whereas earlier checkpoints are far
missed.

However, this is not what we wanted. If early model
predictions are very far off, we do not care about whether
the model later succeeds in hitting checkpoints again. We
would rather expect later checkpoints to be missed even
further. Unless we are dealing with systems that evolve to
a stable equilibrium.

To overcome this issue, a growing horizon training
scheme has been implemented. It adds an outer loop to
our training loop: we start with horizon C0 = [t0, t1, ..., tinit]
and apply our inner training loop to optimize θθθ . The inner
loop then keeps iterating until we hit a breaking condition
involving distance metric dmax:

dmax(θθθ ,Cn,S) = max
c∈Cn,s∈S

|ûs(θθθ , t = c)−us(t = c)| (11)

If dmax falls below threshold dt , we save our last train-
ing parameter set θθθ

0∗, grow the training horizon to C1 =
[t0, t1, ..., tinit , tinit+1] and then further optimize θθθ

0∗ over
that new horizon. We repeat this process until our in-
ner loop has optimized θθθ over the final horizon C f inal =
C|C|−init−1. This training scheme heavily improved the
quality of our model predictions on the training set.

One may wonder why we constructed dmax, an arbitrary
distance metric, to be compared against a threshold in-
stead of governing lMSE instead. Both metrics evaluate
to 0 for a perfect θθθ . However, dmax < dt is a very intu-
itive condition: none of the trajectories of the states in S
may deviate further than dt off the recorded time series
data at the checkpoint times. If lMSE was compared to a

fixed threshold instead, the condition would become more
and more permissive towards single outliers the larger the
horizon grows.

4 Evaluation
4.1 Generation of Training Data
For lack of a real vehicle on which to collect data, we
made use of the original vehicle model to generate training
data for our GBM. Our data generation is limited to open-
loop DLC (double lane changes) that the vehicle performs
after its initial state has been set to a straight slip-free state:

uuu0 = 30 · [1,0,0,0,0,0,r−1
F ,r−1

R]T (12)

Figure 1 and Table 3 illustrate how model input δ (t) is
varied over time. During all DLC maneuvers, model

Figure 1. δ (t) during a DLC maneuver

Table 3. DLC parameters

Parameter Meaning

δmax maximum absolute steering angle
T turn time
S lane switch time
O time on the oncoming lane

inputs TR and TF are kept constant over time. TR is fixed
at 0, whereas the value of TF is a maneuver parameter.

Thus, a single DLC maneuver of ours is parametrized
using a set of five parameters:

pppDLC = [δmax,T,S,O,TF] (13)

4.2 Results
In the following, the training dataset was limited to
only one trajectory that was produced with the DLC
parametrization shown in Equation 14.

ppptrain
DLC = ppp1

DLC = [
π

8
rad,1s,1s,2s,1000Nm] (14)

The final training horizon was set to an equidistant grid:

Modia and Julia for Grey Box Modeling

90 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

Figure 2. DLC on the training maneuver parametrized by ppptrain
DLC

C f inal =
10
32

s · [1,2, ...,32] (15)

Cinit , on the other hand, held only the first three entries of
C f inal . S, the set of compared system states, was set to

S := {x,y} (16)

so that the optimization algorithm could only optimize the
ANN parameters on the basis of vehicle location data. It
was not provided information about the vehicle yaw angle
ψ . The fact that the normal load forces are very influential
effects within the model and that two (scalar) functions are
trained at once on only one trajectory makes this training
task particularly hard.

Figure 2 displays how the GBM (after training) and the
RM behave during the single training maneuver. The total
simulation time was set to 15s. The top subplot of Figure 2
shows how both RM and GBM moved on the x-y plane.
Note that the axes are not scaled equally. Both models
start in the origin of the coordinate system (as specified in
Equation 12). The crosses mark where both models were
located at t = 10s, i.e. the last time at which states in S
were compared to train the ANN. It can be seen how the
GBM follows the track of the RM closely at first. Larger

differences occur mostly after the 10s-mark. This is due
to the imperfect prediction of ψ , which can be seen in the
bottom plot. After the completion of the DLC, a notice-
able difference remains between the predicted ψ of the
GBM and that of the RM.

Figure 3. DLC on the training maneuver parametrized by ppp2
DLC

A first validation maneuver is specified in Equation 17.
This scenario differs from the training scenario by the time
spent on the oncoming lane. It is now three times as long.

ppp2
DLC = [

π

8
rad,1s,1s,6s,1000Nm] (17)

The results can be seen in Figure 3. This time, the largest
deviations can be seen after the vehicle returns to the ini-
tial lane. Once again, the final ψ of the RM and the GBM
are different so that over time, the tracks will keep drifting
further apart.

Another interesting maneuver is defined in Equation 18.

ppp3
DLC = [

π

8
rad,5s,1s,2s,1000Nm] (18)

Compared to ppp1
DLC, it only differs by the turning time,

which here is 5 times as long. This parametrization no

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

91

longer looks like a DLC maneuver, but it still demon-
strates how the tracks shown in Figure 4 drift apart over
time.

Figure 4. DLC on the training maneuver parametrized by ppp3
DLC

The results are heavily different for the last maneuver
considered here in Equation 19.

ppp4
DLC = [

π

16
rad,1s,1s,2s,1000Nm] (19)

The trajectories can be seen in Figure 5. Deviations
quickly build up even before changing lanes for the sec-
ond time.

4.3 Discussion
Comparing (projections of) trajectories in state space in
an objective manner is non-trivial. For this reason, we
will resort to arguing qualitatively. Maneuver ppp1

DLC, ppp2
DLC

and ppp3
DLC have in common that the tracks of both the RM

and the GBM share strong similarities. Deviations be-
come clearly visible as simulation time runs, but the be-
haviour seems to be comparable. Furthermore, the corre-
sponding trajectories of ψ are encouraging since they look
even more similar, although the GBM was never explicitly
trained to fit its predictions along that axis of state space.

Figure 5. DLC on the training maneuver parametrized by ppp4
DLC

Not so in the case of ppp4
DLC, however. The GBM misses

the track of the RM by far. This mismatch is further dis-
played by the corresponding trajectories of ψ .

The reason for the different results is probably the na-
ture of the differences between the maneuver parameters.
The first three maneuver parameter sets only differ in tim-
ing parameters (T,S,O), not signal level parameters (δ).
The ANN is evaluated many times during a single maneu-
ver simulation. Friction quantities µFx, µFy and µRx are
not directly influenced by the parameter sets and can vary
during the simulations. This is not the case for δ . It is
directly passed through to the input layer of the ANN. For
this reason, during the last maneuver, the ANN was pre-
sented with inputs that it just could not have seen through-
out the single training maneuver.

Although differences between GBM predictions and the
data are visible, it was shown that GBM has the potential
to enhance/complete white box models with very sparse
data. Facilities to enhance models in this manner should
become features of acausal modeling tools like Modi-
a/TinyModia.

Modia and Julia for Grey Box Modeling

92 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

4.4 Remarks
lMSE evaluates how well the GBM follows the track of the
RM. Even if it reports a very low loss, can we ever expect
our ANN to calculate ‘the correct’ normal forces? Or can
a potentially large space of functions lead to low losses?

In order to answer this question for our trained model,
we compared fff Xz and f̂ff Xz over the GBM trajectory simu-
lated from maneuver ppp2

DLC. The results are shown in Fig-
ure 6. Note that this step cannot usually be done in prac-
tice if the underlying system equations are unknown.

As we can see, fff Xz and f̂ff Xz do not behave as similarly
as we would like them to. Due to Equation 7, the compo-
nents of fff Xz always add up to a constant value: the reac-
tion force that neutralises the gravitational force acting on
the vehicle CoM. When we replaced the set of equations
by the ANN, we explicitly neglected this invariance. And
as we can see, our optimization technique did not recover
said invariance from the single training trajectory.

5 Framework of Tools
5.1 GBM
The model that was described in 2.1 has been declared
with the help of TinyModia. The model inputs are passed
to the vehicle model using a separate ‘Driver’ model that
sets the inputs.

The actual replacement of Equations 8 to 7 was done
by modifying the AST of the model directly before the
model instantiation process mentioned in subsection 1.4:
fff Xz was replaced by f̂ff Xz. During said process, the
getDerivatives! method was written to a file and
later modified by hand as detailed in the next subsection.
With the second feature in 5.3, this process would have
been easy to automate as well.

5.2 Training Procedure
As a part of a gradient descent based optimization of
lMSE(θθθ), gradients/sensitivities of ûuu(t) w.r.t. θθθ are re-
quired. For this task, we relied on Zygote.jl (Mike
Innes et al. 2019) and DifferentialEquations.jl
(Rackauckas and Nie 2017).
DifferentialEquations’s solve was used

with solver Tsit5() and default options to simulate the
GBM in order to yield ûuu(t). To differentiate ûuu(t) at spe-
cific points w.r.t. θθθ , Zygote needs information on how to
calculate sensitivities of ODE solutions. This gap is filled
using package DiffEqSensitivity.jl. In the stan-
dard setting, which we used, an approach based on adjoint
sensitivities is used.
DifferentialEquations’s solve requires the

user to specify an array of parameters with respect to
which the ODE solution can then be differentiated.

At the time of writing this, this detail may be inconve-
nient to users. It is the reason why the results returned
from TinyModia’s simulate! calls can not be differen-
tiated w.r.t. model parameters.

We worked around this issue by further modifying
the getDerivatives! function mentioned in subsec-
tion 5.1. We made θθθ a function parameter as well and then
called DifferentialEquations’s solve ourselves
to enable differentiation.

5.3 Requested Features in Modia/TinyModia
To streamline the GBM workflow, we would like to see
the following features in Modia/TinyModia:

• Compatibility of simulate! with Zygote.jl
The need for a lot of work currently necces-
sary in order to generate GBM would be re-
moved if Modia/TinyModia simulation results could
be differentiated with respect to model param-
eters. Since simulate! internally uses
DifferentialEquations’s solve that gener-
ally offers this functionality, we believe that the main
work to be done here resides in the creation of a seri-
alized version of all model parameters (i.e. in a single
Array passed to solve).

• The ability to obtain the AST of
getDerivatives! conveniently after in-
stantiation
It should not be neccessary to print the code of
getDerivatives! to file from a debug log.
Instead, the AST should be returned as an expression
if the user requests this. This feature would be very
handy for the more experimental case in which the
user does not know beforehand where to best place
ANN.

• The ability to mark equations for later replace-
ment by ANN-enhanced equations
We modified assignments manually with ANN in the
generated simulation code.
Normally, users of software intended for acausal
modeling and subsequent simulation do not interact
with intermediate representations of the model equa-
tions or the generated simulation code. They may
have a slight idea of which of the model components
in their model is "faulty" and leads to errors observed
when simulation results are compared to real-world
measurements. Take air drag as an example. Drag
is a complex phenomenon and it is unlikely that a
model as simple as ours in Equation 4 is sufficient to
make good predictions in a real-world scenario with
very low and high vehicle velocities. We are certain
about which are the "faulty" model equations but we
would not know how to improve them without exten-
sive knowledge about aerodynamics.

However in order to insert ANN into those "faulty"
equations like we did in this paper, a user would have
to modify the simulation code by hand like we did.
They may have trouble finding the exact lines of code
produced from their "faulty" component equations.

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

93

Figure 6. Comparison of the normal forces. The RM internally uses fff Xz to calculate normal forces fRz and fFz, the GBM uses f̂ff Xz.

Even then they are restricted to the causalization cre-
ated by the model transformation algorithm. After
all, the user might want to include new variables in
those equations.

We would like to have a feature that lets the user
mark equations they are uncertain about with a tag
and possibly additional desired involved model vari-
ables during the modeling process. The causalization
algorithm would then work as usual and determine a
sequence of calculation and possibly algebraic loops
whilst keeping track of the user-provided equation
tags. The user would then be informed about where
and how their equations are used in the final calcu-
lation graph. Whether they are part of an algebraic
loop, what their (or the corresponding loop’s) inputs
are and which model variable they were matched to.

With this information, the user can create an ANN
with the right input/output size. The user would be
very free to design what happens in the ANN: It
could just be a densely connected layers with appro-
priate activation functions. Or it could take the orig-
inal "faulty" equation as a basis and just add such a
network so that the latter only has to learn a differ-

ence.

After the user has provided an ANN for each of
the marked equations, a code generating algorithm
would produce the actual simulation code for the
model. This then leaves the user with an ANN-
infused model that can be trained on an arbitrary data
set.

6 Future Research
We are planning to experiment with different training
schemes that operate on a set of trajectories instead of just
a single training maneuvers.

Moreover, it may be beneficial to alter the way we build
time horizons over which we compare trajectories. Instead
of growing a single horizon to full length, one could slice
a single trajectory into several segments and calculate gra-
dients in parallel.

Another issue that needs to be addressed is the normal-
isation/transformation of the inputs that reach the ANN
parts of the model. Some neural network architectures/ac-
tivation functions were designed assuming that inputs to
the input layer follow specific distributions. We did not

Modia and Julia for Grey Box Modeling

94 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

account for this yet because it is an inherent property of
our model structure. Before we simulate our model, we
do not yet know what the inputs to the ANN will be. After
all, they depend on the solution to the ODE. It should be
possible to construct an algorithm that adapts a prescaler
to keep inputs over training trajectories inside specific
bounds. Future research will have to show whether this
is feasible or whether this situation can be solved differ-
ently e.g. by making use of different activation functions.

For our loss function, we relied on a very simple MSE-
based formulation. Other (differentiable) metrics such as
soft dynamic time warping (Cuturi and Blondel 2017) ex-
ist in order to compare time series data. We will evalu-
ate whether these alternative metrics are beneficial to our
training results.

Furthermore, we will examine whether invertible neural
networks as in (Ardizzone et al. 2019) can help overcome
the issue of ANN ending up in inefficient root-finding
loops.

7 Conclusion
We demonstrated that GBM can be trained with very
sparse data to yield remarkable results. Furthermore, we
detailed how to achieve this with free software and made
suggestions for features that would make this process a lot
simpler for the user.

References
Ardizzone, Lynton et al. (2019). Analyzing Inverse Prob-

lems with Invertible Neural Networks. arXiv: 1808 . 04730
[cs.LG].

Bezanson, Jeff et al. (2012). “Julia: A fast dynamic language for
technical computing”. In: arXiv preprint arXiv:1209.5145.

Cuturi, Marco and Mathieu Blondel (2017). “Soft-dtw: a differ-
entiable loss function for time-series”. In: International Con-
ference on Machine Learning. PMLR, pp. 894–903.

Elmqvist, Hilding and Martin Otter (2017). “Innovations for fu-
ture Modelica”. In: Proceedings of 12th International Model-
ica Conference. Linköping University Electronic Press.

Elmqvist, Hilding and Martin Otter (2021). TinyModia.
https://github.com/ModiaSim/TinyModia.jl. Accessed: 2021-
05-07.

Innes, Michael et al. (2018). “Fashionable Modelling with
Flux”. In: CoRR abs/1811.01457. arXiv: 1811.01457. URL:
https://arxiv.org/abs/1811.01457.

Innes, Mike et al. (2019). “A differentiable programming sys-
tem to bridge machine learning and scientific computing”. In:
arXiv preprint arXiv:1907.07587.

Karpatne, Anuj et al. (2018). Physics-guided Neural Networks
(PGNN): An Application in Lake Temperature Modeling.
arXiv: 1710.11431 [cs.LG].

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Pacejka, Hans (2005). Tire and vehicle dynamics. Elsevier.
Rackauckas, Christopher, Yingbo Ma, et al. (2020). Univer-

sal Differential Equations for Scientific Machine Learning.
arXiv: 2001.04385 [cs.LG].

Rackauckas, Christopher and Qing Nie (2017).
“Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia”. In:
Journal of Open Research Software 5.1.

Rai, R. and C. K. Sahu (2020). “Driven by Data or De-
rived Through Physics? A Review of Hybrid Physics Guided
Machine Learning Techniques With Cyber-Physical System
(CPS) Focus”. In: IEEE Access 8, pp. 71050–71073.

Velenis, Efstathios, Emilio Frazzoli, and Panagiotis Tsiotras
(2009). “On steady-state cornering equilibria for wheeled ve-
hicles with drift”. In: Proceedings of the 48h IEEE Confer-
ence on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference. IEEE, pp. 3545–3550.

Willard, Jared et al. (2020). Integrating Physics-Based Model-
ing with Machine Learning: A Survey. arXiv: 2003 . 04919
[physics.comp-ph].

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

95

96 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Composing Modeling and Simulation with
Machine Learning in Julia

Chris Rackauckas1,2 Ranjan Anantharaman2 Alan Edelman2 Shashi Gowda2 Maja Gwozdz1

Anand Jain1 Chris Laughman3 Yingbo Ma1 Francesco Martinuzzi1 Avik Pal1 Utkarsh
Rajput1 Elliot Saba1 Viral B. Shah1

1Julia Computing Inc., USA
2Massachusetts Institute of Technology, USA

3Mitsubishi Electric Research Lab, USA

Abstract
In this paper we introduce JuliaSim, a high-performance
programming environment designed to blend traditional
modeling and simulation with machine learning. JuliaSim
can build accelerated surrogates from component-based
models, such as those conforming to the FMI standard,
using continuous-time echo state networks (CTESN). The
foundation of this environment, ModelingToolkit.jl, is an
acausal modeling language which can compose the trained
surrogates as components within its staged compilation
process. As a complementary factor we present the Ju-
liaSim model library, a standard library with differential-
algebraic equations and pre-trained surrogates, which can
be composed using the modeling system for design, opti-
mization, and control. We demonstrate the effectiveness
of the surrogate-accelerated modeling and simulation ap-
proach on HVAC dynamics by showing that the CTESN
surrogates accurately capture the dynamics of a HVAC
cycle at less than 4% error while accelerating its simu-
lation by 340x. We illustrate the use of surrogate ac-
celeration in the design process via global optimization
of simulation parameters using the embedded surrogate,
yielding a speedup of two orders of magnitude to find
the optimum. We showcase the surrogate deployed in a
co-simulation loop, as a drop-in replacement for one of
the coupled FMUs, allowing engineers to effectively ex-
plore the design space of a coupled system. Together this
demonstrates a workflow for automating the integration of
machine learning techniques into traditional modeling and
simulation processes.
Keywords: modeling, simulation, Julia, machine learning,
surrogate modeling, acceleration, co-simulation, Func-
tional Mock-up Interface

1 Introduction
With the dramatic success of artificial intelligence and
machine learning (AI/ML) throughout many disciplines,
one major question is how AI/ML will change the field
of modeling and simulation. Modern modeling and sim-
ulation involves the time integration of detailed multi-
physics component models, programmatically generated

by domain-specific simulation software. Their large com-
putational expense makes design, optimization and con-
trol of these systems prohibitively expensive (Benner,
Gugercin, and Willcox 2015). Thus one of the major pro-
posed avenues for AI/ML in the space of modeling and
simulation is in the generation of reduced models and
data-driven surrogates, that is, sufficiently accurate ap-
proximations with majorly reduced computational burden
(Willard et al. 2020; Ratnaswamy et al. 2019; Zhang et
al. 2020; Y. Kim et al. 2020; Hu et al. 2020). While the
research has shown many cross-domain successes, the av-
erage modeler does not employ surrogates in most projects
for a number of reasons: the surrogatization process is
not robust enough to be used blindly, it can be difficult
to ascertain whether the surrogate approximation is suffi-
ciently accurate to trust the results, and it is not automated
in modeling languages. This begs the question – how does
one develop a modeling environment that seamlessly inte-
grates traditional and machine learning approaches in or-
der to merge this newfound speed with the robustness of
stabilized integration techniques?

The difficulty of addressing these questions comes
down to the intricate domain-specific algorithms which
have been developed over the previous decades. Many
scientists and engineers practice modeling and simulation
using acausal modeling languages, which require sophis-
ticated symbolic algorithms in order to give a stable result.
Algorithms, such as alias elimination (Otter and Elmqvist
2017) and the Pantelides algorithm for index reduction
(Pantelides 1988), drive the backend of current Modelica
compilers like Dymola (Brück et al. 2002) and OpenMod-
elica (Fritzson, Aronsson, et al. 2005) and allow for large-
scale differential-algebraic equation (DAE) models to be
effectively solved. Notably, these compiler pipelines en-
code exact symbolic transformations. One can think of
generalizing this process by allowing approximate sym-
bolic transformations, which can thus include model re-
duction and machine learning techniques. As this pro-
cess now allows for inexact transformation, the modeling
language would need to allow users to interact with the
compiler. Moreover, it would have to allow users to swap
in and out approximations, selectively accelerate specific

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

97

submodels, and finally make it easy to check the results
against the non-approximated model.

To address these issues, we introduce JuliaSim — a
modeling and simulation environment, which merges ele-
ments of acausal modeling frameworks like Modelica with
machine learning elements. The core of the environment
is the open source ModelingToolkit.jl (Ma et al. 2021), an
acausal modeling framework with an interactive compila-
tion mechanism for including exact and inexact transfor-
mations. To incorporate machine learning, we describe
the continuous-time echo state network (CTESN) archi-
tecture as an approximation transformation of time series
data to a DAE component. Notably, the CTESN archi-
tecture allows for an implicit training to handle the stiff
equations common in engineering simulations. To demon-
strate the utility of this architecture, we showcase the
CTESN as a methodology for translating a Room Air Con-
ditioner model from a Functional Mock-up Unit (FMU)
binary to an accelerated ModelingToolkit.jl 1 model with
4% error over the operating parameter range, accelerat-
ing it by 340x. We then show how the accelerated model
can be used to speed up global parameter optimization by
over two orders of magnitude. As a component within
an acausal modeling framework, we demonstrate its abil-
ity to be composed with other models, here specifically
in the context of the FMI co-simulation environment. We
believe that these results indicate the promise of blending
machine learning surrogate methods in the broader mod-
eling and simulation workflow.

2 Overview of JuliaSim
The flow of the architecture (Figure 1) is described as fol-
lows. We start by describing the open ModelingToolkit.jl
acausal modeling language as a language with compos-
able transformation passes to include exact and approxi-
mate symbolic transformations. To incorporate machine
learning into this acausal modeling environment, we de-
scribe the CTESN, which is a learnable DAE structure that
can be trained on highly stiff time series to build a repre-
sentation of a component. To expand the utility of com-
ponents, we outline the interaction with the FMI standard
to allow for connecting and composing models. Finally,
we present the JuliaSim model library, which is a collec-
tion of acausal components that includes pre-trained sur-
rogates of models so that users can utilize the acceleration
without having to pay for the cost of training locally.

2.1 Interactive Acausal Modeling with Model-
ingToolkit.jl

ModelingToolkit.jl (Ma et al. 2021) (MTK) is a frame-
work for equation-based acausal modeling written in
the Julia programming language (Bezanson et al. 2017),
which generates large systems of DAEs from symbolic
models. MTK takes a different approach than Modia.jl2,

1https://github.com/SciML/ModelingToolkit.jl
2https://github.com/ModiaSim/Modia.jl

another Julia package for acausal modeling. For a compar-
ison between MTK, Modia and Modelica, the reader re-
ferred to this article 3 as well this section of the documen-
tation 4. Similarly to Modelica, MTK allows for build-
ing models hierarchically in a component-based fashion.
For example, defining a component in MTK is to define a
function which generates an ODESystem:

function Capacitor(;name, C = 1.0)
val = C
@named p = Pin(); @named n = Pin()
@variables v(t); @parameters C
D = Differential(t)
eqs = [v ~ p.v - n.v

0 ~ p.i + n.i
D(v) ~ p.i / C]

ODESystem(eqs, t, [v], [C],
systems=[p, n],
defaults=Dict(C => val),
name=name)

end

Systems can then be composed by declaring subsystems
and defining the connections between them. For instance,
the classic RC circuit can be built from standard electrical
components as:

@named resistor = Resistor(R=100)
@named capacitor = Capacitor(C=0.001)
@named source = ConstantVoltage(V=10)
@named ground = Ground()
@named rc_model = ODESystem([

connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n,

ground.g)],
t, systems=[resistor, capacitor,

source, ground])

The core of MTK’s utility is its system of trans-
formations, where a transformation is a function
which takes an AbstractSystem type to another
AbstractSystem type. Given this definition, trans-
formations can be composed and chained. Transfor-
mations, such as dae_index_lowering, transform
a higher-index DAE into an index-1 DAE via the Pan-
telides algortithm (Pantelides 1988). Nonlinear tear-
ing and alias_elimination (Otter and Elmqvist
2017) are other commonly used transformations, which
match the workflow of the Dymola Modelica compiler
(Brück et al. 2002) (and together are given the alias
structural_simplify). However, within this sys-
tem the user can freely compose transformations with
domain- and problem-specific transformations, such as
“exponentiation of a variable to enforce positivity” or “ex-
tending the system to include the tangent space”. After

3http://www.stochasticlifestyle.com/modelingtoolkit-modelica-and-
modia-the-composable-modeling-future-in-julia/

4https://mtk.sciml.ai/stable/comparison/

Composing Modeling and Simulation with Machine Learning in Julia

98 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118197

Figure 1. Compiler passes in the JuliaSim Modeling and Simulation system. Ordinarily, most systems simulate equation-based
models, described in the “Training Data Preparation” and the “Simulation or Co-simulation” phases. We provide an additional set
of steps in our compiler to compute surrogates of models. Blue boxes represent code transformations, yellow represents user source
code, gray represents data sources, and gold represents surrogate models. The dotted line indicates a feature that is currently work
in progress.

transformations have been composed, the ODEProblem
constructor compiles the resulting model to a native Ju-
lia function for usage with DifferentialEquations.jl (Rack-
auckas and Nie 2017).

2.2 Representing Surrogates as DAEs with
Continuous-Time Echo State Networks

In order to compose a trained machine learning model
with the components of ModelingToolkit.jl, one needs to
represent such a trained model as a set of DAEs. To this
end, one can make use of continuous machine learning
architectures, such as neural ODEs (Chen et al. 2018)
or physics-informed neural networks (Raissi, Perdikaris,
and Karniadakis 2019). However, prior work has demon-
strated that such architectures are prone to instabilities
when being trained on stiff models (Wang, Teng, and
Perdikaris 2020). In order to account for these difficul-
ties, we have recently demonstrated a new architecture,
CTESNs, which allows for implicit training in parame-
ter space to stabilize the ill-conditioning present in stiff
systems (Anantharaman et al. 2021). For this reason,
CTESNs are the default surrogate algorithm of JuliaSim
and will be the surrogate algorithm used throughout the
rest of the paper. We provide an overview of the CTESN
here, but for more details on the method, we refer the
reader to (Anantharaman et al. 2021).

The CTESN is a continuous-time generalization of
echo state networks (ESNs) (Lukoševičius 2012), a
reservoir computing framework for learning a nonlin-
ear map by projecting the inputs onto high-dimensional

spaces through predefined dynamics of a nonlinear system
(Lukoševičius and Jaeger 2009). CTESNs are effective at
learning the dynamics of systems with widely separated
time scales because their design eliminates the require-
ment of training via local optimization algorithms, like
gradient descent, which are differential equation solvers
in a stiff parameter space. Instead of using optimization,
CTESNs are semi-implicit neural ODEs where the first
layer is fixed, which results in an implicit training process.

To develop the CTESN, first a non-stiff dynamical sys-
tem, called the reservoir, is chosen. This is given by the
expression

r′ = f
(
Ar+Whybx(p∗, t)

)
(1)

where A is a fixed random sparse NR×NR matrix, Whyb
is a fixed random dense NR×N matrix, and x(p∗, t) is a so-
lution of the system at a candidate set of parameters from
the parameter space, and f is an activation function.

Projections (Wout) from the simulated reservoir time se-
ries to the truth solution time series are then computed,
using the following equation:

x(t) = g(Woutr(t)) (2)

where g is an activation function (usually the identity),
r(t) represents the solution to the reservoir equation, and
x(t) represents the solution to full model. This projec-
tion is usually computed via least-squares minimization

Session 1B: Julia

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

99

using the singular value decomposition (SVD), which is
robust to ill-conditioning by avoiding gradient-based opti-
mization. A projection is computed for each point in the
parameter space, and a map is constructed from the pa-
rameter space P to each projection matrix Wout (in our ex-
amples, we will use a radial basis function to construct this
map). Thus our final prediction is the following:

x̂(t) = g(Wout(p̂)r(t)) (3)

For a given test parameter p̂, a matrix Wout(p̂) is com-
puted, the reservoir equation is simulated, and then the
final prediction x̂ is a given by the above matrix multipli-
cation.

While the formulation above details linear projec-
tions from the reservoir time series (Linear Projection
CTESN or LPCTESN), nonlinear projections in the form
of parametrized functions can also be used to project from
the reservoir time series to the reference solution (Nonlin-
ear Projection CTESN). For this variation, a radial basis
function can be applied to model the nonlinear projection
r(t) 7→ x(t) in equation 2. The learned polynomial coeffi-
cients βi from radial basis functions are used, and a map-
ping between the model parameter space and coefficients
βi’s is constructed.

rbf(βi)(r(t))≈ x(pi, t) ∀i ∈ {1, . . . ,k} (4)
rbf(pi)≈ βi ∀i ∈ {1, . . . ,k} (5)

where k is the total number of parameter samples used
for training. Finally, during prediction, first the coeffi-
cients are predicted and a radial basis function for the pre-
diction of the time series is constructed:

β̂ = rbf(p̂) (6)

x̂(t) = rbf(β̂)(r(t)) (7)

Notice that both the LPCTESN and the NPCTESN rep-
resent the trained model as a set of DAEs, and thus can
be represented as an ODESystem in MTK, and can be
composed similarly to any other DAE model.

A significant advantage of applying NPCTESNs over
LPCTESNs is the reduction of reservoir sizes, which cre-
ates a cheaper surrogate with respect to memory usage.
LPCTESNs often use reservoirs whose dimensions reach
an order of 1000. While this reservoir ODE is not-stiff,
and is cheap to simulate, this leads to higher memory re-
quirements. Consider the surrogatization of the Robertson
equations (Robertson 1976), a canonical stiff benchmark
problem:

ẏ1 =−0.04y1 +104y2 · y3 (8)

ẏ2 = 0.04y1−104y2 · y3−3 ·107y2
2 (9)

ẏ3 = 3 ·107y2
2 (10)

where y1, y2, and y3 are the concentrations of three rea-
gants. This system has widely separated reaction rates
(0.04,104,3 · 107), and is well-known to be very stiff
(Gobbert 1996; Robertson and Williams 1975; Robertson
1976). It is commonly used as an example for evaluat-
ing integrators of stiff ODEs (Hosea and Shampine 1996).
Finding an accurate surrogate for this system is difficult
because it needs to capture both the stable slow-reacting
system and the fast transients. This breaks many data-
driven surrogate methods, such as PINNs and LSTMs
(Anantharaman et al. 2021). We shall now demonstrate
training a surrogate of this system with the reaction rates
as inputs/design parameters.

Table 1 shows the result of surrogatization using the
LPCTESN and the NPCTESN, while considering the fol-
lowing ranges of design parameters corresponding to the
three reaction rates: (0.036,0.044), (2.7 · 107,3.3 · 107)
and (0.9 ·104,1.1 ·104). We observe three orders of mag-
nitude smaller reservoir equation size, resulting in a com-
putationally cheaper surrogate model.

Table 1. Comparison between LPCTESN and NPCTESN on
surrogatization of the Robertson equations. “Res” stands for
reservoir.

Model Res. ODE size Avg Rel. Err %
LPCTESN 3000 0.1484
NPCTESN 3 0.0200

2.3 Composing with External Models via the
FMI Standard

While these surrogatized CTESNs can be composed with
other MTK models, more opportunities can be gained by
composing with models from external languages. The
Functional Mock-up Interface (FMI) (Blochwitz et al.
2011) is an open-source standard for coupled simulation,
adopted and supported by many simulation tools5, both
open source and commercial. Models can be exported
as Functional Mock-up Units (FMUs), which can then be
simulated in a shared environment. Two forms of coupled
simulation are standardized. Model exchange uses a cen-
tralized time-integration algorithm to solve the coupled
sets of differential-algebraic equations exported by the in-
dividual FMUs. The second approach, co-simulation, al-
lows FMUs to export their own simulation routine, and
synchronizes them using a master algorithm. Notice that
as DAEs, the FMU interface is compatible with Modeling-
Toolkit.jl components and, importantly, trained CTESN
models.

JuliaSim can simulate an FMU in parallel at different
points in the design space. For each independent simu-
lation, the fmpy package6 was used to run the FMU in
ModelExchange with CVODE (Cohen, Hindmarsh, and
Dubois 1996) or co-simulation with the FMUs exported

5https://fmi-standard.org/tools/
6https://github.com/CATIA-Systems/FMPy

Composing Modeling and Simulation with Machine Learning in Julia

100 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118197

Te
m

pe
ra

tu
re

 (K
)

Te
m

pe
ra

tu
re

 (K
)

Po
w

er
 (W

)

H
ea

t (
J)

Room Air Temp. Relative Error % over time Relative Error % over time

Relative Error % over time Relative Error % over time Total heat dissipation outside

Compressor Shaft Power

Refrigerant Sat. Temp.

Figure 2. Surrogate prediction of the room temperature of the RAC model in blue, while the ground truth is in red. This is a
prediction for points over which the surrogate has not been trained. Relative error is calculated throughout the time span at 1000
uniformly spaced points. The CTESN surrogate was trained on a timespan of an entire day, using data from 100 simulations. The
simulation parameters were sampled from a chosen input space using Latin hypercube sampling. The simulation time span goes
from 188 days to 189 days at a fixed step size of 5 seconds. Table 3 presents the list of and ranges of inputs the surrogate has been
trained on. The relative error usually peaks at a point with a discontinuous derivative in time, usually induced by a step or ramp
input (which, in this case, is the parametrized compressor speed ramp input.). Another feature of the prediction error above is that it
is sometimes stable throughout the time span (such as with the compressor shaft power, top right). This is a feature of how certain
outputs vary through the parameter space. Sampling the space with more points or reducing the range of the chosen input space
would reduce this error. Table 2 shows the maximum relative error computed for many other outputs of interest. Figure 3 computes
and aggregates maximum errors across a 100 new test points from the space.

Figure 3. Performance of surrogate when tested on 100 test parameters from the parameter space. The test parameters were chosen
via Sobol low discrepancy sampling, and maximum relative error across the time span was calculated for all output quantities. The
average maximum error across all output quantities was then plotted as a histogram. Our current test points may not be maximally
separated through the space, but we anticipate similar performance with more test examples and a maximal sampling scheme.

Session 1B: Julia

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

101

Table 2. Relative errors when the surrogate is tested on parameters it has not been trained on. HEX stands for “heat exchanger”
and LEV stands for “linear expansion valve”.

Output quantity Max. Rel. Err % Output quantity Max. Rel. Err %

Air temp. in room 0.033 Rel. humidity in room 0.872
Outdoor dry bulb temp. 0.0001 Outdoor rel. humidity 0.003
Compressor inlet pressure 4.79 Compressor outlet pressure 3.50
LEV inlet pressure 3.48 LEV outlet pressure 4.84
LEV refrigerant outlet enthalpy 1.31 Compressor refrigerant mass flow rate 4.51
Evaporator refrigerant saturation temp. 0.205 Evaporator refrigerant outlet temp. 0.145
Total heat dissipation of outdoor HEX 8.15 Sensible heat load of indoor HEX 0.892
Latent heat load of indoor HEX 3.51 Outdoor coil outlet air temperature 0.432
Indoor coil outlet air temperature 0.070 Compressor shaft power 3.04

Table 3. Surrogate Operating Parameters. The surrogate is ex-
pected to work over this entire range of design parameters.

Input Parameter Range

Compressor Speed (ramp) Start Time - (900, 1100) s
Start Value - (45, 55) rpm

Offset - (9, 11) rpm
LEV Position (252, 300)
Outdoor Unit Fan Speed (680, 820) rpm
Indoor Unit Fan Speed (270, 330) rpm
Radiative Heat Gain (0.0, 0.1)
Convective Heat Gain (0.0, 0.1)
Latent Heat Gain (0.3, 0.4)

solver. The resultant time series was then fitted to cu-
bic splines. Integration with state-of-the-art solvers from
DifferentialEquations.jl (Rackauckas and Nie 2017) for
simulating ModelExchange FMUs is planned in future re-
leases.

2.4 Incorporating Surrogates into the Ju-
liaSim Model Library

Reduced order modeling and surrogates in the space of
simulation have traditionally targeted PDE problems be-
cause of the common reuse of standard PDE models such
as Navier-Stokes equations. Since surrogates have a train-
ing cost, it is only beneficial to use them if that cost is
amortized over many use cases. In equation-based model-
ing systems, such as Modelica or Simulink, it is common
for each modeler to build and simulate a unique model.
While at face value this may seem to defeat opportuni-
ties for amortizing the cost, the composability of compo-
nents within these systems is what grants a new opportu-
nity. For example, in Modelica it is common to hierar-
chically build models from components originating in li-
braries, such as the Modelica standard library. This means
that large components, such as high-fidelity models of
air conditioners, specific electrical components, or phys-
iological organelles, could be surrogatized and accelerate

enough workflows to overcome the training cost7. In addi-
tion, if the modeler is presented with both the component
and its pre-trained surrogate with known accuracy statis-
tics, such a modeler could effectively use the surrogate
(e.g., to perform a parameter study) and easily swap back
to the high- fidelity version for the final model. This al-
lows users to test the surrogate in their downstream appli-
cation, examine the resulting behaviour, and make a de-
cision on whether the surrogate is good enough for their
task. A discussion of error dynamics of the surrogate is
left to future work.

Thus to complement the JuliaSim surrogatization archi-
tecture with a set of pre-trained components, we devel-
oped the JuliaSim Model Library and training infrastruc-
ture for large-scale surrogatization of DAE models. Ju-
liaSim’s automated model training pipeline can serve and
store surrogates in the cloud. It consists of models from
the Modelica Standard Library, CellML Physiome model
repository (Yu et al. 2011), and other benchmark problems
defined using ModelingToolkit. In future work, we shall
demonstrate workflows using these surrogates for acceler-
ated design and development.

Each of the models in the library contains a source form
which is checked by continuous integration scripts, and
surrogates are regenerated using cloud resources when-
ever the source model is updated8. For some models, cus-
tom importers are also run in advance of the surrogate
generation. For instance, the CellMLToolkit.jl importer
translates the XML-based CellML schema into Model-
ingToolkit.jl. Components and surrogates from other
sources, such as Systems Biology Markup Language li-
braries (SBML), are scheduled to be generated. Addition-
ally, for each model, a diagnostic report is generated de-
tailing:

1. the accuracy of the surrogate across all outputs of in-
terest

7We note that an additional argument can be made for pre-trained
models in terms of user experience. If a user of a modeling software
needs a faster model for real-time control, then having raised the total
simulation cost to reduce the real-time user cost would still have a net
benefit in terms of the application

8https://buildkite.com/

Composing Modeling and Simulation with Machine Learning in Julia

102 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118197

2. the parameter space which was trained on

3. and performance of the surrogate against the original
model

is created to be served along with the models. With this in-
formation, a modeler can check whether the surrogatized
form matches the operating requirements of their simula-
tion and replace the usage of the original component with
the surrogate as necessary. Note that a GUI exists for users
of JuliaSim to surrogatize their own components through
this same system.

3 Accelerating Building Simulation
with Composable Surrogates

To demonstrate the utility of the JuliaSim architecture, we
focus on accelerating the simulation of energy efficiency
of buildings. Sustainable building simulation and design
involves evaluating multiple options, such as building en-
velope construction, Heating Ventilation, Air Condition-
ing and Refrigeration (HVAC/R) systems, power systems
and control strategies. Each choice is modeled indepen-
dently by specialists drawing upon many years of develop-
ment, using different tools, each with their own strengths
(Wetter 2011). For instance, the equation-oriented Model-
ica language (Elmqvist, Mattsson, and Otter 1999; Fritz-
son and Engelson 1998) allows modelers to express de-
tailed multi-physics descriptions of thermo-fluid systems
(Laughman 2014). Other tools, such as EnergyPlus, DOE-
2, ESP-r, TRNSYS have all been compared in the litera-
ture (Sousa 2012; Wetter, Treeck, and Hensen 2013).

These models are often coupled and run concurrently
to make use of results generated by other models at run-
time (Nicolai and Paepcke 2017). For example, a build-
ing energy simulation model computing room air temper-
atures may require heating loads from an HVAC supply
system, with the latter coming from a simulation model
external to the building simulation tool. Thus, integration
of these models into a common interface to make use of
their different features, while challenging (Wetter, Treeck,
and Hensen 2013), is an important task.

While the above challenge has been addressed by FMI,
the resulting coupled simulation using FMUs is com-
putationally expensive due to the underlying numerical
stiffness (Robertson and Williams 1975) widely prevalent
in many engineering models. These simulations require
adaptive implicit integrators to step forward in time (Wan-
ner and Hairer 1996). For example, building heat transfer
dynamics has time constants in hours, whereas feedback
controllers have time constants in seconds. Thus, surro-
gate models are often used in building simulation (West-
ermann and Evins 2019).

In the following sections, we describe surrogate gener-
ation of a complex Room Air Conditioner (RAC) model,
which has been exported as an FMU. We then use the sur-
rogate to find the optimal set of design parameters over

which system performance is maximized, yielding two or-
ders of magnitude speedup over using the full model. Fi-
nally, we discuss the deployment of the surrogate in a co-
simulation loop coupled with another FMU.

3.1 Surrogates of Coupled RAC Models
We first consider surrogate generation of a Room Air Con-
ditioner (RAC) model using JuliaSim, consisting of a cou-
pled room model with a vapor compression cycle model,
which removes heat from the room and dissipates it out-
side. This model was provided to us by a user as-is,
and a maximum relative error tolerance of 5% was cho-
sen. The vapor compression cycle itself consists of de-
tailed physics-based component models of a compressor,
an expansive valve and a finite volume, and a staggered-
grid dynamic heat exchanger model (Laughman 2014).
This equipment is run open-loop in this model to sim-
plify the interactions between the equipment and the ther-
mal zone. The room model is designed using components
from the Modelica Buildings library (Wetter, Zuo, et al.
2014). The room is modeled as a volume of air with in-
ternal convective heat gain and heat conduction outside.
The Chicago O’Hare TMY3 weather dataset9 is imported
and is used to define the ambient temperature of the air
outside. This coupled model is written and exported from
Dymola 2020x as a co-simulation FMU.

The model is simulated with 100 sets of parameters
sampled from a chosen parameter space using Latin hy-
percube sampling. The simulation timespan was a full day
with a fixed step size of 5 seconds. The JuliaSim FMU
simulation backend runs simulations for each parameter
set in parallel and fits cubic splines to the resulting time
series outputs to continuously sample points from parts of
the trajectory. Then the CTESN algorithm computes pro-
jections from the reservoir time series to output time series
at each parameter set. Finally, a radial basis function cre-
ates a nonlinear map between the chosen parameter space
and the space of projections. Figure 2 and Table 2 show
the relative errors when the surrogate is tested at a param-
eter set on which it has not been trained. To demonstrate
the reliability of the surrogate through the chosen param-
eter space, 100 further test parameters were sampled from
the space, and the errors for each test were compiled into a
histogram, as shown in 3. At any test point, the surrogate
takes about 6.1 seconds to run, while the full model takes
35 minutes, resulting in a speedup of 344x.

This surrogate model can then be reliably deployed for
design and optimization, which is outlined in the follow-
ing section.

3.2 Accelerating Global Optimization
Building design optimization (Nguyen, Reiter, and Rigo
2014; Machairas, Tsangrassoulis, and Axarli 2014) has
benefited from the use of surrogates by accelerating opti-
mization through faster function evaluations and smooth-

9https://bcl.nrel.gov/node/58958

Session 1B: Julia

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

103

Figure 4. Comparison of global optimization while using the full model and the surrogate. Loss is measured using the full model’s
objective function. (Left) Convergence of loss with number of function evaluations (Right) Convergence of loss with wall clock
time. The optimization using the surrogate converged much before the result from the first function evaluation of the full model is
over. This is why the blue line appears translated horizontally in time.

ing objective functions with discontinuities (Westermann
and Evins 2019; Wetter and Wright 2004).

The quantity to be maximized (or whose negative value
is to be minimized) is the average coefficient of perfor-
mance (COP) across the time span. We calculate this us-
ing output time series from the model by means of the
following formula:

COP(t) =
Qtot(t)

max(0.01,CSP(t))
(11)

COPavg =
∑

Nt
n=1COP(tn)

Nt
(12)

where COP refers to the coefficient of performance,
COPavg refers to the average coefficient of performance
across the time interval (the quantity to optimize), Qtot the
total heat dissipation from the coupled model, CSP(t) is
the compressor shaft power, and Nt represents the number
of points in time sampled from the interval (720).

We use an adaptive differential evolution global opti-
mization algorithm, which does not require the calcula-
tion of gradients or Hessians (Price, Storn, and Lampinen
2006). We chose this algorithm because of its ability to
handle black-box objective functions. We use the differen-
tial optimizers in BlackBoxOptim.jl10 for this experiment.

Figure 4 shows that the surrogate produces a series of
minimizers, which eventually converge to within 1% of
the reference minimum value chosen, but two orders of
magnitude faster. The surrogate does take more function
evaluations to converge than the true model, but since each
function value is relatively inexpensive, the impact on wall
clock time is negligible.

10https://github.com/robertfeldt/BlackBoxOptim.jl

3.3 Co-simulation with Surrogates
Next we examine a co-simulation loop with two coupled
FMUs and replace one of the FMUs with a surrogate. Co-
simulation is a form of coupled simulation where a mas-
ter algorithm simulates and synchronizes time dependent
models models at discrete time steps. An advantage of
co-simulation over model exchange is that the individ-
ual FMUs can be shipped with their own solvers. These
FMU solver calls are abstracted away from the master al-
gorithm, which only pays heed to initialization and syn-
chronization of the FMUs.

We examine a simplified example of an HVAC system
providing cooling to a room from the Modelica Buildings
library (Wetter, Bonvini, et al. 2015). Both the HVAC sys-
tem and room models have been exported as FMUs, which
are then imported into JuliaSim and then coupled via co-
simulation. At each step of the co-simulation, the mod-
els are simulated for a fixed time step, and the values of
the coupling variables are queried and then set as inputs
to each other, before the models are simulated at the next
time step.

JuliaSim then generates a surrogate of the HVAC sys-
tem by training over the set of inputs received during the
co-simulation loop. It is then deployed in a “plug and
play” fashion, by coupling the outputs of the surrogates
to the inputs of the room and vice versa. The resultant
output from the coupled system is shown in Figure 5. The
above co-simulation test has been conducted at the same
set of set of design parameters as the original simulation.
11 While the individual models in this test are simplified,

11We tried to simulate this coupled system at different design pa-
rameters, but were unable to, for reasons currently unknown to us,
change certain parameters on Dymola 2020x. We were also not able

Composing Modeling and Simulation with Machine Learning in Julia

104 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118197

180 180181 181
Time (Days) Time (Days)

Te
m

pe
ra

tu
re

 (K
)

Mixing Volume Temperature (K)

Figure 5. Coupled co-simulation of a surrogate and an FMU. The blue line represents the ground truth, which is the output from
the co-simulation of two coupled FMUs, and the red line represents the output from the coupled surrogate and an FMU. While
the prediction smooths over transients found in the ground truth, it does so at a relative error of less than 1.5%. This result also
empirically suggests that the output from the surrogate is bounded over the set of inputs it has received over co-simulation. The
surrogate was trained over a sample of 100 inputs received from the room model. The error over the transients can be reduced by
sampling more inputs from the co-simulation.

they serve as a proof of concept for a larger coupled sim-
ulation, either involving more FMUs or involving larger
models, which may be prohibitively expensive (Wetter,
Fuchs, and Nouidui 2015).

4 Conclusion
We demonstrate the capabilities of JuliaSim, a software
for automated generation of deployment of surrogates for
design, optimization and coupled simulation. Our surro-
gates can reproduce outputs from detailed multi-physics
systems and can be used as stand-ins for global opti-
mization and coupled simulation. Our results show the
promise of blending machine learning surrogates in Ju-
liaSim, and we believe that it can enable a machine
learning-accelerated workflow for design and develop-
ment of complex multi-physical systems.

There are many avenues for this work to continue. Fur-
ther work to deploy these embedded surrogates as FMUs
themselves is underway. This would allow JuliaSim to
ship accelerated FMUs to other platforms. Other surro-
gate algorithms, such as proper orthogonal decomposi-
tion (Chatterjee 2000), neural ordinary differential equa-
tions (Chen et al. 2018; S. Kim et al. 2021), and dynamic
mode decomposition (Schmid 2010) will be added in up-
coming releases and rigorously tested on the full model
library. Incorporating machine learning in other fashions,
such as within symbolic simplification algorithms, is simi-

to change those parameters having exported the constituent models as
co-simulation FMUs. We shall aim to debug this issue and complete
this story in future work.

larly being explored. But together, JuliaSim demonstrates
that future modeling and simulation software does not
need to, and should not, eschew all of the knowledge of
the past equation-based systems in order to bring machine
learning into the system.

Acknowledgements
The information, data, or work presented herein was
funded in part by ARPA-E under award numbers DE-
AR0001222 and DE-AR0001211, and NSF award num-
ber IIP-1938400. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

References
Anantharaman, Ranjan et al. (2021). “Accelerating Simulation

of Stiff Nonlinear Systems using Continuous-Time Echo
State Networks”. In: Proceedings of the AAAI 2021 Spring
Symposium on Combining Artificial Intelligence and Ma-
chine Learning with Physical Sciences.

Benner, Peter, Serkan Gugercin, and Karen Willcox (2015). “A
survey of projection-based model reduction methods for para-
metric dynamical systems”. In: SIAM review 57.4, pp. 483–
531.

Bezanson, Jeff et al. (2017). “Julia: A fresh approach to numer-
ical computing”. In: SIAM review 59.1, pp. 65–98.

Blochwitz, Torsten et al. (2011). “The functional mockup inter-
face for tool independent exchange of simulation models”. In:
Proceedings of the 8th International Modelica Conference.
Linköping University Press, pp. 105–114.

Session 1B: Julia

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

105

Brück, Dag et al. (2002). “Dymola for multi-engineering model-
ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Citeseer.

Chatterjee, Anindya (2000). “An introduction to the proper or-
thogonal decomposition”. In: Current science, pp. 808–817.

Chen, Ricky TQ et al. (2018). “Neural ordinary differential
equations”. In: arXiv preprint arXiv:1806.07366.

Cohen, Scott D, Alan C Hindmarsh, and Paul F Dubois (1996).
“CVODE, a stiff/nonstiff ODE solver in C”. In: Computers in
physics 10.2, pp. 138–143.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin Otter (1999).
“Modelica-a language for physical system modeling, visual-
ization and interaction”. In: Proceedings of the 1999 IEEE
international symposium on computer aided control system
design (Cat. No. 99TH8404). IEEE, pp. 630–639.

Fritzson, Peter, Peter Aronsson, et al. (2005). “The OpenModel-
ica modeling, simulation, and development environment”. In:
46th Conference on Simulation and Modelling of the Scandi-
navian Simulation Society (SIMS2005), Trondheim, Norway,
October 13-14, 2005.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: European Conference on Object-Oriented Pro-
gramming. Springer, pp. 67–90.

Gobbert, Matthias K (1996). “Robertson’s example for stiff dif-
ferential equations”. In: Arizona State University, Technical
report.

Hosea, ME and LF Shampine (1996). “Analysis and imple-
mentation of TR-BDF2”. In: Applied Numerical Mathematics
20.1-2, pp. 21–37.

Hu, Liwei et al. (2020). “Neural networks-based aerodynamic
data modeling: A comprehensive review”. In: IEEE Access 8,
pp. 90805–90823.

Kim, Suyong et al. (2021). Stiff Neural Ordinary Differential
Equations. arXiv: 2103.15341 [math.NA].

Kim, Youngkyu et al. (2020). “A fast and accurate physics-
informed neural network reduced order model with shallow
masked autoencoder”. In: arXiv preprint arXiv:2009.11990.

Laughman, Christopher R (2014). “A Comparison of Transient
Heat-Pump Cycle Simulations with Homogeneous and Het-
erogeneous Flow Models”. In:

Lukoševičius, Mantas (2012). “A practical guide to applying
echo state networks”. In: Neural networks: Tricks of the trade.
Springer, pp. 659–686.

Lukoševičius, Mantas and Herbert Jaeger (2009). “Reservoir
computing approaches to recurrent neural network training”.
In: Computer Science Review 3.3, pp. 127–149.

Ma, Yingbo et al. (2021). “ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing”. In: arXiv preprint arXiv:2103.05244.

Machairas, Vasileios, Aris Tsangrassoulis, and Kleo Axarli
(2014). “Algorithms for optimization of building design: A
review”. In: Renewable and sustainable energy reviews 31,
pp. 101–112.

Nguyen, Anh-Tuan, Sigrid Reiter, and Philippe Rigo (2014).
“A review on simulation-based optimization methods applied
to building performance analysis”. In: Applied Energy 113,
pp. 1043–1058.

Nicolai, Andreas and Anne Paepcke (2017). “Co-Simulation be-
tween detailed building energy performance simulation and
Modelica HVAC component models”. In: Proceedings of the
12th International Modelica Conference, Prague, Czech Re-

public, May 15-17, 2017. 132. Linköping University Elec-
tronic Press, pp. 63–72.

Otter, Martin and Hilding Elmqvist (2017). “Transformation of
differential algebraic array equations to index one form”. In:
Proceedings of the 12th International Modelica Conference.
Linköping University Electronic Press.

Pantelides, Constantinos C. (1988). “The Consistent Initializa-
tion of Differential-Algebraic Systems”. In: SIAM Journal on
Scientific and Statistical Computing 9.2, pp. 213–231. DOI:
10.1137/0909014.

Price, Kenneth, Rainer M Storn, and Jouni A Lampinen (2006).
Differential evolution: a practical approach to global opti-
mization. Springer Science & Business Media.

Rackauckas, Christopher and Qing Nie (2017). “Differentiale-
quations. jl–a performant and feature-rich ecosystem for solv-
ing differential equations in julia”. In: Journal of Open Re-
search Software 5.1.

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis
(2019). “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations”. In: Journal of
Computational Physics 378, pp. 686–707.

Ratnaswamy, Vishagan et al. (2019). “Physics-informed Recur-
rent Neural Network Surrogates for E3SM Land Model”. In:
AGU Fall Meeting Abstracts. Vol. 2019, GC43D–1365.

Robertson, HH (1976). “Numerical integration of systems of
stiff ordinary differential equations with special structure”.
In: IMA Journal of Applied Mathematics 18.2, pp. 249–263.

Robertson, HH and J Williams (1975). “Some properties of al-
gorithms for stiff differential equations”. In: IMA Journal of
Applied Mathematics 16.1, pp. 23–34.

Schmid, Peter J (2010). “Dynamic mode decomposition of nu-
merical and experimental data”. In: Journal of fluid mechan-
ics 656, pp. 5–28.

Sousa, Joana (2012). “Energy simulation software for build-
ings: review and comparison”. In: International Workshop on
Information Technology for Energy Applicatons-IT4Energy,
Lisabon.

Wang, Sifan, Yujun Teng, and Paris Perdikaris (2020).
“Understanding and mitigating gradient pathologies in
physics-informed neural networks”. In: arXiv preprint
arXiv:2001.04536.

Wanner, Gerhard and Ernst Hairer (1996). Solving ordinary dif-
ferential equations II. Vol. 375. Springer Berlin Heidelberg.

Westermann, Paul and Ralph Evins (2019). “Surrogate mod-
elling for sustainable building design–A review”. In: Energy
and Buildings 198, pp. 170–186.

Wetter, Michael (2011). A view on future building system mod-
eling and simulation. Tech. rep. Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States).

Wetter, Michael, Marco Bonvini, et al. (2015). “Modelica build-
ings library 2.0”. In: Proc. of The 14th International Confer-
ence of the International Building Performance Simulation
Association (Building Simulation 2015), Hyderabad, India.

Wetter, Michael, Marcus Fuchs, and Thierry Nouidui (2015).
“Design choices for thermofluid flow components and sys-
tems that are exported as Functional Mockup Units”. In:

Wetter, Michael, Christoph van Treeck, and Jan Hensen (2013).
“New generation computational tools for building and com-
munity energy systems”. In: IEA EBC Annex 60.

Wetter, Michael and Jonathan Wright (2004). “A comparison
of deterministic and probabilistic optimization algorithms for

Composing Modeling and Simulation with Machine Learning in Julia

106 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118197

nonsmooth simulation-based optimization”. In: Building and
Environment 39.8, pp. 989–999.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica build-
ings library”. In: Journal of Building Performance Simulation
7.4, pp. 253–270.

Willard, Jared et al. (2020). “Integrating physics-based mod-
eling with machine learning: A survey”. In: arXiv preprint
arXiv:2003.04919.

Yu, Tommy et al. (2011). “The physiome model repository 2”.
In: Bioinformatics 27.5, pp. 743–744.

Zhang, Ruixi et al. (2020). “Hydrological Process Surro-
gate Modelling and Simulation with Neural Networks”. In:
Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, pp. 449–461.

Session 1B: Julia

DOI
10.3384/ecp2118197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

107

108 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

OpenModelica.jl: A modular and extensible Modelica compiler
framework in Julia targeting ModelingToolkit.jl

John Tinnerholm1 Adrian Pop1 Andreas Heuermann2 Martin Sjölund1

1Department of Computer and Information Science, Linköping University, Sweden, {first.last}@liu.se
2Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Germany,

{first.last}@fh-bielefeld.de

Abstract
This paper presents current work on our Modelica Com-
piler framework in Julia: OpenModelica.jl.1 We provide a
brief overview of this novel framework and its features,
and we also present the latest addition to the possible
backend options. We target ModelingToolkit.jl (MTK), a
framework for symbolic-numerical computation and sci-
entific machine learning. We evaluated the performance
of our new backend using the ScalableTestsuite, a bench-
mark suite for Modelica Compilers. In our experiment,
we demonstrate that MTK can be used as a backend with
competitive simulation performance. In addition, using
the scientific machine learning features of the Modeling
toolkit, we were able to approximate models in the Scal-
ableTestsuite using surrogate techniques and how such
techniques can be used to accelerate the solving of non-
linear algebraic loops during tearing.

Based on our experiments, we propose using this new
framework to automatically generate surrogate compo-
nents of a Modelica model during the simulation to in-
crease performance. The experimental work presented
here provides one of the first investigations concerning
the integration of the symbolic-numerical abilities of Ju-
lia within a Modelica tool.
Keywords: Modelica, OpenModelica, Julia, Equation-
based modeling, Compiler-construction

1 Introduction
The ability to model cyber-physical systems (CPS) is es-
sential for many scientific and industrial processes. Mod-
elica is a standardized declarative equation-based object-
oriented language with a solid tool and library support.
Recently, researchers have shown an increased interest in
the Julia language (Bezanson et al. 2017), with the release
of several packages that bring acausal modeling to Julia,
such as Modia (Elmqvist and Otter 2017) and Modeling-
Toolkit (MTK) (Ma et al. 2021).

Thus several studies have begun to examine the impli-
cations of using Julia as a foundation to design new mod-
eling frameworks. In this paper, we present our contribu-
tion to this effort within the OpenModelica programming
environment (Fritzson, Pop, Abdelhak, et al. 2020).

1On GitHub: OpenModelica/OpenModelica.jl

1.1 Motivation
The main motivation for the work presented here is that
previous studies do not attempt to integrate Modelica
within Julia. Instead, they provide the possibility of
Modelica-like acausal modeling using Julia as a host lan-
guage. Tinnerholm et al. (2020) presented our first Mod-
elica compiler prototype in Julia. This compiler was de-
veloped with the goal to utilize Julia’s symbolic-numerical
capabilities and extend the current capabilities of Model-
ica. In this paper, we expand this work to implement a
full Modelica compiler using Julia with the goal to im-
prove and optimize existing models, and by adhering to
the standards of the Modelica language, we hope to facil-
itate the reuse of modeling know-how contained in exist-
ing Modelica libraries. Updates to this first iteration of
this compiler include automatic translation of the high-
performance frontend (Pop et al. 2019) along with ex-
perimental support for hybrid systems and a new backend
targeting ModelingToolkit. We have used this framework
to simulate Modelica models of systems containing thou-
sands of equations and variables to assess the performance
of our compiler.

1.2 Contributions
While several Modelica Compilers have been designed be-
fore, no compiler has previously used Julia as an imple-
mentation language. Thus, a central contribution of this
paper is evidence that such a compiler is both feasible and
is easily extendable. We demonstrate this by using the
symbolic-numerical capabilities of Julia and the scientific
machine learning capabilities of MTK to automatically
generate surrogate models within a modular and extend-
able pipeline. Another contribution of this paper is, to our
knowledge, the first empirical investigation concerning the
performance characteristics of ModelingToolkit when em-
ployed as a backend for a Modelica Compiler, demonstrat-
ing its claimed usefulness as a compiler component for
equation-oriented languages.

1.3 Paper Organization
This paper is organized as follows: The background is pre-
sented in section 2, this is followed by section 3 where we
present the structure of the compiler. In section 4 we re-
count how we verified the frontend together with some

DOI
10.3384/ecp21181109

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

109

current performance characteristics when flattening the
cascaded first-order system from the ScalableTestsuite in
Listing 4 along with a description of experiments to assess
the correctness of the frontend. This section is followed
by section 5 which provides a benchmark highlighting the
current simulation performance of the new MTK backend
and comparing it to the OpenModelica Compiler (OMC).
This is followed by section 6 in which we demonstrate
how the scientific machine learning features of MTK can
be used to approximate models or subcomponents of mod-
els. In section 7 where we present our conclusions along
with recommendations for future work.

2 Background
As stated in section 1 there exist as of 2021 several mod-
eling environments that provide the option of causal and
acausal modeling within the Julia ecosystem. Differen-
tialEquations.jl (Rackauckas and Nie 2017) is one such
environment. It provides a seamless foreign function in-
terface that allows interfacing algorithmic Julia code and
a variety of different solvers. A user of DifferentialE-
quations.jl writes imperative code in the Julia language
to conform to systems such as Nonlinear-systems, ODE-
systems, and DAE-systems. Tinnerholm et al. (2020) se-
lected DifferentialEquations.jl as the default backend tar-
get. A model of a hybrid system representing a bouncing
ball using DifferentialEquations.jl can be studied in List-
ing 1.

While DifferentialEquations.jl provides the abstrac-
tions necessary to write causal models in Julia, it does not
provide the abstractions of a full-fledged modeling lan-
guage. ModelingToolkit.jl (MTK) aims address this issue
(Ma et al. 2021). MTK is a recent modeling framework
to automate symbolic operations common for equation-
oriented languages, such as methods for index reduction.
It does so by using the symbolic-numerical capabilities
of Julia to preprocess an MTK model description into a
format that can be solved using the set of solvers pro-
vided by DifferentialEquations.jl. In other words, the iter-
ative process from an acausal description based on equa-
tions to a causal representation acceptable for a solver is
similar to that of a typical Modelica Compiler. The lan-
guage defined by MTK does not at the time of this writing
support hybrid systems. However, it is possible to post-
process MTK models to add events similar to Listing 1
where the Modelica when-equation is represented using
a ContinuousCallback which is illustrated in Listing 2.
If we compare the generated code in Listing 1 with that
of Listing 2 we can see that MTK is closer to Modelica
in the level of abstraction; however, MTK lacks control
structures found in Modelica such as for and if.

MTK does not only target DAE-systems, it also targets
several areas which are not the primary target of the Mod-
elica language such as:

• Stochastic differential(-algebraic) equations

• Partial differential equations

• Optimization problems

• Continuous-Time Markov Chains

• Nonlinear Optimal Control

This enables users of MTK to combine different systems
from different domains (Ma et al. 2021). Conceivably,
model exchange between this framework and Modelica
would be useful for efficient modeling and simulation of
large dynamic systems.

The main difference between Modelica and the lan-
guage defined by MTK is the level of abstraction. To give
an example, as of this writing, ModelingToolkit.jl requires
users to specify the application of index reduction explic-
itly; it also requires systems to be specified explicitly with
the state derivatives on the right-hand side. Thus, the user
specifies the transformation from a DAE-System into an
ODE-system, whereas in a Modelica compiler, these de-
cisions are generally abstracted away. Still, as we will il-
lustrate in this paper, MTK is suitable as a backend frame-
work for Modelica Compilers or other equation-oriented
languages frameworks in Julia.

Modia.jl (Elmqvist and Otter 2017) is another frame-
work that brings acausal modeling to Julia. Syntacti-
cally it is more similar to Modelica when compared to the
language defined by MTK. However, it is different from
the work presented here because its constructs are imple-
mented using Julia metaprogramming rather than tradi-
tional data structures used by compilers.

Yet another modeling framework is Causal.jl (Sarı and
Günel 2019). However, as the name implies, it is a causal
modeling framework reminiscent of Simulink.

3 Compiler Structure
In this section, we will elaborate on the different compo-
nents that make up OpenModelica.jl. To provide a brief
overview of the size of this application, a summary of the
current size of this compiler by lines of code (LOC) is pro-
vided in Table 1. For comparison, the OMC compiler has
about 1,100,000 LOC MetaModelica code for the fron-
tend+backend and about 67,000 LOC C code for the run-
time system. Using Julia is clearly an advantage as one
can delegate functionalities such as finding strongly con-
nected components to existing Julia libraries.

The frontend is made up of OMParser and OMFron-
tend; the backend of OMBackend and the runtime of
MetaModelica.jl. Internally three intermediate represen-
tations are used: Absyn2, SCode3 and DAE.4 An overview
of the compiler pipeline is presented in Figure 1. An ex-
ample of how to simulate and plot a Modelica model in
Julia is given in Listing 3.

2On GitHub: OpenModelica/Absyn.jl
3On GitHub: OpenModelica/SCode.jl
4On GitHub: OpenModelica/DAE.jl

OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

110 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181109

Listing 1. Automatically generated Julia code for a simple hy-
brid system. The Julia code presented in this listing is targeting
the IDA solver in Sundials (Hindmarsh et al. 2005) using Differ-
entialEquations.jl.

function BouncingBallRealsStartConditions(
aux, t)

local x = zeros(2)
local dx = zeros(2)
local p = aux[1]
local reals = aux[2]
reals[1] = 1.0
dx[1] = reals[2]
dx[2] = -(p[2])
x[2] = reals[2]
x[1] = reals[1]
return (x, dx)

end
function BouncingBallRealsDifferentialVars

()
return Bool[1, 1]

end
function BouncingBallRealsDAE_equations(res

, dx, x, aux, t)
local p = aux[1]
local reals = aux[2]
res[1] = dx[2] - -(p[2])
res[2] = dx[1] - reals[2]
reals[2] = x[2]
reals[1] = x[1]

end
function BouncingBallRealsParameterVars()

local aux = Array{Array{Float64}}(undef,
2)

local p = Array{Float64}(undef, 2)
local reals = Array{Float64}(undef, 2)
aux[1] = p
aux[2] = reals
p[2] = 9.81
p[1] = 0.7
return aux

end
saved_values_BouncingBallReals =

SavedValues(Float64, Tuple{Float64,
Array})

function BouncingBallRealsCallbackSet(aux)
local p = aux[1]
function condition1(x, t, integrator)
x[1] - 0.0

end
function affect1!(integrator)

integrator.u[2] = -(p[1] * integrator.u
[2])

end
cb1 = ContinuousCallback(

condition1,
affect1!,
rootfind = true,
save_positions = (true, true),
affect_neg! = affect1!,

)
savingFunction(u, t, integrator) =
let

(t, deepcopy(integrator.p[2]))
end

cb2 = SavingCallback(savingFunction,
saved_values_BouncingBallReals)

return CallbackSet(cb1, cb2)
end

Listing 2. An MTK version of the bouncing ball produced by
the new backend.

using ModelingToolkit
using DiffEqBase
using DifferentialEquations
function BouncingBallRealsModel(tspan =

(0.0, 1.0))
pars = ModelingToolkit.@parameters(begin

(e, g, t) end)
vars = ModelingToolkit.@variables(begin (

h(t), v(t)) end)
der = Differential(t)
eqs = [

der(h) ~ v,
der(v) ~ -g

]
nonLinearSystem = ModelingToolkit.

ODESystem(eqs, t, vars, pars,
name = :($(Symbol("BouncingBallReals"))

),
)
pars = Dict(e => float(0.7), g => float

(9.81), t => tspan[1])
initialValues = [h => 1.0, v => 0.0]
firstOrderSystem = ModelingToolkit.

ode_order_lowering(nonLinearSystem)
reducedSystem = ModelingToolkit.

dae_index_lowering(firstOrderSystem)
problem = ModelingToolkit.ODEProblem(

reducedSystem, initialValues, tspan,
pars)

return problem
end
function BouncingBallRealsCallbackSet()

function condition1(x, t, integrator)
x[1] - 0.0

end
function affect1!(integrator)

integrator.u[2] = -(integrator.p[1] *
integrator.u[2])

end
cb1 = ContinuousCallback(

condition1,
affect1!,
rootfind = true,
save_positions = (true, true),
affect_neg! = affect1!,

)
return CallbackSet(cb1)

end
BouncingBallRealsModel_problem =

BouncingBallRealsModel()
function BouncingBallRealsSimulate(tspan =

(0.0, 1.0))
solve(BouncingBallRealsModel_problem,

tspan = tspan, callback =
BouncingBallRealsCallbackSet())

end
function BouncingBallRealsSimulate(tspan =

(0.0, 1.0); solver = Tsit5())
solve(BouncingBallRealsModel_problem,

tspan = tspan, solver)
end

Session 1B: Julia

DOI
10.3384/ecp21181109

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

111

Listing 3. This listing illustrates how to export and simulate a
Modelica model in Julia. Once preprocessed by the frontend the
call to OMBackend.translate stores the final MTK program for
future analysis or simulation. The input parameter modelName
provided by the caller and it is assumed that the file containing
a Modelica model is named after this parameter.

function runTest(modelName)
#= OMParser phase =#
ast::Absyn.Program = OMFrontend.parseFile

("./Models/$(modelName).mo")
#= OMFrontend phases =#
scodeProgram::SCode.Program = OMFrontend.

translateToSCode(ast)
(dae, cache) = OMFrontend.

instantiateSCodeToDAE(modelName,
scodeProgram)

#= Backend phases =#
OMBackend.translate(dae; BackendMode =

OMBackend.MODELING_TOOLKIT_MODE)
res = OMBackend.simulateModel(modelName,

tspan = (0.0, 1.0))
#= Optionally plot the result =#
OMBackend.plot(res)

end

Table 1. Current sizes of OpenModelica.jl compiler phases by
LOC.

Compiler Phase Lines

Runtime 1,853
FrontEnd 135,103
BackEnd & Code generation 6,073
Total size 143,029

3.1 OMParser.jl
The parser, OpenModelicaParser.jl was adapted from the
existing OMC parser.5 which is written in ANTLR (Parr
and Quong 1995) It is currently capable of parsing large
files such as the entire Modelica Standard Library.6 Af-
ter a successful parse, the AST can be fed to the frontend
module, OMFrontend.jl the data structure representing the
AST is defined by Absyn.jl.2 In Listing 3 this parser
is invoked by OMFrontend.parseFile("./Models/$(

modelName).mo").

3.2 OMFrontend.jl
To flatten the Modelica code, we use the OMFron-
tend.jl, which was automatically generated from the high-
performance frontend of the OMC (Pop et al. 2019).
Previously, we used the old frontend (Tinnerholm et al.
2020); however, as part of the work presented here, the
MetaModelica-Julia translator introduced by Tinnerholm
et al. (2020) was used to automatically generate a Julia im-
plementation of the high-performance frontend (Pop et al.

5On GitHub: adrpo/OpenModelicaParser.jl
6Modelica Standard Library (Version 3.2.1)

On GitHub: modelica/ModelicaStandardLibrary

Figure 1. An illustration of the compiler pipeline including cur-
rent available backends targeting ModelingToolkit.jl and Differ-
entialEquations.jl. The Modelica AST is represented using Ab-
syn.jl. Inside OMFrontend.jl the SCode representation defined
by SCode.jl is used. Flat Modelica is encoded using DAE.jl

2019). Consequently, the frontend is implemented in au-
tomatically generated Julia code generated by translating
the existing OpenModelica frontend. While the transla-
tion of the old frontend7 was achieved without any major
modifications, we had to manually resolve cases of mutu-
ally circular module dependencies for the new since Julia
does not handle them while MetaModelica does.

3.3 OMBackend.jl
OMBackend is the backend module of this compiler, and
it is implemented as a separate package. Current backend
targets include both ModelingToolkit and DifferentialE-
quations.jl. Simulations targeting DifferentialEquations.jl
use the Sundials IDA solver and is based on the DAE-
mode implementation by W. Braun, Casella, Bachmann,
et al. (2017). It currently provides support for continu-
ous systems and experimental support for hybrid systems.
An example of code generated for a hybrid system is the
bouncing ball model, see Listing 1.

3.3.1 The MTK-Backend

The new backend based on ModelingToolkit (MTK-
Backend) is capable of automatically translating Modelica
models into equivalent MTK models. The MTK backend
works by accepting the flat Modelica/Hybrid DAE that is
described by DAE.jl. Since MTK automatically handles
transformations such as index reduction, no such algo-
rithm is applied by the backend. MTK is also acausal in

7The old frontend is the frontend the high-performance frontend re-
placed (Pop et al. 2019).

OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

112 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181109

the sense that there need not to be a causal order between
the equations. However, MTK requires the system to be
in explicit form, so the derivatives are reordered using
MTK’s symbolic algebra routines. An MTK translation
of the Modelica code in Listing 4 can be studied in List-
ing 5. In Listing 5 the function Casc10Model defines the
model, the parameters are defined using parameters and
the variables are defined using variables. The statement
ode_order_lowering transforms the system to first-order
form and dae_index_lowering performs index reduction8.

3.4 MetaModelica.jl

MetaModelica.jl9 provides a compatibility layer between
Julia and MetaModelica (Fritzson, Pop, and Aronsson
2005). It reimplements several constructs of MetaModel-
ica such as match and matchcontinue. Furthermore, Meta-
Modelica.jl replicates the existing runtime of OMC. This
package is used extensively in the translated modules.

4 Verification
The compiler presented in this paper consists of several
components, see Figure 1 where each component contains
thousands of LOC, see Table 1.

To verify the parser, we parsed the Modelica Standard
Library, along with some other models, some of which
contained errors. This was done to establish that it re-
ported the same errors as the existing parser in OpenMod-
elica.10 Verifying the correctness of the frontend was more
difficult since it consists of over 130,000 lines of automat-
ically generated Julia code. We tested our implementation
by lowering the hybrid DAE produced by the frontend and
compared the result of simulating these models with the
simulation results of OpenModelica. One excerpt of the
verification experiments can be studied in Figure 2. The
runnable code is available in listing 5. The corresponding
Modelica model is available in Listing 4. The results are
by no means exhaustive, but our preliminary verification
experiments suggest that the translated frontend behaves
correctly for the set of models that we tested.

5 Simulation Performance
The previous section has shown that we can generate
and simulate Modelica models targeting DifferentialEqua-
tions.jl and MTK directly. In this section, we present the
current simulation performance of the new MTK back-
end using the cascaded first-order system from the Scal-
ableTestsuite (Casella 2015) and how the simulation per-
formance of the MTK backend compares to OpenMod-
elica. Two model from the benchmark suite where used
CascadedFirstOrder, see Listing 4. The parameters of

8Index reduction and the lowering of the ODE is not always neces-
sary. For instance, an index 1 DAE does not need to have its’ index
reduced. Still, for generality, we do this for all systems.

9On GitHub: OpenModelica/MetaModelica.jl
10A subset of these tests are available on GitHub: adrpo/OpenMod-

elicaParser.jl/test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

X
(t

)

time[s]

OpenModelica x₁
OpenModelica x₂
OpenModelica x₃
OpenModelica x₄
OpenModelica x₅

Julia x₁
Julia x₂
Julia x₃
Julia x₄
Julia x₅

Figure 2. The result of simulating the cascading first-order sys-
tem between 0.0 to 2.0 seconds, with N = 10 simulated using
the new MTK backend and OMC. The plot shows x1, ...,x5 of
X(t). Since the curves are almost identical, markers are added
to differentiate between the MTK and OpenModelica solutions.

these were modified to increase the number of equations
and events gradually.

5.1 Experimental setup
In this subsection, we describe the experimental setup of
the model included our experiments.

To assess simulation performance of Cascaded-
FirstOrder we generated code using the model in List-
ing 4 with the following values for the parameter
N: 10,100,200,400,800,1600,3200,6400,12800,25600.
The resulting model with N = 10 can be studied in List-
ing 5. However, due to long compilation times of MTK
when N > 3200 we limited11 our benchmark to the follow-
ing values for N: 10,100,200,400,800,1600,3200. We
simulated models using ModelingToolkit v5.16.0 with Ju-
lia 1.6.1 and OpenModelica 1.18.0. All tests were run on
a 16-core AMD TR 1950X with 128GB of RAM. When
measuring simulation times for OMC and for Julia, we
used Benchmarktools.jl (Chen and Revels 2016) Two ex-
periments were run for the CascadedFirstOrder model.

For the first experiment we used the following solvers:

• OMC Sundials IDA solver (Hindmarsh et al. 2005)

• MTK The default solver,12 invoked when calling solve
without auxiliary arguments

In the second experiment, we selected Tsit5 (Tsitouras
2011) as the solver for MTK. For OpenModelica, we kept
the IDA solver since, at the time of writing, the Tsit5-
solver is not available within the OpenModelica environ-
ment.

5.2 Evaluating simulation performance
In Figure 3 we present the result of our first experiment.
From the graph, we can see that the simulation time of

11The MTK-models where N > 3200 are available on request.
12The default solver is selected automatically by DifferentialEqua-

tions.jl depending on the characteristics of the model (Rackauckas and
Nie 2019). See solver selection algorithm.

Session 1B: Julia

DOI
10.3384/ecp21181109

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

113

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000

M
e
a
n
 s

im
u
la

ti
o
n
 t

im
e
 [

m
s]

N

OpenModelica 1.18.0
MTK backend, MTK v5.16.0

Figure 3. The mean simulation time of the cascading first-order
system, with N = 10,100,200,400,800,1600,3200 simulated
using the new MTK backend and OMC.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000

M
e
a
n
 s

im
u
la

ti
o
n
 t

im
e
 [

m
s]

N

OpenModelica 1.18.0
MTK backend, MTK v5.16.0

Figure 4. Same simulation as in Figure 3 using Tsit5 together
with MTK.

MTK is superior to the OMC until N > 400, then the simu-
lation time of MTK increases exponentially. This is prob-
ably due to conservative solver selection by MTK. This
behavior was also observed when we compiled the auto-
matically generated MTK code, where we observed an ex-
ponential increase in compilation time when N > 3200.
Because of this, we omitted these models from the exper-
iments. The result of the second experiment can be stud-
ied in Figure 4, it demonstrates superior simulation per-
formance of MTK when compared to OMC when using
an alternative solver, Tsit5 (Tsitouras 2011). While this
is due to Tsit5 being more efficient for non-stiff problems
in comparison to the IDA solver of OpenModelica 1.18.0,
these results indicate that MTK can compete with OMC
in terms of simulation performance. Still, while we were
able to generate MTK code for up to 25,600 equations and
variables, we experienced an exponential increase in com-
pilation time when N > 3200 the reason for this behavior
seems to be performance issues during the symbolic trans-
formations of MTK v5.16.0.

6 Surrogate-based Optimization
The use of surrogates/metamodeling to accelerate compu-
tationally heavy models is not new. The idea is to replace

Listing 4. The Cascaded first order system from the scalable
testsuite (Casella 2015).

model CascadedFirstOrder
"N cascaded first order systems,

approximating a pure delay"
parameter Integer N = 10 "Order of the

system";
parameter Real T = 1 "System delay";
final parameter Real tau = T/N "

Individual time constant";
Real x[N] (each start = 0, each fixed =

true);
equation

tau*der(x[1]) = 1 - x[1];
for i in 2:N loop

tau*der(x[i]) = x[i-1] - x[i];
end for;

end CascadedFirstOrder;

computationally expensive components of a model with
a surrogate model/metamodel to reduce computation cost
and consequently reducing the feedback loop for modelers
(Wang and Shan 2006).

In the context of Julia, Yingbo et al. have previously
shown how to accelerate models by employing surrogates
using MTK, where they employed surrogates to acceler-
ate a Heating, ventilation, and air conditioning (HVAC)
model claiming a 590X speedup compared to Dymola (Ma
et al. 2021). This suggests that the ability to generate
surrogates in a Modelica Compiler is a useful feature for
users.

In this paper, we introduced a new backend in our Julia-
based Modelica Compiler, the MTK backend. Conse-
quently, it is able to use the surrogate facilities of MTK.
In Listing 6 we illustrate how a surrogate can be gener-
ated from one of the models used in section 5 with Surro-
gates.jl13. In this example, we translate a Modelica model
into an equivalent MTK model. We then create a radial
surrogate of this model based on 30 samples, and the re-
sulting simulation can be seen in Figure 5.

It is possible to use other software to generate surro-
gates based on Modelica models within a Julia environ-
ment. However, a novelty of the work presented here is the
ability to generate surrogates for internal equations dur-
ing compilation time. One application is employing sur-
rogates for computational expensive external functions or
(non)linear loops. Another feature could be to introduce
a Modelica annotation Surrogatize to indicate to the
compiler to automatically replace that component with a
suitable surrogate.

6.1 Employing surrogates in the context of
solving nonlinear systems of equations

In this subsection, we demonstrate how such a nonlinear
algebraic loop can be replaced with a surrogate.

13On Github:On GitHub: SciML/Surrogates.jl

OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

114 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181109

Listing 5. Automatically generated MTK version of the Model-
ica code in Listing 4.

using ModelingToolkit
using DiffEqBase
using DifferentialEquations
function Casc10Model(tspan = (0.0, 1.0))

pars = @parameters((T, tau, N, t))
vars = @variables((x7(t),

x1(t),
x10(t),
x3(t),
x2(t),
x8(t),
x9(t),
x4(t),
x5(t),
x6(t)))

der = Differential(t)
eqs = [der(x7) ~ (tau^-1)*(x6 - x7), der(

x1) ~ (tau^-1)*(1.0 - x1),
der(x10) ~ (tau^-1)*(x9 - x10),

der(x3) ~ (tau^-1)*(x2 - x3),
der(x2) ~ (tau^-1)*(x1 - x2), der(

x8) ~ (tau^-1)*(x7 - x8),
der(x9) ~ (tau^-1)*(x8 - x9), der(

x4) ~ (tau^-1)*(x3 - x4),
der(x5) ~ (tau^-1)*(x4 - x5), der(

x6) ~ (tau^-1)*(x5 - x6)]
nonLinearSystem = ODESystem(eqs, t, vars,

pars,
name = :($(

Symbol("
Casc10"))
))

pars = Dict(T => float(1.0),
tau => float(T / float(N)),
N => float(10), t => tspan

[1])
initialValues = [x7 => 0.0, x1 => 0.0,

x10 => 0.0, x3 => 0.0,
x2 => 0.0, x8 => 0.0,
x9 => 0.0, x4 => 0.0,
x5 => 0.0, x6 => 0.0]

firstOrderSystem = ode_order_lowering(
nonLinearSystem)

reducedSystem = dae_index_lowering(
firstOrderSystem)

problem = ODEProblem(reducedSystem,
initialValues, tspan, pars)

return problem
end
Casc10Model_problem = Casc10Model()
function Casc10Simulate(tspan = (0.0, 1.0))

solve(Casc10Model_problem, tspan = tspan)
end
function Casc10Simulate(tspan = (0.0, 1.0);

solver = Tsit5())
solve(Casc10Model_problem, tspan = tspan,

solver)
end

Listing 6. An example on how to automatically create a surro-
gate for Casc400 via a Julia script.

modelName = "Casc400"
n_sample = 30
surrogateFunction = (x, y, startTime,

stopTime) -> Surrogates.RadialBasis(x,y
,startTime,stopTime)

#= Use backend target =#
ast = OMFrontend.parseFile("./Models/$(

modelName).mo")
scodeProgram = OMFrontend.translateToSCode(

ast)
(dae, cache) = OMFrontend.

instantiateSCodeToDAE(modelName,
scodeProgram)

OMBackend.translate(dae; BackendMode =
OMBackend.MODELING_TOOLKIT_MODE)

#= Run Modelica model =#
omResult = OMBackend.simulateModel(

modelName, tspan = (0.0, 1.0))
solution = getSolution(omResult)
#= Create surrogates for all states =#
x = sample(n_sample, startTime, stopTime,

SobolSample())
y = omResult.(x)
surrogates = populateSurrogateArray()
#= Evaluate surrogates =#
surrogateResult = Array{Float64}(undef,

modelN, length(omResult.u))
for i = 1:length(stateVars)

surrogateResult[i,:] = surrogates[i].(
omResult.t)

end

Figure 5. The graph to the left depicts the result of evaluating
a Radial surrogate generated for the CascadedFirstOrder model
with N = 400. The true function is represented in blue, the result
of evaluating the surrogate is depicted in red. The right graph
depicts the error as a function of time.

Session 1B: Julia

DOI
10.3384/ecp21181109

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

115

Listing 7. Modelica model where large parts of the simulation
time are needed to solve a nonlinear loop.

model nonLinearScalable
parameter Real a = 0.5;
parameter Integer N = 10;
Real x[N](each start=2.5);
Real y(start=0,fixed=true);

equation
for i in 1:N loop
N+1 = exp(time*i*a+x[i]) + sum(x);

end for;
der(y) = sum(x)*time;

end nonLinearScalable;

Figure 6. Simulation of nonLinearScalable using OMBackend
and our surrogate function. The error is shown in red.

For the Modelica model nonLinearScalable, displayed
in Listing 7, there is a dense nonlinear loop in variables
x1, . . . ,xN , that needs to be solved in each integration step
to calculate the state variable y. The system is scalable in
N.

During compilation, the loop is detected, and we collect
all equations and variables involved in the loop to generate
a function to solve the algebraic loop. For this example,
we manually generated training data by solving the loop
at time points in [0,1] with a Newton method. Then a
small neural network was trained on these solutions to re-
place the Newton solver normally used to solve the nonlin-
ear algebraic system in the function nonLinearScalable-
Model_surrogateODE.

The speedup of the simulation time with the surrogate
compared to simulating with a nonlinear solver that uses
the Newton method was approximately 163.2 while the
memory consumption was reduced from around 10.6MiB
to 0.4MiB.

The solution of state variable y of nonLinear-
Scalablewhere the nonlinear equation system is solved
with Newton’s method and with a surrogate can be studied
in Figure 6. Because a simple structure for the neural net-
work was chosen, some accuracy was lost while speeding
up the simulation significantly.

To conclude, this integration enables the possibility of

Listing 8. The generated Julia code corresponding to listing 7.
Some equations in the nonlinear system are left but are available
upon request.

function nonLinearScalableAlgebraicLoop()
parameters = ModelingToolkit.@parameters

((a, N, t))
vars = ModelingToolkit.@variables((y(t),

x1, x2, x3, x4, x5, x6, x7, x8, x9, x

10))
eqs = [

0 ~ 0.0 - (((t * a + x1) + (x10 +
(x9 + (x8 + (x7 + (x6 + (x5 +
(x4 + (x3 + (x2 + x1))))))))))
- float(N + 1)),

....]
nonLinearSystem = ModelingToolkit.

NonlinearSystem(eqs, vars, parameters
, name = :($(Symbol("
nonLinearScalable"))))

return nonLinearSystem
end

function makeNLProblem()
loop = nonLinearScalableAlgebraicLoop()
nlsys_function = (generate_function(loop,

expression = Val{false}))[2]
end

nonLinearScalableNonLinearFunction =
makeNLProblem()

function nonLinearScalableModel_ODE(dx, x,
aux, t)

p = aux[1]
u = aux[2]
func!(res, u) =

nonLinearScalableNonLinearFunction(
res, u, vcat(p, [t]))

sol = nlsolve(func!, u, ftol = 1.0e-12;
method = :newton)

aux[2] = sol.zero
dx[1] = (u[8] + u[9] + u[7] + u[6] + u[5]

+ u[4] + u[3] + u[2] + u[11] + u
[10]) * t

end

function
nonLinearScalableModel_surrogateODE(dx,
x, aux, t)

u = aux[2]
aux[2] = m([t])
dx[1] = (u[8] + u[9] + u[7] + u[6] + u[5]

+ u[4] + u[3] + u[2] + u[11] + u
[10]) * t

end

OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

116 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181109

auto-tuning Modelica models or parts of such models to
accelerate simulation time in a fashion similar to that of
Ma et al. (2021). This trade-off between accuracy and sim-
ulation time may be suitable for industrial applications,
e.g. automatically reducing the high detailed development
model to a real-time capable surrogate running on an inte-
grated chip.

7 Conclusion and Future Work
The results of this paper indicate the feasibility of a Mod-
elica Compiler in Julia. Concerning the experiments in
section 5, we acknowledge that there is a wide range of
different solvers available in MTK and in OpenModel-
ica. Thus, the goal of these experiments is not to assess
the performance of handwritten MTK-models but rather
to characterize the performance of automatically gener-
ated MTK-models in the context of the compiler presented
here.

Furthermore, having access to the ModelingToolkit
ecosystem enables several extensions. One such extension
is the possibility to generate surrogates during compila-
tion time automatically. Challenges for such a scheme in-
clude not only the selection of surrogatisation techniques
but also how to decide what part of a model to replace and
what kind of surrogate to employ.

Another direction for future work would be to exam-
ine further the application of surrogatisation techniques in
the context of algebraic loops or whole sub-models. That
is replacing algebraic loops in large industrial grade DAE
systems with suitable surrogates during compilation time.
While we presented some initial examples as a part of this
paper, further work is required to establish the efficiency
of such techniques. To conclude, in this paper, we present
OpenModelica.jl, a non-monolithic Modelica Compiler
written in Julia using the high-performance frontend from
the OMC that can connect the Modelica ecosystem with
the ecosystem of Julia and ModelingToolkit.

Acknowledgements
This work has been supported by SSF in the LARGEDYN
project. This work has also been supported by Vinnova in
the ITEA EMPHYSIS project and the EMISYS project.
Support from the Swedish Government has also been re-
ceived through the ELLIIT project. OpenModelica devel-
opment is supported by the Open Source Modelica Con-
sortium. Many students, researchers, and engineers have
contributed to the OpenModelica environment. There is
not enough room here to mention all these people, but
we gratefully acknowledge their contributions. We would
also like to thank the reviewers for their comments to im-
prove this paper.

References
Bezanson, Jeff et al. (2017). “Julia: A fresh approach to numer-

ical computing”. In: SIAM review 59.1, pp. 65–98.

Braun, Willi, Francesco Casella, Bernhard Bachmann, et al.
(2017). “Solving large-scale Modelica models: new ap-
proaches and experimental results using OpenModelica”. In:
12 International Modelica Conference. Linkoping University
Electronic Press, pp. 557–563.

Casella, Francesco (2015). “Simulation of large-scale models in
modelica: State of the art and future perspectives”. In: 11th
International Modelica Conference, pp. 459–468.

Chen, Jiahao and Jarrett Revels (2016-08). “Robust bench-
marking in noisy environments”. In: arXiv e-prints,
arXiv:1608.04295. arXiv: 1608.04295 [cs.PF].

Elmqvist, Hilding and Martin Otter (2017). “Innovations for fu-
ture Modelica”. In: Proceedings of 12th International Model-
ica Conference. Linköping University Electronic Press.

Fritzson, Peter, Adrian Pop, Karim Abdelhak, et al. (2020). “The
OpenModelica Integrated Environment for Modeling, Simu-
lation, and Model-Based Development”. In: Modeling, Iden-
tification and Control 41.4, pp. 241–295.

Fritzson, Peter, Adrian Pop, and Peter Aronsson (2005).
“Towards Comprehensive Meta-Modeling and Meta-
Programming Capabilities in Modelica”. In: Proceedings
of the 4th International Modelica Conference, Hamburg,
Germany. Citeseer.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396.

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Parr, Terence J. and Russell W. Quong (1995). “ANTLR: A
predicated-LL (k) parser generator”. In: Software: Practice
and Experience 25.7, pp. 789–810.

Pop, Adrian et al. (2019). “A New OpenModelica Compiler
High Performance Frontend”. In: 13th International Model-
ica Conference. Vol. 157, pp. 689–698.

Rackauckas, Christopher and Qing Nie (2017).
“Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia”. In:
Journal of Open Research Software 5.1.

Rackauckas, Christopher and Qing Nie (2019). “Confederated
modular differential equation APIs for accelerated algorithm
development and benchmarking”. In: Advances in Engineer-
ing Software 132, pp. 1–6.

Sarı, Zekeriya and Serkan Günel (2019). “Causal. jl: A Model-
ing and Simulation Framework for Causal Models”. In: Pro-
ceedings of JuliaCon 1, p. 1.

Tinnerholm, John et al. (2020). “Towards an Open-Source Mod-
elica Compiler in Julia”. In: Proceedings of Asian Model-
ica Conference 2020, Tokyo, Japan, October 08-09, 2020,
pp. 143–151. DOI: 10.3384/ecp20174143.

Tsitouras, Ch (2011). “Runge–Kutta pairs of order 5 (4) satisfy-
ing only the first column simplifying assumption”. In: Com-
puters & Mathematics with Applications 62.2, pp. 770–775.

Wang, G Gary and S Shan (2006). “Review of metamodeling
techniques in support of engineering design optimization”.
In: International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference.
Vol. 4255, pp. 415–426.

Session 1B: Julia

DOI
10.3384/ecp21181109

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

117

118 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Investigating Steady State Initialization
for Modelica models

Hans Olsson1 Erik Henningsson2
1
 Dassault Systemes AB, Sweden, hans.olsson@3ds.com

2Dassault Systemes AB, Sweden, erik.henningsson@3ds.com

Abstract
This paper investigates steady-state initialization both
symbolically and numerically, and in particular
demonstrates new ways of adapting the symbolic methods
for finding steady-state solutions for Modelica models
extending ideas that were previously manually
implemented in libraries. The methods are compared on
realistic Modelica models in Dymola.
Keywords: initialization, fluid models, differential
algebraic equation, static simulation, steady state

1 Introduction
Steady state behavior for models is an important study –
for several reasons. The steady state solution can be the
goal of the particular study, when studying how
parameters influence its characteristics, – and also a
starting point for normal simulation studies, since starting
from a steady-solution avoids uninteresting transients.

The goal of this paper is to investigate strategies for
finding steady states of Modelica models. We survey
different approaches and discuss their benefits and
challenges. Additionally, we present strategies for
automatic treatment of structural and numerical
singularities arising due to the steady-state formulation.
Such problems are for example encountered in fluid
models. To the best of our knowledge, such automatic
handling specifically for steady-state initialization has not
previously been discussed in the literature even if several
of the methods have been discussed.

In addition to true steady-state solutions where all
derivatives are zero and the solution is unchanging, we as
an outlook consider have quasi steady-state where some
states are changing, but the solution is fundamentally
time-invariant – e.g., a vehicle running at a constant
velocity. This creates unique challenges that will be
discussed later.

The stability of the steady-state solution could be
analyzed by a linearization at that point, but we will not
consider it in detail.

2 Variants of initialization
Normally Modelica models are initialized using the model
equations, initial equations, fixed start-values as described

in (Mattsson 2002), and supplemented by selecting non-
fixed start-values as described in section 8.6.2
“Recommended selection of start-values” of Modelica 3.5
(Olsson (editor), 2021).

The problems are often numerically challenging and
homotopy methods can be useful for handling that; see
(Sielemann 2011), (Sielemann 2012), and (Casella 2011).

Note that the initialization is applied after the index-
reduction, and we will thus primarily consider the ODE or
index-1 DAE-formulation of the model that due to index-
reduction may require additional conditions. Note that
historically the index reduction algorithm, (Pantelides
1988) was proposed specifically to find those initial
conditions.

Note that the difference between the ODE and index-1
formulation is important here as there might be initial
conditions and/or start-values involving the algebraic
variables. Additionally, index reduction sometimes lead to
dynamic state selection, (Mattsson 2000) and the
combination with steady state initialization poses specific
problems that will be considered later.

Various libraries have different mechanisms for
conditionally disabling initial equations and start-values.

2.1 Symbolic steady state initialization
Steady state initialization changes this to instead of
selecting start-values we set derivatives to zero. This
might be seen as simply changing from computing a
solution �(�) from (this is most easily seen in the ODE
case): �� = �(�(�), �)

�(0) = �
 (1)

to computing it from: ��(�) = �(�(�), �)

0 = ��(0) (2)

However, even if this works in some cases there are
number of issues in most cases:

• The Jacobian ��/�� might be singular, either
structurally or just at the initial point; indicating
that there are multiple acceptable steady-state
solutions; this is discussed in (Casella 2012). It
can be difficult to give good numeric diagnostics
for this, and we will return to this in Section 3.

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

119

• Some initial conditions might be specified, either
to handle the singularity above or in order to get
a specific quasi-steady-state solution.

These problems can be overcome using specific
remedies as will be explained later.

2.2 Dynamic steady state finding
Another alternative is to numerically integrate forward
from the normal initial conditions until a dynamic steady-
state is reached (up to a certain precision). This is often
simpler, and handles the issues above. Furthermore, by
introducing pseudo dynamics, purely static models can be
transformed to dynamic models. The dynamics are crafted
so that the solution tends to a steady state equal to the
static solution of the original model. This technique is
often employed to break up algebraic loops for more
robust solving of static problems. For both of these
application it is important to automatically detect that the
steady state has been reached so that the simulation can be
terminated in a timely fashion.

However, there are other potential downsides when
using the dynamic steady state initialization:

• The dynamic simulation usually takes longer than
the static initialization.

• Double integrators – especially in combination
with “quasi-steady-state”, will tend to infinity.

• The model may not have a steady-state solution;
but instead tend to a periodic solution, quasi-
periodic, or even have a strange attractor.

• The solution may have state events during the
solution. There might also be time events if
integrating forward in time.

 Methods to detect periodic steady states have
previously been considered in the Modelica context.
(Kuhn 2017) investigates techniques to automatically
identify periodic steady states in Modelica models of
electrical AC systems. An additional example is the
Electrified Powertrains Library (EPTL), which feature
components that terminate a simulation when a periodic
steady state is reached.

 It might be possible to avoid time events and periodic
solutions by integrating from minus infinity towards zero,
and use implicit Euler with large step-sizes to artificially
dampen oscillations.

3 Symbolic steady state initialization
We will now consider the specific issues related to
symbolic steady state initialization, and our general
approach for solving it. Specifically we will describe how
the changes to the basic approach handles various cases.

3.1 Outline of symbolic approach
The goal of the symbolic approach is to set up the
modified steady-state problem to ensure that it is
structurally non-singular, and numerically non-singular at
the desired steady state solution.

We start from �� = �(�(�), �) but instead of setting the
entire ��(0) = 0 we use the well-known maximum-
bipartite-matching; e.g., (Cormen 1990) for finding which
elements of �� that should be set to zero.

The matching is similar to the matching for transient
simulation where we require a perfect (one-to-one)
matching of derivatives to these equations. The matched
variables and equations are also sorted into strongly
connected components and each of them solved
separately; but we will not discuss that in detail.

However, for initialization we instead attempt to match
variables to �� = �(�(�), �) , prioritized to first match
states and then derivatives of states so that all equations
are matched to some variable – but not all variables is
matched to an equation.

The states and derivatives of states that were unmatched
in this initialization problem are then set to default values
(normally zero for derivatives) and start-value for states.
This matching is based on the variable incidences for each
equation, but modified as will be explained later.

This procedure is then amended for an index-1 DAE by
adding algebraic equations (and initial equations) and first
matching all auxiliary variables.

An important aspect is that when matching states to the
equations we prioritize them to get the result of section
8.6.2 “Recommended selection of start-values” of
Modelica 3.5 (Olsson (editor) 2021).

Note that this is only used for solving the initialization
problem and we then use the equations in the usual way
for dynamic simulations.

This basic approach was implemented in Dymola in
2004 based on the similarity with the normal state-
initialization. There are multiple variants of this; note that
we symbolically manipulate the equations but do not aim
to symbolically solve them in contrast to (Ochel 2014).

3.2 Avoiding structural singularities
For fluid models we have seen two specific causes of

singularities. The first issue for fluid models, already
handled in models in (Casella 2012), can be simplified to
two tanks connected in a cycle where the outflow, f, from
each tank depend on its mass, x, and some parameter A: �� = ���� , ���

��� = �� − ����� = �� − ��
(3)

This can be integrated forward in time, but if we

attempt to compute the steady-state solution we get a
redundant equation: 0 = �� − ��0 = �� − �� (4)

The proposed solution for such cases is to consider all
trivial equations when derivatives are set to zero, and see
if they form cycles (as in this case). Trivial equations are
equations that can be written on the form a=+/-b. This
automates the procedure from (Casella 2012).

Investigating Steady State Initialization for Modelica models

120 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

As previously indicated the symbolic selection of initial
conditions is based on matching variables to equations
based on their incidence. We thus modify the equation
graph causing the cycle (in this case the two derivative-
equations) by adding an incidence to an extra algebraic
variable in them and introducing a new equation with
incidence to the derivative-variables of these equations
(the variable is called ℎ below; the equation is left empty)
which gives the graph:

Figure 1 Matching for two tanks

The variables are in three groups, since we first match ℎ, ��, ��; then attempt to match ��, �� and finally attempt
to match ���, ���. The matchings are solid lines and other
incidences are dotted thinner lines.

 The unmatched derivative ��� is set to zero, and the
unmatched state �� becomes an arbitrary start-value
(there is a priority depending on whether start-values are
set and at what level, such that the start-value that is
“highest up” is prioritized). The other state is initialized
based on �� = �� giving �(��, ��) = �(��, ��).

We then modify the new matching to remove the extra
equation and extra variable ℎ, but keep the previously
matched variables. (There might be other ways of getting
to this desired matching without temporarily adding an
extra variable and equation and then removing them). This
matches ��� with ��� = �� − ��; and the equations are then
as usual sorted into strongly connected components where
each component in this case is scalar; and only the one
involving �� require the solution of a non-linear equation.

From a modeling perspective another possibility would
be to have an initial equation for the total mass in the
system, replacing the arbitrary start-value for one of the

masses. The chosen approach naturally handles that, and
the initial equation can either be conditional on steady-
state initialization or always applied.

3.3 Avoiding singularity at the solution
The second issue for fluid models can occur for any
differentiated media such as the function for density as a
function of the states:

� = �(�, �) (5)
Which is differentiated to give:

�� = � (�, �)�� ! �"(�, �)�� (6)
If we just solve the equations without symbolic processing
as suggested in (Casella 2012) this is unproblematic.

However, if we want to perform a structural analysis to
see which derivatives we can set to zero we get a problem.
Specifically we might attempt to match T or p to this
equation during steady initialization and attempt to
compute them from it – because they influence � (�, �)
and �"(�, �).

Numerically this will not be well-behaved when we
approach the steady-state solution since the influence of T
and p on � (�, �)�� ! �"(�, �)�� gradually disappear as
the derivatives approach zero.

We handle that by modifying the incidence for all
initialization equations by removing checking what
happens if the state-derivatives are set to zero. If the
equation no longer contains a non-derivative variable we
remove the incidence from the equation to that variable
when finding the steady-state solution.

3.4 Higher order derivatives
The original description separated variables into states and
derivatives of states. For higher order derivatives that
naturally occur in mechanical systems that is not always
straightforward -- consider a simple rotational model:

Figure 2 Two inertias

The rotational speed, w, is both a state and a derivative;
and it may even have a start-value.

However, the state-variable w can be matched to the
equation der(phi)=w; i.e. it will be treated as if it only were
a derivative-variable. Thus such higher order derivatives
cause no direct problem, and since the state is matched to
equations its start-value is ignored (assuming there is no
fixed=true). We might in the future prioritize start-values
for such combinations of state/derivative instead of setting
derivatives to zero, but other related issues are more
important.

3.5 Dynamic State Selection
Consider the pendulum in Cartesian coordinates.
model Pendulum

 Real vx,vy;

inertia

J=J

inertia1

J=J

spring

c=c

��

��

��

��

���

���

ℎ

�� = �(��, ��)

�� = �(��, ��

��� = �� − ��

��� = �� − ��

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

121

 Real x(start=0.5),y(start=0.7);

 Real f;

equation

 x^2+y^2=1;

 der(x)=vx;

 der(y)=vy;

 der(vy)=-9.81+f*y;

 der(vx)=f*x;

end Pendulum;

Note that the start-values are inconsistent guess-values.
In Modelica tools the pendulum is usually solved using

the dynamic dummy derivative method, since there is no
static selection of states that generate a good solution.

Note that there are two dynamic dummy derivative
systems, each selecting one state among two possibility –
one for positions and one for velocities.

However, that is an implementation detail and from a
user perspective we prefer to hide those dummy variables
and instead give start-values for the normal variables.
Using high order derivatives all differentiated equations
can be written as:

�� ! $� = 1 (7&) 2��� ! 2$� $ = 0 (7') 2�(� ! 2�� � ! 2$($! 2$� � = 0 (7)) $(= −9.81 ! �$ (7�) �(= �� (7-)
Simply ignore the dummy derivatives?

Hiding the dummies causes two problems: the first is that
it looks as if we need two steady-state conditions and have
four free derivatives (two velocities and two
accelerations) that we could set to zero for steady-state
initialization, but in reality there are only two free
derivatives in total (one velocity and one acceleration).

If we ignore that and set the two velocities to zero that
directly collapses one existing equation:

2��� ! 2$�$ = 0 ./01234⎯⎯⎯6 0 = 0 (8)
Similarly setting the two accelerations to zero simplifies
another existing equation:

2�(� ! 2�� � ! 2$($! 2$� � = 0 ./01234⎯⎯⎯6 2�� � ! 2$� � = 0 (9)
Which have the following Jacobian with respect to the
velocities:

72� 2$4�� 4$� 8 (10)

When the velocities goes to zero the second row tends to
zero.

Solving that problem leads to the second problem, that
some choices of velocity and acceleration-variables for
steady state lead to singular systems, which is exactly the
reason we used dynamic dummy-derivatives in the first
place. It is not certain that a dummy-derivative system is
singular at exactly the steady state solution, but it seems
likely and will occur in this case if we set

$(= $� = 0 (11)
which gives the following Jacobian with respect to �, $, �� , �(, � (where the second and third rows are zero at
the solution):

⎣⎢
⎢⎢
⎡ 2� 2$ 0 0 02�� 0 2� 0 02�(0 4�� 2� 00 −� 0 0 −$−� 0 0 1 −�⎦⎥

⎥⎥
⎤

(12)

Directly using the dummy derivatives

An alternative would then to be to attempt to set the actual
derivatives of the dynamic dummy derivative method to
zero. But that seems underspecified, since it involves
projecting the original derivatives using an unspecified
projection matrix.

This approach might work using an iterative scheme
where the projection matrix is recomputed until
convergence, but it seems needlessly complicated and it is
not obvious that it will generate a unique solution.
Proposed solution

The proposed remedy here involves modifying the initial
equations in a consistent way.

First we set all derivatives in each dummy derivative
system to zero as if we ignore the dummy derivatives, and
then we balance that by removing the corresponding
differentiated constraint that becomes identically zero for
that choice (after verifying that it is in fact the case).

Additionally we propagate these zeros to other dummy
derivative systems, since normally the acceleration
constraints also involve velocities.

For the pendulum this means that we want to solve:
�� ! $� = 1 (13&) �� = 0 (13') $� = 0 (13)) $(= −9.81 ! �$ (13�) �(= �� (13-) �(= 0 (13�) $(= 0 (13�)

and verify that the differentiated constraints are zero: 2��� ! 2$� $ = 0 (14&) 2�(� ! 2�� � ! 2$($! 2$� � = 0 (14')

4 Future work: Quasi Steady State
Quasi steady state, where some derivatives have non-zero
values is important in practice. The goal would be to
directly study the model in operation without unnecessary
transients. A realistic example would be a model of a car
running at 60 km/h.

The goal of this section is two-fold; both to indicate
how a tool in the future could automatically find these
solutions, and also to demonstrate the problem to avoid the
unintended solutions shown here.

4.1 Why quasi steady state is complicated
Let us start by a simple example of two connected inertias.

Investigating Steady State Initialization for Modelica models

122 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

Figure 3 Two Inertias, Quasi Steady State

Assuming we want quasi steady-state and set
inertia.w(start=5, fixed=true); something odd happens in
this example. Just setting all other derivatives to zero
makes the other inertia starts stationary and then we get a
periodic solution for the angular velocities.

If we use a damper (or spring-damper) the states will as
default be in the damper and thus as default the damper
will have derivative zero, but if we set options to avoid
states in the damper there is a risk of a similar non quasi-
steady-state solution.

Note that it is not necessarily that we give a rotational
velocity – a more realistic case is that we attach an engine
(can even be a simple constant torque) to one inertia and
some losses such as bearing-friction to the other. The
result is the same, we can set one acceleration to zero, but
not the other; and the solution will then start with a similar
transient until reaching a quasi steady state.

Obviously this is not the desired quasi-steady solution,
and the idea with investigating a small example is to find
an approach that can be applied to a large system, like a
car.

One approach is that instead of selecting initial
conditions among the existing derivatives we add the
initial equations ?� = 0 and ?(= 0, and that is similar to
treating w=5 as a normal non-initial equation during
index-reduction. However, if we had another spring (or
spring-damper) followed by an inertia we would need to
set ?� = 0 and ?(= 0 for this new inertia, etc.

Partially this is just prioritizing setting high order
derivatives to zero, i.e. ?� = 0 instead of ? = 0, but ?(
does not even exist in the model, and even constructing ?(
in the first inertia does not create the next one. Thus further
investigations are needed. We can also consider a clutch
instead of a spring-damper, and a solution can have the
two inertias rotating with different (steady-state) speeds.

Figure 4 Advanced Quasi Steady State

An additional complication occurs if there are multiple
disconnected mechanical systems – the initialization
procedure outlined here will allow them to move
independently of each other.

This also indicates that the original name we used for
the approach “DefaultSteadyState” is misleading, since
using steady state as “default” for a few variables does not
guarantee a meaningful result.

4.2 Simple quasi steady state theory
Assume we have a system:

�� = �(�) (15&)
and we want to generalize the notion steady state to cases
where the derivative is non-zero but the system does not
change. The simplest possibility is that the derivative is
constant which gives that the following should be valid for
all points in time: �� = �(� ! ���) (15')
This implies that the derivative is in the non-trivial null-
space

ker C��
��D (16)

and such null-spaces exist if the model is translationally
invariant, such that y=T(x,p) behaves the same as x, with
the restriction that the transformation has determinant 1
(and is differentiable in p). In general quasi steady state
meaning that all points on the trajectory are “equivalent”
seems like a good definition for quasi steady state, and
smooth transformations allow that, and for a general fixed
transformation we have

�� = C��
��DE� ���(�, �)� (17)

For translational invariance FG
GHI = J and we can select

a trajectory as a varying transformation of one point (since
it always gives the same derivative). The restriction is then

that the derivatives are given as
G
G".

The benefit of this formulation can be seen for second
order 1D-mechanical systems where we directly see that
velocities should be in this null-space. Compare this with
setting ?(= 0 (i.e., setting the third order derivative of the
angle to zero) that require differentiating the model
equations an additional time. Both formulations ensure
quasi steady state behavior.

The null-space can be fairly simple, e.g. all absolute
positions (with equal weight), and without relative
positions. If we have a rotational motion with gears it is
less trivial, but still straightforward.

4.3 Multi-dimensional fixed speed rotations
However, if we want to consider a car turning with a fixed
steering angle (i.e. with a constant yaw) it becomes
complicated. In general we propose the equation:

K��(�
, �)
�� L �� = ���(�
, �)� (18)

The desired solution for rotation can be seen a pure
rotation – but around an unknown point in space, and for
the positions the second derivatives are thus non-zero (and
proportional to the distance from the rotation center for
absolute coordinates). If we use � = {NH , N., O} as
invariant position and angle of the main object and then
relative coordinates, x, we have the invariants:

N(= ��N� , O, O� , �, ��� = -QR��-EQRN� , 0, O� , �, ��� (19&)
O(= ��O� , �, ��� (19')
�(= ℎ�O� , �, ��� (19))

inertia

J=1 kg m²

inertia1

J=2 kg m²

spring

c=1 N m/rad

inertia

J=J

bearingFriction
torque

tau

const

k=10

inertia2

J=J clutch

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

123

with the solution �(= 0, �� = 0, O(= 0, N(= N�SO� . For a
rocket in space all positions and angles can be invariant,
but for more earthly applications, such as a typical car (on
a tarmac that is big, flat, and even), the positions in the
plane are the invariant positions, and the yaw angle the
invariant angle (the yaw velocity is O�).

This seems straightforward, but it is not clear how to
perform this when only using the equations - without any
additional knowledge. Additionally if the road surface
depends on the position or is slanted, there are no solutions
that rotate with a fixed speed.

However, this is the desired solution if we want to set
the speed for the car (or have the engine running), and
have the steering wheel off-center (or in general anything
that makes the car non-symmetric) – i.e. it is the natural
extension of the simple translational case for quasi steady
state to 3-dimensions and also the special case of 2-
dimensions (Höbinger and Otter, 2008).

Note that this is mostly restricted to mechanical
systems, due to lack of invariants in other cases. Electrical
systems are invariant with respect to the potentials – even
more generally than mechanical systems (the potential can
be any time-varying function), but grounding the circuit
eliminates that – and grounding is used for normal
simulation as well.

5 Evaluating the methods
There are three factors we want to consider for these
methods:

• Does is find the desired steady-state solution?
• How easy is it to set up the problem?
• How quickly do we compute the solution?

5.1 Furuta pendulum
In order to dynamically find a steady state solution we
currently have to add dampers to all joints to ensure that
the steady state solution is asymptotically stable. And then
set flag to find dynamic steady-state.

To generate the symbolic steady state solution the
dampers in Figure 5 are not necessary (although possible),
just setting the symbolic steady-state flags suffice.
However, unless we set the guess-value for R2.phi close
to zero this generates an unstable steady-state solution.

The symbolic handling automatically detects that
R1.phi is a free variable, since the rotation axis is aligned
with gravity. It is thus selected as a fixed start value in
accordance with Section 3.2.

Figure 5 Damped Furuta Pendulum

5.2 Three tanks
This is a simple model in the Fluid package in the standard
library.

Figure 6 Three Tanks Steady State

Merely simulating the model gives the following plot
(converging to a steady state):

Figure 7 Solution for Three Tanks Steady State

There is a global setting for initialization in the model
which has three relevant possibilities:

• FixedInitial – the default giving the plot
• Steady-state initial
• Initial guess-value

world

x

y

a

b

n=
{0

,1
,0

}

R
1

B1

r={0.5,0,0}

b a a b

n={1,0,0}

R2

B
2

r=
{0,-0.5,0} b

a

a b

n={1,0,0}

R3

B
3

r=
{0,-0.5,0} b

a

damper1

d=d

damper2

d=d

damper3

d=d

0 40 80 120 160 200
2

3

4

5

6

7

8

9

[m
]

tank1.level tank2.level tank3.level

Investigating Steady State Initialization for Modelica models

124 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

The initial guess-value in combination with steady-state
flags finds a desired solution, and reports that one tank
level and all tank temperatures are free initial values.

The built-in steady-state initial setting also finds a
steady-state solution and reports the same free initial
values, but additionally generate a diagnostic that there are
four redundant consistent initial conditions are
automatically removed:

Removed the following equations which
are redundant and consistent:
der(tank3.U) = der(tank3.m)*tank3.medium.u

+ tank3.m*der(tank3.medium.u);
der(tank1.U) = der(tank1.m)*tank1.medium.u

+ tank1.m*der(tank1.medium.u);
der(tank2.U) = der(tank2.m)*tank2.medium.u

+ tank2.m*der(tank2.medium.u);
pipe1.port_a.m_flow+pipe2.port_a.m_flow

 +pipe3.port_a.m_flow = 0.0;

5.3 HeatLosses in MultiBody
This example model is interesting because it mixes
different domains and has dynamic state selection.

Figure 8 Multiple Springs with Heatlosses

The heat-losses are due to friction in the dampers, and
should be zero in steady-state (confirmed by examining
the solution at steady-state).

The symbolic steady-state settings directly finds the
steady-state solution (the straight lines in the diagram)
matching the dynamic solution.

Figure 9 Solution for Multiple Springs with Heatlosses

The dynamic steady-state does not quickly find that the
solution has converged, since there is a hidden slowly
damped oscillation.

5.4 Quasi-steady state vehicle
Using constant torque for a simple translational vehicle
with a non-rigidly attached trailer:

Figure 10 Quasi Steady-State for Simple Vehicle

Using dynamic steady state automatically finds the
steady-state velocity (after 1 minute).

Figure 11 Solution to Quasi Steady-State for Simple Vehicle

Since the quasi-steady symbolic solution is not yet
implemented we would have to manually add the
corresponding initial equations based on Section 4.2 (the
first two give that the derivatives are in the null-space and
the final one is setting a second order derivative to zero):
 vehicle.v=trailer.v;

 vehicle.a=trailer.a;

 vehicle.a = 0;

directly giving the solid line above.

5.5 Implementation notes
The symbolic steady state initialization with the
improvements listed in section 3 were implemented
already in Dymola 2020, but Dymola 2022 and
3DExperience 2022x adds the possibility of ignoring
some state initializations in the model which makes it
easier to perform the tests. The flags used are:
Advanced.Translation.
 DefaultSteadyStateInitialization=false;
Advanced.Translation.
 DefaultSteadyStateInitializationLevel=1;

 Finding the dynamic steady-state initialization was
implemented in Dymola 2022, and is enabled by the flag:
Advanced.Simulation.

world

x

y

m
=

1 kg

body1

bar1

r={0.3,0,0}

a b

bar2

r={0.3,0,0}

a b

a

b

spring1

c=
30 N

/m

a

b

dam
per1

d=
2 N

 s/m

a

b

springD
am

per

d=
2 N

 s/m

c=
30 N

/m

m
=

1 kg

body2

bar3

r={0.3,0,0}

a b

a

b

springD
am

perS
eries

c=
30 N

/m

d=
2 N

 s/m

m
=

1 kg

body3
a

b

spring

c=
30 N

/m

const

k=20

convection

Gc

TAmbient

degC

0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m
]

springDamper.s // 3 springDamper.s // 2 springDamperSeries.s // 2 springDamperSeries.s // 3

vehicle

inc. cr w ind

trailer

inc. cr w ind

torque1

tau

springDamper

d=100 N s/m
c=100 N/m

const1

k=100

0 25 50
-20

0

20

40

60

80

100

[k
m

/h
]

trailer.v // 3 trailer.v // 2

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

125

 SteadyStateTermination=true;
 By default the simulation is automatically terminated

when all state derivatives have an absolute value less than 2 % of the scale of the corresponding state, taking into
account the time scale of the simulation. This default
tolerance is chosen in accordance with the common
definition of settling time within control theory (Tay,
Mareels and Moore 1998). The tolerance can be modified
by
Advanced.Simulation.
 SteadyStateTerminationTolerance
for details see (Dassault Systèmes 2021).

5.6 Evaluation
Both methods quickly find a steady-state solution, and are
fairly easy to set up.

The downside of finding dynamic steady-state is that
one must ensure that the system is sufficiently damped to
reach a steady state; whereas the downside of symbolic
steady state is that it may find an unwanted steady-state
solution.

6 Outlook for standardization
The new features are specific to Dymola, and not standard
Modelica.

The Modelica Language has no features for switching
between setting values for states and steady-state
initialization. However, many Modelica models have such
settings, locally and/or using an inner component to have
a “global” setting.

The examples show that such settings, when they exist,
work similarly as the tool-setting for symbolically solving
the steady-state problem. This means that any
standardization effort needs to ensure that the existing
models can seamlessly switch to the new formulation
which will be an additional effort.

One downside of having the steady-state setting in the
model is that although index-reduction automatically
handles algebraic couplings for the dynamic equations that
does not automatically remove initialization equations.
However, that is not a major issue as tools can detect such
redundant initial equations and automatically remove
them.

A specific issue with having steady-state settings
locally in components is that this can easily set up quasi
steady-state problems generating undesirable solutions as
indicated above.

7 Conclusions
This paper demonstrates that Modelica allows powerful
initialization techniques, both symbolic and numeric. The
methods have been implemented in Dymola 2022 and
3DEXPERIENCE 2022x.

However, to be standardized in Modelica this must be
integrated in models complementing the existing model

settings and it must be possible to detect and preferably
solve quasi steady state problems.

Acknowledgements
Some of this work has been part of the ModeliScale
research project, and we also acknowledge the customers
providing us with challenging models.

References
Dassault Systèmes. (2021) Dymola 2022: Dymola, Dynamic

Modeling Laboratory, User Manual 2A: Model Development
Tools. Dassault Systèmes AB, Lund, Sweden.

Casella, Francesco, and Michael Sielemann, and Luca
Savoldelli (2011) “Steady-state initialization of object-
oriented thermo-fluid models by homotopy methods” In
Proceedings of the 8h International Modelica Conference. 86-
96

Casella, Francesco (2012): On the Formulation of Steady-State
Initialization Problems in Object-Oriented Models of Closed
Thermo-Hydraulic System.

Cormen, Thomas H. and Charles E. Leiserson, and Ronald L.
Rivest (1990) Introduction to Algorithms. MIT Press. ISBN
0-07-013143-0

Höbinger, Mathias and Martin Otter (2008): “PlanarMultiBody
A Modelica Library for Planar Multi-Body Systems”. In:
Proceedings of 6th International Modelica Conference 549-
546

Ochel, Lennart, and Bernhard Bachmann and Francesco
Casella (2014): “Symbolic Initialization of Over-determined
Higher-index Models” In: Proceedings of the 10h
International Modelica Conference. 1179 – 1187.

Olsson, Hans (editor) (2021): Modelica A Unified Object-
Oriented Language for Systems Modeling Language
Specification Version 3.5.
URL: https://specification.modelica.org/maint/3.5/MLS.pdf

Kuhn, Martin Raphael (2017): “Periodic Steady State
Identification for use in Modelica based AC electrical system
simulation”. In: Proceedings of the 12th International
Modelica Conference. 493 – 505.

Mattsson, Sven Erik, and Hans Olsson and Hilding Elmqvist
(2000) “Dynamic Selection of States in Dymola”. In:
Modelica Workshop 2000. 61 –67.

Mattsson, Sven Erik, and Hilding Elmqvist, and Martin Otter,
and Hans Olsson (2002) “Initialization of hybrid differential-
algebraic equations in Modelica 2.0”. In: Proceedings of 2nd
International Modelica Conference. 9-15.

Pantelides, Constantinos (1988) “The Consistent Initialization
of Differential-Algebraic Systems” In SIAM Journal on
Scientific and Statistical Computing 9:2, pg 213-231.

Sielemann, Michael, and Francesco Casella, and Martin Otter,
and Christoph Clauß, and Jonas Eborn, and Sven Erik
Mattson, and Hans Olsson (2011) “Robust Initialization of
Differential-Algebraic Equations Using Homotopy” In
Proceedings of the 8h International Modelica Conference.

Sielemann, Michael (2012) “Probability-One Homotopy for
Robust Initialization of Differential-Algebraic Equations” In
Proceedings of the 9h International Modelica Conference.
223-236.

Investigating Steady State Initialization for Modelica models

126 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

Tay, Teng-Tiow, and Ivan Mareels, and John B. Moore (1998)
High Performance Control. Birkhäuser Basel.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

127

128 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

New Equation-based Method for Parameter and State Estimation

Luis Corona Mesa-Moles1 Erik Henningsson2 Daniel Bouskela1

Audrey Jardin1 Hans Olsson2

1R&D, Electricité de France, France, {luis.corona-mesa-moles,daniel.bouskela,
audrey.jardin}@edf.fr

2Dassault Systèmes, Sweden, {erik.henningsson,hans.olsson}@3ds.com

Abstract

To get reliable simulation results from a Modelica

model it is important to parametrize and initialize the

model using the best estimate of the state of the system.

Commonly, this state estimation is done by inverse

calculation on a square system of equations requiring as

many known values as states to be computed. In practice

this constraint is an important limitation and, in addition,

this method does not provide any information on the

uncertainties or confidence level associated to the

estimated state.

Taking advantage of the mathematical formulation of

Modelica equations, this paper presents a new method

to cope with the difficulties associated to the inverse

calculation method. This approach adapts and extends

the framework of data assimilation to provide a fully-

integrated Modelica tool, which efficiently can handle

every type of state estimation problem for static models.

This method has been successfully tested with simple

and complex Modelica models. Finally, the Modelica

implementation of this technique allows to easily extend

it to further applications.

Keywords: Modelica, parameter estimation, state

estimation, model, data assimilation

1 Introduction

The safe and economically efficient operation of power

plants and energy systems at large such as power grids

or district heating and cooling networks rely on data that

are used to assess the current state of the system and

make predictions on the future states of the system at

different timescales ranging from seconds to years.

Finding the best estimation of the system state is

important to diagnose functioning problems such as

energy or efficiency losses and make the right decisions

for predictive maintenance such as the best time to

change a pump before it breaks.

The best estimation depends on the quality and the

number of measurements. Unfortunately, raw data is

always subject to uncertainties, and in general the

number of states to be estimated far exceeds the number

of available measurements. When dealing with a

behavioral model (or digital twin) of the system, the
term “states” refers to the initial values of the dynamic

states and the values of the parameters, which are

quantities that are not constrained by the model’s

equations. Poor state estimation limits the predictive

power of the model.

Modelica models must be initialized by giving values

to all states. This is normally done by inverse calculation

on a square system of equations that requires to provide

as many known values as states to be computed.

Because the number of states most often far exceeds the

number of known variables, the user must make a choice

between the states to be computed and the states to be

manually initialized from assumptions. Therefore, there

is no guarantee on the accuracy of the estimation, and

therefore no guarantee on the accuracy of the

predictions. Static or dynamic checks on the model do

not provide any information on the consistency of the

initial conditions as initial conditions are not constrained

by the model’s equations (however, unphysical initial

conditions often, but not always, lead to numerical

divergence at simulation time). An answer to that

problem is data assimilation.

Data assimilation is a set of techniques that combines

statistical data on the measurements with a priori

knowledge from the expert (the so-called background)

and knowledge embedded in the model (the model’s

equations) to provide the best estimate of the system

initial state in the form of a mean value and confidence

range for each estimated state. The quality and the

accuracy of the estimated states will depend on the

quality of the input data considered. Data assimilation

uses all available information, that is, the more data that

is provided by the user (mainly background and

statistical data) the more accurate the result of the data

assimilation will be. In case that this detailed

information is not known by the user, uninformative

prior or weakly informative prior (such as guess values)

can be provided.

Data assimilation was initially developed for weather

forecasting and proved to be essential for the accuracy

of weather prediction, which is particularly difficult, the

atmosphere being a chaotic system. It is therefore

expected that this technique delivers good results on a

larger timescale for power plants which are stable

systems.

A previous work (Corona Mesa-Moles L. Argaud

J.P., Jardin A., Benssy A., Dong Y, 2019) has shown

that data assimilation can be used with a Modelica

model to estimate the state of the secondary loop of a

nuclear power plant. In this experiment, the data

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

129

assimilation algorithms were coded in Python1 and the

Modelica model used as a black box to provide

numerical values to the iterations of the Python code.

This method has some limitations such as lengthy

calculations and the impossibility of estimating the

values of boundary conditions when several operating

points are considered. One reason for the time-

consuming calculations is the need to compute

numerical Jacobian matrices by multiple calls to the full

model of the plant.

From Dymola’s perspective the calibration option has

already been considered. This option is primarily

designed for the case where there are more

measurements than states and parameters to estimate,

and normally that there are time-serie(s) of

measurements (Dassault Systèmes, 2021, Section 2).

The implementation, which is found in the Dymola

Design library, solves the non-linear least squares

problem, using Levenberg–Marquardt, which uses

Gauss–Newton internally (Fletcher, 1987, Sections 5.2

and 6.1).

This paper presents a solution that is better integrated

with Modelica: it takes advantage of the knowledge of

the mathematical form of the Modelica equations to

compute analytical Jacobians and allows the coding of

data assimilation algorithms directly in Modelica. It also

paves the way to extracting, from the original Modelica

model, the equations that are strictly necessary to

perform the state estimation, thus reducing the size of

the computations. These equations correspond to the

observation operator that binds the measured values (the

inputs of the calculation) to the states (the outputs of the

calculations): after all, no equation is needed if the

measured or observed variables are the same as the

estimated ones (the observation operator is then the

identity operator).

This paper is structured as follows. Section 2 presents

the new equation-based method for parameter and state

estimation. Section 3 describes how this method is

implemented in Modelica and finally Section 4 presents

the application of this new method on a complex

Modelica model developed with the open source library

ThermoSysPro.

2 The New Equation-based Method

2.1 Optimization problem

Data assimilation intends to combine different sources

of information in order to estimate at best the true state

of a system. The combination of different sources of

information such as a physical model and observations

can be understood as an optimization problem. There are

different mathematical approaches to handle data

assimilation problems, among which control theory

1 The Python codes were mainly based on the LGPL

free distributed tool ADAO (Salome, 2018)

(variational methods) and estimation theory (Kalman

filter or optimal interpolation) can be cited. Variational

methods define explicitly the optimization problem

considering a cost function in which terms associated to

the model and to the observations appear. Compared to

other methods, the variational approach enables to

handle easily non-linear models and combine different

types of observations while keeping a very efficient

computation time and accurate solution for the

optimization problem.

The most well-known variational method in data

assimilation is the so-called 3D-Var approach (see Asch

M. et al., 2016 for more details). This classical approach

can be extended to take into consideration the estimation

of boundary conditions as well, and this is one of the

main novelties presented in this article.

The objective of the method described in this article

is to give the best estimate of the tuners 𝑥 of a given

model 𝐻 considering a certain number of observations

𝑦obs,𝑘 (which can be measurements or design

assumptions for example) obtained for a set of different

boundary conditions 𝑝𝑘 . In practice, considering the

uncertainties related to the model 𝑃b, to the boundary

conditions 𝑃b,𝑘 and to the observations 𝑃R,𝑘 (all given in

the form of covariance matrices) it is possible to

compute the best estimate of the tuners 𝑥 and of the

boundary conditions 𝑝𝑘 on the basis of an initial value

𝑥b and 𝑝b,𝑘that correspond to the a priori knowledge of

the state (the so-called background). The difference

between the tuners and the boundary conditions is that

boundary conditions vary from one operating point to

another while tuners remain the same for all the

operating points considered.

The cost function described in the previous

paragraph, and corresponding to an extended version of

the 3D-Var approach, is defined as follows:

min
𝑥, 𝑝

𝐽(𝑥, 𝑝) 𝐰𝐢𝐭𝐡 𝐽(𝑥, 𝑝)

= 𝑛op ⋅ ‖𝑥 − 𝑥b‖
𝑃b

−1
2

+ ∑(‖𝑝𝑘 − 𝑝b,𝑘‖
𝑃b,𝑘

−1

2

𝑛op

𝑘=1

+ ‖𝑦𝑘 − 𝑦obs,𝑘‖
𝑃R,𝑘

−1

2
)

(1)

Where:

• 𝑛op are the total number of operating points;

• 𝑥 are the tuners to be estimated;

• 𝑥b are the tuners’ background (a priori

knowledge of the tuners to be estimated);

• 𝑝𝑘 are the boundary conditions for operating

point 𝑘;

• 𝑝b,𝑘 are the boundary conditions’

background (a priori knowledge of the

boundary conditions to be estimated);

New Equation-based Method for Parameter and State Estimation

130 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

• 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are the values computed by

the model for operating point 𝑘 and 𝐻 is the

Modelica model;

• 𝑦obs,𝑘 are the observations (corresponding to

the values computed by 𝐻);

• 𝑃b
−1 is the tuner background error

covariance matrix;

• 𝑃b,𝑘
−1 is the boundary condition background

error covariance matrix for operating point 𝑘

• 𝑃R,𝑘
−1 is the observation error covariance

matrix for operating point 𝑘.

It can be noted that weighted Euclidean norms have

been used in the definition of cost function 𝐽, i.e. for a

vector 𝑣 , ‖𝑣‖𝐴−1
2 = 𝑣𝑇𝐴−1𝑣, where 𝐴−1 is a positive

definite matrix.

Solving this optimization problem gives the best

estimate of tuner 𝑥 (which is denoted by 𝑥a) and of

boundary conditions 𝑝𝑘 (which is denoted by 𝑝a,𝑘),

these optimal solutions are referred to as the analysis.

The action of the model is captured by 𝐻, relating the

observed variables to the tuners and boundary

conditions (𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘)). However, for general

Modelica models 𝑦𝑘 is not explicitly given as a function

of 𝑥 and 𝑝𝑘. Instead, 𝑦𝑘 is implicitly given by

𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘) = 0 (2)

where 𝐺 is the mathematical representation of the entire

static Modelica model and 𝑧𝑘 are all of the computed

variables except 𝑦𝑘. Thus, in general we have 𝑛𝑧 ≫ 𝑛𝑦.

As discussed in Section 1, 𝐺 and 𝑧𝑘 may, for certain

applications, be substantially reduced in size by

extracting from 𝐺 only those equations that are

necessary to link 𝑥 and 𝑝𝑘 to 𝑦𝑘 . In this article we

consider models with large algebraic loops comprising

most of the model, where the connections between the

tuners and observed variables are traced through these

loops. Thus, a substantial reduction of 𝐺 is not possible,

see Section 3. Nonetheless, we consider such an

extraction algorithm an interesting topic for future work.

When generating simulation code, a Modelica tool

will perform a causalization, this means that the implicit

equation 𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘 ,) = 0 is transformed into the

explicit equation 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘), where 𝑧𝑘 are treated as

internal variables inside 𝐻. Thus, we may continue to

use the notation and formulae as presented earlier in this

section.

2.2 Computation of uncertainties

The data assimilation approach gives as well the

possibility to compute the uncertainties associated to the

parameters and boundary conditions that are estimated.

The uncertainty associated to the analysis is given in the

form of an error covariance matrix, the so-called

analysis-error covariance matrix: 𝑃aassociated to 𝑥a and

𝑃a,k associated to 𝑝a,𝑘 . They play the same role with

respect to the analysis as 𝑃b and 𝑃b,𝑘
−1 with respect to

the background.

In the case of the initial approach formulation of the

data assimilation problem, it can be shown that,

assuming that the model operator 𝐻 can be

approximated by a linear operator 𝑯 in a neighborhood

of the analysis, the analysis-error covariance matrix 𝑃𝑎

is equal to the Hessian ℋ of the cost function at 𝑥𝑎 (see

Tarantola A., 2005 and Bousserez N. et al., 2015). In

such case, the Hessian of the cost function is given by:

ℋ = 𝑃b
−1 + 𝑯𝑇𝑃R

−1𝑯 = 𝑃a
−1 (3)

For the final formulation of the data assimilation

problem presented in Section 2.1, the Hessian of the cost

function with respect to 𝑥 and all the 𝑝𝑘 can be

computed by differentiating the final form of the cost

function twice. The first differentiation of the cost

function gives its gradient:

∇𝑥𝐽 = 2 ∙ 𝑛op ∙ 𝑃b
−1(𝑥 − 𝑥b) +

2 ∙ ∑ (∇𝑥𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘))

𝑛op

𝑘=1

(4)

∇𝑝𝑘
𝐽 = 2 ∙ 𝑛op ∙ 𝑃b,𝑘

−1 ∙ (𝑝𝑘 − 𝑝b,𝑘) +

2 ∙ ∇𝑝𝑘
𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘), ∀ 𝑘

(5)

From these expressions and in a neighborhood of the

analysis (assuming that the model derivatives can be

approximated by a linear model (the so-called linear

tangent model), i.e. ∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 can be considered

as constant matrices) the second derivatives of the cost

function can be easily computed as follows:

ℋ𝑥 = 2 (𝑛op ∙ 𝑃b
−1 + ∑(∇𝑥𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ ∇𝑥𝑦𝑘)

𝑛op

𝑘=1

) (6)

ℋ𝑝,𝑘 = 2(𝑛op ∙ 𝑃b,𝑘
−1 + ∇𝑝𝑘

𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ ∇𝑝𝑘
𝑦𝑘), ∀ 𝑘 (7)

Considering the results presented in (Tarantola A.,

2005 and Bousserez N. et al., 2015), the analysis-error

covariance matrices for 𝑥 and all the 𝑝𝑘 can

straightforwardly be derived from the previous

expressions in order to compute the analysis

uncertainties: 𝑃a = ℋ𝑥
−1

 and 𝑃a,𝑘 = ℋ𝑝,𝑘
−1

.

2.3 Solving method 1: Gradient descent

The gradient descent method is a well-known method to

solve optimization problems. It is an iterative process

based on the computation of the cost function 𝐽. It can

be implemented in many different ways, and it can be

used in the context of data assimilation to solve the

optimization problem mentioned above.

When boundary conditions are considered in the

optimization problem, this method can be described by

the following algorithm:

- Initialization : 𝑥0 = 𝑥b and 𝑝0,𝑘 = 𝑝b,𝑘 , ∀ 𝑘

- While ‖∇𝑥𝐽‖ or ‖∇𝑝𝑘
𝐽‖, ∀ 𝑘 > 𝜀 or 𝑛 ≤ 𝑛max, do:

o Compute ∇𝑥𝐽 and ∇𝑝𝑘
𝐽, ∀ 𝑘

o Descent and update of 𝑥 and 𝑝𝑘

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

131

 𝑥𝑛+1 = 𝑥𝑛 − step ∙ ∇𝑥𝐽

 𝑝𝑛+1,𝑘 = 𝑝𝑛,𝑘 − step ∙ ∇𝑝𝑘
𝐽, ∀ 𝑘

o 𝑛 = 𝑛 + 1

The explicit expressions of the gradients can be found

in Section 2.2.

2.4 Solving method 2: Stationary point

The optimization problem presented in Section 2.1 can

be interpreted as a minimization of a cost function 𝐽

under the constraints that the model equations must be

satisfied. In this case, a necessary condition to find the

minimum of the cost function is that its gradient is equal

to zero.

This solution can be derived from the following

equations:

- ∇𝑥𝐽 = 0

- ∇𝑝𝑘
𝐽 = 0, ∀ 𝑘

where the model equations 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are used in

the computations of the above objective function

gradients. The stationary point equations are typically

solved using a Newton-type solver for optimization

(Fletcher, 1987, Chapter 3). However, we do not need to

take further steps here as writing the optimization

problem all in Modelica allows for stating equations, not

just algorithms. For details see Section 3.1.2.

2.5 Solving method 3: BFGS

As a third alternative, we consider the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm. It is

similar to gradient descent, but modifies the search

direction by a gradually improved approximation of the

Hessian of 𝐽, costing no additional function or gradient

evaluations. In our tests, we have used a golden-section

line search to find the minimum of 𝐽 in the descent

direction. For details, we refer to (Fletcher, 1987,

Sections 2.6 and 3.2).

3 Implementation

As discussed in Section 2.1, the data assimilation

procedure involves a model 𝐻, observation data 𝑦obs,𝑘,

background data 𝑥b, 𝑝b,𝑘, and the uncertainties for the

observation and background data 𝑃R , 𝑃b , 𝑃b,𝑘 .These

components are used to construct an optimization

problem, here the 3D-Var formulation (1).

The above model, considered for data assimilation, is

here referred to as original model. The observation,

background, and uncertainty data will be collectively

referred to as user input.

We identify the following requirements for a user-

friendly implementation.

1. The original model should be easy to use both

for data assimilation and normal simulation;

2. The optimization model should be separated

from the original model and use general

notation as in Section 2.1;

3. The Modelica extensions should be kept to a

minimum allowing for easy modification and

maintenance of the original and optimization

models.

We use the expression optimization model rather than

optimization algorithm since, defining the optimization

problem in Modelica, allows us to use equations-based

concepts, not just algorithms. The requirements suggest

a separation between the original model, the

optimization model, and the user input. Pending the

eventual combination of them all in symbolic and

numeric treatment.

In Sections 3.1 and 3.2 we describe the prototype

implementation included in Dymola 2022 and

3DEXPERIENCE 2022x. All described features are

enabled by:
Hidden.Assimilation.Enable = true.

The flag and other names described below may change

in future versions.

As a recurring example we consider the simple model

that computes the mass flow rate of a fluid through a

pipe. In Modelica, this example is described as follows:
model TSP_Pipe

 parameter Real K = 10;

 parameter Real delta_P = 2e5;

 parameter Real rho = 998.8404;
 Real Q;

 Real q;

 Real G[2];

equation

 G[1] = delta_P - K*rho*q*abs(q);

 G[2] = rho*q - Q;
 G = {0, 0};

end TSP_Pipe;

This model is equivalent to the one presented in (El

Hefni B. and Bouskela D., 2017) and developed with

ThermoSysPro (El Hefni B. and Bouskela D., 2019).

3.1 Definition of the data assimilation

optimization problem in Modelica

3.1.1 Extended original model

To specify which variables in a Modelica model are to

be considered for data assimilation, a new variable

attribute is used. To this end, the Modelica built-in type

Real has been extended with the attribute

assimilation, which is a record of type
record Assimilation

 StringType iotype;

 RealType data[:];

 RealType uncertainty[:];

end Assimilation;

where StringType and RealType are the Modelica

primitives for strings and floating-point numbers,

respectively (MLSv35 (Modelica Association 2021),

Section 4.8). The string iotype designates a Real

variable as a tuner 𝑥 ("Tuner"), boundary condition

𝑝𝑘 ("BC"), or observed variable 𝑦𝑘 "Observed". In

the elements data and uncertainty, background or

New Equation-based Method for Parameter and State Estimation

132 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

observed data and their respective uncertainties can be

specified. For tuners these two elements are scalars, for

boundary conditions and observed variables they are

vectors of size 𝑛op, the number of operating points. Note

that, the elements data and uncertainty can also be

modified later, see the upcoming section.

Consider again the pipe model TSP_Pipe introduced

in Section 3. As to not modify the original model we

may extend from it and specify the assimilation

attributes as modifiers.
model TSP_Pipe_Assimilation

 extends TSP_Pipe(

 K(assimilation(

 iotype="Tuner",

 data=950.0,

 uncertainty=100000000)),

 delta_P(assimilation(

 iotype="Tuner",

 data=2.0e5,

 uncertainty=100000000)),

 rho(assimilation(

 iotype="BC",

 data={998.8, 995.0},

 uncertainty={1, 1})),

 Q(assimilation(

 iotype="Observed",

 data={447.0, 450.0},

 uncertainty={1, 1})));

end TSP_Pipe_Assimilation;

Two operating points are considered with relatively

high confidence in the observations and boundary

conditions. There are more parameters to estimate than

observations.

3.1.2 Interface for the optimization model

With the original model extended to include the relevant

user input, it remains to formulate the optimization

problem and equations to find an optimum. To allow for

general optimization models, Dymola automatically

generates a library AssimilationPrototype,

containing the wrapper model AssimilationModel.

The interface consists of
input Real x[nx] "Tuners";

input Real p[nop, np] "BCs";

output Real y[nop, ny] "Observed";

output Real dydx[nop, ny, nx] "Jacobians";

output Real dydp[nop, ny, np] "Jacobians";

in combination with parameters for all of the

measurement data, background data, and uncertainties.

The dependency 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) imposed by the original

model (Section 2.1) is handled by the wrapper, cf.

Section 3.2.

To exemplify the usage of this interface we construct

a simple and equation-based optimization model for the

3D-Var optimization problem (1), with gradients as

derived in Section 2.2.
partial model DA_3DVar

 AssimilationPrototype.AssimilationModel

 mod(x=x, p=p);

 Real x[mod.nx];

 Real p[mod.nop, mod.np];

 Real dJdx[mod.nx] = 2*mod.nop*

 (x - mod.x_bg)*mod.P_b_inv +

 sum(2*(mod.y[k,:] - mod.y_obs[k,:])*

 mod.P_R_inv[k,:,:]*mod.dydx[k,:,:]

 for k in 1:mod.nop);

 Real dJdp[mod.nop, mod.np] =

 {2*(p[k,:] - mod.p_bg[k,:])*

 mod.P_bk_inv[k,:,:] +

 2*(mod.y[k,:] - mod.y_obs[k,:])*

 mod.P_R_inv[k,:,:]*mod.dydp[k,:,:]

 for k in 1:mod.nop};

end DA_3DVar;

The AssimilationModel component mod is used

to access the dimensions of the data assimilation

problem, the parameters containing all user input, and

the co-variance matrices. The inputs 𝑥 and 𝑝𝑘 are bound

to the local unknowns with the same name. The

observed variable 𝑦𝑘 together with the Jacobians ∇𝑥𝑦𝑘

and ∇𝑝𝑘
𝑦𝑘 are computed in the AssimilationModel.

Using the Jacobians, the objective gradients ∇𝑥𝐽 and

∇𝑝𝑘
𝐽 can also be computed, cf. Equations (4, 5). The

model is partial as there are 𝑛𝑥 + 𝑛op ⋅ 𝑛𝑝 more

variables than equations; an optimality condition has to

be enforced.
model StationaryPoint

 extends DA_3DVar;

equation

 dJdx = zeros(mod.nx);

 dJdp = zeros(mod.nop, mod.np);

 annotation(experiment(StopTime=0));

end StationaryPoint;

Here, we reap the full benefit of equation-based

modelling as we simply set the derivatives to zero to find

a stationary point, cf. Section 2.4. Dymola will do the

rest and employ its Newton-type nonlinear system

solver as a Newton method for optimization; there is no

need to write an optimization algorithm.

Finally, a special top-level annotation is provided to

point to the original model to assimilate.
model StationaryPoint_TSP_Pipe_Assimilation

 extends StationaryPoint;

 annotation(assimilationModel =

 "TSP_Pipe_Assimilation");

end StationaryPoint_TSP_Pipe_Assimilation;

When this model is translated, Dymola also translates

the original model TSP_Pipe_Assimilation and

then populates the wrapper model

AssimilationModel with the specifics of the original

model. The parameters containing the user input have

default values giving by the assimilation attributes

in the original model. These parameters can also be

modified from the optimization model, indeed even

after translation in Dymola’s Variable Browser.

Translating

StationaryPoint_TSP_Pipe_Assimilation we

get a single nonlinear system to be solved for the two

tuners and the two operating points of the single

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

133

boundary condition. When performing the static

simulation, the system is solved using 19 iterations and

one Jacobian computation. Note that the Jacobian of

simulation.nonlinear[1] is the Hessian of 𝐽. The

results are as follows: x[1] = K = 991.2 and x[2]

= delta_P = 199999.8. For the boundary condition

rho, we get for the respective operating points p[1,1]

= 998.4 and p[2,1] = 995.4. Note how the low

uncertainty for the boundary conditions results in values

close to their background data.

Other optimization models may use the time as an

iteration variable. That is, let all variables be discrete, in

particular the iterates 𝑥 and 𝑝𝑘 . Then, the sample

operator can be used to perform one iteration at each

sample. For example, a simple Gradient Descent

algorithm can be implemented as follows.
 when sample(1,1) then
 x = pre(x_new);
 p = pre(p_new);
 end when;
 x_new = x - dJdx;
 p_new = p - dJdp;

The iterations may be stopped at convergence using

the terminate operator. For more complex

optimization models the AssimilationModel

wrapper also offers auxiliary functions

ComputeOutput and ComputeGradient to be used in

algorithms. For example BFGS can use the former to

update 𝑦𝑘 and eventually 𝐽 when performing line-

search.

3.1.3 Robustness of the optimization model

When performing data assimilation under the 3D-Var

formulation (1), an optimization algorithm can use the

available background and observed data to improve

robustness of the algorithm. For example, the solution is

expected to be close to the background data, so this data

can be used for starting guesses, nominals, and other

scaling. The variables in the AssimilationModel

wrapper are automatically assigned these attributes.

To additionally improve the robustness of the

StationaryPoint optimization model, homotopy can

be used. Again, the 3D-Var formulation lends itself to a

natural choice: When the uncertainties for the observed

variables 𝑦𝑘 tends to infinity, the 3D-Var formulation

breaks down to the simple assignments 𝑥 = 𝑥b and

𝑝𝑘 = 𝑝b,𝑘. Similarly, the higher the uncertainties are for

𝑦𝑘 the easier the system simulation.nonlinear[1]

is to solve as the influence of the model is limited. Based

on this we propose the following homotopy variant of
StationaryPoint.

model StationaryPoint_Homotopy

 extends StationaryPoint(mod(

 y_obs_w = homotopy(mod.y_obs_w_const,

 1.0e4 * tuner_bg_w_max *

 ones(mod.nop, mod.ny))));

 constant Real tuner_bg_w_max =

 max(max(mod.x_bg_w_const),

 max(max(mod.p_bg_w_const)));

end StationaryPoint_Homotopy;

For the simple model, the uncertainties y_obs_w for

𝑦𝑘 are set to 104 times the largest uncertainty of the

tuners and background variables. During the homotopy

process y_obs_w is successively decreased to attain its

actual values. Here, the _const variables, also provided

by the wrapper, are constant versions of the

corresponding user input parameters.

3.2 Dymola implementation, back-end

The full optimization model consists of three parts:

 The transformed original model;

 The computation of the Jacobians ∇𝑥𝑦𝑘 and

∇𝑝𝑘
𝑦𝑘;

 The optimization model.

In the following subsections we build up the

optimization problem, item by item.

3.2.1 Transformation of the original model

The goal of data assimilation is to determine values for

parameters (including initial values for states) in the

original model. Thus, only Modelica parameters can be

designated as assimilation tuners (iotype = ”Tuner”)

or boundary conditions (iotype = ”BC”). To ease the

presentation, we also enforce that all observed variables

(iotype = ”Observed”) must be computed variables

(non-parameters) in the original model. That is, we

disregard cases where a parameter in the original model

has both measurement data and background data. The

generalization to these cases merely means including

such parameters both in the 𝑥 (or 𝑝𝑘) vector and in the

𝑦𝑘 vector.

To prepare the original model for data assimilation,

Dymola automatically removes the bindings on the

parameters to be assimilated. These parameters are

afterwards transformed to inputs and the observed

variables are transformed to outputs, matching the

interface of the AssimilationModel wrapper

described in Section 3.1.2. As the original model is

assumed to be a normal simulation model, we may

assume that it is determined (square). These

transformations keep this determinacy.

3.2.2 Computation of the Jacobians

In the previous section, we saw how the original model

readily can be transformed to fit into the structure of the

AssimilationModel wrapper. Assuming known

values for the inputs, we get a square transformed

original model, here considered in its implicit form 𝐺 =
0, cf. Section 3.1.1. After achieving a static simulation

result for each operating point, it is straight-forward to

formulate the adjoint equations for the Jacobians ∇𝑥𝑦𝑘

and ∇𝑝𝑘
𝑦𝑘 around these solutions

0 = ∇𝑥𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑧𝑘 (8)

New Equation-based Method for Parameter and State Estimation

134 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

0 = ∇𝑝𝑘,𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑧𝑘 (9)

for 𝑘 = 1, … , 𝑛op and 𝑖 = 1, … , 𝑛x (or 𝑛p

respectively). These are 𝑛𝑥 ⋅ 𝑛op + 𝑛𝑝 ⋅ 𝑛op linear

systems of equations of size 𝑛𝐺 = 𝑛𝑦 + 𝑛𝑧 . If we

compute the partial derivatives of 𝐺 analytically once

and for all, then it is quick work to set up the

Equations (8, 9) at each pair (𝑖, 𝑘). However, note that

𝐺 is the entire static model (or at least a major part of it,

cf. Section 2.1). In consequence 𝑧𝑘 and 𝑦𝑘 are all (or

most) of the computed variables. Thus, the size of each

of the Equations (8, 9) quickly becomes large.

Additionally, the number of introduced variables
𝑛op ⋅ (𝑛𝑦 + 𝑛𝑧) ⋅ (𝑛𝑥 + 𝑛𝑝) becomes unfeasibly large

even for medium-sized models. For these reasons we

chose not to use the adjoint equations for the Jacobian

computations, notwithstanding recognition of several

additional optimization that could have been done to

Equations (8, 9).

Instead, we consider the built-in chain rule in Dymola

that is used when computing analytic Jacobians for

dynamic simulation and input-output-Jacobians for

FMUs. Indeed, the transformed original model has

already been endowed with inputs (𝑥 and 𝑝𝑘) and

outputs (𝑦𝑘) preparing it for the application of the chain

rule.
The chain rule in Dymola internalizes all of the

auxiliary variables 𝑧𝑘 (compare 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘)) and

caches all of the partial derivatives. As most equations

in a typical Modelica model are simple, the partial

derivatives in turn are also mostly simple. There are

important exceptions to this rule. Most notably, we have

assumed that the model has a large algebraic loop,

cf. Section 2.1. Thus, for most partial derivatives of 𝑦𝑘

with respect to most 𝑥 or 𝑝𝑘, the chain rule has to run

through the algebraic loop. To this end, the inverse of

the system Jacobian for the loop is needed. Computing

it is costly but can be done quite efficiently in Dymola

by the help of tearing and caching.

Dymola’s chain rule gives us even more for free: The

dependencies for the partial derivatives are traced

between each 𝑦𝑘 and 𝑥 or 𝑝𝑘 (caching any new

information). This means that only the equations that are

actually needed for the partial derivative computations

are extracted and used.

3.2.3 Efficient treatment of several operating

points

The analytical expressions for the partial derivatives

∇𝑝𝑘
𝑦𝑘 and ∇𝑝𝑙

𝑦𝑙 for 𝑘, ℓ = 1, … , 𝑛op are identical.

Therefore, the chain rule does not need to be applied to

each operating point. This fact is reflected in the

transformed original model, where each boundary

conditions 𝑝𝑘 and observed variable 𝑦𝑘 only

corresponds to a single input or output, respectively.

Instead, we handle the different operating points in

the AssimilationModel wrapper. Namely, in the

array original[nop], where one copy of the original

model is instantiated per operating point. The wrapper

then takes care to broadcast the values of the input

matrix p[nop,np] to the correct instances of the

original model, cf. Section 3.1.2. Similarly, the wrapper

collects the observed variables and Jacobians from the

instances into the wrapper outputs.

We conclude that the Jacobian computations

proposed here only extend the original model with

𝑛𝑦 ⋅ (𝑛𝑥 + 𝑛𝑝) additional scalar variables, constituting

∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 . Noting that typically 𝑛𝑧 ≫ 𝑛𝑦, this is

a crucial improvement over the straight-forward

application of the adjoint equations (8, 9).

3.2.4 Causality of the data assimilation

optimization model

Up to this point, the causality of the original model has

been preserved; the transformed model is evaluated

first, after which the Jacobians are computed.

Optimization models using time and sample to iterate

does not change this causality. With the proper choices

x and p as iterates, their old values pre(x) and pre(p)

are inputs at each iteration and can be sent to the

transformed original model for computation of observed

variables and Jacobians, eventually leading to an update

of the iterates.

However, recall that our aim is to allow for the full

power of equation-based modelling when writing

optimization models for data assimilation. For example,

the stationary point models presented in Sections 3.1.2

and 3.1.3 take advantage of this feature. The equations
 dJdx = zeros(mod.nx);
 dJdp = zeros(mod.nop, mod.np);

involve all computed variables of the optimization

problem. In particular, the unknowns are the tuners and

boundary conditions, the computed variables of the

original model, the Jacobians and the gradients. The

equations are those of the original model, their

derivatives with respect to the tuners and boundary

conditions, and the stationary point equations. We return

to the TSP_Pipe example for an illustration
0 = 𝐺1 = Δ𝑃 − 𝜌𝐾𝑞|𝑞|,
0 = 𝐺2 = 𝜌𝑞 − 𝑄,

with 𝑥 = (𝐾, Δ𝑃) as tuners and 𝑦 = 𝑄 = 𝑄(𝐾, Δ𝑃) as

observed variable, leaving 𝑧 = 𝑞 = 𝑞(𝐾, Δ𝑃) as an

auxiliary variable (and disregarding boundary

conditions). The stationary point optimization model for

TSP_Pipe has the following incidence.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

135

𝐾 Δ𝑃 𝑄 𝑞
𝜕𝑄

𝜕𝐾

𝜕𝑞

𝜕𝐾

𝜕𝑄

𝜕Δ𝑃

𝜕𝑞

𝜕Δ𝑃
𝐺1 ∗ ∗ ∗

𝐺2 ∗ ∗

d𝐺1 d𝐾⁄ ∗ ∗ ∗

d𝐺2 d𝐾⁄ ∗ ∗

d𝐺1 dΔ𝑃⁄ ∗ ∗ ∗

d𝐺2 dΔ𝑃⁄ ∗ ∗

d𝐽 d𝐾⁄ ∗ ∗ ∗

d𝐽 dΔ𝑃⁄ ∗ ∗ ∗

As the example suggests, a partitioning can in general

not be made to solve the stationary point optimization

model in sequence. Rather, it must be considered at once

as a (nonlinear) system of equation. The tuners and

boundary conditions constitute a natural choice for

iteration (tearing) variables as, when they are

eliminated, the original model, the Jacobians, and the

stationary point equations can be computed in sequence,

where the latter are residual equations.

Commonly, and here by assumption (Section 2.1), the

original model contains algebraic loops. Either these

loops can be handled in the same nonlinear system as

the optimization system, or they can be nested inside the

optimization system. In the former case, the tuner and

boundary condition iteration variables are mixed with

the iteration variables for the loops in the original model.

In the latter case, the loops of the original model are

considered as blocks inside the optimization loop, and

are solved in full each outer iteration. Compare DAE

mode versus ODE mode for dynamic simulation (Braun,

Casella and Bachmann, 2017; Henningsson, Olsson and

Vanfretti, 2019). To keep the system of equations as

small as possible we here choose the latter alternative.

Additionally, it is more in line with the default choice of

ODE mode for dynamic simulations in Dymola. A

deeper investigation of these two alternatives may be an

interesting topic for future work.

3.2.5 Synthesis

We summarize with a flowchart of the steps taken by

Dymola when translating the full data assimilation

problem to generate simulation code. To wrap the

original model with Jacobian computations we chose to

use (an extension of) FMI 2.0 for Model Exchange,

which comes ready with an input-output interface and

analytic Jacobian computations in Dymola.

In the last step, the causality of the optimization

model is established and an (outer) nonlinear system is

constructed if so needed. All the steps are done

automatically by Dymola and the user does not need to

be concerned about casualization questions. That is, the

assimilation prototype uses the equation-based

paradigm, as any other Modelica model.

In conclusion, the analytic Jacobian only need to be

constructed once, which is done when translating the

extended original model. This Jacobian can then be

cheaply evaluated several times throughout the

optimization procedure. In contrast, consider the

traditional gradient-based approaches, e.g., those

discussed in the Introduction, there a numeric Jacobian

has to be constructed for each operating point during

each optimization iteration.

4 Experimentation results on a more

complex example

A complex ThermoSysPro model of the secondary loop

of a pressurized water reactor is retained for this

experimentation. It is the same model as the one

presented in (Corona Mesa-Moles L. Argaud J.P., Jardin

A., Benssy A., Dong Y, 2019). This model, presented in

Figure 1, has over 12000 equations and it is used to

compute the nominal operation point of the secondary

loop. It is mainly composed of the following

subsystems:

 A turbogenerator set made of high-pressure and

low-pressure turbines and one generator;

 Two sets of moisture separator reheaters;

 One condenser;

 One feedwater tank and gas stripper system;

 Two turbine-driven feedwater pumps;

 Low and high pressure feedwater headers.

Optimization model and original
model with assimilation attributes

Original model extended by Dymola,
resulting in new inputs and outputs

Analytic Jacobian constructed, and
original model translated to FMU

FMU imported with extended
FMU features

Optimization model translated
with wrapper and FMU

New Equation-based Method for Parameter and State Estimation

136 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

Figure 1. Model of the secondary loop of a 1300MW

pressurized water reactor

In order to assess the correct implementation of the

data assimilation method in Modelica, a twin

experiment is considered. In such type of experiments,

the observed variables used to perform data assimilation

come from the simulation itself for a given state (the so-

called reference state and obtained with a given value of

tuners and boundary conditions) and the goal is to

evaluate how close to this state the optimal state

estimated through data assimilation is. The BFGS

implementation is the method used for this

experimentation.

In this twin experimentation, a state defined by three

tuners and two boundary conditions for two different

operating points is considered. This information,

including the observed variables related to this state are

given in Table 1.

It can be noted that in this experimentation the

number of observed variables (3) is not be enough to

correctly calibrate both tuners (3) and boundary

conditions (2) using the usual method using square

system. Data assimilation offers a general approach to

deal efficiently with this type of calibration scenarios.

Table 1. Generation of the reference state

Quantity
Value

Op. Point 1 Op. Point 2

Tuners2 𝑥

1 2373.13 -

2 2373.13 -

3 405.762 -

Boundary

conditions3 𝑝

1 3802.63 3820

2 51.42 48

Observed

variables4 𝑦

1 22753.38 223814.23

2 22753.38 223814.23

3 382447.47 383190.88

2 Tuners considered in this example correspond to heat

transfer coefficients of different heat exchangers.
3 Boundary conditions considered in this example are

the total thermal power extracted from the steam

generators and the mass flow rate of the cooling water.

4.1 Scenarios considered

Two scenarios are considered to assess the correct

implementation of the data assimilation technique in

Modelica. Since one of the main novelties of this

implementation is to take into consideration boundary

conditions (BCs) in the state estimation problem, the

two scenarios differ only on the a priori uncertainties

associated to these boundary conditions.

The data assimilation inputs for Scenario 1 are given

in Table 2. For observed variables and as a twin

experimentation is performed, the values provided in

Table 1 are kept with a low uncertainty associated (10-1

for each of them).

Table 2. Data assimilation inputs for Scenario 1

Quantity Background Uncertainty5

Tuners 𝑥
1 2450 107

2 2320 107

3 500 107

BCs 𝑝

1

Op.

Point 1
3802.63 10-2

Op.

Point 2
3820 10-2

2

Op.

Point 1
51.42 10-4

Op.

Point 2
48 10-4

For Scenario 1, the uncertainties related to the tuners

are much larger than the ones considered for the

boundary conditions, the goal is that data assimilation

will mainly adjust the values of the tuners. Therefore, it

is expected for the adjusted value of the boundary

conditions to be very close to the background values.

Scenario 2 is identical to Scenario 1 excepted for the

uncertainty related to boundary conditions. In this

scenario, an uncertainty of 101 is considered for all

boundary conditions. Compared to Scenario 1, it is

expected to obtain different values for the optimal state

and in particular for the boundary conditions.

4.2 Results

The results obtained for Scenario 1 are given in Table 3.

In Table 3 the optimal values for tuners and boundary

conditions within their associated uncertainties are

detailed.

4 Observed variables considered in this example

correspond to enthalpies taken at different locations of the

secondary loop.
5 Diagonal values of the background error covariance

matrices (𝑃b and 𝑃b,𝑘, ∀ 𝑘)

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

137

Table 3. Optimal state estimation for Scenarios 1

and 2

Quantity
Analysis

Scenario 1

Analysis

Scenario 2

Tuners 𝑥

1 2373.1304 2386.46

2 2373.1306 2386.46

3 405.76154 417.57

BCs 𝑝

1

Op.

Point 1
3802.6245 3828.46

Op.

Point 2
3819.9993 3846.12

2

Op.

Point 1
51.425 54.10

Op.

Point 2
47.99998 50.29

For Scenario 1, as expected due to their low

background uncertainty, the values of the analysis for

boundary conditions are very similar to the ones given

as background (see Table 2). This is not the case for

tuners for which the background uncertainty was much

larger. As a consequence, the associated analysis values

differ from the background ones and as expected the

optimal values of the tuners correspond to the ones used

to generate the reference state (see Table 2). This result

shows that the data assimilation procedure is correctly

implemented.

For Scenario 2, the analysis values for both tuners and

boundary conditions are different from the initial

background value. The higher uncertainty given to the

boundary conditions is responsible for this result. For

the tuners it is not surprising to find a different value

from the one used to generate the reference state: this is

an adjustment made as a consequence of the new

analysis values for boundary conditions.

The computed uncertainties6 for the analysis values

of tuners and boundary conditions are low and they are

very similar for both scenarios. For tuners 1 and 2 the

uncertainty is around 10-4, for tuner 3 the corresponding

uncertainty is even lower, around 10-6. For boundary

conditions, the uncertainty is around 10-5 for the first one

and around 10-7 for the second one.

With respect to the observed variables, the results are

as well satisfactory. For both scenarios the observed

variables corresponding to the optimal state (optimal

values for tuners and boundary conditions) are

extremely close to the observed variables computed

from the reference state. In order to evaluate the quality

of this adjustment, one can examine the evolution of the

cost function (as defined in Section 2.1): from 6.60x108

to 0.006 for Scenario 1 and from 6.60x108 to 136.9 for

Scenario 2. These results confirm the good

implementation of the data assimilation procedure in

Modelica.

6 Diagonal values of the analysis error covariance

matrices (𝑃a and 𝑃a,𝑘, ∀ 𝑘)

In addition to the numerical results, it is interesting to

point out some results with respect to the computation

time. With the current non-optimized implementation of

the BFGS algorithm and on a standard machine, Dymola

requires 15.1 seconds per iteration in average. This time

should be compared to the 26.6 seconds per iteration on

average for the ADAO implementation of data

assimilation. The time reduction per iteration obtained

with this new equation based approach is therefore

already considerable. Practically all the time required

for the simulation is spent on model evaluations;

reducing the time required for this task appears therefore

as a good solution to reduce the time required to perform

the data assimilation procedure (for example extracting

only the model equations that are necessary to complete

the calculations). In addition, the stopping criteria

retained for the optimization algorithm may have an

important impact on the total number of iterations (and

therefore on the total time) required to solve the

optimization problem.

5 Conclusion and perspectives

5.1 Conclusion

Based on the mathematical form of the Modelica

equations, this paper presents a new method for

parameter and state estimation of Modelica models.

This method considers the problem of state estimation

as an optimization problem and it has been adapted from

the data assimilation framework.

Traditionally, this task is performed in Modelica by

inverse calculation on a square system of equations

which requires that the user provides as many known

values as states to be computed. In practice this is an

important limitation to state estimation since it is very

rare to have the same number of known values as states

to be estimated. The new method presented in this paper

enables to efficiently handle non-square problems

which are the most frequent ones.

Integrating this approach directly in a Modelica tool

allows to use the analytic expressions of the Jacobians

that are necessary to solve the optimization problem.

The time necessary for computation can therefore be

reduced compared to other methods in which numerical

Jacobians have to be computed. In addition, with this

approach it is possible to compute the uncertainties of

the final estimated state (making it possible to specify

the uncertainties related to tuners and/or boundary

conditions for example). This information is an

important tool for the user to evaluate the adequacy of

the estimated state.

The prototype implementation in Dymola 2022 and

3DEXPERIENCE 2022x of this new method has been

tested successfully with different simple and complex

New Equation-based Method for Parameter and State Estimation

138 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

Modelica models such as the model of a secondary loop

of a pressurized water reactor.

5.2 Future work

As we saw in Section 3.2.2, when computing the

Jacobians, we only use those equations in the original

model that are actually needed. However, for the

function evaluations, i.e., the computations of 𝑦𝑘 , we

still consider the full model. The data assimilation

procedure therefore needs to assume that the model

simulates successfully around the solution of the

optimization problem. This is a reasonable assumption

when the solution is close to the background data, where

it, in turn, is reasonable to expect that the model is well

behaved. On the other hand, data assimilation

techniques may also help in the initialization of failing

models. For example, by starting with a small amount of

assimilation variables, constituting only a part of the

model, and then successively adding more variables.

Such a procedure requires that only the relevant

equations are extracted also for function evaluations.

Additionally, the model topology must allow it, i.e., the

model must not entirely be made up by an algebraic

loop. We consider this an interesting topic for future

work, as the challenging problem of robust initialization

is one of the major obstacles in contemporary Modelica

applications.

To ease the presentation, we have only discussed

optimization with no lower or upper bounds on the

tuners and boundary conditions. However, the presented

optimization models can easily be extended to take into

account such constraints. To better support this the

assimilation attribute may be extended in future

Dymola releases to allow specification of bounds

directly in the original model.

Finally, we have limited our presentation and

implementation to focus on the data assimilation

problem. However, as the objective function and

optimization models are written all in Modelica the

techniques can be extended to more general

optimization problems.

Acknowledgements
This work was funded and supported by BPI France

through the French FUI ModeliScale research project.

References
Asch M., M. Bocquet, M. Nodet (2016), Data Assimilation -

Methods, Algorithms and Applications, SIAM.

Bousserez, N., D.K. Henze, A. Perkins, K.W. Bowman, M.

Lee, J. Liu, F. Deng and D.B.A. Jones (2015). “Improved

analysis‐error covariance matrix for high‐dimensional

variational inversions: application to source estimation

using a 3D atmospheric transport model”. In: Q.J.R.

Meteorol. Soc., 141: 1906-1921.

https://doi.org/10.1002/qj.2495

Braun W., F. Casella and F. Bachmann (2017). “Solving

large-scale Modelica models: New approaches and

experimental results using OpenModelica”. In Proceedings

of the 12th International Modelica Conference, pages 557–

563. Linköping University Electronic Press,.

Corona Mesa-Moles L. J.P. Argaud, A. Jardin, A. Benssy, Y.

Dong (2019). “Robust Calibration of Complex

ThermosysPro Models using Data Assimilation

Techniques: Application on the Secondary Loop of a

Pressurized Water Reactor”. In: Proceedings of the 13th

International Modelica Conference, pages 553-560.

Linköping University Electronic Press.

Dassault Systèmes (2021). Dymola 2022: Dymola, Dynamic

Modeling Laboratory, User Manual 2A: Model

Development Tools. Dassault Systèmes AB, Lund, Sweden.

El Hefni B. and D. Bouskela (2017). “Modeling and

simulation of a complex ThermoSysPro model with

OpenModelica – Dynamic Modeling of a combined power

plant”. In: Proceedings of the 12th International Modelica

Conference, May 15-17, Prague, Czech Republic.

El Hefni, B. and D. Bouskela (2019). Modeling and

Simulation of ThermalPower Plants with ThermoSysPro -

A Theoretical Introduction and a Practical Guide. Springer.

Fletcher, R. (1987). Practical methods of optimization. 2nd

edn. New York: John Wiley & Sons.

Henningsson E., H. Olsson and L. Vanfretti (2019). “DAE

Solvers for Large-Scale Hybrid Models”. In: Proceedings

of the 13th International Modelica Conference, pages 491–

502. Linköping University Electronic Press.

Modelica Association (2021-02). Modelica – A Unified

ObjectOriented Language for Systems Modeling. Language

Specification Version 3.5. Tech. rep. Linköping: Modelica

Association. URL:

https://specification.modelica.org/maint/3.5/MLS.html.

SALOME The Open Source Integration Platform for

Numerical Simulation, accessed 2021-08-19,

http://www.salome-platform.org/

Tarantola A. (2005). Inverse Problem Theory and Methods for

Model Parameter Estimation. SIAM: Philadelphia, PA.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

139

140 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Efficient Parameterization of Modelica Models

Thomas Beutlich1 Dietmar Winkler2

1Germany, modelica@tbeu.de
2University of South-Eastern Norway, dietmar.winkler@usn.no

Abstract
This article presents the different approaches and use
cases for efficient parameterization of Modelica models
by means of external data resources. The main motivation
is to improve the overall quality, testability and reusability
of Modelica application models (both on component and
system level) by a separation of the behavioral implemen-
tation from its actual design parameters. The Modelica
libraries ExternData and ModelicaTableAdditions
are freely available to support library developers and ven-
dors in their ambitions to offer clean and dedicated inter-
faces for the parameterization of the application models
and to benefit from a large variability of commonly used
file types, such as CSV, Excel, HDF, JSON, MATLAB
MAT, XML or even domain-specific file types such as for
tire properties or weather data.
Keywords: parameterization, external data resources,
Modelica external function interface, SSP

1 Introduction
The separation of the design parameters from Modelica
application models was already discussed within the MA
(Modelica Association)1 about 15 years ago. Tiller (2005)
developed an in-house library DataRetrieval, that fea-
tured a generic approach applicable for different file for-
mats or data bases. Supported file formats included for
example XML (eXtensible Markup Language), HDF (Hi-
erarchical Data Format) and MATLAB MAT. There even
have been early ideas for the standardization of the appro-
priate interfaces and XPath query expressions. Similarly,
Köhler and Banerjee (2005) presented an in-house library
ZFlib based on simple ASCII text files for a generic pa-
rameterization of transmission models. This library was
later extended by Kellner et al. (2006) to also support tar-
get platforms without a file system. Reisenbichler et al.
(2006) bewailed that the XML technology had not yet es-
tablished as a standardized concept for the parameteriza-
tion of Modelica application models. They again proposed
to use XML as file format for external data resources – be-
ing a standardized and widely accepted language with sig-
nificant tool support for data processing. Their Dymola2

library also featured the full power of the XPath query ex-
pressions and data processing capabilities.

1Modelica Association, https://modelica.org
2Dassault Systèmes, https://www.3ds.com

The topic was raised again for the MSL (Modelica Stan-
dard Library)3 without greater reception in 20084. Therein
it was mentioned, that with the current concept of imple-
menting the data access by the Modelica external func-
tion interface, the library vendors and users are responsi-
ble to instrument the Modelica code to consider parame-
terization (described as pull-principle). However, with a
push-principle this responsibility could be moved to the
tool vendors, and as such library users could benefit from
a greater reusability and flexibility of the layered parame-
terization.

When the MA project SSP (System Structure and Pa-
rameterization of Components for Virtual System De-
sign)5 was initiated in 2014, only the parameterization of
networks of FMUs (Functional Mock-up Units)6 was con-
sidered. Even though the SSP standard 1.0 misses support
for array parameters, it was not yet contemplated to apply
it as layered standard for the parameterization of Modelica
models.

With no standardized interface available, Modelica
users depending on external data resources either still need
to write their own utility libraries or have to depend on
proprietary, tool-specific features (e.g., the data base inter-
face of SimulationX7) or commercially available libraries
such as Modelon.DataAccess from Modelon8.

The parameterization of Modelica models can be dif-
ferentiated by the following usage scenarios.

• Property parameters are constant during a transient
simulation. They are non-structural parameters, i.e.,
a translated simulation model can be reused with
changed parameters. Examples are geometry dimen-
sions (e.g., tire diameter), material constants (e.g.,
electrical resistance) or ambient conditions (e.g., am-
bient pressure or gravitational acceleration). They
can be of Real, Integer, Boolean or String type
and either be scalar or of one/two-dimensional array
kind (e.g., consumption map or road excitation map).

3MA project “Libraries”, https://doc.modelica.org
4MSL issue #115, https://github.com/modelica/

ModelicaStandardLibrary/issues/115
5MA project “System Structure and Parameterization”, https://

ssp-standard.org
6MA project “Functional Mock-up Interface”, https:

//fmi-standard.org
7SimulationX by ESI, https://www.simulationx.com
8Modelon, https://www.modelon.com

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

141

• Stimulation parameters can be considered as time-
driven inputs for a transient simulation and can be
modeled by one-dimensional look-up tables. Ex-
amples are the environmental conditions such as
weather.

• Structural parameters have influence on the overall
system topology and thus on the dimension of the
system of equations. They need to be constant dur-
ing a transient simulation, but any change requires a
new translation of the Modelica model. Special care
needs to be taken if structural parameters are read
from external data resources.

The Modelica libraries ExternData9 and
ModelicaTableAdditions10 are available as open-
source Modelica packages under the permissive BSD-2-
Clause License. Both libraries can be directly obtained
from GitHub or via the Modelica impact package
manager (Tiller and Winkler 2014; Tiller and Winkler
2015).

• ExternData supports the user in reading proper-
ties or structural parameters from various file types
of external data resources. Data access from CSV
(Comma Separated Values), INI, JSON (JavaScript
Object Notation), MATLAB MAT (including HDF),
SSV (System Structure Parameter Values), TIR (Tire
Properties), Excel XLS/XLSX and XML files is im-
plemented.

• ModelicaTableAdditions is an extension of the
Modelica Standard Tables (Beutlich, Kurzbach, and
Schnabel 2014) with support for more file types be-
side Dymola MOS11 and MATLAB MAT. Its blocks
can be utilized to also model stimulation parameter-
ization or look-up tables from CSV, EPW (Energy-
Plus Weather)12 or JSON files and work as a drop-in
replacement for the Modelica Standard Tables of the
MSL.

There exists the use case to reuse the time series stored
in the result data of one simulation as stimulation parame-
terization for subsequent simulations. Whereas Pfeiffer,
Bausch-Gall, and Otter (2012) designed an HDF based
file format, Tiller and Harman (2014) invented two new
file formats for efficient read and write operations while
particularly avoiding the HDF dependency. Both pro-
posals only gained experimental acceptance within the
MA. As there also was no adoption in the Modelica
tool environment, the workaround is to store the simu-
lation result data as CSV file, which then can be read

9ExternData Git repository, https://github.com/
modelica-3rdparty/ExternData

10ModelicaTableAdditions Git repository, https://github.
com/modelica-3rdparty/ModelicaTableAdditions

11There is no specific name or file extension for the Dymola-specific
text/script files starting with “#1” as first line.

12EnergyPlus Weather Data, https://energyplus.net/
weather

again by the one-dimensional look-up table blocks of
ModelicaTableAdditions.

2 ExternData
The Modelica library ExternData developed out of the
need to offer an open-source utility package for efficient
parameterization of property parameters from external
data resources. It has been successfully tested in Dymola,
OpenModelica13 and SimulationX.

2.1 Library Design
The library (as shown in Figure 1) consists of top-level
data source records for each supported file type, the pro-
vided accessor functions in ExternData.Functions
and the external objects in ExternData.Types.

Figure 1. Library structure of ExternData

2.1.1 Data Source Records

The data source records are convenience types to encapsu-
late the external object component with its accessor func-
tions.

A naïve record type definition together with an exem-
plary user call (application model) is given in Listing 1.
(For the sake of clarity, the declaration of the external type
Types.ExtObj and the external function annotation for
ExtFun are skipped.)

13Open Source Modelica Consortium (OSMC), https:
//openmodelica.org/

Efficient Parameterization of Modelica Models

142 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

Listing 1. Naïve record type definition

// L i b r a r y
record DataSource "Data source record"

parameter String fileName = ""
"External data resource";

final parameter Types.ExtObj obj =
Types.ExtObj(fileName) "Ext. object";

pure function get "Accessor function"
input Types.ExtObj obj "Ext. object";
input String s "Accessor id";
output Real out "Data value";
external "C" out = ExtFun(obj, s);

end get;
end DataSource;

// App l i c a t i o n model
parameter DataSource dataSource(

fileName="dataSource.ext");
parameter Real p = dataSource.get(

dataSource.obj, "id");

The disadvantage of such a naïve approach is that the
handle of the external object, i.e. dataSource.obj, has
to be passed by every call of the accessor functions despite
it actually is an implementation detail of the record and
could be a protected component14.

Listing 2. Sophisticated record type definition

// L i b r a r y
package Functions "Functions"

pure function get "Accessor function"
extends Interfaces.getBase;
external "C" out = ExtFun(obj, s);

end get;
end Functions;

package Interfaces "Interfaces"
partial record DataSourceBase
"Base data source record"
replaceable function get = getBase;

end DataSourceBase;
partial function getBase "Base function"
input Types.ExtObj obj "Ext. object";
input String s "Accessor id";
output Real out "Data value";

end getBase;
end Interfaces;

record DataSource "Data source record"
parameter String fileName = ""
"External data resource";

final parameter Types.ExtObj obj =
Types.ExtObj(fileName) "Ext. object";

extends Interfaces.DataSourceBase(
redeclare final function get =
Functions.get(obj=obj)
"Accessor function");

end DataSource;

// App l i c a t i o n model
parameter DataSource dataSource(

fileName="dataSource.ext");
parameter Real p = dataSource.get("id");

14Only public sections are allowed for records, though.

A more sophisticated library design is based on clean
interfaces for the records and accessor functions enabling
inheritance, and thus the possibility of function redecla-
ration (Beutlich 2018). The general concept is presented
in Listing 2.

With such a sophisticated library design the actual im-
plementation (as an external object) is disguised from the
caller as the handle of the external object no longer needs
to be passed by the member accessor functions.

As of MLS 3.5 (Modelica Language Specification)15, it
is not yet fully specified, if external objects may be used
in records16.

2.1.2 External Functions

The actual external functions and objects serving the Mod-
elica external function interface are implemented in C, i.e.
no C++ is utilized.

Independent of the actual file type, the acces-
sor functions for scalars of type Real, Integer,
Boolean or String are named getReal, getInteger,
getBoolean or getString, respectively. For one/two-
dimensional arrays, the accessor functions are ap-
pended by Array1D/Array2D, e.g., getRealArray1D
or getIntegerArray2D. There also are the corre-
sponding functions to retrieve the array dimensions
from the external data resource, i.e., getArraySize1D
and getArraySize2D (and also getArrayRows2D and
getArrayColumns2D).

2.1.3 Structural Parameters

Reading structural parameters from external data re-
sources (as shown for an XML file by Listing 3) by func-
tions getArraySize1D or getArraySize2D is not gen-
erally supported17. Of the tested Modelica tools, it only
works in SimulationX.

Listing 3. Accessing structural parameters in SimulationX

// Simulat ionX a p p l i c a t i o n model
parameter String s = "vector"

"XML element name";
parameter ExternData.XMLFile dataSource(

fileName="dataSource.xml")
"Data source record";

parameter Integer m =
dataSource.getArraySize1D(s)
"Structural parameter";

parameter Real p[:] =
dataSource.getRealArray1D(s, m)
"Array parameter";

To assist the Dymola users, alternative implementations
using readArraySize1D/readArraySize2D functions
are available. This comes with the disadvantage of redun-
dant file I/O and is demonstrated by Listing 4.

15MA project “Libraries”, https://specification.
modelica.org/

16MLS issue #2399, https://github.com/modelica/
ModelicaSpecification/issues/2399

17MLS issue #2425, https://github.com/modelica/
ModelicaSpecification/issues/2425

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

143

Listing 4. Accessing structural parameters in Dymola

// Dymola a p p l i c a t i o n model
parameter String s = "vector"

"XML element name";
parameter ExternData.XMLFile dataSource(

fileName="dataSource.xml")
"Data source record";

parameter Integer m =
ExternData.XMLFile.Functions.

readArraySize1D(
varName=s,
fileName="dataSource.xml")

"Structural parameter";
parameter Real p[:] =

dataSource.getRealArray1D(s, m)
"Array parameter";

2.1.4 Missing Data
In some cases it may happen, that data of the external re-
sources is missing, for example, an empty cell of an Excel
file. By parameter detectMissingData, ExternData
supports four options how to deal with missing data val-
ues.

• Return data-type specific defaults

• Return data-type specific defaults and print a mes-
sage

• Return data-type specific defaults and raise a warn-
ing

• Stop the simulation with an error message

Similarly, the accessor functions (Section 2.1.2) also re-
turn a Boolean output exist to indicate if the retrieved
data is available or missing. This way, the reaction on
missing data can be modeled per function call.

2.2 Supported File Types
ExternData supports various file types for different kind
of requirements.

2.2.1 CSV
CSV files contain exactly one data set that can be consid-
ered as matrix. An example file with three columns and
a header line is given by Listing 5. Both the number of
header lines to be ignored and the column delimiter char-
acter can be specified.

Listing 5. Example CSV file

x,y,z
0,0,0
0.5,0.25,0.125
1,2,3

2.2.2 INI
INI files contain scalar properties as key-value-pairs
which are grouped by sections. The INI-keys can be fully
qualified Modelica names using the dot notation. An ex-
ample file with the default section and a named section is
given by Listing 6.

Listing 6. Example INI file

Default section
gain.k = 1
[Data set]
gain.k = 2

2.2.3 JSON

JSON files can be used to define scalars, vectors or ma-
trices which can be arbitrarily structured. The JSON-keys
must not contain the dot character to properly work with
the accessor functions of ExternData. An example file
with three different values is given by Listing 7.

Listing 7. Example JSON file

{
"Data set": {

"gain": {
"k": "2"

}
},
"vector": [1,2,3],
"matrix": [[0,0],[0.5,0.25],[1,2]]

}

2.2.4 MATLAB MAT (including HDF)

MATLAB MAT files are binary files that can be used
for scalars, vectors or matrices. Though it is a propri-
etary file format it is a common data exchange format for
various scientific applications. MATLAB MAT of ver-
sion 7.3 are HDF5 files and can be considered as a ded-
icated HDF5 data container. This format version is espe-
cially recommended for huge data volumes. However, it
is not advisable to read huge arrays as Modelica variables.
ExternData supports the access of nested structures us-
ing dot notation.

2.2.5 SSV

SSV files are standardized XML files that are used within
the context of SSP to connect and parameterize FMUs.
Certainly, they can not only be used to parameterize im-
ported FMUs in the Modelica simulation environment.
One SSV file describes exactly one parameter set where
(as of version 1.0) only scalar parameter values are sup-
ported. Listing 8 displays an example SSV file.

Listing 8. Example SSV file

<?xml version="1.0" encoding="UTF-8"?>
<ssv:ParameterSet version="1.0" name="Data

set" xmlns:ssv="http://ssp-standard.org/
SSP1/SystemStructureParameterValues">
<ssv:Parameters>

<ssv:Parameter name="gain.k">
<ssv:Real value="2"/>

</ssv:Parameter>
</ssv:Parameters>

</ssv:ParameterSet>

Technically, the external object
ExternData.Types.ExternXML2File is reused
while the SSV accessor functions call the appropriate

Efficient Parameterization of Modelica Models

144 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

XML2 functions (ExternData.Functions.XML2.*)
with dedicated XPath query expressions.

2.2.6 TIR

TIR files define domain-specific tire properties. They are
similar to INI files and are implemented to share the same
external object ExternData.Types.ExternINIFile
with respective format permissions.

2.2.7 Excel XLS/XLSX

Both legacy XLS and Office Open XML based XLSX Ex-
cel files are supported for parameterization of scalars or
matrices.

2.2.8 XML

There are two implementations available.

1. ExternData.XMLFile is a straightforward imple-
mentation to return values from XML element nodes

2. ExternData.XML2File enables full support of
XPath query expressions to also query XML at-
tributes or more complicated XML structures.

There is no restriction on the underlying XML schema,
i.e. it can be used for arbitrarily structured XML data,
being standardized (e.g., SSV or CPACS (Common Para-
metric Aircraft Configuration Schema)18) or customized.

3 ModelicaTableAdditions
The Modelica library ModelicaTableAdditions de-
veloped out of the need to offer reading of external data
sources for stimulation parameters (e.g., look-up tables)
from commonly used text file formats. Therefore, the
blocks of ModelicaTableAdditions extend the Mod-
elica Standard Tables of the MSL by support for addi-
tional file formats. It does not add other features like N-
dimensional arrays, scattered data or spline approximation
(as for example by Ungethüm and Hülsebusch (2009)).
The Dymola MOS file format, which is the only text file
format supported by the Modelica Standard Tables is not
suitable for exchange between different applications. This
is where CSV and JSON have their advantages, which can
easily be processed by different applications. As with the
Modelica Standard Tables, the external functions are im-
plemented in pure C (i.e., no C++). For JSON, the same
library dependencies are utilized as with ExternData. It
is possible to use components of packages ExternData,
ModelicaTableAdditions and MSL in the same appli-
cation model. The library has been successfully tested in
Dymola and OpenModelica (Linux only).

3.1 Library Design
The library (as shown in Figure 2) consists of the five look-
up table blocks known from the MSL, but this time within
the ModelicaTableAdditions name-space.

18CPACS, https://cpacs.de

Figure 2. Library structure of ModelicaTableAdditions

3.2 Supported File Types

3.2.1 CSV

The table of a CSV file (as shown by Listing 5) can be used
for time-driven simulation or one/two-dimensional look-
up tables. Both the number of header lines to be ignored
and the column delimiter character can be specified. Ad-
dressing certain columns by their names in the (optional)
CSV header line is not supported.

Support for CSV files was also ported to the Modelica
Standard Tables and merged to the MSL master branch in
early 202119.

3.2.2 EPW

The weather conditions of one year are the typical stim-
ulation parameters for building energy simulations, such
as the Modelica Buildings Library (Wetter et al. 2014).
EnergyPlus provides weather data for simulation in vari-
ous formats, especially their EPW format. Since this file
format is not natively supported by the Modelica Standard
Tables it manually needed to be pre-processed and con-
verted to either Dymola MOS or MATLAB MAT format.

This pre-processing no longer is necessary as the EPW
format is directly supported by all one-dimensional look-
up table blocks of the ModelicaTableAdditions li-
brary.

3.2.3 JSON

Similar as with CSV, tables can be read from JSON files
and be utilized as stimulation parameters, e.g. parameter
“matrix” of Listing 7.

19MSL issue #3691, https://github.com/modelica/
ModelicaStandardLibrary/pull/3691

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

145

4 Conclusions and Outlook
The open-source libraries ExternData and
ModelicaTableAdditions are an offer to Modelica
library developers and users to efficiently parameterize
Modelica application models. Its right to exist is due to a
missing layered (MA) standard for the parameterization
of Modelica models. As already mentioned by Tiller
(2005), the benefits of such a standardization are the
cutback of library code towards the Modelica tools to
even further increase the efficiency, convenience and
usability of the parameterization of application models.

There is no support for units so far, i.e., unit conversion
is left to the application. This could be also addressed by
a standardized parameterization.

Library-wise, one future idea is the support of (sym-
metrical or asymmetrical) encrypted external resources,
which is not yet covered by the MLS. In such cases the
external functions require the appropriate (private) key to
decrypt the external resources at simulation run-time in
memory. Again, encryption as an isolated application can
only be considered a short-term solution towards a future
standard.

Furthermore, it might be desirable if the mentioned
open issues on the MLS regarding external objects could
be clarified finally.

Acknowledgements
The authors would like to thank everybody who
has contributed to the libraries ExternData and
ModelicaTableAdditions, particularly, Adrian Pop,
Hang Yu, Martin Sjölund, Mike Dempsey and Peter Har-
man.

References
Beutlich, Thomas (2018-08). Modeling Hints for Modelica Ex-

ternal Interfaces. Presentation given at the 19th Modelisax
Meeting, Dresden, Germany. URL: https : / / tinyurl . com /
Modelisax2018Hints.

Beutlich, Thomas, Gerd Kurzbach, and Uwe Schnabel (2014-
03). “Remarks on the Implementation of the Modelica Stan-
dard Tables”. In: Proceedings of the 10th International Mod-
elica Conference. Ed. by Hubertus Tummescheit and Karl-
Erik Årzén. Lund, Sweden, pp. 893–897. DOI: 10 . 3384 /
ecp14096893.

Kellner, Matthias et al. (2006-09). “Parametrization of Model-
ica Models on PC and Real time platforms”. In: Proceed-
ings of the 5th International Modelica Conference. Ed. by
Christian Kral and Anton Haumer. Vienna, Austria, pp. 267–
273. URL: https://www.modelica.org/events/modelica2006/
Proceedings/sessions/Session3b2.pdf.

Köhler, Jochen and Alexander Banerjee (2005-03). “Usage of
Modelica for transmission simulation in ZF”. In: Proceedings
of the 4th International Modelica Conference. Ed. by Ger-
hard Schmitz. Hamburg, Germany, pp. 587–592. URL: https:
//modelica.org/events/Conference2005/online_proceedings/
Session7/Session7c1.pdf.

Pfeiffer, Andreas, Ingrid Bausch-Gall, and Martin Otter (2012-
09). “Proposal for a Standard Time Series File Format in
HDF5”. In: Proceedings of the 9th International Modelica
Conference. Ed. by Martin Otter and Dirk Zimmer. Munich,
Germany, pp. 495–506. DOI: 10.3384/ecp12076495.

Reisenbichler, Ulf et al. (2006-09). “If we only had used
XML. . . ” In: Proceedings of the 5th International Modelica
Conference. Ed. by Christian Kral and Anton Haumer. Vi-
enna, Austria, pp. 707–716. URL: https://www.modelica.org/
events/modelica2006/Proceedings/sessions/Session6d1.pdf.

Tiller, Michael (2005-03). “Implementation of a Generic Data
Retrieval API for Modelica”. In: Proceedings of the 4th In-
ternational Modelica Conference. Ed. by Gerhard Schmitz.
Hamburg, Germany, pp. 593–602. URL: https : / / modelica .
org/events /Conference2005/online_proceedings/Session7/
Session7c2.pdf.

Tiller, Michael and Peter Harman (2014-03). “recon – Web and
network friendly simulation data formats”. In: Proceedings of
the 10th International Modelica Conference. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Lund, Sweden, pp. 1081–
1093. DOI: 10.3384/ecp140961081.

Tiller, Michael and Dietmar Winkler (2014-03). “impact -
A Modelica Package Manager”. In: Proceedings of the
10th International Modelica Conference. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Lund, Sweden, pp. 543–
548. DOI: 10.3384/ecp14096543.

Tiller, Michael and Dietmar Winkler (2015-09). “Where impact
got going”. In: Proceedings of the 11th International Model-
ica Conference. Ed. by Peter Fritzson and Hilding Elmqvist.
Versailles, France, pp. 725–736. DOI: 10.3384/ecp15118725.

Ungethüm, Jörg and Dirk Hülsebusch (2009-09). “Implemen-
tation of a Modelica Library for Smooth Spline Approxima-
tion”. In: Proceedings of the 7th International Modelica Con-
ference. Ed. by Francesco Casella. Como, Italy, pp. 669–675.
DOI: 10.3384/ecp09430013.

Wetter, Michael et al. (2014-07). “Modelica Buildings library”.
In: Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Efficient Parameterization of Modelica Models

146 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

Power Flow Record Structures to Initialize OpenIPSL Phasor
Time-Domain Simulations with Python

Sergio A. Dorado-Rojas1 Giuseppe Laera1 Marcelo de Castro Fernandes1 Tetiana Bogodorova1

Luigi Vanfretti1

1Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, United States,
{dorads, laerag, decasm3, bogodt2, vanfrl}@rpi.edu

Abstract
This paper presents a tool to populate power flow results
for phasor time-domain simulations with the Open In-
stance Power System Library (OpenIPSL). Our proposal
takes advantage of the object-oriented philosophy of Mo-
delica and introduces a data structure based on records to
handle power flow data for a given network model. Such
records constitute a user-friendly interface to change the
guess values used to solve the initial condition of a dynam-
ical simulation straightforwardly. Power flow calculations
are carried out by the open-source Python library GridCal.
We demonstrate the tool capabilities by generating power
flow results for several grid models and comparing them
with those obtained via proprietary tools such as PSS/E.
Moreover, we provide tutorial materials to ease integrat-
ing the tool for a new/experienced OpenIPSL user.
Keywords: GridCal, OpenIPSL, Power Flow, Python,
Records

1 Introduction
The Open Instance Power System Library (OpenIPSL)
is an open-source library of power system component
models written entirely in Modelica (Baudette et al.
2018). Beyond the inherent advantages of the Modelica
language, OpenIPSL components are constantly cross-
validated against commercial packages such as PSS/E,
producing practically the same results (Laera 2016) and
exhibiting the same or even better simulation perfor-
mance (see Henningsson, Olsson, and Vanfretti (2019)
and Dorado-Rojas, Navarro Catalán, et al. (2020)).

Successful use cases of the library come from a broad
range of applications such as multi-domain simulation
(Gomez et al. 2018), damping (Boersma et al. 2020)
and parameter estimation (Podlaski et al. 2020) in power
systems, dynamic stability assessment (Nohac et al. 2019),
co-simulation for energy analysis (Gusain, Cvetkovic, and
Palensky 2019), stability analysis of hydro-power grids
(Winkler 2019), wind turbine control (Qin et al. 2019),
cyber-attack evaluation (Pan, Gusain, and Palensky 2019),
power system stability enhancement (Gonzalez-Torres et
al. 2019), extremum seeking control (Müller et al. 2020),
and data generation for machine learning applications
(Dorado-Rojas, de Castro Fernandes, and Vanfretti 2020).

Motivation
Despite the library’s usefulness, the main caveat is the
absence of a systematic approach to link phasor time-
domain simulations with static computations like power
flows. Power flow computations are ubiquitous in any
power system analysis. A power flow problem involves
determining the system’s voltage profiles and electrical
power transfer across a network given the generator power
injections and load consumption. Mathematically, it is a
nonlinear vector algebraic equation commonly solved us-
ing an iterative method such as a Newton-Raphson algo-
rithm. From the dynamical perspective, a power flow re-
sult represents an operating condition for which may con-
tain a potential equilibrium for the underlying dynamical
system. So, the power flow result represents the set of ini-
tial guesses to initialize a dynamic model and analyze an
electrical grid’s behavior subjected to a dynamical event.
Observe that because the simplified algebraic representa-
tion of the power grid in the power flow problem, many
of its solutions can result in operating conditions where an
equilibrium may not exist when the system’s dynamical
model is considered.

OpenIPSL models contain a myriad of nonlinearities
employed to represent dynamical behaviors more accu-
rately. So, varying the initial condition of a dynamical
simulation represents a critical step towards system as-
sessment. So far, users have proposed ad-hoc solutions
to generate power flow results (e.g., using Matpower1 or
PSS/E2 as in Vanfretti et al. (2017)). However, despite
valuable, these efforts do not completely fill the gap to
easily provide power flow solutions to OpenIPSL models.
The former approach replaces the power flow values in the
*.mo file of the model directly, which is inconvenient

from the user’s point of view. The latter depends on pro-
prietary software which might not be available to the base
users of OpenIPSL. The OpenIPSL community, and users
of other Modelica-based power system libraries (see Win-
kler (2017)), will more than welcome a systematic power
flow approach based on open-source tools to integrate into
their models quickly. Addressing this issue is the primary
purpose of this paper.

1See https://github.com/dgusain1/InitialiseModelica
2See https://github.com/ALSETLab/Raw2Record

DOI
10.3384/ecp21181147

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

147

Contribution
This paper’s main contribution is to bridge the gap be-
tween phasor time-domain simulation and static com-
putations for OpenIPSL utilizing an open-source-based
pipeline.

We propose a Modelica records structure to handle all
power flow variables. Such nested records data structure
enables a user to replace a power flow condition, typi-
cally composed of several algebraic variables, with a sin-
gle click or one line of code. These records are created
automatically from the model’s *.mo file.

GridCal3, and provides open-source Python library for
power system computations, such as solving the power
flow problem. A remarkable characteristic of GridCal is
its built-in PSS/E parser. Consequently, users can parse
*.raw files containing a grid static model’s information

to a GridCal internal grid representation. In our examples,
we will use PSS/E files to construct GridCal models. This
enables us to benchmark the GridCal power flow results
against PSS/E outputs. By doing so, we bring confidence
to Modelica tools in terms of the quality of results, show-
ing that Modelica-based power system models can be ini-
tialized and result in the same initial condition and provide
the same simulation results as proprietary tools.

So far, we summarize the main contributions of our
work as follows:

• we bridge the gap between Modelica-based tools and
conventional domain-specific power system tools;

• we automate the process of providing good ini-
tial guess values to solve the initialization process
of Modelica-based power system models with the
OpenIPSL library;

• we make Modelica-based tools more attractive for
dynamic power system simulation, making it easier
for users to use OpenIPSL models for analysis under
multiple operating conditions by a power flow record
structure;

• with the contributions above, we facilitate the po-
tential adoption of and transition to Modelica-based
tools by power system domain specialists.

Paper Structure
This paper is structured as follows: Section 2 gives a brief
introduction to the power flow problem in electrical net-
works. In Section 3, we introduce the records structure
proposed to handle power flow variables. We illustrate
how this data container can be linked to OpenIPSL mod-
els in Section 4, where we also benchmark the power flow
values against the results obtained with commercial tools.
Finally, Section 5 concludes the work.

3GridCal is able to import and parse model description and param-
eter files from proprietary software such as PSS/E and DigSilent, and
also widespread open-source libraries for power system analysis like
Matpower. In contrast to many proprietary electrical grid software tools,
GridCal runs on Windows, Linux, and macOS natively. It can be down-
loaded from https://github.com/SanPen/GridCal

2 The Power Flow Problem
The power flow (also incorrectly called load flow) prob-
lem is undoubtedly one of the most performed calculations
in power system applications (Stott 1974). For instance,
these calculations are carried out many times in Opera-
tion and Planning procedures for power grids. An appli-
cation of a particular interest to this paper is that power
flow solutions provide a potential starting guess to solve
the initialization problem at which a dynamic simulation
may start. Hence, a power flow can be considered one of
the most critical problems to be solved when studying a
power system (Milano 2009).

The problem, however, is not new, and nor are the tech-
niques used to solve it. The first practical solutions began
to appear in the mid-1950s with the aid of digital comput-
ers (Ward and Hale 1956) and a breakthrough came about
a decade later. The development of incredibly efficient
handling of sparse matrices (Tinney and Walker 1967) was
paramount to the wide adoption of Newton-Raphson (NR)
algorithm. As new issues to solve the power flow problem
have arisen, a myriad of new techniques and methods have
been proposed; however, NR-based techniques are still the
most preeminent methods (Stott 1974; Milano 2009).

From the mathematical perspective, a power flow
problem is posed as a set of nonlinear algebraic equations.
Its solution will determine an operational point for a speci-
fied loading and generation condition in the power system.
This operational point is defined by the voltage magnitude
and angle in each bus of the system, together with the ac-
tive and reactive powers generated and consumed in gen-
eration and load buses respectively. In the current paper,
we will give a brief introduction to its formulation.

In most power flow formulations, the power system is
assued to be perfectly balanced and operating at constant
frequency (i.e. 50/60 Hz) which would allow it to be rep-
resented in its positive sequence equivalent circuit (Stott
1974). If a system can be represented in its positive se-
quence equivalent, it is then possible to assemble its nodal
admittance matrix Y and to write the nodal equation as
follows:

Ī = YV̄, (1)

where Ī is the nodal injection current phasor vector, V̄ is
the nodal voltage phasor vector and Y is the admittance
matrix, which is square and sparse.

We could use the nodal equation to compute the volt-
age at all nodes if all current injection measurements were
available. Unfortunately, this is not the case in an electric
grid where the known quantities differ from bus to bus.
For instance, in a load node, active and reactive power
consumption (P,Q) are assumed to be known. Likewise,
in a generation bus, active power injection and voltage
magnitude at the generator terminals are typically known
(P,V). Then, the nodal equation has to be reformulated in
terms of P,Q, and V . Because the steady-state relation-
ship between power and voltage/current is nonlinear (and

Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

148 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181147

complex-valued), the linear nodal equation into a nonlin-
ear set of complex-valued equations on P,Q,V , and the
voltage phasor angle θ .

The exact formulation in the power system jargon is
the following. For the mth bus, four variables are either
specified or should be calculated in a power flow: active
power injected in the bus in per unit Pm, reactive power
injected in the bus in per unit Qm, node voltage phasor
magnitude in per unit Vm and node voltage phasor angle
in radians θm. In load buses (identified as PQ buses) the
variable that is known beforehand is the specified appar-
ent power (Ssp

m = Psp
m + jQsp

m), while in generation buses
(called PV buses) the specified variables are the voltage
magnitude (V̄m) and active power (Psp

m). In addition to
that, there should be one slack bus which should have a
specified voltage magnitude value and, most importantly,
it should be responsible for providing the angle reference
used for all other calculations (Stott 1974).

The power flow solution is achieved when the compu-
tation of active and reactive power via the nodal equation,
using the solution values from the most recent iteration,
matches the given data for active and reactive power. In
other words, the solution occurs when the mismatch be-
tween specified and calculated power values is less than
or equal to some given tolerance. We can write such a
mismatch as

∆Sm = Ssp
m −VmI∗m = Psp

m + jQsp
m −V̄m ∑

k∈Km

Y ∗
mkV̄

∗
k , (2)

where Km is the set of buses k which are directly con-
nected to bus m and the superscript (∗) denotes the com-
plex conjugate. By using the fact that Ymk = Gmk +
jBmk and expressing the phasor V̄m as V̄m = Vm(cosθm +
j sinθm), we can split Equation (2) into its real and imagi-
nary parts as:

{
∆Pm = Psp

m −Vm ∑k∈Km (Gmk cosθmk +Bmk sinθmk)Vk,

∆Qm = Qsp
m −Vm ∑k∈Km (Gmk sinθmk −Bmk cosθmk)Vk,

where θmk = θm − θk. Note that, in this polar formula-
tion, the unknown variables are the nodal voltage phasor
magnitudes (Vm) and angles (θm).

As said previously, a power flow problem is typically
solved using an NR algorithm. First, a nonlinear vector
function f :R2n 7→R2n is defined, where n is the total num-
ber of nodes (buses). This function could be expressed as:

f(x) =
[

∆P
∆Q

]
, (3)

where the ∆P and ∆Q are the n-row vectors [∆Pm] and
[∆Qm], respectively. In addition, x ∈ R2n is given by

x =
[
V1 · · · Vm · · · Vn θ1 · · · θm · · · θn

]T
, (4)

where the superscript T stands for transpose. To find the
power flow solution, we state the following equation (Mi-
lano 2009).

f(x) = 0 (5)

Due to the nonlinear nature of f, it is impossible to find
a closed-form solution for such a problem. Therefore, it is
necessary to use an iterative method such as a classical NR
algorithm. The i-th iteration of the NR method is written
as (Milano 2009)

{
∆xi = [J(xi)]

−1f(xi),

xi+1 = xi +∆xi,
(6)

where J(x) is the Jacobian matrix of function f. The iter-
ative method will stop when f(x) is sufficiently close to 0
or, in other words, when its norm is less than a tolerance
set by the user. Besides, there are many different ways
to find x0, which is used to start the process described in
(6). Generally, robust techniques usually allow to find a
solution when using a flat start, i.e., when all voltage mag-
nitudes are started as 1 per unit and all angles are started as
0 radians, or one could use a previous power flow solution
can be used for the same system.

3 Power Flow Records Structure
One of the Modelica language’s main advantages is the
object-oriented paradigm that enables the user to create
dynamic system models hierarchically. Such a structure
allows the user to manage model parameters systemati-
cally.

A Modelica record is a data container used to store
a wide range of information about a model, such as pa-
rameter values, simulation settings, or values of specific
variables for several analysis conditions. Records per-
mit changing a significant number of variables of a given
model by modifying just one parameter that related hierar-
chically to many variables inside the data representation.

Records are a perfect structure for handling power flow
values in a dynamic simulation. Suppose power flow re-
sults are handled using a record-based data structure. In
that case, we could modify the power flow condition of
an OpenIPSL model by varying only one attribute of the
model, namely, the power flow record, rather than individ-
ually changing multiple variables.

The proposed power flow record structure is
presented in Figure 1. A Python script called
create_pf_records creates the Modelica files
containing the record structure and places them
inside the model’s root folder in a directory called
PF_Data . This function reads the .mo file of the

model (<model_name>.mo) as a plain text file and
uses several regular expressions to determine the number
of buses, generators, loads, and transformers in the

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181147

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

149

network. Such a script becomes handy when a user has an
existing OpenIPSL model and would like to add a power
flow records structure automatically.

Figure 1. File structure of the power flow records inside the
OpenIPSL model directory.

We define our power flow record structure
in the class Power_Flow shown in Figure 2.
Power_Flow is a record having a single attribute:
a replaceable record PowerFlow . A
replaceable condition allows the user having many
power flow results for the same model (see Figure 4).

The main idea behind the proposed nested structure
is that, by setting the value of PowerFlow, the user
changes all the power flow variables at once. So, a model
has a unique Power_Flow record whose power flow at-
tribute is replaceable.

PowerFlow has four attributes, which are also
records themselves: a record for bus voltages and angles
(Bus_Data), another for transformer tap positions
(Trafos_Data), a third one for active and reactive
power consumption (Load_Data), and a fourth record
for machine power dispatch (Machines_Data). Nat-
urally, the number of variables inside each of these
internal records depends on each particular power
system model. For each record type, the variables
are specified by the partial record templates
called Bus_Template, Trafos_Template,
Machines_Template, and Loads_Template,
respectively.

Figure 2. Class diagram for the proposed power flow record
structure.

The numerical results are written by a parser func-
tion that translates the power flow result from a Grid-
Cal model computation into a format compatible with
the Modelica record structure. This function is called
gridcal2rec. gridcal2rec creates a PowerFlow
instance placed inside PF_Data , whose attributes are
four record instances: Bus_Data, Trafos_Data,
Machines_Data, and Loads_Data.

4 Computing and Linking PF Records
This section describes how the records structure, illus-
trated previously, can be successfully applied to grid mod-
els of different sizes.

4.1 Creation of Records Structure
A user can integrate our proposed power flow struc-
ture into any existing OpenIPSL model using the code
contained within the pf2rec library (available on
GitHub). The records structure is instantiated by the
create_pf_records function. Listing 1 presents a

minimal example of creating a power flow record for the
Single Machine Infinite Bus (SMIB) system.

Listing 1. Creation of the records structure
from pf2rec import *
import os

Current working directory
_wd = os.getcwd()
_model_package = 'SMIB'

Path to the model package directory
data_path = os.path.join(_wd, _model_package)
data_path = os.path.abspath(data_path)

path_mo = os.path.join(data_path,
'SMIB_Base_case.mo')

path_mo = os.path.abspath(path_mo)

Creating records structure
create_pf_records(_model_package, path_mo,

data_path,
openipsl_version = '2.0.0')

Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

150 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181147

Note that the content of the Modelica model is saved
within several *.mo files. This practice is encouraged
since it allows to increase the complexity of the data layer
of the model. As supplementary material to this paper,
we provide a tutorial4 showing the step-by-step construc-
tion of the SMIB system, the corresponding power flow
records integration, and computation using GridCal.

The four arguments that we pass to
create_pf_records are the name of the con-
taining package (_model_package), the path to the

*.mo file where the model is declared (path_mo),
the path to the containing folder of the model package
(data_path), and the OpenIPSL library version on
which the model has been developed (_version).
Here, the paths are constructed as absolute references
thanks to the os library. Such a workaround is recom-
mended to avoid any path problems since the records
instantiation involves file/folder creation. The script
places all the power flow record *.mo files inside a new
directory called PF_Data . PF_Data is also added to
the package.order file of the root package. In this
way, the record structure is loaded with the model
automatically. Once the power flow is created, the data
structure in Figure 1 is shown as a nested subpackage,
illustrated in Figure 3.

Figure 3. Power flow record structure as a nested subpackage in
the model structure.

4.2 Power Flow Computation with GridCal
GridCal is a Python-based object-oriented software for the
computation of power flow results. An example of using
GridCal to compute power flow and Python to write the
power flow solution into record is shown in Listing 2. In
this case, a PSS/E *.raw file containing the static model
information is translated into a GridCal object using the
built-in parser class FileOpen. The *.raw contains
the static model of the network, which is required for any
power flow formulation. The *.raw parser allows us
to benchmark the performance of GridCal against PSS/E
in terms of power flow result accuracy. Furthermore, this
feature reduces the cost of migrating a model from PSS/E
to OpenIPSL since the user could initialize both models

4https://github.com/ALSETLab/SMIB_Tutorial/
and https://youtu.be/4qfKw9SAXFY

from the same *.raw file. However, the user can define
their own grid models from scratch. The reader is referred
to the GridCal documentation for network implementation
examples.

After creating the grid object via the parser class, an in-
stance of the PowerFlowDriver is declared: pf. pf
is responsible for carrying out the power flow computa-
tion following user-specified settings (options). Recall
from Equation (6) that the method for a power flow com-
putation is constrained by the grid topology (i.e., the ma-
trix J(x)). Therefore, the grid object must be passed
to the PowerFlowDriver constructor method for any
power flow computation. The PSS/E *.raw file can
store up to one power flow result. We take advantage of
this fact and use that power flow as an initialization value
for a base-case power flow computation in GridCal. The
result of this base case should be the same power flow
(within the solver’s tolerance) as the one included in the
PSS/E file. The power flow calculation is commanded by
invoking the function pf.run(). The results are stored
as an attribute of the PowerFlowDriver class.

Listing 2. Generation of power flow result using GridCal
(PSS/E file input)

_wd = os.getcwd() # working directory
_model_package = 'SMIB'

Path to the model package directory
data_path = os.path.join(_wd, _model_package)
data_path = os.path.abspath(data_path)

Path to the PSSE `.raw` file
psse_raw_path = os.path.join(data_path, "

PSSE_Files", "SMIB_Base_Case.raw")
psse_raw_path = os.path.abspath(psse_raw_path)

Grid model in GridCal
file_handler = FileOpen(psse_raw_path)

Creating grid object and setting options
grid = file_handler.open()
options = PowerFlowOptions(SolverType.NR,

verbose = True,
initialize_with_existing_solution = False,
multi_core = False,
tolerance = 1e-6,
max_iter = 99,
control_q = ReactivePowerControlMode.Direct)

pf = PowerFlowDriver(grid, options)
pf.run()

Writing power flow results in records
gridcal2rec(grid = grid, pf = pf, model_name = '

SMIB',
data_path = data_path,
pf_num = 0,
export_pf_results = False)

Finally, the function gridcal2rec takes the grid
information and the power flow driver information and
writes the results as Modelica records, following the struc-
ture described in Section 3. The new files are placed
within the PF_Data subfolder, housing the power flow
record structure. They are also written automatically in-

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181147

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

151

side the corresponding package.order file to be-
come available to the user right after the computation is
completed. The function gridcal2rec can be included
in automation loops to perform a time series power flow.
The resulting output is shown in Figure 4.

In Figure 5 one can notice how the power flow condi-
tion, defining several variables in a model, can be set ei-
ther from the graphical interface or by redeclaring a single
parameter in the text layer. To the authors’ best knowl-
edge, such a feature is not typically available in commer-
cial power system software for dynamics. However, we
can easily incorporate it into OpenIPSL models by ex-
ploiting the flexibility of object-oriented structure of the
Modelica language.

Figure 4. Multiple power flows within an OpenIPSL model.

A possible difficulty of our power flow generation tool
is that the user must connect the power flow parameters in
each device to the record manually. After several attempts,
we noticed that it depended on how the user constructed
a particular model, which is unpredictable. However, we
included informative annotations in the record attributes
to link the initialization values (see Figure 5) correctly.

Figure 5. Informative annotations to assist the user link the
record attributes to the model correctly.

Despite this caveat, referencing of the power flow vari-
ables to the record must be done only once. Afterwards,
the user must change the Powerflow attribute, not the
record itself. Since the references point to the record on
the top layer, they remain unchanged. A detailed example
of this process in the tutorial5 accompanying this paper.

5https://youtu.be/RMD8WEOi6r4

4.3 Scalability for Larger Models
We validated our approach in several systems of different
number of buses (that defines the scale of the power flow
problem) and of state variables (that defines the size of
the complexity of dynamic simulation problem). Table 1
and Figure 6 summarize the characteristics of the bench-
marked systems and illustrate the tool’s performance in
terms of execution time for record generation and power
flow computation. The results correspond to the best
scenario over 100 repetitions with 100 loops each. All
models are available within the Application Examples of
OpenIPSL.

Table 1. Scalability results on different systems

System
(Buses)

Number of Variables
Avg. Execution Time

(over 100 loops)

Algebraic State
Record

Creation
Power Flow
Computation

SMIB
(4) 99 9 4.08 ms

± 255 µs
31.6 ms
± 1 ms

IEEE 9
(9) 241 29 7.29 ms

± 287 µs
35.5 ms

± 1.55 ms
Kundur

Two Areas
(11)

244 20 5.07 ms
± 194 µs

37.4 ms
± 1.01 ms

AVRI
(14) 16 233 5.77 ms

± 144 µs
35.9 ms

± 1.17 ms
Nordic 44

(44) 1294 6315 55.2ms
± 874 µs

349 ms
± 12.8 ms

Figure 6. Execution time for record creation (top) and power
flow computation (bottom). Observe that the results for the N44
are presented on a different scale.

Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

152 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181147

Table 2. Power Flow Comparison between PSS/E and GridCal

System Bus
Voltage Power

Magnitude [pu] Absolute
Error

Angle [deg] Absolute
Error

P [MW] Absolute
Error

Q [Mvar] Absolute
ErrorPSS/E GridCal PSS/E GridCal PSS/E GridCal PSS/E GridCal

SMIB 1 1.0000 1.0000 -9.99×10−16 4.04628 4.04627 -2.24×10−6 40.000 40.000 0.00000 5.417 5.417 3.66×10−8

2 1.0000 1.0000 0.00000 0.00000 0.00000 0.00000 10.017 10.017 5.63×10−6 8.007 8.007 3.83×10−8

IEEE9
1 1.0400 1.0400 0.00000 0.00000 0.00000 0.00000 71.613 71.613 1.11×10−5 25.592 25.592 4.12×10−6

2 1.0300 1.0300 0.00000 9.18220 9.18219 -4.36×10−6 163.000 163.000 0.00000 8.925 8.925 -3.69×10−6

3 1.0250 1.0250 0.00000 4.64766 4.64766 -2.20×10−6 85.000 85.000 0.00000 -12.503 -12.503 -1.23×10−5

Two
Areas

1 1.0300 1.0300 0.00000 27.07087 27.07086 -7.19×10−6 700.000 700.000 0.00000 185.035 185.035 -2.56×10−5

2 1.0100 1.0100 0.00000 17.30648 17.30647 -7.33×10−6 700.000 700.000 0.00000 234.624 234.624 -2.10×10−5

3 1.0300 1.0300 0.00000 0.00000 0.00000 0.00000 719.095 719.095 -2.58×10−5 176.040 176.040 2.24×10−5

4 1.0100 1.0100 -9.99×10−15 -10.19216 -10.19215 1.09×10−5 700.000 700.000 0.00000 202.114 202.114 -4.49×10−5

AVRI
1 1.0500 1.0500 0.00000 0.00000 0.00000 0.00000 -100.000 -100.000 0.00000 41.391 41.391 -4.25×10−6

8 1.0500 1.0500 0.00000 47.01978 47.01976 -1.89×10−5 50.000 50.000 0.00000 19.795 19.795 -7.89×10−7

12 1.0500 1.0500 0.00000 43.26172 43.26170 -2.11×10−5 50.000 50.000 0.00000 21.916 21.916 -4.04×10−6

N44
3115 1.0000 1.0000 0.00000 -13.59220 -13.59220 1.12×10−6 1114.875 1114.875 0.00000 -395.702 -395.702 1.37×10−5

6000 1.0050 1.0050 0.00000 -18.37864 -18.37864 -2.86×10−6 1010.808 1010.808 0.00000 -400.800 -400.780 1.97×10−2

6500 1.0000 1.0000 0.00000 -25.88593 -25.88593 -3.62×10−6 1093.284 1093.284 0.00000 882.375 882.375 -1.36×10−4

8500 1.0200 1.0200 -9.99×10−15 -5.72443 -5.72443 5.95×10−7 1952.664 1952.664 0.00000 596.683 596.683 2.58×10−4

The Record Creation (RC) process is 5–7x faster than
the power flow computation, as expected6. Both pro-
cedures scale up with the number of algebraic vari-
ables, directly related to the dimensionality of the power
flow problem. Notice that increase in execution time to
generate the records shows an exponential trend with re-
spect to the size of the power flow problem (Figure 7), as
expected.

Figure 7. Exponential increase in execution time as a function
of the number of algebraic variables in the model.

4.4 Result Validation with PSS/E
The validation against PSS/E of the power flow results ob-
tained using GridCal has been performed on several test
systems. In Table 2, a list of the tested networks is given.
For each of the networks some buses have been selected
indicating their voltage magnitude and angle, the inject-
ed/absorbed active and reactive powers of the generating
units connected to the corresponding node. Those power
flow results are compared with the corresponding calcu-
lations obtained from PSS/E including evaluation of an

6The experiments were performed on an Intel Core i5 Quad-Core
(2.0 GHz) processor, with 16 GB RAM DDR4 memory.

absolute error between the evaluated power flow and ref-
erence PSS/E power flow. The power flow values match
with low tolerance errors that in some cases hit the ma-
chine precision. This shows the validity of the proposed
approach of power flow calculation using the open-source
Python library GridCal.

5 Conclusions
This article presents an approach to form a record-based
data structure to handle power flow starting guesses for a
dynamic simulation using the phasor-domain OpenIPSL
library. A power flow computation, performed before
running a phasor-domain simulation, specifies the start-
ing equilibrium of the nonlinear system simulation. The
record class architecture benefits directly from the object-
oriented paradigm of the Modelica language, allowing
management of all power flow variables from a single at-
tribute in the model, a feature not common in specialized
proprietary power system tools. Such structure can be
extrapolated to other open-source Modelica-based power
system libraries.

We provide a Python script to create the structure for
any existing OpenIPSL model built on versions 1.5.0 or
2.0.0, in this way, naturally expanding capabilities of
the library to perform dynamic simulations for different
power flow initial conditions. The power flow record in-
stances can be populated by an open-source Python li-
brary called GridCal, capable of producing numerically
the same results as PSS/E for power flow computations.
We also introduce a script to convert the GridCal power
flow results to records directly.

From our perspective, the proposed methodology can
be useful for users of existing OpenIPSL models, espe-
cially for those who study the behavior of the models un-
der different power flow conditions. However, for large
scale models the user would have to spend significant
time linking the power flow variables to the record. To
avoid the aforementioned issue, a model translation tool
that translates the information from PSS/E *.dyr and

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181147

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

153

*.raw files into OpenIPSL *.mo models is currently
under development. The tool will include the proposed
record structure in this paper by default. In that case, the
power flow variables will point to the record automati-
cally. This will be a key advantage in helping power sys-
tem analysts with the potential adoption and transition to
Modelica-based tools.

Acknowledgements
The authors would like to thank Fernando Fachini,
Ricardo Rincón Ballesteros, and Manuel Navarro Catalán
for their support and feedback with the implementation of
the software. We would also like to thank Santiago Peñate
Vera for developing GridCal.

This research was funded in part by the New
York State Energy Research and Development Author-
ity (NYSERDA) through the Electric Power Transmission
and Distribution (EPTD) High Performing Grid Program
under agreement numbers 137940, 137951, in part by
the Engineering Research Center Program of the National
Science Foundation and the Department of Energy under
Award EEC-1041877, in part by the CURENT Industry
Partnership Program, in part by the Center of Excellence
for NEOM Research at King Abdullah University of
Science and Technology, and in part by Dominion Energy.

Parts of this material are based upon work sup-
ported by the U.S. Department of Energys Office of
Energy Efficiency and Renewable Energy (EERE) un-
der the Advanced Manufacturing Office, Award Number
DE-EE0009139.

Legal Disclaimer
The views expressed herein do not necessarily represent
the views of the U.S. Department of Energy or the United
States Government, nor of any of the funding bodies listed
in the acknowledgement.

References
Baudette, Maxime et al. (2018-01). “OpenIPSL: Open-Instance

Power System Library Update 1.5 to iTesla Power Systems
Library (iPSL): A Modelica library for phasor time-domain
simulations”. In: SoftwareX 7, pp. 34–36. DOI: 10 .1016 / j .
softx.2018.01.002.

Boersma, S. et al. (2020-09). “Enhanced Power System Damp-
ing Estimation via Optimal Probing Signal Design”. In: 2020
22nd European Conference on Power Electronics and Appli-
cations (EPE’20 ECCE Europe). IEEE, pp. 1–10. DOI: 10 .
23919/EPE20ECCEEurope43536.2020.9215892.

Dorado-Rojas, Sergio A., Marcelo de Castro Fernandes, and
Luigi Vanfretti (2020). “Synthetic Training Data Generation
for ML-based Small-Signal Stability Assessment”. In: 2020
IEEE SmartGridComm.

Dorado-Rojas, Sergio A., Manuel Navarro Catalán, et al. (2020-
11). “Performance Benchmark of Modelica Time-Domain
Power System Automated Simulations using Python”. In:
Proceedings of the American Modelica Conference 2020.

Gomez, Francisco J. et al. (2018). “Multi-Domain Semantic In-
formation and Physical Behavior Modeling of Power Sys-
tems and Gas Turbines Expanding the Common Information
Model”. In: IEEE Access 6, pp. 72663–72674. DOI: 10.1109/
ACCESS.2018.2882311.

Gonzalez-Torres, J.C. et al. (2019). “Power system stability en-
hancement via VSC-HVDC control using remote signals: ap-
plication on the Nordic 44-bus test system”. In: 15th IET In-
ternational Conference on AC and DC Power Transmission
(ACDC 2019). Institution of Engineering and Technology, 78
(6 pp.)–78 (6 pp.) ISBN: 978-1-83953-007-4.

Gusain, Digvijay, Milos Cvetkovic, and Peter Palensky (2019-
06). “Energy Flexibility Analysis using FMUWorld”. In:
2019 IEEE Milan PowerTech. IEEE, pp. 1–6. ISBN: 978-1-
5386-4722-6. DOI: 10.1109/PTC.2019.8810433.

Henningsson, Erik, Hans Olsson, and Luigi Vanfretti (2019-02).
“DAE Solvers for Large-Scale Hybrid Models”. In: pp. 491–
502. DOI: 10.3384/ecp19157491.

Laera, Giuseppe (2016). Modelica Norwegian Grid Models for
iTesla and Model Validation Tasks. Tech. rep.

Milano, Federico (2009). “Continuous Newton’s method for
power flow analysis”. In: IEEE Transactions on Power Sys-
tems 24.1, pp. 50–57.

Müller, Joscha et al. (2020-11). “A Modelica Library for Contin-
uous and Discrete Extremum Seeking for Static and Dynamic
Systems”. In: pp. 36–45.

Nohac, Karel et al. (2019-05). “Open Source Platforms for Dy-
namic Stability Assessment”. In: 2019 20th International
Scientific Conference on Electric Power Engineering (EPE).
IEEE, pp. 1–6. ISBN: 978-1-7281-1334-0.

Pan, Kaikai, Digvijay Gusain, and Peter Palensky (2019-01).
“Modelica-Supported Attack Impact Evaluation in Cyber
Physical Energy System”. In: 2019 IEEE 19th International
Symposium on High Assurance Systems Engineering (HASE).
IEEE, pp. 228–233. ISBN: 978-1-5386-8540-2.

Podlaski, Meaghan et al. (2020-11). “Parameter Estimation of
User-Defined Control System Models for Itaipú Power Plant
using Modelica and OpenIPSL”. In: pp. 139–148. DOI: 10 .
3384/ecp20169139.

Qin, Yining et al. (2019-08). “A JModelica.org Library for
Power Grid Dynamic Simulation with Wind Turbine Con-
trol”. In: IEEE Power and Energy Society General Meeting.
Vol. 2019-Augus. IEEE, pp. 1–5. ISBN: 9781728119816.

Stott, Brian (1974). “Review of load-flow calculation methods”.
In: Proceedings of the IEEE 62.7, pp. 916–929.

Tinney, William F and John W Walker (1967). “Direct solutions
of sparse network equations by optimally ordered triangular
factorization”. In: Proceedings of the IEEE 55.11, pp. 1801–
1809.

Vanfretti, Luigi et al. (2017-04). “An open data repository and a
data processing software toolset of an equivalent Nordic grid
model matched to historical electricity market data”. In: Data
in Brief 11, pp. 349–357. ISSN: 23523409.

Ward, J B and H W Hale (1956). “Digital computer solution of
power-flow problems [includes discussion]”. In: Transactions
of the American Institute of Electrical Engineers. Part III:
Power Apparatus and Systems 75.3, pp. 398–404.

Winkler, Dietmar (2017-09). “Electrical Power System Mod-
elling in Modelica - Comparing Open-source Library Op-
tions”. In: pp. 263–270. DOI: 10.3384/ecp17138263.

Winkler, Dietmar (2019-02). “Analysing the stability of an Is-
landed hydro-electric power system”. In: pp. 103–111. DOI:
10.3384/ecp18154103.

Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

154 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181147

Aircraft Mission Simulation with the updated
FlightDynamics Library

Marc May1 Reiko Müller1 Gertjan Looye1

1DLR Institute of System Dynamics and Control, Oberpfaffenhofen, Germany,
marc.may@dlr.de, reiko.mueller@dlr.de, gertjan.looye@dlr.de

Abstract

Aircraft mission simulation plays an essential role during
the simulative design process of aircraft systems. An im-
portant task is to conduct analyses for total aircraft assem-
blies in different flight phases and also to produce perfor-
mance metrics in Multidisciplinary Design Optimization
(MDO) loops. Based on DLR’s FLIGHTDYNAMICS, the
library presented in this paper introduces mission simula-
tion capability for aerial and on-ground movement. For in-
stance, this includes flight control and management func-
tions, a detailed aircraft implementation including several
subsystems (for example landing gears, actuation and sen-
sor systems), and the application of the integrated setup to
realistic use-cases.
Keywords: Aircraft modeling, mission simulation, flight
control.

1 Introduction

During design and testing of aircraft and associated sys-
tems, the need for aircraft mission simulation arises in
many occasions, for example to conduct MDO, valida-
tion and verification, trajectory optimization and predic-
tion, as well as air traffic management. The main building
blocks of a mission simulation setup are on the one hand
the actual aircraft model with its various (sub-) systems,
and on the other hand functions and algorithms (mostly in
the form of controllers) enabling the aircraft to follow a
mission plan (for example a gate to gate trajectory for a
passenger aircraft). Concerning the first part, a well es-
tablished tool to perform aircraft modeling in MODELICA
is DLR’s FLIGHTDYNAMICS library (Looye et al. 2014),
which has been used in a multitude of research projects
so far. The second part, namely flight control and man-
agement algorithms allowing the guidance on ground and
in the air was added to the FLIGHTDYNAMICS during the
course of the EU-funded project OPERATOR, which is
associated with Systems Integrated Technology Demon-
strator (SYS-ITD) of the CLEANSKY2 Joint Undertaking
(MISSION Consortium 2015). Aside from DLR, partners
of the OPERATOR project (including a large aircraft sup-
plier) seeked a library with this capability to help develop-
ing and assessing aircraft subsystems, for example novel
actuator architectures.

The mission simulation capability necessitated several
adaptations and further development of the FLIGHTDY-
NAMICS library, which are laid out in this paper. The fol-
lowing section reviews the derived library structure, high-
lighting changes with respect to the original FLIGHTDY-
NAMICS. In Section 3, the modelling of the aircraft and
associated systems will be explained, followed by the mis-
sion and scenario definitions in Section 4, where also the
flight controller and flight management systems necessary
to guide the aircraft on the mission are described. Results
of the use-cases defined in the project for verification are
shown in Section 5, and the conclusions are drawn in Sec-
tion 6.

2 Library structure

As a derivative of the FLIGHTDYNAMICS library, OP-
ERATOR shares its high level library structure, which is
shown in Figure 1. It furthermore adds a dedicated Con-
troller package, which contains all mission planning and
execution capabilites (i.e. controllers and flight manage-
ment algorithms).

The first level subpackages will be shortly listed in the
following. In UsersGuide, a text-based tutorial of the
library, its components and modeling principle is given.
Also, there is a list of references given in the Literature
model. The Examples package implements the use-
cases defined in the project, results of these are given in
Section 5. MyProject is used to include and integrate
new aircraft designs. Therefore basic building blocks
needed to assemble a model, like aerodynamics, engines
and systems are stated here, which represents a proposal
how to structure a new aircraft implementation with new
systems. FlightVehicle is the main location where all
models and classes are stored. This comprises equations
of motion in the kinematics package, implementations
of aerodynamics (a tabulated dataset from Vortex Lat-
tice Method (VLM) calculations is used in OPERATOR,
however arbitrary analytical and data-driven models are
possible), engine and actuator models, sensors, landing
gears, and so on. New models are added to the respective
sub-library when they are designed. The Environment
package contains everything necessary for simulating the
surrounding of the aircraft, for example geoid, gravity and

DOI
10.3384/ecp21181155

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

155

Figure 1. The library tree opened in SIMULATIONX R©

(this version contains a hidden controller package, which
is mandated by export control regulations for dissemina-
tion to external partners).

magnetic flux of the Earth, atmosphere and ground ob-
jects like localizer and glideslope emitters. The final pack-
age Utilities contains interface definitions, coordinate
transformation and various helper functions and records.
Finally, the Controller package collects all functional-
ity concerning flight control. This encompasses autopi-
lot functionality (e.g. acquiring and holding of reference
altitude, speed and orientation), trajectory path tracking,
controllers for stabilization and damping of aircraft eigen-
modes and disturbances as well as controllers for special-
ized tasks like takeoff and landing.

3 Aircraft modeling

Depending on the use-case or application, an aircraft mod-
eling library must provide different levels of fidelity or de-
tail. In the case of aircraft mission simulation, reduced
mass-point models were the standard approach so far, as
they combine fast execution time and acceptable preci-
sion. Well-known implementations include for example
the Base of Aircraft Data (BADA) model family (EURO-
CONTROL 2012) as a reduced longitudinal-plane aircraft
performance model, and also inverse models with three
Degrees of Freedom (DoFs), like they were used for in-
stance in the DLR project TIVA (Liersch and Hepperle
2011). For the OPERATOR project, a six DoF rigid body
aircraft model formulation was selected as a generic ap-

(a) Mission simulation architecture.

+ Trim

trimAileron

+ Trim

trimElevator

+ Trim

trimRudder

+ Trim

trimThrottle

yLon
yLat

ySim

yAircraft_Mass
yControlsyMagneticCompass

yCXYZlmn
yGearPos

yGPS

yCLCD

yThrustLimitFlag
yEnginesN1

yStates
yPCH

yILS

yReNr
yEmissions

yWind

Sim A/C 6-DOF yMisc

yThrottle

staticWind[]

k={0,0,0}

staticWind[]

k={0,0,0}

windNoise[]

k={0,0,0}

windNoise[]

k={0,0,0}

ned2Body

*K
ned2Body

commandCaseDistributor
Aileron

Elevator
Rudder
Throttle
Config
Gear

FCSOUT

FB

REF

5

14

6

FMSOUT

FB6

9

k=1

gain

(b) MODELICA implementation.

Figure 2. Layout of the flight management and control
systems in conjunction with the aircraft model for mission
simulation.

proach, which enables a more detailed simulation of tran-
sient flight, especially during turning.

The equations of motion (see e.g. Stevens, Lewis, and
Johnson (2015) for a derivation) with introduction of
forces and moments, as well as coordinate transformations
are implemented using the MODELICA MULTIBODY li-
brary (Otter, Elmqvist, and Mattsson 2003), which allows
straightforward graphical construction of airframe assem-
blies with components, like propulsion, actuation and sen-
sor systems as well as payloads. Furthermore, the li-
brary employs partial models for all subcomponents based
upon which different realisations of systems can be de-
veloped and exchanged very easily. Global models re-
lated to world/geodetics and atmosphere are adopted from
the DLR ENVIRONMENT library (Briese, Klöckner, and
Reiner 2017), and use the inner/outer concept of MODEL-
ICA. The overall architecture of the resulting mission sim-
ulation setup is shown in Figure 2, with some of the sys-
tem components being described in the following sections,
namely aerodynamics (3.1), actuators (3.2) and landing
gears (3.3).

3.1 Aerodynamics

The aerodynamics model in the OPERATOR library
works on tables previously generated by a multidisci-
plinary design and simulation network, for which the

Aircraft Mission Simulation with the updated FlightDynamics Library

156 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181155

flexibleRudder

EMA2

EMA1

integerConstant

k=0

booleanConstant

true
failure2

DeviationMode

bothActive

failure1

qS
lre
f

u
y

actDev

hingeActive_Passive

InputPassive

k=0

actuatorControllerBase

flange_b
u

D
ev
ia
tio
n
M
od
e

active

fa
ilu
re
M
od
e

m
easured

deflection
feedback

Actuator controller Actuator assembly

Deviation
injection

Failure
injection

Figure 3. Aileron actuation system with redundant Electro-Mechanical Actuator (EMA) implementation.

MDO software Remote Computing Environment (RCE)
(Seider 2014) is employed. The tools for each discipline
of the multidisciplinary design are incorporated in RCE
and are made available by several DLR institutes, each be-
ing specialized in a different area of aircraft design. The
interconnected execution inside RCE allows design work-
flows adapted to the respective use-case (for example air-
craft noise analysis and CFD/CSM simulation). The RCE
workflow has already been used in different projects, for
instance DIGITAL-X (Kroll et al. 2016) and VICTORIA
(Görtz et al. 2020).

One of the results of the data calculated within RCE
are aerodynamic tables, derived for example from Compu-
tational Fluid Dynamics (CFD) data. Regarding mission
simulation and the large time horizons involved, the aero-
dynamics model has to balance the aspects of fidelity and
precision versus computation time. To this end, for model-
ing of drag and lift contributions of the airframe and con-
trol surfaces, a fast VLM method (Hedman 1966) is com-
bined with a lifting-line method (Horstmann 1986), yield-
ing tables scheduled over different sets of variables from
altitude, Mach and Reynolds numbers, angle of attack and
sideslip angle, as well as body turn rates and control sur-
face deflections.

As the scenario considers passenger aircraft trajecto-
ries, extreme maneuvering or conditions at the bound-
ary of the flight envelope are not expected. This means
that these linear methods are applicable and provide a
good approximation of the aerodynamics during the en-
tire mission. For modeling the increase in lift coefficient
cL due the ground effect, several empirical relations stated
in Phillips and Hunsaker (2013) are implemented, which
can be selected as a parameter in the aerodynamics model.

3.2 Actuation system

The actuation system can model physical actuators (for
example by employing MULTIBODY library parts) as well

as approximations like first and second order filters. Fur-
thermore, a combination of approximated and physical ac-
tuators can be used. To demonstrate these functionalities,
a use-case was defined regarding an actuator force-fight as
introduced in more detail in Section 5.1. In this scenario,
one aileron actuator is assumed to be defective leading to
a force-fight with a second actuator which operates on the
same flexible control surface. For this purpose, a redun-
dant actuator setup with two Electro-Mechanical Actua-
tors (EMAs) per control surface was developed as shown
in Figure 3. The deviations are adjusted via an integer
variable that triggers the following cases:

• Gain difference in the actuators, which leads to di-
vergence in positions and rates.

• Time delay, meaning that the actuators react at dif-
ferent time instants.

• Position offset, i.e. the actuators extend to different
positions when subjected to the same command in-
put.

In a similar way, it is possible to introduce failures of the
actuators, such as a stuck actuator or actuator runaway
with a parameterized rate up to a maximum / minimum
deflection.

3.3 Landing gear

The aircraft’s undercarriage is represented by a simplified
landing gear model assembly consisting of two main and
one nose gear (see Figure 4). All gears are suspended
by a spring-damper element. The two main gears fea-
ture brakes, while the nose gear is not braked and has a
steering. By means of a MULTIBODY frame connector
(Otter, Elmqvist, and Mattsson 2003), the gear is attached
to the airframe. In order to facilitate numerical calcula-
tion of tyre friction and general forces and moments of

Session 2B: Applications (1)

DOI
10.3384/ecp21181155

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

157

ExtendedGear

r=r

a

b

w
heelB

asic
w
heelB

asic
w
heelB

asic
w
heelB

asic

strut

a
b

n=
{0,0,1}

actuatedR
evo

lute1

phi,w
,a

m
ove

const[]

k={0,0}

const[]

k={0,0}

addadd

+
+1

+1

const1

k=steer0

GearDownWeightOnWheels

g

frame_b

Displacement
from frameb

Wheel model

Gear busSteering
assembly

Suspension
assembly

Figure 4. Steerable nose gear implementation. The con-
nector frame_b is attached to the aircraft reference point
in the top-level airframe assembly.

the gear assembly, the wheels are defined to remain on
the ground-projected local coordinate system below the
aircraft during the complete flight. Forces and moments
are only introduced to the system if the landing gear as-
sembly touches the ground as represented by the altitude-
triggered boolean variable WeightOnWheels. A tyre
friction model has been adopted from Otter, Elmqvist, and
Mattsson (1999), which considers a hybrid formulation
for the different states (forward- and backward rolling,
stuck, sliding) for Coulomb friction in x- and y-direction
of the tyre local coordinate system. If the friction elements
are dynamically coupled, event definition for these states
leads to a mixed continuous/discrete system of equations,
that has to be solved by the numerical integration algo-
rithm. Finally, an empirical roll-coefficient model accord-
ing to Barnes and Yager (1998) has been implemented
which allows to consider different runway surface condi-
tions (dry, wet, flooded, icy, snow-covered) depending on
loading, tyre pressure, braking threshold and external con-
ditions. This overall approach allows to efficiently han-
dle the unavoidable event iterations for the discrete land-
ing gear touchdown, and provides good estimates for the
forces and moments involved.

3.4 Model validation and verification

As OPERATOR is based on the FLIGHTDYNAMICS li-
brary, several components have been validated and veri-
fied during its commercialization process (for example the
environment models, kinematics, aerodynamics, engine,
weight and balance, actuator, sensor, terrain and wind
modules as well as interfaces). Nevertheless, model verifi-
cation was performed at hand of five use cases (controlled
flight in cruise, actuator force fight, automatic landing, re-
jected takeoff, and full city-pair mission) in OPERATOR.
Data like aerodynamics and propulsion maps were gener-

ated by verified processes and tools within the DLR by the
institutes specialized in the respective topics (for exam-
ple the Institute of Propulsion Technology1). In CLEAN-
SKY2, the OPERATOR library is also employed by in-
dustrial partners (e.g. Collins Aerospace) in combination
with their own proprietary models, where additional val-
idation and verification activities are performed accord-
ingly.

4 Flight management and control
It is assumed in the OPERATOR project, that the general
mission definition is stated beforehand and subsequently
provided to the mission simulation tool. The respective
input file specifies a gate-to-gate mission separated into
several phases, as it is most common practice in Air Traffic
Management (ATM) and flight planning.

Table 1. Mission simulation input data.

Mission
point ID

Segment
duration [s]

Altitude
[ft]

Mach
number

Ramp Up 900 0 0
Taxi 900 0 0.025
Takeoff 60 0 0.2
Climb 180 4000 0.4
Level flight 1020 39000 0.6
Level flight 2700 39000 0.78
Descent 1320 2350 0.6
Approach
and flare 120 0 0.25
Landing 60 0 0.025
Taxi 480 0 0.025

4.1 Mission definition
Within the phases, values for several variables are defined
which parameterize the segment (see Table 1) and which
may also serve as parameters for an outer optimization
loop. According to these definitions, a variable denot-
ing the current flight state is synthesized, which in turn
controls the modes and settings in the Flight Management
System (FMS). In MODELICA, this is realized by the enu-
meration FlightState, which can assume the values
UN – Undefined (this is the initial state, from which tran-
sition to other states can happen, see Figure 5), RU – Air-
craft Ramp Up, TA – Taxi phase, TO – Takeoff phase, CL
– Climb phase, CR – Cruise phase, AP – Approach phase
and LD – Landing phase.

The switching between flight states is realized with
a state machine (see Figure 5) and depends on several
boolean conditions (grey source blocks) which trigger the
transitions between states. The conditions are determined
by variables such as the weight on wheels, the distance

1www.dlr.de/at/en/

Aircraft Mission Simulation with the updated FlightDynamics Library

158 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181155

to target runway, altitude-, orientation-, rates, airspeed
and corresponding limits. The simulation is usually ter-
minated if the landing is completed and the aircraft has
stopped, but other exit conditions can be defined easily.

4.2 Flight management

To discretize the trajectory with the FlightState vari-
able, it needs to be processed initially. In Figure 6, the
overall process of generating an FMS solution from the
textual mission input data using the Trajectory manager
is shown. By taking into account the target runway po-
sition (latitude ϕrwy, longitude λrwy, altitude hrwy) and
heading χrwy as well as tabulated time intervals ∆t, al-
titudes h and velocity/Mach number Ma, the trajectory
is back-propagated in position starting at the touchdown
point. During this initialization, the initial trajectory point
is moved into the touchdown point, and direction is rotated
by 180◦. A loop over all segments is performed, which al-
lows to calculate the positions of transition points (also in
time) and the ground distance (on great circle paths) be-
tween points. This finally yields the departure conditions
in position and initial heading. The trajectory is hence
represented by linear segments where additional transient
phases are considered to allow smooth transition between
segments and flight states. The user can influence these
transitions by specifying maximum accelerations in longi-
tudinal and vertical directions. By taking into account the
state feedback xfeedback, continuous commands in the vari-
ables altitude hcmd, pitch angle γcmd, inertial velocity Vcmd,
course angle χcmd and sideslip angle βcmd are provided for
the current flight state.

el
se

: p
re

(y
)

in
t_

fli
gh

tS
ta

te
s

1:
9

ram
p

_up_1

active

taxi_2

active

take_off_3

active

clim
b_

4

active

cruise_
5

active

descent_6

active

approach_7

active

landing_8

active

undefine
d_9

active

inflight

1

T
1

1

T
2

1

T
3

1

T
4

1

T
5

1

T
6

0

T
4_1

0

T
5_1

0

T
6_1

1

T
7

0

T8

1

T9

cond_C
R

cond_C
L

cond_D
E

cond_C
L

1

cond_C
R

1

cond_D
E

1

cond_A
P

cond_LD

cond_R
U

cond_TA

cond_T
O

V_tas < 1

cond_UN

1

T
1_T

2

cond_RU_TA

1

T
2_T

3

cond_TA_TO

cond_TO_FL

1

T
3_T

0

0

T
4_2

cond_C
L

2

cond_C
R

2

0

T
5_2

cond_D
E

2

0

T
6_2

stateGraphRoot

root

T9.fire

cond_end

state_W
oW

W
oW

all

cond_W
oW

0

T
10

flightState

fS

h

d1_h

V_tas

isDeparture

WoWall

endSim

UN

RU TA TO
CL CR DE

AP LD

On-ground state

Inflight state

Figure 5. The state machine for switching of flight states
using the MODELICA STATEGRAPH library. From the ini-
tial UN state, it can transition either to on-ground (RU, TA,
TO) or inflight-states (CL, CR, DE).

2-D reference
trajectory descrip-

tion: h, Ma, ∆t

Runway:
[ϕ,λ ,h,χ]rwy

Transform

Geodesic Refer-
ence trajectory
and transition

points in [ϕ,λ ,h]

Switching
of output

commands

User input Initialisation

h
γ
V
χ
β

cmd

~xfeedback

Figure 6. Transformation of mission input data using the
Trajectory manager.

4.3 Flight controller

For the Flight Control System (FCS), the common cas-
caded controller structure with autopilot outer- and stabi-
lization inner loop is adopted (see Figure 2a). The path
tracking module receives the aforementioned continuous
commands from the FMS and contains modes for inflight
and on-ground movement, while a dedicated block is de-
veloped for automatic takeoff. These two modules form
the autopilot part of the Flight Control System (FCS),
which issues aircraft orientation and throttle commands
to the stabilization loop. Automatic landing is performed
with the guidance by Instrument Landing System (ILS)
and Localizer sensor models, which provide lateral and
vertical deviations to the glideslope controller. It also
contains a mode for the landing flare before touchdown,
which works according to the variable τ - law described
in Lambregts (1982).

5 Simulation examples

In this section, the results of the use-cases defined in the
OPERATOR project are presented. The use-cases in-
clude the force-fighting scenario in Section 5.1, the re-
jected takeoff scenario in Section 5.2, and the complete
mission in Section 5.3. All scenarios have been tested
with SIMULATION-X R© version 4.1 and DYMOLA R© 2018
FD01 on a standard PC-workstation (INTEL XEON E5-
1630 v3, 16 GB RAM) with WINDOWS 10. The real
time factor in DYMOLA R© is varying (force-fight: 328.9,
rejected takeoff: 26.4, mission: 213.5) for this configura-
tion and the considered scenarios, which is due to differ-
ent initialization states (initialization on ground with ex-
tended landing gear, or with extended actuator model is
more complicated and takes more time), the number of
states and the system stiffness.

5.1 Actuator force fight

The inflight force-fighting scenario has the goal of evalu-
ating the aircraft’s behaviour with respect to control inputs
and possible faults. To this end, the implementation con-
siders an actuator force fight scenario, where redundant
aileron actuators allow to model different types of force
fights. These are possible differences in actuator gain, and

Session 2B: Applications (1)

DOI
10.3384/ecp21181155

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

159

time delay, as well as deflection offsets which results in
deformation of the flexible control surface.

0

20

40

60

80

100

E
ul

er
an

gl
es

[◦
]

Ψc

Ψ
Φ
Θ

(a) A course change of 45◦ is initiated at t = 50s upon which the
malfunctioning EMA2 counteracts the healthy EMA1. Line styles
correspond to the different deviation cases, see Figure 7b below.

−5

0

·104

[N
m

] τEMA1
τEMA2
Mt,surface

(b) The case of actuator gain deviation is denoted by solid lines
(, ,), while for time delay by (, ,)
and position offset by (, ,).

0 50 100 150 200 250

−20

0

20

40

t [s]

[◦
]

ϕEMA1
ϕEMA2
Φ

(c) .The actuator failure cases are denoted by (, ,) for an
upwards runaway, (, ,) for a downwards runaway and a
stuck actuator is indicated by (, ,).

Figure 7. Results of the actuator force fight simulation.

Results for deviations of the actuator gain of +25%, a
time delay of 0.2s and a 10cm actuator rod position offset
are shown in Figure 7b, where always the second actuator
(EMA2) introduces the deviation. During a course change
(in this case 45◦), the aircraft has to build up a roll angle
for turning flight and reduce it again to return to wings
level (the roll angle limit is set to ±45◦ inside the lateral
autopilot). The actuators twist the flexible aileron control
surface via torques τEMA1, τEMA2 and hence introduce a
torsional moment Mt,surface (indicated by green color) that
is different for the three deviation types. The difference
in the overall gain of the actuator controller for instance
produces a nonzero twisting moment (), while the mo-
ment due to a time delay () vanishes if there is no con-
trol activity (i.e. when the new course is attained). The

position offset in EMA2 is introduced after initializa-
tion/trimming in order to make the three solutions com-
parable. EMA1 has to produce a countering torque
(symmetrical to the trim value, which is approximately
represented by and), which leads to a large twist-
ing torque in the control surface.

In Figure 7c, simulation results for three actuator fail-
ure types are depicted. It has to be noted that the aileron
control surface can deflect upwards with larger angles than
downwards before reaching limits/stops. Hence runaways
of EMA2 with a rate of 0.25m/s show, that for the down-
wards direction EMA1 compensates the runaway of
EMA2 and still has control authority left during the
turn at t = 50s. This cannot be accomplished in the up-
wards runaway case, as due to the smaller downward de-
flection, EMA1 cannot cancel EMA2 anymore
and therefore does not contribute to turning and also needs
compensating moments from other aileron control sur-
faces. The final stuck case is similar to the downwards
case, as EMA2 remains at a relatively low deflection,
which can be cancelled by EMA1 . As can be seen
in Figures 7a and 7c, the resulting Euler angles are very
similar, with only small differences in the roll angle Φ and
heading Ψ.

5.2 Rejected takeoff

The rejected takeoff is a certification relevant test where
the aircraft is required to stop in a certain amount of dis-
tance while the takeoff procedure is already underway.
Due to the high speeds of around 300 km/h, a large amount
of kinetic energy has to be converted to heat by the braking
system, additionally in a short amount of time and tak-
ing into account the limited runway length. Depending
on these factors and also parameters like ground roll co-
efficients, payload, on-ground controller etc., the decision
speed beyond which no safe stopping is guaranteed, varies
accordingly.

Representing an emergency maneuver, a dedicated
braking mode is activated in the controller, while standard
FMS and longitudinal FCS loops are switched off. This
mode issues brake and reverse throttle commands (if sup-
ported by the engine model) to minimize the braking dis-
tance. In the simulation, this is triggered if the on-ground
velocity surpasses the decision speed (this marks the point
where in the case of problems the aircraft shall still be able
to stop safely without taking off). To ensure smooth transi-
tions, the velocity (0m/s) and braking commands (100%)
are filtered before being passed to the FCS. The lateral on-
ground mode also acts to keep the aircraft at the centerline
via the lateral autopilot and inner loops commanding the
rudder and nose-wheel steering with a speed-variable gain
(see Figure 8c). In the second subplot, the resulting lon-
gitudinal and vertical forces on the tyres of the nose and
main gears are shown. As the aircraft accelerates, the nose
wheel is unloaded () and the main gears are loaded in
z-direction (and) due to the pitch-up moment, in-

Aircraft Mission Simulation with the updated FlightDynamics Library

160 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181155

−20

0

20

40

60

80
[m

/s
]

(a) The velocity is increased until decision speed , upon
which the braking is initiated before rotation speed (climbout
speed is given by).

−4

−3

−2

−1

0
·105

[N
]

(b) x- and z-forces for main gear right (and) , main gear
left (and), as well as nose gear z-force .

0 10 20 30 40

0

0,5

1

t [s]

[k
m

]

(c) Distance travelled on ground and lateral deviation from run-
way centerline .

Figure 8. Results of the rejected takeoff simulation.

duced by the engine to Center of Gravity (CoG) moment
arm. Conversely, the main gear x-forces (and) in-
crease when brakes are applied, and the nose gear z-force
increases due to the pitch-down moment during braking.
Note that the z-values do not return to their stationary val-
ues, as the simulation is terminated as soon as the velocity
falls below 0.1 metres per second. With a total mass of
72.69t, the aircraft is able to stop after a distance of 882.5
metres (), including the acceleration phase.

5.3 City pair mission

As described in Section 4, a standard city-pair mission is
generated from the data supplied by the user. This in-
cludes climb, cruise and descent phases, which are flown
in the longitudinal plane, i.e. except for departure and ap-
proach, there is no lateral manoeuvring. In the simula-
tion and optimization studies targeted by the MISSION

RU
TA
TO
CL
CR
DE
AP
LD
UN

Fl
ig

ht
st

at
e

0

10

[k
m

]

hc h

60

65

70

A
ir

cr
af

tm
as

s
[t

]

0 1000 2000 3000 4000 5000 6000
0

100

200

t [s]

[m
/s

]

Vc V

0

1

2

3

4

Fu
el

flo
w

[k
g/

s]

Figure 9. Results of the mission simulation.

project, the aircraft has to climb for instance from ground
altitude to cruise altitude and can do so in a variety of tra-
jectories that are optimal for the functioning of specific
systems and the mission length. When introducing ad-
ditional system models, such as an Environmental Con-
trol System (ECS), the effects of environmental conditions
(e.g. temperature, humidity) on dedicated aircraft systems
can be studied. Similarly, during descent, the aircraft has
to descend from cruise altitude to approach altitude, and
the (auto-)pilot has to reduce the engine throttle. Again
studies regarding ECS and engine operational modes can
be conducted.

These prerequisites motivate the presented longitudinal
approach in the main flight phases and a full 3-D simu-
lation during departure and approach, for example to cor-
rectly simulate an ILS guidance. In Figure 9, the com-
manded and actual altitude hc and h as well as velocities
Vc and V are shown. Due to the flight controller, the air-
craft can follow the reference trajectory with only small
deviations. One exception is during approach, where the
mission definition commands a trajectory that is higher
and faster than what the aircraft is capable to achieve. The
controller adjusts the commands so that the throttle is re-
duced to idle (see fuel flow) and the descent rate is at the
current maximum value. The final approach is performed
using the ILS system and flare controller as described in
Section 4.3.

Session 2B: Applications (1)

DOI
10.3384/ecp21181155

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

161

6 Conclusion and outlook
In this paper, recent extensions to the FLIGHTDYNAMICS
library enabling passenger aircraft mission simulation and
specialized case studies have been presented. Through in-
tegrated flight management and control systems, it is pos-
sible to conduct a variety of simulation studies, for exam-
ple to design and evaluate subsystems like actuators, con-
trollers, Environmental Control Systems (ECSs), landing
gear systems and so on. This is showcased by means of
three examples, an inflight actuator force-fight, a rejected
takeoff simulation and a complete city-pair mission sce-
nario.

In the future, the library will be continuously extended
and employed for further studies and developments at
the DLR, for example in the fields of unmanned and au-
tonomous flight, simulation of future propulsion concepts
(electrical, hydrogen, synfuels) as well as design and val-
idation of control systems.

Acknowledgements
The work in project OPERATOR was funded by the
CLEANSKY2 joint undertaking under topic number JTI-
CS2-2017-CfP07-SYS-03-16.

References
Barnes, Arthur G. and Thomas J. Yager (1998). “Enhance-

ment of aircraft ground handling simulation capability”. In:
Advisory Group for Aerospace Research and Development
(AGARD).

Briese, Lâle Evrim, Andreas Klöckner, and Matthias Reiner
(2017). “The DLR Environment Library for Multi-
Disciplinary Aerospace Applications”. In: Proceedings of
the 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017. 1 132. Linköping University
Electronic Press, pp. 929–938.

EUROCONTROL (2012). User manual for the Base of Aircraft
Data (BADA) Revision 3.10. Technical/Scientific Report No.
12/04/10-45. EEC.

Görtz, Stefan et al. (2020-09). “Ergebnisse des DLR-Projekts
VicToria - Virtual Aircraft Technology Integration Plat-
form”. In: Deutscher Luft- und Raumfahrtkongress 2020
(DLRK2020). URL: https://elib.dlr.de/135959/.

Hedman, Sven G. (1966). Vortex lattice method for calculation
of quasi steady state loadings on thin elastic wings in sub-
sonic flow. Tech. rep. DTIC Document.

Horstmann, Karl-Heinz (1986). “Ein Mehrfach-
Traglinienverfahren und seine Verwendung für Entwurf
und Nachrechnung nichtplanarer Flügelanordnungen”.
PhD thesis. TU Braunschweig.

Kroll, N. et al. (2016-03). “DLR project Digital-X: towards vir-
tual aircraft design and flight testing based on high-fidelity
methods”. In: CEAS Aeronautical Journal 7.1, pp. 3–27.
ISSN: 1869-5590. DOI: 10.1007/s13272-015-0179-
7.

Lambregts, Antonius A. (1982). “Avoiding the pitfalls in auto-
matic landing control system design”. In: AIAA Guidance and
Control Conference. American Institute of Aeronautics and
Astronautics. Chap. 6, pp. 799–809. DOI: 10.2514/6.
1982-1599.

Liersch, Carsten M. and Martin Hepperle (2011-12). “A dis-
tributed toolbox for multidisciplinary preliminary aircraft de-
sign”. In: CEAS Aeronautical Journal. CEAS Aeronautical
Journal Volume 2.Number 1-4, pp. 57–68. URL: https://
elib.dlr.de/74509/.

Looye, Gertjan et al. (2014-09). “Object-Oriented Aircraft
Modelling with the DLR FlightDynamics Library”. In: 63.
Deutscher Luft- und Raumfahrtkongress. Augsburg, Ger-
many: Deutsche Gesellschaft für Luft- und Raumfahrt.

MISSION Consortium (2015). MISSION Requirements Docu-
ment and Exploitation Plan, Clean Sky 2 SYS-ITD Deliver-
able, D100.3.1.2.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (1999-
09). “Hybrid Modeling in Modelica based on the Syn-
chronous Data Flow Principle”. In: IEEE International Sym-
posium on Computer Aided Control System Design, pp. 151–
157. DOI: 10.1109/CACSD.1999.808640.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (2003).
“The new Modelica Multibody Library”. In: 3rd Interna-
tional Modelica Conference, pp. 311–330.

Phillips, W. F. and D. F. Hunsaker (2013). “Lifting-Line Predic-
tions for Induced Drag and Lift in Ground Effect”. In: Jour-
nal of Aircraft 50.4, pp. 1226–1233. DOI: 10.2514/1.
C032152.

Seider, Doreen (2014-11). “Open Source Framework RCE: In-
tegration, Automation, Collaboration”. In: 4th Symposium on
Collaboration in Aircraft Design. URL: https://elib.
dlr.de/93323/.

Stevens, Brian L., Frank L. Lewis, and Eric N. Johnson (2015).
Aircraft control and simulation: dynamics, controls design,
and autonomous systems. John Wiley & Sons.

Aircraft Mission Simulation with the updated FlightDynamics Library

162 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181155

Modelica-Based Modeling on LEO Satellite Constellation

Chan Liu1 Yikai Qian2 Liping Chen1 Yan Qu3 Fanli Zhou3

1School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China,
{liuchan,chenlp}@hust.edu.cn

2Shanghai Institute of Space Propulsion, China, jt0033063@163.com
3Suzhou Tongyuan Software&Control Tech. Co. Ltd, China, {quy,zhoufl}@tongyuan.cc

Abstract
The new generation of LEO (Low Earth Orbit) communi-
cation satellite constellations have the advantages of low
latency, strong signals, and global coverage. In order
to achieve global coverage, the LEO satellite constella-
tions are often very large, with a large number of satel-
lites, which puts forward high requirements for the over-
all design, operation and maintenance of the constellation.
Based on the Modelica language, this paper conducts a
detailed study of the LEO communication satellite con-
stellation and built a system model of satellite constella-
tion, and carries out a full-link simulation for the typical
service of mobile communication. By analyzing the sim-
ulation results, we conclude that based on the model of
satellite constellation proposed in the paper, the satellite
constellation can be quickly designed and simulated.
Keywords: satellite constellation, Modelica, satellite com-
munication, full-link simulation

1 Introduction
In recent years, as the demand for network communica-
tion has increased sharply, the idea of using LEO commu-
nication satellite constellation to provide the Internet from
space has become popular again due to its low commu-
nication delay and full-area coverage. A group of LEO
communication satellite constellation projects represented
by OneWeb, StarLink and Iridium II have emerged in
the world. Compared with HEO(High Earth Orbit), LEO
satellites have a shorter lifespan, and the technical up-
dates and iterations of the constellation system are more
frequent. The existing simulation methods for satellite
constellations can be mainly divided into the following
two types: The first is to simulate the orbit, perturbation,
structure and ground coverage characteristics of the satel-
lite constellation based on software such as STK(Q. Wang
and Xie 2021), and to support the constellation orbit and
structure design; the second is based on software like OP-
NET(C. Hu and S. Wang 2018; Zhang 2008) to simulate
the communication process of paging, inter-satellite link
establishment, link switching, delay and other communi-
cation processes in the communication satellite constel-
lation to calculate the communication link performance,
thereby supporting the constellation network topology and
network routing algorithm design. The two types of sim-

ulation methods are respectively aimed at constellation
orbit design and communication link design. Currently,
there is a lack of simulation methods that can unify the
two calculations.

The core content of the paper is the construction of a
multi-domain unified model for the satellite constellation
system. The system model established by the Modelica
language covers the ground segment, space segment and
user segment equipment models. In the simulation ap-
plication of mobile communication services, it can not
only reflect system-level features such as constellation or-
bit, constellation structure, ground coverage, ISL(inter-
satellite link), and satellite-to-earth links, can also sim-
ulate the energy balance, attitude control, fuel margin,
and antenna gain of each satellite. The following section
covers the introduction to the structure and characteristics
of the LEO communication satellite constellation system.
Section 3 mainly introduces the architecture of satellite
constellation model and the principle of the main compo-
nent model. Section 4 analyzes the simulation results of
system model given example parameters. Section 5 gives
conclusions.

2 Principle of LEO Satellite Constel-
lation

LEO communication satellite constellation refers to a con-
stellation system distributed at an orbital height of 700km
to 2000km, which is usually divided into three compo-
nents: space segment, ground segment, and user segment,
as shown in Figure 1. Among them, the space segment
refers to all satellites in the constellation; the ground seg-
ment usually includes the customs station, system control
center and ground integrated network, responsible for the
space segment satellite monitoring and control, and the
operation and management of the space network; the user
segment refers to various user terminals, including mobile
terminals, shipboard terminals, vehicle terminals, and air-
borne terminals, etc.

There are mainly three types of links in the entire con-
stellation system, feeder links, ISL and user links. Both
the feeder link and the user link belong to the satellite-to-
earth link, but the feeder link connects satellite and ground
station, and the user link connects satellite and user termi-
nal. The ISL refers to the link established between any

DOI
10.3384/ecp21181163

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

163

Microwave Laser

Space

Gate Station

System Control Center

Groud
User

Mobile Terminal

Vehicle Terminal Airborne Terminal

Shipboard Terminal

Figure 1. Schematic of a LEO communication satellite constellation.

satellite in the constellation and two adjacent satellites in
the same orbital plane or between two adjacent satellites in
a different orbital plane, which will occur with the switch-
ing of user links Change, the establishment of ISL gener-
ally follow the minimum hop number rule or the shortest
propagation path rule.

For LEO communication satellite constellation system,
the existing simulation methods are mainly based on dif-
ferent simulation platforms to simulate the constellation
orbit coverage and communication link characteristics.
Although this method can also achieve the purpose of
simulation, it is not friendly for designers. And sim-
ulation tools such as STK or OPNET can only focus
on system-level performance, and cannot considering the
multi-domain characteristics of the satellite itself in the
satellite constellation. This article uses Modelica language
to establish a LEO communication satellite constellation
system model. The model framework will be described in
Section 3. Simulation based on this model can not only
unify the constellation orbit coverage simulation and the
constellation communication link simulation, but also fo-
cus on the operating status of a single satellite in the con-
stellation system. This method not only improves the de-
sign efficiency of designers, but also facilitates the opera-
tion and maintenance of the constellation system. Simula-
tion content is as follows:

• Constellation orbit and coverage characteristics,
mainly including the position and speed of each
satellite in the constellation at any time, and the over-
all ground coverage of the constellation.

• Communication link characteristics include two as-

pects, one is the margin for establishing communica-
tion links in any two places on the ground, and the
other is the establishment and handover of ISL.

• Multi-domain characteristics of satellite, mainly in-
cluding energy balance calculation, attitude control
and orbit control maneuvers, and propellant margin
calculation.

3 Unified Modeling of LEO Satellite
Constellation

This section will propose a unified model architecture for
constellation orbit coverage simulation, communication
link simulation and satellite multi-domain simulation and
introduce in detail the components of LEO satellite con-
stellation developed by MWorks/Modelica.

3.1 Model Architecture
In order to realize the unified model of various simulation
tasks of constellation, the constellation system model ar-
chitecture is proposed as shown in Figure 2. Each color
line with arrows in the figure represents a specific inter-
face. The constellation orbit model calculates the num-
ber of orbital elements of each satellite in the constella-
tion according to the given constellation design param-
eters. These orbital elements contain the position and
speed information of the satellite and are transmitted to the
ground station through the satellite-to-ground link. When
user terminal 1 sends a request for establishing communi-
cation with terminal 2 to ground station, the communica-
tion request contains communication type, and the latitude

Modelica-Based Modeling on LEO Satellite Constellation

164 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181163

Inter-satellite

Link

GNC Subsystem Power Subsystem

Propulsion

Subsystem
Payload Subsystem

Electrical

Power

Elec
tri

ca
l

Power
Electrical

Power
Ignition

Command

Constellation Orbit

Orbital

Factors

Orbital

Factors

Ground Station

User Terminal 1

User Terminal 2

Communication

Request

System Control Center

Maneuver

Command

ite-to-earth

Link

Satellite-to-earth

Link

Constellation Orbit and

Coverage Simulation

Communication Link

Simulation

Satellite Multi-domain

Simulation

Orbital

Factors

Figure 2. Model architecture of LEO communication satellite constellation system.

and longitude information of terminal 1 and terminal 2.
Then ground station can establish a communication link
between the two places, and calculate the link margin.

The link interface contains communication frequency,
transmission rate, connection status, communication data,
etc. The system control center generates the satellite orbit
maneuvering control signal and transmits it to the GNC
subsystem of the satellite that needs to maneuver through
the satellite-to-ground link. The GNC subsystem then
generates the propeller ignition command to the propul-
sion subsystem. With the help of the flexible compo-
nent interface definition method of Modelica language, the
modeling of related components can be easily carried out.

3.2 Model Implementation
Orbit, satellite and system control center are the three most
important parts of LEO satellite constellation system, so
this section mainly introduces the model realization of
these three parts.

3.2.1 Orbit Model

The main parameters of the ideal constellation orbit model
are: the number of orbits in the constellation p, the number
of satellites in each orbit plane s, and orbital factors (semi-
major axis a, eccentricity e, inclination i, RAAN(right as-
cension of ascending node) , argument of perigee and true
anomaly f). The number of orbits and the number of satel-
lites in each orbit plane determine the scale of the constel-
lation. The semi-major axis and eccentricity of the orbit
determine the size and shape of the orbit. The inclination,
RAAN, and argument of perigee determine the orientation
and direction of the orbit in space. The true anomaly de-
termines the position of the satellite. Based on the above
parameters, the coordinates(x,y,z) of each satellite in the
geocentric inertial system can be calculated by Equation 1,

so as to simulate the orbital state of the constellation at any
time under ideal conditions.x

y
z

=
a(1− e2)

1+ ecos f
·

cosΩcos(ω + f)− sinΩsin(ω + f)cos i
sinΩcos(ω + f)− cosΩsin(ω + f)cos i

sin(ω + f)sin i

 (1)

In order to simulate the state of satellite orbits in space
more realistically, orbital perturbations(Chen and Lin
2020) including aspheric gravity, atmospheric drag, sun-
moon gravity, sunlight pressure, and post-Newton effect
are introduced, as shown in Figure 3.

Figure 3. Orbit perturbation model.

• Non-spherical gravitational perturbation.

The Earth’s gravitational field model adopts 70x70 Joint
Gravity Model 3 (JCM3). The calculation of Non-
spherical gravitational perturbation acceleration projected

Session 2B: Applications (1)

DOI
10.3384/ecp21181163

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

165

to the spherical coordinate component in the ground-fixed
coordinate system is as follow:

aN =− µ
r2 cosφ

∞

∑
n=2

n

∑
m=0

(
Re

r
)n{(1+n)cosφ

Pnm(sinφ)(Cnm cosmλ +Snm sinmλ)er

[nsinφPnm(sinφ)−NnmPn−1,m(sinφ)]
(Cnm cosmλ +Snm sinmλ)eφ +m·
(Cnm sinmλ −Snm cosmλ)eλ}

(2)

where er, eφ and eλ are the three orthogonal unit vec-
tors of spherical coordinates. λ and φ denote geo-
centric longitude and geocentric latitude. Cnm and Snm
are the normalized gravitational coefficient. Nnm =√

2n+1
2n−1(n+m)(n−m). Pnm(u) is the normalized gravi-

tational coefficient. n represents the truncation order.

• Atmospheric drag perturbation.

The acceleration of atmospheric drag on a satellite with an
area-to-mass ratio is:

aD =−1
2

CD
S
m

ρ|V | ·V (3)

where CD is damping coefficient. ρ is atmospheric density
at the location of the satellite. V is the speed of the satellite
relative to the atmosphere.

• Lunisolar gravitational perturbation.

The perturbation acceleration of the sun and the moon to
the satellite can be expressed as:

aT =−µs(
r− rs

||r− rs||3
+

rs

r3
s
) (4)

where r and rs are the position vector of the satellite and
the sun or moon in the geocentric inertial system. µs is
gravitational coefficient.

• Solar radiation perturbation.

The perturbation acceleration caused by solar radiation on
the satellite can be expressed as:

aR = KCR
S
R

Ls

4πc
r− rs

||r− rs||3
(5)

where CR is solar radiation coefficient. c is Speed of light.
Ls represents luminosity of the sun. K is solar visibility
coefficient.

• post-Newtonian effects.

The perturbation acceleration produced by the first-order
post-Newtonian effect term is:

aPN =
µ

c2r3 [(4
µ
r
− v2)ṙ+(4v̇ · ṙ)v̇] (6)

where ṙ and v̇ are satellite position vector and velocity vec-
tor.

3.2.2 Satellite Model

The satellite model is composed of four subsystem mod-
els, namely GNC subsystem model, propulsion subsystem
model, payload subsystem model and power subsystem
model.

Among them, the GNC subsystem consists of a satel-
lite body model, a solar wing sail model, a sensor model,
a flywheel model and a controller model, as shown in Fig-
ure 4(a), which is mainly responsible for the attitude and
orbit control of the satellite. In order to maintain the satel-
lite’s payload to orient or track a specific target, attitude
control is required. There are two ways to achieve atti-
tude control. Small-scale attitude control is achieved by
the controller generating a control signal to the flywheel,
while large-scale attitude control is realized by the con-
troller generating the switch signal of the attitude control
engine.

The main task of the propulsion subsystem is to cooper-
ate with the GNC subsystem to complete the attitude and
orbit control during the life of the satellite. According to
the function, it can be divided into a gas pressurization
module, a propellant storage module and a thruster unit
module, as shown in Figure 4(b). The gas pressurization
module is composed of three gas cylinder models, a gas
orifice model and a pressure regulating valve model. The
main function is to provide the gas required for constant
pressure operation to maintain working pressure for the
rail-controlled engine; the propellant storage module con-
sists of two storage tank models and liquid orifice mod-
els. The main effect is to store, distribute and supply the
propellant required by the engine; the unit module mainly
includes one orbit control engine model and sixteen atti-
tude control thruster models, which provide propulsion for
orbit control and attitude adjustment.

The power subsystem, as shown in Figure 4(c), includes
two solar wing models, a battery model, a power controller
model, and load models. The solar wing models on the
left and right sides are composed of a certain number of
solar cell models combined in series and parallel accord-
ing to the design needs, and can generate full power un-
der the condition of standard illumination of 1360W/m2.
The battery model receives the electric energy output by
the shunt regulator in the sunlit area for charging, and dis-
charges when the solar wing power is insufficient for the
load to maintain the stability of the bus voltage. The main
function of the power controller model is to realize the dis-
tribution and regulation of solar wing power generation,
battery charging and discharging, and load power, and to
shunt according to needs. The load model is divided into
two types, one is the fixed power load given in Figure 4(c),
and the other is the load coupled in the other three subsys-
tems. The second load is related to the working state of
some equipment. For example, the power consumption of
the electric load in the propulsion subsystem is related to
the working status of seventeen engines.

The payload subsystem is generally composed of an-

Modelica-Based Modeling on LEO Satellite Constellation

166 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181163

(a) GNC subsystem model

(b) propulsion subsystem model

(c) power subsystem model

(d) payload subsystem model

Figure 4. Four main subsystem that make up satellite model in MWorks.

tenna models and transponder models, as shown in Fig-
ure 4(d). For the LEO communication satellite constella-
tion, it is mainly used to establish ISL(L. Wang and D. Hu
2016; Yan 2010) and satellite-to-earth links. The user’s
communication data is received by the receiving antenna
of the corresponding frequency band and then sent to the
transponder. After the transponder performs gain adjust-
ment and signal amplification processing on the data sig-
nal, it is transmitted to the transmitting antenna, and then
to the next communication node through the transmitting
antenna.

3.2.3 System Control Center Model

The system control center model belongs to the ground
segment. The main function in the satellite constellation is
to maintain the stability of the constellation structure. The
input is orbital factors of all satellites calculated by the
constellation orbit model, and the output is the speed pulse
that the GNC subsystem needs to generate orbital maneu-
ver control signal. In the satellite constellation structure,
the two factors that have the greatest impact on the satel-
lite coverage performance are the phase distribution and
orbital plane distribution of the satellite, so phase control
and orbital plane control are required.

The orbital plane and phase control reference of each
satellite in the constellation are determined according to
the following formula(Ulybyshev and Yuri 1998):

Ω∗
0 =

p−1

∑
j=0

s−1

∑
k=0

λ jk(Ω jk − j · 2π
P

+ j · 2π
P
) (7)

u∗00 =
p−1

∑
j=0

s−1

∑
k=0

λ jk(u jk − j ·F · 2π
T

− k · 2π
S
)

+ j ·F · 2π
T

+ k ·F · 2π
S

(8)

where λ jk is the normalized weighting factor and the value
is 1/T.

RAAN tolerance εΩ and phase tolerance εu are given in
the form of model parameters. When |∆u+Hu∆u̇|> εu, a
phase holding maneuver is required, and the required tan-
gential velocity pulse ∆vu is given by the following for-
mula:

∆u̇r =

0, |∆u|< εu

Ku(∆u− εu), ∆u > εu

Ku(∆u+ εu), ∆u <−εu

(9)

∆vu =
a
3
(∆u̇−∆u̇r) (10)

where ∆u̇r is phase deviation change rate correction value.
∆u̇ is the rate of change of phase deviation, which is ob-
tained by difference. Ku = −1/Hu, and Hu is the rate of
change of phase deviation, which is obtained by differ-
ence.

Session 2B: Applications (1)

DOI
10.3384/ecp21181163

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

167

Similarly, when |∆Ω+HΩ∆Ω̇| > εΩ, the orbital main-
tenance maneuver is required, and the required normal ve-
locity pulse ∆vΩ is given by the following formula:

∆i =− 1
3J2 sin i

(
a

RE
)2

√
a3

µ
(∆Ω̇−∆Ω̇r) (11)

∆vΩ = 2
√

µ
a

sin(i/2) (12)

where the calculation of ∆Ω̇r is similar to that of ∆u̇r. ∆i
is the required change in inclination. J2 refers to pertur-
bation of the earth oblateness.

4 Simulation Results
In this section, some example parameters will be injected
into system model. Among them, constellation orbit pa-
rameters are from Iridium NEXT(Iridium 2017), the spe-
cific content of constellation orbit parameters is described
in section 3.2.1, which will not be repeated here; satel-
lite parameters include satellite mass, engine thrust, solar
cell rated voltage, and number of string cells or parallel
cells, battery capacity and antenna gain, etc.; link parame-
ters mainly include the longitude and latitude of the com-
munication user, communication frequency, the minimum
elevation angle of satellite-to-ground communication, and
the minimum clearance height of ISL. The following arti-
cle will analyze the system simulation results from three
aspects: orbit coverage, communication link, and satellite
status.

4.1 Orbit Coverage
Orbit coverage simulation mainly focuses on satellite po-
sition change, constellation structure maintenance and
ground coverage. The position change of satellites is
shown by the longitude and latitude of sub-satellite points.
As shown in Figure 5, the longitude of the sub-satellite
point of satellite 1-1 and satellite 1-2 is between 180◦W
and 180◦E, and the latitude of the sub-satellite point is
between 85◦S–85◦N. Figure 6 and Figure 7 show that un-
der the action of the speed pulse signal generated by the
system control center, orbit deviation can be controlled
within a range of ±2◦. Figure 8 shows that during the nor-
mal operation of the constellation, the two places A and B
with coordinates (160◦E,20◦N) (100◦E,40◦N) have al-
ways been covered by satellites, and the maximum num-
ber can reach 5 satellites.

4.2 Communication Link
The focus of communication link simulation is to evaluate
the communication quality of the two places and the im-
pact of inter-satellite link switching on the communication
quality. Figure 9 and Figure 10 show the link attenuation
of the upper satellite-to-ground link, the lower satellite-to-
ground link, and the inter-satellite link, respectively. Fig-
ure 11 shows the overall communication margin of the full

Figure 5. Longitude and latitude of sub-satellite points.

Figure 6. Tangential velocity pulse of satellite1-2.

Figure 7. Deviation of orbital RAAN.

Figure 8. Number of satellites covered A and B.

Modelica-Based Modeling on LEO Satellite Constellation

168 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181163

link. Figure 12 shows the process of ISL switching. The
simulation results show that the margin of the system can
fully meet the communication needs of A and B.

Figure 9. Satellite-to-groud link attenuation.

Figure 10. ISL link attenuation.

Figure 11. Link margin.

Figure 12. ISL link swtiching.

4.3 Satellite Status
During the operation of the satellite constellation, the en-
ergy balance characteristics of 3 satellites in constellation

are shown in Figure 13 and Figure 14. It can be seen that
the state of charge of the three satellites remains above
80% and the output power of the solar array during the pe-
riod with sunshine reaches 3000W, indicating the satellites
energy system can satisfy the energy consumption under
working conditions. Figure 15 shows the result of satellite
attitude adjustment, the attitude angle is controlled within
1◦.

Figure 13. Results for SOC of batteries.

Figure 14. Results for output power of solar arrays.

Figure 15. Results for satellite attitude angle.

5 Conclusions
In this paper, a system model of LEO communication
satellite constellation is established, and a simulation anal-
ysis of typical service is carried out. The conclusions are
as follows:

1. The system model established by the unified model-
ing language Modelica can support rapid design and
verification of satellite constellation system.

Session 2B: Applications (1)

DOI
10.3384/ecp21181163

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

169

2. The established system model can unify constella-
tion orbit simulation, communication link perfor-
mance simulation, and satellite status simulation.

3. The simulation application examples show that the
constellation system model not only supports the
characteristic analysis of key components, but also
supports the overall performance evaluation of the
system.

Acknowledgements
This work has been supported by National Key Re-
search and Development Program of China(grant numbers
2019YFB1706501).

References
Chen, Changchun and Ying Lin (2020). “A novel design

method for the constellation configuration stability consid-
ering the perturbation influence”. In: Aerospace Shanghai
01.37, pp. 33–37. DOI: 10.19328/j .cnki .1006- 1630.2020.
01.005.

Hu, Chenhua and Shengchun Wang (2018). “OPNET-based
Simulation of LEO Satellite Communication System”. In:
Communications Technology 51.10, pp. 2382–2388. DOI: 10.
3969/j.issn.1002-0802.2018.10.018.

Iridium (2017-04-19). Iridium NEXT is taking flight. URL: https:
//www.iridium.com/network/iridiumnext.

Ulybyshev and Yuri (1998). “Long-Term Formation Keep-
ing of Satellite Constellation Using Linear-Quadratic Con-
troller”. In: Journal of Guidance Control and Dynamics 1.21,
pp. 109–115. DOI: 10.2514/2.4204.

Wang, Liquan and Dongwei Hu (2016). “On-satellite routing
and inter-satellite link design of low-orbit satellite mobile
communication system”. In: Information and Communica-
tion 2, pp. 200–201. DOI: 10.3969/j.issn.1673-1131.2016.02.
113.

Wang, Qian and Chao Xie (2021-04). “Simulation analysis of
service performance of GPS M code satellite constellation
based on STK software”. In: Navigation signal and signal
processing. CNKI, pp. 134–137.

Yan, Jian (2010). “Research on the IP routing in LEO satellite
constellation networks”. Doctoral dissertation. Tsinghua Uni-
versity. URL: https://kns.cnki.net/KCMS/detail/detail.aspx?
dbname=CDFD0911&filename=1011280339.nh.

Zhang, Xiaodong (2008). “Research on Simulation and Mod-
eling for Low Earth Orbit Constellation Satellite Communi-
cation System Based on OPNET”. Master’s thesis. National
University of Defense Technology. URL: https : / / kns . cnki .
net /kcms/detail /detail . aspx?FileName=2009213554 .nh&
DbName=CMFD2010.

Modelica-Based Modeling on LEO Satellite Constellation

170 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181163

Guidance, Navigation, and Control enabling Retrograde Landing
of a First Stage Rocket

Christian Canham Meaghan Podlaski Luigi Vanfretti

Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Troy, NY, United States
{canhac, podlam, vanfrl}@rpi.edu

Abstract
A Modelica model of a of a rocket’s first stage is devel-
oped, designed to be representative of the launch vehicles
in use in the United States in the late 2010s. The model
uses initial conditions similar to those observed immedi-
ately after a second stage separation at 166 km altitude. A
control system is developed enabling the rocket first stage
to land back on Earth’s surface at a predetermined landing
pad in a controlled manner. The control system is evalu-
ated based on its ability to compensate for altered initial
conditions, as well as its ability to minimize acceleration
forces and fuel consumption. The flight path of the sim-
ulated first stage rocket is compared to real-life telemetry
data from a first stage rocket landing showing a similar
trajectory.
Keywords: Rocket, Flight controller, GN&C, Retrograde
Landing, Reaction Control Systems

1 Introduction
List of Acronyms and Definitions
Acronyms

GN&C · Guidance, Navigation, and Control
HIL · Hardware-in-the-Loop
IMU · Inertial Measurement Unit
LEO · Low Earth Orbit
NASA · National Aeronautics and Space Administration
PD · Proportional and Derivative Controller
RCS · Reaction Control System
STS · Space Transport System

Motivation
Rapid reusable space launch vehicles have long been a
pursuit in the United States since it would dramatically in-
crease accessibility to space. This was partially achieved
with NASA’s Space Transportation System (STS) Space
Shuttle but failed to offer a fully reusable or low cost
method. Rocket re-usability made significant strides when
private space launch companies, including SpaceX and
Blue Origin, demonstrated the ability to recover the first
stage of the rocket by vertically landing it back on Earth’s
surface. This is achieved by relighting the rocket’s en-

gines in retrograde long enough to remove its horizontal
and vertical velocities. This paired with gimbaled engines
and control surfaces, such as grid fins, allow the first stage
to be maneuvered back to a predetermined landing pad.
The flight controller is responsible for making these en-
gine and control surface control adjustments using input
data from an inertial measurement unit (IMU) and GPS
positional data.

Modeling and simulation of the launch vehicle is crit-
ical in the development in the GN&C control system.
Hardware-in-the-loop (HIL) test beds are often times cre-
ated to offer a low cost and rapid platform for the design of
the control system and the calibration of their parameters
before moving onto developmental prototypes.

The Modelica first stage rocket model and subsequent
control system in this work represents early phase devel-
opmental activities that might occur when studying the
feasibility of certain flight maneuvers. In this case, land-
ing a rocket back on Earth after launching a payload into
orbit. Many simplifications and assumptions are made in
the first stage rocket model including the simplification of
the rocket solely operating in the X-Z plane. Neverthe-
less, the control system core principles are fundamental
and could be expanded to address these assumptions as
the model grows in complexity. The key principle is to
develop this control system despite these simplifications
made in the model and show the ability to add features
over time.

While Modelica models for a variety of aerospace ap-
plications have been successfully demonstrated (Wei et al.
2015; Re 2011; Briese, Klöckner, and Reiner 2017; Milz
et al. 2019; Batteh et al. 2018; Posielek 2018; Hellerer,
Bellmann, and Schlegel 2014), to the knowledge of the
authors, there are no publicly available models similar to
the one proposed in this work. The authors’ believe that
the growing interest and on-going advancements on rocket
re-usability can benefit from the availability of an open
source model that allows interested parties to exploit the
advantages offered by object-oriented modeling provided
by Modelica tools.

DOI
10.3384/ecp21181171

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

171

Contribution

This work is relevant to a user of the Modelica language
looking for ways to rapidly develop a control system. In
this case the control system is developed for a first stage
rocket falling back to Earth but similar methods could be
applied to other challenging control problems. The work
shows how a simplified rocket model is nevertheless, an
effective test-bed for the development of a control system
that guides the rocket on a trajectory similar to that used
by actual rockets, such as SpaceX’s Falcon 9. The main
contributions of the paper are the following:

• Implementation of the control system needed to re-
cover a first stage rocket by vertically landing at a
predetermined landing pad.

• Demonstration of Modelica’s flexibility in creating
models with increasing complexity leading to mean-
ingful simulations.

• Documenting an open-source Modelica-based im-
plementation of the aforementioned models available
online at: https://github.com/ALSETLab/
RocketLanding

Paper Organization

The paper is broken down in the following sections: Sec-
tion 2 describes the first stage rocket model and the sur-
rounding environment it operates in. Section 3 describes
the control system designed to recover the first stage
rocket by vertically landing at a predetermined landing
pad. Section 4 compares the simulated Modelica rocket
landing trajectory to real telemetry data from a SpaceX
Falcon 9 rocket landing. Finally, Section 5 concludes the
work.

2 Modelica First Stage Rocket Model

The model developed represents the first stage of a
SpaceX Falcon 9 rocket immediately after second stage
separation. It uses similar mass properties and initial con-
ditions to those observed from publicly available SpaceX
telemetry data (Pelham 2020). The model also includes
the rocket engines and grid fins which are necessary to
maneuver the rocket to the landing pad. Lastly the operat-
ing environment is taken into account by modeling drag on
the vehicle as it falls through the Earth’s atmosphere. The
purpose was to design this model to be as representative
of the actual rocket while making key simplifications that
allow for the implementation of the control system pre-
sented in Section 3. The complete rocket model is shown
in Figure 1.

Figure 1. First stage rocket model

2.1 Mass Properties and Initial Conditions
The first stage rocket is modeled with a cylinder with a
diameter of 3.7m and a length of 48 m. A density of
0.3g/cm3 was selected based on the Falcon 9 rocket be-
ing composed of principally aluminum but with a mostly
hollow interior.

In this model the frame of reference is the surface of
the Earth which is simplified with a flat plane. The rocket
is also assumed to be bounded to the X-Z plane. These
two simplifications allow for easier control system devel-
opment in Section 3 and more easily defined initial con-
ditions. The initial conditions for the rocket are deter-
mined from live telemetry data from SpaceX’s own we-
bcasts (Pelham 2020). The simulation starts immediately
after the second stage separation, where the first stage is
assumed to be in orbit, and therefore, the vertical veloc-
ity in a flat Earth frame of reference is set to zero. The
rocket fuselage also starts parallel to the Earth’s surface.
The initial velocity is purely measured by the horizontal
component of 263 m/s in the X-axis. The altitude is set at
166km which is representative of the Falcon 9 stage sepa-
ration for payload deployment in low earth orbit (LEO).
2.2 Engines and Grid Fins
The model includes a single rocket engine with a maxi-
mum thrust of 914 kN. This engine is simplified as a force
acting in line with the fuselage of the rocket. The Fal-
con 9 rocket includes nine engines each with a maximum
thrust of 914 kN but only one engine is typically used for
landing.

The fuel consumption of the rocket engine is modeled
in Figure 2 using fuel tanks and release valves that control
the injection of liquid kerosene and oxygen into the engine
at a proportion of 2:1 respectively. The same flight con-
troller output that controls the simulated thrust from the
engine is also used to control the fuel injector valves that

Guidance, Navigation, and Control enabling Retrograde Landing of a First Stage Rocket

172 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181171

release the fuel into the engine simulated with two tanks
at ambient pressure. The flow volume through each valve
is recorded and can be observed during the rocket simula-
tion.

Figure 2. Fuel injector model

The model includes grid fins which impart a torque on
the rocket depending on the grid fin’s rotation angle rela-
tive to the fuselage. This allows the rocket to “steer” itself
to a desired landing zone. On the Falcon 9 rocket these
grid fins act as a control surface that redirect airflow there-
fore they are only effective at lower altitudes where the air
is more dense. In the upper atmosphere Reaction Control
Systems (RCS) are used to redirect the space vehicle using
jets of compressed nitrogen. Both these actuators have the
same intended effect so for simplification this model only
uses the grid fins which are assumed to be equally effec-
tive at all altitude.

The torque on the rocket is a result of the rotating grid
fins depending on the angle of the grid fin relative to the
first stage fuselage. Maximum torque is imparted when
the grid fin is at ±45◦ which decreases closer to zero de-
grees modeled as a sine function. At zero degrees the grid
fin is perpendicular to the fuselage and no torque is ap-
plied.

The model includes three grid fins mounted 120◦ apart
on the circumference of the rocket. Since the rocket is
assumed to operate only in the X-Z plane only one grid
fin is used to control the rockets rotation. The other two
are simply used to keep the rocket from drifting out of the
X-Z plane due to numerical artifacts in the simulation.

2.3 Reentry Drag
A space vehicle reentering the Earth’s atmosphere experi-
ences a considerable amount of drag and successive heat-
ing as a result of the high speeds acquired during orbital
insertion - this velocity term is squared in the drag equa-
tion. If the reentry trajectory is optimized this inherit drag
will help slow down the the vehicle reducing the need to

use as much fuel with the rocket engines. For these rea-
sons it is critical to model the atmospheric drag with ac-
curacy.

The drag of the first stage rocket is modeled with a force
vector normal to the direction of the rocket’s motion. This
drag force is calculated using equation 1 where the area A
is calculated based on the rockets angle relative to the di-
rection of motion. Velocity V accounts for all vertical and
horizontal velocity components. The coefficient of drag
was estimated based on the shape of the cylindrical alu-
minum fuselage. Selecting this coefficient of drag to be
constant is a critical simplification. In reality this coef-
ficient of drag would change based on the wake created
behind the falling first stage. The air density is calculated
using equation 2 where h is the altitude above sea level.
Other variables in equation 2 are held constant and are
based on the properties of air at sea level.

FDrag =
1
2

CDV 2Aρ (1)

ρ = ρ0

(
1− Lh

T0

) gM
RL

(2)

3 Modelica Flight Controller
After developing the rocket model, the next step was to
create the GN&C flight controller that guides the first
stage down to the landing pad. A diagram of the full flight
controller is pictured in Figure 3.

The flight controller model is further broken down into
four different controllers. The first is the grid fin controller
in Section 3.1 which is directly responsible for controlling
the angle of each of the three grid fins. The other three
controller are related to the engine thrust. Each of these
three controllers take control of the vehicle at different
phases of flight but their combined outputs are summed so
if need be they could be working together simultaneously.
These three controller include the boost-back controller in
Section 3.2, the re-entry controller in Section 3.3, and the
landing controller in Section 3.4.

The flight controller takes as input the altitude and hor-
izontal X-axis displacement relative to the landing pad.
On an actual rocket these parameters would be obtained
though pressure or GPS signals.The flight control also has
inputs for the angle from all three axes. Normally these
would be obtained through an internal IMU internal to the
flight controller. The flight controller also has an internal
clock for landing sequences that require a set duration.

As outputs the flight controller has angles for each of
the three grid fins. The flight controller also has three out-
puts for each of the three axes components in the engine
thrust. The engine model then uses these thrust compo-
nents to determine the total thrust force vector.

Session 2B: Applications (1)

DOI
10.3384/ecp21181171

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

173

Figure 3. Flight controller model

3.1 Grid Fin Controller
The grid fin controller in Figure 4 is responsible for de-
termining the angle of all three grid fins which impart a
torque on the rocket allowing it to maneuver to the landing
pad. As mentioned in Section 2.2 the rocket is assumed to
operate only in the X-Z plane. Therefore, only the Y-axis
grid fin is responsible for guiding the rocket to the landing
pad. The other two grid fins are simply present to keep
the first stage rocket from drifting out the X-Z plane. Nu-
merical artifacts from the simulation solver have shown
to result in slight drifting which then compounds until the
rocket is out of control and tumbling through the atmo-
sphere.

Figure 4. Grid fin controller model

The grid fin model discussed in Section 2.2 applies a
maximum torque when rotated to 45 degrees relative to
the first stage fuselage length. For this reason the grid fin
controller applies a hard limit at ±π/4 radians for each of
the grid fin input angles. Angles in excess of 45◦ decrease
the applied torque. As such there is no reason to operate
in those regions.

The Y-axis grid fin is critical in accomplishing two
tasks. The first is maneuvering the first stage rocket to

an upright vertical position relative to the Earth’s surface.
As discussed in Section 2.1 the first stage initially only
has a horizontal velocity. Once the rocket engines nearly
remove this horizontal velocity the rocket needs to be ro-
tated to a vertical position so the engines can begin slow-
ing down the rocket in the Z-axis. This rotation is accom-
plished by comparing the rocket’s rotational angle with
that of a gradual ramp function which initiates at a pre-
determined altitude. A simple proportional controller rel-
ative to the changing ramp function is used to bring the
rocket to the upright position. Even after the ramp func-
tion has finished bringing the rocket to the vertical position
it still plays a critical roll in keeping the rocket vertical as
it comes down for a landing.

The second task of the Y-axis grid fin is to guide the
rocket first stage to the landing pad. This is handled by
the location controller which operates within the grid fin
controller. This location controller is only enabled after
the rocket has transitioned to the upright position. The
location controller uses proportional and derivative gains
using the horizontal displacement from the landing pad
as input. The gains within this PD controller were later
tweaked upon evaluated the flight trajectory of the rocket.

3.2 Boost-Back Controller
The initial 263 m/s horizontal X-axis velocity gained dur-
ing orbital insertion needs to be removed in order to land
the first stage back at the landing pad. This is achieved by
firing the rocket engines in retrograde where the thrust of
the engine is normal to the direction of travel. The rocket
maintains its horizontal angle during this flight phase with
the help of the grid fin controller discussed in Section 3.1.

As input, the boost-back controller takes the horizon-
tal displacement relative to the landing pad as well and an
internal clock. The controller directs the engine to fire at
time zero and continue until the horizontal velocity falls
below a certain thresh-hold value of 50 m/s. Some hori-
zontal velocity is desirable in order to minimize the flight
path distance taken by the first stage rocket.

3.3 Reentry Controller
Space vehicles experience considerable heating during
reentry into the Earth’s atmosphere. The space shuttle and
smaller bluff body space capsules use heat shielded tiles to
protect the spacecraft and the payload inside. A first stage
rocket reentering the Earth’s atmosphere doesn’t have this
luxury of a heat shielded exterior since critical external
components like the engines will be exposed regardless.
To mitigate this excessive heating a rocket can instead use
its own engines to slow down its velocity.

The purpose of the reentry controller is to conduct a
30 second engine burn during the critical phase of flight
where aerodynamic forces are the greatest. This reentry
burn decreases the rocket velocity considerably minimiz-
ing excessive heating. During this entry burn the grid
fin controller discussed in Section 3.1 keeps the rocket
pointed normal to the direction of motion thereby maxi-

Guidance, Navigation, and Control enabling Retrograde Landing of a First Stage Rocket

174 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181171

mizing the effectiveness of the entry burn in slowing down
the rocket.

3.4 Landing Controller
The final controller is responsible for landing the rocket
first stage in a controlled manner that minimizes excessive
accelerations. This landing controller takes the altitude
and an internal clock signal as input.

Once the rocket’s altitude falls below the threshold al-
titude of 5 km, a PD controller within the landing con-
troller is enabled which takes over in guiding the rocket
safely down to the landing pad. The gain values in this
PD controller were determined through simulation. Ide-
ally the vertical velocity component of the rocket should
be zero at the moment of touch down. Simultaneously, the
rocket should not undershoot the ground else it would end
up hovering thereby wasting fuel. A hovering rocket is
also no longer easily maneuverable since the grid fins are
only effective when a velocity component is present.

4 Model Validation
The completed model and early iteration flight controller
were simulated with performance evaluated based on the
rocket’s ability to land in a 50 m diameter landing pad.
These early simulations were critical in the identifica-
tion of PD controller gain constants used during different
phases of flight. Landing controller PD constants were
selected such that the touch down velocity was less than
2 m/s. Meanwhile, grid fin controller PD gains were se-
lected to guide the rocket to the landing pad while mini-
mizing overshoot and horizontal oscillations.

With all flight controllers tuned the rocket first stage
was successfully able to land at the predetermined land-
ing pad. Figure 5 shows three different flight paths of the
rocket first stage with altitude on the y-axis and horizon-
tal displacement plotted on the x-axis. Each of the four
curves shown use different initial conditions for the hori-
zontal velocity. The curves in green show successful land-
ings where the first stage was able to touch down within
the 50 m diameter predetermined landing pad. The ini-
tial condition originally selected for this model was was
293 m/s. The success of these other two trajectories show
the flight controller is robust against initial conditions of
at least ±10 m/s. The curve in red shows an unsuccessful
landing where the rocket undershoot the pad. In this case
an initial condition of 240 m/s was not enough horizontal
velocity to carry the rocket close to the landing pad be-
fore entering the Earth’s atmosphere where its horizontal
velocity is nearly removed.

This first stage rocket model was designed to be repre-
sentative of the SpaceX Falcon 9 in terms of mass proper-
ties, initial conditions, and actuator capabilities. A critical
next step was to validate this simulated Falcon 9 rocket
first stage landing against actual SpaceX telemetry data
(Pelham 2020). Figure 6 shows the simulation trajectory
in blue and the SpaceX Falcon 9 telemetry data in red. Al-
titude is plotted on the Y-axis with time one the x-axis.

Figure 5. Flight trajectories

Comparison of the two trajectories show near identical
overlap. Overlaid onto the plot are four boxes showing dif-
ferent phases of flight where key maneuvers occur. Each
of these maneuvers is controlled by one of the controllers
discussed in Section 3. One subtle difference between the
simulation and SpaceX trajectories can be observed in the
the landing zone box from 180 - 250 sec. The simulation
data shows the first stage rocket slowing down earlier re-
sulting in the rocket maintaining a higher altitude. The
SpaceX Falcon 9 meanwhile appears to wait for a lower
altitude before relighting its engines resulting in higher ac-
celerations. This lower engine burn is likely attributed to
the desire to minimize fuel on landings in order to maxi-
mize payload carrying capabilities during launch.

To better visualize the trajectory of the first stage
rocket, a virtual simulation environment was created us-
ing the DLR Visualization library (Hellerer, Bellmann,
and Schlegel 2014) shown in Figure 7. Using this virtual
environment, a user can track the rocket as it maneuvers
through the different phases of flight including visualiza-
tion of grid fin rotation, engine burns, and landing at the
pad at Cape Canaveral, FL.

5 Conclusions
The rocket model developed in this work and subsequent
flight controller demonstrates the basic control fundamen-
tals in recovering a rocket by landing vertically back on
Earth. In this case, the rocket model was based on the
SpaceX Falcon 9 first stage which has proven itself in its
ability to land in a controlled manner allowing for multi-
ple reuses. Comparing the simulated flight trajectory to
data from a Falcon 9 landing shows nearly identical flight
characteristics. While normally these types of simulations
would occur in the early development iterations of a con-
trol system rather than recreating one a posteriori, there is
value in having a open source Modelica model of a rocket
landing. Even with the primary goal of recovery demon-
strated in simulation and if real-life, there is likely oppor-
tunity for optimization of these flight paths with regards to
minimizing fuel consumption and accelerations.

Session 2B: Applications (1)

DOI
10.3384/ecp21181171

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

175

Figure 6. Comparison to Falcon 9 data

Figure 7. Visualization of rocket landing

Acknowledgements
This work was supported in part by the National Aeronautics and
Space Administration through the University Leadership Initia-
tive Award Number 80NSSC19M0125 for the Center for High-
Efficiency Electrical Technologies for Aircraft (CHEETA). The
second author is supported through the National Science Foun-
dation Graduate Research Fellowship Program under Grant No.
DGE 1744655 and the Chateaubriand Fellowship of the Of-
fice for Science & Technology of the Embassy of France in the
United States.

References
Batteh, John et al. (2018-11). “Development and Implementa-

tion of a Flexible Model Architecture for Hybrid-Electric Air-
craft”. In: Proceedings of the 1st American Modelica Con-
ference, Cambridge, MA, USA, pp. 37–45. DOI: 10 . 3384 /
ecp1815437. URL: https:/ /ep.liu.se/konferensartikel.aspx?
series=ecp&issue=154&Article_No=4.

Briese, Lâle Evrim, Andreas Klöckner, and Matthias Reiner
(2017-05). “The DLR Environment Library for Multi-
Disciplinary Aerospace Applications”. In: Proceedings of the

12th International Modelica Conference, Prague, Czech Re-
public, pp. 929–938. DOI: 10.3384/ecp17132929. URL: https:
//ep.liu.se/ecp/article.asp?issue=132&article=102&volume=
0#.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014-03). “The DLR Visualization Library — Recent De-
velopments and Applications”. In: Proceedings of the 10th
International Modelica Conference, Lund, Sweden, pp. 899–
911. DOI: 10.3384/ECP14096899. URL: https://ep.liu.se/en/
conference-article.aspx?series=ecp&issue=96&Article_No=
94.

Milz, Daniel et al. (2019-03). “Advances in Flight Dynamics
Modeling and Flight Control Design by Using the DLR Flight
Visualization and Flight Instruments Libraries”. In: Proceed-
ings of the 13th International Modelica Conference, Regens-
burg, Germany, pp. 481–488. DOI: 10 . 3384 / ecp19157481.
URL: https://ep.liu.se/ecp/article.asp?issue=157&article=
049&volume=0.

Pelham, Jonathan (2020-05). “SpaceXtract”. In: Extraction and
analysis of telemetry from rocket launch webcasts. URL:
https://github.com/shahar603/SpaceXtract.

Posielek, Tobias (2018-11). “A Modelica Library for Space-
craft Thermal Analysis”. In: Proceedings of the 1st American
Modelica Conference, Cambridge, MA, USA, pp. 46–55. DOI:
10.3384/ecp1815446. URL: https://ep.liu.se/konferensartikel.
aspx?series=ecp&issue=154&Article_No=5.

Re, Fabrizio (2011). “Modelica Landing Gear Modelling and
On-Ground Trajectory Tracking with Sliding Mode Control”.
In: Advances in Aerospace Guidance, Navigation and Con-
trol. Ed. by Florian Holzapfel and Stephan Theil. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 103–115. ISBN: 978-
3-642-19817-5.

Wei, Liu et al. (2015-09). “Modeling and Simulation of Liq-
uid Propellant Rocket Engine Transient Performance Using
Modelica ”. In: Proceedings of the 11th International Mod-
elica Conference, Versailles, France, pp. 485–490. DOI: 10.
3384/ecp15118485. URL: https:/ /ep.liu.se/en/conference-
article.aspx?series=118&issue=118&Article_No=52.

Guidance, Navigation, and Control enabling Retrograde Landing of a First Stage Rocket

176 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181171

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

An Ice Storage Tank Modelica Model: Implementation
and Validation

Guowen Li1 Yangyang Fu1 Amanda Pertzborn2 Jin Wen3 Zheng O’Neill1
1 J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College

Station, TX
{guowenli, yangyang.fu, zoneill}@tamu.edu

2National Institute of Standards and Technology, Gaithersburg, MD
{amanda.pertzborn@nist.gov}

3Department of Civil, Architectural and Environmental Engineering, Drexel University,
Philadelphia, PA

{jinwen@drexel.edu}

Abstract
Energy storage systems have been gaining attention as a
means of load management in grid-interactive efficient
buildings. This study investigated the physics of the ice
storage tank (IST) and implemented an IST model in
Modelica. The developed IST Modelica model was
compared with a similar model in EnergyPlus and was
validated against experimental data from a testbed at the
National Institute of Standards and Technology. Three
statistical performance metrics were used to quantify the
accuracy of the IST model. Validation results
(CV(RMSE) ≤ 10.20 %, NMBE ≤ 0.44 %) show that the
proposed model has a good prediction accuracy according
to ASHRAE Guideline 14.
Keywords: Ice storage tank, Modelica modeling, Model
validation

1 Introduction
Ice thermal storage systems have been proven to be
effective in reducing the cost of energy for operating
buildings by shifting cooling demand from on-peak
periods with high electricity prices to off-peak periods
with lower electricity prices. The ice storage tank (IST) is
a key component in an ice thermal storage system. By
applying proper control strategies to the IST, research
studies have shown significant cost savings including
energy costs and demand reduction costs (e.g., 10 % to
55 %), which makes IST an attractive financial option for
buildings (Braun 1990; Henze 2003; Candanedo 2013).
Control-oriented modeling and simulation is an effective
way to evaluate the system performance under different
control strategies. Jekel (1991) created a model of a static
ice-on-coil IST based on basic heat transfer relationships
and analysis; the author used TRNSYS (Beckman 1994)
to model a variable flow air-conditioner system connected
with the IST. Both the charging and discharging periods
of the tank operation were modeled and compared with

manufacturers’ data (Calmac ice tank model 1190 with
working fluid of 25 % ethylene glycol). The prediction
errors for the charging and discharging period were within
12 % and 10 % of the manufacturer’s performance data,
respectively. Ihm et al. (2004) developed an ice-based
thermal storage model for EnergyPlus. This IST model
uses the building load and system thermodynamic models
for two direct ice systems (i.e. ice-on-coil external melt
and ice harvester) and one indirect ice system (i.e. ice-on-
coil internal melt). For the external (or internal) melt
thermal storage tank, the brine flowing through coils
charges and discharges the tank on the outside (or inside)
of the coils. The thermal storage model systems were
integrated as part of the EnergyPlus cooling plant
components. Candanedo et al. (2013) numerically
investigated the impact of different control strategies for
a simplified ice storage system developed in EnergyPlus.

In terms of building energy and control system
modeling, traditional building energy simulators,
including TRNSYS and EnergyPlus, have the following
limitations. First, these traditional simulation programs
intertwine model equations and numerical solvers in their
source code. The lack of separation between model
equations, data, and solvers makes it hard for their models
to support some use cases, especially when different
control strategies and designs are involved (Wetter 2009).
Second, some platforms, which are inherently designed
for a steady-state simulation, are not suitable for
evaluating the system dynamics, and the semantics of their
control modules have little in common with how actual
control works (Fu 2019). For example, EnergyPlus does
not model local controllers (e.g., proportional-integral (PI)
controller) for a building energy system. Additionally, the
dead band and waiting time commonly used in building
controls are not considered in EnergyPlus. The
idealization of control makes it difficult to investigate,
implement and verify actual control strategies in
simulation (Wetter 2011; Fu 2018).

DOI
10.3384/ecp21181177

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

177

To address these problems, the equation-based
modeling language Modelica (Mattsson 1998) has been
utilized to model and simulate building energy and control
systems. The open-source Modelica Buildings Library
(MBL) was developed by Lawrence Berkeley National
Laboratory for typical building energy and control system
modeling and simulation (Wetter 2014). However, the
latest release of the MBL does not support the modeling
of ice storage tank systems due to the lack of ice tank
models.

This study implemented and validated an IST Modelica
model based on MBL to support control-oriented studies,
which could extend MBL to enable ice storage systems
modeling and simulation. The rest of this paper is
organized as follows: Section 2 describes the
mathematical equations of the IST model and three
statistical metrics to quantify and evaluate the model
accuracy. Section 3 discusses how the IST model was
implemented in the Modelica environment using the
MBL. Section 4 validates the implemented IST model in
Modelica against a similar model in EnergyPlus and
experimental data from the National Institute of Standards
and Technology (NIST). The final section is the
conclusion.

2 Methodology
2.1 IST Mathematical Model
The mathematical model of the IST is based on the
EnergyPlus model (Strand 1992) presented in Eqs. (1) to
(8). The detailed IST model allows the users to model
more closely specific manufacturers’ ice storage units due
to the use of curve fits. In section 4, the IST model was
validated against an actual ice tank at NIST which is the
type of ice-on-coil internal melt. The IST has three modes:
a dormant mode when the storage is not engaged in
operation, a discharging mode when the storage
discharges cooling energy to the warm brine, and a
charging mode when the storage is charged with the cold
brine. When the tank is dormant, there is no fluid passing
through the tank and the outlet temperature is considered
to be equal to the inlet temperature. Details about the
discharging mode and charging mode are shown.

 Discharging Mode
�̇�𝑞∗ × ∆𝑡𝑡 =
𝑑𝑑1 + 𝑑𝑑2(1 − 𝑃𝑃𝑐𝑐ℎ) + 𝑑𝑑3(1 − 𝑃𝑃𝑐𝑐ℎ)2 +
[𝑑𝑑4 + 𝑑𝑑5(1 − 𝑃𝑃𝑐𝑐ℎ) + 𝑑𝑑6(1 − 𝑃𝑃𝑐𝑐ℎ)2]∆𝑇𝑇𝑙𝑙𝑙𝑙∗

(1)

�̇�𝑞∗ =
�̇�𝑞
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

 (2)

�̇�𝑞 = �̇�𝑚𝑐𝑐𝑝𝑝(𝑇𝑇𝑠𝑠𝑜𝑜𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖) (3)

∆𝑇𝑇𝑙𝑙𝑙𝑙∗ =
∆𝑇𝑇𝑙𝑙𝑙𝑙
∆𝑇𝑇𝑖𝑖𝑠𝑠𝑙𝑙

 (4)

∆𝑇𝑇𝑙𝑙𝑙𝑙 =
Δ𝑇𝑇1 − Δ𝑇𝑇2

ln �Δ𝑇𝑇1Δ𝑇𝑇2
�

=
𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑠𝑠

𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑠𝑠𝑜𝑜𝑠𝑠 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓

�
 (5)

where, �̇�𝑞∗ is the normalized instantaneous heat transfer
rate between the brine and the ice in the tank; ∆𝑡𝑡 is the
time step of the operation data used in the curve fitting for
discharging coefficients 𝑑𝑑1 to 𝑑𝑑6 ; 𝑃𝑃𝑐𝑐ℎ is the fraction
charged; ∆𝑇𝑇𝑙𝑙𝑙𝑙 is the logarithmic mean temperature
difference (LMTD); ∆𝑇𝑇𝑙𝑙𝑚𝑚∗ is the LMTD between the inlet
and outlet temperature of the tank normalized by a
nominal temperature difference, ∆𝑇𝑇𝑙𝑙𝑛𝑛𝑚𝑚. Physically, �̇�𝑞∗ is
defined as the ratio of the instantaneous heat transfer rate
�̇�𝑞 to the total latent storage capacity 𝑄𝑄𝑠𝑠𝑡𝑡𝑛𝑛 ; �̇�𝑞 is negative
when the tank is discharged. 𝑇𝑇𝑖𝑖𝑙𝑙 is the tank inlet
temperature, 𝑇𝑇𝑛𝑛𝑜𝑜𝑡𝑡 is the tank outlet temperature, and 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓
is the freezing temperature of water or the latent energy
storage material.

Eq. (5) is not numerically robust due to singularities that
occur in the following scenarios: 1) Δ𝑇𝑇1 = Δ𝑇𝑇2 , which
causes a denominator of zero; 2) Δ𝑇𝑇1 = 0 or Δ𝑇𝑇2 = 0 ,
which violates the logarithm function; 3) Δ𝑇𝑇1 and Δ𝑇𝑇2
have different signs. For a robust implementation of the
LMTD calculation in the Modelica numerical
environment, Eq. (5) is smoothed over different regions as
shown in Eq. (5.1) to Eq. (5.5). The function
𝑓𝑓𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦𝑙𝑙𝑖𝑖𝑚𝑚) provides a continuously differentiable
approximation for the variable 𝑦𝑦, which can be no less
than the limiting value 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙. The function
𝑓𝑓𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑀𝑀𝑖𝑖𝑖𝑖(𝑦𝑦,𝑦𝑦𝑙𝑙𝑖𝑖𝑚𝑚) limits the variable 𝑦𝑦 to be no larger
than 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙, where ∆𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙, and 𝛿𝛿 is used for
regularization. When |∆𝑦𝑦| < 𝛿𝛿, a second order polynomial
function is used to create a smooth transition from 𝑦𝑦 to
𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙 . The smoothed functions not only help avoid the
occurrence of zero in the denominator, but also ensure the
continuity and differentiability of the simulated data.
Δ𝑇𝑇1 = 𝑓𝑓𝑠𝑠𝑚𝑚𝑛𝑛𝑛𝑛𝑡𝑡ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙) (5.1)
Δ𝑇𝑇2 = 𝑓𝑓𝑠𝑠𝑚𝑚𝑛𝑛𝑛𝑛𝑡𝑡ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑠𝑠𝑜𝑜𝑠𝑠 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙) (5.2)

∆𝑇𝑇𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑠𝑠𝑚𝑚𝑛𝑛𝑛𝑛𝑡𝑡ℎ𝑀𝑀𝑖𝑖𝑙𝑙 �
Δ𝑇𝑇1 − Δ𝑇𝑇2

ln (Δ𝑇𝑇1Δ𝑇𝑇2
)

,∆𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙� (5.3)

𝑓𝑓𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦, 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙)

=

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑦𝑦, (𝑦𝑦 > 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙 + 𝛿𝛿)
𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙, (𝑦𝑦 < 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙 − 𝛿𝛿)
𝑦𝑦 + 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙

2 , (|∆𝑦𝑦| = 𝛿𝛿)

∆𝑦𝑦2
𝛿𝛿 �3 − ∆𝑦𝑦

𝛿𝛿2
2
�

4 +
𝑦𝑦 + 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙

2 , (|∆𝑦𝑦| < 𝛿𝛿)

 (5.4)

𝑓𝑓𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑀𝑀𝑖𝑖𝑖𝑖(𝑦𝑦, 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙)

=

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙, (𝑦𝑦 > 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙 + 𝛿𝛿)
𝑦𝑦, (𝑦𝑦 < 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙 − 𝛿𝛿)
𝑦𝑦 + 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙

2 , (|∆𝑦𝑦| = 𝛿𝛿)

∆𝑦𝑦2
𝛿𝛿 �∆𝑦𝑦𝛿𝛿2

2
− 3�

4 +
𝑦𝑦 + 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙

2 , (|∆𝑦𝑦| < 𝛿𝛿)

 (5.5)

 Charging Mode

An Ice Storage Tank Modelica Model: Implementation and Validation

178 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181177

When the thermal tank is being charged, the charging
heat transfer is calculated by Eq. (6). The constant
parameters 𝑐𝑐1~𝑐𝑐6 are charging coefficients.

 �̇�𝑞∗ × ∆𝑡𝑡 =
 𝑐𝑐1 + 𝑐𝑐2𝑃𝑃𝑐𝑐ℎ + 𝑐𝑐3𝑃𝑃𝑐𝑐ℎ2 +

 [𝑐𝑐4 + 𝑐𝑐5𝑃𝑃𝑐𝑐ℎ + 𝑐𝑐6𝑃𝑃𝑐𝑐ℎ2]∆𝑇𝑇𝑙𝑙𝑙𝑙∗
(6)

For both discharging mode and charging mode, the
mass of ice in the tank is calculated by Eqs. (7) and (8),
where SOC is the state of charge that indicates the mass
ratio (0 %-100 %) of ice in the tank, 𝑆𝑆𝑆𝑆𝐶𝐶′ is the derivative
of 𝑆𝑆𝑆𝑆𝐶𝐶, 𝐻𝐻𝑓𝑓 is the latent heat of fusion for water at 0 ℃,
𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓 is the mass of ice in the tank, 𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓,𝑚𝑚𝑀𝑀𝑀𝑀 is the
maximum ice capacity of the tank, and �̇�𝑚 is the mass flow
rate of the fluid.

 𝑆𝑆𝑆𝑆𝐶𝐶′ =
�̇�𝑚𝑐𝑐𝑝𝑝(𝑇𝑇𝑠𝑠𝑜𝑜𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖)
𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓,𝑙𝑙𝑀𝑀𝑀𝑀𝐻𝐻𝑓𝑓

 (7)

 𝑆𝑆𝑆𝑆𝐶𝐶 =
𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓

𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓,𝑙𝑙𝑀𝑀𝑀𝑀
 (8)

2.2 Validation Metrics
To evaluate the accuracy of the proposed model, three
statistical metrics are applied: Coefficient of Variation of
Root Mean Square Error (CV(RMSE)), the coefficient of
determination (R2), and the Normalized Mean Bias Error
(NMBE). These metrics are defined in Eq. (9) to Eq. (12).

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 = �
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑖𝑖
𝑖𝑖=1

𝑙𝑙
, (9)

𝐶𝐶𝐶𝐶(𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅) =
𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅
𝑌𝑌�𝑖𝑖

, (10)

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑖𝑖
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑖𝑖
𝑖𝑖=1

, (11)

𝑁𝑁𝑀𝑀𝑁𝑁𝑅𝑅 =
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑖𝑖
𝑖𝑖=1

(𝑙𝑙 − 𝑝𝑝) × 𝑌𝑌�𝑖𝑖
, (12)

 where, 𝑌𝑌𝑖𝑖 is the measured data, 𝑌𝑌�𝑖𝑖 is the predicted data,
𝑙𝑙 is the number of data points, 𝑌𝑌�𝑖𝑖 is the mean value of the
measured data, 𝑝𝑝 is the number of parameters in the
numerical model.

According to ASHRAE Guideline 14 (ASHRAE 2014),
the predicted model shall have an NMBE up to 5 % and a
CV(RMSE) up to 15 % using monthly calibration data. If
hourly calibration data are used, these requirements shall
be 10 % and 30 %, respectively.

3 Modelica Modeling
3.1 Model Description
The IST Modelica model contains four key components as
presented in Figure 1: LMTD calculator, heat flow rate
calculator, storage mode selector, and outlet temperature
controller. The storage mode selector sends the mode

signal (discharging, charging, dormant) to the LMTD
calculator and the outlet temperature controller that
controls the outlet temperature to the setpoint. The heat
flow rate calculator outputs the SOC and ice mass. Table
1 summarizes the key components in the IST Modelica
model.

Table 1. Description of the IST Modelica model.
Components Model Description
LMTD Calculator LMTD algorithm with

smooth functions
Heat Flow Rate
Calculator

Polynomial coefficients of
curve fitting data

Storage Mode
selector

Discharging, charging,
dormant mode

Outlet Temp
Controller

PI control for the main valve
and bypass valve

Figure 1. Schematic diagram of the IST model.

Figure 2. Modelica model of the ice storage tank.

3.2 Model Components
Figure 2 presents the detailed components inside the IST
Modelica model; details of each component are described
below.

Session 2B: Applications (1)

DOI
10.3384/ecp21181177

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

179

 LMTD Calculator
LMTD is the key intermediate variable that determines

the calculation process of the whole model, which is
calculated by Eqs. (5.1) - (5.5).

 Heat Flow Rate Calculator
The heat flow rate is calculated by Eq. (1) and Eq. (6)

for discharging and charging mode, respectively. When
the tank is dormant, the heat flow rate is assumed to be
zero.

 Storage Mode Selector
The storage mode selector determines the operating

mode of the tank (i.e., dormant, discharging, or charging
modes) in response to measured system states such as
SOC, the flow rate, and the inlet temperature of the
coolant.

The state diagram of the storage mode selector is shown
in Figure 3. If the mass flow rate is greater than the
minimum flow rate, the inlet temperature is greater than
the freezing temperature of water plus a temperature
tolerance (𝑑𝑑𝑇𝑇𝑖𝑖𝑓𝑓,𝑙𝑙𝑖𝑖𝑖𝑖), and SOC is greater than a
discharging tolerance, then the ice storage tank is in the
discharging mode. If the mass flow rate is greater than the
minimum flow rate, the inlet temperature is less than the
freezing temperature of water minus a temperature
tolerance, and SOC is less than a charging tolerance, then
the ice storage tank is in the charging mode. Otherwise,
the tank is dormant and bypassed. Figure 4 shows the state
graph diagram implemented in Modelica, which has four
input signals and one output signal, the storage mode.

Figure 3. State diagram of the storage mode selector.

Figure 4. Modelica diagram of the storage mode selector.

 Outlet Temperature Controller
The IST outlet temperature is maintained at its setpoint

by adjusting the bypass valve position through a built-in
PI controller. The control values and diagram of the outlet
temperature controller are shown in Table 2 and Figure 5,
where K1 is the opening value of the main valve, K2 is the
opening value of the bypass valve, and 𝑜𝑜𝑃𝑃𝑃𝑃 is the output
value of a built-in PI controller. If the tank is dormant, the
main valve will be closed (K1=0) and the bypass valve
will be fully open (K2=1). If the tank is charged, the main
valve will be fully open (K1=1) and the bypass valve will
be closed (K2=0). If the tank is discharged, the PI
controller will adjust the main valve and the bypass valve
to meet the outlet temperature setpoint (K1=1- 𝑜𝑜𝑃𝑃𝑃𝑃 ,
K2=𝑜𝑜𝑃𝑃𝑃𝑃).

Table 2. Control values of the outlet temperature controller.

Mode Dormant Charging Discharging
Main
Valve

Off
(K1 = 0)

On
(K1 = 1)

On
(K1 = 1-uPI)

Bypass
Valve

On
(K2 = 1)

Off
(K2 = 0)

On
(K2 = uPI)

Figure 5. Modelica diagram of the outlet temperature controller.

An Ice Storage Tank Modelica Model: Implementation and Validation

180 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181177

4 Comparison and Validation
This section presents the comparison and validation of the
IST Modelica model against two data sources: 1) a similar
model in EnergyPlus and 2) measurement data from
NIST. Three accuracy metrics are presented.

4.1 Modelica Model vs. EnergyPlus Model
We selected a built-in IST model in an EnergyPlus ice
tank example file that is based on the same mathematical
model (Strand 1992) presented in Eqs. (1) to (8). Table 3
lists the details of the EnergyPlus model with modified
parameters (cooling capacity, polynomial coefficients of
charging curve data, and medium type). The IST
EnergyPlus model was simulated for about 8 hours (from
10 a.m. to 6 p.m.) of discharging operation and 2 hours
(from 0 a.m. to 2 a.m.) of charging operation on July 21st
using typical meteorological year (TMY3) weather data.
Then the simulated dataset (inlet/outlet temperature of
IST, mass flow rate of chilled water, and SOC) from
EnergyPlus was exported for use in the Modelica virtual
testcase.

Table 3. Description of the IST EnergyPlus model.
Descriptions EnergyPlus model
Filename 5ZoneDetailedIceStorage.

idf
Weather Data Chicago-Midway AP

725340 (TMY3)
Floor Area 463.6 m2
Ice Storage
Capacity

0.05 GJ

Number of Story 1
Number of Zones 6
Timestep of
Simulation

1 min

Discharging Curve 𝑑𝑑 = [0.0, 0.09,−0.15,
 0.612,-0.324,-0.216]

Discharging Time 10 a.m. to 6 p.m., July 21st
Charging Curve 𝑐𝑐 = [0.318, 0, 0, 0, 0, 0]
Charging Time 12a.m. to 2a.m., July 21st
Medium 30 %PG (propylene

glycol) + 70 %Water

A virtual testcase was built for the IST Modelica model
as presented in Figure 6. The Modelica virtual testcase
uses the same IST parameters and inlet conditions (mass
flow rate, temperature, etc.) as in EnergyPlus, and
compares the tank states (e.g., SOC) and the calculated
outlet conditions (e.g., outlet temperature) with those in
EnergyPlus. Figure 7 shows the comparison results for
SOC and outlet temperature in discharging mode. Figure 8
shows the comparison results in charging mode. The
comparisons indicate that the simulated SOC and outlet

temperature of the IST Modelica model are in excellent
agreement with the outputs of the IST EnergyPlus model.

Figure 6. Virtual testcase for the IST Modelica model.

Three statistical metrics (CV(RMSE), NMBE, and R2)
were calculated to evaluate the accuracy of the prediction,
and the results are shown in Table 5. R2 ranges from
0.9311 to 0.9999, CV(RMSE) ranges from 0.00 % to
0.55 %, and NMBE is 0.00 % in all scenarios. All three
metrics show excellent agreement between the tank
performance predictions from the IST Modelica model
and the IST EnergyPlus model, which is not a surprise
since these two models use the same mathematical
equations, though our IST model has more detailed local
controls.

4.2 Simulated Data vs. Measured Data
In this section, we validate the model prediction with the
experimental data obtained from an ice tank testbed at
NIST (Pertzborn 2016, Pradhan 2020). Per the
manufacturer, the ice storage tank at NIST contains
3,105 L of water and when fully frozen the ice has a
capacity of 274 kWh, designed to be discharged over an
eight-hour period with an inlet temperature of 10 ℃. The
chilled water that flows through the IST is a 30 % PG and
70 % water solution, and the heat exchanger inside the IST
is a spiral wound polyethylene tube. The data was
collected at a 0.10 Hz rate. The measured temperature and
flow rate of the chilled water are used as the boundary
conditions in the Modelica virtual testcase. Table 4 shows
the polynomial coefficients for discharging mode and
charging mode, which are obtained by regression of the
measured data.

Table 4. Polynomial coefficients of curve fitting data.
Coefficients 𝑑𝑑1/𝑐𝑐1 𝑑𝑑2/𝑐𝑐2 𝑑𝑑3/𝑐𝑐3 𝑑𝑑4/𝑐𝑐4 𝑑𝑑5/𝑐𝑐5 𝑑𝑑6/𝑐𝑐6

Discharging 5.54E-5 -1.46E-4 9.28E-5 1.12E-3 -1.10E-3 3.01E-4

Charging 2.00E-4 0 0 0 0 0

Session 2B: Applications (1)

DOI
10.3384/ecp21181177

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

181

Table 5. Results of statistical metrics (Benchmark: EnergyPlus).

Mode SOC Outlet Temperature

CV(RMSE) R2 NMBE CV(RMSE) R2 NMBE

Discharging 0.35 % 0.9999 0.00 % 0.00 % 0.9999 0.00 %
Charging 0.55 % 0.9986 0.00 % 0.04 % 0.9311 0.00 %

Figure 7. Discharging results comparison of the Modelica model with the EnergyPlus model.

Figure 8. Charging results comparison of the Modelica model with the EnergyPlus model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8

SO
C

Time (h)

State of Charge (SOC)

EnergyPlus SOC
Modelica SOC

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

0 1 2 3 4 5 6 7 8

Te
m

pe
ra

tu
re

 (
℃

)

Time (h)

Outlet Temperature

EnergyPlus Outlet Temperature
Modelica Outlet Temperature

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

SO
C

Time (h)

State of Charge

EnergyPlus SOC
Modelica SOC

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

0 0.2 0.4 0.6 0.8 1 1.2

Te
m

pe
ra

tu
re

 (
℃

)

Time (h)

Outlet Temperature

EnergyPlus Outlet Temperature
Modelica Outlet Temperature

An Ice Storage Tank Modelica Model: Implementation and Validation

182 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181177

Table 6. Results of statistical metrics (Benchmark: measured data from NIST).

Mode &
Date

SOC Outlet Temperature

CV(RMSE) R2 NMBE CV(RMSE) R2 NMBE

Discharging
(5/14/2018) 7.09 % 0.9778 0.27 % 0.27 % 0.8281 0.21 %

Charging
(5/16/2018) 10.20 % 0.9810 0.44 % 0.10 % 0.8344 0.03 %

Figure 9. Discharging results comparison of the simulated data with the experimental data on 5/14/2018.

Figure 10. Charging results comparison of the simulated data with the experimental data on 5/16/2018.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

SO
C

Time (h)

State of Charge

NIST SOC
Modelica SOC

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10

Te
m

pe
ra

tu
re

 (
℃

)

Time (h)

Outlet Temperature

NIST Outlet Temperature
Modelica Outlet Temperature

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12

SO
C

Time (h)

State of Charge

NIST SOC
Modelica SOC

-10
-8
-6
-4
-2
0
2
4
6
8

10

0 2 4 6 8 10 12

Te
m

pe
ra

tu
re

 (
℃

)

Time (h)

Outlet Temperature

NIST Outlet Temperature
Modelica Outlet Temperature

Session 2B: Applications (1)

DOI
10.3384/ecp21181177

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

183

For the discharging mode, the Modelica model is
validated using the experimental data on 5/14/2018. For
the charging mode, the Modelica model is validated using
the experimental data on 5/16/2018. Figure 9 and
Figure 10 show the comparison of simulated results with
measured data of the SOC and outlet temperature for two
days, respectively.

Table 6 shows the results of three accuracy metrics
(CV(RMSE), NMBE, and R2). The R2 (0.8281 - 0.9810)
values are high enough to indicate good agreement
between the predictions and the measurement data.
ASHRAE Guideline 14 suggests that the predicted model
shall have a CV(RMSE) up to 30 % and an NMBE up to
10 % using hourly calibration data (ASHRAE 2014).
Comparing the IST Modelica model with the experimental
data from NIST, the results of CV(RMSE)
(0.10 % - 10.20 %) and NMBE (0.03 % - 0.44 %) indicate
that the IST Modelica model can provide good accuracy
according to ASHRAE Guideline 14.

5 Conclusion
This study implemented an ice storage tank model based
on the Modelica Buildings Library. The model was then
compared to and validated against the EnergyPlus model
and the measured data from a real ice tank system,
respectively. The validation results quantified by three
statistical metrics show a good prediction accuracy. In the
future, the proposed IST Modelica model will be tested on
system-level control evaluations and be used for load side
management for better building-to-grid integration.

Acknowledgements
The research reported in this paper was partially supported
by the Building Technologies Office at the U.S.
Department of Energy through the Emerging
Technologies program under award number DE-
EE0009153.

Nomenclature
Abbreviations:
ASHRAE: American Society of Heating, Refrigerating
and Air-Conditioning Engineers
CV(RMSE): Coefficient of Variation of Root Mean
Square Error
IST: Ice Storage Tank
LMTD: Logarithmic Mean Temperature Difference
MBL: Modelica Buildings Library
NIST: National Institute of Standards and Technology
NMBE: Normalized Mean Bias Error
PG: Propylene Glycol
PI : Proportional-Integral
SOC: State of Charge
Symbols:
𝑐𝑐𝑖𝑖: Charging coefficients
𝑑𝑑𝑖𝑖: Discharging coefficients

𝐻𝐻𝑓𝑓: Latent heat of fusion for water at 0 ℃
�̇�𝑚: Mass flow rate of liquid
𝑚𝑚𝑖𝑖𝑐𝑐𝑓𝑓: Ice mass in the tank
𝑃𝑃𝑐𝑐ℎ: Charged fraction
�̇�𝑞: Instantaneous heat transfer rate
�̇�𝑞∗: Normalized instantaneous heat transfer rate
𝑄𝑄𝑠𝑠𝑡𝑡𝑛𝑛: Total latent storage capacity
𝑇𝑇𝑖𝑖𝑙𝑙: Tank inlet temperature
𝑇𝑇𝑛𝑛𝑜𝑜𝑡𝑡 : Tank outlet temperature
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓: Freezing temperature of the water
∆𝑡𝑡: Timestep of the operation data used in the curve fitting
∆𝑇𝑇𝑙𝑙𝑙𝑙: LMTD
∆𝑇𝑇𝑙𝑙𝑚𝑚∗ : Normalized LMTD
∆𝑇𝑇𝑙𝑙𝑛𝑛𝑚𝑚: Nominal temperature difference

References
Beckman, William A., Lars Broman, Alex Fiksel, Sanford A.

Klein, Eva Lindberg, Mattias Schuler, and Jeff Thornton
(1994). “TRNSYS The most complete solar energy system
modeling and simulation software”. In: Renewable energy,
5(1-4), pp.486-488. DOI: 10.1016/0960-1481(94)90420-0.

Braun, James E. (1990). “Reducing energy costs and peak
electrical demand through optimal control of building thermal
storage”. In: ASHRAE transactions, 96(2), 876-888. URL:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1
64.579&rep=rep1&type=pdf.

Candanedo, J. A., V. R. Dehkordi, and M. Stylianou (2013).
“Model-based predictive control of an ice storage device in a
building cooling system”. In: Applied Energy, 111, pp.1032-
1045. DOI: 10.1016/j.apenergy.2013.05.081.

Crawley, Drury B., Linda K. Lawrie, Frederick C. Winkelmann,
Walter F. Buhl, Y. Joe Huang, Curtis O. Pedersen, Richard
K. Strand et al. (2001). “EnergyPlus: creating a new-
generation building energy simulation program”. In: Energy
and buildings, 33(4), pp.319-331. DOI: 10.1016/S0378-
7788(00)00114-6.

Fu, Yangyang, Michael Wetter, and Wangda Zuo (2018).
Modelica models for data center cooling systems. University
of Colorado Boulder. URL:
https://www.osti.gov/servlets/purl/1479111.

Fu, Yangyang, Wangda Zuo, Michael Wetter, James W.
VanGilder, and Peilin Yang (2019). “Equation-based object-
oriented modeling and simulation of data center cooling
systems”. In: Energy and Buildings, 198, 503-519. DOI:
10.1016/j.enbuild.2019.06.037.

Fu, Yangyang, Xing Lu, and Wangda Zuo (2019). “Modelica
models for the control evaluations of chilled water system
with waterside economizer”. In: Proceedings of the 13th
International Modelica Conference, Regensburg, Germany,
March 4–6,
2019.URL:https://2019.international.conference.modelica.org
/proceedings/html/papers/Modelica2019paperP09.pdf.

Guideline, A.S.H.R.A.E. (2014). Measurement of energy,
demand, and water savings. ASHRAE Guidel 14-2014. URL:
https://upgreengrade.ir/admin_panel/assets/images/books/A
SHRAE%20Guideline%2014-2014.pdf.

Henze, Gregor P. and Jobst Schoenmann (2003). “Evaluation of
reinforcement learning control for thermal energy storage
systems”. In: HVAC&R Research, 9(3), 259-275. DOI:
10.1080/10789669.2003.10391069.

An Ice Storage Tank Modelica Model: Implementation and Validation

184 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181177

Ihm, Pyeongchan, Moncef Krarti, and Gregor P. Henze (2004).
“Development of a thermal energy storage model for
EnergyPlus”. In: Energy and Buildings, 36(8), 807-814. DOI:
10.1016/j.enbuild.2004.01.021.

Jekel, Todd Bryant (1991). “Modeling of ice-storage systems”.
Master’s thesis. University of Wisconsin–Madison, URL:
https://minds.wisconsin.edu/bitstream/handle/1793/45602/Je
kel1991.pdf?sequence=1.

Mattsson, Sven Erik, Hilding Elmqvist, and Martin Otter (1998).
“Physical system modeling with Modelica”. In: Control
Engineering Practice, 6(4), 501-510. DOI: 10.1016/S0967-
0661(98)00047-1.

Pertzborn, Amanda J. (2016). Intelligent Building Agents
Laboratory: Hydronic System Design. US Department of
Commerce, National Institute of Standards and Technology.
URL:https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.
TN.1933.pdf.

Pradhan, Ojas, Amanda Pertzborn, Liang Zhang, and Jin Wen
(2020). “Development and Validation of a Simulation
Testbed for the Intelligent Building Agents Laboratory
(IBAL) using TRNSYS”. In: ASHRAE Transactions, 126,
pp.458-466.

Strand, Richard Karl (1992). “Indirect ice storage system
simulation”. M.S. Thesis, Department of Mechanical and
Industrial Engineering, University of Illinois at Urbana-
Champaign.

Wetter, Michael (2011). “A View on Future Building System
Modeling and Simulation”. United States. URL:
https://www.osti.gov/servlets/purl/1050665.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, and Xiufeng
Pang (2014). “Modelica buildings library”. In: Journal of
Building Performance Simulation, 7(4), pp.253-270. DOI:
10.1080/19401493.2013.765506.

Session 2B: Applications (1)

DOI
10.3384/ecp21181177

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

185

186 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Status of the TransiEnt Library:

Transient Simulation of Complex Integrated Energy Systems

Anne Senkel1 Carsten Bode1 Jan-Peter Heckel2 Oliver Schülting3

Gerhard Schmitz1 Christian Becker2 Alfons Kather3

Hamburg University of Technology, Am Schwarzenberg-Campus 1, Hamburg, Germany
1Institute of Engineering Thermodynamics, {anne.senkel, c.bode, schmitz}@tuhh.de

2Institute of Electrical Power and Energy Technology, {jan.heckel, c.becker}@tuhh.de
3Institute of Energy Systems, {oliver.schuelting, kather}@tuhh.de

Abstract

The open-source Modelica library TransiEnt Library was

developed within the research project TransiEnt.EE. This paper

presents two major library extensions which were developed in

the follow-up research project ResiliEntEE. Modeling of the

power sector on transmission grid level is now possible due to

the implementation of the complex bus voltage. In the gas

sector, the efficiency of mass and energy balance computation

was improved. Furthermore, an efficient physical pressure loss

model was added leading to more realistic results and faster

simulations. One possible application of the library is presented

in an exemplary simulation of an integrated energy system. It is

shown that the dynamic simulation allows the representation of

disturbances and their possible consequences in coupled sectors.

Thus, next to cost and CO2 emissions, an integrated energy

system can be assessed in terms of its resilience as well.

Keywords: Integrated Energy Systems, Dynamic Interactions,

Electricity, Gas, Heat, TransiEnt Library

1 Introduction

The energy sector is facing severe changes, not only in the

upcoming years but already today. In its recent study, Agora

Energiewende identifies ten megatrends that will influence the

development of the future energy system (Agora Energiewende

2019). Among them are:

• Decarbonization,

• Cost regression for renewables,

• Digitalization,

• Electrification,

• Urbanization,

• Decentralization, and

• Interdependence.

Each of these tendencies will not only lead to a more sustainable

but also more complex and dynamic integrated energy system

(IES). In Figure 1, typical components of an IES are depicted

for the sectors gas, heat, and power. Researchers and decision-

makers alike are facing the challenge of identifying different

development paths and their advantages and disadvantages. To

be able to analyze and evaluate these, corresponding models

need to be developed and the complex and dynamic behavior of

the considered IES must be implemented. In terms of evaluation,

it is notable that not only cost and CO2 emissions are of interest

but resilience is gaining importance as well (Linkov and Palma-

Oliveira 2017).

In this context, Modelica offers support for multi-domain

dynamic simulation and, thus, the simulation of different energy

sectors within a single, coherent model. Therefore, multi-

disciplinary approaches are supported, as are necessary to

develop sophisticated models for each sector. Moreover, the

object-orientation allows the development of libraries with user-

friendly, scalable models that offer a high degree of reusability

and adaption.

Based on these considerations, the TransiEnt Library has

been developed in the TransiEnt.EE and ResiliEntEE projects

(Hamburg University of Technology 2020). Using it, users may

implement dynamic interactions in their energy system models

and use the results for further assessments.

After a brief presentation of the projects TransiEnt.EE and

ResiliEntEE as well as their major outcome, the TransiEnt

Library, this paper presents the main extensions of the library in

the gas and power sector which were realized in the ResiliEntEE

project. To provide insights into the possibilities of the

TransiEnt Library, an exemplary model of an IES is presented

and its simulation results are discussed.

1.1 TransiEnt.EE

The TransiEnt.EE research project was conducted at the

Hamburg University of Technology from 2013 to 2017

(Andresen et al. 2017). Its main goal was to identify innovative

and reliable ways to efficiently integrate renewable energies into

existing urban energy systems to maximize the energy system’s

self-sufficiency. For their analysis, the researchers focused on

the city of Hamburg’s energy supply system. In this context, the

TransiEnt Library was developed to not only allow the modeling

necessary for the concrete research project but also for future

studies and related research interests (Andresen et al. 2015).

In TransiEnt.EE, the considered energy systems were

analyzed according to their cost and CO2 emissions, enabling

efficiency assessments of the considered scenarios with respect

to the goals of the German energy transition.

DOI
10.3384/ecp21181187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

187

1.2 ResiliEntEE

ResiliEntEE is the follow-up project to TransiEnt.EE conducted

at the Hamburg University of Technology from 2017 until 2021.

The project used the TransiEnt Library and aimed at refining it

twofold:

First, the considered system was enlarged from the city of

Hamburg to Northern Germany (including the federal states of

Bremen, Hamburg, Lower Saxony, Mecklenburg-Western

Pomerania, and Schleswig-Holstein). Towards this, a

numerically efficient modeling approach needed to be found to

enable fast model generation of the region considering different

levels of aggregation and detail. Additionally, the gas and the

electric grid modeling needed to be expanded to this

superregional scale. Finally, a suitable control for the overall

system was designed including the operational planning of

renewable power producers, energy conversion technologies,

and storage plants as well as the provision of system services

and reactions to disruptions.

The second project aim was to use the TransiEnt Library

models to evaluate the resilience of the energy system and its

subsystems. Therefore, the existing models needed to be refined

to show the behavior of the considered systems before, during,

and after disturbances. For this purpose, a special focus was laid

on the electric grid, expanding the models to spatially resolved,

stationary and dynamic computations (Heckel and Becker

2019). Furthermore, the connections between the sectors were

revised to be able to answer the questions of how disruptions in

one sector affect other sectors.

Finally, a quantitative evaluation method was developed to

assess the resilience of energy systems using dynamic

simulation results (Senkel, Bode, and Schmitz 2021, 2019). This

enables the determination of the resilience of future energy

supply systems against stressors such as component failure,

weather extrema, control errors, and others. This enables the

comparison of different possibilities towards improving system

resilience.

1.3 The TransiEnt Library

The TransiEnt Library provides models for typical energy

system components, including energy producers, consumers,

storage units, conversion plants, and grid components (Hamburg

University of Technology 2020). The resulting library structure

is depicted in Figure 2. A detailed introduction to a preliminary

version of the TransiEnt Library is given by Andresen et al.

(2015).

Using the TransiEnt Library, the fluctuating energy provision

of renewable energies can be modeled dynamically, allowing

investigations into their influence on the energy system. Due to

the dynamic simulation, dynamic interactions between the

sectors and their impact on the flexibility and stability of the

overall system can be depicted. This allows sensitivity analyses

and the evaluation of different integration and control strategies.

Owed to the multi-domain approach of Modelica, this can be

done in one model covering all sectors, allowing a detailed

analysis of the overall system. One example is the investigation

of excess power utilization in the heat sector (Bode and Schmitz

2019).

Towards deduplication, the TransiEnt Library uses

components of the ClaRa Library (Hamburg University of

Technology, TLK-Thermo GmbH, and XRG Simulation GmbH

2021), the TILMedia Library (TLK-Thermo GmbH and Institut

für Thermodynamik, Technische Universität Braunschweig

2021), and the Buildings Library (Wetter et al. 2014).

The ClaRa Library allows the modeling of the transient

thermal behavior of power plants and related systems. The

TransiEnt Library reuses basic components from that library,

including but not limited to pipes, heat exchangers, and valves.

Furthermore, certain components of the gas sector are based on

Figure 1. Presentation of the three Sectors (black) with Energy Producers (blue), Conversion Technologies (red), Storages (green)

and Consumers (yellow) (PtG: Power-to-Gas, GT: Gas Turbine, CCGT: Combined Cycle Gas Turbine, Cogen. CCGT:

Cogeneration Combined Cycle Gas Turbine, CHP: Combined Heat and Power, FC: Fuel Cells, PtH: Power-to-Heat

Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems

188 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181187

models from the ClaRa Library (see section 2.2), for example,

pipe and valve models.

The TILMedia Library provides thermophysical properties for

various fluids and solids. The TILMedia Library models provide

better numerical performance and robustness compared to

Modelica.Media (Modelica Association 2020). However,

coupling of models using the different media models is possible

and a suitable adapter model is included in the TransiEnt

Library.

From the Buildings Library, models for the heat transfer

within walls and their sky radiation exchange as well as the air

volume within a building are used to provide a low-order heat

consumer model and thus the modeling of cool-down and heat-

up processes in buildings connected to the considered energy

system.

2 New Developments and

Components

As a result of the ResiliEntEE project, several new

developments and models were implemented in the TransiEnt

Library. Especially the gas and power sector modeling were

enhanced, as described in the following section. Further

developments and results are documented by Bode et al. (2021).

2.1 Modeling of the Power Sector

Electric power systems can be modeled on different levels. On

the one hand, the focus of dynamic modeling can vary, and, on

the other hand, it is possible to differentiate between the levels

of modeling the grid connections. In terms of simulation, the

simplest option is a steady-state simulation referred to as load

flow calculation. In load flow calculations, the grid state is

calculated in the form of complex bus voltages based on the

representation of the alternating voltages and currents as quasi

stationary root mean square (RMS) phasors. The grid state is

influenced by the load and generation as well as the switch

settings in the electric grid.

To focus on the dynamics, the RMS simulation, also based

on phasors, can be used. The frequency of the electric voltage is

chosen as an additional variable. This approach allows the use

of numerical integrators with variable step sizes above 20 ms in

50 Hz systems, enabling efficient simulations of entire years.

The RMS simulation approach can assess the electromechanical

processes and the behavior of the controllers that ensure the

operation of the electric grid.

Lastly, the electric energy system can be simulated using the

electromagnetic transient simulation approach. In this approach,

voltages and currents are time-dependent including their

sinusoidal oscillation. The electromagnetic transient simulations

require numerical integrators with step sizes below 20 ms, which

have high numerical cost.

In the TransiEnt Library, the RMS approach is chosen. This

allows numerically efficient simulations since the stiffness of the

problem of the IES simulation can be reduced. Stiff problems

occur when time constants from a large range of orders of

magnitude are part of the problem and the numerical integrator

needs to adapt the step size to the lowest time constant. This is

the case for IES simulations when the electric subsystem is

simulated using the electromagnetic transient approach.

Processes in the heat and gas sector have higher time constants

starting at approximately a few seconds, as shown in Figure 3,

which gives an overview of time constants of different processes

from the power, heat, and gas sector. In addition, the time

intervals of the stability phenomena in electric power systems

are given. The relevant stability phenomena of the electric

subsystem in IES are frequency and voltage stability.

With the RMS simulation approach of the electric energy

system, time constants starting at approximately 100 ms are

regarded. The RMS simulation of electric power systems

becomes steady state when neither load and generation are

changed nor disturbances occur. Using appropriate models for

the IES simulation within the RMS approach, problems’

stiffness can be reduced. Hence, processes in the IES with time

constants, starting at approximately one second, are considered.

In contrast, electromagnetic transient simulations always

consider time constants of 20 ms and lower.

The different levels of modeling the grid connections can be

demonstrated through the evolution of electrical interfaces in the

TransiEnt Library. In the TransiEnt.EE project, the electric grid

was modeled as a copper plate with ideal interconnections. This

modeling is based on the ActivePowerPort interface which

contains the active power as a flow variable and the frequency

of the electric grid as a potential variable. With this interface, all

electrical components modeled in a simulation model are

connected with each other at one bus bar.

In the next step, the modeling was extended to the modeling

of radial grid structures as these structures often occur in low

voltage grids. For this approach, the ApparentPowerPort

was introduced. This interface also considers the electric bus

voltage magnitude as a potential variable and the reactive power

as a flow variable.

In the ResiliEntEE project, interconnected electric power

systems, as they can be found on the transmission grid level, are

modeled. Due to this extended scope, a new electrical interface

was introduced (Heckel and Becker 2019): The

ComplexPowerPort adds the complex bus voltage angle as

a potential variable to the modeling. Thus, the complete complex

bus voltage is part of the interface leading to the appropriately

named ComplexPowerPort.

Figure 2. Structure of the TransiEnt Library

Session 3A: Libraries

DOI
10.3384/ecp21181187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

189

At two flow variables and three potential variables, the

interface is over-determined. The frequency is the additional

variable that is part of the modeling due to the RMS simulation

approach. For the problem of overdetermined interfaces, the

Modelica Specification Section 9.4 gives a workaround

(Modelica Association 2017). This workaround is followed

here: A custom frequency type with an

equalityConstraint is defined for the electric frequency

of the grid. With the definition of grid busses as “potential roots”

and the grid connection components as “branches” of a

“connection tree”, this approach allows the RMS modeling of

electric power systems with the ComplexPowerPort. All

mentioned electrical interfaces in the TransiEnt Library are

unipolar allowing flexible modeling in a clearly arranged way.

With the introduction of the ComplexPowerPort, new

component models have been added to the TransiEnt Library.

These models can be divided into steady-state and dynamic

components. As steady-state components, the different bus

types, which are considered in the modeling of electric energy

systems, are implemented as boundary conditions. Boundary

conditions set variables at the interface to given values allowing

other variables to take arbitrary values. The bus types are:

• Slack Bus: Voltage magnitude and angle are given; the

frequency is given for steady-state calculation and the

other quantities are calculated.

• PV Bus: Active power and voltage magnitude are fixed;

other quantities are calculated. This bus model is used

for power plants with voltage control.

• PQ Bus: Active and reactive power are given; other

quantities are calculated. PQ Busses mainly represent

loads.

Transmission line models based on the pi network

representation in two-port representation model the grid

connections. The transmission line model was validated with

different commercial and open-source steady-state tools. For the

dynamic simulation, these models can be reused because the

grid connections are assumed steady-state in the RMS

simulation of electric energy systems. Additionally, different

transformer models allow the modeling of interconnected and

spacious electric transmission systems.

As dynamic component models, new models for synchronous

generators have been implemented. The TransiEnt Library

models allow the modeling of synchronous machines at different

levels of detail. All models regard the electromechanical

behavior but differ in the electric sub model, which links the

voltage magnitude and the active as well as reactive power.

The models can be split into one- and two-axis models. One-

axis models are suitable for the description of cylindrical rotor

machines. Moreover, the two-axis description, based on the Park

Transformation (Park 1929), allows a more general description

of non-symmetric electric machines.

The different levels of detail enable the adaption of the

modeling to the simulation scope. Thus, the trade-off between

high accuracy and affordable simulation costs can be resolved in

the context of each problem to be simulated.

In addition to the synchronous machines, different motor

models, such as an induction motor, have been added to the

TransiEnt Library. These models allow a more detailed

consideration of the integration of the power sector with the

other sectors of an IES through conversion plants.

2.2 Modeling in the Gas Sector

The TransiEnt Library contains all models necessary to simulate

future gas grids. An example model is shown in

Figure 4 that depicts how the components can be connected.

Required fluid properties are supplied by the TILMedia Library.

The essential components of a gas grid are the pipes

transporting the gas. The respective model is based on the ClaRa

Library and uses the finite volume method for one-dimensional

flow. Each control volume contains an overall mass balance,

component mass balances, and an energy balance. The heat

Sec. 0.001 0.01 0.1 1 10 100 1000

ti
m

e
 d

o
m

a
in

 o
f

p
ro

c
e

s
s

e
s

 i
n

 I
n

te
g

ra
te

d

E
n

e
rg

y
 S

y
s

te
m

s
 (

IE
S

)

s
ta

b
il

it
y

p
h

e
n

o
m

e
n

a

in
 e

le
c

tr
ic

p
o

w
e

r
s

y
s
te

m
s

electro-magnetic

transients
short-time frequency stability

voltage stability

small signal stability

generator

and

load

shedding
blocking of tap

changers
gas turbine

start

low voltage load shedding

Time

transient angle Stability

long-time frequency stability

voltage stability

triggering of protection

devices

operation of

seasonal

storages

cooling down of

thermal systemsswitching time of

valves

primary and secondary balancing power delivery

Figure 3. Overview of time constants of processes in IES and the corresponding stability phenomena in electric grids

Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems

190 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181187

transfer can be modeled using different heat transfer models

inside the pipe and additional wall and external heat transfer

models.

To work more efficiently in large networks, different

simplifications were added for the model in the TransiEnt

Library: It is possible to use isothermal flow, which is a common

assumption in gas grids (Cerbe and Lendt 2017) to eliminate the

specific enthalpy as a state.

In addition, the model was augmented with simplified

component mass balances: If the gas in the grid has a constant

composition, the mass fractions are eliminated from the system

of equations. Furthermore, if, for example, natural gas with

constant composition is transported in the grid and hydrogen is

admixed, the hydrogen fraction is the only truly variable

component and all others depend on it. In this case, the

dependent fractions can be calculated by scaling the nominal

composition of the main gas accordingly. This also reduces the

number of states.

In the ClaRa Library, all pressure loss models are either linear

or quadratic and depend on nominal values. To enable simpler

pipe parametrization and gain more realistic results, a pressure

loss calculation based on Cerbe and Lendt (2017) is

implemented by adapting the equations from

Modelica.Fluid.Dissipation (Modelica Association 2020): Pipe

discretization can be avoided by using the pressure loss equation

for a compressible fluid under the assumption that the quadratic

mean pressure equals the arithmetic mean pressure. This leads

to a small error but also efficient simulation since the equation

does not contain quadratic pressures and each pipe can consist

of only one control volume. The required dynamic viscosity is

not supplied by the TILMedia Library, so linear correlations

based on media data from REFPROP (Huber et al. 2018) for

natural gas, methane-hydrogen mixtures, and pure hydrogen are

used.

In addition to pipes, junctions are an important part of the gas

grid since they enable the mixing of different gas flows.

Additionally, they connect pipes and their corresponding

pressure losses and volumes in a numerically efficient way. The

junction model is also based on a model from the ClaRa Library

and consists of a volume with an arbitrary number of gas ports.

The volume contains the same equations as the control volume

of a pipe with the same simplifications for component mass as

well as energy balances. Linear pressure losses between the

volume and each gas port can be added to avoid nonlinear

systems of equations in certain cases.

To balance gas supply and demand, gas storage units are

necessary. The TransiEnt Library contains different storage

models which differ in their level of detail. First, the gas has

either constant or variable composition. Second, the gas storage

either contains a fluid model, with which temperature and

pressure in the gas storage can be calculated, or simply uses a

constant pressure. The latter is the faster model but neglects the

gas state in the storage. The model containing a fluid model is

similar to the junction model but different heat transfer models,

typical for certain kinds of gas storage, can be used: cavern

storage, gas pressure vessel, or adiabatic storage. Furthermore,

the pipes, through which the gas enters and leaves the storage,

can be included in the model: either using a pressure loss and

heat transfer model or neglecting pressure losses and assuming

constant outlet temperatures.

Furthermore, suitable boundary conditions are needed to

simulate a gas grid. The TransiEnt Library contains several basic

boundary conditions that always set three values:

• pressure, mass flow rate, volume flow rate at

standard conditions, or enthalpy flow rate

• mass or molar fraction, and

• temperature or specific enthalpy.

Gas consumers also act as boundary conditions for the gas

grid. Different kinds of gas-fired heat producers, for example,

gas boilers, gas heat pumps, and combined heat and power

plants, as well as gas-fired power plants, for example, gas

turbines and combined-cycle power plants, are part of the

TransiEnt Library.

Figure 4. Gas Model with New Components

Session 3A: Libraries

DOI
10.3384/ecp21181187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

191

Major gas-producing units of the future will be biogas and

Power-to-Gas plants. In a biogas plant, different organic

substrates are transformed into biogas using bacteria. The model

in the TransiEnt Library contains the ADM1 model (Klimiuk et

al. 2015), which models the transformation of different organic

components. Moreover, correlations for the power demand of

different stirrers as well as the heat transfer from the heater to

the reactor and from the reactor to the ambient are included.

The second technology, Power-to-Gas, uses electricity to

generate hydrogen via electrolysis. The core component, the

electrolyzer, is either modeled using an efficiency curve or more

detailed physics of the electrolyzer (Webster and Bode 2019).

Both models include either quasi-stationary, first-order, or

second-order dynamics as well as the possibility to give a certain

amount of waste heat to a connected component.

In some Power-to-Gas plants, the hydrogen is transformed to

synthetic natural gas using CO2 to be fed directly into the natural

gas grid. Different models are included in the TransiEnt Library

which either use reaction kinetics, reaction equilibrium, or a

constant conversion rate. The required CO2 can be separated

from air, modeled by a simple direct air capture plant model.

All parts of the Power-to-Gas plant can be combined to so-

called feed-in stations which contain suitable controllers as well

as storage units.

Also, the TransiEnt Library contains a model for a steam

methane reformer including related reactor models, for example,

a pre-reformer and a water-gas shift reactor. Additional minor

components, which are part of the TransiEnt Library, are simple

compressor, heat exchanger, and valve models.

3 Example of Use

The following chapter presents the CoupledLargeScale

model from the Example Package of the TransiEnt Library. In

this model, the sectors gas, heat, and power are integrated and

coupled by a combined-cycle power (CCP) plant with heat

extraction and an electrolyzer. The structure of the IES is

depicted in Figure 5, the parameters of the system are listed in

Table 1.

3.1 Model Description

In the gas sector, a gas grid containing one loop supplies gas

consumers at three points in the grid (NW, NE, SE). In the

northwest, a constant gas demand is modeled as it is often the

case for industrial consumers. In the east, the gas is used to

supply gas boilers for the heat supply of housing areas.

Additionally, the CCP plant in the southeast burns gas to provide

heat to a district heating network (DHN) and power to the

electric grid. The gas is provided to the gas grid by a gas source

in the southwest at a pressure of 12.5 bar. Moreover, the

electrolyzer in the southwest uses excess power to produce

hydrogen which is also fed into the gas grid.

The demand in the heating sector is modeled using a reduced-

order approach considering the thermal capacities and

conductances of the houses as well as thermal heat gains and

ventilation losses. To achieve a reasonable computation time,

the housing areas are modeled by computing the heat demand

for one characteristic house and scaling it up accordingly. The

heat is transported to the households in two different ways. The

housing areas in the eastern part of the gas grid are supplied by

gas boilers which are controlled in order to reach the set room

temperature.

Figure 5. Graphical Layer of the Investigated Integrated Energy System

Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems

192 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181187

 Table 1. Parametrization of the Investigated IES

The households in the south, however, are connected to their

heat supply via the heating network. Hence, their heat supply is

connected to the operation of the CCP plant which is not only

controlled according to the current heat demand but also to the

current electricity demand and production. Therefore, a hot

water storage is placed between the heat consumer and the CCP

plant, decoupling the two from each other. Thus, the heat supply

of the consumers is ensured by a) controlling the supply

temperature via a backmixing valve according to a heating curve

depending on the ambient temperature and b) by controlling the

mass flow rate through the heat exchanger at the consumer to

reach the set room temperature. The heat output of the CCP plant

is determined according to the set temperature of the top volume

of the hot water storage and the physical constraints of the

combined heat and power generation.

 The electricity demand is modeled using SLP load profiles

for agriculture, households, and industry (Price et al. 1993).

Additionally, the frequency dependency of the consumers is

modeled according to Price et al. (1993). The power generation

units are biomass and waste incineration plants as well as a PV

plant and a wind park, which are dependent on the solar

irradiation and the wind velocity, respectively. To avoid

curtailment of the PV plant and wind park, excess power is

stored in an electric energy storage or used to produce hydrogen

in the electrolyzer. The power provision is controlled according

to the merit order: PV and wind plants – CCP plant – discharging

the electric energy storage – garbage incineration plant –

biomass incineration plant. For more detailed information

including parametrization, refer to Senkel, Bode, and Schmitz

(2021).

This energy system is modeled to be disturbed by the closure

of the southern gas pipeline for 14 hours at the beginning of an

exemplary February. At this time of the year, the lowest ambient

temperatures and the lowest feed-in of renewable energy occur

and therefore the strongest effects of the disturbances can be

observed. The software used is Dymola (Dassault Systèmes

2021) with the Esdirk45a solver and the tolerance 10-6. In the

next section, the simulation results of the simulation with and

without the induced disturbance are discussed.

3.2 Simulation Results

In Figure 6, the simulation results for the gas pressure, the

aggregated enthalpy flow rate, the room temperature, the

characteristic heat flow rate, the grid frequency and the electric

power of the undisturbed and disturbed IES are depicted. The

gas pressure is fluctuating since the gas demand within the gas

grid varies as well, especially because of the ambient-

temperature-dependent heat demand. It can also be noticed how

the gas pressure decreases with increasing distance to the gas

source as the pressure losses in the pipelines accumulate. When

the gas pipeline in the south is closed, the pressure drops

drastically, especially in the southeast since the distance through

the gas grid increases the most. In this part of the grid, the

controls of the CCP plant and the gas boiler react to this drop by

shutting down the affected assets to protect them from too low

pressures. Because of that, the gas demand in the grid decreases

and the pressure recovers to a level around 8 bar. However, the

original level of 10 to 12 bar is not reached until after the

disturbance ceases. Here, the CCP plant and gas boilers are

turned on with a one-hour time delay resulting in a small peak

right after the pipeline is opened.

When looking at the enthalpy flow rate, the temperature

dependence of the gas consumers in the east and, thus, their

fluctuating gas demand becomes notable. In contrast to this, the

gas consumer in the northeast has a constant gas demand. Since

the nominal electric power of the CCP plant is twice as high as

its maximum heat flow rate, its gas demand is dominated by the

current power demand. Hence, its gas demand is constant except

for low-load periods at night. Since only the CCP plant and the

gas boilers are turned off, they are the only gas consumers for

which the gas demand cannot be met during the disturbance.

Parameter

Gas Sector

Pressure Gas Source 12.5 bar

Minimum Pressure Gas Boiler 2 bar

Minimum Pressure CCP Plant 2 bar

Total Pipeline Length 47 km

Gas Grid Volume 4 400 m³

Heat Sector

Number of Households NE 58 100

Number of Households SE 29 050

Number of Households DHN 6 260

Nominal Heat Flow Rate Gas Boiler NE 280 MW

Nominal Heat Flow Rate Gas Boiler SE 140 MW

Nominal Heat Flow Rate CCP Plant 30 MW

Buffer Storage Volume DHN 1 720 m³

Supply Temperature DHN 80 °C

Nominal Mass Flow Rate DHN 240 kg/s

Nominal Power Electric Boiler 140 MW

Efficiency Electric Boiler 0.95

Power Sector

Nominal Power Biomass Incineration

Plant
80 MW

Nominal Power Waste Incineration Plant 100 MW

Nominal Power Wind Park 60 MW

Installed PV Plant Area 500 m²

Nominal Power CCP Plant 60 MW

Nominal Power Electrolyzer 1 MW

Maximum Discharging Power Electric

Energy Storage
50 MW

Maximum Charging Power Electric

Energy Storage
70 MW

Storage Capacity Electric Energy Storage 6 GWh

Proportional Load Factor NW 2.6

Proportional Load Factor NE 2.5

Proportional Load Factor SE 0.8

Session 3A: Libraries

DOI
10.3384/ecp21181187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

193

Figure 6. Simulation Results of the Disturbed and Undisturbed IES

Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems

194 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181187

The shutdown of the gas supply for the gas boilers and CCP

plant also has consequences for the attached heat consumers.

The shutdown of the gas boilers induces an immediate shutdown

of the heat supply to the heat consumers in the southeast. Thus,

their heat flow rate becomes zero and the houses cool down as

seen in the drastic drop of the respective room temperatures.

The households supplied by the heating network do not cool

down as fast as the southeastern ones. Here, the hot water storage

is able to uphold the heat supply for several hours before it is

completely discharged. After that, the heat supply also drops,

alongside the room temperature.

After the disturbance, the houses need to be reheated.

Therefore, the heat flow rate exceeds the heat demand in the

undisturbed case. For the consumers in the southeast, the gas

boiler is set to its maximum heat flow rate until the temperature

recovers. In the DHN, the heat flow rate to the consumer is

controlled differently. Moreover, the thermal inertia of the

cooled water in the hot water storage leads to an additional delay

in the provision of the maximum heat flow rate.

For the heat consumers in the northeast, the gas and, thus, the

heat supply is not affected by the pipeline closure which is why

their heat demand and set room temperature can be met at all

times.

In the power sector, the other producers react to the shutdown

of the CCP plant and the following frequency drop by providing

balancing power. However, the demand is still higher than the

supply. Hence, the frequency drops and reaches its minimum at

49.95 Hz. In response, the power consumers with the highest

proportional load factors (NW and NE) react with an electric

load reduction. When the demand becomes smaller, the power

supply is sufficient enough to satisfy the demand of all power

consumers. At this point, the frequency also returns to its set

point of 50 Hz.

The presented simulation results show that a detailed analysis

of a disturbed complex system is possible using dynamic

simulation. The models of the TransiEnt Library offer detailed

modeling and, thus, simulation of the necessary effects. Since

this is also true for the energy conversion technologies, the

consequences of the disturbance can not only be seen in the

directly affected sector but also in the sectors coupled with it.

Based on these simulation results, a quantitative assessment of

the system’s behavior is now possible. Senkel, Bode, and

Schmitz (2021) describe a suitable approach and provide more

information on the simulation of a system’s resilience using

Modelica.

4 Summary and Outlook

In this paper, the status of the TransiEnt Library after the

completion of the ResiliEntEE project is presented. Due to the

spatial expansion of the region of interest to Northern Germany,

the models of the gas and power sector were extended.

In the power sector, the ComplexPowerPort, which

integrates the complete complex bus voltage into the modeling,

was introduced. This allows the modeling of interconnected

electric power systems as they can be found on transmission grid

level. In this context, existing models in the TransiEnt Library

were revised according to this modeling approach and new

models were added.

In the gas sector, the numerical efficiency of the concerning

models was improved by simplifying the computation of the

mass and energy balances. Furthermore, the pressure loss

calculation is accelerated through various improvements. This

leads to a strong reduction of numerical effort and enables gas

grid calculation within the scope of Northern Germany.

 To present the possibilities of the TransiEnt Library, an

Integrated Energy System is discussed. With this system, it can

be shown how a disturbance in the gas grid affects the integrated

heat and power sectors, too. This dynamic simulation of

disturbances and their consequences gives the foundation of a

quantitative assessment of resilience. In this context, sensitivity

analyses and the comparison with system cost and CO2

emissions are possible.

With the completion of the project ResiliEntEE in June of

2021, all developed library extensions are freely available under

the terms of the Modelica license agreement. Because of the

high interest in the TransiEnt Library, a consortium was founded

to promote further development. In this context, the projects

IntegraNet and IntegraNet II already use the TransiEnt Library

(Benthin et al. 2020). Therefore, the involved institutes

Fraunhofer UMSICHT and Gas- and Wärme-Institut Essen e.V.

as well as the XRG Simulation GmbH plan on contributing to

the TransiEnt Library in the future.

The current version of the TransiEnt Library can be downloaded

using the following link: https://www.tuhh.de/transient-ee/en/.

Acknowledgments

The authors greatly acknowledge the funding from the German

Federal Ministry of Economic Affairs and Energy for the project

"ResiliEntEE - Resilienz gekoppelter Energienetze mit hohem

Anteil Erneuerbarer Energien" (ResiliEntEE - Resilience of

integrated energy networks with a high share of renewable

energies, project number: 03ET4048).

References

Agora Energiewende (2019). "European Energy Transition

2030: The Big Picture. Ten Priorities for the Next European

Commission to Meet the EU’s 2030 Targets and Accelerate

Towards 2050". URL: https://www.agora-

energiewende.de/en/publications/european-energy-

transition-2030-the-big-picture/ (visited on 2021-02-15).

Andresen, Lisa, Pascal Dubucq, Ricardo Peniche Garcia, Günter

Ackermann, Alfons Kather, and Gerhard Schmitz (2015).

“Status of the TransiEnt Library: Transient Simulation of

Coupled Energy Networks with High Share of Renewable

Energy”. In: Proceedings Modelica Conference 2015, edited

by Modelica Association, 695–705. Linköping Electronic

Conference Proceedings: Linköping University Electronic

Press. DOI: 10.3384/ecp15118695.

Andresen, Lisa, Pascal Dubucq, Ricardo Peniche Garcia, Günter

Ackermann, Alfons Kather, and Gerhard Schmitz (2017).

"Transientes Verhalten gekoppelter Energienetze mit hohem

Anteil Erneuerbarer Energien, Abschlussbericht des

Verbundvorhabens: Laufzeit des Verbundvorhabens:

01.05.2013 bis 30.04.2017". DOI:

10.2314/GBV:1002659345.

Benthin, Jörn, Anne Hagemeier, Annika Heyer, Philipp

Huismann, Joachim Krassowski, Christine Settgast, Ben

Wortmann, and Klaus Görner (2020). "Gemeinsamer

Abschlussbericht des Forschungsvorhabens Integrierte

Betrachtung von Strom-, Gas- und Wärmesystemen zur

modellbasierten Optimierung des Energieausgleichs- und

Session 3A: Libraries

DOI
10.3384/ecp21181187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

195

Transportbedarfs innerhalb der deutschen Energienetze".

DOI: 10.13140/RG.2.2.17052.44166.

Bode, Carsten, Jan-Peter Heckel, Oliver Schülting, Anne Senkel,

Christian Becker, Alfons Kather, and Gerhard Schmitz

(2021). "Resilienz gekoppelter Energienetze mit hohem

Anteil Erneuerbarer Energien: Abschlussbericht des

Verbundvorhabens".

Bode, Carsten, and Gerhard Schmitz (2019). “Influence of

Excess Power Utilization in Power-to-Heat Units on an

Integrated Energy System with 100 % Renewables”. In:

Proceedings of the 13th International Modelica Conference,

413–22. Linköping Electronic Conference Proceedings:

Linköping University Electronic Press. DOI:

10.3384/ecp19157413.

Cerbe, Günter, and Benno Lendt, eds. (2017). Grundlagen der

Gastechnik: Gasbeschaffung - Gasverteilung -

Gasverwendung. With the assistance of K. Brüggemann, M.

Dehli and F. Gröschl. München: Hanser.

Dassault Systèmes (2021). Dymola®. Vélizy-Villacoublay,

France. URL: https://www.3ds.com/products-

services/catia/products/dymola/ (visited on 2021-03-24).

Hamburg University of Technology (2020). TransiEnt Library.

Hamburg. URL: https://www.tuhh.de/transient-ee/en (visited

on 2021-03-24).

Hamburg University of Technology, TLK-Thermo GmbH, and

XRG Simulation GmbH (2021). ClaRa. Hamburg,

Braunschweig. URL: https://claralib.com/index.php?lang=en

(visited on 2021-03-24).

Heckel, Jan-Peter, and Christian Becker (2019). “Advanced

Modeling of Electric Components in Integrated Energy

Systems with the TransiEnt Library”. In: Proceedings of the

13th International Modelica Conference, 759–68. Linköping

Electronic Conference Proceedings: Linköping University

Electronic Press. DOI: 10.3384/ecp19157759.

Huber, Marcia, Allan Harvey, Eric Lemmon, Gary Hardin, Ian

Bell, and Mark McLinden (2018). "NIST Reference Fluid

Thermodynamic and Transport Properties Database

(REFPROP) Version 10 - SRD 23". DOI:

10.18434/T4/1502528.

Klimiuk, Ewa, Zygmunt Mariusz Gusiatin, Tomasz Pokój, and

Sabina Rynkowska (2015). "ADM1-Based Modeling of

Anaerobic Codigestion of Maize Silage and Cattle Manure –

a Feedstock Characterisation for Model Implementation (Part

I) / Modelowanie Kofermentacji Kiszonki Kukurydzy I

Obornika Bydlęcego Za Pomocą ADM1 – Charakterystyka

Wsadu Surowcowego (Część I)". Archives of Environmental

Protection 41 (3): 11–19. DOI: 10.1515/aep-2015-0026.

Linkov, Igor, and José Manuel Palma-Oliveira, eds. (2017).

Resilience and Risk: Methods and Application in

Environment, Cyber and Social Domains. NATO science for

peace and security series. Series C, Environmental security.

Dordrecht: Springer Netherlands.

Modelica Association (2017-04). Modelica - a Unified Object-

Oriented Language for Systems Modeling. Language

Specification Version 3.4: Tech. rep. Linköping: Modelica

Association. URL: https : / / www. modelica . org / documents

/ ModelicaSpec34.pdf.

Modelica Association (2020). Modelica® Standard Library.

Linköping, Sweden: Tech. rep. Linköping: Modelica

Association.

Park, R. H. (1929). "Two-Reaction Theory of Synchronous

Machines Generalized Method of Analysis-Part I".

Transactions of the American Institute of Electrical

Engineers 48 (3): 716–27. DOI: 10.1109/T-

AIEE.1929.5055275.

Price, W. W., H. D. Chiang, H. K. Clark, C. Concordia, D. C.

Lee, J. C. Hsu, S. Ihara et al. (1993). "Load Representation

for Dynamic Performance Analysis (Of Power Systems)".

IEEE Trans. Power Syst. 8 (2): 472–82. DOI:

10.1109/59.260837.

Senkel, Anne, Carsten Bode, and Gerhard Schmitz (2019).

“Evaluating the Resilience of Energy Supply Systems at the

Example of a Single Family Dwelling Heating System”. In:

Proceedings of the 13th International Modelica Conference,

655–62. Linköping: Linköping University Electronic Press.

DOI: 10.3384/ecp19157655.

Senkel, Anne, Carsten Bode, and Gerhard Schmitz (2021).

"Quantification of the Resilience of Integrated Energy

Systems Using Dynamic Simulation". Reliability

Engineering & System Safety 209:107447. DOI:

10.1016/j.ress.2021.107447.

TLK-Thermo GmbH, and Institut für Thermodynamik,

Technische Universität Braunschweig (2021). "TILMedia

Suite". URL: https://www.tlk-

thermo.com/index.php/en/software/tilmedia-suite (visited on

2021-03-16).

Webster, John, and Carsten Bode (2019). “Implementation of a

Non-Discretized Multiphysics PEM Electrolyzer Model in

Modelica”. In: Proceedings of the 13th International

Modelica Conference, 833–40. Linköping Electronic

Conference Proceedings: Linköping University Electronic

Press. DOI: 10.3384/ecp19157833.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, and Xiufeng

Pang (2014). Modelica Buildings Library. URL:

https://simulationresearch.lbl.gov/modelica/download.html

(visited on 2021-03-24).

Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems

196 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181187

DLR Visualization 2 Library -
Real-Time Graphical Environments for Virtual Commissioning

Sebastian Kümper1 Matthias Hellerer1 Tobias Bellmann1

1Institute of System Dynamics and Control, German Aerospace Center (DLR),
{sebastian.kuemper, matthias.hellerer, tobias.bellmann}@dlr.de

Abstract

In this paper, the next generation of model-based visu-
alization is introduced, the DLR Visualization 2 Library.
This new real-time graphics environment for Modelica is
equipped with a state of the art engine for physics based
lighting calculation and high-definition render quality, si-
multaneous visualization of parallel running simulation
models, new features like a modern streaming interface
and a new, cleaner library structure. It enables the user to
create graphical real-time environments for virtual com-
missioning of complex systems of systems and imaging
based sensors. Some applications, as for example depth-
camera data generation or rendering of point clouds or
vectorized flow visualization are demonstrated in the use
cases section of this paper.

Keywords: Visualization, Virtual Commissioning, Systems
of Systems, Multi-Body

1 Introduction

The Modelica multi-body library allows for highly de-
tailed simulations of mechanical structures. However, the
integrated visualization for multi-body components avail-
able in all major Modelica tools contains only some simple
geometrical forms, surfaces or static CAD models (Otter,
Elmqvist, and Mattsson 2003). While this is sufficient for
many engineering tasks, where only the structure and be-
havior of a system is of interest for the engineer, for vir-
tual commissioning, a realistic graphical environment is
sometimes necessary, especially if optical sensors should
be used as part of an image processing pipeline (e. g. for
homing a robot using camera data). Furthermore, more
and more simulations, particularly those of "Systems of
Systems", have to run in parallel to increase performance,
creating the problem of asynchronous creation of model
animation data to be processed by the render engine of the
visualization tool.

To overcome these shortcomings, DLR developed the
new DLR Visualization 2 library, an evolution and succes-
sor to the long available and continuously refined DLR Vi-
sualization Library from 2009 (Bellmann 2009; Hellerer,
Bellmann, and Schlegel 2014).

Figure 1. Recumbent bike visualized in the DLR Visualization
2 Library. Material properties of the CAD models as metalness
or roughness are rendered in a physically meaningful way.

1.1 Modelica Visualization - State of the Art
A comprehensive review of alternative visualization meth-
ods for Modelica can be found in Hellerer, Bellmann, and
Schlegel (2014). Since then some new work has been pub-
lished, especially from Waurich and Weber (2017). Here,
FMUs of the model are generated and integrated in the
Unity engine within a newly developed Unity plugin. The
FMU serves as data source for the visualizer elements
(e. g. for their positioning) to enable high quality render-
ing with a state of the art engine. In Fuchs, Streblow, and
Müller (2015), Python is used for the visualization of mass
flows of thermal-fluid networks.

1.2 Virtual Commissioning
Within the life cycle of a product or plant, commission-
ing refers to the phase, where a new technical system
is activated and used productively for the first time as
a whole. However, in complex multi-component sys-
tems, this step oftentimes ends with problems, error mes-
sages and incompatibilities between the different systems
and the desired task cannot be carried out as expected
because of unforeseen differences between specification
and reality. In order to avoid such problems and poten-
tial high costs caused by subsequent error solutions and
eventual hardware/software redesigns, virtual commis-

DOI
10.3384/ecp21181197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

197

sioning strives to commission the single system compo-
nents before the completion/production of all other hard-
ware components, by coupling them with a virtual envi-
ronment, which simulates the yet unavailable components
(VDI/VDE-Fachbereich Engineering und Betrieb 2016).
Modelica is a useful tool here, as it enables the user to
simulate yet to be produced or to be designed hardware
components. One example would be the real-time con-
nection of simulated hardware with the real world con-
troller software/hardware of the system. However, if the
controller relies on optical sensory input, for example as
part of an image processing tool-chain, a real-time visual-
ization with virtual sensors and camera streams becomes
a necessity.

2 New Features of the DLR Visualiza-
tion 2 Library

The DLR Visualization 2 Library is a completely new de-
velopment. We integrated most of the features from the
previous version and we also improved the interface and
added new features. This improves the quality of cre-
ated images and allows the library to be used for more
use cases which are also useful for virtual commissioning.
The structure of the new library can be seen in Figure 2.

2.1 Improved Rendering Quality
The DLR Visualization 2 Library uses a completely new
and modern rendering backend which is based on the real-
time 3D engine Unigine (Unigine 2021). This allows for
a greatly increased rendering quality. An example image
can be seen in Figure 1.

One core change is the material rendering. Previously,
the materials were parameterized by abstract values that
were not based on real world properties. In the new ver-
sion the parameters are based on the physical appearance
of real world objects and are consequently more intuitive
to the user (Greenberg et al. 1997). Every object has three
properties: color, metalness and roughness. The color
defines the dominant color of the object. Metalness is a
boolean value which defines whether the object is made of
metal or not. Roughness is a value between 0 and 1 which
defines how rough the rendered object should be. A value
of 0 indicates that the object is perfectly polished and light
gets perfectly reflected. A value of 1 indicates that the ob-
ject is very rough in a microscopic sense. An example
for varying material properties can be seen in Figure 3.
These properties can either be set for simple objects, over-
ridden for file objects or directly imported from a gltf file
(Khronos 2021). Other CAD-File types are supported but
the resulting material may not be the intended material.

Another big improvement is the scene lighting. The
light sources have a more realistic look and they produce
dynamic high quality shadows. The shadows can also be
disabled per light source or per object to give the user
more control over the result. The brightness is set via a
physical value in lux. The lighting also includes ambi-

Figure 2. The new Visualization 2 library structure with sepa-
rate primitives for better visibility on modeling level

ent occlusion which enhances cavities by simulating small
distance shadows.

2.2 Depth Rendering and Point Clouds
In the field of automation and robotics, sensor systems
that create depth information or spatial data are common.
Stereo cameras may create depth images, i. e. images
where each pixel represents the distance to the viewed ob-
ject. Laser scanners or sonars may create a list of points
that approximate the scanned objects. We added several
options to visualize this data and also added the virtual
camera DepthCamera, to create depth image data in a virtual
environment, so that these types of sensors can be simulated.

It is possible to directly visualize the depth field created by the
DepthCamera within the visualization window. The distance
of the camera to the viewed object is then encoded in the color of
the camera image pixels. For an example, see the use case in sec-
tion subsection 3.1. For a better visualization of small distance

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

198 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181197

Figure 3. Example of material properties of a sphere. Top row:
metalness set to true, Bottom row: metalness set to false. De-
creasing roughness from left to right.

differences, the user can enable Eye-Dome-Lighting (Ribes and
Boucheny 2011) by applying a dummy shading technique. The
data can also be sent to other applications as described in sub-
section 2.3.

Depth image data can also be visualized in 3D with
DepthMesh. This is a plane with a given resolution that is
deformed according to the depth image. Together with the po-
sition and orientation of the camera, the object viewed by the
camera can be accurately reconstructed in 3D.

A more versatile solution are point clouds. Here in-
dividual points are visualized via small squares. A point
cloud can also be generated from a DepthCamera with the
CameraPointCloud. This delivers nearly the same result as
the DepthMesh, but each pixel of the depth image will corre-
spond to an individual point instead of a closed mesh.

In addition to CameraPointCloud, there exists
StreamPointCloud where the points are received from a
network source, RawPointCloud where the points can be set
directly through Modelica and FilePointCloud where the
points are loaded from a .xyz-file. The data of multiple time
points of point clouds can be combined into a grid, so that the
complete scene can be viewed instead of a single time point.
The user also has the possibility to filter the data by the quality
data from the sensor and color the point clouds accordingly.

An example application can be seen in Figure 4. Here a re-
mote operated underwater vehicle (ROV) is simulated. It has
a panning depth camera attached to its front to view the sur-
roundings. On the top left image, the ROV with the landscape
is shown. The current view of the depth camera is shown with
a DepthMesh in red. On the top right is the colored depth im-
age of the camera with enabled eye-dome-lighting. On the bot-
tom left is a StreamPointCloud which receives the points
from the camera via network. On the bottom right is another
StreamPointCloud, which combines the information from
previous time steps to visualize the complete scanned path. It is
also possible to replace the DepthCamera source with a real
world sensor so that real sensor data is visualized instead.

2.3 Improved Streaming Support
Some simulations, particularly in virtual commissioning scenar-
ios, are controlled by external applications that rely on data from
processed camera images. In order to provide such synthetic
camera data for external image processing pipelines, we added
support to stream virtual camera images to arbitrary targets. An
example process can be seen in Figure 5 where the simulation
is controlled from the output of an image processing software.
The visualization of the simulation creates a depth image, which
is sent to an external image processing pipeline to create control

Figure 4. Example application for the use of depth informa-
tion. Top left: ROV with depth camera floats above terrain,
depth mesh in red is viewed area. Top right: current view with
wrong colors and shading. Bottom left: current reconstructed
landscape based on depth image. Bottom right: point cloud of
combined time steps.

inputs for the simulation.
Every virtual camera has the possibility to stream its current

view to a network target. The resolution of the stream is defined
by a parameter that is independent from the resolution of the
screen. The user can also set the target frame-rate of the stream
to either reduce the workload of the visualization or to simu-
late real world limitations. The supported network protocols are
UDP, TCP and RTSP.

The new DepthCamera can also stream their depth infor-
mation to network targets, to simulate the results of a stereo
vision pipeline. The depth information can be streamed us-
ing different options: Either the depth information is streamed
via an encoded video (Pece, Kautz, and Weyrich 2011) or the
data depth information of each pixel is packed into a FlatBuffers
(Google 2014) package (either as 2D image or as 3D data) and
subsequently streamed.

2.4 Testing Abilities
During testing of models, engineers want to change multiple pa-
rameters and compare the results of several simulations. In Mod-
elica, it is feasible to vary parameters automatically (e. g. using
Monte Carlo methods of the Optimization Library (Joos et al.
2002)), so the automated creation of comparison images should
also be possible. This is why we added support to control the
creation of screenshots and videos from Modelica.

To create screenshots automatically, the user specifies the
simulation time points at which a screenshot should be taken.
During simulation, the visualization will halt for a brief moment
at the requested time points and create a screenshot. This also
works for extremely fast simulations. The simulation time is
appended to the given path so that the user can make several
screenshots during one simulation. In Figure 6 (Pignède and

Session 3A: Libraries

DOI
10.3384/ecp21181197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

199

Simulation Visualization Image
Processing

Animation

Data

Virtual

Camera Stream

Control Information

Figure 5. The process for a simulation controlled by cameras. The simulation sends animation data to the visualization, which
renders a depth image and streams it to an external application. This application processes the depth image, calculates control
information and sends it back to the simulation.

Lichtenheldt 2022) several screenshots are automatically created
at different time steps for a short overview of the simulation.

Figure 6. Screenshots automatically created at different time
steps

Normally, a screenshot of all cameras that are displayed in
the main window is created. A screenshot from a single camera
can be triggered inside the individual cameras. Here, the screen-
shots can be taken at pre-defined times or when certain simula-
tion events are happening. This is not only useful for checking
results, but can also be used to mimic the functionality of a real
world camera that is only able to create still images instead of
videos.

Another option to compare results are auto-generated videos.
When this option is enabled, the visualization will automatically
create a video with the specified settings and save it to the spec-
ified path. This allows the user to run a multitude of simula-
tions with varying parameters and simply compare the resulting
videos.

2.5 Flow Visualization
In the previous version of the visualization library it was already
possible to visualize the flow of media inside a pipe. In the new
version the path is defined by a series of points. At each point,
the user can define the desired position, the speed and the color
of the visualized flow elements. The path in between the points
is either interpolated cubically or linearly. The flow elements
themselves can either be visualized with cones, rings, arrows or
even imported CAD-Files. When using CAD-Files, the user can
control the up-vector so that rotations along the flow axis are
possible. This can also be used to visualize objects that consist
of multiple small moving objects. In Figure 7 this is used to
visualize the chain of a bicycle.

Another new addition is the visualization of flows inside of
a three dimensional field. This can be used to visualize the

Figure 7. A moving chain is visualized with the
PathVectorFlow

airflow around objects, like cars or wings. The vector field
consists of a three dimensional array of points. At each point
the user can specify a vector and its color. There exist two
methods to visualize vector fields, GridVectorField and
GridVectorFlow. GridVectorField visualizes the in-
dividual vectors as arrows which have the specified direction,
length and color. GridVectorFlow visualizes the flow inside
of this field. In order to do this, the user defines seeding points.
At these points particles are inserted that follow the flow inside
the field. The flow can also be visualized by lines that can either
follow a virtual particle over time through the field or they can
be simulated in a single time step. The lines are colored with the
colors defined in the grid. An example flow around a sphere can
be seen in Figure 8.

Figure 8. Visualized air flow around a sphere with the new
GridVectorFlow

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

200 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181197

2.6 CAD Array

Figure 9. Use of the CAD array for the visualization of a distri-
bution of 1.7 million rocks on a simulated moon landscape

There are situations where one would need to visualize large
amounts of similar, static objects, e. g. rocks on a surface. Doing
this with the normal CADFile leads to many equations in Mod-
elica and therefore slows down the initialization and simulation
significantly.

To counter this, CADArray allows the user to visualize a
large number of instances of the same CAD file. For each in-
stance the position, rotation and scale can be specified. This can
either be done directly in Modelica via arrays or a file can be
loaded that holds all of the information.

An example application can be seen in Figure 9. A lunar
landscape had to be enhanced with rocks to provide additional
detail and obstacles for a lunar landing simulation. The visu-
alized moon is fairly large, so in order to achieve the desired
obstacle density around 1.7 million rocks have to be placed and
visualized on the surface. This would neither be possible to sim-
ulate nor to visualize without CADArray.

2.7 Level of Detail
Visualizing large amounts of objects with many details can be
very challenging to render, so we introduced the possibility to
specify multiple levels of detail (LoD).

A version of the object with many details is chosen as the
main file. Additionally multiple LoDs can be added. Each of
these LoDs is defined by a CAD file and a minimum visibility
distance. At this distance the object will be visualized by the
LoD’s CAD file and the CAD file of the lower levels will be
hidden.

Distance <5:
Rock1.gltf

Distance >10:
Rock3.gltf

Distance 5-10:
Rock2.gltf

Figure 10. A rock displayed with varying polygon count at dif-
ferent distances. The user can specify what CAD files should be
shown at which distance to reduce the stress on the GPU, while
keeping visual quality high.

An example of a rock with multiple LoDs can be seen in Fig-
ure 10. When the viewer is less then five units away, the very
detailed Rock1.gltf is shown. When the viewer is farther away at

a distance of between 5 and 10 units, the less detailed Rock2.gltf
is shown. At a distance over 10, the even less detailed Rock3.gltf
is shown. This reduces the load on the GPU, while keeping vi-
sual quality high.

2.8 Additional Improvements
Interface
We completely reworked the Modelica interface in the DLR Vi-
sualization 2 Library to improve the overall usability of the li-
brary. We separated the primitives into individual objects so that
at a glance, the user can see what kind of objects are displayed.
Additionally, primitives and other objects with a main color are
displayed in that color in the Modelica interface. A comparison
can be seen in Figure 11.

Figure 11. Comparison of the Modelica blocks for Primitives
from the old library (left) to the new library (right). In the new
library the primitives are split into different objects and the color
is shown in the model

Rigged CAD File
We added the possibility to manipulate objects with bones that
are defined in the CAD file. Manipulating objects with virtual
bones is a standard in computer graphics. The most prominent
use case is the creation of animated humans or animals, as it al-
lows for the deformation of the skin. However, bones can also
be used for mechanical structures like robots or rovers. Here, the
advantage over individual subobjects is that the relative position
of the objects is given in the CAD file and the user does not have
to manually position them in the simulation model. For easier
use, we added a Modelica function which extracts the bone in-
formation from the specified CAD file to create a model where
the bones can be identified by their given names.

VR camera
We improved the usage of VR-Headsets. Now, every headset
that uses the OpenVR standard is supported. Optionally, overlay
items displayed for the VR user on a plane, which floats in front
of the user, are now possible.

Another feature is the addition of green screen support
(chroma keying). Here, a camera is mounted on the VR head-
set. The camera image will be displayed in the VR image and
combined with the virtual image, which will be displayed at the
masked green areas. This can be used to merge a real environ-
ment with a virtual environment, e. g. a real cockpit with a vir-
tual landscape.

Window setup from within Modelica
The visualization window arrangement can now be controlled
from within Modelica. This may be used for the automatic setup
of a multi screen simulation. This includes the position, size and
style. The position and size is specified relative to the screen

Session 3A: Libraries

DOI
10.3384/ecp21181197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

201

size, so that the appearance is independent from the screen res-
olution. The window can be a normal window with title bar and
border, without any borders and title or fullscreen. It is also pos-
sible to create additional windows with the same properties.

Camera Position Back-Channel
The user can retrieve the position and orientation of every cam-
era in Modelica. The cameras have an optional output for the
position vector and the orientation matrix. These can be used to
construct a frame and thereby objects can be attached to a user
controlled camera. This also works for the VRCamera. This
means that objects can be placed relative in the view of the VR
user to, e. g. to create some additional interface.

Textures
In the previous version of the Visualization Library, textures
(i. e. images or videos) were treated differently depending on the
source. In the DLR Visualization 2 Library there is a common
interface: the texture buffer. All individual sources (virtual cam-
era, network stream, webcam, file) are treated the same and are
interchangeable. This allows the user to iteratively test the simu-
lation by simply exchanging the source of a texture and nothing
else.

Overlay Positioning

Figure 12. Possibilities of the overlay positioning mechanism.
The origin is given relative to the viewport. The overlay position
is relative to the origin and is given in pixel equivalents to allow
for exact positioning of multiple interacting items. Finally the
anchor can be used to change the handle position of the item.

We added more possibilities for the positioning of overlay
items (formerly HUDs). In the previous version, the positioning
was rather limited. The origin was always on the bottom left
of the viewport. In Figure 12 the new possibilities can be seen.
This is controlled by three positioning parameters:

• origin: relative position in the viewport

• position: relative to origin in pixel equivalents (equals
1/1000th of a defined side of the viewport)

• anchor: handle position of item relative to item size

This allows the user to position the overlay items to be aligned
to any part of the viewport and also position it by any part of the
item while still keeping the possibility for items to be positioned
exactly for them to interact with each other.

Environments
Environments define the overall look of the simulation. They
provide options for the sun light, the ambient light and the back-
ground. For the background, either a skybox can be defined or
the sky color is calculated based on the position of the sun. Haze
can be added to provide a more realistic visualization of large
scale earth-based simulations.

3 Use Cases
While still under development, the DLR Visualization 2 Library
is already used for many internal projects. A few practical ap-
plications will be introduced here.

3.1 Virtual Commissioning of a Robot Cell
Visualizing the overall assembly of a system early in the de-
velopment process and during virtual commissioning has many
benefits. Engineers can, for example, immediately asses the size
of complex work-spaces with many moving parts to avoid colli-
sions. Further, it is often times necessary to present a machine or
plant to stakeholders long before it is physically built. However,
if real components rely on optical sensor values, e. g. an imaging
pipeline to control a pick and place task, this can be addressed
in the simulation visualization as well.

Such an application is shown in Figure 13: Two interacting
robots assemble housings for network components (Bellmann,
Seefried, and Thiele 2020; Reiser 2021). For this task they are
equipped with depth cameras on the side of their tools to de-
tect the exact position of a workpiece. In this complex applica-
tion the visualization is part of virtual commissioning. It creates
depth images as shown in Figure 14 and streams them to an im-
age processing algorithm. Its results then provide positioning
input to the robot controllers and thereby close the control loop
over visualization and image processing.

Figure 13. Example for virtual commissioning of a robot cell.
Two cooperative robots assemble housings for network compo-
nents.

3.2 Visualization of Parallel Running Simula-
tions

The Helmholtz Future Project ARCHES develops teams of het-
erogeneous robotic agents for deep-sea and extraterrestrial ex-
ploration with the goal of improving efficiency and robustness

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

202 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181197

Figure 14. Depth image produced by a stereo camera, mounted
on one of the robots tool. Color denotes distance from camera.

under extreme conditions (Schuster et al. 2020). During the de-
velopment of such a team, only a limited number of robots is
actually available and using those for regular software tests or
during development is complex and laborious. So simulations
play an important role during development of robot teams. Yet
the simulation of a large number of agents is again difficult, es-
pecially in an efficient manner. Almost all available Modelica
implementations are very limited when it comes to paralleliza-
tion. Typically the whole simulation is run in one monolithic
block on a single CPU core (Gebremedhin 2019). So to sim-
ulate a whole team of robots, each agent is split into a single
simulation. The simulations are then only loosely coupled, but
they all have to be visible in one common visualization. The
DLR Visualization 2 library supports the rendering of multiple
simulations in one visualization container.

In this use case a multi-agent simulation has been created to
simulate multiple rovers on a virtual but realistic landscape. It
provides a network API which allows the developers of control
algorithms for the rovers to send commands to the robots and
to receive status data from them. Among this data are video
streams of the simulated robots cameras e. g. for a navigation
pipeline. Figure 15 shows a common visualization of multiple

Figure 15. Multiple rovers, each from a separate simulation,
rendered in one visualization

largely independent, simulations in one visualization container.
The virtual camera images should be as close to real ones as

possible to give operators a realistic impression during devel-
opment and training. The video streams might even be used as
input for image processing algorithms for tests and during de-
velopment as presented in Wedler et al. (2017).

3.3 Automated Testing of Rover Operations
The Martian Moon eXploration mission (MMX) is a cooperative
effort by the Japanese space agency JAXA, the French space
agency CNES, and the German space agency DLR. Together
they plan to explore the martian moons Phobos and Deimos
(Ulamec et al. 2019). An important part of this project is the
deployment of a mobile rover on Phobos (Bertrand et al. 2019;
Buse et al. 2021). Designing the first wheeled rover for use on
Phobos is a highly complex task. Little is known about many
environmental factors such as the surface structure and what is
known, like the micro gravity, poses a number of new prob-
lems that no previous wheeled exploration rover has ever faced
(Bertrand et al. 2019; JAXA 2017; Lange 2020).

An environment like this cannot be recreated anywhere on
earth, therefore simulations and their visualization play a cen-
tral role during the development. One of the most challenging
tasks is the simulation of the wheel-ground contact under low-g
conditions. Without a visualization it is very hard to get a real
insight into the complex interaction of multiple contact points in
a non-intuitive environment.

Such visualizations are also directly involved in the develop-
ment of the locomotion planning tool for the rover. A simulated
navigation and wheel cameras will be used to determine the fea-
sibility of a planned locomotion trajectory.

Finally, space missions also have to present their work and
their results to the general public in an interesting and engaging
fashion. For this, nowadays, high quality render images of the
mission are generally expected. Figure 16 shows such an im-
age, presented, for example, on JAXAs MMX mission website
(JAXA 2020).

Figure 16. Visualization of the simulated MMX Rover on Pho-
bos. The rover moves on soft soil with large rocks in a micro
gravity environment.

4 Conclusion and Outlook
Whilst the possibility to export FMU of Modelica models en-
ables virtual commissioning of the physical system behavior,
the usage of visually rendered environments for virtual com-
missioning is not standardized yet. Especially the integration of
real imaging pipelines requires a high-definition real-time ren-
dering engine with video stream capabilities, not available in
most Modelica tools. In this work we presented the commer-
cially available DLR Visualization 2 Library and its new features
aiming at integrating such pipelines. Another big step in usabil-
ity is the possibility to visualize the results of multiple, parallel
running simulations.

Session 3A: Libraries

DOI
10.3384/ecp21181197

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

203

For future developments, it is planned to extend the DLR
Visualization 2 Library with a generic C++ API, a Mat-
lab/Simulink interface and a JULIA library. The library, inter-
faces and the render tool itself will be provided in a free commu-
nity edition limited to real-time multi-body visualizations and a
commercial version containing all features.

Acknowledgments
The authors would like to thank all colleagues at DLR help-
ing during the implementation and testing of the library, espe-
cially Robert Reiser, Fabian Buse, Antoine Pignede and Miguel
Neves, who also provided some of the examples and use cases.
Additionally, the authors would like to thank GEOMAR for the
model of the ROV. This work was partially funded by the HVF
68 Project Lighthouse.

References
Bellmann, Tobias (2009). “Interactive simulations and advanced

visualization with modelica”. In: Proceedings of the 7th in-
ternational Modelica conference. Linköping University Elec-
tronic Press.

Bellmann, Tobias, Andreas Seefried, and Bernhard Thiele
(2020-10). “The DLR Robots library – Using replaceable
packages to simulate various serial robots”. In: Proceed-
ings of Asian Modelica Conference 2020 (Tokyo, Japan).
Linköping University Electronic Press. DOI: 10 . 3384 /
ecp2020174153.

Bertrand, Jean et al. (2019-05). “Roving on Phobos: Challenges
of the MMX Rover for Space Robotics”. In: 15th Symposium
on Advanced Space Technologies in Robotics and Automation
(ASTRA) (Noordwijk, Netherlands). ESA/ESTEC.

Buse, Fabian et al. (2021-10). “Wheeled locomotion in milli-
gravity: A technology experiment for the MMX Rover”. In:
72th International Astronautical Congress (Dubai, UAE).
The International Astronautical Federation.

Fuchs, Marcus, Rita Streblow, and Dirk Müller (2015). “Visu-
alizing simulation results from modelica fluid models using
graph drawing in python”. In: Proceedings of the 11th Inter-
national Modelica Conference, Versailles, France, Septem-
ber 21-23, 2015. 118. Linköping University Electronic Press,
pp. 737–745.

Gebremedhin, Mahder (2019-01). Automatic and Explicit Par-
allelization Approaches for Equation Based Mathematical
Modeling and Simulation. Linköping University Electronic
Press. DOI: 10.3384/diss.diva-152789.

Google (2014). FlatBuffers. URL: https : / / google . github . io /
flatbuffers (visited on 2021-04-22).

Greenberg, Donald P. et al. (1997). “A Framework for Realistic
Image Synthesis”. In: Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’97. USA: ACM Press/Addison-Wesley Publishing
Co., pp. 477–494. ISBN: 0897918967. DOI: 10.1145/258734.
258914. URL: https://doi.org/10.1145/258734.258914.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library-recent development
and applications”. In: Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden.
096. Linköping University Electronic Press, pp. 899–911.

JAXA (2017-08). Gravity both too strong and too weak: landing
on the Martian moons. URL: https://mmx-news.isas.jaxa.jp/
?p=331&lang=en (visited on 2021-04-22).

JAXA (2020-10). The MMX Rover is undergoing tests for land-
ing. URL: https://mmx-news.isas.jaxa.jp/?p=1271&lang=en
(visited on 2021-04-22).

Joos, Hans-Dieter et al. (2002). “A multi-objective optimisation-
based software environment for control systems design”. In:
IEEE International Conference on Control Applications and
International Symposium on Computer Aided Control Sys-
tems Design, 2002-09-18 - 2002-09-20, Glasgow, Scotland
(UK). IEEE, pp. 7–14.

Khronos (2021). glTF Specification Webpage. URL: https : / /
www.khronos.org/gltf (visited on 2021-04-22).

Lange, Michael (2020-09). First tests for landing the Martian
Moons eXploration Rover. URL: https://www.dlr.de/content/
en/articles/news/2020/03/20200930_in- free- fall - to- the-
martian-moon-phobos.html (visited on 2021-04-22).

Otter, Martin, Hilding Elmqvist, and Sven Mattsson (2003-11).
“The New Modelica MultiBody Library”. In: pp. 311–330.

Pece, Fabrizio, Jan Kautz, and Tim Weyrich (2011). “Adapting
Standard Video Codecs for Depth Streaming”. In: Joint Vir-
tual Reality Conference of EGVE - EuroVR. Ed. by Sabine
Coquillart, Anthony Steed, and Greg Welch. The Eurograph-
ics Association. ISBN: 978-3-905674-33-0. DOI: 10 . 2312 /
EGVE/JVRC11/059-066.

Pignède, Antoine and Roy Lichtenheldt (2022). “Modeling,
Simulation and Optimization of the DLR Scout Rover to
Enable Extraterrestrial Cave Exploration”. In: The 6th Joint
International Conference on Multibody System Dynamics
(IMSD) and The 10th Asian Conference on Multibody Dy-
namics (ACMD), New Delhi, India: October 16-20, 2022. Ac-
cepted for publication.

Reiser, Robert (2021). “Object Manipulation and assembly in
Modelica”. In: Proceedings of the 14th international Model-
ica conference. Linköping University Electronic Press.

Ribes, Alejandro and Christian Boucheny (2011-04). “Eye-
Dome Lighting: a non-photorealistic shading technique”. In:
URL: https://blog.kitware.com/eye- dome- lighting- a- non-
photorealistic-shading-technique (visited on 2021-04-22).

Schuster, Martin J. et al. (2020-10). “The ARCHES Space-
Analogue Demonstration Mission: Towards Heterogeneous
Teams of Autonomous Robots for Collaborative Scientific
Sampling in Planetary Exploration”. In: IEEE Robotics and
Automation Letters 5.4, pp. 5315–5322. DOI: 10 .1109 / lra .
2020.3007468.

Ulamec, S. et al. (2019-10). “A rover for the JAXA MMX
Mission to Phobos”. In: 70th International Astronautical
Congress (Washington DC, USA). The International Astro-
nautical Federation. Chap. A3.

Unigine (2021). URL: https://unigine.com/ (visited on 2021-04-
22).

VDI/VDE-Fachbereich Engineering und Betrieb (2016-08). Vir-
tual commissioning - Model types and glossary. Tech. rep.
VDI/VDE 3693. Verein Deutscher Ingenieure e.V., p. 35.

Waurich, Volker and Jürgen Weber (2017). “Interactive FMU-
based visualization for an early design experience”. In: Pro-
ceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017. 132. Linköping
University Electronic Press, pp. 879–885.

Wedler, Armin et al. (2017-09). “First Results of the ROBEX
Analogue Mission Campaign: Robotic Deployment of Seis-
mic Networks for Future Lunar Missions”. In: 68th Interna-
tional Astronautical Congress (Adelaide, Australia). The In-
ternational Astronautical Federation.

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

204 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181197

Towards a Modelica OPC UA Library for Industrial Automation

Bernhard Thiele1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
bernhard.thiele@dlr.de

Abstract
Open Platform Communications Unified Architecture
(OPC UA) is often named as a prospective enabler for fu-
ture automation systems integrations, as for example en-
visioned in the German Initiative Industrie 4.0. The DLR
OPC UA Modelica library connects OPC UA with the
Modelica world. There are two main goals: First, OPC
UA server capabilities for emulating the communication
interface of (physical) hardware components in order to
create component simulations, e.g., for virtual commis-
sioning. Second, OPC UA client capabilities for interact-
ing with real-world hardware components, e.g., for pro-
cess visualization and monitoring or interactive simulation
and control purposes. The library works on Windows and
Linux platforms. It is tested using the Modelica environ-
ments Dymola and OpenModelica.
Keywords: OPC UA, Industry 4.0, Robotics, Modelica

1 Introduction
Open Platform Communications Unified Architecture
(OPC UA) is often named as a prospective enabler for fu-
ture automation systems integrations. It is considered as
an existing technology which can cover various communi-
cation aspects for flexible production lines as envisioned
in the German Initiative Industrie 4.0 and is also promi-
nently mentioned in the Reference Architecture Model In-
dustrie 4.0 (ZVEI 2015).

The significance of OPC UA as a core communication
protocol for future automation systems has prompted the
development of a Modelica library with the goals of en-
abling:

• Component simulations: The simulated component
has an OPC UA server instance which mimics the
OPC UA server of an actual system component down
to some level of acceptable fidelity. Modelica is
used for modeling the component’s behavior in or-
der to provide realistic values for the simulated pro-
cess variables. Consumers of the data are OPC
UA clients, e.g., in supervisory control and data ac-
quisition (SCADA) sytems. Possible scenarios are
Hardware-in-the-Loop (HIL) simulation or virtual
commissioning.

• Interactive simulation and control: The application
has an OPC UA client instance which interacts with
physical hardware components. The Modelica-based

application uses actual hardware process variables
which it queries from an OPC UA server instance
on the real hardware component. Possible scenarios
include querying quantities from hardware compo-
nents for process visualization and monitoring and
(model-based) high-level control tasks.

The term component simulation is used in the sense as
defined in (Harrison and Proctor 2015), where emulation
is defined as “the production of artificially created signals
to represent the physical presence of some part of the man-
ufacturing process” and a simulation of one component
with emulation capabilities is termed as a component sim-
ulation.

The following paragraphs briefly describe existing ap-
proaches of supporting OPC UA connectivity in Modelica
environments.

The OpenModelica environment (Fritzson et al. 2020)
supports an option for starting an embedded OPC UA
server which maps the simulation variables into an address
space which can be monitored by OPC UA clients. In ad-
dition, a connected client can control the progress of the
simulation by setting specific simulation control variables
through the OPC UA interface. The feature was added
during the OpenCPS project and is briefly described in its
deliverable report (Sjölund and Asghar 2018). It is worth
noting that the server implementation is at the tool level,
i.e., OpenModelica specific. Additionaly, while the goal
of our library-based OPC UA server approach is to model
the communication interface of (physical) hardware com-
ponents (in order to create component simulations for HIL
simulation and virtual commissioning), the goal of the
OpenModelica tool-based OPC UA server is to facilitate
debugging and monitoring of (embedded) OpenModelica
real-time simulations.

The Modelica OPC UA libraries from Wolfram (Wol-
fram Research 2021) and ESI (ESI Group 2021) provide
OPC UA client functionality. Their goals regarding the
Modelica OPC UA client interface are similar to the goals
of our own library. The significant difference is that in
their present state OPC UA server capabilities are not in
the scope of these libraries.

One common trait of all the approaches for connecting
OPC UA to Modelica (including our own), is that they rely
on the open62541 open-source implementation of OPC
UA (open62541 2021) as underlying technology stack.

DOI
10.3384/ecp21181205

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

205

2 OPC UA
Besides being a hardware-independent communication
protocol, the interesting capability of OPC UA is the
ability of semantic information modeling. This informa-
tion modeling allows an object-oriented style of modeling
devices including hierarchical composition, object types
(≈ classes), type hierarchies (≈ inheritance), instantiation,
and (customizable) relations between objects. Indeed, if
desired, there is the option of using the well-established
Unified Modeling Language (UML) as base for OPC UA
information model design as described by Pauker et al.
(2016).

The base elements of OPC UA’s meta model are nodes.
These nodes are connected by typed references result-
ing in an undirected graph forming the OPC UA Address
Space. Several node classes are predefined by the stan-
dard. Each node has a set of attributes which depend on
the node class. They can be mandatory or optional. An at-
tribute which is mandatory for any node is its NodeId for
uniquely identifying the node.

The information model can be extended by so-called
companion specifications. Simply speaking, one could
compare those to libraries in conventional programming
languages, e.g., they usually define new object types
which can be instantiated. Anyone, e.g., device manufac-
tures, can define own extensions. However, companion
specifications particularly facilitate domain specific stan-
dardization.

A lot of work in our group is centered around robotic
applications. Hence, integrating the OPC UA Companion
Specification for Robotics (OPC 40010-1 2019) is of par-
ticular interest. The corresponding specification work is
driven by the VDMA Robotics Initiative with the goal of
specifying an OPC UA information model for complete
motion device systems (including, but not limited to, con-
ventional industrial robots), split up into several parts (Part
1 to Part n). At the time of this writing, the group has
so far completed and released Part 1. It provides a ba-
sic description of a motion device system with the aim of
pushing condition data vertically into higher level man-
ufacturing systems. Future extension will cover further
use cases, e.g., to configure and control a robot. An ex-
ample exploring interesting possibilities is given by Pro-
fanter et al. (2019) who propose an extension which pro-
vides a standardized (hardware-agnostic) control interface
for robot manipulators.

3 Overview
Figure 1 gives an overview over the library structure and
shows a basic server example.

The package browser at the left side of Figure 1 shows
an OPCUAServer and OPCUAClient block which can
be dragged and dropped into the diagram layer. These
are the central blocks in the library for creating an OPC
UA server or client, respectively. The LeanLoggerInit
block ensures that messages within the external C code

opcuaserver

readDoublewriteDouble

sin(time)

realExpression

nodes
leanLoggerInit

Figure 1. Library structure (left) and basic OPC UA server ex-
ample (right).

are forwarded to the Modelica environment and also
registers the Modelica environment’s implementation of
the ModelicaAllocateStringWithErrorReturn()
to the interfaced dynamic link library (DLL, Windows), or
shared object library (SO, Linux). The Functions pack-
age contains the function interface to the external C code.

The right side of Figure 1 shows the diagram layer of
a basic server example. The opcuaserver component
is an instance of the OPCUAServer block. It is declared
as “inner”, hence it can be accessed in all deeper lev-
els of the model’s instance hierarchy as an “outer” ele-
ment. The nodes component is a configuration record. It
is passed to the opcuaserver component as a parameter.
It contains information about OPC UA nodes which shall
be created on the server during initialization.

At the bottom are instances of blocks for writing and
reading variables of type Double. These blocks contain
parameters which specify the NodeIds of the variable
nodes which are the target (source) of the write (read) op-
eration.

An OPC UA server is started by simply simulating the
model. Usually real-time synchronization is desired which
can be either provided by the capabilities of the simulation
environment or by external code, e.g., using the Model-
ica_DeviceDrivers library (Thiele et al. 2017). After start-
ing the simulation, the OPC UA server will listen on a
specified port for client connections (default port number
is 4840).

A good general purpose OPC UA test client is the
freely available UaExpert from Unified Automation (Ua-
Expert 2021). It can provide a plethora of information
in different configurable views. Figure 2 shows a pos-
sible view on the connected basic server example. The
“Project” pane (upper left window) shows the connected
server(s) (“open62451-based OPC UA Application”). The
“Address Space” pane (lower left window) allows brows-
ing through the nodes of the server’s information model.
Nodes from the “Address Space” pane can be drag-and-
dropped into the “Data Access View” (DA View) pane
(right window). The DA View creates a subscription and

Towards a Modelica OPC UA Library for Industrial Automation

206 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181205

Figure 2. Unified Automation’s test client UaExpert connected
to the basic OPC UA server example.

allows monitoring (configurable) aspects of the nodes. In
this example there are four monitored nodes. Only the
node with the display name “the double” changes its value
during the simulation. This is the node referenced in the
writeDouble block of Figure 1. The remaining nodes in
the DA View are defined in the nodes record (including
an initial value), but they are not written to during simula-
tion time.

The DA View also shows the pivotal NodeId attribute
in the “Node Id” column. NodeIds refer to a namespace
with an additional identifier value that can be an integer, a
string, a guid or a bytestring. In the example two nodes are
using an integer identifier (“Numeric”) and two are using
a string identifier (“String”). All shown nodes are in the
namespace index “1” (“NS1”), the namespace reserved for
the local server.

4 Server and Client
On the one hand the library provides OPC UA server func-
tionality with the goal of modeling the communication
interface of (physical) hardware components. The main
task is providing simulated process variables to external
devices, e.g., for HIL simulation or virtual commission-
ing. On the other hand the library provides OPC UA client
functionality with the goal of querying actual process vari-
ables from hardware components, e.g., for process visual-
ization and monitoring or (model-based) high-level con-
trol tasks. It is possible to use server and client blocks
within the same Modelica model.

4.1 Server
Figure 3 gives more details about some server related
blocks. The left-hand side robot denotes a placeholder for
an arbitrary physical model with process variables which
are published by an OPC UA server running on the phys-
ical device. The nodes record instance is an approach
for collecting nodes which shall be created on the server
in one central data structure. The opcuaserver has
two main parameters: portnumber, for specifying the
server’s listening port, and nodes, a configuration record
for defining own nodes and namespaces on the server.
Hence, the declaration in the model is:

opcuaserver

writeDouble

axis1.flange.phi

realExpression

nodes

Figure 3. OPC UA server: The node record specifies a list
of nodes which are created on the server. Other blocks, like
writeDouble, can use these NodeIds.

inner Blocks.OPCUAServer opcuaserver(
portNumber=4840, nodes=nodes);

The writeDouble block needs to specify a NodeId (us-
ing parameters nsIndex, nodeIdType, id) which iden-
tifies the node to which it periodically writes its input1. It
is an error if this node does not exist on the server or if it
is not compatible.

The record instance nodes is an instance of
OPCUA.Types.Nodes. Its structure is shown in List-
ing 1. The annotations are hints to editing tools for cre-
ating a convenient graphical user interfaces (GUI) for
filling the variable sized arrays, e.g., the dialog for the
VariableNode vars[:] array is the one displayed at
the bottom of Figure 3.

Listing 1. Nodes configuration record.

record Nodes
String nsUris[:] = fill("", 0) annotation

(Dialog(enable=true));
VariableNode vars[:] = fill(

OPCUA.Types.VariableNode(), 0)
annotation (Dialog(enable=true));

end Nodes;

There are limits and compromises in this approach. First
most, it cannot be used to create arbitrary OPC UA

1Parameter nsIndex identifies the namespace index (“1” denot-
ing the namespace reserved for the local server), nodeIdType the
NodeId type (here either “Numeric” or “String”), id the identifier
value, hence these parameters correspond to the attributes displayed in
the “Node Id” column of Figure 2.

Session 3A: Libraries

DOI
10.3384/ecp21181205

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

207

nodes. Instead, it aims at supporting a subset of vari-
able node types which have a rather straightforward map-
ping to primitive Modelica types (including arrays of these
types). Also notice, that it uses strings at places where
this seems not to fit in all cases (id, arrayDimension,
initValue). This is a compromise so that the columns
can encode values of different data types, e.g., Boolean,
Integer, or Real.

4.2 Client
Figure 4 gives more details about some client related
blocks. The left-hand side denotes the server side to which

opcuaclient readDouble

writeBooleanbooleanStep

2.5 s

 OUTPUT

 POWER

 INPUT

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

 OUTPUT

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

 COMMUNICATION

 RX TX FLT

 MENU ALARMS

 OVERVIEW

 QUANTITY Brandon-Alvin ViewerPane K600

Figure 4. OPC UA Client: The opcuaclient block connects
to an OPC UA server. Blocks like writeBoolean can access
nodes on the server by their NodeId.

the client connects, which typically provides hardware re-
lated process variables.

The opcuaclient needs to specify the endpoint URL
of the server instance. In the example a local server listen-
ing at port 4840 is expected. Variable serverRunning
is not a parameter, it has continuous-time variabil-
ity. Its main use is in Modelica models which combine
opcuaclient and opcuaserver blocks in one model.
In this case, it can be used to ensure that the server is ready,
before the client (in the same model) connects to it. Given
the respective access rights, it is also possible to create
new nodes on the server. For this purpose a configura-
tion record can be passed as parameter nodes (default: no
nodes are created). Identical to the server case the record
needs to be an instance of OPCUA.Types.Nodes.

Often the main interest is in reading process variables,
but it is also possible to write data to the server as indi-
cated by the writeBoolean block. Comparing Figure 4

with Figure 3 shows that the client and server blocks for
accessing variables have a similar interface.

Sometimes NodeIds used by the server are known a pri-
ori by the client. This is for example the case for standard-
ized information models, including the OPC UA specifi-
cation itself, as well as companion specifications, or ven-
dor specific information models. However, in practice
the client often has no a priori knowledge of the NodeIds
used by the server for variables of interest. Instead, the
client browses the address space of the server program-
matically in order to find NodeIds corresponding to ob-
jects and variables of interest. This is feasible since the
address space is represented hierarchically, allowing for
simple and complex structures to be discovered and uti-
lized by OPC clients (see the “Address Space” pane in
Figure 2).

In particular, nodes in the address space can be dis-
covered by browse paths, i.e., by following a sequence
of named references (browse names) from a start node to
hierarchically subordinated nodes. A basic starting node
for searching is the root objects folder. Its NodeId is
known, because it is defined by OPC UA specification.
The presented Modelica library browse paths delimited by
‘/’ can be used for discovering NodeIds, e.g., starting from
the root objects folder the browse path “Server/ServerSta-
tus/State” can be used for retrieving the NodeId assigned
to the status code variable of the server.

There are different types of references which can model
different types of hierarchical composition, e.g., for mod-
eling component composition, folder organization, or in-
stance hierarchies. This allows a fine-grained filtering
based on the type of reference. However, at present the
DLR OPCUA library does not discern between different
types of references when trying to resolve a browse path.

4.3 OPC UA for Robotics
Since a lot of work in our group is centered around robotic
applications, integrating the OPC UA for Robotics Com-
panion Specification (OPC 40010-1 2019) is of high in-
terest. The robotics companion specification itself de-
pends on a companion specification featuring an informa-
tion model for devices (OPC 10000-100 2020). Integrat-
ing these companion specifications is a considerable effort
and there are different possible approaches.

Accompanying to the textual specification documents
there exist XML-based information model definitions ac-
cording to the OPC UA Nodeset XML schema. These so
called nodeset files encode OPC UA information models
and are understood by respective tools. The open62451
distribution includes an XML Nodeset Compiler, a python-
based tool, which can generate C code (including C header
files) from such XML files. This C code needs to be in-
cluded in the build process for compiling working server
applications. Hence, for supporting the desired compan-
ion specifications it is required to modify the build process
so that code is generated from the respective nodeset files
and this code needs to be included in the compilation pro-

Towards a Modelica OPC UA Library for Industrial Automation

208 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181205

cess.
The present prototype uses an approach in which a

C++ wrapper of the robotics information model encapsu-
lates required function calls to the “low-level” interface
of the underlying open62451 library. All code, including
dependencies to generated code from the XML Nodeset
Compiler and the open62541 library, is assembled in one
shared library (see section 5 for more details). The devel-
oped C++ classes themselves are encapsulated by a plain
external C interface which is compliant to the Modelica
external function interface. These C functions are called
from respective Modelica functions and are used for cre-
ating Modelica external objects.

The Modelica functions can then be used for creating an
OPC UA for Robotics compliant information model on the
server. Figure 5 shows an example of such an information
model as seen by a connected client.

Figure 5. OPC UA for Robotics compliant server example as
seen by a connected test client (UaExpert).

5 Function Interface
Figure 6 shows an excerpt from the comprehensive
Functions package. This package contains definitions
for external objects and functions operating on these ob-
jects.

Table 1 lists several notable external objects and their
underlying (open62451) data structures. The open62451
data structures can be recognized by the library’s nam-
ing convention of using the prefix “UA_” for its exported
symbols. Modelica external objects are opaque pointers
to some address in memory, so (in principle) the underly-
ing C data structures can be changed or extended without
the need of changing the Modelica code. Possible changes
may even include to swap out the underlying OPC UA li-
brary (though there is at present no intention for such a
step).

While NodeId and OPCUAClient are directly mapped
to open62541 data structures, the OPCUAServer exter-

Figure 6. Excerpt of the Functions package. It contains ex-
ternal object classes and external functions (EF) operating on
these objects.

Table 1. Notable external objects and their opaque pointer map-
pings.

Modelica C/C++→ open62451 (UA_. . .)

NodeId → UA_NodeId
OPCUAClient → UA_Client
OPCUAServer → C++ struct with server related

settings:

struct uam_server {
std::thread threadID;
UA_Server *server;
UA_Boolean running;
uam_PubSub *pubSub;

};

Particularly, it includes a member
of type pointer to UA_Server.

nal object is mapped to a C++ wrapper structure which
contains additional information. After a configuration
phase, the server loop is started in a dedicated thread by
a function called OPCUAServer.run(...). The identi-
fier of the spawned thread is saved in the struct member
threadID and struct member running is set to “true”.

The struct member pubSub is a composite object
which aggregates data structures and logic related to the
OPC UA Publish/Subscribe (PubSub) extension. Pub-
Sub extends the OPC UA client/server architecture with
facilities which (among other things) can enable low-
latency communication. Results of an experimental low-
latency open62451 PubSub implementation are reported
in (Pfrommer et al. 2018). The PubSub extension is us-
able as an experimental feature within the DLR OPC UA
library, but it is not yet intended for real-world use-cases.

A view on the DLR OPC UA library’s layered archi-
tecture is shown in Figure 7. Only core components are
shown, components like the logging facilities or experi-
mental components are suppressed.

Session 3A: Libraries

DOI
10.3384/ecp21181205

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

209

DLR OPC UA Library

open62541
GoogleTest

Block Layer

Function Layer

opcua-mefi.h
Modelica External C Interface

opcua-mefi (DLL,SO) Library

*.cpp modules (client/server/...)

OPC UA NodeSets and supporting files

nodeset_compiler.py

CMake-based build and test environment

opcua-mefi

unit tests

Figure 7. DLR OPC UA library’s layered architecture.

The project build, test and packaging automation is
managed by the CMake cross-platform family of tools
(CMake 2021).

The top Modelica OPC UA library uses the Modelica
external C functions interface (MEFI) of the underlying
opcua-mefi library. The opcua-mefi library is a dynamic
link library (DLL) on Windows, or a shared object library
(SO) on Linux. Its Modelica external function interface
compliant application programming interface (API) is de-
clared in the header file opcua-mefi.h.

While the opcua-mefi library declares a Modelica com-
pliant external C function interface, the internal library
consists of C++ code. This code wraps and adapts
open62451 facilities into structures which can be conve-
niently used from Modelica. One may say it provides a
Modelica-oriented high-level interface to a subset of the
open62451 library. Although invisible to a Modelica li-
brary user, it is actually the most extensive part of the DLR
OPC UA library.

An important part of the opcua-mefi library is its
unit tests. These tests use the GoogleTest framework
(GoogleTest 2021) and its CMake integration in order to
provide a convenient testing environment on the supported
platforms. It integrates nicely with various development
environments, e.g., JetBrain’s CLion or Microsoft Visual
Studio.

The base technology stack is provided by the
open62451 open-source library from the open62451
project (open62541 2021). It is an impressive open-source
C (C99) implementation of OPC UA, licensed under the
liberal Mozilla Public License v2.0. Despite its good
documentation and a large set of indispensable examples,
there is a considerable learning curve for using the library.
Though a good part of the learning curve can be attributed
to the inherently large and complex OPC UA standard it-
self.

6 Application Example
The Factory of the Future project (DLR 2021) is a cross-
sectoral research project within the German Aerospace

Center (DLR). The aim is to develop a wide range of digi-
tal production technologies, robotic systems and robotic
applications for flexible and networked manufacturing
processes, and to demonstrate them in ‘lead scenarios’.

One cross-sectoral scenario which is investigated is an
assembly process for a motor saw. The scenario includes
(physical) robot cells from the Institute of Robotics and
Mechatronics (DLR-RM) and the Center for Lightweight-
Production-Technology (DLR-ZLP). OPC UA is used as
interoperability standard between the different robot cells
and involved institutes. The task of our institute, the In-
stitute of System Dynamics and Control (DLR-SR), is
the modeling of the assembly process with appropriate fi-
delity. Our goal with this work is to explore digital twin
applications based on physically accurate models.

Modelica is used as modeling language for the physics-
based digital twin. There are several challenges for en-
abling the intended applications, among them:

• Modeling the assembly process requires efficient ob-
ject manipulation capabilities which can accommo-
date real-time data updates.

• The Modelica-based simulation model needs to con-
nect and synchronize with the real-world entities and
processes.

The first issue lead to the development of a new Modelica
library for manipulation tasks, which is outside the scope
of this work (Reiser 2021). The present work is concerned
with finding a solution to the second issue.

As a first step towards the complete assembly process,
one robot cell has been connected at the time of this writ-
ing. Figure 8 shows the considered robot cell which has
been set up in DLR-RM’s lab. The depicted robot is from

Figure 8. Robot cell from DLR-RM synchronized with
Modelica-based real-time simulation model (upper-right screen)
from DLR-SR using the DLR OPC UA library for connectivity.

the recent generation of DLR-RM’s light-weight robots
and bears the project name SARA (Safe Autonomous

Towards a Modelica OPC UA Library for Industrial Automation

210 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181205

Robotic Assistant), (Iskandar et al. 2020). In the upper-
right corner a screen shows a visualization of DLR-SR’s
simulation model (i.e., the “digital twin”) which is syn-
chronized with real-time data from the SARA robot cell.

Figure 9 shows the OPC UA related excerpt of the
Modelica model used for the demonstration depicted in
Figure 8. There are two OPC UA client blocks which

visualizationSARA
robotiq2F140Gripper

fix
ed

R

r=
{0

,0
,0

}

opcuaclient

readArraySARA

readArrayRobotiq

60

greaterThreshold

dynamicsSARA

Figure 9. Excerpt of the OPC UA related parts of the Modelica
model used for the demonstration depicted in Figure 8.

read server variables stemming from the SARA robot cell:
readArraySARA reads the joint angles of the robot arm,
readArrayRobotiq reads the position of the gripper. At
present, a simple threshold is used for giving an indication
whether the gripper is closed or open. Besides the OPC
UA blocks, the figure also shows a composite block with
a (simple) dynamics model for the SARA robot, as well
as a block which is responsible for the 3D visualization of
the robot arm.

A rather complex block shown in this excerpt of the
complete model is the gripper block. It implements the
manipulation mechanics and interacts with the assembly
parts. The assembly parts, as well as the conveyors and
tables in the scene are not shown. All those parts are not
in the scope of this work, they are part of the aforemen-
tioned library for manipulation tasks. In addition, some
visualization related blocks are suppressed. The visual-
ization is provided by a prototype of the next generation
of the DLR Visualization library (Hellerer, Bellmann, and
Schlegel 2014; Kümper, Hellerer, and Bellmann 2021).

Block readArrayRobotiq reads an array variable, but
the array has only one element (the gripper position, a
value in the dimensionless range [0,100]). Essential pa-
rameters of the readArraySARA block are shown at the
top. Notice, that a simple OPC UA approach is used
in which the seven joint angles are packed into one ar-
ray which is identified by a statically fixed string-based
NodeId. Therefore, neither the OPC UA Robotics exten-

sion described in subsection 4.3 is used, nor is there any
need for sophisticated node discovery mechanics on the
client side.

In summary, the described demonstration was a step to-
wards the envisioned Factory of the Future scenario. In
particular, it showed the feasibility of using OPC UA as
interoperability standard. Since the DLR OPC UA library
also supports OPC UA server functionality (see subsec-
tion 4.1), it was possible during development to model
the SARA robot cell including its OPC UA server inter-
face and connect it with the client application of Figure 9
within the same model. This simplifies application devel-
opment, because there is no need that the actual robotic
hardware is available. Further work, extending the pre-
sented base functionality for exploring more complete dig-
ital twin related scenarios is ongoing.

7 Discussion
At the beginning of this library development effort there
was the long-term vision of (automagically) generating
Modelica models from devices described in established
or future automation standards. Since OPC UA is an im-
portant standard for the communication aspect, the idea
was to explore the generation of Modelica models from
OPC UA information models, encoded in nodeset files
(i.e., NodeSet2.xml files), from automation devices and
machinery.

After short initial research into available third party li-
brary and tools the idea emerged of developing a simple
Modelica-oriented C interface on top of the open62451
API. This interface should particularly support the fun-
damental data types from Modelica (Boolean, Integer,
Real, String scalars and arrays) and translate between
these Modelica types and OPC UA types.

7.1 First Steps
The first steps with the open62451 library were very
smooth thanks to good documentation (including work-
ing examples) and a polished CMake-based build system.
However, striving for more general OPC UA support, in-
cluding some more advanced constructions, quickly be-
comes more intricate.

OPC UA defines low-level aspects, like Int16, UInt32,
Int64, which cannot always be mapped satisfactorily to
Modelica (e.g., the Modelica external function interface
defines that Integer are mapped to C int, hence signed
32-bit integers on common Linux and Windows plat-
forms). For not being overly restrictive on the allowed
OPC UA variable types (potentially unsafe) conversions
are used at respective places in the opcua-mefi library. For
mitigation, safe variable value ranges can be checked dy-
namically in the C code and runtime errors can be risen
when violations are detected.

Besides OPC UA built-in types which have a rather
straightforward mapping2, where also exist built-in types

2Modelica Boolean: OPC UA Boolean; Modelica Integer:

Session 3A: Libraries

DOI
10.3384/ecp21181205

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

211

with no such mapping, e.g., NodeId to Modelica. These
types require additional design decisions, e.g., NodeId is
mapped to a Modelica external object. Other OPC UA
built-in types, e.g., XmlElement, are simply not supported
at this state.

7.2 Refactoring
Furthermore, there is a huge flexibility how respective
variable nodes can be defined or discovered in OPC UA
and often very similar (but not identical) functions and
patterns are used for achieving a certain task on either the
server or the client. This lead to quite a lot of repetitive
code in the opcua-mefi library which at some point was
addressed by using C++ templates and its code generation
facilities for achieving more generic and succinct code.

On top of this first interface an experimental Modelica
code generator was written which takes a NodeSet2.xml
file as input and generates a skeleton of Modelica code
with the intent of simplifying and accelerating the devel-
opment of component simulations and physics-based dig-
ital twins. While this worked for the very limited number
of elements considered for the experiment, it also became
apparent that a more complete (industry-relevant) Model-
ica code generator could hardly be based on the facilities
of the present opcua-mefi library.

7.3 Another Approach Needed?
The open62541 library itself uses code generation at vari-
ous places for providing an API which can encompass the
comprehensive OPC UA standard. The key here is that
OPC UA standard information is not only English text, but
partly already encoded in machine processable files, most
notable, NodeSet2.xml files. One could compare these to
a “standard library” in programming which itself is based
on more fundamental principles (syntax and semantics of
the underlying programming language). Hence, using an
appropriate mechanization, C code can be generated from
relevant machine processable files.

This could also be key for enabling a more generic and
complete Modelica interface. Instead of the high-level ori-
ented API of the opcua-mefi library, one could try to inter-
face the lower-level open62451 more directly and use code
generation techniques for gaining a Modelica function in-
terface which is closer to the open62451 API.

Although it seems unrealistic to expect that this would
magically solve all problems, a clever approach in this di-
rection could push the limits.

7.4 Domain-Specific Extensions
Instead of striving for a level of generality which would al-
low taking a NodeSet2.xml file and generate suitable Mod-
elica code, another option is to manually develop library
support for selected (standardized) domain-specific infor-
mation models of interest. Although it might be a sig-

OPC UA SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64; Mod-
elica Double: OPC UA Float, Double; Modelica String: OPC UA
String.

nificant initial development effort for supporting a new
domain, it can result in well-thought-out reusable library
blocks for quickly modeling devices which adhere to the
standardized domain-specific interface.

This is the approach used for the integration of the
Robotics Companion Specification as described in subsec-
tion 4.3. Compared to the generic approach, it is easier to
achieve and can be a good alternative if the expected use-
cases adhere to such domain-specific information models.

7.5 Outside of Modelica
Another approach with a different angle is using dedicated
automation-oriented simulation platforms and rather im-
port Modelica models. Using the Functional Mock-up In-
terface (FMI) standard for such a purpose suggests itself.
For example, Hensel et al. (2016) explore an approach of
integrating FMI-based co-simulation with the SIMIT sim-
ulation platform from Siemens using OPC UA as a generic
middleware technology.

Using a dedicated integration platform can be a practi-
cal and flexible alternative if a such a platform is available.
The discussed Modelica library approach might be more
appealing in Modelica-centric development processes, or
if using an additional platform seems too costly or com-
plicated3.

8 Conclusions and Outlook
Work on the presented Modelica library was started with
no prior experience with OPC UA technology. Thanks
to available resources, like the open-source open62451
project, or the freely available OPC UA test client from
Unified Automation GmbH, the first steps were rather
smooth and quick.

However, moving to slightly more advanced concepts it
quickly became apparent that the OPC UA standard and
related tooling has an intimidating complexity, and it took
longer towards the current state of the Modelica library
with a more moderate progress than expected.

Indeed, there are plenty of more OPC UA features and
aspects which are not yet explored or implemented within
the library, or simply not covered for not exceeding the
scope of this paper. Among them, supporting the Pub-
Sub extension, which has been briefly mentioned in sec-
tion 5. OPC UA PubSub extends the applicability of OPC
UA beyond a strict client/server model and also sketches
a direction towards low-latency communication schemes
(Pfrommer et al. 2018). These are hot topics with no fi-
nal conclusion and ongoing discussions within standard-
ization bodies (Bruckner et al. 2019).

A good amount of the motivation for this work is based
on the anticipation that OPC UA will play a crucial role
for future automation systems. In this respect, exploration
of the underlying concepts and technology has been an im-

3Notice that it is still possible to export a Modelica model with OPC
UA interface blocks as Functional Mock-up Unit (FMU) and import it
into a co-simulation environment.

Towards a Modelica OPC UA Library for Industrial Automation

212 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181205

portant driving factor in the development. Consequently,
the library has the status of an experimental in-house tech-
nology prototype. So far, its runtime stability has been
pleasantly reliable (credits to the open62451 project), but
the interface, structure, naming, documentation, and the
supported feature set is not fixed, yet. Nevertheless, the
library can be made available to interested partners.

Future plans with the library include further exploration
of more advanced concepts, as well as following (and po-
tentially integrating results of) ongoing standardization ef-
forts with a particular interest for robotic applications and
real-time industrial communication.

Acknowledgements
This work was partially funded by the DLR project Fac-
tory of the Future. The author would like to thank Robert
Reiser and Tobias Bellmann for feedback and support dur-
ing the development of the library. For the described
application example the author would like to thank all
who contributed to the demonstration. Particularly, Robert
Reiser who implemented the Modelica application exam-
ple model, Oliver Eiberger and Timo Bachmann who pro-
vided CAD data of the robot cell, and Korbinian Notten-
steiner and Stefan Schneyer who implemented the OPC
UA interface of the robot cell. Finally, the author would
like to thank the reviewers for the constructive comments
to improve the manuscript.

References
Bruckner, Dietmar, Marius-Petru Stănică, Richard Blair, Sebas-

tian Schriegel, Stephan Kehrer, Maik Seewald, and Thilo
Sauter (2019). “An Introduction to OPC UA TSN for Indus-
trial Communication Systems”. In: Proceedings of the IEEE
107.6, pp. 1121–1131. DOI: 10.1109/JPROC.2018.2888703.

CMake (2021). URL: https://cmake.org/ (visited on 2021-04-15).
DLR (2021). DLR Factory of the Future. URL: https://factory-

of-the-future.dlr.de/ (visited on 2021-04-15).
ESI Group (2021). SimulationX OPC-UA Client Modelica li-

brary. URL: https://doc.simulationx.com/4.2/1033/Content/
Libraries / InterfacesGeneral / Communication / OPCUA /
open62541.htm (visited on 2021-06-24).

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

GoogleTest (2021). URL: https://github.com/google/googletest/
(visited on 2021-04-15).

Harrison, William S. and Frederick Proctor (2015). “Virtual Fu-
sion: State of the Art in Component Simulation/Emulation for
Manufacturing”. In: Procedia Manufacturing 1. 43rd North
American Manufacturing Research Conference, NAMRC 43,
8-12 June 2015, UNC Charlotte, North Carolina, United
States, pp. 110–121. ISSN: 2351-9789. DOI: 10 . 1016 / j .
promfg.2015.09.069.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library - Recent develop-
ment and applications”. In: 10th Int. Modelica Conference.
Ed. by Hubertus Tummescheit and Karl-Erik Årzén. Lund,
Sweden. DOI: 10.3384/ECP14096899.

Hensel, Stephan, Markus Graube, Leon Urbas, Till Heinzerling,
and Mathias Oppelt (2016). “Co-simulation with OPC UA”.
In: 2016 IEEE 14th International Conference on Industrial
Informatics (INDIN). Poitiers, France, pp. 20–25. DOI: 10 .
1109/INDIN.2016.7819127.

Iskandar, Maged, Christian Ott, Oliver Eiberger, Manuel Kep-
pler, Alin Albu-Schäffer, and Alexander Dietrich (2020).
“Joint-Level Control of the DLR Lightweight Robot SARA”.
In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 8903–8910. URL: https : / /
elib.dlr.de/138637/.

Kümper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021). “DLR Visualization 2 Library - Real-Time Graphical
Environments for Virtual Commissioning”. In: 14th Int. Mod-
elica Conference. Ed. by Martin Sjölund, Adrian Pop, Lena
Buffoni, and Lennart Ochel.

OPC 10000-100 (2020). OPC Unified Architecture – Part 100:
Devices. Tech. rep. Release 1.02.02. OPC Foundation.

OPC 40010-1 (2019). OPC UA for Robotics Companion Speci-
fication Part 1: Vertical integration. Tech. rep. OPC Founda-
tion.

open62541 (2021). URL: http://open62541.org (visited on 2021-
04-15).

Pauker, Florian, Thomas Frühwirth, Burkhard Kittl, and Wolf-
gang Kastner (2016). “A Systematic Approach to OPC UA
Information Model Design”. In: Procedia CIRP 57. Factories
of the Future in the digital environment - Proceedings of the
49th CIRP Conference on Manufacturing Systems, pp. 321–
326. ISSN: 2212-8271. DOI: https://doi.org/10.1016/j.procir.
2016.11.056.

Pfrommer, Julius, Andreas Ebner, Siddharth Ravikumar, and
Bhagath Karunakaran (2018). “Open Source OPC UA Pub-
Sub Over TSN for Realtime Industrial Communication”. In:
23rd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA). IEEE. Turin, Italy,
pp. 1087–1090. DOI: 10.1109/ETFA.2018.8502479.

Profanter, Stefan, Ari Breitkreuz, Markus Rickert, and Alois
Knoll (2019). “A Hardware-Agnostic OPC UA Skill Model
for Robot Manipulators and Tools”. In: 24th IEEE Interna-
tional Conference on Emerging Technologies And Factory
Automation (ETFA). IEEE. Zaragoza, Spain. DOI: 10.1109/
ETFA.2019.8869205.

Reiser, Robert (2021). “Object Manipulation and Assembly in
Modelica”. In: 14th Int. Modelica Conference. Ed. by Martin
Sjölund, Adrian Pop, Lena Buffoni, and Lennart Ochel.

Sjölund, Martin and Adeel Asghar (2018). Real-time debugging
and monitoring. Technical Note D4.2 (M36). ITEA3, Project
14018: OPENCPS project.

Thiele, Bernhard, Thomas Beutlich, Volker Waurich, Martin
Sjölund, and Tobias Bellmann (2017). “Towards a Standard-
Conform, Platform-Generic and Feature-Rich Modelica De-
vice Drivers Library”. In: 12th Int. Modelica Conference. Ed.
by Jiří Kofránek and Francesco Casella. Prague, Czech Re-
public. DOI: 10.3384/ecp17132713.

UaExpert (2021). URL: https://www.unified-automation.com/
products/development-tools/uaexpert.html (visited on 2021-
04-15).

Wolfram Research (2021). Wolfram OPCUA Modelica library.
URL: https : / / reference . wolfram . com / system - modeler /
libraries/OPCUA/OPCUA.html (visited on 2021-06-24).

ZVEI (2015). The Reference Architectural Model Industrie 4.0
(RAMI 4.0). Tech. rep. Zentralverband Elektrotechnik- und
Elektronikindustrie e.V. (ZVEI).

Session 3A: Libraries

DOI
10.3384/ecp21181205

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

213

214 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Modelica library for Thermal-Runaway Propagation in
Lithium-Ion Batteries

Christian Groß Andrey W. Golubkov

Virtual Vehicle Research GmbH, Austria, batterysafety@v2c2.at

Abstract
Based on the Thermal Runaway (TR) experiments con-
ducted in our laboratory a simple method of describ-
ing a battery’s thermal behaviour was developed. In
the approach - which we call simple tracing method -
the temperature rate measurement from Accelerating Rate
Calorimetry (ARC) during a TR experiment is approxi-
mated to determine the thermal behaviour of the model.
This method was implemented in Modelica using Dymola.
Alongside the implementation of the TR model a com-
plete Modelica package with useful models for TR prop-
agation simulation was developed. The package called
“BatterySafety” serves as a foundation for further model
development to investigate TR propagation and physical
counter measures in greater detail. The focus of all the
models in the package was efficiency, intelligibility and
user-friendliness. With this approach we are able to simu-
late TR propagation of a complete battery pack.
Keywords: Lithium-Ion Batteries, Battery Safety, Thermal
Runaway, Thermal Runaway Propagation

1 Introduction
List of Acronyms

• TR - Thermal Runaway

• LIB - Lithium-Ion Battery

• ARC - Accelerating Rate Calorimetry

• SOC - State-Of-Charge

Motivation
Batteries of electric vehicles are safe at temperatures be-
low ≈ 80◦C. If Li-ion cells reach temperatures above
80◦C the cells start to degenerate and when they reach
a even higher temperatures they may transit into thermal
runaway (TR). An over temperature of a cell is a major
safety concern and may be caused by failures inside the
cell or by the surrounding of the cell. In automotive appli-
cations, where energy storage usually does not consist of
a single cell but a battery pack of multiple connected cells,
TR is an even bigger concern. The battery pack allows for
TR propagation, where failure in one cell causes failure
in adjacent cells, which can ignite the whole battery pack.
Understanding and predicting TR and TR propagation are
key to the development of countermeasures.

Feng, Lu, et al. (2016) said, what could not have been
said better: “Experimental study on TR propagation is
essential, and we may need massive experiments on TR
propagation to help design a safe battery pack. [...] How-
ever, given that the experimental study on TR propagation
within a battery pack costs much time and money, building
an easy-to-use, verified abuse model that realistically cap-
tures the mechanisms of TR propagation in battery pack is
beneficial to find efficient approaches to prevent TR prop-
agation.” In that spirit the BatterySafety library was de-
veloped, backed by the knowledge our team gathered over
the years (Andrey W. Golubkov et al. 2018; Essl, Andrey
W. Golubkov, et al. 2020) and will be released under the
Modelica License 2.

Paper Structure
This paper consists of six sections, starting with the intro-
duction in section 1. In section 2 we are going to look
at the mathematical backbone of the library and introduce
the simple tracing model. Section 3 then discusses the im-
plementation of the library with a focus on key models.
And section 4 showcases the functionality of the library
by looking at some example simulations, followed by sec-
tion 5 and section 6 the discussion and conclusion of the
paper.

2 Simple Tracing Model
The key element of the BatterySafety library is the TR
model around which the library is built. This section aims
to educate about our modelling approach, it’s benefits and
weaknesses. First we lay out the foundation, then we pro-
cess that into a implementable form and last we talk about
how the heating rate data needed for the model is obtained.

2.1 Deriving the model
Consider the thermal runaway being a simple chemical re-
action

A→ B (1)

with the concentration c of the educt A going from 1 to 0

c = 1→ c = 0 (2)

The chemical reaction happens inside a Li-ion cell with a
fixed heat capacity Cp and an overall enthalpy change ∆H.
The temperature rate of the Li-ion cell during TR depends
on the kinetics of the chemical reaction ċ and on the heat

DOI
10.3384/ecp21181215

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

215

exchange with the ambient αA∆T (αA is the heat transfer
coefficient times the area).

Ṫ =−∆H
Cp

ċ(T)+αA∆T (3)

which is a rough approximation of the first law of thermo-
dynamics. Consider a ideal adiabatic reaction with α = 0;
no heat exchange with the ambient

Ṫ =−∆H
Cp

ċ(T) (4)

Rewrite and consider the temperature dependence of Ṫ

ċ(T) =−
Cp

∆H
Ṫ (T) (5)

The temperature rate Ṫ (T) is given by the piecewise lin-
earisation in the rate plot of the experiment, as depicted
in Figure 1. In the rate plot g(T) follows the measured
temperature between 150◦C and 300◦C. The measured
decrease of the rate at temperatures T > 300◦C is ig-
nored in g(T), because it is caused by spatial effects (spa-
tial heat flow during the experiment). At T < 150◦C the
self heating could not be detected by the measurement
equipment (because it is obscured by the external heat-
ing at > 1◦C/min), but it is known from other publications
(Feng, Zheng, et al. 2019) that the slope can extrapolated
below 150◦C.

During simulation the model traces Ṫ (T): it starts with
some elevated temperature, extracts the Ṫ (T) from the rate
plot and updates the temperature. In the next time step the
model extracts Ṫ (T) with the updated temperature and so
on until all educts are consumed (c = 0) then the rate is
forced to zero Ṫ (c≤ 0) = 0.

Ṫ (T) =

{
linear approximation, if c > 0
0, otherwise

(6)

The overall enthalpy change ∆H is calculated from the
maximal temperature change during the experiment

∆H =Cp (Tmax−Tonset) (7)

To successfully and efficiently implement the simple trac-
ing model in Modelica, we need to adapt the equations a
little. Instead of considering the concentration c, we want
to think in terms of available energy E, which we assume
to depend linearly on the c

E(T) = ∆Hc(T) (8)

We can now express Equation 5 in terms of energy as well

Ė(T) =−CpṪ (T) (9)

which can be implemented in a straight forward way as
Section 3.2 shows.

The simple tracing model has two main disadvantages

• The heat loss to the ambient is not considered, there-
fore the values of Ṫ (T) and ∆H may be underesti-
mated. The actual error depends on the thermal in-
sulation in experiment setup, e.g. the deviation from
ideal adiabatic condition.

• The the piecewise linear heating rate Ṫ (T) gives no
additional insight into the chemical reactions system
(order of the reaction, number of Arrhenius reac-
tions)

The big advantage of this approach is that no curve fitting
is needed.

2.2 Thermal-Runaway Experiment
The data we use to generate the temperature rate approx-
imation is gathered first-hand from conducting TR exper-
iments. To prepare the experiment we first attach temper-
ature sensors on the cell’s surface and then apply insulat-
ing cover. The cell assembly then is put into the sample
holder, which is fitted with heating elements. Through
springs the sample holder applies a desired force on the
cell. Further the sample holder is inserted into the reac-
tor, the reactor sealed pressure tight and flushed with N2
gas. Last the cell is cycled (dis- and then recharged) and
charged to desired state-of-charge (SOC). We then con-
duct the experiment and let the cell transit into TR by cho-
sen method. Usually TR is induced by heating the cell
up to the cell-dependent TR onset temperature. The in-
terested reader can find an in-depth explanation on our
method and setup in our other publications. We recom-
mend the work of Essl, A. Golubkov, and Fuchs (2020)
and Essl, Andrey W. Golubkov, et al. (2020) as a starting
point. For the examples in section 4 we have used data
from “Cell #2” in the paper of Essl, A. Golubkov, and
Fuchs (2020).

3 Library Implementation
The BatterySafety library features too many models to ex-
plain them all in detail in this paper. Therefore we decided
to just show the implementation of the core models from
the bottom up. We are now going to look at how we im-
plemented the TR model and arrived at the cell, module
and battery pack level models.

3.1 Energy Storage
At the end of section 2 the equations were expressed in
terms of energy, because we wanted to captivate this idea
in Modelica. The absolute nature of the stored energy
proved to be a surprisingly challenging obstacle in im-
plementation. We started by implementing a light green
coloured energy connector

Listing 1. Definition of the energy connector

connector EnergyPort
Modelica.SIunits.Energy

E "Energy at Port";
flow Modelica.SIunits.EnergyFlowRate P

"Energy flow rate (power)";

A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries

216 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181215

(red) selected sensor

(blue) piecewise linear approximation

piecewise approximation intercepts measured curve
when self-heating of the cell is detected

maximum temperature

piecewise approximation extension beyond measured curve

Figure 1. Temperature rate measurements from a single experiment: (red) Selected measurement for modelling, (blue) the linear
approximation in logarithmic scale and (grey) measurements from different points on the cell’s surface.

Figure 2. Sealable reactor for thermal runaway experiments

Session 3A: Libraries

DOI
10.3384/ecp21181215

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

217

capacity

[Joule]

Figure 3. Icon of the EnergyStorage model

+-

Figure 4. Icon of the VariableEnergy2HeatConversion model

and an energy storage model analogous to a capacitor with
a fixed flow rate constant of 1.

Listing 2. Equation section of the EnergyStorage model

equation:
E = port.E;
der(E) = port.P;

All attempts at inhibiting energy outflow when the energy
reached 0, within the model, were unsuccessful. Therefore
this was handled in the model converting the energy from
the storage to heat, at the rate given by the real input u.

Listing 3. Equation section of the VariableEn-
ergy2HeatConversion model

equation:
h.port.Q_flow =

if e_port.E<=0 and u>0 then 0
else -u;

3.2 Thermal Runaway Model
With the models for storing and converting energy it is
easy to translate Equation 9 into the ChemicalHeatGen-
eration Modelica model as Figure 5 shows. The temper-
atureSensor feeds the thermal_port temperature into the
HeatEmissionFunction, which corresponds to the linear
approximation in Equation 6. Then power_a takes the
result to the 10th power, resulting in the conversion rate
for conversion2heat and thus draining the energyStorage
and releasing heat. The library also features a second heat
release model, extending the one explained here. In the
extended model a boolean output was added to indicate
when the output of the HeatEmissionFunction is greater
than a certain threshold. This was done to have a reliable
way of telling other models in the system, that the cell has
transited into TR.

3.3 Cell Model
Figure 6 shows the cell model, to ease implementation it
is based on a prismatic cell. From top to bottom it’s 3
sub-models are:

1. The electric cell model

2. The heat release or thermal-runaway model

3. The heat distribution model

Each of these are replaceable to allow the user to se-
lect different model options as they see fit. However, as
our focus lay on TR propagation, the included options are
limited. There are two electric models in the library, con-
sisting of a voltage source and a resistor. In one the re-
sistor does not generate heat and in the other the resistor
generates joule heat. The heat distribution models consist
of heat capacitors and heat resistances modelling the cells
thermal mass and allowing for either 1D (shown in Fig-
ure 10) or pseudo 2D (shown in Figure 8) heat exchange
with other models. Furthermore the heat resistances have
been adapted to switch to a lower resistance once the cell
transits into TR. This was done to accelerate TR propaga-
tion, as the venting of hot gas, which plays a major role
in TR propagation, has not been implemented yet (Srini-
vasan et al. 2020). The TR models have been discussed in
the previous section. The records in the cell model serve
the purpose of providing parameters for the models. These
will be discussed later on. The internal heat-port labelled
CellTemperature allows to manually read out the cell tem-
perature more conveniently. This also allows to have an
external model heat or cool the cell from the inside, if de-
sired. At this point we want to mention that some simple
models for heating and cooling are implemented in the li-
brary. The heaters are for the most part modelled after
their real life counterpart we use in our laboratory, but in
a simplistic way. These are used to let the cell transit into
TR. The methods of cooling were implemented as a proof
of concept but without having a foundation in reality. This
was done to gain the experience necessary to implement a
thorough model in the future. For the purpose of this paper
we will not explain these models in more depth, the inter-
ested reader is advised to look at the mentioned models in
the package.

3.4 Module and Pack Models
Once the cell model is completed and allows for ther-
mal connection in multiple directions, modelling battery-
modules (Figure 7) and packs becomes a matter of draw-
ing connections. Figure 8 and Figure 9 show how a mod-
ule is made from connected cells and how a battery pack
is made from several connected modules.

3.5 Parameter Records
As mentioned in subsection 3.3, we use records to provide
parameters for the models in the package. This provides
two advantages. First it reduces the chances of parameter-
isation errors, as a parameter set for any model has to be
entered just once. This also makes correcting such errors
easier as there is only one spot where to look. Second,
parameters can be changed with a few clicks for many in-
stances of a model at the same time. How powerful these
advantages are is evident when looking at the module and
pack models in subsection 3.4. In the battery pack are 30
instances of the same module, in each module 12 instances
of the same cell and each cell needs 20 parameters. That

A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries

218 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181215

capacity

energyStorage

tr_energy

+-

conversion2heat

power_a

k*a^u

HeatEmissionFunction

K

temperatureSensor

thermal_port

Icon

Figure 5. Diagram view and Icon of the ChemicalHeatGeneration model

C

-+

shared

dimensions

electric

release

transfer

pin_p pin_n

port_a port_b

CellTemperature

port_a_oop

port_b_oop

n
a
m
e

Icon

Figure 6. Diagram view and Icon of the cell model. The thermal connectors port_a and port_b transfer heat parallel to the electrode
stack (in plane), while port_a_oop and port_b_oop transfer heat orthogonal to the stack (out-of-plane)

Session 3A: Libraries

DOI
10.3384/ecp21181215

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

219

Figure 7. Sketch of a module consisting of 12 Li-ion cells with
prismatic casing stacked in a row and electrically connected in
4p3s configuration (4 parallel, 3 series).

means manually setting the parameters of all the cells re-
quires 7200 inputs.

To further aid the user, the records are defined in groups
fitted to the cell sub-model they intend to provide param-
eters for. Parameters shared between two or more sub-
models are grouped in a separate record definition. All the
records needed to fully parametrise a cell are embedded in
another record definition. Each record definition has some
data-filled records stored within the library.

4 Examples
Now we want to demonstrate the capability of the library
with three examples, from single cell to battery pack level.
For each example the simulation setup is described and the
simulation result is shown. How and to which extend these
results can be interpreted will be addressed in section 5.

4.1 Single Cell
For our first example we want to show, that our model cor-
rectly captures the thermal behaviour of a LIB. Therefore
this example features a single cell with one sided heating
as Figure 10 shows. The second heater is turned off and
is just there so that the released heat has somewhere to go,
which makes the temperature curve look a bit more natu-
ral. Figure 11 shows the result, which when compared to
measurement data indicates that the dynamics of TR have
been captured correctly by our model.

4.2 Module
With the second example we want to highlight the scal-
ability of our model. In essence the setup remains the
same, but instead of a single cell a module of 12 cells
is heated from one side (Figure 12). This setup models
the module in a insulated, robust and undamaged casing
(no heat exchange with the casing) in an atmosphere de-
void of oxygen where no air may enter. The resulting cell
temperatures, as shown in Figure 13, display TR propa-
gation through the entire module. This reassures that the

developed TR model is capable of portraying this kind of
behaviour.

4.3 Pack
The last example in this paper concerns the simulation of
an entire battery pack, or traction battery, capable of pow-
ering an electric car. This was done to show that the model
is applicable on this scale with reasonable computation
time. Figure 9 shows the layout of the pack, consisting of
an array of 3×10 modules and TR is initiated by heating
the cell in the lower left corner. Each module contains 12
cells for a total of 360 cells. Same as for the module exam-
ple we consider the pack to be encased and the atmosphere
devoid of oxygen. The amount of cells simulated make it
hard to grasp the full picture just by line-plotting temper-
ature versus time. Therefore we used a MATLAB script to
turn the simulation data into a video. This video depicts all
of the cells positions and temperatures by colour through-
out the entire duration of the simulation. Figure 14 shows
some of the videos frames depicting the propagation of the
TR throughout the pack.

5 Discussion
To summarise: The BatterySafety library features a TR
model for LIB based on the simple-tracing model dis-
cussed in section 2. This TR model is then coupled with a
simple electrical model and a heat conduction based heat
transport model to form a cell model. Cell models are
connected to form a module model and module models
are connected to form a model of a battery pack. Heater
models are used to heat an initial cell until transiting into
TR. The cooling models included in the library are at an
early stage of development and should only be seen as a
proof of concept. The combination of the simple-tracing
model with Modelica allows for fast simulations of TR
propagation on the scale of a battery pack.

However additional work needs to be done to ensure
the validity of the results. At the current state we only
have data from cells in a constant volume N2 atmosphere
with the same initial pressure. This data is valid to use
for simulations considering an intact case of a module or
battery pack, that can withstand TR at constant volume.
We believe this to be a realistic scenario in the case of
a non-crash related thermal event happening in a battery
pack. We have found no literature how in N2 atmosphere
different initial pressures affect thermal behaviour, either
at constant volume or constant pressure. There is liter-
ature on the effects of different initial pressures in con-
stant pressure air environment affecting heat released dur-
ing TR, with higher heat release at higher pressure(Xie et
al. 2020; Chen et al. 2019). However we believe this can
not be extrapolated to the case of N2 atmosphere, as we
see the cause of the higher heat release at higher pressure
in the higher availability of oxygen. The effects of differ-
ent initial pressures in N2 atmosphere on the heat released
during TR in constant pressure and constant volume envi-
ronments is a topic for research in the near future.

A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries

220 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181215

C01 C02 C03 C04

C05 C06 C07 C08

C09 C10 C11 C12

pin_p pin_n

port_b1 port_b2

port_a port_b

port_b3 port_b4

port_a1 port_a2 port_a3 port_a4 port_b5 port_b6 port_b7 port_b8

port_a5 port_a6 port_a7 port_a8 port_b9 port_b10 port_b11 port_b12

port_a9 port_a10 port_a11 port_a12

Icon

Figure 8. Diagram view of a 12 cell module. The 12 cells (C01 ... C12) are geometrically stacked in a row. Each 4 cells are
electrically connected in parallel and the 3 electric cluster are electrically connected in series (4p3s configuration).

global

Heater

ground

R
=
3.4767

Ω

load

Figure 9. Diagram view of a battery pack. The pack consists of 30 modules which are geometrically arranged in a 3×10 pattern.
All modules are electrically connected in series. The electric loop is closed by a resistor which represents the main electric motor
in an electric car.

Session 3A: Libraries

DOI
10.3384/ecp21181215

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

221

globalParameters

heatingElement_offheatingElement

Figure 10. Diagram view of the single cell example. The cell is
sandwiched between two heater plates.

0 500 1000 1500 2000

Time[s]

0

100

200

300

400

500

600

700

800

900

T
e

m
p

e
ra

tu
re

[°
C

]

Figure 11. Temperature of a simulated cell. The cell is heated
by one of the heater plates until - at 1300 s - the cell transits into
TR. During the TR the cell reaches a temperature above 700◦C.
After the TR the cell starts to cool down slowly.

heatingElement

globalParameters

heatingElement_off

Figure 12. Diagram view of module example. Here the module
is sandwiched between two heater plates.

We are aware that a major factor contributing to propa-
gation speed is likely to be the release of high velocity hot
gas (venting) as a cell transits into TR (Srinivasan et al.
2020), which is not considered in the library yet. To coun-
teract this fact the cell models feature variable heat resis-
tors, which lower their thermal resistance once the cell
transits into TR. This is easy to implement and computa-
tionally less expensive compared to adding models for gas
release. Whether this approach leads to reliable and gen-
eralizable simulation results, or if the implementation of
gas release is absolutely necessary has to be determined.
Therefore a comparison of these two approaches, as as
well as verifying the model will be the topic of a paper
in the near future. Further topics worth investigating may
be:

• Implementing and researching the effects of active
cooling measures and other thermal safety features.

• Implementing interactions between a cells electric
model and the energy storage for SOC dependent
heat release and more accurate electric behaviour.

• Short-circuits and electric arching between modules,
which can be caused by conductive particles released
by cells during TR.

• Combustion of vent gases with air, when air enters
the battery pack.

• Coupling the model with a FEM cell level simula-
tion to more accurately capture heat distribution in
the cell where TR first is initiated.

• Integrating the model in a complete vehicle co-
simulation

• Finding a way to estimate the temperature rate curve
without the data from a TR experiment

• Finding a relationship between known cell parame-
ters and TR onset temperature.

6 Conclusion
We introduced the simple-tracing model for TR in LIB
and implemented it in a Modelica package called Bat-
terySafety alongside several other models, to study and
further our understanding in TR propagation. Through
the discussed examples we have shown the applicability
of the developed package to realistic use-cases. The set of
such cases is small for now but will continue to grow as
research progresses and the package is updated.

The package is easy to use and the models computation-
ally inexpensive even on the scale of a battery pack found
in electric vehicles. This allows even inexperienced users
to use our TR model to simulate a range of TR propagation
simulations with little effort and time and will be available
to everyone under the Modelica License 2. To our knowl-
edge the capability to simulate TR propagation through

A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries

222 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181215

1250 1300 1350 1400 1450 1500

Time[s]

0

100

200

300

400

500

600

700

800

900

T
e

m
p

e
ra

tu
re

[°
C

]
C01

C02

C03

C04

C05

C06

C07

C08

C09

C10

C11

C12

Figure 13. Temperature curves of a simulated module during TR propagation. Each curve belongs to one cell. The TR propagation
starts with cell C01 and finishes with the cell C12.

Time / s =1407 Time / s =1460 Time / s =1510

Time / s =1547 Time / s =1619 Time / s =1661

Figure 14. Visualising the TR propagation in a simulated battery pack. Each small rectangle represents a cell. Each stack of cells
represents a module. The TR starts in the bottom left cell. With time the TR propagates from cell to cell inside the modules and
from module to module.

Session 3A: Libraries

DOI
10.3384/ecp21181215

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

223

a battery pack in a reasonable time is novel. Complex
3D simulations with FEM could take weeks or months for
such a simulation in contrast to the 1-4 hours our model
takes. Looking back at the requirements on the model
from Feng, Lu, et al. (2016) in section 1 we can conclude
that with the work done so far, we are about halfway to
realising viable TR propagation simulations on a battery
pack level.

We consider this paper and the BatterySafety library as
the foundation to enable fast, low-skill, virtual prototyping
for LIB in the future. We hope that the scientific commu-
nity will take notice of the value Modelica offers to LIB
research and aid us in improving upon our work. We be-
lieve this package can help to design safer battery packs in
the future.

Acknowledgements
This publication was written at Virtual Vehicle Research
GmbH in Graz. The authors would like to acknowledge
the financial support within the COMET K2-Competence
Center for Excellent Technologies Program of the Fed-
eral Ministry for Transport, Innovation and Technology
(BMVIT), the Federal Ministry for Digital and Eco-
nomic Affairs (BMDW), the Austrian Research Promo-
tion Agency (FFG), the Province of Styria and the Styrian
Business Promotion Agency (SFG).

Conflicts of interest
The authors declare no conflicts of interest.

References
Chen, Mingyi et al. (2019). “Environmental pressure effects

on thermal runaway and fire behaviors of lithium-ion bat-
tery with different cathodes and state of charge”. In: Process
Safety and Environmental Protection 130, pp. 250–256. ISSN:
0957-5820. DOI: https://doi.org/10.1016/j.psep.2019.08.023.

Essl, Christiane, Andrey W. Golubkov, et al. (2020). “Compre-
hensive Hazard Analysis of Failing Automotive Lithium-Ion
Batteries in Overtemperature Experiments”. In: Batteries 6.2.
ISSN: 2313-0105. DOI: 10.3390/batteries6020030.

Essl, Christiane, AW Golubkov, and Anton Fuchs (2020). “Com-
paring Different Thermal Runaway Triggers for Two Auto-
motive Lithium-Ion Battery Cell Types”. In: Journal of the
Electrochemical Society 167.13, p. 130542. DOI: 10 . 1149 /
1945-7111/abbe5a.

Feng, Xuning, Languang Lu, et al. (2016). “A 3D thermal run-
away propagation model for a large format lithium ion bat-
tery module”. In: Energy 115, pp. 194–208. ISSN: 0360-5442.
DOI: 10.1016/j.energy.2016.08.094.

Feng, Xuning, Siqi Zheng, et al. (2019). “Investigating the ther-
mal runaway mechanisms of lithium-ion batteries based on
thermal analysis database”. In: Applied Energy 246, pp. 53–
64. ISSN: 0306-2619. DOI: 10.1016/j.apenergy.2019.04.009.

Golubkov, Andrey W. et al. (2018). “Thermal runaway of
large automotive Li-ion batteries”. In: RSC Advances 8.70,
pp. 40172–40186. ISSN: 20462069. DOI: 10 . 1039 /
C8RA06458J.

Srinivasan, Rengaswamy et al. (2020-02). “Preventing Cell-to-
Cell Propagation of Thermal Runaway in Lithium-Ion Bat-
teries”. In: Journal of The Electrochemical Society 167.2,
p. 020559. DOI: 10.1149/1945-7111/ab6ff0.

Xie, Song et al. (2020). “Influence of cycling aging and ambi-
ent pressure on the thermal safety features of lithium-ion bat-
tery”. In: Journal of Power Sources 448, p. 227425. ISSN:
0378-7753. DOI: https://doi.org/10.1016/j.jpowsour.2019.
227425.

A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries

224 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181215

The DLR ThermoFluidStream Library

Dirk Zimmer1 Michael Meißner1 Niels Weber1

1German Aerospace Center (DLR), Germany
{dirk.zimmer,michael.meissner,niels.weber}@dlr.de

Abstract
This paper introduces the DLR Thermofluid Stream Li-
brary: a free open-source library for the robust modeling
of complex thermofluid architectures. Designed to be easy
to use, easy to adapt and enriched by a number of exam-
ples, this library contains the fundamental components for
many different applications such as thermal management
of electric cars, power plants, or building physics.
Keywords: Thermal fluids, Thermal process systems, Ro-
bust modeling, Heat exchangers, Open source software

1 Introduction
Streams of thermofluids form the basis of many natural
and technical systems. Power plants, environmental con-
trol systems, refrigerators can all be represented as ther-
modynamic processes where components such as pumps,
heat exchangers, or valves manipulate the stream of a
working fluid flowing from the component inlet to its out-
let. A computationally very attractive formulation is to ex-
press this coupling of inlets and outlets by using algebraic
equations in the form:

Θout = g(Θin, ṁ,x) (1)

with Θ being a tuple representing the thermodynamic
state of the medium, ṁ being the mass-flow rate and x
the internal state vector of the component (e.g. rotational
speed of a pump).

Such an algebraic coupling (as simple as it may be) im-
plies a dramatic idealization of the actual underlying phys-
ical system. For instance, we implicitly assume that up-
stream changes in pressure and enthalpy take immediate
effect downstream. Not only may such an assumption be
completely inadequate under certain circumstances also
these idealizations give rise to highly non-linear equation
systems where there might be multiple solutions or none
at all. Even if there is a unique solution, it may be very
difficult to retrieve.

For these reasons, the modeling of thermofluid streams
is rarely performed in purely algebraic fashion. The mod-
eler may want to break the algebraic system down to feasi-
ble complexity (for instance by adding volume elements),
the modeler may want to model thermal time-constants
(for instance by adding volume elements) or transport de-
lay (for instance by adding volume elements). However,
for many applications, there is something more clever than
just adding volume elements. The library we present in

this paper implements such an alternative that is favorable
for many applications. It enables the modeler to formu-
late a system of thermofluid streams in a robustly solvable
form using only a few additional state variables.

While robustness is one major design target for the li-
brary, the ability to adapt the library to specific needs is
another one. The set of potential applications is very large
and its elements may differ in their underlying assump-
tions. Hence any concise set of components cannot real-
istically be expected to provide full coverage. Instead, the
library shall provide solid base components that are easy
to read and that can then be adapted to the specific needs
that are raised by the user’s application field.

Robustness and adaptiveness are hence the two main
points what shall make the library competitive with al-
ready existing solution in this domain such as other free,
commercial, or proprietary Modelica libraries (Casella
2005; Casella et al. 2006; Franke, Casella, Sielemann, et
al. 2009; El Hefni and Bouskela 2014), or non-Modelica
M&S tools (EcosimPro 2021; Process Systems Enterprise
2021) or even our own previous solutions (Sielemann et
al. 2011). These libraries mostly represent either an alge-
braic modeling style or an ODE modeling style. The paper
(Zimmer 2020) offers a comparison of our DAE-based ap-
proach to such modeling styles.

But before we recapitulate the underlying robust com-
putational scheme and take a look at the library, let us look
at an introductory example.

1.1 Introductory example
Figure 1 contains an example application of an automo-
tive battery, drive-chain and cabin thermal control system.
This represents a fairly complex system with several loops
and three different media. Amongst other items, there are
several switches to change the flow topology and a vapor
cycle with two parallel evaporators. Although the example
itself is not part of the library, it is entirely build out of its
components, some of which internally combine multiple
valve models to realize switches for bypasses and loops.
For the sake of clarity, we have removed the control ele-
ments from the diagram.

The model diagram depicts some important distinc-
tions from the fluid library as part of the Modelica Stan-
dard Library (MSL) (Franke, Casella, Sielemann, et al.
2009). First of all, this library features dedicated mod-
els for junctions and splitters and abstains from (ab-)using
the Modelica connector for this purpose. Second, the de-

DOI
10.3384/ecp21181225

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

225

A

B

A

B

A

B

A

B

A

B

N
1
2
..
.
..
.

N
..
.
..
.
2
1«

«

««

«

«

A

B

A

B
N 12......

N......21

« « «
«« «

N
1
2
..
.
..
.

«

«

«

A B

A

B

p
o
rt
_
P
T
C

p
o
rt
_
D
C
D
C

p
o
rt
_
b
a
tt
e
ry
H
e
a
te
r

p
o
rt
_
b
a
tt
e
ry

p
o
rt
_
c
h
a
rg
e
r

p
o
rt
_
d
ri
v
e
C
h
a
in

Fi
gu

re
1.

E
xa

m
pl

e
si

m
ul

at
io

n
of

an
au

to
m

ot
iv

e
ba

tte
ry

,d
riv

e-
ch

ai
n

an
d

ca
bi

n
th

er
m

al
co

nt
ro

ls
ys

te
m

.
T

he
gl

yc
ol

-w
at

er
lo

op
(m

ag
en

ta
)

is
co

ol
in

g
ba

tte
ry

,D
C

-D
C

co
nv

er
te

r,
ch

ar
ge

r
an

d
dr

iv
e-

ch
ai

n.
A

fo
ur

-w
ay

sw
itc

h
ca

n
sp

lit
it

in
to

tw
o

se
pa

ra
te

lo
op

s
in

st
ea

d
of

th
e

co
m

bi
ne

d
lo

op
th

at
is

sh
ow

n.
If

ne
ed

ed
,t

he
lo

op
is

co
ol

ed
by

a
ra

di
at

or
ag

ai
ns

tf
re

sh
ai

r
(b

lu
e)

.
A

dd
iti

on
al

ly
it

ca
n

be
co

ol
ed

w
ith

a
R

13
4a

va
po

r-
cy

cl
e

(o
ra

ng
e)

.
T

he
va

po
r-

cy
cl

e
is

al
so

co
ol

in
g

ai
r

go
in

g
to

th
e

ve
hi

cl
e

ca
bi

n
(g

re
en

)
an

d
th

er
ef

or
e

co
nt

ai
ns

tw
o

pa
ra

lle
le

va
po

ra
to

rs
,

th
at

ca
n

in
de

pe
nd

en
tly

be
sh

ut
of

fb
y

tw
o

va
lv

es
w

he
n

no
ti

n
us

e.
It

is
co

ol
ed

ag
ai

ns
tf

re
sh

ai
rw

ith
a

co
nd

en
se

r.
Fu

rt
he

rm
or

e,
it

co
nt

ai
ns

re
ce

iv
er

,a
cc

um
ul

at
or

an
d

an
ex

pa
ns

io
n

va
lv

e.
B

at
te

ry
an

d
ca

bi
n-

ai
rc

an
be

he
at

ed
w

ith
th

e
ba

tte
ry

he
at

er
an

d
PT

C
re

sp
ec

tiv
el

y.
B

ot
h

he
at

ex
ch

an
ge

er
s

of
th

e
gl

yc
ol

lo
op

ca
n

be
by

pa
ss

ed
if

no
ti

n
us

e.
O

ne
of

th
e

fr
es

h-
ai

rs
tr

ea
m

s
an

d
th

e
ca

bi
n-

ai
rs

tr
ea

m
is

su
pp

or
te

d
by

a
fa

n,
w

hi
le

th
e

ot
he

rf
re

sh
-a

ir
st

re
am

is
dr

iv
en

pu
re

ly
by

dy
na

m
ic

pr
es

su
re

fr
om

th
e

ve
hi

cl
e

sp
ee

d.

The DLR ThermoFluidStream Library

226 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181225

fault connector type is directional, clearly indicating the
direction of the stream. The library offers a solution for
undirected flows too but it is supposed to be used only
when inevitable. Third, the modeler shall break loops
(not merely bypasses, but actual loops) using volume ele-
ments. Mostly, this will happen anyway since actual loops
need actual reservoirs but cases like the combined loops of
liquid cooling with its two reservoirs require an attentive
modeler.

The translated model contains of 49 states (eighteen of
which are attributed to the discretized heat exchangers of
the vapour cycle) and contains only four non-linear sys-
tems of size one that can each be locally attributed to one
of the four volume components. The initialization prob-
lem consists of two linear systems that are manipulated
to size zero and poses no problem. The simulation is ro-
bust and will run through various topology switches and
changing heat-loads, unless one of the media models is
driven out of its temperature or pressure ranges.

While some parameterization of all components will
have to be made to match measured data of an actual sys-
tem, most components come with usable default param-
eters, therefore even complex topologies can be quickly
built up and simulate successfully.

2 Robustness
2.1 Underlying methodology and assumptions
As suggested by its name a thermofluid stream is forming
the central entity of this modeling approach. The stream is
thereby bound either by dedicated boundary models such
as sources or sinks or by elements that represent a volume
of the medium.

Between these boundaries, the stream consists in a se-
quence of components such as compressors, valves, etc.
that may manipulate the thermodynamic state Θ. Shared
among all these components is a common mass-flow rate.
So all components alongside a stream uphold the mass-
flow balance ṁin =−ṁout.

The mass-flow rate is always a state variable of the sys-
tem. Each component of a stream expresses a differential
equation of the form:

dṁ
dt

L =−∆r (2)

Whereas r is denoted as inertial pressure and L is the in-
ertance of the fluid. Please note that the inertance is solely
defined by the geometry of the flow and independent of
the thermodynamic state:

L =
∫

ds/A (3)

with s being the length of the flow and A its cross-
section area. We can make use of the inertial pressure r
to decompose the general pressure gradient ∆p into

∆p = ∆p̂+∆r (4)

whereas p̂ is introduced as steady-mass flow pressure
(since p̂ = p if dṁ/dt = 0). Alongside a stream we ap-
proximate the thermodynamic state by using p̂ instead of
p, accepting a (mostly) small error for unsteady flow con-
ditions. At each boundary we compensate the accumu-
lated difference between p̂ and p with the inertial pressure
r and accelerate the corresponding mass flow with respect
to r.

This leads to a very favorable structure of the equation
system where all non-linear computations can be brought
into explicit form and the only system of equations in im-
plicit form is strictly linear. Hence a robust solution of
the system model can be reliably achieved supposing ro-
bust component and media models. More details on the
approach and also the handling of junctions and splitters
in (Zimmer 2020).

Another way of looking at this approach is that we use
different spatial resolutions for p̂ and r. Whereas p̂ may be
resolved for each component, r is only resolved between
boundaries of the stream. This is mostly fine because the
impact of r on the thermodynamic state is typically low
(or even zero for steady flow conditions). However, should
the impact of r become vital (unsteady cavitation might be
such a case), the modeler is advised to increase the spatial
resolution by adding more volume elements at the place
of concern.

2.2 Implementation in Modelica
To implement this decomposition, we use a connector that
contains a pair of potential and flow variable. The flow is
naturally the mass flow rate and the corresponding poten-
tial is the inertial pressure since it is the potential variable
that determines the dynamics of the flow. The thermody-
namic state is then transferred as a signal. Since we are
using the standard Modelica.Media library (Casella et al.
2006), using the state record of the media models seems a
natural choice.

Listing 1. connectors for directed thermofluid streams

connector Inlet
replaceable package Medium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
input Medium.ThermodynamicState state;

end Inlet;

connector Outlet
replaceable package Medium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
output Medium.ThermodynamicState state;

end Outlet;

The approach chosen here is thus similar to (Otter
et al. 2019) and a bit different to what has been de-
scribed in (Zimmer, Bender, and Pollok 2018). Although
the library is approximating the thermodynamic state on
the steady mass-flow pressure, this is not made explicit.
This means in practice that when one calls the func-
tion Medium.pressure(inlet.state), the return

Session 3A: Libraries

DOI
10.3384/ecp21181225

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

227

value is the steady mass-flow pressure p̂ and not p. An
explicit denotation of the steady mass-flow pressure sim-
ply turns out to be too cumbersome and unpractical on the
existing media model base. Yet it is important to have the
underlying approximation in mind.

Also a minor extension to the standard Media library is
needed to support our interface: a function is added that
retrieves the mass fraction for given thermodynamic state.
For this reason, the DLR Thermofluid Stream Library cur-
rently uses a modified copy of Modelica.Media. Once the
standard has been updated, the copy will be removed. Fur-
thermore, XRG Simulation GmbH provided media mod-
els of refrigerants and further media that are compatible to
our library.

A classic component which has a single stream from
inlet to outlet can be build upon the following basemodel
that already contains the law for the inertial pressure gra-
dient.

Listing 2. SISO basemodel

partial model SISOFlow
replaceable package Medium;
parameter Utilities.Units.Inertance L =

dropOfCommons.L;
Inlet inlet(redeclare package Medium=

Medium);
Outlet outlet(redeclare package Medium=

Medium);
protected

outer DropOfCommons dropOfCommons;
equation

inlet.m_flow + outlet.m_flow = 0;
der(inlet.m_flow) * L = inlet.r -

outlet.r;
end SISOFlow;

Although simplified w.r.t to the actual implementation,
the code also displays the use of a global "DropOfCom-
mons" model that is used to describe many generic pa-
rameters shared among many components. Among them
is a default value for the inertance because oftentimes a
replacement assumption is used and the corresponding dy-
namics is just seen as a way to reach the desired steady-
state solution (or steady mass flow to be more precise).

2.3 Initialization
Per default, we use zero to initialize all mass flows.
The occuring gradients in inertial pressure then direct the
mass-flow rates toward their natural equilibrium. This ap-
proach is similar to ramping up a system from rest or plug-
ging it in to a pressure source. We have successfully ap-
plied this method to a variety of systems so far and can
confirm the applicability of this approach. The modeler
needs to put much less thought into the initialization of
its system. Nevertheless if desired, also other options are
available.

2.4 Handling zero-mass flow
The initialization approach alone stipulates the require-
ment that each component must be able to compute with

zero-mass flow. Even stronger, we demand that each com-
ponent can handle reverse flow in a well-natured man-
ner. This means that the equations should not (unneces-
sarily) destabilize the system and if possible represent a
physically plausible behavior. Care has been taken that
each component fulfills these robustness requirements.
This is especially relevant for active components such as
compressors and turbines that add or substract power to
a stream of fluid. Also heat-exchangers require careful
modeling in this respect.

3 Library Overview
3.1 Library structure
The central entity of the library is the thermofluid stream
as described by the connector and the previously listed
base-class. There will be boundaries for the stream. These
are typically inlets and outlets but note that also volume
elements represent boundaries from the perspective of a
stream. The inlet of a volume is an outlet of the stream
and vice versa.

The topology of the architecture is formed by splitters
and junctions. Different from the fluid library in the MSL,
there are extra components for this purpose and it is not
performed using connector equations. Finally, all those
components that manipulate the working fluid of a stream
are collected under the term processes. Heat exchangers
and valves (or similar mechanism) for flow control are
moved up to the highest level due to their significance.
Hence the structure as in Figure 2 results.

Figure 2. Overview of the library and its main packages

Each of the packages contains a sub-package with cor-
responding test cases. An "Examples" package holds sev-
eral application examples for the library, that showcase the
capabilities and can act as starting points for users. We use
both the test cases, as well as the examples, for regression
testing during development of the library.

The strategy of the implemented library is that we want
to provide robust generic models with only a few pa-
rameters for a first iteration of modeling, such as cross-
and counter-flow heat exchangers with the ε-NTU method
(see Section 3.2.3). These kind of models will be de-
tailed enough to capture the overall system behavior of a
wide range of applications and can act as placeholders for

The DLR ThermoFluidStream Library

228 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181225

higher-fidelity models in later design stages. Since these
high-fidelity models will vary for each specific application
the modeler will have to implement them for their specific
use-case.

3.2 On specific components
3.2.1 Volume models
Volume models take a special role in the thermofluid-
stream approach, as they should be used to break alge-
braic loops for circular fluid flow, isolating the non-linear
equation systems locally between the different compo-
nents (Zimmer 2019a). Each closed fluid loop should con-
tain at least one volume model.

We provide volume models with one or multiple inlets
with or without flexible walls, as well as reservoir, ac-
cumulator and receiver models, which are also volumes
and can be used to break loops. All of these are derived
from base classes of volumes making it easy to implement
additional specialized volume models if required by the
modeler. The base classes define three differential con-
servation equations xvolume = (M,U,Mi) with M, U , and
Mi, being the mass, inner energy and mass of the different
mass fractions in a mixture respectively. For maximum
flexibility, volumes offer a broad range of options, like re-
moving inlet or outlet, or adding a heat-port, as well as
different initialization methods.

In order to avoid very fast, undampened oscillations
between two or more directly coupled volumes or other
boundaries, a damping term on the change of mass con-
tained by the volume (Zimmer 2019b) is implemented in
all volumes. Contrary to an artificial flow resistance on the
inlet or outlet, the damping term does not affect the steady-
state solution since it acts only on the change of mass in
the volume. Nonetheless, the damping can be switched off
by modifying the volumes parameters. With this damping,
directly coupled boundaries may still result in very fast os-
cillations, but at least the dynamics are damped and should
be well manageable for a stiff-system solver. If possible
though, direct coupling of volumes to other volumes or
boundaries should be avoided.

3.2.2 Turbo components
All components that transfer work between a mechanical
flange and the fluid share a common partial model "Par-
tialTurboComponent" governed by Equation 5

(∆p,τs) = f (ṁ,ω,Θin) (5a)
Jω̇ = τ− τs (5b)
∆h = τs ∗ω/ṁ (5c)

where ∆p is the pressure gain over the component, ω is the
angular velocity, J the moment of inertia, τ the torque ap-
plied to the flange, τs the torque needed to maintain static
operation in the current conditions and ∆h the specific en-
thalpy the fluid gains from inlet to outlet.

Equation 5a represents the pressure/torque characteris-
tic of the component and is not implemented in the partial

class. Different implementations of f in child classes al-
low for pumps, compressors, turbines, fans or other turbo
components and for different levels of fidelity. Note that
Equation 5 holds no assumption on the specific thermody-
namic process of the turbo-component (e.g. compression /
expansion with a fixed isentropic coefficient), since differ-
ent processes can be implemented by different functions f
in Equation 5a.

Equation 5b can be replaced by a boundary condition
on ω , when the angular dynamics of the component is not
of interest.

Equation 5c is additionally normalized for low mass-
flow, effectively limiting |∆h|. If the fluids enthalpy is in-
creased in the component, any work the fluid cannot take
on is dumped onto a heat-port. If enthalpy is taken from
the fluid (e.g. in a turbine) τs is reduced to still fulfill Equa-
tion 5c in case of normalization, limiting the work that can
be taken out of the fluid.

3.2.3 Heat exchangers
For heat exchange between two fluids, two different ap-
proaches are used in this library. For applications with
single-phase fluids on both sides, the ε-NTU method is
implemented. For fluids with phase transition (for exam-
ple refrigerants), the heat exchanger is discretized in mul-
tiple heat exchanging elements.

ε-NTU method
When the outlet temperatures of the heat exchanger are
not known a priori, the ε-NTU method is most conve-
nient. It provides relatively simple correlations for dif-
ferent types of heat exchangers (counter-flow, cross-flow,
parallel-flow, etc.). The effectiveness ε of a heat ex-
changer is defined as the ratio between the actual and the
maximum heat flow rate:

ε =
Q̇

Q̇max
=

Q̇
Cmin∆Tmax

(6)

To obtain the maximum possible heat flow rate, the heat
capacity rates C = cpṁ on both sides (hot/cold) of the
heat exchanger are compared. The side with the smaller
heat capacity rate (C = Cmin) needs less energy to ex-
perience the maximum temperature difference (∆Tmax =
Th,in−Tc,in).

With those quantities, the so called Number of Transfer
Units (NTU) can be calculated:

NTU =
kA

Cmin
(7)

where k is the overall heat transfer coefficient and A is
the surface area for heat transfer. For any heat exchanger
it can be shown that (Schlünder et al. 1997):

ε = f (NTU,Cr) (8)

This means the effectiveness ε of the heat exchanger is
a function of the dimensionless number of transfer units

Session 3A: Libraries

DOI
10.3384/ecp21181225

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

229

and the ratio of the minimal and maximal heat capacity
rate Cr =

Cmin
Cmax

. For each type of heat exchanger, a specific
relation can be found in literature, for example (Incropera
et al. 2007). For cross-flow heat exchangers with both flu-
ids unmixed, the effectiveness can be obtained by:

ε = 1− exp
[(

1
Cr

)
NTU0.22exp[−CrNTU0.78]−1

]
(9)

This correlation and similar ones for counter-flow are
implemented in the library.

To determine the thermodynamic state at the outlet of
the heat exchanger, the approach is slightly modified to
our purpose. To avoid non-linear equation systems, espe-
cially when connecting multiple heat exchangers in series,
it is beneficial to use the outlet enthalpy as a state. There-
fore the efficiency of the heat exchanger is formulated in
terms of specific enthalpy:

∆h = ε∆hmax = εcp∆Tmax (10a)
hout = hin−∆h; (10b)

And thus the actual heat flow rate can be obtained from:

Q̇ = ṁ∆h (11)

To become a state variable, the outlet enthalpy hout is
filtered with a first order term with time constant τfilter:

∂hout

∂ t
τfilter = hin−∆h−hout (12)

The thermodynamic state is eventually retrieved from
the specific outlet enthalpy hout to prevent the creation of
non-linear equation systems.

Discretized Heat Exchanger

When condensation and evaporation become relevant in a
heat exchanger, a method is needed that is able to han-
dle phase transition. Generally there are two main ap-
proaches suitable for this application: the moving bound-
ary approach and the discretization of the heat exchanger
into a finite number of elements. In this library, the latter
is implemented because it promises very robust behaviour
and can easily be understood.

The discretized heat exchanger consists of N heat con-
ducting elements on each side of the fluid. They are con-
nected via a thermal conductor from the MSL. The num-
ber of discretization elements can be set by the modeler.
Figure 3 shows how the single elements are connected
to each other. The fluid ports are arranged in terms of a
counter-flow heat exchanger.

When dividing the heat exchanger in several elements,
it is advantageous to model them in a way that no oscilla-
tions occur when multiple elements are connected to each
other. To this end, the mass in each element is assumed
to be quasistationary (M = ρV) and the inlet mass flow

th
e
rm
a
lC
o
n
d
u
c
to
r[
]

G
=
G
/n
C
e
lls

th
e
rm
a
lC
o
n
d
u
c
to
r[
]

G
=
G
/n
C
e
lls

Figure 3. Cell model of discretized heat exchanger

is coupled to the outlet mass flow (ṁin = −ṁout). While
this assumption neglects the change of enthalpy attributed
to dM/dt for changing densities, in our experience it does
not change the result drastically while reducing the prob-
lem’s complexity. Now, the energy balance of each ele-
ment is stated in the following form:

M
∂h
∂ t

= Q̇+ ṁ(hin−h)+V
∂ p
∂ t

(13)

where h is the specific enthalpy at the outlet of the el-
ement. For the sake of robustness, the change of pres-
sure in the fluid is neglected in the energy equation (13)
(V ∂ p

∂ t = 0) and therefore the pressure input is not required
to be smooth.

The convective heat transfer from or to the fluid is cal-
culated as follows:

Q̇ =UA(TheatPort−Tsurface) (14)

where U is the coefficient of heat transfer and A the
surface area. In general, a detailed calculation of the
coefficient of heat transfer is not trivial. Hence we of-
fer a pragmatic approach exploiting that the coefficient
of heat transfer U can be stated in terms of the Nusselt-
Number (Incropera et al. 2007) which in turn depends on
the Reynolds number (presuming forced convection):

Nu =
UL
λ

=CRemPrn (15)

with the characteristic length L and the conductivity of
the fluid λ . The values of the coefficient C and the expo-
nents m and n are dependent on geometry and flow char-
acteristics. Since the Reynolds number is proportional to
the mass flow ṁ, we can derive a simple scaling law based
on the Reynolds exponent m:

U =Unom

(
|ṁ|

ṁnom

)m

(16)

For turbulent flow the Reynolds exponent m is equal to
0.8. The coefficient of heat transfer for the multiphase el-
ement has to be estimated differently. It is determined by

The DLR ThermoFluidStream Library

230 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181225

the actual phase in each discretization element, therefore it
is dependent on the vapor quality. According to the single
phase, for each phase (liquid, vapor, two-phase) a nom-
inal coefficient of heat transfer can be set and the actual
coefficient is calculated accordingly:

Uliq =Uliq,nom

(
|ṁ|

ṁnom

)mc

(17a)

Uvap =Uvap,nom

(
|ṁ|

ṁnom

)me

(17b)

Utp =Utp,nom (17c)

The Reynolds exponents for normalisation of the heat
transfer coefficient for evaporation (me = 0.5) and con-
densation (mc = 0.4) are taken from (Yan and Lin 1999b)
and (Yan and Lin 1999a). In the two-phase region, a con-
stant coefficient of heat transfer is assumed. Furthermore
a minimum value for the coefficient of heat transfer Umin is
introduced to ensure heat transfer at zero mass flow. The
coefficient of heat transfer on the two-phase side of the
heat exchanger depends on the actual phase. Therefore
the vapor quality χ has to be calculated in each element,
using the dew and bubble enthalpies of the fluid:

χ =
h−hbubble

hdew−hbubble
(18)

The coefficient of heat transfer used in the two-phase
elements thus is formulated as a function of the vapor
quality U(χ). For smooth transition between different
coefficients during phase change, an interpolation is ap-
plied. The definition of the vapor quality (Equation 18) al-
lows it to go below zero (when subcooled) and above one
(when superheated). This allows the interpolation to be
formulated across the phase boundaries and avoids jump-
ing in those critical regions. The test models for a con-
denser and evaporator show robust and valid behavior of
the discretized heat exchanger, although the performance
is highly dependent on the number of discrete elements.
Section 3.3 contains a corresponding application example.

3.2.4 Valve models
Valve characteristics can be very important for the con-
trol design and the control authority. The library hence
features different types with different pressure gradient
curves. Also some functional valve models are directly
combined with splitter models in order to facilitate topo-
logical changes in complex architectures (Figure 1).

3.2.5 Sensor models
All implemented sensor models can be used in two ways.
Firstly, they output the measured signal as a RealOutput
as it is common for Modelica sensor models. Addition-
ally, they display the current signal value during simula-
tion using the DynamicSelect command (see Figure 4).
This enables the user to get a fast, intuitive understand-
ing of the current state of the simulation without the need
for displaying any signal curve. We found the second use

very practical and are using the sensors mostly in this way,
which is why the actual signal output is conditionally re-
moved by default.

20.11
0.96
4.45

degC

bar
(kg/s)

Figure 4. Exemplary sensor displaying three quantities

3.3 Specific solution for undirected flows
Within the library we provide a package containing com-
ponents that can have undirected flows. It is similarily
structured to the main library but contains less compo-
nents. For these components however, the direction of
mass-flow does not need to be known a-priori and is deter-
mined dynamically during the simulation. The approach
for undirected stream-dominated flow simulation was in-
troduced in (Zimmer 2019a). Note that this approach is
still stream-dominated and, while we continue to demand
robustness for low and zero mass-flow, the results may not
be valid for these conditions. The undirected simulations
are therefore interesting for applications where non-zero
mass-flow operating points are present for both flow direc-
tions while the switching dynamics between mass-flow di-
rections are not of interest. In practice, this will be the case
for many applications, like a combined vapor-cycle/heat-
pump.

When the direction of mass-flow is reversed, the flow
of information is reversed with it. Therefore a undirected
connector carries information about the thermodynamic
state in both directions: forward and rearward (see List-
ing 3).

Listing 3. Two connectors for undirected flows

connector Thermalplug_fore
replaceable package Medium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
input Medium.State state_rearwards;
output Medium.State state_forewards;

end thermalplug_fore;

connector Thermalplug_rear
replaceable package Medium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
input Medium.State state_forewards;
output Medium.State state_rearwards;

end thermalplug_rear;

Each component also computes its influence on the
state in both the forward and backward direction (see
Equation 19).

Session 3A: Libraries

DOI
10.3384/ecp21181225

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

231

Θout,fw = gfw(Θin,fw, ṁ,x)
Θout,bw = gbw(Θin,bw, ṁ,x)

(19)

When connecting these undirectional components in a
complex topology, junctions and splitters cannot be distin-
guished and become generic nodes. The implementation
of a node has to avoid cyclic dependencies of the signal
flow as well as to provide a regularization around the zero-
mass flow regime. It is thus almost a re-implementation
of the Modelica stream connector (Franke, Casella, Ot-
ter, et al. 2009). Unfortunately the regularization of the
stream connector semantics is numerically vague and also
not subject to a regularization parameter. The width of
the regularization scheme may however play an impor-
tant role in situations of flow reversal and also influences
the eigenvalues of the system. Hence a proper option for
parametrization is needed and the Modelica stream con-
nector itself could thus not be used for this library. Here,
the default value of the regularization width is specified by
the dropOfCommons.

It is strongly advisable to use undirected components
only when the flow-direction is really unknown. Knowing
the direction a priori is a too valuable piece of informa-
tion to throw away. For instance, using directed compo-
nents helps avoiding spurious loops (those which appear
in the connection graph but are never realized by the fluid
flow) and the need to cut those loops. Also creating mod-
els that work in both directions is not always reasonable
and certainly creates often code that is needlessly com-
plex. Please note that we provide also adapters between
directed and undirected stream networks. These can be
used to isolate parts of the network that require undirected
flow, and keep the rest directed.

An example architecture that contains undirected com-
ponents is given in Figure 5. It shows a reversible heat-
pump as it can be used for residential air conditioning. The
specialty of this system is that the direction of the refrig-
erant flow can be reversed. The heat exchangers can thus
act as evaporator or condenser according to the current cy-
cle operation. In cooling mode (blue arrows), the indoor
unit acts as an evaporator and the outdoor unit (blue) acts
as a condenser. Thus the heat is absorbed from the inside
air and rejected to the outside. In heating mode (red ar-
rows) the cycle is reversed which makes the indoor unit
the condenser and the outdoor unit the evaporator. Hence
the heat is absorbed from the outside and rejected to the
inside. The system is built out of a combination of undi-
rected and directed components. It consists of a undi-
rected phase separator (receiver) and two separate meter-
ing devices (magenta). This allows us to control the super-
heating temperature after the evaporator in both operating
modes. In practice, the change of flow direction is carried
out by a reversing valve. In our example we control the
flow direction by a system of valves and undirected junc-
tions (yellow). The example simulates robustly with fixed

N
1

2
...
...

N
...
...
2
1

«

«

« «

«

«

N
1

2
..
.

..
.

N
..
.

..
.

2
1«

«

««

«

«

A

B

A B

AB

A

B

Figure 5. Example of a reversible heatpump that contains two
undirected heat exchangers. The operating mode of the cycle
can be switched during simulation.

boundary conditions for the air side and the compressor
and the cycle can be reversed during simulation.

3.4 Specific solution for dynamic pressure
The dynamic pressure arises from the macroscopic motion
of the fluid. Its computation for a given mass flow rate
hence requires also information on the geometry. Typi-
cally the cross-section area is used to compute the veloc-
ity:

v =
ṁ

Aρ

The dynamic pressure q is then

q = ρ/2v2 =
ṁ2

2ρA2

If the dynamic pressure is vital for each part of the sys-
tem, it is a natural choice to include the cross-section area
in the connector and specify the geometry at each compo-
nent. However, we do not think that this represents the
majority of use-cases for our library. Many thermody-
namic processes are adequately described without needing
the dynamic pressure. Its occurrence is mostly confined to
special sub-systems like ram-air inlets, venturi pumps, or
diffusors. Under this presumption, the need to describe the
geometry in all components does more harm than good.
Providing a localized solution for the dynamic pressure
seems to be the most useful approach. In this way, it can be
considered when needed and ignored otherwise. Hence,
we introduce special boundaries for entering and exiting a
zone where dynamic pressure is considered. One side of
this boundary expresses the static pressure for a specified
velocity assumption whereas the other side computes the

The DLR ThermoFluidStream Library

232 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181225

velocity resulting from mass flow-rate, density and cross-
section area. The boundary then assigns a pressure differ-
ence so that the total pressure balance is upheld. A typical
use of such a boundary is its use of ram-air going through
a heat exchanger as in a car as shown in Figure 1.

A typical component that uses dynamic pressure is a
nozzle that accelerates (or decelerates) a fluid. In case the
fluid is diffused an increase in mass-flow rate will increase
the outlet pressure. Hence a correct formulation of the
boundary conditions is needed because otherwise the in-
ertial dynamics of the fluid may destabilize the system. A
corresponding example of the Venturi-effect is part of the
library.

4 Easy-to-read, easy-to-adapt

4.1 General modeling style of components

In general, the library is structured by a flat hierarchy, lim-
iting the use of partial models, functions and packages to
only those cases with high usefulness. This is done in-
tentionally to increase the readability and understandabil-
ity of the individual components while still utilizing the
might of object-oriented modeling when it is of benefit.

Components are implemented to provide a formula-
tion of Equation 1 in explicit form, whenever feasible.
Nonetheless, sometimes certain quantities that are re-
quired to compute the outlet state Θout depend not only on
the inlet state Θin mass-flow ṁ and component state x, but
also on the outlet state itself. An example is the change
in dynamic pressure, that depends on the outlet density.
This typically results in systems of non-linear equations
within the component. While the stream-dominated ap-
proach still manages to keep the non-linear systems sep-
arated in small local ones, for general simulation speed
and the real-time application of the library, even small
non-linear systems are undesirable. Therefore we decided
to avoid non-linear equation systems larger than size 1.
This can be achieved by reformulating the equations in
a manner and/or applying simplifications until the com-
ponents’ non-linear equation systems drop to the desired
size, or by introducing the problematic quantity as an ar-
tificial state within the component x̃, effectively imple-
menting a fast low-pass on it, as it was done in subsub-
section 3.2.3. While the latter solution avoids simplifica-
tions, it introduces additional artificial states, whose time-
constants have to be chosen with care. While this is not an
ideal solution, when done right the result is a fast running
and accurate simulation, with only local non-linear sys-
tems of maximum size 1. For hard real-time applications
the remaining non-linear systems can still be resolved by
adding additional states in the corresponding components.

While implementing the models, we documented the
sources of equations, as well as the simplifications and
mental models for the components in code and the doc-
umentation annotation. Furthermore, intuitive icons pro-
vide a good readability of the high-level models.

4.2 Adapt to your own needs: A use case
While many use-cases can be simulated by the libraries
standard components, many others will require special-
ized components. The relative flat implementation style
enables the modeler to easily implement own components
and adapt the library for their needs. An example for this
is provided in Figure 6. It depicts a simulation model for
an espresso machine.

b
re

w
in

g
H

e
a

d

5
0
0
 J

/K

A

B

A

B

A

B

th
e

rm
a

lR
e

s
is

to
r

R
=

2
 K

/W

e
n

v
iro

n
m

e
n

t

T
=

2
5
 °C

K

AB

PTC

Figure 6. Example of a model with individualized component
models. This model simulates an espresso machine composed of
water source and pump (green), boiler, water and steam outlets
(blue), brewing head with cycling water (yellow) and valve, cof-
fee strainer and cups (magenta). Cold water enters the machine
through a source at atmospheric pressure and gets pressurized by
a pump to 8.5 bar. Part of the water goes through a control valve
into a boiler, where the pressure is regulated by heating through
a PTC and the water level is controlled by the valve. For this
purpose the boiler outputs both of these quantities. From the
boiler, steam or boiling water can exit if the corresponding valve
is opened. The boiler is in thermal contact to a secondary small
volume from which water cycles to the brewing head and back,
heating up the brewing head. If the machine is at temperature,
the valve in front of the coffee strainer is opened and water flows
from the pump into the cups, picking up heat in the secondary
volume and the brewing head.

While many standard components are used, the sinks
for steam and boiling water, the coffee strainer, the cups
and the boiler are specialized components. All except the

Session 3A: Libraries

DOI
10.3384/ecp21181225

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

233

boiler are internally composed of standard components
and only implement a specialized icon. The coffee strainer
consists of a flow resistance and each cup contains a flow
resistance and a sink, as well as a variable to track the
level of coffee in the cup. The two sinks for steam and
water only update the image of the original sink.

Contrastingly, the boiler, while derived from the stan-
dard volume, is a fully individual component. It has one
inlet and implements the conservation equations for mass
and energy similar to a normal volume, but contains two
heat-ports and two specialized outlets with states on the
bubble- and dew-line respectively, instead of one normal
outlet. Additionally, liquid level and pressure are output
as real numbers and a different icon is implemented.

5 Concluding remarks
5.1 Library source and terms of use
The library is available on GitHub:
github.com/DLR-SR/ThermofluidStream

It is available under the 3-Clause BSD License. It has
been developed using Dymola and is based on Modelica
3.2.3. Pendantic checking has been applied to all compo-
nents in order to improve cross-tool compatibility. Com-
patibility with Open Modelica and Modelon Impact has
been achieved to a large degree and is documented in cor-
responding issues on GitHub.

If you publish work that is based on this library, please
cite this paper and (Zimmer 2020). We also welcome feed-
back in form of issues raised on GitHub. Also when you
have positive feedback, you can feel free to raise an issue
to share your experience. Have fun!

5.2 Future Work
We will keep maintaining this library and improving its
components. Apart from having robust models, hard real-
time capability, suitable control design as well as various
forms of health monitoring are our main research and de-
velopment interests.

Acknowledgements
This work has been partially supported by the Helmholtz
Gemeinschaft in frame of the research project for on-
board diagnosis. Hence we would also like to thank the
team of Robert Bosch GmbH for feedback and motivat-
ing use-case scenarios. Further thanks goes to Chistopher
Laughman from Mitsubishi Electronic Research Center
for providing encouraging feedback. Also the work of
Tobias Krenz form TU Darmstadt offered a valuable per-
spective. We are still grateful to Airbus and our former
colleagues Dr. Alexander Pollok and Dr. Daniel Ben-
der who were pioneering the new methodology. Also we
like to thank our colleague Dr. Peter Eschenbacher for
his valuable modeling experience on valves and pumps.
Thankfully, the Open Modelica team supported us with
respect to tool compatibility and Stefan Wischhusen from
XRG generously provided additional media models.

References
Casella, Francesco (2005). “Object-Oriented Modelling & Sim-

ulation of Power Plants with Modelica”. In: Proceedings of
the 44th IEEE Conference on Decision and Control (Seville,
Spain), pp. 7597–7602.

Casella, Francesco et al. (2006). “The Modelica Fluid and Me-
dia library for modeling of incompressible and compress-
ible thermo-fluid pipe networks”. In: Proc. 5th International
Modelica Conference (Vienna, Austria), pp. 559–568.

EcosimPro (2021-08-03). FLUIDAPRO. URL: https : / / www .
ecosimpro.com/products/fluidapro/.

El Hefni, Baligh and Daniel Bouskela (2014). “Dynamic mod-
elling of a Condenser with the Thermo SysPro Library”. In:
Proceedings of the 10th International ModelicaConference
(Lund, Sweden), pp. 1113–1122.

Franke, Rüdiger, Francesco Casella, Martin Otter, et al. (2009).
“Stream Connectors – An Extension of Modelica for Device-
Oriented Modeling of Convective Transport Phenomena”. In:
Proceedings of the 7th Modelica Conference (Como, Italy),
pp. 108–121.

Franke, Rüdiger, Francesco Casella, Michael Sielemann, et al.
(2009). “Standardization of Thermo-Fluid Modeling in Mod-
elica.Fluid”. In: Proceedings of the 7th Modelica Conference
(Como, Italy), pp. 122–131.

Incropera, Frank et al. (2007). Fundamentals of heat and mass
transfer. Wiley New York.

Otter, Martin et al. (2019). “Thermodynamic Property and Fluid
Modeling with Modern Programming Language Constructs”.
In: Proceedings of the 13th International Modelica Confer-
ence (Regensburg, Germany).

Process Systems Enterprise (2021-08-03). gPROMS. URL:
www.psenterprise.com/products/gproms.

Schlünder, Ernst-Ulrich et al. (1997). VDI-Wärmeatlas: Berech-
nungsblätter für den Wärmeübergang. 8. überarb. und erw.
Aufl. Springer.

Sielemann, Michael et al. (2011). “Optimization of an un-
conventional environmental control system architecture”. In:
SAE International Journal of Aerospace 4.2.

Yan, Yi-Yie and Tsing-Fa Lin (1999a). “Condensation heat
transfer and pressure drop of refrigerant R-134a in a small
pipe”. In: International journal of heat and mass transfer
42.4, pp. 697–708.

Yan, Yi-Yie and Tsing-Fa Lin (1999b). “Evaporation heat trans-
fer and pressure drop of refrigerant R-134a in a plate heat
exchanger”. In: Journal of Heat Transfer 121.1.

Zimmer, Dirk (2019a). “Robust Simulation of Stream-
Dominated Thermo-Fluid Systems: From Unidirectional to
Bidirectional Applications”. In: EUROSIM Congress 2019
(Logroño, Spain).

Zimmer, Dirk (2019b). “Towards hard real-time simulation of
complex fluid networks”. In: Proceedings of the 13th In-
ternational Modelica Conference (Regensburg, Germany),
pp. 579–587.

Zimmer, Dirk (2020). “Robust object-oriented formulation of di-
rected thermofluid stream networks”. In: Mathematical and
Computer Modelling of Dynamical Systems 26.3, pp. 204–
233.

Zimmer, Dirk, Daniel Bender, and Alexander Pollok (2018).
“Robust Modeling of Directed Thermofluid Flows in Com-
plex Networks”. In: Proceedings of the 2nd Japanese Model-
ica Conference (Tokyo, Japan), pp. 39–48.

The DLR ThermoFluidStream Library

234 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181225

The Potential of FMI for the

Development of Digital Twins for Large

Modular Multi-Domain Systems

Marcus Wiens1 Tobias Meyer1 Philipp Thomas1
1System Technology, Fraunhofer IWES, Germany,

{marcus.wiens,tobias.meyer,philipp.thomas}
@iwes.fraunhofer.de

Abstract

Digital twins enable the observation, prediction, and

optimization of a physical system and thus allow to realize

their full potential. However, their functionality is mainly

based on simulation models of the entire system behavior.

For modular multi-domain systems, this requires the

extensive use of dynamically composed models that are

made up of individual component models. The FMI-

Standard forms a solid foundation for this problem and is

very well known in the automotive engineering fields.

However, composed system models using FMI are not

widely adapted in renewable energy and wind energy yet.

So far, the coupling of simulation models is limited. This

paper discusses the strategy of building digital twins from

individual FMUs with predefined model interfaces based

on an ontology for renewable energy systems. An

accelerated development is enabled by the exchange of

sub-models in the digital twin without adjustments of

interface. An example for the proposed process is given

by the composed simulation model of a hydrogen

generation process based on wind energy.

Keywords: Digital Twin, Functional Mockup Unit, Wind

Energy, Renewable Energy, Ontology

1 Digital Twins in Wind Energy

Digital Twins are a major contribution for the

digitalization of physical systems and processes. The

digitalization of systems is a key part of Industry 4.0,

which focuses on the development of cyber physical

systems. As a result, a digital twin enables use-cases e.g.,

continuous observation, prediction, optimization of

logistics etc., to maximize the potential of physical

systems (Tao et al.2019). There are multiple definitions of

digital twins, like the often-cited definition from NASA:

“The Digital Twin is an integrated multiphysics,

multiscale, probabilistic simulation of an as-built vehicle
or system that uses the best available physical models,

sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin.” (Glaessgen and Stargel.

2012) and many more (Fuller et al.2020). Common to

them is that there is a digital entity representing a physical

entity and the adaptation of both objects based on an

exchange of data. To avoid misconception of digital twins,

they are categorized (Kritzinger et al.2018) into distinct

definitions by their level of integration:

• Digital Model: A digital copy of an existing or

planned physical entity. There is no automated

exchange of data between the digital copy and the

physical entity. The data of the digital copy might be

used in the development process of the physical

entity, but a change in the digital copy has no

immediate effect on the physical entity.

• Digital Shadow: A digital shadow extends the digital

copy by an automated one-way exchange of data.

The physical entity changes the state of the digital

shadow, but not in the other way.

• Digital Twin: The digital twin has full level of

integration, which is realized by the automated

exchange of data between the physical entity and the

digital copy. Both systems affect each other.

Those categories build on top of each other and can be

interpreted as development steps of a digital twin. In fact,

the development of a digital twin not only consist of the

creation of the digital entity, but also of the surrounding

elements for data exchange and interfaces for services.

The Generic Digital Twin Architecture (Steindl et al.,

2020) sets a well-defined structure for all elements of a

digital twin. Furthermore, the use of Ontologies is

demonstrated to organize the services and internal

functionality of the digital twin. Ontologies give structure

to information and make them processable by a

machine (Gruber. 2016).

In wind energy, digital twins are primarily developed

for components or very large systems. Among large-scale

projects, Ramboll's "True digital Twin" (Tygesen et al.

2018), which represents offshore structures, is particularly

noteworthy. At the component level, the drive train is

represented in detail, for example by Winergy (Flender

International GmbH) or Schaeffler (Schaeffler AG).

However, they are either designed specifically for the
capabilities of a specific product or are limited to the

suppliers’ own components. The development of holistic

DOI
10.3384/ecp21181235

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

235

full-turbine digital twins is currently at the stage of

building the virtual entities, without the required

surroundings. The wind turbine model adjustment for an

existing real wind turbine (Pimenta et al.2020) shows

potential for a virtual entity, but the process requires many

steps. Another method (Branlard et al.2020) presents the

use of linearized models in combination with a Kalman

Filter to estimate real-time load and fatigue. The

applications of the presented digital twins lie in the

tracking of fatigue damage or evaluation of alternative

operation strategies. However, those systems implement

single component (one wind turbine model) digital twins,

which are not designed for further coupling of simulation

models. We assume that a coupled model will be

necessary for the development of digital twins for large

systems like an entire wind farm or green hydrogen

production facilities.

Furthermore, current challenges in research of digital

twins are stated in a review paper (Fuller et al.2020) for

the fields of manufacturing, healthcare and smart cities,

but their findings seem to be more general according to

other papers (Tao et al.2019):

• Unified development framework

• Lack of clear definitions

• Standardization

• Lack of large-scale projects due to missing domain

knowledge

Hence, the development of digital twins is in an early

stage. This article addresses the above issues by proposing

a development process for the digital model of the

physical entity based on Functional Mock-up Interface

(Modelica Association Project FMI) (FMI) and Co-

Simulation. A Co-Simulation is the technique of the

simulation of a coupled system based on the composition

of single simulators (Gomes et al.). Multiple abstraction

levels (van Nguyen et al.2017) have to be considered.

2 Digital Twins for Large Modular

Multi-Domain Systems

Large multi-domain systems are composed modularly of

individual components. Each component can be changed

individually, e.g., by means of a reconfiguration of its

behavior, by a change in physical properties or be a full

exchange of the entire component. The entire system can

be reconfigured by removing or adding components. All

these aspects need to be reflected in the simulation

models. The large number of possible configurations

makes it impossible to cover them all with a dedicated

full-system simulation model. Instead, a similar modular
approach for the system model is required. Additional

complexity arises, since systems with a large scope

usually cover multiple domains of different engineering

fields. This usually requires the combination of models

from different modelling tools.

The modular setup of a full-system model from

individual component models is a prime candidate for the

assembly of a full-system model from individual

Functional Mock-up Units (FMUs). FMUs allow

simulation models from various modeling tools to be

coupled. The simulation models are contained as a binary

library file and the underlying algorithms remain hidden.

Two types of FMU are specified in the FMI standard: co-

simulation and model exchange. Only co-simulation

FMUs are used here. In addition to the simulation model,

co-simulation FMUs also contain the simulation solver.

As a result, the FMU independently computes simulation

results for each simulation time step and does not require

a higher-level solver. In this way, models with different

integrator time steps can be coupled, for example the

mechanical system of the wind turbine (time step: 10 ms)

and the electrical system (1 ms). This make FMUs an

ideal base for digital twins of large multi-domain systems.

The process is most useful if a model database in

combination with a dedicated full-system model assembly

tool is used. This requires predefined interfaces and multi-

dimensional connectors between single models for an

efficient modelling. Predefined interfaces are needed,

since large scale systems of multiple domains have a

various number of elements and interconnections and

therefore can make the combination of models

complicated between domains. An ontology is one

possible solution to this problem. In fact, the ontology can

manage the knowledge about model interfaces and

thereby be an instruction for in- and outputs for specific

objects. This implies the implementation of specific

adapters based on the ontology in the utilized modelling

tools. Additionally, the ontology should give unique

names for connections of the same kind. This eases the

(automated) connection later. An example for an ontology

is given in Section 3. Already existing models (e.g.,

engineering models), which are considered for the model

database, can be connected with those adapters in their

specific modelling tools. In this way, there is no coupling

between the model in- and output and the required

connections from the ontology. In the end the models are

exported as FMU to the database.

The usage of an ontology for the definition of abstract

interfaces yields the additional advantage that FMUs,

which model components in different manners, can be

exchanged without additional changes to the full-system

model. In our digital twin approach, it is possible to

exchange a detailed simulation model to a coarser

simulation model or vice versa since the model interface

remains unchanged. This allows for a high degree of

flexibility when adapting to the requirements of different

usage scenarios. Furthermore, the model database benefits

from predefined “real world” interfaces to connect the
digital models with the physical entity. This is represented

by an FMU model which maps measurement data streams

The Potential of FMI for the Development of Digital Twins for Large Modular Multi-Domain Systems

236 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181235

or parameter data streams from the physical system to

FMI input/outputs.

The implementation of multi-dimensional connectors

that represent physical connections allows for easier

handling of models with in- and output of high

dimensions. Currently, in and output in FMUs are one

dimensional and for high dimensional signals this results

in hardly manageable input and output enumeration.

While this drawback will be solved with FMI 3.0, wide

adaptation in multi-purpose simulation tools, which are

used to create FMUs, cannot be expected soon.

Finally, this leads to the idea of a dedicated

development framework, which is visualized in Figure 1

along with the proposed modelling process. The

framework accesses the database and eases the building of

the digital twin based on single elements and real-world

interfaces, similar to the “Open Simulation Platform”

(DNV GL AS) for engineering with co-simulations. The

adapters represent intuitive connectors which are based on

the ontology: Connections between individual models are

specified by the user on the top level and details are

handled by the framework. A main differentiation

between our approach and the open simulation platform is

our desired full automation of the model assembly

process. Instead of user-built models, the full-system

model is derived from the ontology-stored structure

information automatically. This creates further

requirements for the tools used to assemble individual

models into the full-system model. Furthermore, the use

of co-simulation FMUs decouples the modeling and

numerical solution of the individual simulation model

(within one FMU) on the one hand from the simulation of

the coupled full-system model on the other hand. The

coupling of FMUs is described by the System Structure

and Parameterization (SSP) Standard, which builds the
output of the model assembler. The SSP and FMU files

are imported by an Orchestrator to run the virtual side of

the digital twin.

Eventually, this procedure can be integrated into the

development phase of a new product. The sensor layout

can be optimized along with the product and a digital twin

can be delivered faster, which is a step forward in the

digitalization of renewable and especially wind energy.

2.1 General Process Description

We propose the following process for the structured

development of model-based digital twins. The process

can be separated into two distinct main steps, assuming

the ontology is already defined beforehand. First, an FMU

model database is created:

• Creating a simulation model: Use existing

engineering models or develop new model. Use

model reduction techniques to achieve real time

capability, if necessary

• Define required adapter connection models in the

specific modelling tool based on an ontology

• Connect the model to the corresponding adapter

• Export to FMU and upload into the database

This builds the base for development of digital models.

The next step is the combination of single models into a

complex system:

• Collect all components for the full-system multi-

domain digital twin

• Connect single FMU models with a toolbox (see

Section 2.2 for an example)

• Add the communication adapters for the digital twin

Figure 1 Visual representation of the development of digital twins for large modular multi-domain systems

Session 3B: Digital twins

DOI
10.3384/ecp21181235

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

237

• Create SSP package with all FMU models and

connection description

• Run Simulation using an orchestrator e.g., FMPy

The second step is basically the creation of the virtual

entity for the digital twin. A complex virtual entity can be

build based on component models, which are connected

by intuitive adapters. The communication adapters take

the responsibility of steering signals from inside the model

to the outside for the digital twin.

2.2 The fmuToolbox

For ease of automated simulation, we implemented a

Toolbox in Python for the setup of Co-Simulations based

on SSP. Since the SSP file is written in an XML-Format,

we use the lxml package in Python for file processing.

The toolbox consists of multiple functions which

represent the single steps of the Co-Simulation setup:

• XML-Description: Create a SSP with the component

tag of one FMU. The information is extracted from

the FMU with FMPy and written according to SSP

• Combination: Collect single XML description files

into one SSP by listing all component tags in one file

• AutoConnect: Analyze the inputs-outputs and create

connections tags for matching input-output pairs

• Packaging: All FMU files and the SSP description

are packed together into an archive file format

Finally, the archive file can be simulated with FMPy

orchestrator. The AutoConnect feature requires a

standardized naming pattern for the in- and outputs. This

can be built e.g., based on a common ontology.

3 Modelling Example: Hydrogen

Electrolysis with Wind Energy

The setup of the full-system simulation model for the

digital twin of a wind-to-hydrogen facility serves as

modeling example. It is considered as a multi-domain

system, as the domains wind energy and hydrogen

generation are interacting. A digital twin of a wind-to-

hydrogen facility would allow for operational

optimization and error detection. Therefore, the system

behavior needs to be modeled as closely as possible.

In this example, we concentrated on the following

components: an aero-elastic wind turbine, wind turbine

controller, generator, grid, transformer, converter, and

electrolyser to build the wind-to-hydrogen facility.

Separate models for the individual plant components exist

in multiple simulation environments and are exported as

FMUs. An ontology is defined for efficiently modelling

and connecting all models from different tools and

presumably different developers. The ontology is

modelled according to the requirements of the specific use

case. All implemented knowledge in the ontology has a

specific purpose.

The exemplary ontology is based on the RDF Schema

(Brickley et al.2014) to build upon the idea of classes,

properties, and triplets. Our ontology defines the

additional resources: “UseCase”, “Component”,

“Connector”, “Signal”, “Measurement” and “Direction”.

Classes and instances, which define the connection

between components, are shown in Figure 2 (Remark: All

visualizations of the ontology show a fraction of the single

overall ontology). The ontology contains the definition of

“use cases” to represent a specific simulation setup. An

instance of “UseCase” like “Simulation_1” stores

information about the instances of components by the

property “:simulates”. Instances of any classes are

identified by “rdf:type”. Only an instance of a wind

Figure 2 Example for the system ontology and interaction of parts

Simulation_1 UseCase
rdf:type

 ind_ urbine_1

:simulates

Controller_1

:simulates

:isConnected

 ind_ urbine

rdf:type

:isConnected

Controller

rdf:type

Connector_ Connector_
:compatible it

Connector

rdfs:subClass f

:compatible it

rdfs:subClass f

: asConnector

Component

rdfs:subClass f

: asConnector

rdfs:subClass f

The Potential of FMI for the Development of Digital Twins for Large Modular Multi-Domain Systems

238 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181235

turbine, controller and their connectors are shown here to

ensure clarity. The other components would be added to

the ontology in the same manner. Instances of subclasses

“Component” are defined to be simulated in a “UseCase”

instance. Additionally, they can have any number of

instances of subclasses of “Connector”. In the case of the

component “ ind_ urbine” t e only connector is

“Connector_ ”, w ic is compatible wit

“Connector_ ”. Only when two subclasses of

“Connector” are defined to be compatible wit eac ot er,

then a valid connection between instances of

“Component” can be made. The same applies for the

“Controller” subclass and t e corresponding connector

instance. This, also shown in Figure 2, helps a modelling

software to build valid connections.

The connectors are explained here for a simplified

version of the controller connector. An example for the

sub-ontology is shown in Figure 3.

Figure 3 Example ontology for the definition of

connectors

Instances of “Connector” ave a list of instances of

“Signal”. ey are defined by their measurement and

direction. A compatible connector would be built by

inverting the direction of all signals in a connector. Names

of input or outputs of FMUs can be derived from the

ontology. The components and their required signals in

this example are added to the full ontology in the

described manner. Overall, all this information in the

ontology is needed to create file according to SSP

definition for the simulation with an orchestrator.

Moreover, specialized ontology tools, e.g., TopBraid

Composer, enable to make a query to the ontology with

SPARQL. A query as shown in Listing 1 is performed for

the component class (Wind_Turbine) to get a list of its

connectors. An in- and output list is obtained from the

description of the found connectors, which define the

required adapter model (as defined in Section 2).

After the ontology is fully defined, the models of the

single components are of concern. The wind turbine has

rated power of 8 MW and is modelled in MoWiT (Thomas

et al. 2014) which is simulated with Dymola. Along with

the wind turbine model, the controller is accessed through

Dymola as well. For controller development,

Matlab/Simulink is used. The Bladed-compatible DLL

format is a widely adopted standard in wind energy for

controller exchange. The Simulink model is compiled

accordingly as DLL and tied into MoWiT using dedicated

Modelica-code. The other models are created with

Simulink and are directly exported as FMU with respect

to the input and output names based on the ontology. All

electrical components model the current flow, where the

grid consumes all excessive energy. Lastly, the

Electrolyser, which is an upscaled model (Espinosa-

López et al.2018), uses up 1 MW for hydrogen

production. These engineering models were validated in

several research projects. The connection between the

components is shown in Figure 4.

Figure 4 Connectivity diagram of the electrolysis process

model

This model contains couplings in the drivetrain

between the mechanical rotation and electromechanical

torque. Both are controlled by the controller. The control

exchanges a lot of data with the wind turbine (~ 40

connections), which are connected efficiently with the

AutoConnect feature of the described toolbox.

Furthermore, the electric drive train model has an energy

output. The energy is distributed by current in the busbar

to the grid and electrolyser. The transformer adjusts the

voltage level, and the converter changes the current from

AC to DC. In the end, the electrolyser consumes energy

and produces hydrogen.

A demonstration of the simulation results is shown in

Figure 5. The specific simulation case represents the

startup of the wind turbine at constant inflow conditions.

First, the wind turbine accelerates to enable power output

and then continues to steady state operation. The

electrolyser consumes the generated power. This process

can be used to monitor the energy flow and detect errors

when the physical model changes with respect to the

digital model. To serve as digital twin for the real plant,

the simulation model requires additional connections to

take operational real-time data into account and to provide

Connector_ Connector
rdfs:subClass f

pitc ngle_ ut

: asSignal

rotorSpeed_In

: asSignal

Signal

 irection easurement

pitc ngle

rdf:type

rotorSpeed

rdf:type

rdf:type

:is easurement f

out

: as irection

rdf:type

rdf:type

:is easurement f

in

: as irection

rdf:type

Listing 1. SPARQL query example

DESCRIBE ?connector {

 ?subject rdfs:subClassOf :Component .

 ?subject :hasConnector ?connector

 FILTER(?subject = :Wind_Turbine)

}

Session 3B: Digital twins

DOI
10.3384/ecp21181235

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

239

a feedback into the plant operation. A full setup of a digital

twin is not within the scope of this paper. The next step is

to extend the presented process of building a digital twin

full-simulation model onto operational data.

Figure 5 Simulation result for constant inflow condititons

4 Conclusion

In renewable energy and in particular in wind energy,

highly modular systems require highly modular

simulation models as well. Individual component models

to exist from component engineering but linking them to

a full-system model requires the efficient use of co-

simulations using FMI. More standardization is needed in

the development process of engineering models, to enable

a fast connection process in the setup of the Co-

Simulation. Ontologies offer a formalized way of the

interface and overall system description. Thus, FMI has

the potential to accelerate the development of multi-

physics digital models, which can be utilized in digital

twins. Model reduction techniques might be necessary to

achieve real-time capability for digital twins or real time

orchestrators need to be implemented. Furthermore,

standardized interfaces and FMUs offers an easy way of

adopting the level of detail of the digital twin, as models

can be exchanged without further adjustments. To

summarize, a standardized toolbox for Co-Simulation

building shows high potential to enable digital twins.

Acknowledgements

The authors would like to thank Aline Luxa and Sebastian

Frahm for their contribution of simulation models.

References

Branlard, Emmanuel, Jason Jonkman, and Scott Dana, and

Paula oubrawa (2020) “ igital win ased on

OpenFAST Linearizations for Real-Time Load and Fatigue

Estimation of Land- ased urbines.” J. Phys. Conf. Ser.,

vol. 1618, doi:10.1088/1742-6596/1618/2/022030.

Brickley, Dan, Ramanathan V. Guha, and Brian McBride

(2014) “Rdf Sc ema 1.1. 3C Recommendation.” World

Wide Web Consortium, vol. 2.

Espinosa-López, anuel, et al. (2018) “ odelling and

Experimental Validation of a 46 KW PEM High Pressure

 ater Electrolyzer.” Renewable Energy, vol. 119, pp. 160–

73. doi:10.1016/j.renene.2017.11.081.

Flender International GmbH Digital Gearbox. winergy-

group.com/en/digital-gearbox. Accessed 6 May 2021.

Fuller, Aidan, Zhong Fan, and Charles Day, and Chris Barlow

(2020) “ igital win: Enabling ec nologies, Challenges

and pen Researc .” IEEE Access, vol. 8,

doi:10.1109/ACCESS.2020.2998358.

Glaessgen, Edward, and avid Stargel (2012) “ e igital

Twin Paradigm for Future NASA and U.S. Air Force

Ve icles.” 53rd AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conf., Honolulu,

Hawaii, 53rd AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference. Reston,

Virigina2012.

Gomes, Cláudio, et al. (2017) Co-Simulation: State of the Art.

1 Feb. 2017, arxiv.org/pdf/1702.00686.

Gruber, om. “ ntology.” Encyclopedia of Database Systems,

edited by Ling Liu and M. Tamer Özsu, Springer New

York, 2016pp. 1–3.

Kritzinger, erner, et al. (2018) “ igital win in

Manufacturing: A Categorical Literature Review and

Classification.” IFAC-PapersOnLine, vol. 51, no. 11, pp.

1016–22. doi:10.1016/j.ifacol.2018.08.474.

Modelica Association Project FMI FMI Standard 2.0. fmi-

standard.org/downloads/. Accessed 12 Apr. 2021.

Pimenta, F., et al. (2020) “ evelopment of a igital win of

an ns ore ind urbine Using onitoring ata.” J.

Phys. Conf. Ser. (Journal of Physics: Conf. Ser.), vol.

1618, doi:10.1088/1742-6596/1618/2/022065.

Schaeffler AG Digital Services. www.schaeffler.com/

content.schaeffler.com/en/news_media/dates_events/

windenergy_hamburg/digital_services/digital_services.jsp.

Accessed 6 May 2021.

Tao, Fei, He Zhang, and Ang Liu, and A. Y. C. Nee (2019)

“ igital win in Industry: State-of-the- rt.” IEEE

Transactions on Industrial Informatics, vol. 15, no. 4, pp.

2405–15. doi:10.1109/TII.2018.2873186.

 omas, P ilipp, et al. (2014) “ e ne ind odelica

Library for Wind Turbine Simulation with Flexible

Structure.” 10th International Modelica Conf., March 10-

12, 2014, The 10th International Modelica Conf. Linköping

University Electronic Press, 2014pp. 939–48.

Tygesen, Ulf T., et al. (2018) “ e rue igital win Concept

for Fatigue Re- ssessment of arine Structures.” Volume

1: Offshore Technology, 17.06.2018 - 22.06.2018, Madrid,

Spain, ASME 2018 37th International Conference on

Ocean, Offshore and Arctic Engineering2018.

van Nguyen, Yvon Besanger, and Quoc Tran, and Tung

Nguyen (2017) “ n Conceptual Structuration and Coupling

Methods of Co-Simulation Frameworks in Cyber-Physical

Energy System Validation.” Energies, vol. 10, no. 12,

doi:10.3390/en10121977.

The Potential of FMI for the Development of Digital Twins for Large Modular Multi-Domain Systems

240 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181235

Object-Oriented Models of Parallel Manipulators

Paolo Campanini1 Gianni Ferretti2

1MUSP Lab, Strada Torre della Razza, 29122 Piacenza, Italy, paolo.campanini@musp.it
2Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32,

20133 Milano, Italy, gianni.ferretti@polimi.it

Abstract
In this paper, the development of models of parallel ma-
nipulator is described, based on components of the Mod-
elica standard library only. At first, the dynamic model
of a Delta robot is illustrated and validated with respect
to experimental data. Then, the model of a Stewart plat-
form is discussed. Thanks to the symbolic manipulation
capabilities of the OpenModelica compiler, the model is
then used to automatically generate the inverse dynamics,
which is in general is a quite difficult task.
Keywords: Object-oriented modelling; simulation; paral-
lel manipulators; Modelica; DAE systems; closed chains

1 Introduction
Owing to their superior performance compared to serial
manipulators in terms of stiffness, positioning accuracy
and speed, and load-to-weight ratio, parallel manipula-
tors have recently received growing interest also in indus-
trial applications, for example for machining tasks such as
drilling and milling (Escorcia-Hernández et al. 2020), and
for PCBs (Printed Circuit Board) assembly (Hesselbach
and Kerle 1997).

However, the complex kinematics of parallel manipula-
tors, based on multiple closed loops, on one hand simpli-
fies the inverse kinematics, on the other hand limits the
achievable workspace and considerably complicates the
calculation of the direct kinematics, and above all the dy-
namic modeling.

The key concept applied in developing the dynamic
model of a parallel manipulator consists in cutting the
kinematic loops, modelling the resulting serial tree of sub-
chains and introducing the constraint reactions.

In order to model the serial tree, two approaches can
be followed: the Lagrange-Euler (LE) formulation and the
Newton-Euler (NE) formulation. The Lagrange-Euler for-
mulation is based on the computation of the kinetic and
potential energy of the tree as a whole, while the Newton-
Euler formulation computes the dynamics of each link
of the tree separately. The NE results naturally in large
number of equations and, in this respect, is considered
as poorly efficient compared to the LE formulation. The
question however is debatable, in fact, the complexity of
the computation of the Lagrangian largely increases with
the number of bodies involved while, on the other hand, a
large number of the equations involved in the NE formu-

lation are actually assignments (Elmqvist and Otter 1994)
and it is not a case that the most efficient method to com-
pute the dynamics of serial manipulator is based on the
NE formulation (Walker and Orin 1982).

The modelling approaches then essentially differ with
respect to the way the kinematic constraints and the reac-
tion forces are taken into account.

The Newton-Euler approach has been applied in (Das-
gupta and Mruthyunjaya 1998) and in (Briot and Khalil
2015), where the principle of virtual powers has been con-
sidered to remove the constraint forces. The principle of
virtual work has been also applied in (Tsai 2000) and, in
(Jiao et al. 2019), to a Kane’s formulation of motion equa-
tions (Kane and Levinson 1983; Yang et al. 2016; Lieh
1994). An efficient formulation of the dynamics of a Stew-
art parallel manipulator, based on the screw theory, has
been recently proposed in (Hou, Zhang, and Zeng 2020),
shown to be suitable for application to dynamic model-
based control.

The Lagrange-D’Alembert formulation has been ap-
plied in (Nakamura and Ghodoussi 1989) and, recently, in
(Abo-Shanab 2020), where the Jacobian/Hessian matrices
of the constraint equations are derived from the kinetic en-
ergy. With this approach the constraint forces (Lagrange
multipliers) are removed from the motion equations, by
projecting the motion of the system into the directions al-
lowed by the kinematic constraints. Similarly, the Natural
Orthogonal Complement (NOC) approach has been pro-
posed in (Angeles and Lee 1988), where the constraint
forces are eliminated by multiplying the unconstrained
dynamical equations by an orthogonal complement, de-
rived from velocity constraints. The NOC approach has
been recently applied to a Newton-Euler formulation of
the dynamic model of a parallel Schönflies-motion gener-
ator (Karimi Eskandary and Angeles 2018). Lagrangian
formulation and virtual work principle have been applied
in (Xin, Deng, and Zhong 2016), with the goal to derive
an efficient control-oriented dynamic model.

In all the cited approaches, the parallel robot model is
developed considering its dynamics as a whole, the deriva-
tion process is rather complex (the use of symbolic ma-
nipulation tools is often suggested, i.e. MAPLE in (Xin,
Deng, and Zhong 2016)), and it is generally difficult to
integrate into a multi-domain model, taking into account
not only the dynamics of the multibody system but also
the dynamics of electromechanical or hydraulic actuation

DOI
10.3384/ecp21181241

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

241

devices, elasticity and friction, which have a significant
effect on the dynamics of real manipulators. In particu-
lar, it has been shown in (Grotjahn, Heimann, and Ab-
dellatif 2004) that friction compensation yields significant
improvements on control performance.

The modeling approaches described in the literature are
therefore difficult to apply to the creation of Digital Twins
(DT), compliant with the Industry 4.0 paradigm. In fact,
a DT is something more than a simulation model. Having
to be as faithful a replica as possible of the physical de-
vice, it must also replicate its structure in the connection
of components, often belonging, in whole or in part, to
physical domains other than the mechanical domain only.
In particular, the development of a DT should take place
in the same way as the assembly of the components of
the physical system. In this respect, the Lagrangian ap-
proach to tree structure modeling is clearly not applicable,
as it is based on the calculation of the kinetic and potential
energy of the entire mechanical system as a whole. Fur-
thermore, even the manipulations of the system of equa-
tions necessary to eliminate the constraint reactions from
the equations of motion are in contrast with a true modu-
lar approach. On the other hand, object-oriented modeling
seems to be particularly suitable for the creation of DT, in
which it is able to guarantee a true modular multi-domain
approach to modeling (Scaglioni and Ferretti 2018).

This paper describes the development of models of par-
allel manipulators1, suitable for the creation of DTs, using
an object-oriented approach where:

• Only components of the standard Modelica (Fritzson
et al. 2020) library are used (no equations have been
written, apart from the explicitly developed inverse
kinematics models), connected through the graphical
interface of the interpreter (OpenModelica).

• The management of closed kinematic chains is com-
pletely transparent to the user and is carried out di-
rectly by the symbolic manipulation process during
the model compilation phase.

• The constructs of the Modelica language have been
used to associate the state variables of the model to
the actual degrees of freedom only, i.e. actuators co-
ordinates, and to guide the symbolic manipulation
and the calculation of the initial configuration of the
simulations.

The description of the mechanical dynamics is therefore
distributed over the various components (links), through
the Newton-Euler approach, which is often considered in
the literature as inefficient, as it implies the explicit cal-
culation of the constraint reactions (useless for control-
oriented models) but, on the other hand, this calculation
is still important, especially for the use of the DT in the
design phase.

1The developed models are freely available at https://github.
com/looms-polimi/Parallel_manipulators.

At first, the dynamic model of a Delta robot is il-
lustrated and validated with respect to experimental re-
sults. Then, the model of a Stewart platform is discussed
and used to automatically generate the inverse dynamics,
thanks to the symbolic manipulation capabilities of the en-
vironment. In other words, an algebraic function calculat-
ing the motor torques from the position, velocity and ac-
celeration of motor coordinates is generated, suitable to be
used in model-based control strategies. Similar functions
have been developed in (Hou, Zhang, and Zeng 2020), just
with reference to a Stewart platform, and in (Xin, Deng,
and Zhong 2016), where the MATLAB function imple-
menting the inverse dynamics of the 3-DOF parallel ma-
nipulator presented in (Huang et al. 2005) has been devel-
oped.

The paper is organized as follows. In Section 2 the
model of a Delta robot is described and validated with re-
spect to experimental results. In Section 3 the model of a
Stewart platform is described. In Section 3.2 the process
of generating the inverse dynamics function of the Stewart
platform is illustrated. Finally, some Conclusion is given
in Section 4.

2 Model of a Delta robot
The Delta robot considered here is the result of project de-
veloped in cooperation between Logicon and Mitsubishi
Electric Italia. The servomotors and the relevant motion
hardware and software were provided by Mitsubishi Elec-
tric Italia, while the mechanical components were pur-
chased by third parties. Logicon was responsible for the
assembly of the machine and for all other aspects related
to the project, such as the design of the electrical cabi-
net, wiring, technical drawing and FEM analysis. Figure
1 shows a picture of the robot, while Figure 2 illustrates
its kinematics.

The structure of the robot consists of three identical legs
connecting a fixed base with a moving platform. Each leg
is composed of an upper arm and a parallelogram struc-
ture; three actuated revolute joints connect the upper arms
with the base and provide motion, while all other joints
are spherical joints.

The spherical joints add an additional degree of free-
dom, corresponding to the rotation of the rods around an
axis passing through the centers of the spherical joints. In
reality, this degree of freedom is constrained by a system
of springs (Figure 3), which however only exerts inter-
nal forces and therefore has no influence on the motion.
Wanting to describe the rods as rigid bodies, without in-
troducing the modeling of the spring system, it would be
necessary to replace two spherical joints with two univer-
sal joints. However, since the rods, made of carbon, are
thin and light, it is possible to concentrate their mass in
the middle of the rod and thus avoid the introduction of
the additional degree of freedom.

The top level Modelica model is shown in Figure 4,
it includes the world reference (1), the global parameters

Object-Oriented Models of Parallel Manipulators

242 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181241

Figure 1. Picture of the Delta robot.

Figure 2. Kinematics of the Delta robot.

record (2), the motion planner (3), the motion controllers
(4), the platform (6) and the base (7) models and the ag-
gregate model of the legs (5), shown in Figure 5. The
world reference model (1) defines the inertial reference
frame and the gravity field (it must be always present when
the package MultiBody is used (Otter, Elmqvist, and
Mattsson 2003), while the global parameters record (2)
collects all the main parameters of the model to improve
readability and modifiability. The motion planner (3) de-
fines the trajectory of the origin of the platform reference
frame; so far linear, trapezoidal and cubic trajectories can
be assigned, as well as the pick-and-place trajectory con-
sidered for validation. The motion controller model (4)
first implements the inverse kinematics, thus computing
the reference signals for the controllers of the motor coor-
dinates: 3 identical classical independent PID controllers
have been implemented.

It must be noted that controllers are connected to servo-
motors through an expandable connector, denoted
by the yellow cable connector. This (input/output) con-

Figure 3. Springs system

1 2

3 4

5

6

7

Figure 4. Delta robot model top level

nector models the role of the communication bus on the
real machine, collecting the control signals, thus the en-
coder measurements from the servomotors and the current
setpoints from the controllers.

The leg model is defined by the actuator model (Fig-
ure 6(a)) connected to the upper arm (rigid body), in turn
rigidly connected to the upper short side of the parallel-
ogram (Figure 6(b)). The model of the electrical motor
could have been easily included (Ferretti et al. 2002) in
the servomotor model, but this would have required the
adoption of very short integration step sizes, needed to fol-
low the electrical dynamics of the windings. Since in this
work the focus is on the much slower mechanical dynam-
ics, the whole current (torque) control loop has been ap-
proximated with a first order transfer function, modelling
the torque control loop bandwidth. The gearbox model
has been taken directly from the Modelica standard li-
brary (Pelchen, Schweiger, and Otter 2002). In particular,
the (lossy) gearbox model models the gear ratio and the
losses of a standard gear box, including the stuck phases
that may occur at zero speed, due to the friction in the
gear teeth and/or in the bearings. The loss terms, efficien-
cies and friction torques, can be arbitrarily defined through
lookup tables as functions of the absolute value of the in-
put shaft speed and of the power flow direction. The base

Session 3B: Digital twins

DOI
10.3384/ecp21181241

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

243

5

Figure 5. Delta robot legs model

(6) and the platform (7) can have different shapes and ge-
ometries, however, the kinematics is only defined by their
attached reference frames, while dynamics is only defined
by the inertial parameters of a single rigid body; in this
case both base and platform have been modelled as discs
(cylinders). The upper arm rotational joints are attached to
the base along a circumference of diameter Db, displaced
by 120◦, with the rotation axes tangent to the circumfer-
ence (Figure 7(a)). The platform is attached to the lower
sides of the parallelograms through frames placed along
a circumference of diameter Dp, still displaced by 120◦

(Figure 7(b)).
It must be pointed out that the upper and lower connec-

tors of the legs model in Figure 5 are actually vectors of
frames. In other words, all the servomotors frames and the
frames attached to the lower sides of the parallelograms
are collected in a vector, in turn connected to another vec-
tor of frames in the base and platform. The base and plat-
form models then define the correct geometrical displace-
ments among the legs connectors through fixed rototrans-
lation models.

The model was built using library joints, which poten-
tially introduce the state variables associated with the in-
troduced degrees of freedom. As a consequence of the
closure of the kinematic chains, however, the degrees of
freedom are only those associated with the actuators and,
properly, the state variables of the model should be as-
sociated with the actual degrees of freedom only. To
implement this choice and guide the symbolic manipu-
lation, the construct StateSelect.always was used
for the variables of the actuators (position and speed) and
StateSelect.never for the variables of all the other
joints. Another problem concerns the initialization of the
model, in particular the need to solve closed kinematic
chains. Also in this case it was decided to set the actu-

Figure 6. Delta robot leg model

𝛽𝛽

1

23

bD

Joint axisJoint axis

Joint axis

𝛽𝛽

1

23

pD

a) b)

Figure 7. Delta robot base and platform

ator variables using the fixed = true attribute, and
then define the initial values of all the other variables as
attempt values.

The model has been validated with reference to a fast
pick-and-place trajectory, depicted in Figure 8, where the
end effector repeatedly travels along a linear trajectory of
82.4 cm in 0.44 s, therefore at an average speed of 1.87 m/s
(video available). Since the structure and settings of joint
controllers were not available, the validation has been per-
formed by imposing the measured joint velocities to the
model (thus computing the inverse dynamics), while com-
paring the measured joint torques to the simulated ones.
Figure 9 shows the measured joint velocities, while Fig-
ures 10, 11 and 12 show the comparison between the mea-
sured and the simulated torque for joint 1, 2 and 3 respec-
tively.

Although a good correspondence has been obtained be-
tween the simulation results and the measurements, some
discrepancies are highlighted, in particular in Figure 10 at
about time 0.3 s, in the form of a vibratory mode in the
experimental data, and in Figures 11 and 12 at about 0.15
s, where the difference between simulations and measure-
ments appears particularly evident.

Object-Oriented Models of Parallel Manipulators

244 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181241

Figure 8. Pick and place trajectory

Figure 9. Measured joint velocities

The main cause of these discrepancies is probably at-
tributable to the adoption of ideal gear and spherical joint
models, not taking into account friction, backlash and
elasticity. The vibratory modes detected are most likely
due to the compliance of the parallelogram rods, modeled
as rigid. It is also possible that at high operating speeds the
same structure on which the robot is fixed may introduce
vibrations.

3 Model of a Stewart platform
The Stewart platform considered in this work has been de-
signed for an innovative labeller for bottles of different
size and dimension, Figure 13(a) shows a picture of the
platform, while Figure 13(b) illustrates its kinematics.

It consists of a base and a platform, the former is usually
fixed to the ground, while the latter can be positioned in
space, in both position and orientation (6 d.o.f.), through
6 identical legs. Each leg is extendable through an electric
cylinder, connected to the base through universal joints
and to the moving platform through spherical joints. The
electric cylinder is a mechanical linear drive unit with a
piston rod, the driving component consists of an electri-
cally actuated spindle converting the rotary motion of the

Figure 10. Meas. (blue) and simulated torque (red) on joint 1

Figure 11. Meas. (blue) and simulated torque (red) on joint 2

motor into a linear motion of the piston rod.

3.1 Direct dynamics
The top level Modelica model is shown in Figure 14(a)
and is very similar to the Delta robot top model, while the
aggregate model of the legs (5) is shown in Figure 14(b).
In this case the motion planner (3) defines the trajectory of
platform pose, in turn defined by the position of the origin
of the platform reference frame and by the Euler angles re-
lating the orientation of the platform frame with respect to
the world frame; so far linear, trapezoidal and cubic trajec-
tories can be assigned. Accordingly, 6 identical classical
independent PID controllers have been implemented for
the motion of the cylinders. The leg model, whose hier-
archy is shown in Figure 15, is defined by the servomotor
model connected to the cylinder model. In turn, the cylin-
der model is defined by the connection of two rigid bodies
(stator and rod) through a prismatic joint, connected to the
servomotor model through a gearbox model and a screw
drive model. The positions of the joints on the base and
platform are placed on a circumference, of diameters Db
and Dp, in couples displaced by 120◦, with αb, αp being

Session 3B: Digital twins

DOI
10.3384/ecp21181241

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

245

Figure 12. Meas. (blue) and simulated torque (red) on joint 3

Figure 13. Stewart platform

the angular displacements between the positions of each
couple (Fig. 16). The right and left connectors of the legs
model in Fig. 14(b) are again vectors of frames, connected
to other vectors of frames on the base and platform.

3.2 Inverse dynamics
The use of the model of the Stewart platform has been in-
vestigated for the automatic generation of the inverse dy-
namics, namely of an algebraic function computing the
torques as a function of joints positions, velocities and
accelerations, mainly used in control and trajectory plan-
ning (Balafoutis and Patel 1991). In control applications,
inverse dynamics is usually applied to convert positions,
velocities and accelerations, computed according to some
desired trajectory, into the joint generalized forces which
will achieve the desired motion. In trajectory planning, in-
verse dynamics can be used to check that the desired tra-
jectory can be executed without exceeding the actuators’
limits. Analytically computing the inverse dynamics is a
difficult task, particularly in the case of closed kinematic
chains but, thanks to the symbolic manipulation capabili-
ties of the Modelica interpreter, the inverse dynamics can

Figure 14. Stewart platform

Servomotor

Cylinder

Gearbox Screw drive

Stator Rod

Prismatic joint

Universal joint Spherical joint

Figure 15. Stewart platform: leg model

be automatically generated from the model.
The torques computed by the inverse dynamics have

been checked along the trajectory depicted in Figure 17,
obtained by controlling joint positions through 6 inde-
pendent PID controllers. The model of the Stewart plat-
form has been then copied and pasted (Figure 18 and
19), while modifying the input structure. Thanks to the
AngleToTorqueAdaptor model (Figure 20), instead
of the joint torques, the inputs are defined by the joint posi-
tions, velocities and accelerations computed by the direct
dynamics. The differences δi (i = 1, . . . ,6) between the
torques computed by the direct dynamics and the torques
computed by the the inverse dynamics is shown in Fig-
ure 21, as it can be seen it is equal to zero (numerically
±1.5× 10−16 N). A standalone model can be also gener-
ated (Figure 22).

It is important to point out that the inverse dynamic
model was obtained directly, without any manipulation,
from the direct dynamic model, which in turn was built
in a modular way using only library models. Instead, all
the approaches mentioned in the introduction required a

Object-Oriented Models of Parallel Manipulators

246 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181241

1

2

3

4

5

6
bD bD αb

1

2

3

4

5

6

pD pα

Figure 16. Stewart platform base and kinematic parameters

Figure 17. Stewart platform trajectory

specific analytical approach, and in some cases the use
of symbolic manipulators. However, if on the one hand
the efficiency in the construction of the inverse dynamic
model can be considered as optimal, on the other hand the
question of the computational efficiency of the generated
model remains open, to be investigated in future works.

4 Conclusion
In this paper, the development of models of parallel
manipulators based on an object-oriented modelling ap-
proach is discussed. The models have been developed
based on components of the Modelica standard library
only, without writing a single line of code. Two differ-
ent manipulator have been considered: a Delta robot and
a Stewart platform. The model of the Delta robot has been
validated on the basis of experimental data, collected on
a real robot. The model of the Stewart platform has been
considered in order to automatically generate the inverse
dynamics model, which is in general a quite difficult task
to be performed manually. The main future development
seems to be the verification of the numerical efficiency of
the automatically generated inverse dynamics model, for
the purpose of real time control and planning.

References
Abo-Shanab, R. F. (2020). “Dynamic modeling of parallel ma-

nipulators based on Lagrange–D’Alembert formulation and

Figure 18. Stewart platform: direct and inverse dynamics

Figure 19. Stewart platforms

Jacobian/Hessian matrices”. In: Multibody System Dynamics
48.4, pp. 403–426.

Angeles, J. and S. K. Lee (1988). “The formulation of dynamical
equations of holonomic mechanical systems using a natural
orthogonal complement”. In: Journal of Applied Mechanics
55.1, pp. 243–244.

Balafoutis, C. A. and R. V. Patel (1991). “Manipulator Inverse
Dynamics”. In: Dynamic Analysis of Robot Manipulators:
A Cartesian Tensor Approach. Boston, MA: Springer US,
pp. 117–182.

Briot, S. and W. Khalil (2015). Dynamics of parallel robots -
From rigid bodies to flexible elements. Springer.

Dasgupta, B. and T. S. Mruthyunjaya (1998). “Closed-form dy-
namic equations of the general Stewart platform through the
Newton–Euler approach”. In: Mechanism and Machine The-
ory 33.7, pp. 993–1012.

Elmqvist, H. and M. Otter (1994). “Methods for tearing systems
of equations in object oriented modeling”. In: Proceedings
of the 1994 European Simulation Multiconference, ESM94.
Barcelona, Spain, pp. 1–7.

Escorcia-Hernández, J. M. et al. (2020). “A new solution for
machining with RA-PKMs: Modelling, control and experi-
ments”. In: Mechanism and Machine Theory 150, pp. 1–18.

Session 3B: Digital twins

DOI
10.3384/ecp21181241

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

247

Figure 20. AngleToTorqueAdaptor model

Figure 21. Difference between direct and inverse torques

Ferretti, G. et al. (2002). “Simulating permanent magnet brush-
less motors in DYMOLA”. In: Proceedings of the 2nd Inter-
national Modelica Conference. Oberpfaffenhofen, Germany,
pp. 109–115.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295.

Grotjahn, M., B. Heimann, and H. Abdellatif (2004). “Identifi-
cation of friction and rigid-body dynamics of parallel kine-
matic structures for model-based control”. In: Multibody Sys-
tem Dynamics 11.3, pp. 273–294.

Hesselbach, J. and H. Kerle (1997). “Placing SMD parts on elec-
tronic circuit boards with parallel robots - Concepts and cal-
culatory design”. In: Proceedings of IFAC Workshop on In-
telligent Manufacturing Systems, IMS’97. Vol. 30. 14. Seoul,
Korea, pp. 223–228.

Hou, Y., G. Zhang, and D. Zeng (2020). “An efficient method
for the dynamic modeling and analysis of Stewart parallel
manipulator based on the screw theory”. In: Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science 234.3, pp. 808–821.

Huang, T. et al. (2005). “Conceptual design and dimensional
synthesis for a 3-DOF module of the TriVariant-a novel 5-
DOF reconfigurable hybrid robot”. In: IEEE Transactions on
Robotics 21.3, pp. 449–456.

Jiao, Jian et al. (2019). “Dynamic modeling and experimental
analyses of Stewart platform with flexible hinges”. In: Jour-
nal of Vibration and Control 25.1, pp. 151–171.

Kane, T. R. and D A. Levinson (1983). “The use of Kane’s dy-
namical equations in robotics”. In: The International Journal
of Robotics Research 2.3, pp. 3–21.

Figure 22. Inverse dynamics model

Karimi Eskandary, P. and J. Angeles (2018). “The dynamics of
a parallel Schönflies-motion generator”. In: Mechanism and
Machine Theory 119, pp. 119–129.

Lieh, J. (1994). “Computer-oriented closed-form algorithm for
constrained multibody dynamics for robotics applications”.
In: Mechanism and Machine Theory 29.3, pp. 357–371.

Nakamura, Y. and M. Ghodoussi (1989). “Dynamics computa-
tion of closed-link robot mechanisms with nonredundant and
redundant actuators”. In: IEEE Transactions on Robotics and
Automation 5.3, pp. 294–302.

Otter, M., H. Elmqvist, and S. E. Mattsson (2003). “The
new Modelica multiBody library”. In: Proceedings of the
3rd International Modelica Conference. Linköping, Sweden,
pp. 311–330.

Pelchen, C., C. Schweiger, and M. Otter (2002). “Modeling and
simulating the efficiency of gearboxes and of planetary gear-
boxes”. In: Proceedings of the 2nd International Modelica
Conference. Oberpfaffenhofen, Germany, pp. 257–266.

Scaglioni, B. and G. Ferretti (2018). “Towards Digital Twins
through object-oriented modelling: a machine tool case
study”. In: Proceedings of the 9th Vienna International
Conference on Mathematical Modelling, MATHMOD2018,
pp. 613–618.

Tsai, L. (2000). “Solving the inverse dynamics of a Stewart-
Gough manipulator by the principle of virtual work”. In:
Journal of Mechanical Design 122.1, pp. 3–9.

Walker, M. W. and D. E. Orin (1982). “Efficient dynamic com-
puter simulation of robotic mechanisms”. In: Journal of Dy-
namic Systems, Measurement, and Control 104.3, pp. 205–
211.

Xin, G., H. Deng, and G. Zhong (2016). “Closed-form dynam-
ics of a 3-DOF spatial parallel manipulator by combining the
Lagrangian formulation with the virtual work principle”. In:
Nonlinear Dynamics 86, pp. 1329–1347.

Yang, J. et al. (2016). “Dynamic modeling and control of a
6-DOF micro-vibration simulator”. In: Mechanism and Ma-
chine Theory 104, pp. 350–369.

Object-Oriented Models of Parallel Manipulators

248 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181241

A Modelica Library for Modelling of

Electrified Powertrain Digital Twins

Nikolaos Fotias1 Ran Bao2 Hui Niu2 Michael Tiller3

Paul McGahan1 Adam Ingleby2
1Ricardo Prague s.r.o., Czech Republic, {Nikolaos.Fotias,

Paul.McGahan}@ricardo.com
2Ricardo UK Ltd., UK, {Ran.Bao, Hui.Niu,

Adam.Ingleby}@ricardo.com

3Ricardo Inc., USA, Michael.Tiller@ricardo.com

Abstract
In this paper, a Modelica library of electrified powertrain

components is presented and its applications discussed.

This library is used to construct digital twins of electrified

powertrains during product development. These digital

twins provide value by reducing development time and

cost, while once the product is in-service, they enable

improved condition monitoring. The library includes a

multi-fidelity and multi-scale battery and power

electronics sub-library, an Electrical Drive Unit (EDU)

sub-library modelling different types of electrical

machines, and an electrified propulsion system sub-library

of template models that leverage the battery, power

electronics and EDU components found in the other sub-

libraries. Finally, an example of applying the proposed

library to electrified vehicle development is presented.

Keywords: Modelica, Digital Twins, Electrified

Powertrain

1 Introduction

Digitalisation is revolutionising the complete product

lifecycle: from development and production to testing, in-

service maintenance and recycling. “Digital Twin” (DT)

technology will bring a significant reduction in electric

powertrain development time, cost and risk: through up-

front design analysis, optimisation and testing in a virtual

environment, without the need for multiple prototypes. At

its core, a DT is a representation of a physical product that

can be used as a testing ground for monitoring, simulating

and optimizing design and operational performance.

This paper describes the work done in a project which had

the key objective of assessing the impact of DT techniques

on product development. In this project, the first focus was

developing Digital Twins for each sub-system (Battery,

Power Electronics and EDU) in the electrified powertrain.
The second focus was the integration of each sub-system,

to create an Electrified Powertrain Digital Twin. Such a

system level Digital Twin can be used, as part of the

virtual product development process, in the design and

optimisation of the electrified powertrain.

We have created an Electrified Powertrain Modelica

library, called ePropulsionSystem, which incorporates

necessary plant models to enable development of Digital

Twins. The novelty of this developed library arises from

the ability to seamlessly swap between model variants and

fidelity levels, while offering an interface to couple with

already existing libraries to streamline concept

development, with the ultimate goal of effectively linking

the developed virtual model to the physical model.

 In this paper we will discuss the various models included

in the different sub-libraries as well as an example of

applying the ePropulsionSystem model to an Electric

Vehicle (EV) use case.

1.1 Literature Review

The battery models describe not only the electrical

behaviour of the battery but also the thermal response and

aging characteristics (Einhorn, et al., 2011; Gerl, Janczyk,

Krüger, & Modrow, 2014; Surewaard, Karden, & Tiller,

2003; Dao & Schmitke, 2015; Bao, Fotias, & McGahan,

2021). The most common representations of battery

electrical behaviour are electrochemical models and

Equivalent Circuit Models (ECM) (Fan, Pan, Bartlett,

Canova, & Rizzoni, 2014; Perez,

Shahmohammadhamedani, & Moura, 2015; Guo, Jin, &

White, 2017; He, Xiong, & Fan, 2011; Chen & Rincon-

Mora, 2006). It is well known that the overall battery pack

performance is influenced significantly by the battery

temperature (McGahan, Rouaud, & Booker, 2019) which

we model using a network of 1D lumped thermal

components (Pesaran, 2002; Johnson, Pesaran, & Sack,

2000; Park & Jaura, 2003; Nelson, Dees, Amine, &

Henriksen, 2002). Investigation of battery aging

mechanisms is currently a hot topic in both academia and

industry. Calendric ageing and cyclic ageing are two
commonly used ageing model. The cause and effect of

various battery ageing mechanisms is discussed in detail

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

249

in (Vetter, et al., 2005). Estimating the battery parameters

from measured data is also an important feature in several

battery libraries (Gerl, Janczyk, Krüger, & Modrow,

2014; Dao & Schmitke, 2015; Qin, Li, Wang, & Zhang,

2019).

To enable easy model parametrisation and development,

while still ensuring high fidelity, behavioural modelling

was used to develop the components of the power

electronics library. The work was based on concepts

presented in the literature (Denz, Schmitt, & Andres,

2014; Cellier, Clauß, & Urquía, 2007; Lai, Hill, &

Suchato, 2019; Urkizu, et al., 2019), where the response

of the system is an amalgamation of the static response

and an estimation of the losses, either using analytical

solutions, measurement data or the dynamic model of the

system. Given the dependence of the device response on

the temperature, the developed models were enhanced to

capture that behaviour and thermal models for the devices

were developed in accordance with (AG, 2020).

The five most common electric machine technologies

among Hybrid Electric Vehicles (HEVs) and EVs are

Induction Machines (IMs), Switched Reluctance Motors

(SRMs), wound-rotor Synchronous Machines (SMs),

Direct Current (DC) machines, and Synchronous

Permanent Magnet Machines (SMPM) (Bazzi, 2013;

Dorrell, Knight, Popescu, Evans, & Staton, 2010) each

with their own advantages and disadvantages. In late

2020, Tesla pioneered a hybrid motor type in the Tesla

Model 3, combining characteristics of Interior Permanent

Magnet (IPM) motors and Synchronous Reluctance

Motors (SynRM) to form the hybrid IPM-SynRM motor.

While an IPM machine demonstrates high efficiency at

high speed, this comes at the cost of output torque

(Hwang, Han, Kim, & Cha, 2018). By comparison, IPM-

SynRM devices possess better efficiency at low speed and

better thermal efficiency than traditional SynRMs subject

to temperature limits (Ramakrishnan, Stipetic, Gobbi, &

Mastinu, 2018; Xing, Sun, & Lei, 2014; Lee, Kim, Jung,

Hong, & Kim, 2012; Haumer & Kral, Motor Management

of Permagnent Magnet Synchronous Machines, 2012).

Since the IPM is a type of SMPM, this project focused on

the development of SMPM and SynRM (abbreviated as

SMR in Modelica nomenclature) motors.

There are several software packages available for the

mathematical modelling and simulation of EVs and

EDUs, including MATLAB/Simulink, Simpower, Python

based models and Modelica (Mohd, Hassan, & Aziz, 2015;

McDonald, 2012). Because the Modelica Standard

Library (MSL) is open source and provides a library of

multi-domain physical models found in automotive

components, the MSL can be an excellent starting point

for the development of EDU digital twins (Einhorn, et al.,

2111). The MSL has a basic electric machine library

which includes the traditional asynchronous Induction

Machines and Synchronous Machines (Ceraolo, 2015).

The MSL and other Modelica libraries also have extended

models that consider friction losses and include thermal

effects, e.g., the Fundamental Wave library (Kral &

Haumer, 2011), Advanced library (Haumer, Kral,

Kapeller, Bäuml, & Gragger, 2009) and SmartDrive

library (Gragger, Kral, Hansjörg, & Pirker, 2006).

2 Library Structure

Figure 1 shows the typical architecture of the digital twin

models created using our ePropulsionSystem library.

As shown in Figure 1, the Battery, Power Electronics and

EDU are the key components being modeled. This library

does not include models of the controllers for these

devices as we have chosen to focus exclusively on plant

models in this library. The ePropulsionSystem library

is structured as shown in Figure 2.

2.1 Battery

The key models in the Battery sub-library are the cell

level Electrical and Ageing models. These cell level

models are then leveraged in the BatteryPack models.

These models are fully developed and will be discussed in

detail later in this paper. The Battery sub-library also

includes Thermal, Cooling, Ancillaries and

BatteryManagementSystem component libraries

which will be developed in the future and will not be

discussed in this paper.

Figure 1. Architecture of a typical ePropulsionSystem

digital twin model

Figure 2. ePropulsionSystem library structure

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

250 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Figure 3. The structure of the Battery sub-library in

ePropulsionSystem library

2.1.1 Electrical

At present, there are three different electrical cell models

included in the Battery sub-library. These are the Ideal

Voltage Source Model, Internal Resistance Model, and

RC Element Model. Schematics for each of these models

are shown in Figure 4. Each of these electrical cell models

can be characterized by how their Open Circuit Voltage

(OCV) and internal resistance are modeled. For this

reason, a template model for electrical cells was created

and is shown in Figure 5.

Figure 4. Different electrical cell models included in the

Battery sub-library

Figure 5. ElectricalCellTemplate model

The Electrical Cell Model Template includes a positive

connector (p), a negative connector (n), a thermal

connector (thermal) as well as the OCV and internal

resistance component models. To use one template to

represent three different cell electrical models, the OCV

and internal resistance component models are made

replaceable. So, a Modelica package, called

ElectricalInterfaces, was created which includes

the interfaces for the OCV and internal resistance

components. Different OCV and internal resistance

models, which extend from the partial models in the

ElectricalInterfaces package, were built and

included in a package called ElectricalComponents.

The structure of an electrical cell model in the Battery

package is shown in Figure 6.

In ElectricalComponents, two different OCV models

were developed. The first model, IdealOCV, uses a

constant voltage source for the open circuit voltage. The

other model, TzTableOCV, computes the OCV based on

the cell temperature and State-of-Charge (SOC). The cell

SOC is also calculated in the TzTableOCV model by

integrating the current flow in and out of the cell.

Three different models of the internal resistance of the cell

were developed. These are the IdealShort model, the

TzTableR, and the TzTableRCR model. All of these

models are found in the

Battery.ElectricalComponents sub-library. The

IdealShort model assumes there is no internal

resistance in the cell. The TzTableR and TzTableRCR

models compute the internal resistance of the cell based

on cell temperature and SOC. The topology of the

TzTableR features only a single (temperature and SOC

dependent) resistance while the topology of the

TzTableRCR includes two resistors and a capacitor (all of

which depend on temperature and SOC).

As shown in Figure 4, by starting with the

ElectricalCellTemplate model and picking different

OCV and internal resistance sub-models, a number of

different electrical cell models can be created.

In this way, using the ElectricalCellTemplate

model, the three pre-defined electrical cell models, shown

in Figure 6, were created: IdealCell, R_Cell and

RC_Cell.

2.1.2 Ageing

Normally, battery ageing models includes two modes of

ageing. These are cycling and calendaring. In this library,

only the cycling ageing model is considered. A cycling

ageing model is a semi-empirical model of two main

effects of ageing on cell performance, capacity fade and

power fade.

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

251

It has been shown experimentally that the capacity fade

can be described using a power law with energy

throughput and is related to temperature via an Arrhenius

relationship. This means that the capacity loss (capacity

fade), can be described using the equation below (Andrea

Cordoba-Arenas, 2015):

𝑄𝑓𝑎𝑑𝑒 = 𝑘𝑄𝑠𝑒𝑣 𝐴ℎ𝑧 (1)

Where, 𝑄𝑓𝑎𝑑𝑒 is the capacity fade [%]; 𝑘𝑄𝑠𝑒𝑣 is the

capacity fade severity factor [-]; Ah is the charge

throughput [kAh]; z is the power exponent [-].

The resulting increase in internal resistance can be

described using a very similar equation to capacity fade,

however without the power exponent (Andrea Cordoba-

Arenas, 2015):

𝐼𝑅𝑖𝑛𝑐 = 𝐾𝐼𝑅𝑠𝑒𝑣 𝐴ℎ (2)

Where, 𝐼𝑅𝑖𝑛𝑐 is the increase in internal resistance [%];

𝐾𝐼𝑅𝑠𝑒𝑣 is the increase in internal resistance severity factor

[-]; Ah is the charge throughput [kAh].

The Ageing model was created by using Equation (1) and

(2) and added to the ElectricalCellTemplate model

to create a new template called

ElectricalCellsWithAgeing as shown in Figure 7.

As the Ageing model reduces the cell capacity, and

increases the cell internal resistance, the

ElectricalInterfaces package was updated by

adding new inputs and outputs to create a new package

called ElectricalInterfacesWithAgeing in the

Ageing package; and the

ElectricalComponentsWithAgeing was updated to

include the calculation of ageing effects from the

ElectricalComponents package. The structure of the

Ageing package is presented in Figure 6. Again, we can

choose models for the OCV and internal losses to create

several different electrical cell models some of which are

shown in Figure 6.

2.1.3 BatteryPack

Using the electrical cell model interface, we can then

construct a battery PackModel which is composed of

battery cells connected both in series and in parallel. This

battery PackModel and its parameters are shown in

Figure 8.

In the PackModel, the number of battery cells connected

in series and the number of battery cells in parallel are

defined by two parameters, ns and np, respectively Using

these parameters in conjunction with the array and

looping capabilities in Modelica we are then able to

automatically generate the serial and parallel connections

needed to wire together every cell in the PackModel.

Different electrical cell models (with or without ageing)

from the Electrical and Ageing package can be

chosen as the replaceable CellModelType model

which is used to instantiate each cell in the PackModel.

Through our template models we can create both

topological and parametric variants to match the

underlying cells as shown in Figure 3. We place these

fully parameterized models in the

Battery.Parameters library. In this way, we can

create pack models using any of the parameterized cell

models that we have developed (with or without ageing)

and independently specify the pack topology as well.

Figure 6. The structure of Electrical and Ageing

packages

Figure 7. ElectricalCellsWithAgeing template

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

252 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Figure 8. Battery PackModel and its parameters

2.2 PowerElectronics

The PowerElectronics sub-library is a part of the

overall Digital Twin for Electrified Powertrains library,

ePropulsionSystem, and focuses on capturing the

behavior of the most commonly used electronic

components and topologies, while ensuring easy

parametrization from available manufacturer data.

The main focus of the library is the modelling of the

behavior of Diodes, Insulated Gate Bipolar Transistors

(IGBTs) and Metal-Oxide-Semiconductor Field Effect

Transistors (MOSFETs) in a way that enables the user to

simulate a variety of electronics topologies utilizing any

available parametrization data. For that purpose, the

developed models are made up of numerous variants to

estimate the static response (static model variants) as well

as the corresponding losses of the device in question (loss

model variants).

The static model variants for the different semiconductors

capture the response of the device disregarding the

dynamic behavior due to the presence of capacitances and

inductances. The models were developed and organized

according to the level of detail that is needed for their

parametrization:

• Ideal models, where the devices under

investigation are represented by their ideal

equivalent circuit.

• Constant models, where parameters such as

channel resistance are not affected by system

variables.

• Look-up table-based models, where the device
parameters at each simulation step are the output

of a system variable dependent look-up table.

Such variables include device temperature, gate

voltages etc.

All these variants are developed using the same

underlying interface and can be seamlessly swapped using

replaceable models.

The loss model variants estimate the conduction losses as

well as the switching losses of the devices, given a

selected static model and the data available to the user.

The variants developed are the following:

• Lossless models, which are implemented for fast

simulations where heat dissipation is of no

interest.

• Constant models, where parameters such as

energy release during a switching event are not

affected by system variables.

• Look-up table-based models, where parameters,

such as the switching energy loss, are estimated

at every simulation step from the device variables

using look-up tables. Such variables are the

device current, the blocking voltage etc.

• Dynamic models, where the dynamic behavior,

due to parasitic capacitances and inductances of

the device, is captured. The switching and

conduction losses are subsequently estimated

from the dynamic response of the system.

The same development approach was used as with the

static models when integrating these variants together to

ensure simple and fast swapping between model variants.

Table 1 summarizes the static and loss model variants as

well as the number of possible model representations

given those variants

The models described are used as the building blocks of

more complex power electronics topologies. An example

of the utilization of the models is presented in Figure 9.

The topology under investigation is an isolated DC-DC

converter that represents the on-board charger of an EV.

Using the models developed we were able to simulate the

response of the converter when coupled with a simple PI

controller that regulates the output current. Furthermore,

we were also able to carry out an investigation on the

impact of different semiconductor technologies on the

performance of the charger. The output current and

voltage curves, as well as the full-bridge semiconductor

temperatures are provided in Figure 10, Figure 11, Figure

12 and Figure 13.

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

253

Table 1. PowerElectronics library model variants

 Static

Variants

Loss

Variants

Total

Variants

Diodes 4 2 8

IGBTs 5 9 45

MOSFETs 5 9 45

Moreover, we were able to use the developed system to

execute batch simulations to estimate the impact of

different switching frequencies on the Full-Bridge losses

as presented in Figure 14. This capability to automatically

execute batch simulations can be used in conjunction with

Design of Experiments techniques to carry out system

level parameter optimizations.

Figure 9. Hard-switched isolated DC-DC converter

Figure 10. DC-DC Output voltage

Figure 11. DC-DC Output current

Figure 12. DC-DC Output current ripple

Figure 13. Full bridge semiconductor temperature

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

254 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Figure 14. Full bridge technologies loss comparison

2.3 EDU

The electrical machines library found in the MSL (version

3.2.1) contains models for synchronous induction

machines, including permanent magnet and synchronous

reluctance motors. To develop the electrified powertrain

digital twin, the Modelica models were used as templates

and extended to form the EDU Modelica Library.

2.3.1 Python Automated Data Importing

The library is coupled with the Ricardo eMotor design

database (eMAD, see Figure 15) using a Python script.

The script automates data transfer and formatting and the

process can be broken down as follows: 1) The Python

script queries the motor requirement such as motor

maximum power, DC voltage, etc. from the eMAD

database 2) The user selects a specific MotorCAD design

which meets the requirement. 3) The script extracts from

eMAD detailed parameters such as d-q inductances, pole

numbers, the open circuit voltage, nominal frequency etc.

(see Table 2) and saves the result into a Modelica

parameter file. 4) The user directly imports the file into

Modelica using a function called
Modelica.Utilities.Example.readRealParamet

er from MSL.

2.3.2 EDU library structure

Following the literature review, the SMPM and SMR

motor types were considered as the initial focus for the

EDU library. Referring to Figure 16, within the

EmachineSummary package, a standard interface called

MotorInterface was implemented as a partial

model to define drive unit subsystem of the overall e-

propulsion system. In doing so, a user may choose

between the various motor types, e.g., SMPM. Referring

to Figure 17, three electrical pins (pin_p, pin_p1,

pin_p2) are used to connect to a three-phase inverter.

Motor voltage, current, torque and rotational speed signals

connect through a Control Bus to the EDU controller via

an external control bus. The torque output connects with a

vehicle model (gear and drive model) using a rotational

flange connector from the MSL. The thermal port releases

heat due to the power losses from the motor, as explained

in Section 2.3.3.

In the SMPMMotorTest and SMRMotorTest packages,

the standard SMPM and SMR Modelica models were

extended with the sub-component models based on

outputs from MotorCAD. The modifications are mainly to

improve the power loss equations (see the next section) to

enhance correlation with MotorCAD data and to model

the thermal behavior (see Section 2.3.3).

2.3.3 Power loss models

Firstly, using Ricardo’s MotorCAD database material

(e.g., see Figure 18), the generic power loss equations in

Modelica were re-parameterized for a specific MotorCAD

design, including stator core losses, stator winding losses,

rotor winding losses and permanent magnet losses. The

parameterization of the equations was performed using the

MATLAB curve fitting toolbox and optimized to

minimize the error across the range of operating motor

speed and torque values. To achieve a better correlation

with MotorCAD’s data, some equations such as those for

stator core losses were extended, for example, to include

dependency on shaft torque. As MSL models do not

specify an equation for the rotor core losses

(lossPowerRotorCore is set to zero by default), a custom

binomial equation as a function of motor speed and torque

was included.

Through the ThermalAmbientSMPM interface block

provided by Modelica, the motor power losses are

extracted, and the detailed node temperatures are fed into

the state-space thermal model. Temperatures

corresponding to MotorCAD nodes ID 12 and 31 (the

location nearest to the stator winding and permanent

magnet, respectively) are used as temperature feedback

signals to the thermal interface block.

Figure 15. eMAD typical motor design

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

255

Figure 16. Structure of EDU library

Table 2. Modelica imported parameters from MotorCAD

Parameters Value Unit

Number of poles in pairs 10

Nominal frequency 600 Hz

Open circult voltage 1000 v

Nominal stator resistance

per phase
0.013 Ω

Stator main field

inductance in d-axis
0.1755 mH

Stator main field

inductance in q-axis
0.6618 mH

Stator copper loss MotorCAD design map

Stator iron loss MotorCAD design map

Magnet loss MotorCAD design map

Rotor iron loss MotorCAD design map

Figure 17. IPM_motor_interface

2.3.3 Thermal model

In order to better represent the thermal behavior of the

EDU, a reduced order state-space thermal model (see

Figure 19 and Figure 20) was also developed for Modelica

and parameterized with MotorCAD data files, namely

“.cmf” files for thermal capacitances, “.rmf” files for

thermal resistances, “.pmf” files for power losses, “.tmf”

files for node temperatures.

Figure 18. Example stator copper loss map from MotorCAD

Figure 19. A guide to reduced lumped-mass thermal models in

MotorCAD

Figure 20. Motor node temperature calculation

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

256 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Figure 21. The structure of the

ePropulsionSystemModel

2.4 ePropulsionSystemModel

The ePropulsionSystemModel library was built by

using the components in Battery, PowerElectronics

and EDU sub-libraries, and its structure is shown in Figure

21. The interfaces for the key components (Battery,

PowerElectronics and EDU) in the

ePropulsionSystemModel library were created in the

SystemInterfaces package. Then the replaceable

models of each of these components were built in the

SystemComponents package by using the interfaces and

the models developed in Battery, PowerElectronics

and EDU sub-libraries. By connecting the replaceable

Battery model, EDU model and Inverter model, an

ePropulsion System Architecture system model can be

created. Figure 22 shows an example model from the

SystemArchitectures package which is an

ePropulsion system model with Alternating Current (AC)

architecture. Because the Inverter and EDU are

replaceable, by choosing different Inverter and EDU

models, different types of ePropulsion systems can be

created. In this way, the ePropulsion system model can

work as a standalone model or be integrated into complete

vehicle models.

3 Use Case

To assess the ePropulsion system library, a vehicle co-

simulation was done. The ePropulsion system library was

imported into Ricardo IGNITE, which is a physics-based

tool developed for complete vehicle system modelling and

simulation. IGNITE features comprehensive built-in

automotive Modelica libraries. These enable users not

only to quickly and accurately model conventional and

highly complex vehicle system models including hybrid-

electric, full electric and novel vehicles, but also to import

any Modelica based library such as the ePropulsion

system library.

Figure 22. The ePropulsion system model with AC

Architecture

Figure 23. The co-simulation models

Figure 23 shows the co-simulation models used in this

study. There are three important parts of the IGNITE

model. These are the IGNITE vehicle model, the

electrified powertrain digital twin and the co-simulation

interface. The IGNITE vehicle model was built with the

built-in, comprehensive vehicle modelling libraries. The

electrified powertrain digital twin was built by using the

components from the ePropulsion system library. The co-

simulation interface provided the input and output

interfaces for co-simulation. The vehicle controller used

was developed in MATLAB/Simulink and coupled to the

Modelica libraries, as shown in Figure 23, to showcase the

ability to utilize pre-existing controllers developed in

other environments. As this co-simulation model is a

forward-facing simulation, a driver model was developed

and included in MATLAB/Simulink as well.

The vehicle used in this study is a 6x4 long haul truck

model which was defined based on typical MY2019

specifications. The key vehicle parameters are shown in

Table 3. The vehicle performance attributes and

propulsion system requirements are also given in Table 4.

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

257

Table 3. Vehicle parameters

Parameter Value Unit

GVW 44 t

Cd 0.6 -

Frontal area 10.2 m2

Tyre RRC 6.4 N/kN

Tyre rolling radius 0.49 m

Table 4. Vehicle performance attributes and propulsion system

requirements

Vehicle Performance

Attributes

Propulsion System

Requirements

90km/h on 3% grade

40km/h on 10% grade

Climbing 30% grade

Powertrain max

continuous power

≥525kW

6x2 mode for GCW<32t

(2nd axle lifted)

6x2 mode max

continuous power

≥380kW

Min top speed 120km/h

on flat road

Powertrain max

continuous torque

≥67,500Nm (‘at

wheels’)

A baseline configuration of the propulsion system was

defined which has an 800 V system voltage, two EDUs,

and one battery pack which has 530 kWh of nominal

useable energy. To evaluate the baseline propulsion

system performance, simulations were carried out using a

variety of drive cycles.

Simulation Results

The drive cycle target speed profile is presented in Figure

24 alongside the actual vehicle speed. Using the imported

controller and the Digital Twin models we are able to

accurately match the actual speed with the target profile.

Having achieved the desired speed profile, we can then

extract curves to assess the performance of each part of

the electrified powertrain. Specifically, in Figure 25 the

battery voltage, load current, delivered power and SoC are

presented for the drive cycle. From those curves we can

extract metrics such as depth of discharge and charge

throughput for a single cycle, as well as total regeneration

energy for that cycle.

In Figure 26 the inverter power losses and output phase

currents are plotted, enabling us to evaluate if the

semiconductor peak currents are within the absolute rating

limits, as well as compare the inverter losses with the total

delivered power by the battery.

Finally, Figure 27 and Figure 28 present curves extracted

from a single eMachine model. In Figure 27 the eMachine

torque and speed are plotted, which closely follow the

controller demanded speed and torque, while in Figure 28

the different loss components, as well as the total losses of

the eMachine are presented, enabling us to evaluate the

performance of the machine.

Figure 24. Target vs Actual Speed

Figure 25. Battery Performance Curves

Figure 26. Inverter Performance Curves

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

258 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Figure 27. eMachine Mechanical Performance Curves

Figure 28. eMachine Power Losses

Total Cost of Ownership (TCO) Assessment

Optimising journey time and cost is the most important

criteria for road-freight vehicles. To assess the impact of

powertrain design and configuration on this criterion, a

TCO study was carried out. The TCO study assessed the

overall cost of vehicle ownership as €/t.100km and

collected a wide range of inputs, both from the detailed

system simulation previously discussed, expected

degradation, component costs and costs of operation

(electricity prices etc). The TCO model is presented

schematically in Figure 29.

The following assumptions have been made for the

purpose of the TCO assessment.

Table 5. TCO model assumptions

Parameter Value Unit

Electricity Price 0.25 €/kWh

Battery Pack Cost 200 €/kWh

Power Electronics and

E-motor Cost
43 €/kWh

Figure 29. Schematic overview of Total Cost of Ownership

model

Figure 30. TCO sensitivity to battery pack energy

Figure 31. Comparison of TCO for different powertrain

technologies

The TCO model enables a what-if analysis on the impact

of various powertrain parameters (or indeed external

parameters) on TCO. An example is shown in Figure 30

where the TCO sensitivity to battery pack installed energy

is presented. A clear minimum can be seen which suggests
that, for this vehicle application, it is beneficial to have a

larger battery pack installed, which improves battery

lifetime and range.

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

259

The TCO model is also used to compare different

powertrain technologies as shown in Figure 31. In this

example, the TCO for a Diesel Internal Combustion

Engine (ICE) is used as a baseline and compared against

a BEV, optimised BEV (using the initial results from

above) and a Catenary Electric Vehicle (CEV) variant. A

detailed comparison, including Fuel Cell EV will be the

focus of a future study.

4 Conclusion

The Modelica library of electrified powertrain

components, ePropulsionSystem, the sub-libraries of

key sub-components (Battery, Power Electronics and

EDU), and the various models included in the sub-

libraries are detailed in the paper. The

ePropulsionSystem library enables rapid construction

of Digital Twins for Battery, EDU and Power Electronics

systems in an electrified powertrain, and provides an

approach which can scale automatically from low-fidelity

for fast system level simulation to high-fidelity for sub-

system design analysis in the electrified powertrain

development process. An example of applying the

ePropulsionSystem library to an EV use case is also

discussed. In the use case, the co-simulation models and

driving cycles simulation result are presented. Then, by

using the co-simulation models, a Total Cost of

Ownership (TCO) optimisation is discussed as an example

to prove that the developed Modelica library can be used

to assess and optimise a wide range of electrified

propulsion architectures.

Acknowledgements

This work has been supported by Innovate UK (Project

No: 81341). The authors would also like to thank Milan

Cvetkovic and Dmitry Rozhdestvenskiy for their support

with implementation of the software.

References

AG, I. T. (2020). Transient thermal measurements and thermal.

Munich, Germany: Infineon Technologies AG.

Andrea Cordoba-Arenas, S. O. (2015). "A control-oriented

lithium-ion battery pack model for plug-in hybrid electric

vehicle cycle-life studies and system design with

consideration of health management". In: Journal of Power

Sources, Vol. 279, pp. 791-808.

Bao, R., Fotias, N., & McGahan, P. (2021). "Using Virtual

Product Development with Design of Experiments to Design

Battery Packs for Electrified Powertrain". In: SAE Technical

Paper 2021-01-0764.

Bazzi, A. M. (2013). "Electric machines and energy storage

technologies in EVs and HEVs for over a century". In:

International Electric Machines & Drives Conference.

Chicago, IL, USA: IEEE.

Cellier, F. E., Clauß, C., & Urquía, A. (2007). "Electronic circuit

modeling and simulation in Modelica". In: Proc. 6th

EUROSIM Congress on Modelling and Simulation.

Ljubljana, Slovenia.

Ceraolo, M. (2015). "A new Modelica Electric and Hybrid

Power Trains library". In: Proceedings of the 11th

International Modelica Conference, Versailles, September

21-23 (pp. 785-794). France: Linköping Electronic

Conference Proceedings.

Chen, M., & Rincon-Mora, G. A. (2006). "Accurate electrical

battery model capable of predicting runtime and I-V

performance". In: IEEE Transactions on Energy Conversion,

Vol: 21(2), pp. 504-511.

Dao, T.-S., & Schmitke, C. (2015). "Developing Mathematical

Models of Batteries in Modelica for Energy Storage

Applications". In: The 11th International Modelica

Conference.

Denz, P., Schmitt, T., & Andres, M. (2014). "Behavioral

Modeling of Power Semiconductors in Modelica". In:

Proceedings of the 10th International ModelicaConference,

(S. 343-352). Lund, Sweden.

Dorrell, D. G., Knight, A. M., Popescu, M., Evans, L., & Staton,

D. A. (2010). "Comparison of different motor design drives

for hybrid electric vehicle". In: IEEE Energy Conversion

Congress and Exposition. Atlanta, GA, USA: IEEE.

Einhorn, M., Conte, F. V., Kral, C., Niklas, C., Popp, H., & Fleig,

J. (2011). "A Modelica Library for Simulation of Elecric

Energy Storages". In: The 8th International Modelica

Conference.

Einhorn, M., F.V.Conte, C.Kral, C.Niklas, H.Popp, & J.Fleig.

(2111). "A Modelica Library for Simulation of Electric

Energy Storages". In: Proceedings of the 8th International

Modelica Conference; March 20th-22nd; (pp. 436-445).

Dresden: Linköping University Electronic Press; Linköpings

universitet.

Fan, G., Pan, K., Bartlett, A., Canova, M., & Rizzoni, G. (2014).

"Electrochemical-Thermal Modeling of Li-Ion Battery

Packs". In: ASME 2014 Dynamic Systems and Control

Conference. San Antonio, Texas, USA.

Gerl, J., Janczyk, L., Krüger, I., & Modrow, N. (2014). "A

Modelica Based Lithium Ion Battery Model". In: The 10th

International ModelicaConference.

Gragger, J. V., Kral, H. G., Hansjörg, T. B., & Pirker, K. F.

(2006). "The SmartElectricDrives Library – Powerful Models

for Fast".In: Modelica Conference 2006 at arsenal research

in Austria. Vienna: The Modelica Association .

Guo, M., Jin, X., & White, R. E. (2017). "An Adaptive Reduced-

Order-Modeling Approach for Simulating Real-Time

Performances of Li-Ion Battery Systems". In: Journal of The

Electrochemical Society, Vol: 164(14), pp. A3602-A3613.

Haumer, A., & Kral, C. (2012). "Motor Management of

Permagnent Magnet Synchronous Machines". In:

Proceedings of the 9th International Modelica Conference.

Munich: Modelica.

Haumer, A., Kral, C., Kapeller, H., Bäuml, T., & Gragger, J. V.

(2009). "The Advanced Machines Library". In: Proceedings

7th Modelica Conference, Italy, Sep. 20-22. Como: Modelica.

He, H., Xiong, R., & Fan, J. (2011). "Evaluation of Lithium-Ion

Battery Equivalent Circuit Models for State of Charge

Estimation by an Experimental Approach". In Energies , Vol:

4(4), pp. 582-598.

Hwang, M.-H., Han, J.-H., Kim, D.-H., & Cha, H.-R. (2018).

"Design and Analysis of Rotor Shapes for IPM Motors in EV

Power Traction Platforms". Energies, vol: 2601.

Johnson, V. H., Pesaran, A. A., & Sack, T. (2000).

"Temperature- Dependent Battery Models for High-Power

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

260 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249

Lithium-Ion Batteries". In: 17th Annual Electric Vehicle

Symposium. Montreal, Canada.

Kral, C., & Haumer, A. (2011). "The New FundamentalWave

Library for Modeling Rotating Electrical Three Phase

Machines". In: Proceedings of the 8th International Modelica

Conference; March 20th-22nd; Technical Univeristy (pp.

170-179). Dresden: Linköping University Electronic Press;

Linköpings universitet.

Lai, S. C., Hill, C. I., & Suchato, N. (2019). "Implementation of

an Advanced Modelica Library for Evaluation of Inverter

Loss Modeling". In: 2019 IEEE Texas Power and Energy

Conference (TPEC). College Station, TX, USA.

Lee, B. H., Kim, K.-S., Jung, J.-W., Hong, J. P., & Kim, Y. K.

(2012). "Temerature Estimation of IPMSM using Thermal

Equivalent Circult". In: IEEE Transactions of magnetics, Vol.

48, No.11.

McDonald, D. (2012). "Electric Vehicle Drive Simulation with

MATLAB/Simulink". In: proceedings of the 2012 North-

Central Section Conference. American Society for

Engineering Education .

McGahan, P., Rouaud, C., & Booker, M. (2019). "Comparison

of Model Order Reduction Techniques for Real-Time Battery

Thermal Modelling". In: SAE Technical Paper 2019-01-

0503. doi:10.4271/2019-01-0503

Mohd, T. A., Hassan, M. K., & Aziz, W. M. (2015).

"Mathematical modeling and simulation of an electric

vehicle". In: Journal of Mechanical Engineering and

Sciences (JMES), pp. 1312-1321.

Nelson, P., Dees, D., Amine, K., & Henriksen, G. (2002).

"Modeling thermal management of lithium-ion PNGV

batteries". In: Journal of Power Sources, Vol: 110(2), pp.349-

356.

Park, C., & Jaura, A. K. (2003). "Dynamic Thermal Model of Li-

Ion Battery for Predictive Behavior in Hybrid and Fuel Cell

Vehicles". In: SAE Technical Paper 2003-01-2286.

doi:10.4271/2003-01-2286

Perez, H., Shahmohammadhamedani, N., & Moura, S. (2015).

"Enhanced Performance of Li-Ion Batteries via Modified

Reference Governors and Electrochemical Models". In:

IEEE/ASME Transactions on Mechatronics, 20(4), 1511-

1520.

Pesaran, A. A. (2002). "Battery thermal models for hybrid

vehicle simulations". In: Journal of Power Sources, Vol:

110(2), pp. 377-382.

Qin, D., Li, J., Wang, T., & Zhang, D. (2019). "Modeling and

Simulating a Battery for an Electric Vehicle Based on

Modelica". In: Automotive Innovation, Vol: 2(3), pp. 169-

177.

Ramakrishnan, K., Stipetic, S., Gobbi, M., & Mastinu, G.

(2018). "Optimal Sizing of Traction Motors Using Scalable

Electric Machine Model". In: IEEE Transactions on

Transportation Electrification, Vol: 4 , no. 1.

Surewaard, E., Karden, E., & Tiller, M. (2003). "Advanced

Electric Storage System Modeling in Modelica". In: The 3rd

International Modelica Conference.

Urkizu, J., Mazuela, M., Alacano, A., Aizpuru, I., Chakraborty,

S., Hegazy, O., Klink, R. (2019). "Electric Vehicle Inverter

Electro-Thermal Models Oriented to Simulation Speed and

Accuracy Multi-Objective Targets". In: Energies.

Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C.,

Besenhard, J. O., Hammouche, A. (2005). "Ageing

mechanisms in lithium-ion batteries". In: Journal of Power

Sources, Vol: 147(1-2), pp. 269-281.

Xing, Sun, J., & Lei. (2014). "Parameterization of Three-Phase

Electric Machines Models for EMI sIMULATION". In: IEEE

Transactions on power electronics, Vol: 29 , No. 1.

Session 3B: Digital twins

DOI
10.3384/ecp21181249

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

261

262 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Development of a real-time test bed for
indoor climate simulation in a

VR environment using a digital twin
Kushagra Mathur1 Christoph Nytsch-Geusen 1

Lucas Westermann1
1Institute of Architecture and Urban Planning,

Berlin University of the Arts, Germany,
k.mathur@udk-berlin.de, nytsch@udk-berlin.de,

l.westermann@udk-berlin.de

Abstract
This paper describes the development process of a test bed
for an interactive VR (virtual reality) environment for
indoor climate simulations of buildings. The basic idea is
to reproduce the simulated indoor climate of a thermal
room model in a climate chamber with the help of air
conditioning devices and thus to make the indoor climate
directly physically experienceable for a user in real-time.
In a first step, the real test bed is mapped with the help of
a digital twin and simulated in parallel with the room
model. In a second step, the digital twin is replaced by the
real test bed and the Modelica room model is included
then as an embedded model. In this way, the real test bed
can be operated with the control algorithm which has been
evaluated and optimized in a previous step. The described
approach is demonstrated in a case study using a simple
single-zone building model.

Keywords: hardware in the loop simulation, digital twin
of a test bed, interactive virtual reality environment

1 Introduction
The traditional workflow in thermal building and indoor
climate simulation consists of the creation of a thermal
building model with simulation programs such as IDA
ICE (https://www.equa.se/de/ida-ice) or
EnergyPlus (https://energyplus.net), in which
geometry, construction, and boundary conditions like the
user behavior or outdoor climate of the real building or
room are represented. As a result, the user receives time
series of physical quantities describing the indoor climate,
such as the air temperature, the radiation temperature, the
humidity or the thermal comfort index PMV/PPD
according to Fanger from these programs. In this way of
working, simulation results are perceived by the user
purely intellectually in the form of diagrams on a monitor.

However, since the indoor climate is primarily
perceived via the physical senses, an immersive
simulation process in which the user can physically
experience the calculated indoor climate can lead to a
deeper understanding of simulation scenarios. This
approach is applied in the research project GEnEff, where
the indoor climate simulated with a Modelica based

thermal room model is reproduced in real-time with the
help of a climate chamber and can thus be directly
perceived by the user. The users are also visually
immersed in the simulation process by using a VR
environment, in which they can interact with the 3D
representation of the room model. This includes, for
example, opening windows or adapting the thermostat to
different values of the set heating or cooling temperature,
which influence the room climate. The feasibility of this
simulation approach is described by the authors in Nytsch-
Geusen et al., 2017 as well as its first realization in a
corresponding test bed with thermal feedback for users in
Nytsch-Geusen et al., 2021.

In this paper, we will show how the development
process could be supported using a Modelica based digital
twin that first evaluates the thermal, hydraulic and
functional properties of the test bed before it is realized
with constructional effort.

2 Related work
The Modelica modeling language has been used in various
domains to recreate parts of technical systems in test
benches as a model utilizing hardware in the loop (HIL)
simulations. For example, Winkler and Gühmann, 2006
describe a real-time Modelica model of an engine test
bench in which the real engine is embedded in a virtual
test environment. Schneider et al., 2015 presents the HIL
model of a test bench for investigating the dynamic
behavior of circulation pumps, where the environment
consisting of the energy system technology and the
building envelope is virtually replicated in a Modelica
model. Baltzer et al. 2014 describe a HIL test bench in
which a real heat exchanger device using the waste heat
of a car engine was coupled with a virtual thermal
Modelica model of the heated vehicle cabin.

3 Methodology
Figure 1 describes the two-step research approach. In the
first step, the climate chamber is represented by a
Modelica model as a digital twin of the test bed, which
contains both its thermal envelope and the air
conditioning devices used to reproduce the calculated
room climate.

DOI
10.3384/ecp21181263

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

263

Figure 1. General research approach.

The user interacts via a VR headset in real-time with a 3D
representation of the room model, which is implemented
in Unity (Unity, 2021). The VR model is connected to the
thermal room model also modeled in Modelica. The
physical states calculated in this physical room model are
sent to the event-based framework openHAB (openHAB,
2021). There, the room climate of the building model is
compared with that of the climate chamber of the digital
twin, and then a control algorithm is used to adjust the air
conditioning devices in a manner that the differences
between the two room climates are minimized. In this
way, possible system configurations and control
algorithms of the test bed can be evaluated in advance by
making adjustments in the digital twin model. In the
second step, the pre-optimized digital twin is replaced by
the real test bed.

3.1 Control system with openHAB
openHAB (openHAB, 2021) is an open-source home
automation software framework with a wide range of
plugins connecting it to different hardware and software
ecosystems. It uses an event-based bus to enable logical
calculations or comparisons between the states of
connected systems and devices as shown in Figure 2. This
event bus can be manipulated and read by a REST API
(Representational State Transfer Application Program
Interface). For our purposes, two Python scripts access
this data interface and are responsible for receiving and
sending data via UDP (User Datagram Protocol) between
Modelica and openHAB. This kind of data exchange was
developed and evaluated by the authors in a case study for
a digital twin, in which the control strategy of the building
energy system for a research building was analyzed
(Nytsch-Geusen et al., 2018).

Now, openHAB is used as the control system for both
the test bed and its digital twin model. It performs all the
logical calculations, does the comparisons of the
simulated model states with the real sensor data of the
climate chamber using a rule-based system. This controls
the air conditioning devices of the test bed using the serial

binding which then sends signals to Arduino micro-
controllers. These rules are event-based logic algorithms
which can perform different tasks when the conditions are
triggered.

Figure 2. Interactions between openHAB event bus and

connected systems and devices.

openHAB also delivers a centralized web interface to
observe relevant data of the test bed and the simulation
model and support the manipulation of the hardware
system by the users in a standalone program without the
need of receiving input data from Modelica or Unity.

3.2 Digital twin model

The comprehensive Modelica model of the digital twin
includes different sub-models and objects interconnected
with each other using distinct interfaces (compare with
Figure 3). All used component models are based on or are
included in the BuildingSystems library (Nytsch-Geusen
et al., 2016) or the Modelica standard library
(https://github.com/modelica/ModelicaStand
ardLibrary). This Modelica model exchanges data bi-
directionally in real-time with both external software tools
Unity (considering the user behavior in the VR
environment) and openHAB (control logic of the climate
chamber). For this purpose, a UDP data exchange model
is responsible for sending or receiving data packages
through UDP sockets to Unity and openHAB. This model
class is implemented based on the
Modelica_DeviceDrivers library (Thiele et al., 2017). It
can consider also an adaptable real-time factor for
increasing or decreasing the speed of the simulation
experiment, depending on the present system dynamics or
the presence of user interaction.
The upper part of Figure 3 shows the thermal building
model for calculating the indoor climate, which receives
its boundary conditions from an environment model in
which different climate locations can be defined. On the
other hand, the user’s interactions with the visible 3D
building model in the virtual reality environment are made
available to the thermal building model via an interface to
Unity. This can represent, for example, the user’s
presence in the room, opening a window, turning on the

Interactive
VR environment

Thermal
room model

Control strategy
indoor climate

Interactive
VR environment

Thermal
room model

Control strategy
indoor climate

Digital twin
of the test bed

Real test bed
(AC devices, thermal display)

Development of a real-time test bed for indoor climate simulation in a VR environment using a digital twin

264 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181263

lights, or changing the set values for the room thermostat.
All these user interactions influence the indoor climate
and are considered accordingly as dynamic boundary
conditions in the thermal building model.

The lower part of Figure 3shows the sub-model of the
test bed. This part of the system model was created
keeping in mind the fact that this model can be used to
design the real test bed. In the center, the thermal model
of the climate chamber (thermoDome) is located, which is
supplied with warm or cold air via a hydraulic air duct
system using two air conditioning units. The hydraulic air
duct system is part of the climate chamber model and it
consists of two air ring tubes, one for cold air and one for
warm air. Each of the air ring tubes is modeled as a
detailed thermo-hydraulic model with two air inlets for the
air conditioning devices and eight outlets to the inner
space of the climate chamber (compare 4 with Figure 5).

Switching between hot and cold air supply is achieved
via four bypass valves, which receive the control signals
from the control logic of openHAB. It compares the room
air temperature of the building model TSim with the air
temperature of the climate chamber model TCC. This is
realized via a hysteresis algorithm, using the room air
temperature of the building model as the target
temperature. The cooling fans supply cold air to the
climate chamber if the air temperature of the climate
chamber model is higher than 1 K above the target
temperature and closes all values when the temperature of
chamber is 0.4 K to provide a buffer for stabilising the
temperature as shown in the flowchart in Figure 5. Under
this threshold, both the hot and cold bypass valves are
closed. Similarly, the logic opens the heating valves if the

threshold of 1 K below the room air temperature of the
building model is reached.

Figure 4. Thermo-hydraulic model of one of the two ring tubes

which supply the climate chamber with warm or cold air
through eight openings.

3.3 Real-time test bed
After simulating and testing the digital twin model, the

real-time test bed was designed and built. In this context,
more adaptations were made in the digital twin model and
the test bed depending on the available hardware and their
functioning.

Figure 3. Digital Twin model of the real-time test bed.

Session 3B: Digital twins

DOI
10.3384/ecp21181263

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

265

Figure 5. A flowchart depicting one of the control algorithm

used for checking and changing mode of the device.

The real-time test bed consists of an igloo-shaped tent
and a base level construction (see Figure 4). The inner
height of the dome is 2.8 m, and it has an inner diameter
of 3.6 m. Two air duct ring tubes in the base level
construction supply the inner space of the dome with
warm and cold air through 16 circular openings from two
air conditioning (AC) devices (compare with Figure 4 and
Figure 7). The test bed includes two air conditioners for
supplying the dome. These devices have a cooling
capacity of 2,050 W, a heating capacity of 1,800 W, and a
max. air volume flow rate of 320 m3/h. In addition, two
additional convective tower heaters can support a fast
increase of the air temperature with a max. common
capacity of 4,400 W. Two humidifiers can increase the air
moisture level in the dome. The felt air movement through
windows and doors can be simulated by two fans with 26
stages (max. airspeed 2.7 m/s). Finally, the felt solar
radiation through closed or opened windows is simulated
by an electric heating radiator in three stages with 850 W,
1,650 W, and 2,500 W.

All the hardware can be operated by infrared remote
control. These infrared signals were decoded using the
irlib2 library (https://github.com/cyborg5/IRLib2)
for Arduino and the same library was used to encode it.
Hence, these devices were controlled by an Arduino
program. Since single-hose air-conditioning devices are
used, it gives the advantage that, if the device is running
in cooling mode supplying cold air, the exhaust port will
supply warm air.

Figure 4. Real-time best bed with igloo-shaped climate

chamber.

Figure 5. Configuration of the real-time test bed.

fan 2

fan 1 tower
heater 1

infrared heater

tower
heater 2

air con-
ditioner 1

air
conditioner 2

humidifier

Temp. &
moist.
sensor

control
strategy

building model

Development of a real-time test bed for indoor climate simulation in a VR environment using a digital twin

266 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181263

Because of this advantage, the device does not have to
switch from heating to cooling mode which takes up to ten
minutes. For that purpose, bypass valves were used to
switch the airflow from the AC devices. The valves were
also controlled by an Arduino using relays. The Arduino
receives commands from openHAB through the serial
port. Reusing the same rules as for the digital twin of the
test bed, the air temperature inside the climate chamber
can be manipulated.

3.4 Embedded building model
Figure 6 shows the Modelica thermal building model
embedded in the test bed. In this case, it includes only the
thermal room model and the UDP interface models to
Unity and openHAB. It will be running in parallel to the
real-time usage of the climate chamber and provides the
necessary data for controlling and manipulating the indoor
climate (air temperature, air moisture, air velocity through
open windows, solar radiation through transparent façade
areas, …) inside of the igloo. Certain parameters in the
Modelica model can be kept dynamic, which can change
with time and simulation will adapt accordingly. Such
parameters include the location of the user (e.g., presence
or absence in the room), the window opening state, or the
set temperatures for heating and cooling.

Figure 6. Embedded Modelica thermal building model.

4 Case study
The case study demonstrates the two-step research
approach with the Modelica digital twin model and the
Modelica HIL model. The simulation scenario takes place
on the 1st of January at the climate location in El Gouna
(Egypt) over a real-time period of 4,600 seconds. A
simple cubic shaped one zone building model is used with
a dimension of 3 m x 3 m x 3 m. It consists of four 20 cm
concrete walls with outer (1.5 cm) and inner (2 cm)

plaster, a 3 cm thick door, and a window with a U-value
of 3.0 W/m2K and g-value of 0.8. The floor and roof are
constructed from 30 cm thick concrete. For adapting the
indoor climate, the building model is equipped with an
ideal heater and an ideal cooler, each with a max. capacity
of 2,000 W. The set temperature for heating and cooling
can vary in a range between 16 °C and 32 °C.

The scenario starts with an initialization temperature
for the room model of 24 °C, both for the enclosed room
air and for all component layers of the wall, floor, and
ceiling models. Initially, a set cooling temperature of
32 °C and a set heating temperature of 18 °C are defined
by the user in the VR environment, so that neither heating
nor cooling is required in the room in the beginning of the
experiment. The ambient temperature of the room model
is approx. 20 °C during the experiment with a slight
downward trend. After 20 minutes, the set cooling tem-
perature is reduced from 24 °C to 20 °C by the user. From
the 30th minute, the set heating temperature is then raised
in several 2 °C steps every 10 minutes until it reaches 32
°C (for the digital twin) or 30 °C (for the real test bed) at
the end of the experiment. The set cooling temperature is
raised to 32 °C during the heating phase to avoid
simultaneous heating and cooling in the building model.

5 Results
5.1 Digital twin model
Figure 7 shows the dynamic behavior of the thermal
building model and the indoor climate of the climate
chamber model. It can be seen that the calculated air
temperature of the indoor model in the climate chamber
can be reproduced well with the help of both air
conditioning devices and the control strategy for the
bypass dampers implemented in openHAB. The ambient
temperature of the climate chamber model was set to
24 °C, corresponding to the ambient conditions of the
laboratory in which the real test bed is located. The peaks
of cooling and heating power are visible, which are caused
by the user due to the change of the set temperatures.

5.2 Real-Time test bed
Figure 8 above shows the simulated indoor air
temperature of the thermal building model and its
replication in the real climate chamber. In this case, the
calculated air temperature can be replicated less well in
the climate chamber than with its digital twin over the
entire period of the experiment. Qualitatively, the indoor
climate is correctly reproduced, but the real climate
chamber has difficulties in reproducing fast dynamic
changes of the air temperature. Overall, the multi-stage
heating-up process is better reproduced than the cooling-
down process. The number of heating and cooling periods
in the real experiment is significantly lower but they
durations significant longer compared to the experiment
with the digital twin.

Session 3B: Digital twins

DOI
10.3384/ecp21181263

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

267

Figure 7. Results for the digital twin model.

6 Discussion
The case study has shown that the design of the test bed
and the evaluation of associated control strategies can be
tested in advance with the use of a digital twin. This
knowledge can then be profitably transferred to the real
test bed. It seems important to increase the cooling and the
heating capacity in the climatic chamber to be able to
simulate fast changes in the indoor climate sufficiently
well in the real climatic chamber. This also includes a
further development of the present discrete control
strategy for the heating and cooling case, which has been
kept very simple up to now. The use of continuous
controllers or model-based controllers can be expected to
provide better control quality. Also, a model extension of
the digital twin seems to be necessary, which is partially
still modeled too idealized. For example, performance-
reducing leakages in the air distribution system are
neglected, which cannot be completely prevented in the
real test bed.

7 Summary and outlook
A two-step method is described and demonstrated in a
case study to effectively support the development process
of an interactive virtual reality environment for real-time
simulation of indoor climate.

Figure 8. Results for the real-time test bed with the embedded

building model.

With the help of a digital twin of the real test bed, weak
points in the experimental setup can be figured out in the
simulation analysis. Furthermore, control algorithms can
be tested and optimized efficiently in time by using an
adaptive real-time factor.
The next development steps for the climate chamber will
focus on the improvement of the achievable system
dynamics. For this purpose, the power for heating and
cooling has to be significantly increased and the control
algorithms of the climate chamber has to be further
developed.
Acknowledgments
The described research was conducted within the project
“EnOB: GEnEff - Neuartige Bewertung der Gebäude-
Energie-Effizienz und innovative Demonstration mittels
Simulationsmethoden und Virtual Reality” and funded by
the Federal Ministry for Economic Affairs and Energy in
Germany (reference: 03EN1017A and 03EN1017B).

Development of a real-time test bed for indoor climate simulation in a VR environment using a digital twin

268 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181263

References
Baltzer, Sidney, Lichius, Thomas, Gissing, Jörg, Jeck, Peter,

Eckstein, Lutz (2014). Hardware-in-the-Loop (HIL)
Simulation with Modelica - A Design Tool for Thermal
Management Systems. Proceedings from 10th International
Modelica Conference. Lund (Sweden), 10-12 September
2014.

Nytsch-Geusen, Christoph, Banhardt, Christoph., Inderfurth.
Alexander, Mucha, Katharina, Möckel, Jens, Rädler, Jörg,
Thorade, Matthis and Tugores, Carles (2016).
BuildingSystems – Eine modular hierarchische Modell-
Bibliothek zur energetischen Gebäude- und
Anlagensimulation. Proceedings from Conference BAUSIM
2016. Dresden (Germany), 14-16 September 2016.

Nytsch-Geusen, Christoph, Ayubi, Thaeba, Möckel, Jens,
Rädler, Jörg and Thorade, Matthis (2017).
BuildingSystems_VR – A new approach for immersive and
interactive building energy simulation. Proceedings from
Building Simulation 2017. San Francisco (USA), 7-9 August
2017.

Nytsch-Geusen, Christoph, Kaul, Werner, Kharraz, Sina (2018).
Der digitale Zwilling in der energetischen Gebäude-und
Anlagensimulation. Conference Proceedings from BAUSIM
2018. Karlsruhe (Germany), 26.-28. September 2018.

Nytsch-Geusen, Christoph and Mathur, Kushagra (2020).
Entwicklung einer Virtual Reality-Umgebung zur
interaktiven thermischen Raumsimulation. Bauphysik 42(6),
315-325.

Nytsch-Geusen, Christoph, Kaul, Werner, Mathur, Kushagra,
Westermann, Lucas and Kriegel, Martin (2021).
Development of an interactive virtual reality simulation
environment with a thermal feedback for the user.
Proceedings from Building Simulation 2021. Bruges
(Belgium), 1-3 September 2021.

OpenHAB (2021). Official web site of OpenHAB:
https://openhab.org (last access on 2021 May).

Schneider, Georg Ferdinand, Oppermann, Jens, Constantin,
Ana, Streblow, Rita, Müller, Dirk (2015). Hardware-in-the-
Loop-Simulation of a Building Energy and Control System to
Investigate Circulating Pump Control Using Modelica.
Proceedings from 11th International Modelica Conference.
Versailles (France), 21-23 September 2015.

Thiele, Bernhard, Beutlich, Thomas, Waurich, Volker, Sjölund,
Martin and Bellmann, Tobias (2017). Towards a Standard-
Conform, Platform-Generic and Feature-Rich Modelica
Device Drivers Library. Proceedings from 12th International
Modelica Conference. Prague (Tschechien), 15–17 May
2017.

Unity (2021). Official web site of Unity: https://unity3d.com
(last access on 2021 May).

Winkler, Dietmar and Gühmann, Clemens (2006).
Synchronising a Modelica Real-Time Simulation Model with
a Highly Dynamic Engine Test-Bench System. Proceedings
from 4th International Modelica Conference. Vienna
(Austria), 4-5 September 2006.

Session 3B: Digital twins

DOI
10.3384/ecp21181263

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

269

270 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A first principles thermal losses model of the TCP-100 parabolic
trough collector based on the Modelica Standard Library

Julia Pérez1 Luis J. Yebra1 Francisco M. Márquez2,3 Pedro J. Zufiria3

1Plataforma Solar de Almería, CIEMAT, 04200 Tabernas, Spain
perezruizjulia@gmail.com,luis.yebra@psa.es

2Dpto. de Automática, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain,
francisco.marquez@uah.es

3Dpto. Matemática aplicada a las TIC, Information Processing and Telecommunications Center, ETSI
Telecomunicación, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain,

francisco.mgarcia@alumnos.upm.es,pedro.zufiria@upm.es

Abstract
The TCP-100 parabolic trough collectors (PTC) research
facility at Plataforma Solar de Almería (CIEMAT) has
been specially designed for the development of research
activities in Automatic Control of PTC solar thermal
power plants. The development of advanced control tech-
niques for this kind of facilities requires dynamic models
that should be successfully used in advanced controllers.
An important part of these models is the thermal losses
submodel, that traditionally has been considered as an ex-
perimental steady state correlation. In this paper, a work
in progress about a first principles based model of the
losses to the environment of a parabolic trough collec-
tor is presented, based on the physical phenomena inside
any parabolic trough collector during the operation of the
TCP-100 solar field. Concerning this model, the main
contribution of the paper is to include the dependence of
the air velocity close to the PTC. The implementation of
the model in the Modelica language has been done priori-
tizing the use of the Modelica Standard Library classes.
Some simulations results of this model with theoretical
parameters values under typical operating conditions of
the TCP-100 plant are presented, showing higher losses
to the environment when compared with the information
provided by the TCP-100 manufacturer.
Keywords: parabolic trough collector, thermal losses, ob-
ject oriented modelling, Modelica Standard Library

1 Introduction
The main research facility at Plataforma Solar de Almería
(PSA, www.psa.es) to test models and control algorithms
has been the ACUREX parabolic trough collector (PTC)
plant throughout its 32 years of life. Modelling and Con-
trol has been a research line at PSA under which math-
ematical models and advanced control techniques have
been designed, implemented and tested. The ACUREX
was replaced by the TCP-100 facility, shown in Figure 1,
that presents important structural differences with respect
to its predecessor, as outlined in section 2.

Figure 1. The TCP100 PTC solar research facility at Plataforma
Solar de Almería (PSA-CIEMAT), (Pérez et al. 2018).

So far, modelling works based on the TCP-100 facil-
ity are: (Gallego, Yebra, Camacho, and Sánchez 2016),
where a non-linear distributed parameter model of the
TCP-100 solar field is presented; and (Pérez et al. 2018)
in which the authors present a first principles system level
dynamic model based on the project engineering data of
the plant, complemented with several simulation experi-
ments covering several design operation modes. Regard-
ing control research activities, the only currently pub-
lished work is (Gallego, Yebra, and Camacho 2018) where
a Gain Scheduling Model Predictive Controller based on
the model in (Gallego, Yebra, Camacho, and Sánchez
2016) is presented. In (Yebra, Márquez, and Zufiria 2020)
a hybrid model of the TCP-100 facility is presented, cov-
ering the different operation modes of the plant and prov-
ing its applicability for operation training purposes. This
hybrid model is implemented using both the StateGraph
formalism in the Modelica object-oriented modelling lan-
guage, and the Dymola tool. Currently, port-Hamiltonian
modeling of multiphysics systems and object-oriented im-
plementation techniques (Márquez, Zufiria, and Yebra
2020) are being applied to the modelling of the TCP-100

DOI
10.3384/ecp21181271

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

271

facility.
Usually, the losses model of a PTC has been approx-

imated by a static nonlinear correlation-based model de-
pending on the environment variables. Although the
losses model presented here is more detailed than the other
models used for control purposes, it still has low compu-
tational requirements, this fact allowing an efficient use of
the model when it is connected to the other parts of the col-
lector model. This model could be employed for the esti-
mation of the losses and diagnosis based on its predictions
independently in real-time applications during the opera-
tion of the plant, even in solar plants with a large number
of collectors. We will test this model in the TCP-100 re-
search plant to estimate each PTC power lost in real time.

The remainder of this article is organized as follows. In
section 2 an introduction of the TCP-100 facility is pre-
sented, including the PTCs to which the model applies. In
section 3 the model is presented, and in section 4 the im-
plementation of the model with the Modelica Standard Li-
brary (MSL) is outlined. In section 5 different simulation
results of the model are presented; finally, some conclu-
sions are drawn in section 6.

2 The TCP-100 research plant
The plant is composed of two thermofluid circuits with
different heat transfer fluids (HTFs) in each of them:
Syltherm 800 in the solar field (primary circuit) and Ther-
minol 55 in the storage part (secondary circuit). Both cir-
cuits are connected thermally by a heat exchanger (HEX).
Figure 1 shows the complete facility where both parts (so-
lar field and storage) are shown. In comparison to the
ACUREX field, there are structural changes concerning
the tanks system: there is now a new buffer tank T-2 in the
primary circuit of 10 m3 before the solar field pump. The
previous tank T-1 of 115 m3 has been maintained in the
storage part (secondary circuit). The speed of the pumps
for each of the two circuits can be controlled by the inter-
nal control loops inside variable frequency drives (VFD)
connected to both pumps. An air cooler in the secondary
circuit with a VFD has been installed to vary the cooling
power in the storage part (the ACUREX field did not allow
this). These are some of the new and significant structural
changes of the solar thermal facility, that will require the
application of more sophisticated operation modes. A di-
agram of the plant is shown in Figure 2.

2.1 The TCP-100 primary circuit
The TCP-100 primary circuit is mainly constituted by the
solar field that occupies most of the plot, as it can be seen
in Figure 1. The solar field is composed of three loops,
each one with two PTCs in a North-South orientation.
Each PTC is 100 m long, and it is formed by 8 modules
connected in series. Figure 3 shows the first PTC of the
first loop, numbered from the inlet (and coolest part) of
the loop.

The PTCs in each loop are connected in the South ex-
treme, and the coldest PTC will be always the first in the

Figure 2. Diagram of the TCP-100 plant showing the main
components in both subcircuits: primary (Syltherm800) and sec-
ondary (Therminol 55).

Figure 3. First PTC of the first loop of the TCP-100 solar field,
(Pérez et al. 2018).

row, placed at the right part of each loop in Figure 1. Each
of them has two PTCs connected in series, ordered from 1
(rightmost) to 6 (leftmost). The first loop is formed by the
connected pair 1st-2nd (right loop), the second one by 3rd-
4th (center loop) and the third one by 5th-6th (left loop).

The thermal losses (sub)model of a PTC plays an im-
portant role in any solar thermal plant model. It will be
applied to all of the PTCs in any solar thermal facility. In
our experimental facility TCP-100 we have 6 PTC units
but an industrial plant could contain thousands of them.
This model has an important influence on the efficiency
of the plant operation and has a marked importance in
the design of advanced control strategies. This fact has
motivated our work on deriving an independent submodel
based on first principles for the thermal losses in a PTC,
that should be directly connected to other model parts of
the collector; or it could also be used independently as a
standalone model.

The technology of a parabolic trough collector is de-
scribed with detail in (Zarza 2003), where the components
involved in the losses to the environment are presented.

3 TCP-100 parabolic trough collector
thermal losses model

The model that describes the heat losses is founded in well
known physical phenomena: conduction, convection and
radiation (Bejan 2016). With the objective of using this
model independently of the other dynamics in a PTC, we

A first principles thermal losses model of the TCP-100 parabolic trough collector based on the Modelica
Standard Library

272 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181271

will consider boundary conditions the temperature of the
HTF inside the PTC absorber pipe, the ambient tempera-
ture Tamb, and the wind velocity close to the PTC absorber
pipe. Although the solar irradiance is usually an impor-
tant boundary condition in solar thermal models, it is not
considered in this case since it has no direct implication
in the presented losses model. The presented model is a
first principles model, including correlations to approxi-
mate the solution of the heat transfer coefficients. The
equations of conservation and the energy flows are imple-
mented in the MSL classes.

Figure 4 shows a simplified representation of the heat
flows in a PTC absorber pipe. In such figure, Q̇incident and
Q̇lost represent, respectively, the heat flow rates incident
into and lost away from the absorber pipe.

BOROSILICATE GLASS
VACUUM

AISI 321 STEEL Q los
t

Q
incident

Figure 4. Heat flows in a PTC.

In Figure 5 a representation of the internal heat flow
rates between the different sections is sketched.

 A
IS

I 3
21

 S
TE

EL

BOROLSILICATE GLASS

Tamb

 Tsky

•

•

Qconduction glass lostVwind Qconvectionlost

VA
CU

UM

solar radiation Qabsorbed glass
Qabsorbed steel Qconduction glass

Qconvection HTF

HTF SYLTH
ER

M
800

Qradiation steel → glass lost

Qconvection
HTFlost

Qconduction
steel

Qconductionsteel
lost

Qradiationsteel lost

Qradiation
glass → steel

Qradiation glass
lost

Figure 5. Heat flows in a section of a PTC.

The equations for the thermal losses model are detailed
in (Wagner and Gilman 2011), (Pérez et al. 2018) and
(Zarza 2003), and the flows have been organized for the
implementation in the MSL as follows:

• Q̇absorbed,glass is the heat flow absorbed by the enve-
lope glass from the reflected concentrated solar radi-
ation.

• Q̇absorbed,steel is the heat flow that passed through the
envelope glass and is absorbed in the pipe (steel).

• Q̇conduction,glass is the conduction heat flow inside the
glass envelope.

• Q̇radiation,glass−steel is the radiation heat flow between
the glass envelope and the pipe.

• Q̇conduction,steel is the conduction heat flow inside the
pipe.

• Q̇convection,HTF is the conduction-convection heat flow
from the internal surface of the pipe to the HTF. The
model used of the heat transfer coefficient (hHTF)
is based on the Dittus-Boelter correlation (Cengel
2014) with n = 0.4:

hHTF =
Nu · kHTF

2 · r0
,

Nu = 0.023 ·Re0.28 ·Pr0.4,

Re =
vHTF ·2 · r0 ·ρHTF

µHTF
,

Pr =
cp,HTF ·µHTF

kHTF
,

(1)

where Nu, Re and Pr are respectively the Nusselt,
Reynolds and Prandtl numbers; kHTF is the themal
conductivity of the HTF, r0 the internal radius of the
absorber pipe, vHTF is the mean HTF velocity, ρHTF
is the density, cp,HTF is the specific heat, and µHTF
represents the dynamic viscosity.

• Q̇convection,lost is the heat flow rate lost by convection
to the environment. This flow depends on the envi-
ronment temperature and the wind velocity close to
the PTC, based on the correlation corresponding to
the heat transfer coefficient defined by Churchill y
Bernstein in (Cengel 2014):

hair =
Nu · kair

2 · r1
,

Nu = 0.3+
0.62 ·Re

1
2 ·Pr

1
3[

1+
(0.4

Pr

) 2
3

] 1
4
·

[
1+
(

Re
282000

) 5
8
] 4

5

,

Re =
vwind ·2 · r1 ·ρair

µair
,

Pr =
cp,air ·µair

kair
,

(2)

where all the variables have the same meaning as
above and are evaluated for the air medium at ambi-
ent temperature Tamb. In particular, vwind is the wind
velocity close to the outlet radius of the glass enve-
lope r1.

• Q̇radiation,steel−lost is the radiation heat flow lost to
the environment passing through the envelope glass.
Q̇radiation,glass−lost is the radiation heat flow lost to

Session 3B: Digital twins

DOI
10.3384/ecp21181271

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

273

the environment. For both heat flows the sky tem-
perature approximation considered is the following
(Zarza 2003)

Tsky = Tamb −10. (3)

4 MSL implementation of the TCP-
100 thermal losses model

The main objective in this section is to implement the
model of the PTC reusing the classes of the MSL. For
the thermal losses model we have instantiated mostly
the Modelica.Thermal.HeatTransfer subpack-
age classes, according to the phenomena involved: con-
duction, convection, and radiation. Only the parameters
and variables needed to define the heat transfer coeffi-
cients and/or the thermal conductances had to be added
to our model. More details can be read in the MSL docu-
mentation (Fritzson 2014).

Figure 9 shows the thermal losses model obtained
by properly instantiating and parameterizing the MSL
components. The connector port_a (instance of
HeatPort_a) is the point where the boundary condition
representing the fluid temperature will be connected. In
a complete model of a PTC, this temperature is usually a
state variable or an algebraic variable computed from an
equation of state for the HTF, and thus, it is assumed to be
known. The flows in the model are all implemented with
the classes Modelica.Thermal.HeatTransfer
.Components. The energy conservation in the glass
envelope and the metal pipe masses are represented by
the class HeatCapacitor. In the cases where the ther-
mal conductances in the conduction-convection and radi-
ation flow models were variables instead of parameters,
RealExpression blocks have been properly used to
consider this. In order to define boundary conditions, the
wind velocity close to the absorber pipe, and the ambient
temperature are assumed to be known from experimental
measurements.

The relation of the instances of MSL classes pre-
sented in Figure 9, that implement the first princi-
ples models of the heat flows (detailed in section 3)
is as follows: Q̇absorbed,glass in Q_incident_glass;
Q̇absorbed,steel in Q_steel_incident; Q̇conduction,glass in
Q_Conduction_glass1 and Q_Conduction_glass2;
Q̇radiation,glass−steel in Q_radiation_steel_glass;
Q̇conduction,steel in Q_conduction_steel1 and
Q_conduction_steel2; and, Q̇convection,HTF is the con-
vection heat flow from the pipe to the HTF, computed
by Equation 1, considering the temperature difference
between the boundary of the fluid port_a.T and the
bulk fluid temperature (not represented in Figure 9).

The parts of the model not implemented in the com-
ponents of the MSL have been implemented in Modelica
code. For example, this is the case of all the variables and
parameters associated with equations (1) to (3).

5 Simulation results of the TCP-100
thermal losses model

In this section we present the results of a simulation exper-
iment of the Modelica losses model in Figure 9, performed
with the Dymola tool.

In Figure 6 the boundary conditions applied to the
model are shown: concentrated direct normal irradiance,
ambient temperature, and wind velocity profile assumed
close to the absorber pipe. In this case, the dynamics be-
tween the direct normal irradiance and the inlet HTF tem-
perature have been included in order to illustrate the use of
an experimental irradiance register from Plataforma Solar
de Almería.

0.0E0 5.0E3 1.0E4 1.5E4 2.0E4
0

1000

[W
/m

²]

Rad

0.0E0 5.0E3 1.0E4 1.5E4 2.0E4
280

320

[K
]

Tamb

0.0E0 5.0E3 1.0E4 1.5E4 2.0E4
0

20

[m
/s

]

v_wind

Figure 6. Boundary conditions in the simulation experi-
ment. Direct normal solar irradiance (Rad), ambient temperature
(T_amb), and wind velocity (v_wind).

In Figure 7, a comparison of the results of three differ-
ent global losses model for the TCP-100 PTC is depicted.
Q_corr presents the results of the model used in (Pérez et
al. 2018) that is a global model assuming losses by convec-
tion and radiation from the glass envelope; Q_Pipe-maker
presents the results obtained from a model based on the
data specifications from the manufacturer of the TCP-100
PTC, and Q_Fpm shows the results of the first principles
model presented in this article, as detailed in sections 3
and 4. In all three cases, the PTC model (excluding the
thermal losses part) is the one presented in (Pérez et al.
2018). Although the simulation experiment shown in this
figure contains nominal parameters for the model in Fig-
ure 9, calibration activities with experimental data in the
TCP-100 facility might show some variations. It can be
observed that the losses predicted by the model presented
in this paper (Q_Fpm) are higher than those predicted by
the manufacturer of the PTC (Q_Pipe-maker), and also
higher than those predicted by the thermal model used in
(Pérez et al. 2018). In the absence of the required exper-
imental validation, our interpretation of this preliminary
result is that the dependence of the wind velocity in the
new proposed model could be producing higher thermal
losses.

Figure 8 focuses on the presented first principles losses
model, showing the different heat flow rate components
under the boundary conditions profile provided in Fig-
ure 6. It is shown that the convection heat flow rate from
the glass envelope (Qconv_lost) is the component with

A first principles thermal losses model of the TCP-100 parabolic trough collector based on the Modelica
Standard Library

274 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181271

0.0E0 5.0E3 1.0E4 1.5E4 2.0E4
-10

0

10

20

30

40

50

60

70

[k
W

]

Q_Corr Q_Pipe-maker Q_Fpm

Figure 7. Simulation results of different thermal losses models:
Q_corr presents the results of the model in (Pérez et al. 2018),
Q_Pipe-maker presents the results obtained with a model based
on the data specifications from the manufacturer of the TCP-100
PTC; and Q_Fpm represents the results of the first principles
model presented in this article.

higher losses. The radiation losses from the steel pipe
(Qrad_steel_lost) are lower than the convection losses
from the glass envelope (Qconv_lost); also, the compo-
nent with the lowest losses is Qrad_glass_lost, from the
glass envelope, due to the lower mean temperature of this
part.

The presented results are considered preliminary be-
cause the parameters used for the simulation of the pro-
posed model have been obtained from data specifications
from the PTC manufacturer and the bibliography. To vali-
date these preliminary results, a set of experiments will be
performed in the TCP-100 facility, with the objective of
calibrating the parameters according to the experimental
data to be obtained in future tests.

0.0E0 5.0E3 1.0E4 1.5E4 2.0E4

0E0

1E4

2E4

3E4

4E4

5E4

[W
]

Qconv_lost Qrad_steel_lost Qrad_glass_lost

Figure 8. Simulation of the heat flow rates of thermal losses
to the environment. Qconv_lost is the convection heat flow rate
from the glass envelope, Qrad_steel_lost is the radiation heat
flow rate from the steel pipe, and Qrad_glass_lost is the radiation
heat flow rate from the glass envelope.

6 Conclusions
In this paper we have presented a thermal losses model
of each of the PTCs in the TCP-100 solar themal power
plant installed at Plataforma Solar de Almería (CIEMAT).
This new model is based on first principles and includes
an additional input variable with respect to the traditional
approaches. The model is implemented with classes from
the Modelica Standard Library (MSL), which have been
complemented with the necessary equations to define the
parameters and the variables required by the MSL, which
have been obtained from diverse theoretical references.

This is an ongoing work and the results presented are only
preliminary, and they need to be validated with experi-
mental data to be obtained in the TCP-100 facility.

Future works might include the results of the calibra-
tion of parameters in the presented first principles model,
based on the experimental data from the TCP-100 research
facility.

Acknowledgements
The work of Luis J. Yebra was supported by the Universi-
dad de Alcalá, through the Programa propio Giner de los
Ríos Research Grant.

References
Bejan, Adrian (2016). Advanced engineering thermodynamics.

John Wiley & Sons.
Cengel, Yunus (2014). Heat and mass transfer: fundamentals

and applications. McGraw-Hill Higher Education.
Fritzson, Peter (2014). Principles of object-oriented model-

ing and simulation with Modelica 3.3: a cyber-physical ap-
proach. John Wiley & Sons.

Gallego, Antonio J., Luis J. Yebra, and Eduardo F. Cama-
cho (2018). “Gain Scheduling Model Predictive Control
of the New TCP-100 Parabolic Trough Field”. In: IFAC-
PapersOnLine 51.2, pp. 475–480. ISSN: 24058963. DOI: 10.
1016/j.ifacol.2018.03.080. URL: https://doi.org/10.1016/j.
ifacol.2018.03.080.

Gallego, Antonio J., Luis J. Yebra, Eduardo F. Camacho, and
Adolfo J. Sánchez (2016). “Mathematical Modeling of the
Parabolic Trough Collector Field of the TCP-100 Research
Plant”. In: Proceedings of The 9th EUROSIM Congress
on Modelling and Simulation, EUROSIM 2016, The 57th
SIMS Conference on Simulation and Modelling SIMS 2016,
pp. 912–917. DOI: 10.3384/ecp17142. URL: https://doi.org/
10.3384/ecp17142.

Márquez, Francisco M., Pedro J. Zufiria, and Luis J. Yebra
(2020). “Port-Hamiltonian modeling of multiphysics systems
and object-oriented implementation with the Modelica lan-
guage”. In: IEEE Access 8, pp. 105980–105996. DOI: 10 .
1109 /access .2020 .3000129. URL: https : / / ieeexplore . ieee .
org/document/9110502.

Pérez, J et al. (2018). “First Principles System Level Modelling
of TCP-100 Facility for Simulation of Operation Modes”.
In: IFAC-PapersOnLine 51.2, pp. 481–486. DOI: 10 . 1016 /
j.ifacol.2018.03.081. URL: https://doi.org/10.1016/j.ifacol.
2018.03.081.

Wagner, Michael J. and Paul Gilman (2011). Technical manual
for the SAM physical trough model. Vol. 303. June, pp. 275–
3000. URL: http://www.nrel.gov/docs/fy11osti/51825.pdf.

Yebra, Luis J., Francisco M. Márquez, and Pedro J. Zu-
firia (2020). “Simulation of TCP-100 Facility System Level
Model for Operation Training Purposes”. In: Proceedings of
The 7th Annual Conf. on Computational Science & Compu-
tational Intelligence (CSCI’20). DOI: 10.1109/CSCI51800.
2020.00251.

Zarza, Eduardo (2003). “Generación directa de vapor con
colectores solares cilindro parabólicos Proyecto DIrect Solar
Steam (DISS)”. PhD thesis. Universidad de Sevilla, pp. 1–
480. URL: https://idus.us.es/handle/11441/15300.

Session 3B: Digital twins

DOI
10.3384/ecp21181271

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

275

St
ee
l_
Ts
te
el

M
_A
IS
I3
21
*c
p_
AI
SI
32
1

Q
_c
on
du
ct
io
n_
st
ee
l1

R=
R1
_A
IS
I3
21

Q
_c
on
du
ct
io
n_
st
ee
l2

R=
R2
_A
IS
I3
21

Q
_c
on
du
ct
io
n_
gl
as
s1

R=
R1
_g
la
ss

G
la
ss
_T
gl
as
s

M
_g
la
ss
*c
p_
gl
as
s

Q
_c
on
du
ct
io
n_
gl
as
s2

R=
R2
_g
la
ss

Q
_r
ad
ia
tio
n_
gl
as
s_
sk
y

G
r=
e_
gl
as
s_
co
at
in
g*
O
ut
er
_g
la
ss
_a
re
a

K

pr
es
cr
ib
ed
Te
m
pe
ra
tu
re

ai
r_
co
nv
ec
tio
n_
co
effi
ci
en
t_
va
r*
O
ut
er
_g
la
ss
_a
re
a

ai
r_
co
nv
ec
tio
n_
co
effi
ci
en
t

K

pr
es
cr
ib
ed
Te
m
pe
ra
tu
re
1

Ta
m
b

Ta
m
b_
ty
pe
_d
ay

Ts
ky
_v
ar

Ts
ky

Q
_c
on
ve
ct
io
n_
ai
r

G
c

W
in
d_
ve
lo
ci
ty

f=
1/
36
00

Q
_r
ad
ia
tio
n_
st
ee
l_
gl
as
s

G
r=
ab
so
rb
tiv
ity
_g
la
ss
*G
_g
la
ss

Q
_i
nc
id
en
t_
st
ee
l

Q
_i
nc
id
en
t_
st
ee
l_
ca
lc
ul
at
e

pr
es
cr
ib
ed
He
at
Fl
ow

Q
_i
nc
id
en
t_
gl
as
s

Q
_i
nc
id
en
t_
gl
as
s_
ca
lc
ul
at
e

pr
es
cr
ib
ed
He
at
Fl
ow
1

Q
_r
ad
ia
tio
n_
st
ee
l_
sk
y

G
r=
1*
(e
_s
te
el
_c
oa
tin
g*
O
ut
er
_s
te
el
_a
re
a*
tra
ns
m
is
si
vi
ty
_g
la
ss
_o
ut
w
ar
ds
)

K

pr
es
cr
ib
ed
Te
m
pe
ra
tu
re
3

Ts
ky
_v
ar

Ts
ky
1

Q
_i
nc
id
en
te
_s
te
el
…

So
la
r_
ve
ct
or

po
rt_
a

Figure 9. Modelica model of the thermal losses of the PTC TCP-100 implemented with the Modelica Standard Library.

A first principles thermal losses model of the TCP-100 parabolic trough collector based on the Modelica
Standard Library

276 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181271

Electromagnetic Transient Simulation of Large Power Networks

with Modelica

Alireza Masoom1 Jean Mahseredjian1 Tarek Ould-Bachir2 Adrien Guironnet3
1Department of Electrical Engineering, Polytechnique Montreal, Canada,

{alireza.masoom, jean.mahseredjian}@polymtl.ca
2Department of Computer Engineering, Polytechnique Montreal, Canada,

tarek.ould-bachir@polymtl.ca
3Réseau de Transport d'Électricité, France,
adrien.guironnet@rte-france.com

Abstract
This paper presents the simulation of electromagnetic

transients (EMTs) with Modelica. The advantages and

disadvantages are discussed. Simulation performance and

accuracy are analyzed through the IEEE 118-bus

benchmark which includes EMT-detailed models with

nonlinearities. The domain-specific simulator EMTP is

used for validations and comparisons.

Keywords: Modelica, Equation-based Modeling, Acausal

modeling, Electromagnetic transients, EMT, Synchronous

machines, Large scale, Nonlinearity, IEEE 118-bus grid.

1 Introduction

Power system simulations are mainly categorized into

phasor-domain and time-domain. In phasor-domain

analysis, voltages and currents are computed as phasors

varying in time. The electrical network is solved in steady-

state and at the fundamental frequency. Power generation

sources, such as synchronous machines, are solved with

their differential equations in time-domain and interfaced

with network equations using phasor equivalents. The

phasor-domain approach is suitable for electromechanical

transients, load flow, and short-circuit studies in very

large-scale grids and can be applied to any linear system

but becomes less accurate with the presence of power

electronics-based equipment e.g., FACTS and HVDC

since this technique cannot represent the faster transients.

Its main advantage remains computational speed for

studying lower frequency transients, but harmonics and

nonlinear models are ignored.

In the time-domain simulation approach, the network

and all integrated components are solved in time-domain

with detailed differential equations. Harmonics and

nonlinearities are modeled accurately. The solution may

include lower frequency interactions, as well as very high-

frequency transients. The time-domain approach allows to

solve networks for electromagnetic transients and is

tagged as the EMT-type solution.

Various specialized EMT-type simulation tools

(Mahseredjian 2009) are currently available and well

adapted for studying various power system phenomena,

including transformer saturation effects, lightning and

switching transients, and integration of inverter-based

resources. Power electronics-based components can be

simulated very accurately.

 The EMTP (Mahseredjian, et al. 2007) software used

in this paper is widely used for the EMT simulations. The

cornerstone of this software is the discretization of

component models using the well-known companion

circuit approach. The A-stable trapezoidal and Backward-

Euler numerical integration methods are employed for the

discretization. The latter is used at discontinuity points to

avoid numerical oscillations (Sana, Mahseredjian, et al.

1995). In EMTP, the companion circuits of components

are interconnected (to respect Kirchhoff's first law)

through a sparse matrix solver using the Modified

Augmented Nodal Analysis (Mahseredjian, Dennetière, et

al. 2007) formulation.

In power system modeling, Modelica has been first

considered for phasor-domain simulations. iTesla Power

Systems Library (iPSL) (Vanfretti et al. 2016) is a

comprehensive Modelica package that was generated

through the iTesla project (Lemaitre 2014) for unified

modeling and for facilitating network model exchanges

amongst transmission system operators. PowerGrids

(Bartolini et al. 2019) and ObjectStab (Larsson 2004) are

other advanced libraries developed for electromechanical

and stability analyses, respectively.

Modelica (Fritzson 2014) is an equation-based

language that relies on the description of a system by

differential-algebraic equations. The EMT behavior of

electrical components can be modeled by their differential

equations. The language emphasizes the acausal approach

based on declarative modeling where the model and

solver are decoupled. It significantly improves model

development process and model readability.

The first attempt to develop a Modelica-based EMT-
detailed simulator was reported in (Masoom et al. 2020),

where transmission lines incorporating the constant

parameter and wideband (Kocar Mahseredjian 2016)

models were introduced and validated. An EMT-detailed

library was developed and validated using the IEEE 39-

bus network.
A challenging problem with Modelica is computational

speed (including compilation and simulation time). Some

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

277

solutions are based on numerical optimizations, e.g.,

Jacobian optimization (Kofman, Fernández, and

Marzorati 2021) and simulation in DAE mode (Braun et

al. 2017; Henningsson 2019). An open-source solution

(called DynaꞶo) is specifically designed for power system

simulations in phasor-domain (Guironnet et al. 2018).

DynaꞶo approach is based on hybrid coding with

Modelica and C++ and demonstrates competitive

performance compared to the specific domain packages

(Guironnet et al. 2018). This approach was used for EMT

simulations in (Masoom et al. 2021) as well. Even though

it delivers better performance compared to the pure

Modelica tools, there is still a significant gap in

comparison with EMTP.

The IEEE 118-bus benchmark contains the following

models: synchronous generators (including magnetic

saturation model) with controls, transformers,

transmission lines, nonlinear inductances, and nonlinear

surge arresters. The basic models, such as resistance,

inductance, and advanced models, that is, various models

of transmission line, loads, saturable transformers,

synchronous machine (without saturation), machine

controls, etc. were already presented in previous papers

(Masoom et al. 2020; Masoom et al. 2021). This paper

focuses on the synchronous machine model with

saturation and the nonlinear arrester and comparison of

simulation efficiency in Modelica.

The paper is organized as follows. Two selected

models, namely the synchronous machine and nonlinear

arrester are developed using Modelica in Section 2. The

numerical results for the IEEE 118-bus system are

provided in Section 3.

2 Modelica Model Implementation

In this Section, two nonlinear models are presented and

discussed in more detail. The models have been developed

based on EMTP mathematical representations.

2.1 Synchronous Machine Model with

Magnetic Saturation

The details required to model Synchronous Machine (SM)

depend on the type of transient study. Saturation effects in

SM are important for EMT analysis. Assuming the SM is

modeled by two damping windings on the q-axis (denoted

by kq1, kq2) and one damper winding (kd) and one field

winding (fd) on the d-axis, (1)-(6) provide the flux-based

equations of SM in state-variable form.

𝐯𝑑𝑞0 = 𝐏(θ)𝐯𝑎𝑏𝑐/V𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒 (1)
𝑝𝛙 = ω𝑏(𝐀𝛙+ 𝐮) (2)
𝐀 = −(𝐑𝐋−1 +𝐖) (3)

𝐢 = 𝐋−1𝛙 (4)
𝐢𝑎𝑏𝑐 = 𝐏

−𝟏(θ)𝐢𝑑𝑞0 (5)

𝐢𝑎𝑏𝑐,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐢𝑎𝑏𝑐 . I𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒 (6)
where:

𝐮 = [v𝑞 , v𝑑 , v𝑓𝑑 , 0, 0, 0]
𝑇

 (7)

𝛙 = [ψ𝑞 ,ψ𝑑 , ψ𝑓𝑑 ,ψ𝑘𝑑 ,ψ𝑘𝑞1, ψ𝑘𝑞2]
𝑇

 (8)

𝐢 = [i𝑞 , i𝑑 , i𝑓𝑑 , i𝑘𝑑 , i𝑘𝑞1, i𝑘𝑞2]
𝑇

 (9)

𝐢𝑑𝑞0 = [−i𝑞 ,− i𝑑 , 0]
𝑇

 (10)

𝐑 = diag(R𝑎 , R𝑎, R𝑓𝑑 , R𝑘𝑑 , R𝑘𝑞1, R𝑘𝑞2) (11)

In the above equations, the operator 𝑝 is
𝑑

𝑑𝑡
 , the vector

𝐯𝑎𝑏𝑐 is the terminal voltage, 𝐯𝑑𝑞0 is the voltage in dq

frame, ω𝑏 is the base angular velocity, 𝐏(θ) is the Park’s

transformation, vectors 𝐮, 𝐢, and 𝛙 denote the stator and

rotor voltages, currents, and flux linkages in the dq frame

and 𝐢𝑎𝑏𝑐 is the stator current. 𝐖6×6 is the rotor speed-

dependent matrix; all elements are zero except 𝑤[1,2] =
𝜔𝑟 and 𝑤[2,1] = −𝜔𝑟, 𝐋6×6 is the symmetrical matrix of

inductances in the rotor reference frame, 𝐑6×6 is the stator

and rotor resistance matrix.

The details of saturation effects modeling in the dq axes

are explained in (Karaagac et al. 2011). In magnetic

saturation modeling, the following assumptions are made:

(1) The leakage flux saturation and cross saturation are

ignored. It means only magnetizing inductances, L𝑚𝑑 and

L𝑚𝑞 are saturable. (2) Saturation is determined by the air-

gap flux linkage. (3) The sinusoidal distribution of the

magnetic field over the face of the pole is unaffected by

saturation.

Since the saturation relationship between the total air-

gap flux, ψ𝑇, and the magnetomotive force under loaded

conditions is assumed to be the same as at no-load

conditions, therefore magnetic saturation of stator and

rotor iron can be modeled by the no-load saturation curve
which is characterized by a piecewise linear graph

(Karaagac et al. 2017).

Consequently, the mathematical model of saturation is

introduced by:

 ψ𝑇 = 𝑓(ψ𝑇,𝑢𝑠) = 𝑓 (√ψ𝑚𝑑,𝑢𝑠
2 +ψ𝑚𝑞,𝑢𝑠

2) (12)

ψ𝑚𝑑,𝑢𝑠 = L𝑚𝑑,𝑢𝑠i𝑚𝑑

 i𝑚𝑑 = i𝑑 + i𝑓𝑑 + i𝑘𝑑
(13)

ψ𝑚𝑞,𝑢𝑠 = L𝑚𝑞,𝑢𝑠i𝑚𝑞

 i𝑚𝑞 = i𝑞 + i𝑘𝑞1 + i𝑘𝑞2
(14)

where ψ𝑇,𝑢𝑠 is the total unsaturated air-gap flux, ψ𝑚𝑑,𝑢𝑠
and ψ𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing flux linkages,

L𝑚𝑑,𝑢𝑠 and L𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing

inductances, and i𝑚𝑑 and i𝑚𝑞 are the magnetizing

currents; each on the dq axis, respectively. Throughout the

paper, the subscript sat and us mean saturated and

unsaturated, respectively.

The value of saturated magnetizing flux linkages on the

dq axis (ψ𝑚𝑑,𝑠𝑎𝑡 and ψ𝑚𝑑,𝑠𝑎𝑡) can be corrected by a ratio

of corresponding unsaturated values as illustrated in

Figure 1.a. In EMTP, the magnetic saturation is

represented by a piecewise linear curve as sketched in

Figure 1.b. For the jth operating segment, ψ𝑇 is given by:

Electromagnetic Transient Simulation of Large Power Networks with Modelica

278 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181277

 ψ𝑇 = ψ𝑘𝑗 + b𝑗ψ𝑇𝑢 (15)

= ψ𝑘𝑗 + b𝑗L𝑚𝑑,𝑢𝑠i𝑇

 i𝑇 = √i𝑚𝑑
2 + (

L𝑚𝑞,𝑢𝑠

L𝑚𝑑,𝑢𝑠
)
2

i𝑚𝑞
2 (16)

 b𝑗 =
L𝑚𝑑,𝑠𝑎𝑡𝑗

L𝑚𝑑,𝑢𝑠
 (17)

where b𝑗 is the saturation factor and ψ𝑘𝑗 is the residual

flux. The saturated values L𝑚𝑑,𝑠𝑎𝑡 and L𝑚𝑞,𝑠𝑎𝑡 are

computed as:

 L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠

 L𝑚𝑞,𝑠𝑎𝑡 = b𝑗L𝑚𝑞,𝑢𝑠
(18)

For a salient pole machine, because of large airgap path

along the q-axis, it is only required to correct the ψ𝑚𝑑;

thus:

 L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠

 L𝑚𝑞,𝑠𝑎𝑡 = L𝑚𝑞,𝑢𝑠
(19)

Figure 2 demonstrates the solution procedure for the

electrical equations of SM. In the case of no saturation,

the relationship between field current (i𝑓𝑑) and terminal

voltage (v𝑡) is linear; therefore, the magnetizing

inductances in (20) are constant (q𝑗 = d𝑗 = 1). If

saturation is selected, it is required to compute the

magnetizing inductances at each time point; thus, 𝐋 is

time-variant (q𝑗 = d𝑗 = b𝑗 for round rotor and q𝑗 = 0,

d𝑗 = b𝑗 for salient pole machine). This method results in

implicit equations requiring an iterative solution.

The model discussed above has been implemented for

the first time in Modelica. The model code is illustrated in

Figure 3. The declaration of variables and the conversion

of operational parameters to the standard ones are hidden

to conserve space and only the equation section is

demonstrated. The terminal voltages of SM are

represented by Pk.pin[1].v, Pk.pin[2].v and

Pk.pin[3].v for the phases a, b and c, respectively.

P(theta) represents a pre-defined function for the Park’s

transformation calculations.

Equation (2) is used as a differential equation for the

implemented model; the state vector Phi represents the

flux linkages and the input vector u the voltages. The

system matrix A is time-variant and computed as per (3).

The matrix of parameters for representation of

saturation, SD, is given by a 2-by-n matrix, where n is the

number of points taken from the no-load saturation curve.

The first row of this matrix contains the values of field

currents (physical value), while the second row contains

values of corresponding terminal voltages (per unit).

LinearInterplate(SD1PU, SD2PU, iT) is a function to

interpolate the iT by the two vectors of field current

(SD1PU) and voltage (SD2PU). These two vectors are

calculated in the non-reciprocal per unit. The function

returns the total flux (PhiT) and Lmdsat which the latter is

used for calculation of coefficient b as per (17). The

stator physical currents are represented by Pk.pin[1].i,

Pk.pin[2].i and Pk.pin[3].i for the phases, a, b and c,

respectively.

Other pieces of code represent the mechanical

equations of SM which are not discussed in this paper.

𝐋 =

(

L𝑙𝑠 + q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠
0 L𝑙𝑠 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑓𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑘𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 0 0

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 L𝑙𝑘𝑞1 + q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠
q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 L𝑙𝑘𝑞2 + q𝑗L𝑚𝑞,𝑢𝑠)

 (20)

Eq. 2

vdq

ψ

A
W

saturation

L
-1

inv(*)

Eq. 4

no

yes

L
Eq. (20)

start

R

P(θ)vabc

iabc

w
it

h

sa
tu

ra
ti

o
n

w
it

h
o
u
t

sa
tu

ra
ti

o
n

st
a
te

-v
a
ri

a
b
le

E
q

u
a
ti

o
n

s

qj=1, dj=1

Round

rotor

dj=qj=bj

dj=bj, qj==0

Eq. 16

idq
P

-1(θ)

i d
,q

,f
d
,k

d
,k

q
1
,k

q
2

?

iT

yes

nobj

id,q,fd,kd,kq1,kq2

Lmd,us

Lmq,us

L
-1

RL
-1

×

--

Figure 2. Solution procedure of synchronous machine
with/without magnetic saturation in Modelica (Only electrical

equations are demonstrated).

iT

ψT

ψk2

ψk3

Lmd,sat2

Lmd,sat3

ψT

ψT,us

ψmd,us

ψ
m

q
,u

s

ψmd,sat

ψ
m

q
,s

a
t

(a) (b)

Lmd,sat1=Lmd,us

ib1

ψb1

ψb2

ib2

Lmd,us imd

L
m

q
,u

s
i m

qLmd,sat imd

Figure 1. (a): Saturated and unsaturated magnetizing flux
linkages in the dq axes of a synchronous machine. (b): Magnetic

saturation characteristic (piecewise-linear approximation).

Session 4A: Applications (2)

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

279

model SM "Synchronous Machine 6 order including

saturation"

// Declaration of variables and parameters are hidden

due to space limitations.

equation

// Conversion of terminal voltage to pu

 vabc= {Pk.pin[1].v,Pk.pin[2].v,Pk.pin[3].v} /Vsbase;

// Conversion from abc frame to dq0 frame

 vdq0 = P(theta)*vabc;

// State space electrical equations

 der(Phi) = Wb * (A * Phi + u);

 A = -(R * inv(L) + W);

 i = inv(L) * Phi;

// Implementation of magnetic saturation

 imd = Ip[2] + Ip[3] + Ip[4]; //imd = id + ifD + ikd

 imq = Ip[1] + Ip[5] + Ip[6]; //imq = iq + ikq1+ ikq2

 iT = sqrt(imd^2 + (Lmqus/Lmdus)^2 * imq^2);

 (PhiT,Lmdsat) = LinearInterpolation(SD1pu,SD2pu, iT);

 b = Lmdsat / Lmdus;

 if Sauration then

 if RoundRotor then

 q=b;

 d=b;

 else

 q=0;

 d=b;

 end if;

 else

 q=1;

 d=1;

 end if;

 Lq = Lls + q * Lmqus;

 Ld = Lls + d * Lmdus;

 Lffd = Llfd + d * Lmdus;

 Lkdkd = Llkd + d * Lmdus;

 Lkq1kq1 = Llkq1 + q * Lmqus;

 Lkq2kq2 = Llkq2 + q * Lmqus;

 L= [Lq , 0 , 0 , 0 ,q*Lmqus ,q*Lmqus ;

 0 , Ld , d*Lmdus, d*Lmdus, 0 , 0 ;

 0 , d*Lmdus, Lffd , d*Lmdus, 0 , 0 ;

 0 , d*Lmdus, d*Lmdus, Lkdkd , 0 , 0 ;

 q*Lmqus , 0 , 0 , 0 ,Lkq1kq1 , q*Lmqus;

 q*Lmqus , 0 , 0 , 0 , q*Lmqus, Lkq2kq2];

 // Conversion from dq0 to abc frame

 iabc = inv(P(theta))* idq0;

// Calculations of actual Terminal current

 Pk.pin[1].i = -iabc[1] * Isbase;

 Pk.pin[2].i = -iabc[2] * Isbase;

 Pk.pin[3].i = -iabc[3] * Isbase;

// Mechanical equations

 Te = Phi[2] * idq0[1] - Phi[1] * idq0[2];

 Tnet = Tm - Te - D * dw;

 Tm = Pm_pu / Wr;

 der(dw) = Tnet * (1 / 2 / H);

 Wr = 1 + dw;

 der(d_theta)= dw * Wb;

 theta = d_theta + Wb * time;

// where

// u = {Vq , Vd , Vfd , Vkd , Vkq1 , Vkq2 }

 u = {vdq0[1], vdq0[2], vfd , 0 , 0 , 0 };

// Phi = {Phiq , Phid , Phifd , Phikd , Phikq1,Phikq2 }

 Phi = {Phi[1], Phi[2], Phi[3], Phi[4], Phi[5] , Phi[6]};

// i = {iq , id , ifd , ikd , ikq1 , ikq2 }

 i = {i[1] , i[2] , i[3] , i[4] , i[5] , i[6] };

// Change of sign due to generating mode

 idq0 = {-i[1], -i[2], 0};

 W[6, 6] = [0 , Wr , 0 , 0 , 0 , 0 ;

 -Wr , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0 ;

 0 , 0 , 0 , 0 , 0 , 0];

 R[6, 6] = diagonal({Rs, Rs, Rfd, Rkd, Rkq1, Rkq2});

end SM;

Terminal voltage

Eq.(20)

Eq.(15)Eq.(17)

Eq.(16)

Figure 3. Implementation of synchronous machine model with

magnetic saturation in Modelica. The saturation formulation is
distinguished with the blue dashed frame.

2.2 Nonlinear Arrester Modeling

Surge arresters protect the insulation of equipment, e.g.,
transformers in electrical systems against overvoltage

transients caused by lightning or switching surges. The

voltage and current characteristic of a gapless metal-oxide

surge arrester as illustrated in Figure 4 is a severely

nonlinear resistor with an infinite slope in the normal

operation region and an almost horizontal slope in the

protection region (temporary and lightning overvoltages).

In EMTP, the nonlinear resistance is represented by the

following power function:

i𝑘𝑚 = 𝑝𝑗 (
v𝑘𝑚
V𝑟𝑒𝑓

)

𝑞𝑗

 (21)

where i𝑘𝑚 and v𝑘𝑚 are arrester current and voltage, 𝑗 is

the segment number starting at the voltage V𝑚𝑖𝑛𝑗,

multiplier 𝑝𝑗 and exponent 𝑞𝑗 are coefficients defined for

each V𝑚𝑖𝑛𝑗 and V𝑟𝑒𝑓 is the arrester reference voltage. A

linear function is used for the first segment.

The technique for modeling a nonlinear resistance

(arrester function) is like the one used for the nonlinear

Vmin, 1

Vmin, 2

Vmin, j

Vkm

ikmSymmetrical
extension

Vmin, 3

10-2 102 104103

Temporary OV
Lightning OV

Maximum Continuous
voltage

Protection region

2
3 4

5

1

Figure 4. Voltage-current characteristic of ZnO surge arrester

and operating regions.

model ZnoArrester ZnO arrester model in Modelica

 extends Modelica.Electrical.Analog.Interfaces.OnePort;

 parameter Real Vref = 516000 Reference voltage

 //Exponential segments before flashover

 parameter Real T[:, 3] "multiplier p, Exponent q, Vmin_pu";

protected

 final parameter Real[:] p = T[:, 1];

 final parameter Real[:] q = T[:, 2];

 final parameter Real[:] V_min = T[:, 3]*Vref;

equation

 i_km = ExponentialInterpolate(V_min, p, q, Vref, v_km);

end ZnoArrester;

Inheritance of OnePort partial class

Constructive equation of surge arrester

Internal parameters of model

Parameters of model

Zno

vkm

ikm

vk vm

Figure 5. Implementation of the ZnO surge arrester model in

Modelica environment.

Electromagnetic Transient Simulation of Large Power Networks with Modelica

280 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181277

inductance. Figure 5 illustrates the code for the

implementation of the surge arrester. The parameters of

𝑝𝑗, 𝑞𝑗 and V𝑚𝑖𝑛𝑗 are defined by n -by-3 matrix, T.

ExponentialInterpolate() is a function defined by the

specific class function, where the operating voltage is

searched for the appropriate segment, j. Then, the value of

i𝑘𝑚 is exponentially interpolated using (21). The

properties of partial class OnePort are inherited to apply

the appropriate equations of one-port devices.

As one can see, the implementation of the model is very

straightforward, there is no limitation for connection of

this model in series to current sources, or inductors.

Solutions converge for very small time steps in the range

of nanoseconds without any numerical errors (Masoom et

al. 2021).

3 Model Verification and Validation

This section presents simulation results of the modified

IEEE 118-bus benchmark (Haddadi, Mahseredjian, et al.

2018) which is used to validate the accuracy of the

proposed models. The same test case is also simulated

with EMTP.

Figure 6.a shows the schematic diagram of the IEEE

118-bus network sketched using the developed EMT

library in Modelica. A user-friendly Graphical User

Interface (GUI) with an illustrative icon is designed for

each component model for entering the parameters and

drawing networks easily. The physical connection of

components is carried out by interconnecting the

terminals of appropriate components.

The IEEE-118 bus circuit consists of 54 generating

units with controls (a few power plants contain more than

one SM; the total number of SMs is 69), 177 transmission

lines (RL coupled), 9 three-winding grid transformers,

145 two-winding transformers (91 Yd1-connected load-

serving transformers+ 54 generator transformers), and 91

three-phase loads. The voltage levels are 345kV

transmission, 138kV sub-transmission, 25kV distribution,

and {20, 15, 10.5} kV generation. The network includes

(a)
(b)

+Line_
70

_7
5

CP

Portsmth_138_070

SthPoint_138_075

+BRk

+BRm

+

SW

100ms|300ms|0 P_b

P_c

Load075

1
2-3
0

LoadBUS

138/25
125MVA

LoadTransfo75

47.94MW
11.01MVAR
25kVRMSLL

m-end

k-end

-1|200ms|0

450ms|1E15s|0

(c)

Faulted zone

m

m

Power plant

PQ Load

138kV Network

345kV Network

PI Model of TL

Rf

R
=1

 Measuring Point

+ PI_ 3PH
L ine _1 _2

Rive rs de _1 38 _0 01

+

PI_3 PH

Lin e_1 _3

Po kag on _1 38 _0 02

lo ad 00 2

Hick ryC k_1 38 _ 00 3

+

PI_3 PH

Lin e_3 _5

Shu nt_Re acto r
g

Oliv e_ 13 8_ 00 5

+ PI_ 3PH
L ine _2 _1 2

+ PI_ 3PH
L ine _3 _1 2

TwinBr ch _1 38 _0 12

+ PI_ 3PH
L ine _1 1_ 12

So uth Bnd _1 38 _0 11

+ PI_ 3PH
L ine _5 _1 1

+ PI_ 3PH
L ine _4 _1 1

NwC ar lsl_1 38 _ 00 4

+

PI_3 PH

Lin e_4 _5

lo ad 00 3

lo ad 01 1

G
n wCa rlsl_ Con d

G
twin Brc h_ PP

+ PI_ 3PH
L ine _1 2_ 11 7

Co re y_ 13 8_ 11 7

+

PI_3 PH
Lin e_7 _12

+

PI_3 PH
Lin e_1 2_1 6

Ja cksn Rd _1 38 _0 07

+ PI_ 3PH
L ine _6 _7

Ka nka ke e_ 13 8_ 00 6

+ PI_ 3PH
L ine _5 _6

Co nc or d_ 13 8_ 01 3

+ PI_ 3PH
L ine _1 1_ 13

FtWa yne _1 3 8_ 01 5

+ PI_ 3PH
L ine _1 3_ 15

+

PI_3 PH
Lin e_1 4_1 5

Go sh en Jt_ 13 8_ 01 4

+ PI_ 3PH
L ine _1 2_ 14

+ PI_ 3PH
L ine _1 5_ 33

Ha vilan d _1 38 _0 33

+ PI_ 3PH
L ine _1 5_ 17

So re nso n_ 13 8_ 01 7

+ PI_ 3PH
L ine _1 6_ 17

NE_ 13 8_ 01 6

+ PI_ 3PH
L ine _1 7_ 31

+

PI_3 PH Lin e_1 7_1 13

De er Crk 2_ 13 8_ 11 3

+ PI_ 3PH
L ine _3 1_ 32

+

PI_3 PH Lin e_3 2_1 13
De lawa re _ 13 8_ 03 2 De er Crk _1 38 _0 31 Gr an t_ 13 8_ 02 9

+ PI_ 3PH
L ine _2 9_ 31

+ PI_ 3PH
L ine _2 7_ 32

+

PI_3 PH
Lin e_2 8_2 9

M ullin _1 38 _0 28

+

PI_3 PH
Lin e_2 7_2 8

M ad iso n_ 13 8_ 02 7

+ PI_ 3PH
L ine _3 2_ 11 4

WM ed fo rd _1 38 _1 14

+ PI_ 3PH
L ine _1 14 _1 15

M ed fo rd _1 38 _1 15

+ PI_ 3PH
L ine _2 7_ 11 5

+

PI_3 PH
Lin e_0 8_0 9

+ PI_ 3PH
L ine _0 8_ 30

1

Olive _T1 2 3

Bre e d_ 34 5_ 01 0

Oliv e_ 34 5_ 00 8

+

PI_3 PH
Lin e_9 _10

Be qu ine _3 45 _0 09

+ PI_ 3PH
L ine _2 5_ 27

+ PI_ 3PH
L ine _3 3_ 37

Ea stL ima _1 38 _0 37

+ PI_ 3PH
L ine _3 7_ 39

NwL ibr ty_ 1 38 _0 39

+ PI_ 3PH
L ine _3 9_ 40

We stEn d_ 13 8_ 04 0

+

PI_3 PH
Lin e_3 7_4 0

+ PI_ 3PH
L ine _4 0_ 41

+ PI_ 3PH
L ine _4 0_ 42

ST iffin _1 38 _0 41 Ho wa rd _1 38 _0 42

+ PI_ 3PH
L ine _4 1_ 42

Wo ost er _1 38 _0 53

+ PI_ 3PH
L ine _5 3_ 54

Tor re y_1 3 8_ 05 4

+ PI_ 3PH
L ine _5 4_ 56

Su nn ysd e_ 13 8_ 05 6

+ PI_ 3PH
L ine _5 5_ 56

Wa ge nh ls_ 13 8_ 05 5

+ PI_ 3PH
L ine _5 5_ 59

T idd _1 38 _0 59

+ PI_ 3PH
L ine _5 6_ 59 _1

+ PI_ 3PH
L ine _5 6_ 59 _2 +

PI_3 PH
Lin e_5 6_5 8

WNw Phil2 _1 38 _0 58

+ PI_ 3PH
L ine _5 6_ 57

WNw Phil1 _1 38 _0 57

+

PI_3 PH
Lin e_5 0_5 7

WCa m br dg _1 38 _0 50

+

PI_3 PH
Lin e_5 1_5 8

Ne wcm rs t_1 38 _ 05 1

+

PI_3 PH
Lin e_5 2_5 3

SCo sh oct _1 38 _0 52

+ PI_ 3PH
L ine _5 1_ 52

+

PI_3 PH
Lin e_4 9_5 0

Ph ilo_ 13 8_ 04 9

+

PI_3 PH
Lin e_4 9_5 1

+

PI_3 PH Lin e_4 9_5 4_2

+

PI_3 PH Lin e_4 9_5 4_1

+ PI_ 3PH
L ine _4 2_ 49 _1

+ PI_ 3PH
L ine _4 2_ 49 _2

+ PI_ 3PH
L ine _3 4_ 37

Ro ckh ill_1 38 _0 34

+ PI_ 3PH
L ine _3 4_ 43

SKe nto n_ 13 8_ 04 3

+ PI_ 3PH
L ine _4 3_ 44

WM Ver no n_ 1 38 _0 44

+

PI_3 PH
Lin e_4 4_4 5

NNe wa rk_ 13 8 _0 45

WL an cst_ 1 38 _0 46

+ PI_ 3PH
L ine _4 5_ 46

+ PI_ 3PH
L ine _4 5_ 49

Cr oo ksvl_ 1 38 _0 47

+ PI_ 3PH
L ine _4 6_ 47

+ PI_ 3PH
L ine _4 7_ 49

+ PI_ 3PH
L ine _4 6_ 48

Zan es vll_1 38 _0 48

+ PI_ 3PH
L ine _4 8_ 49

+

PI_3 PH
Lin e_3 4_3 6

Ste rlin g_ 13 8_ 03 6 We stL ima _1 3 8_ 03 5 L inco ln_ 13 8_ 01 9

+ PI_ 3PH
L ine _1 5_ 19

+ PI_ 3PH
L ine _1 9_ 34

+ PI_ 3PH
L ine _3 5_ 36

+ PI_ 3PH
L ine _3 5_ 37

M cKinle y_ 13 8_ 01 8

+

PI_3 PH
Lin e_1 8_1 9

+ PI_ 3PH
L ine _1 7_ 18

1

Sor enso n_T1

2 3

So re nso n_ 34 5_ 03 0

+

PI_3 PH
Lin e_2 6_3 0

Tan nr sCk_ 3 45 _0 26

1
YgYgD

2 3

Tan nr sCk_ 1 38 _0 25

+

PI_3 PH
Lin e_1 9_2 0

Ad am s_ 13 8_ 02 0

Ja y_ 13 8_ 02 1

+

PI_3 PH
Lin e_2 0_2 1

Ra nd olp h_ 13 8_ 02 2

+

PI_3 PH
Lin e_2 1_2 2

Co llCrn r_ 13 8 _0 23

+

PI_3 PH
Lin e_2 2_2 3

+ PI_ 3PH
L ine _2 3_ 25

+ PI_ 3PH
L ine _2 3_ 32

T re nto n _1 38 _0 24

+ PI_ 3PH
L ine _2 3_ 24

Hillsb ro _1 3 8_ 07 2

+

PI_3 PH
Lin e_2 4_7 2

NPo rts mt _1 38 _0 71

+ PI_ 3PH
L ine _7 1_ 72

+

PI_3 PH
Lin e_7 1_7 3

Sa rg en ts_ 13 8_ 07 3

Po rtsm th _1 3 8_ 07 0

+

PI_3 PH
Lin e_7 0_7 1

+ PI_ 3PH
L ine _2 4_ 70

+

PI_3 PH
Lin e_7 0_7 4

Be llefn t_ 13 8_ 07 4

+

PI_3 PH
Lin e_7 4_7 5

Sth Poin t_ 13 8_ 07 5

+

PI_3 PH
Lin e_7 0_7 5

+

PI_3 PH
Lin e_4 9_6 9

Sp or n_ 13 8_ 06 9

+ PI_ 3PH
L ine _4 7_ 69

+ PI_ 3PH
L ine _6 9_ 70

+

PI_3 PH
Lin e_6 9_7 5

Sp or n_ 34 5_ 06 8

1
YgYgD1

2 3

Ka na wha _1 38 _0 80

+

PI_3 PH Lin e_6 8_1 16
Ca pit lH l_1 38 _0 79 Kyg er Crk _3 45 _1 16

Tur ne r_ 13 8_ 07 7

+ PI_ 3PH
L ine _7 5_ 77

+ PI_ 3PH
L ine _7 5_ 11 8

WHu nt ng d_ 13 8_ 11 8 Da rr ah _1 38 _0 76

+ PI_ 3PH
L ine _7 6_ 11 8

+

PI_3 PH
Lin e_7 6_7 7

+

PI_3 PH
Lin e_6 9_7 7

Ch em ica l_1 38 _0 78

+

PI_3 PH
Lin e_7 7_7 8

+ PI_ 3PH
L ine _7 8_ 79

+ PI_ 3PH
L ine _7 9_ 80

+ PI_ 3PH
L ine _7 7_ 80 _1

+ PI_ 3PH
L ine _7 7_ 80 _2

+

PI_3 PH
Lin e_8 0_9 7

Su nd ial_ 13 8_ 09 7

+ PI_ 3PH
L ine _9 6_ 97

Ba ileys v_1 38 _0 96

+

PI_3 PH
Lin e_8 0_9 6

L og an _1 38 _0 82

+

PI_3 PH
Lin e_7 7_8 2

+ PI_ 3PH
L ine _8 2_ 96

+

PI_3 PH
Lin e_9 5_9 6

Ca rsw ell_ 13 8_ 09 5 Switc hb k_ 13 8_ 09 4

+ PI_ 3PH
L ine _9 4_ 95

+ PI_ 3PH
L ine _9 4_ 96

+ PI_ 3PH
L ine _9 4_ 10 0

Gle n Lyn _1 38 _1 00 Ha nc ock _1 38 _1 04

+ PI_ 3PH
L ine _1 00 _1 04

+ PI_ 3PH
L ine _1 04 _1 05

Ro an ok e_ 13 8_ 10 5

+ PI_ 3PH
L ine _1 05 _1 07

Re us en s_1 38 _1 07

+ PI_ 3PH
L ine _9 3_ 94

Taze we ll_1 38 _0 93

Sa ltvlle _1 38 _0 92

+

PI_3 PH
Lin e_9 2_9 3

+ PI_ 3PH
L ine _9 2_ 94

+ PI_ 3PH
L ine _9 2_ 10 0

Bla ine _1 38 _1 08

Fra nklin _1 3 8_ 10 9

+

PI_3 PH Lin e_1 05_ 108

+

PI_3 PH Lin e_1 08_ 109

+ PI_ 3PH
L ine _9 2_ 10 2

Sm yth e_ 13 8_ 10 2 Wyt he _1 38 _1 01

+ PI_ 3PH
L ine _1 01 _1 02

+ PI_ 3PH
L ine _1 00 _1 01

Cla yto r_ 13 8_ 10 3

+ PI_ 3PH
L ine _1 00 _1 03

+

PI_3 PH Lin e_1 03_ 104

+ PI_ 3PH
L ine _1 03 _1 05

F ield ale _1 38 _1 10

+

PI_3 PH Lin e_1 09_ 110
+ PI_ 3PH

L ine _1 03 _1 10

Da nv ille _ 13 8_ 11 2 Da nR iv er _1 38 _1 11

+ PI_ 3PH
L ine _1 10 _1 11

+ PI_ 3PH
L ine _1 10 _1 12

+

PI_3 PH
Lin e_9 1_9 2

Ho lsto nT_ 13 8_ 09 1

+ PI_ 3PH
L ine _8 9_ 92 _1

Clin chR v_1 3 8_ 08 9

+ PI_ 3PH
L ine _8 9_ 92 _2

F re mo nt _1 38 _0 88 Be ave rC k_1 38 _0 85

+ PI_ 3PH
L ine _8 5_ 89

+ PI_ 3PH
L ine _8 8_ 89

+ PI_ 3PH
L ine _8 5_ 88

Ho lsto n_ 13 8_ 09 0

+

PI_3 PH Lin e_8 9_9 0_1

+

PI_3 PH Lin e_8 9_9 0_2

+ PI_ 3PH
L ine _9 0_ 91

Pin evlle _1 38 _0 87

Ha za rd _1 38 _0 86

+

PI_3 PH
Lin e_8 5_8 6

+ PI_ 3PH
L ine _8 6_ 87

Be tsyL ne _1 38 _0 84

+

PI_3 PH
Lin e_8 4_8 5

Sp rig g_ 13 8_ 08 3

+ PI_ 3PH
L ine _8 3_ 84

+ PI_ 3PH
L ine _8 3_ 85

+ PI_ 3PH
L ine _8 2_ 83

Clo ve rd l_ 1 38 _1 06

+ PI_ 3PH
L ine _1 00 _1 06

+ PI_ 3PH
L ine _1 05 _1 06

+ PI_ 3PH
L ine _1 06 _1 07

Bra d ley_ 13 8_ 09 8

+ PI_ 3PH
L ine _9 8_ 10 0

+ PI_ 3PH
L ine _8 0_ 98

+ PI_ 3PH
L ine _9 9_ 10 0

Hin to n_ 13 8_ 09 9

+ PI_ 3PH
L ine _8 0_ 99

1

Kan awha _T1

2 3

Ka na wha _3 45 _0 81

+ PI_ 3PH
L ine _6 8_ 81

M usk ng um _ 34 5_ 06 5

M usk ng um _ 13 8_ 06 6

+ PI_ 3PH
L ine _6 5_ 68

1

M uskng um _T1

2 3

+ PI_ 3PH
L ine _4 9_ 66 _2

+ PI_ 3PH
L ine _4 9_ 66 _1

Na triu m _1 38 _0 62

+ PI_ 3PH
L ine _6 2_ 66

+

PI_3 PH
Lin e_6 6_6 7

Su mm er fl_ 13 8_ 06 7

+ PI_ 3PH
L ine _6 2_ 67

Ka mm er _1 3 8_ 06 1

+

PI_3 PH
Lin e_6 1_6 2

+

PI_3 PH
Lin e_6 4_6 5

Ka mm er _3 4 5_ 06 4

1
Ka mm er _T1

2
3

+ PI_ 3PH
L ine _5 9_ 61

T idd _3 45 _0 63

+ PI_ 3PH
L ine _5 9_ 60

SWKa mm e r_ 13 8_ 06 0

+

PI_3 PH
Lin e_6 0_6 1

+

PI_3 PH
Lin e_6 0_6 2

1
YgYgD3

2 3

+

PI_3 PH
Lin e_6 3_6 4

+ PI_ 3PH
L ine _3 8_ 65

1

EastL ima _T1

2 3

Ea stL ima _3 45 _0 38

e ar th

+ PI_ 3PH
L ine _3 0_ 38

e ar th1

e ar th2

e ar th3

e ar th4

e ar th5

e ar th6

e ar th7

e ar th8

lo ad 11 7

lo ad 03 3

lo ad 01 3
lo ad 00 7

lo ad 01 6

lo ad 01 7

lo ad 02 9

lo ad 11 5 lo ad 11 4

lo ad 02 8

lo ad 04 1

lo ad 03 9

Shu nt_Re acto r_ 37

G

lo ad 02 0

lo ad 02 1

lo ad 02 2

lo ad 02 3

G
ka nk ake e_ Co nd G

ftW ayn e_ Co nd

G
lin coln _C on d

G
m cKinle y_ Co nd

G
ta nn rs Ck1 38 _PP

G
m ad iso n_ Con d

G
b re ed _PP

G
d ee rCr k_ PP

G
d ela war e_ Co nd

G
o live_ Co nd

G
p ine vlle_ PP

G
h olst on _Co nd

G
h olst on T_ Co nd

G
d an Rive r_ PP

G
fie lda le_ Co nd

G
d an ville_ Co nd

G
cla yto r_ PP

G
b ea ver Ck_ Co nd

G
clin ch Rv_ PP

G
sa ltvlle _Co n d

G
g len Lyn _PP G

h an coc k_C on d

G
ro a no ke_ Co nd

G
re u sen s_ Con d

G
tu rn er _C on d

G
b elle fnt _Co nd

G
sa rg en ts_ Co nd

G
h ills br _Co n d

G
tr en to n_ Con d G

p or tsm th_ Co nd

G
kyg e rCr k_PP

G
m usk ng um 3 45 _PP

G
m usk ng um 1 38 _PP G

n atr ium _ Con d

G
ka mm e r_ PP

G
wL an cst _PP

G
we stEn d_ Co nd

G
h owa rd _C on d

G
to rr ey_ PP

G
su nn ysd e_ Co nd

G
wa ge nh ls_ Con d

G
tid d_ PP

G
h into n_ Co nd

lo ad 07 5

lo ad 08 6

lo ad 08 8

lo ad 10 1 lo ad 10 2

lo ad 10 9

lo ad 10 8 lo ad 08 4 lo ad 09 3

lo ad 09 5

lo ad 09 4

lo ad 09 6

lo ad 09 7

lo ad 09 8

lo ad 10 6

G
d ar ra h_ Con d

G
ka na wh a_ PP

lo ad 11 8

lo ad 07 8

lo ad 07 9

G
sp or n_ PP

G
p hilo _PP

lo ad 06 7

lo ad 04 7

lo ad 04 5

lo ad 04 8

lo ad 04 3

lo ad 04 4 lo ad 05 0 lo ad 05 1

lo ad 05 7 lo ad 05 8 lo ad 05 2

lo ad 05 3

lo ad 06 0

lo ad 08 3

lo ad 08 2

lo ad 03 5
G

ste rlin g _3 6_ Con d

G
ro ckh ill_C on d

G
riv er sde _ Con d

lo ad 01 4

BR

BR

To=0 .3 s

SW

Tc=0 .1 s

k = 3
p lug To Pin

k = 2
p lug To Pin1

R1

R= 0.00 01*{ 1,1, 1}

R

R= 1

ZnO1

GPortsmth_Cond

Figure 6. (a): IEEE 118-bus Network including 177 PI-section models of TL sketched using the Modelica GUI. (b): the faulty

zone; a phase-b-to-phase-c fault at k-end of Line_70_75. The powerplant “Portsmth_Cond” is selected for validation of SM with
saturation in Case 2, Surge arrester ZnO1 is inserted in the circuit only for Case 3. (c): the sub-circuit of Load75 including a

saturable transformer model and constant-impedance model of load.

Session 4A: Applications (2)

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

281

519 nonlinear inductances and 1909 RLC elements. All

SMs use a single-mass Wye-grounded model including

the normalized saturation characteristics represented by 7

points. The SM control systems consist of exciter type
ST1, steam turbine and governor type IEESGO,

synchronous machine phasor and power system stabilizer

type PSS1A. The model of all three-phase transformers

consists of three single-phase units. The nonlinear

magnetization branch is placed on the high-voltage side.

The model uses a piecewise linear current-flux curve

defined by 8 points (in the positive part of the symmetric

characteristic) to represent saturation. All loads are

represented by a constant impedance model.

The transmission lines (TL) are modeled using pi-

sections. The constant parameter line model with

propagation delay is simulated slowly, owing to the very

high computational cost of the Modelica built-in delay

operator. Simulation of the network starts with zero initial

states.

3.1 Case 1: Phase-to-Phase Fault Analysis

For creating a transient disturbance, (see Figure 6.b), a

temporary phase-to-phase fault with a fault resistance of

1 Ω is applied on the phases ‘b’ and ‘c’ of “Line_70_75”

at t =100 ms followed by the isolation of the line at t= 200

ms (i.e. the breakers BRm and BRk open simultaneously

after 6 cycles). The fault is cleared at t = 300 ms, then the

line is reconnected at t = 450 ms.

Re-energizing the TL introduces high-frequency

transient oscillations and allows to investigate the

accuracy of transformer models in nonlinear regions.

For this purpose, the curve of flux versus current for

LoadTransfo75 which is located near the faulty line is

compared with EMTP as well.

Numerical tests are performed using the variable-step

DASSL solver (Petzold 1982) in ODE mode with the

tolerance of 1e-3 and the maximum integration order of 5

in Dymola 2021x. In EMTP, Trapezoidal/Backward Euler

integrator with the step sizes of 1 µs and 5 µs is employed.

The simulation time is 500 ms. The network model in

Modelica contains 96308 acausal DAEs. The total number

of network nodes and the size of the main system of

equations in EMTP are 2533 and 3773, respectively.

Figure 7.a depicts the voltage waveforms of phases a,

b and c at the k-end of Line_70_75 obtained by the two

simulators with different precisions. An excellent

agreement is observed between the results. Figure 7.b

shows the simulation results for the phases b and c in the

interval of [300, 310] ms, i.e., after the fault is removed.

The results produced by Modelica models are almost

identical to EMTP when step size is 1 µs (black curve),

whilst the high-frequency transient oscillations (f=1820

Hz) are not captured by EMTP when 𝛥𝑡 = 5 μs (blue

curve). Figure 7.c depicts the curves of voltage after the

re-energization of TL. The consistent results between

Modelica and EMTP are observed in this period once

more. The close-up view of the phase a voltage waveform

at the instant of closing the breakers BRm and BRk shows

that Modelica voltage waveform rises precisely at t = 450

ms while in EMTP it goes up in the next time point. The
close-up illustrates the discontinuity treatment

discrepancies between the two simulators. This is an

0 100 200 300 400 500
-1.5

-1

-0.5

0

0.5

1

1.5

300 302 304 306 308 310
-0.1

-0.05

0

0.05

0.1

V
o

lt
ag

e
(p

u
)

450 460 470 480 490 500

-1

-0.5

0

0.5

1

445

Time (ms) (c)

EMTP, h:5us{

va vb{ vc}Dymola, Tol 1e-3

va vb vc}

EMTP, h:1us{ va vb vc}

{Dymola, Tol 1e-2 va vb vc}

Line_70_75 energizedFault duration

Line_70_75 disconnected

EMTP, h:1us
Dymola, Tol:1-3

306 306.5 307 307.5 308
-0.01

0

0.01

0.02

0.03

EMTP, h:5us

Dymola, Tol:1-2 EMTP, h:1usDymola, Tol:1-3

EMTP, h:5us

(b)

(a)

phase b

phase c

450.01450 450.005

0

0.5

1

EMTP, h:5us

EMTP, h:1us

f =1820 Hz

450.001

Figure 7. (a): Voltage waveforms of phases a, b and c at the k-
end of Line_70_75; (b): comparison of results for the phases b

and c for different solvers’ parameters. (c): voltage waveforms
after re-energization of Line_70_75; the close-up at the instant

of closing the breakers BRk and BRm.

Current (A)

0 100 200 300 400 500 600 700 800 900 1000
-200

0

200

400

EMTPModelica

0 20 40 60 80 100
260

300

340

380

Magnetization data

M
a
g

n
e
ti

z
in

g
 F

lu
x

 (
W

b
)

Breakpoints

600

Figure 8. Current-Flux curve of magnetization branch in the
LoadTransfo75 transformer; close-up of Modelica and EMTP

solutions near to the knee-point.

Electromagnetic Transient Simulation of Large Power Networks with Modelica

282 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181277

important issue for the simulation of circuits with high-

frequency switching.

For validating the accuracy of nonlinear components,

the magnetization branch curve of LoadTransfo75 (see

Figure 6.c) is examined in Figure 8. Once again, the

results obtained by the two models show an excellent

agreement and transformer operating points (depicted by

the red dashed line) move on the transformer current-flux

characteristics (distinguished by the solid red line). The

iterative solution allows reproducing the nonlinear

function accurately in both tools.

The number of nonlinear components and control

closed loops has a significant impact on the accuracy and

speed of simulation. For example, simulation of the same

network, that is IEEE 118-bus, jams in Simscape

Electrical Specialized Power Systems (SPS) package

(Simscape Electrical 2020) which is comparable to

Modelica environment in some ways. This package is

based on the state-space representation of the linear

network in a loop with external current sources denoting

the nonlinear components. In Modelica, nonlinear

functions are solved simultaneously through iterative

methods which gives the most accurate results.

Table 1 shows the data and run-times of simulations

carried out in Dymola and EMTP. The CPU times are
extracted from the average of 5-times “re-simulations”. In

Dymola, simulation is accomplished with 203034 steps in

371.2 s, which yields 1.83 ms for each time step. EMTP

outperforms Dymola with the ratio of 3.37:1 when the

least error is favorite, i.e., 𝛥𝑡 = 1 μs.
Tolerance has a significant impact on the CPU time and

the number of time steps for the DASSL since the local

error is tightly coupled with the logic for selecting the step

size and order of integration. In this experiment, the

simulation is repeated with the tolerance of 1e-2 as well.

It causes a considerable increase in the number of time

steps, Jacobian, and function evaluations. Consequently,

the CPU time increases with the ratio of 4:1, whereas the

accuracy of simulation does not change effectively (see

Figure 7.b). The norm of error between these two

simulations is reported 4.8e-3 for phase b. In both

tolerances, the results are practically identical to EMTP

when 𝛥𝑡 = 1 μs .
However, it should be noted that the solution methods

in Modelica and EMTP are fundamentally different, and a

direct comparison of variable step solver with fixed-step

one is not so fair. The time steps selected in Table 1 are

for demonstration/comparison purposes; in reality, it is
possible to select even higher time steps without

significant loss of accuracy.

0 100 200 300 400 500

T
er

m
in

al
 v

ol
ta

ge
 (

kV
)

0

20

10

-10

-20

Time (ms)

204200 201 202 203
0

10

20

295 305 315 325
-20
-10

0

10

20 with saturationwith saturation
without saturation

0 100 200 300 400 500
0

10

20

30

40

50

F
ie

ld
 C

ur
re

nt
 (

A
)

50 70 90 100

10

20

30

40

150 170 190 210
0

10

20

30

Time (ms)

with saturation

without saturation

without saturation

Three-phase fault

(a) (b)

EMTP Modelica }With saturation{ Modelica }EMTP Without saturation{

Figure 9. (a): Waveform of phase-a stator voltage of SM with and without saturation model; the close-up after load rejection. (b):

field current with and without saturation model; the zoomed views during and after fault.

T
e
rm

in
a
l
c
u

rr
e
n

t
(k

A
)

0 100 200 300 400 500

-10

-5

0

5

10

EMTP with saturation

Modelica with Saturation

EMTP without saturation

Modelica without Saturation

Time (ms)

152 156 160 164 168

-2
-1
0
1
2
3

420 440 460 480 500
-0.1

0

0.1
without saturation

with saturation

without saturation

with saturationw/o sat

w. sat.

Figure 10. Phase-a stator current with and without saturation

model; zoomed view after removing the fault and load rejection.

Table 1. Case 1: comparison of simulation performance.

Characteristics Dymola EMTP
Solver DASSL Trapezoidal /Backward Euler

Tolerance 1e-3 1e-2

∆𝑡: 1 𝜇𝑠 ∆𝑡: 5 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.115 𝑓𝑠 0.116 𝑓𝑠

∆𝑡𝑀𝐴𝑋 5.79 𝜇𝑠 0.16 𝜇𝑠

No result points 203035 335261 601757 154367 81 661

No accepted steps 203034 335260 Not applicable

f-evaluations 415437 760052 Not applicable

J-evaluations 7393 337458 Not applicable

CPU time (s) 371.2 1510.6 110.1 44.2 23.5

CPU-time for 1

accepted steps
1.83 𝑚𝑠 4.49 𝑚𝑠 0.18 𝑚𝑠 0.28 𝑚𝑠 0.28 𝑚𝑠

Performance ratio 1 0.24 3.37 8.39 15.79

Session 4A: Applications (2)

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

283

3.2 Case 2: Analysis of Saturation in SM

To verify the validity of the SM model in the saturation

region, a large disturbance including a sudden three-phase

short-circuit fault is applied at t = 50 ms near to the

terminals of SM “Portsmth_Cond” and lasts till t =150

ms. The SM protective relays detect the fault and trip the

generator breaker at t = 200 ms. The parameters of both

solvers are the same as Case 1, e.g., Tol=1e-3 in Dymola

and 𝛥𝑡 = 5 μs in EMTP.

Figure 9.a shows the phase-a stator voltage waveforms

of the SM with and without magnetic saturation. As one

can see, the results obtained from Modelica model are

superimposed on EMTP ones. As time elapses, the

difference between the results obtained by saturated and

unsaturated models is more distinguishable on the voltage

curves.

Figure 9.b depicts the field current curves of the SM

with and without magnetic saturation. It is observed that

the inclusion of saturation has an important impact on the

excitation current needed for the generator operation.

Figure 10 illustrates the phase-a stator current graphs.

As one can see, Modelica model yields precisely the same

results as EMTP for both cases (with and without

saturation). The stator current considering magnetic

saturation is lower than without saturation. It is seen that

the effect of saturation on the current in the sub-transient

state is more than the transient state and the difference

decreases as time elapses.

3.3 Case 3: Lightning

In this case, it is assumed that a lightning strike with the

characteristics of 10kA, 8 /20 µs (see Appendix, equation

(22) for the impulse source model) hits the phase-a of

“Line_70_75” when the network is in steady state at t =

95 ms. The surge arresters (see Appendix, Table 3 for the

parameters) are located on the bus “SthPoint_138_075”,

the nearest place to the high-voltage side of the

transformer “LoadTransfo75” to protect it from transient
overvoltages (see Figure 6.b). The simulation is run for

130 ms with the step sizes of 0.1 µs (depicted by black

curve) and 10 µs (depicted by red curve) in EMTP. Other

solvers parameters are like Case 1.

Figure 11 shows the phase-a voltage waveforms of the

arrester ZnO1. As one can see the results obtained from

Modelica arrester model are identical to EMTP when

𝛥𝑡 = 0.1 𝜇𝑠. A high frequency transient (1300 Hz) is

created due to the strike of lightning.

Table 2 compares the performances of simulations in

both tools. In Dymola, simulation is accomplished with

51513 steps in 87.2 s, which yields 1.69 ms for each time

step. In this case, Dymola outperforms EMTP’s best

result, that is when 𝛥𝑡 = 0.1 μs, with the ratio of 5.56:1.

This test case is designed to show the potential

advantages of variable time step solvers over fixed time

step ones (like EMTP). It is designed on the purpose to

illustrate the fact that a very smalltime step used for the

short duration of the very high transient has a penalizing

effect on EMTP, but not on Modelica solver. Modelica

integrator expectedly reverts to a very small time step only

for a short duration. It would have been possible to apply

lightning in EMTP at simulation time t = 0 s, and in which

case the performance results would have been much

better, nevertheless, our demonstration remains valid. A

more practical example is the breaker arc model that also

forces the usage of very small time steps and may be

triggered at any point of time. It will effectively give an

advantage to Modelica since in this case, it is required to

capture longer simulation periods.

Table 2. Case 3: comparison of simulation performance.

Characteristics Dymola EMTP

Solver DASSL Trapezoidal /BE

Tolerance 1e-3

∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.623 𝑝𝑠

∆𝑡𝑀𝐴𝑋 5.56 𝜇𝑠

No result points 51514 1335308 21637

No accepted steps 51513 Not applicable

f-evaluations 105576 Not applicable

J-evaluations 1503 Not applicable

CPU time (s) 87.2 485.6 9.9

CPU-time for 1 accepted steps 1.69 𝑚𝑠 0.36 𝑚𝑠 0.45 𝑚𝑠

Performance ratio 1 0.179 8.8

Conclusion

In this paper, Modelica programming language has been

considered for EMT simulations due to its advantages for

creating models at very high abstraction levels. In this

paper, we have emphasized the modeling of synchronous

machine including magnetic saturation and surge arrester.

These two nonlinear models are validated by comparisons

with EMTP in a large grid (IEEE 118-bus benchmark). It

is shown that high-level modeling in Modelica is very

accurate as compared to EMTP. However, the

performance is not satisfactory, except when variable time

step is used advantageously for very high-frequency

transients of short duration in a long simulation interval.

Nonetheless, in comparison with Simscape Electrical SPS

package, the Modelica package demonstrates an excellent

90 95 100 105 110 115 120 125 130
-1

-0.5

0

0.5

1

1.5

A
rr

e
st

e
r

V
o

lt
a
g

e
 (

p
u

)

95 96 97 98
-1

-0.5

0

0.5

1

1.5
f=1300 Hz

EMTP{ ModelicaΔt: 0.1µs, Δt: 10 µs}

Time (ms)

9896.4 96.8 97.2 97.6

0.2

0.4

0.6

0.8
1

Figure 11. Voltage waveform of surge arrester ZnO1 on the bus

SthPoint_138_075, DASLL solver: Tol=1e-3, EMTP solver:

Trapezoidal /BE with ∆t=0.1 μs and 10 μs.

Electromagnetic Transient Simulation of Large Power Networks with Modelica

284 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181277

performance in the EMT simulation of large-scale

networks composed of many nonlinearities.

The EMT-type package created by Modelica code is

user-friendly, modular, easily expandable, and

modifiable. It can be used for didactic purposes as well.

Furthermore, the EMT-type models can be used for model

exchange and co-simulation incorporating FMI.

This paper presents useful and practical information on

currently available capabilities with Modelica for EMT

simulation of large-scale grids. Future work will be

oriented toward performance improvements and the

inclusion of new models.

Acknowledgments

We would like to acknowledge the continuous support of

the R&D team of RTE in this research.

Appendix

Lightning is represented by an impulse current source

given by:

i(𝑡) = i𝑚[𝑒
𝛼𝑡 − 𝑒𝛽𝑡] (22)

where i𝑚 = 24.9 [𝑘𝐴], 𝛼 = −55k [1/s] and 𝛽 = −175k [1/s].

Table 3. Exponential segments before flashover for ZnO1.

Multiplier p Exponent q 𝐕𝒎𝒊𝒏 (𝒑𝒖)
0.163113059479073E+02 0.240279296219978E+02 0.667857269772541E+00

0.134112947529269E+02 0.266219333383985E+02 0.107838745800672E+01

0.383838137212802E+02 0.200870413085749E+02 0.117458089341624E+01

0.115443146532003E+01 0.352906710089203E+02 0.125919561101624E+01

0.407093229412981E+03 0.111310570543275E+02 0.127478619617635E+01

0.256681175704043E+04 0.536270125014350E+01 0.137605475880033E+01

References

Bartolini, A., Casella, F., & Guironnet, A. (2019). “Towards

pan-European power grid modelling in Modelica: Design

principles and a prototype for a reference power system

library”. In 13th International Modelica Conference, vol.

157, pp. 627-636. Linkoping University Electronic Press.

Braun, W., Casella, F., & Bachmann, B. (2017). “Solving large-

scale Modelica models: new approaches and experimental

results using OpenModelica”. In 12 International Modelica

Conference pp. 557-563. Linkoping University Electronic

Press. DOI: 10.3384/ecp17132557.

Fritzson, Peter (2014). Principles of object-oriented modeling

and simulation with Modelica 3.3: a cyber-physical

approach. John Wiley & Sons.

Fritzson, P. et al. (2020), “The OpenModelica Integrated

Environment for Modeling, Simulation, and Model-Based

Development”. Modeling, Identification and Control, vol. 41,

no. 4, pp. 241–295, 2020. DOI: 10.4173/mic.2020.4.1.

Guironnet, A. et al. (2018). “Towards an Open-Source Solution

using Modelica for Time-Domain Simulation of Power

Systems”. In: 2018 IEEE PES Innovative Smart Grid

Technologies Conference Europe (ISGT-Europe), pp. 1–6.

Haddadi, A., & Mahseredjian, J. (2018). Power system test cases

for EMT-type simulation studies. CIGRE, Paris, France,

Tech. Rep. CIGRE WG C, 4, 1-142.

Henningsson, E., Olsson, H., & Vanfretti, L. (2019). “DAE

solvers for large-scale hybrid models.” In Proceedings of the

13th International Modelica Conference, Regensburg,

Germany, March 4–6, 2019, No. 157. Linköping University

Electronic Press. DOI: 10.3384/ecp19157491

Kocar, I. and J. Mahseredjian (2016). “Accurate Frequency

Dependent Cable Model for Electromagnetic Transients”. In:

IEEE Transactions on Power Delivery 31.3, pp. 1281–1288.

DOI: 10.1109/TPWRD.2015.2453335.

Kofman, Ernesto, Joaquín Fernández, and Denise Marzorati

(2021). “Compact sparse symbolic Jacobian computation in

large systems of ODEs”. In: Applied Mathematics and

Computation 403, p. 126181. DOI:

10.1016/j.amc.2021.12618.

Karaagac, U., Mahseredjian, J., & Saad, O. (2011). “An efficient

synchronous machine model for electromagnetic transients”.

In IEEE transactions on power delivery, 26(4), 2456-2465.
DOI: 10.1109/TPWRD.2011.2159249.

Karaagac, U., Mahseredjian, J. and Martinez-Velasco, J. A.

(2017). “Synchronous machines,” in Chapter for Book

“Power System Transients: Parameter Determination. Boca

Raton, FL: CRC, 2009, ch. 5, pp.103–103.

Larsson, M. (2004). “ObjectStab-an educational tool for power

system stability studies”. In: IEEE Transactions on Power

Systems, vol. 19, no. 1, pp. 56-63, Feb. 2004. DOI:

10.1109/TPWRS.2003.821001

Lemaitre, C. and P. Panciatici (2014). “iTesla: Innovative tools

for electrical system security within large areas”. In: 2014

IEEE PES General Meeting Conference Exposition, pp. 1–2.

DOI: 10.1109/PESGM.2014.6939447.

Mahseredjian, J., S. Dennetière, et al. (2007). “On a new

approach for the simulation of transients in power systems”.

In: Electric Power Systems Research 77.11. Selected Topics

in Power System Transients - Part II, pp. 1514–1520. ISSN:

0378-7796. DOI: 10.1016/j.epsr.2006.08.027.

Mahseredjian, J., V. Dinavahi, and J. A. Martinez (2009).

“Simulation Tools for Electromagnetic Transients in Power

Systems: Overview and Challenges”. In: IEEE Transactions

on Power Delivery 24.3, pp. 1657–1669. DOI:

10.1109/TPWRD.2008.2008480.

Masoom, Alireza et al. (2020). “Simulation of electromagnetic

transients with Modelica, accuracy and performance

assessment for transmission line models”. In: Electric Power

Systems Research 189, p. 106799. DOI:

10.1016/j.epsr.2020.106799.

Masoom, Alireza et al. (2021). “Modelica-based Simulation of

Electromagnetic Transients Using Dynaωo: Current Status

and Perspectives”. In: Electric Power Systems Research 197,

107340. DOI: 10.1016/j.epsr.2021.107340.

Petzold, L. R. (1982). Description of DASSL: a

differential/algebraic system solver (No. SAND-82-8637;

CONF-820810-21). Sandia National Labs., Livermore, CA

(USA).

Sana, A. R., Mahseredjian, J. et al. (1995). “Treatment of

discontinuities in time-domain simulation of switched

networks”. In Mathematics and Computers in Simulation,

vol. 38, pp. 377-387. DOI: 10.1016/0378-4754(95)00047-2.

Simscape Electrical (2020), Specialized Power Systems User's

Guide Release 2020b, Hydro-Quebec and Math Works, Sep.

2020.

Vanfretti, L., Rabuzin, T., Baudette, M., & Murad, M. (2016).

“iTesla Power Systems Library (iPSL): A Modelica library

for phasor time-domain simulations”. In: SoftwareX, vol: 5,

pp. 84-88. DOI: 10.1016/j.softx.2016.05.001.

Session 4A: Applications (2)

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

285

286 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Seismic Hybrid Testing using FMI-based Co-Simulation

Cláudio Gomes1 Giuseppe Abbiati2 Peter Gorm Larsen1

1Department of Electrical and Computer Engineering, Aarhus University, Denmark,
{claudio.gomes,pgl}@ece.au.dk

1Department of Civil and Architectural Engineering, Aarhus University, Denmark, abbiati@cae.au.dk

Abstract
Hybrid testing is an experimental technique extensively
utilized in earthquake engineering to study the seismic re-
sponse of structures. It requires coupling physical and nu-
merical models in a closed feedback loop. Although this
methodology is mature, a commonly accepted standard for
orchestrating simulations and experiments is still missing.
As a result, setting up a hybrid testing campaign still re-
quires substantial system integration effort, which is often
not affordable. In this paper, we propose the Functional
Mockup Interface as a possible standard for orchestrating
hybrid testing and discuss the limitations in enabling such
support.
Keywords: earthquake engineering, hybrid testing, func-
tional mockup interface, co-simulation, model exchange,
master algorithm

1 Introduction
Modern civil engineering structures are designed to dam-
age in a controlled manner when exposed to extreme seis-
mic events. In principle, load-resisting systems are such
that secondary structural elements behave as fuses that: i)
cut-off loading introduced in primary structural elements;
and ii) dissipate energy during seismic motion. As a result,
the equivalent dynamic amplification factor of the struc-
ture is reduced and primary structural elements are pre-
served from damage. It comes with no surprise that un-
derstanding the dynamic response of structures in the in-
elastic regime is of central importance in earthquake en-
gineering (Chopra 2012).

In order to develop construction technologies and
design codes for seismic-resistant structures, a great deal
of effort has been allocated to enable cost-effective exper-
imentation in the last fifty years. Hybrid testing (HT), ori-
ginally introduced in Japan, has rapidly replaced expens-
ive shake table testing in response to this need (Nakashima
2020). HT is performed using hybrid physical-numerical
models instead of purely physical models. A reference
structural prototype is partitioned into a Physical Sub-
structure (PS) and a Numerical Substructure (NS). The PS
is tested in the laboratory by means of servo-controlled ac-
tuators whereas the NS is instantiated in a numerical sim-
ulation environment. A simulation algorithm solves the
coupled equations of motion of the hybrid model, which
is subjected to a realistic loading history, and updates the

boundary conditions of PS and NS on the fly (Pan, Wang
and Nakashima 2016). The PS is the focus of the experi-
mental campaign since it comprises those structural com-
ponents or sub-assemblies which lack of predictive numer-
ical models. Conversely, the NS comprises all those parts
that can be reliably replaced by numerical models (e.g.,
masses or components that experience a linear response
regime).

The main advantage compared to shake table testing
is that HT can be performed in pseudodynamic regime,
that is, with an extended time scale, when the PS has a
rate-independent restoring force (i.e., acts like a idealized
spring). This assumption holds with a reasonable approx-
imation for steel, concrete, and masonry structures. Note-
worthy, in pseudodynamic HT, both inertia and damping
forces of the PS are simulated numerically. Pseudody-
namic HT enables full-scale experimentation with small
hydraulic power. Typical testing time scales are 50−200
times slower than wall-clock time. Real-time HT indic-
ates the limit case of 1:1 time scale. If not specified, HT
is assumed to be conducted in the pseudodynamic regime,
which covers the vast majority of application cases. The
paper of McCrum and Williams (2016) provides the most
up-to-date review of the seismic HT methodology.

Seismic HT developed into a self-standing research
area with relatively low cross-fertilization with other fields
of civil engineering. HT methodologies developed in off-
shore (Sauder et al. 2016), fire (Sauca et al. 2021) and
geotechnical engineering (Idinyang et al. 2019) are quite
similar in form and maturity. However, for all cases, a
standardized approach to coupling simulation and testing
environments is still missing. As a result, setting up HT
requires a lot of system integration effort, which is often
not affordable.

Co-simulation, which is a technique to simulate a
coupled system via combination of multiple black-box
simulation units, shall provide a solution to this issue.
The survey Gomes, Thule, Broman et al. (2018) gives a
broad overview of co-simulation, spanning heterogeneous
application domains like multi-body dynamics (Kübler
and Schiehlen 2000) and large-scale circuit simulation
(Lelarasmee, Ruehli and A. L. Sangiovanni-Vincentelli
1982; Newton and Alberto L. Sangiovanni-Vincentelli
1983). Specifically, simulation units, often developed and
exported independently from each other in different Mod-
elling & Simulation (M&S) tools, are coupled using an or-

DOI
10.3384/ecp21181287

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

287

chestration algorithm. The definition of simulation unit is
not constrained to software artefacts, and therefore phys-
ical subsystems can be connected to virtual ones. From
this perspective, HT is clearly a specific instance of co-
simulation.

Contribution. To the best of our knowledge, no stand-
ard has emerged to enable seismic HT. As such, in this
paper, we propose and evaluate the use of the FMI stand-
ard, version 2.1, to the co-simulation of a representative
HS experimental setup, illustrated in Figure 1. We adapt
the numerical algorithm proposed in Giuseppe Abbiati, La
Salandra et al. (2018) to the FMI interface, with variants
for Model Exchange and Co-simulation.

Structure. In order to demonstrate the use of FMI-based
Co-simulation for seismic HT, an application example is
described in Section 2. The specific co-simulation layout
for the presented example is discussed in Section 3. Con-
clusions and future perspectives are given in Section 4.

2 Background and Case Study
This section provides background information on HT
along with the definition of the experimental setup, which
is used to demonstrate the application of FMI-based co-
simulation. Such a case study aims at representing the
class of structural systems typically investigated via seis-
mic HT. Both hybrid model and simulation algorithm are
accurately described.

2.1 Hybrid Model
The selected case study consists of a split-mass single-
degree-of-freedom (S-DoF) system where both NS and PS
are linear. Prototype structure, hybrid model and exper-
imental setup, originally presented in Martin Hovmand,
Giuseppe Abbiati and Vabbersgaard Andersen (2021), are
illustrated in Figure 1. As can be appreciated, the PS con-
sists of a cantilever beam with a tip mass whereas the NS
is a S-DoF spring-mass-dashpot oscillator. An electric lin-
ear actuator controls the tip displacement of the cantilever
beam, which corresponds the single DoF of the hybrid
model. A force transducer measures the corresponding
restoring force. The actuator is characterized by 300 mm
stroke and 10 kN force capacity; the latter coincides with
the force transducer admissible load. Both actuator con-
troller and force transducer are connected to an industrial
PC via EtherCAT. The industrial PC hosts a Python envir-
onment from which one can set the actuator position and
read the corresponding restoring force using the control
system API. The HT setup is installed at the Dynamisk
LAB of Aarhus University. Since the NS of the selec-
ted hybrid model is defined by an analytical model, in our
implementation, the same Python environment hosts both
substructure models, simulation algorithm and the inter-
face to the control system. In order to host more complex
NSs, simulation algorithms are usually interfaced to an ex-
ternal simulation environment, typically based on the FE
method. To this end, a number of middleware tools have

Figure 1. Reference case study adapted from M. Hovmand, G.
Abbiati and Andersen (2021): a) prototype structure; b) hybrid
model; c) experimental setup installed at the Dynamisk LAB of
Aarhus University.

Seismic Hybrid Testing using FMI-based Co-Simulation

288 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181287

been developed. Among all, OpenFresco, developed at
the University of California, Berkeley, is commonly used
(McKenna, Scott and Gregory L Fenves 2010). Open-
Fresco can interface with industrial PCs and FE frame-
works. OpenFresco is typically used in combination with
OpenSees (Schellenberg, Mahin and Gregory L. Fenves
2007), which is a FE software specifically developed for
analyzing steel and concrete structures subjected to earth-
quake loading. HT with geographically distributed PS and
NS using OpenSees/OpenFresco has been demonstrated
in Stojadinovic, Mosqueda and Mahin (2006). However,
linking new simulation environments requires coding cus-
tomized interfaces. Our contribution aims at eliminating
this effort by promoting the use of FMI interface for HT.

2.2 Simulation Algorithm
In line with the philosophy of FMI-based Co-simulation,
which treats the coupled simulation as a combination of
independent simulation units, we selected a simulation al-
gorithm based on partitioned time integration originally
proposed in Giuseppe Abbiati, La Salandra et al. (2018)
and lately adapted to hybrid fire testing in Giuseppe Ab-
biati, Covi et al. (2020). In a partitioned setting, Lagrange
multipliers enforce compatibility conditions among sub-
structures (i.e., simulation units) and the simulation time
step is solved with a two-stage algorithm. First, substruc-
ture responses are evaluated as if they were uncoupled.
Then, Lagrange multipliers are computed by solving a lin-
earized interface problem. The original idea of using par-
titioned time integration to perform HT was proposed by
Pegon and Magonette (2002). The first large-scale seismic
testing campaign based on the scheme is described in Gi-
useppe Abbiati, Oreste S. Bursi et al. (2015) and Oreste S.
Bursi et al. (2017).

The partitioned time integration scheme proposed in
Giuseppe Abbiati, La Salandra et al. (2018) is presen-
ted to compute the seismic response of a generic hybrid
model with one PS and one NS. The following system
of differential-algebraic equations describes the motion of
the hybrid model,

{
MN üN +CN u̇N + rN

(
uN

)
= fN +LNT

ΛΛΛ
N

LN u̇N + L̄N u̇g = 0{
MPüP +CPu̇P + rP

(
uP

)
= fP +LPT

ΛΛΛ
P

LPu̇P + L̄Pu̇g = 0
L̄NT

ΛΛΛ
N + L̄PT

ΛΛΛ
P = 0

(1)

In detail, u(•), u̇(•) and ü(•) are displacement, velocity and
acceleration vectors, respectively. The terms r(•) are rate-
independent restoring force vectors. M(•) and C(•) are
mass and damping matrices, respectively. Seismic load-
ing is defined as f(•) = M(•)t(•)a(t) where t(•) are Boolean
vectors that project seismic acceleration history a(t) on
system DoFs. Matrices L(•) and L̄(•) localize the shared
DoFs on each substructure DoF vector and the vector of
generalized interface velocities u̇g, respectively. The latter

gathers all DoFs shared among substructures. The entries
of L(•) are 0 and 1 whereas the entries of L̄(•) are 0 and -1.
According to (1), Lagrange multiplier vectors ΛΛΛ

(•) enforce
velocity compatibility with u̇g. It is important to stress that
all Lagrange multiplier vectors form a set of self-balanced
forces to ensure interface equilibrium a priori. The solu-
tion of (1) enforces kinematic compatibility a posteriori.
The HT algorithm is presented to integrate (1) from time
tk to tk+1 with a time step ∆t.

1. Solve the NS free problem at tk+1,{
ũN, f ree

k+1 = uN
k + u̇N

k ∆t +
(1

2 −β N
)

∆t2üN
k

˜̇uN, f ree
k+1 = u̇N

k +
(
1− γN

)
∆tüN

k

(2)

üN, f ree
k+1 = DN−1

[
fN
k+1 −CN ˜̇uN, f ree

k+1 − rN
k+1

(
ũN, f ree

k+1

)]
(3)

{
uN, f ree

k+1 = ũN, f ree
k+1 + üN, f ree

k+1 β N∆t2

u̇N, f ree
k+1 = ˜̇uN, f ree

k+1 + üN, f ree
k+1 γN∆t

(4)

with,

DN = MN +CN
γ

N
∆t +KN

β
N

∆t2 (5)

where γN and β N are the parameters of the Newmark
scheme for the NS (Bathe 1982) and KN is the stiff-
ness matrix. In Equation (3), the displacement pre-
dictor ũN, f ree

k+1 is sent to an external FE software that
computes the corresponding restoring force rN

k+1.

2. Solve the PS free problem at tk+1,{
ũP, f ree

k+1 = uP
k + u̇P

k ∆t +
(1

2 −β P
)

∆t2üP
k

˜̇uP, f ree
k+1 = u̇P

k +
(
1− γP

)
∆tüP

k

(6)

üP, f ree
k+1 = DP−1

[
fP
k+1 −CP ˜̇uP, f ree

k+1 − rP
k+1

(
ũP, f ree

k+1

)]
(7)

{
uP, f ree

k+1 = ũP, f ree
k+1 + üP, f ree

k+1 β P∆t2

u̇P, f ree
k+1 = ˜̇uP, f ree

k+1 + üP, f ree
k+1 γP∆t

(8)

with,

DP = MP +CP
γ

P
∆t +KP

β
P
∆t2 (9)

where γP and β P are the parameters of the Newmark
scheme for the PS (Bathe 1982). In Equation (7),
the displacement predictor ũP, f ree

k+1 is imposed to the
PS by means of servo-controlled actuators and the
corresponding restoring force vector rP

k+1 is meas-
ured using force transducers. Noteworthy displace-
ment control errors affects the measured restoring

Session 4A: Applications (2)

DOI
10.3384/ecp21181287

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

289

force rP, f ree
k+1,mes and may bias the emulated system re-

sponse. Accordingly, control and measurement er-
rors are compensated as suggested by Oreste S Bursi
O. S. and Shing (1996),

rP, f ree
k+1 = rP, f ree

k+1,mes +KP(uP, f ree
k+1 −uP, f ree

k+1,mes) (10)

where uP, f ree
k+1,mes and rP, f ree

k+1,mes are measured displace-
ment and restoring force vectors. The stiffness mat-
rix of the PS KP is estimated before HT based on
low-amplitude cyclic tests.

3. Solve the linearized interface problem a tk+1,ΛΛΛ
N
k+1

ΛΛΛ
P
k+1

u̇g
k+1

=−G−1

LN u̇N, f ree
k+1

LPu̇P, f ree
k+1
0

 (11)

with,

G =

LNDN−1LNT
γN∆t 0 L̄N

0 LPDP−1LPT
γP∆t L̄P

L̄NT L̄PT 0

(12)

4. Calculate link kinematic quantities at tk+1,
üN,link

k+1 = DN−1LNT
ΛΛΛ

N
k+1

u̇N,link
k+1 = DN−1LNT

ΛΛΛ
N
k+1γN∆t

uN,link
k+1 = DN−1LNT

ΛΛΛ
N
k+1β N∆t2

(13)

üP,link

k+1 = DP−1LPT
ΛΛΛ

P
k+1

u̇P,link
k+1 = DP−1LPT

ΛΛΛ
P
k+1γP∆t

uP,link
k+1 = DP−1LPT

ΛΛΛ
P
k+1β P∆t2

(14)

5. Calculate coupled kinematic quantities at tk+1,
üN

k+1 = üN, f ree
k+1 + üN,link

k+1
u̇N

k+1 = u̇N, f ree
k+1 + u̇N,link

k+1
uN

k+1 = uN, f ree
k+1 +uN,link

k+1

(15)

üP

k+1 = üP, f ree
k+1 + üP,link

k+1
u̇P

k+1 = u̇P, f ree
k+1 + u̇P,link

k+1
uP

k+1 = uP, f ree
k+1 +uP,link

k+1

(16)

The main advantage of partitioned time integration is
that the PS free response can be solved with an expli-
cit scheme, which does not require estimating the PS
stiffness KP, while the NS free response is solved with
an implicit scheme. Compatibility of interface velocities
stated in (1) ensures that the coupled simulation is stable
as long as each time integration scheme is stable as un-
coupled (Gravouil and Combescure 2001). Accordingly,
in our implementation, the central difference scheme is
utilized on the PS (γP = 1

2 ,β
P = 0) whereas the mid-point

rule on the NS (γN = 1
2 ,β

N = 1
4) (Bathe 1982). Usu-

ally, the PS is characterized by very few DoFs (1− 10)
and relatively low eigenfrequencies (0− 20 Hz) so, typ-
ically, ∆t = 10 msec. Considering a time scale λ = 100,
the wall-clock time required to solve one time integration
step is ∆T = ∆tλ = 1 sec, which is sufficiently large to
accommodate actuation and filtering delays. In our ex-
ample, MN and KN have constant scalar values and the
NS free response is solved without Newton-Raphson iter-
ations, following the operator-splitting approach (Oreste S
Bursi O. S. and Shing 1996). Since, HT is performed with
an extended time scale, MP is estimated analytically. Fol-
lowing the procedure suggested in Molina et al. (2011),
we set the PS damping matrix CP to zero.

We stress that the Steklov-Poincaré operator G defined
in (12) is computed and inverted once before HT. As a
result, the solution of the interface problem (Step 3) and
calculation of link kinematic quantities (Step 4) require
only of a few matrix multiplications.

3 FMI-based Implementation
The FMI 2.1 defines two main interfaces: the Co-
simulation (CS), and the Model Exchange (ME). In the
FMI nomenclature, a simulation unit is called the Func-
tional Mockup Unit (FMU), and it may implement one or
two of the main interfaces. The FMU is a zip file contain-
ing: binaries and source code (optional) implementing the
API functions; miscellaneous resources; and an XML file,
describing the variables, model structure, and other data.

In this work, HT is numerically simulated. Therefore,
both NS and PS FMUs are implemented as ODEs. In this
regard, the difference between an the ME and the CS in-
terfaces lies in the fact that the former enables the FMU
to expose the ODE derivative function, whereas the CS al-
ways represents the time discretized sub-model, enabling
the FMU to export the sequence of ODE states, as the sim-
ulation progresses in time. From the point of view of the
orchestration algorithm, defined below, a FMU ME still
needs to be coupled to a numerical solver, which will be
responsible for querying the derivatives and updating the
states of the FMU, whereas a FMU CS comes with its own
numerical solver. The differences are illustrated in Fig-
ures 2 and 3.

A simulation scenario is a description of the FMUs and
their inter-connections. In order to make the following
discussion clearer, we define the following:
Importer – Denotes the application that loads the FMUs;
Orchestrator – Denotes the algorithm, executing on the

Importer, that interacts with the FMUs, inspecting
their outputs, setting their inputs, etc, according to
the simulation scenario.

Coupling – Denotes the strategy that the orchestrator
uses, in order to ensure that physical laws are respec-
ted.

While it is common to mix the Orchestrator and Coup-
ling together as one concept, as we will show later, the

Seismic Hybrid Testing using FMI-based Co-Simulation

290 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181287

FMU

Solver

User

time
parameters
inputs
outputs
local variables
event indicators
continuous states
discrete-time states
hidden states (buffers)

t
p
u
y
w
z
xc
xd
z

p w

xc ẋc, zt

u y

Figure 2. Schematic view of data flow between user, the solver
of the importer and the FMU for Model Exchange. Based on
(FMI v. 3.0 2021).

User

FMU

Solver

Co-Simulation Algorithm

t, h

time
step-size
parameters
inputs
outputs
local variables
event indicators
continuous states
discrete-time states
hidden states (buffers)

t
h
p
u
y
w
z
xc
xd
z

p w

xc ẋc, zt

u y

Figure 3. Schematic view of data flow between user, the solver
of the importer and the FMU for Co-Simulation. Based on (FMI
v. 3.0 2021).

distinction is useful because the Orchestrator is generic
and can be applied to many different simulation scenarios
(e.g., consider the Jacobi and Gauss-Seidel schemes (Kü-
bler and Schiehlen 2000; Bastian et al. 2011)), but the
Coupling is often specifically designed for a particular
simulation scenario (e.g., the coupling can be implemen-
ted as a semantic adaptation (Gomes, Meyers et al. 2018),
or automatically generated from hints (Gomes, Oakes et
al. 2019; Oakes et al. 2021)).

3.1 FMI Co-simulation Interface
Figure 4 shows two possible simulation scenarios that im-
plement the setup described in Figure 1 in a co-simulation
with the coupling algorithm introduced in Section 2.2. In
the figure, variants A and B differ only in the data that is
communicated between the Coupling and the FMUs. In
variant A, vectors u̇N and u̇P are copied, whereas in vari-
ant B, the (typically) smaller vectors LN u̇N and LPu̇P are
passed. Each variant requires therefore, a slightly different
FMU implementation. In the figure, variant B only shows
the differences with respect to variant A for simplicity.

In both variants, the NSFMU and PSFMU communic-
ate with the FE software and Test Setup, respectively.
These FMUs have no input-to-output algebraic dependen-
cies, and all of their computations can happen inside the
fmi2DoStep function, making them well suited to be
implemented as co-simulation FMUs.

It is important to remark that the application of the FMI
CS interface implies that the FMUs are compatible with
the coupling algorithm. In particular, recall that the coup-
ling algorithm requires a correction to the states of the
FMUs, in Equations (15) and (16). As such, the FMUs
must support a mechanism to perform this correction. The
authors of (Brembeck et al. 2014) also report on the same
difficulties. The implementation of Coupling can too be
done in multiple ways, described next.

Coupling as Custom Orchestrator. The most common
approach is to implement, or automatically generate, the
coupling algorithm directly as part of the orchestration
algorithm. This works well when the user has full con-
trol over the orchestration algorithm, or when the co-
simulation framework, or modelling environment, being
used, provides the ability for customization (e.g., using
a co-simulation library like PyFMI (Andersson, Åkesson
and Führer 2016), FMPy1, among others).

Coupling as FMU. For situations where the user has
little programming expertize, or no control over the co-
simulation framework, it is easier to implement the coup-
ling as an FMU, which is then loaded during the co-
simulation, as any other FMU. Frameworks such as the
one described in (Gomes, Meyers et al. 2018), where the
user is offered a domain specific language to describe
common algebraic expressions, which is then used to auto-
matically generate a new FMU that wraps the old ones

1https://github.com/CATIA-Systems/FMPy

Session 4A: Applications (2)

DOI
10.3384/ecp21181287

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

291

PSFMU (CS)NSFMU (CS)

Test Setup
FE

Software Outputs:

Inputs:

Dependencies: None

Inputs:

Outputs:

Dependencies: None

Coupling

Inputs:

Outputs:

Dependencies:

Va
ria

nt
 A

Va
ria

nt
 B

PSFMU (CS)NSFMU (CS)

Outputs:

Inputs:

Dependencies: None

Inputs:

Outputs:

Dependencies: None

Coupling

Inputs:

Outputs:

Dependencies:

Figure 4. Illustration of two possible simulation scenarios that implement the setup described in Figure 1 in a co-simulation
with the coupling algorithm introduced in Section 2.2. The dashed boxes represent the fact that NSFMU (respectively PSFMU)
communicate with a FE Software (resp. the Test Setup), when the fmi2DoStep function is invoked. Variant B only shows the
differences (highlighted in red) with respect to variant A. Each variant requires a different FMU implementation, with variant B
allowing for less communication.

with those extra expressions, can be used for this. In addi-
tion, there are libraries that facilitate the implementation
of FMUs, such as Moka (Aslan, Durak and Taylan 2015)
and PyFMU (Legaard et al. 2020) (the later allows the user
to program an FMU in Python).

However, for the scenario described in Figure 4, spe-
cial attention must be payed to the algebraic dependen-
cies: since FMI 2.1 supports no feedthrough, the computa-
tion of Coupling must be carried out in the fmi2DoStep
function. This means that the fmi2DoStep of the Coup-
ling FMU must be invoked after having provided the new
inputs, originated from the outputs of the already stepped
NSFMU and PSFMU. The consequence is that the co-
simulation framework must accept some kind of descrip-
tion of the ordering in which the FMUs shall be stepped.
The FMI standard 2.1 offers no mechanism to provide
this information, even though it plays an important role
in reducing co-simulation errors (Gomes, Thule, Lúcio et
al. 2020; Oakes et al. 2021; Gomes, Oakes et al. 2019;
Gomes, Lucio and Vangheluwe 2019).

Consistent Initialization. The implemented coupling
algorithm, needs to be initialized with the jacobian
of NSFMU and PSFMU. Since we had control over
the implementation of these FMUs, we choose to
simply expose these as outputs. In other cases, the
fmi2GetDirectionalDerivative can be used to
obtain this information.

3.2 FMI Model Exchange Interface
When implementing the scenarios described in Figure 4
using the FMI ME interface, the main difference lies in the
ability to easily perform the state corrections described by

Equations (15) and (16). This is illustrated in Figure 5.
The advantage is that the FMU is independent of the

coupling algorithm, making this approach ideal for when
the users have no control over the implementation of the
FMUs (e.g., as in the case of FMI export features in M&S
tools). The downside is the added complexity of the or-
chestration algorithm and the FMU exporter, which must
also implement a greater number of FMI functions (com-
pared to FMI CS) and ensure that the internal state is or-
ganized in a single vector.

4 Results and Conclusion
This paper describes multiple ways in which the FMI 2.1
for Model Exchange (ME) and Co-Simulation (CS) inter-
faces, can be used for the implementation of hybrid test-
ing. To the best of our knowledge, there has not yet been
any application of the FMI to the field of seismic hybrid
testing and no standard has emerged to enable this. Having
such standard would greatly facilitate the coupling of het-
erogeneous codes and facilitate the exchange of numerical
models.

The approaches are discussed within the context of their
implementation in an hybrid testing setup, installed at
the Dynamisk LAB of Aarhus University. A snapshot
of the numerical results can be seen in Figure 6, and a
video recording of the experiment is available online at
https://youtu.be/-VkrQJaUo1o.

The conclusion is that the both FMI ME and CS in-
terfaces are well suited for this task, provided that the
co-simulation framework supports minor customization of
the ordering in which the FMUs are stepped in simulated
time.

Seismic Hybrid Testing using FMI-based Co-Simulation

292 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181287

PSFMU (ME)NSFMU (ME)

Test Setup
FE

Software States:

Inputs:Inputs:

States:

Coupling

None

Figure 5. Illustration of simulation scenario implementing the setup of Figure 1 using the FMI Model Exchange interface. The
coupling implementation is the same as in Figure 4. The dashed boxes represent the fact that NSFMU (respectively PSFMU)
communicate with a FE Software (resp. the Test Setup), when the fmi2GetReal function is invoked.

Figure 6. Numerical results using the FMI Co-simulation Interface. The results with Model Exchange are similar. The full video
can be seen online at https://youtu.be/-VkrQJaUo1o.

Acknowledgements
We are grateful for the support from the Poul Due Jensen
Foundation of the Centre for Digital Twin Technology at
Aarhus University.

References
Abbiati, Giuseppe, Oreste S. Bursi et al. (2015-10). “Hybrid

simulation of a multi-span RC viaduct with plain bars and
sliding bearings”. en. In: Earthquake Engineering & Struc-
tural Dynamics 44.13. ZSCC: NoCitationData[s0], pp. 2221–
2240. ISSN: 00988847. DOI: 10.1002/eqe.2580. URL: http:
//doi.wiley.com/10.1002/eqe.2580 (visited on 2020-03-04).

Abbiati, Giuseppe, Patrick Covi et al. (2020-09). “A Real-Time
Hybrid Fire Simulation Method Based on Dynamic Relaxa-
tion and Partitioned Time Integration”. en. In: Journal of En-
gineering Mechanics 146.9, p. 04020104. ISSN: 0733-9399,
1943-7889. DOI: 10.1061/(ASCE)EM.1943-7889.0001826.

Abbiati, Giuseppe, Vincenzo La Salandra et al. (2018-02).
“A composite experimental dynamic substructuring method

based on partitioned algorithms and localized Lagrange mul-
tipliers”. en. In: Mechanical Systems and Signal Processing
100, pp. 85–112. ISSN: 08883270. DOI: 10 .1016 / j .ymssp .
2017.07.020. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0888327017303849 (visited on 2020-03-05).

Andersson, Christian, Johan Åkesson and Claus Führer (2016).
Pyfmi: A Python Package for Simulation of Coupled Dynamic
Models with the Functional Mock-up Interface. Centre for
Mathematical Sciences, Lund University Lund.

Aslan, Memduha, Umut Durak and Koray Taylan (2015-07).
“MOKA: An Object-Oriented Framework for FMI Co-
Simulation”. In: Conference on Summer Computer Simula-
tion. Chicago, Illinois: Society for Computer Simulation In-
ternational San Diego, CA, USA, pp. 1–8.

Bastian, Jens et al. (2011-06). “Master for Co-Simulation Using
FMI”. In: 8th International Modelica Conference. Dresden,
Germany: Linköping University Electronic Press, Linköpings
universitet, pp. 115–120. DOI: 10.3384/ecp11063115.

Bathe, Klaus-JOrgen (1982). “Finite Element Procedures for
Solids and Structures LinearAnalysis”. In: Finite Element
Procedures, pp. 148–214.

Session 4A: Applications (2)

DOI
10.3384/ecp21181287

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

293

Brembeck, Jonathan et al. (2014-03). “Nonlinear State Es-
timation with an Extended FMI 2.0 Co-Simulation Inter-
face”. In: 10th International Modelica Conference. Lund,
Sweden: Linköping University Electronic Press; Linköpings
universitet, pp. 53–62. DOI: 10.3384/ecp1409653.

Bursi O. S., Oreste S and Pui-Shum B. Shing (1996). “Eval-
uation of Some Implicit Time-Stepping Algorithms for
Pseudodynamic Tests”. en. In: Earthquake Engineering &
Structural Dynamics 25, pp. 333–355.

Bursi, Oreste S. et al. (2017-11). “Nonlinear heterogeneous dy-
namic substructuring and partitioned FETI time integration
for the development of low-discrepancy simulation models”.
en. In: International Journal for Numerical Methods in En-
gineering 112.9, pp. 1253–1291. ISSN: 00295981. DOI: 10.
1002/nme.5556. URL: http://doi.wiley.com/10.1002/nme.
5556 (visited on 2020-03-04).

Chopra, Anil K. (2012). Dynamics of structures: theory and
applications to earthquake engineering. en. 4th ed. ZSCC:
0000002. Upper Saddle River, N.J: Prentice Hall. ISBN: 978-
0-13-285803-8.

FMI v. 3.0 (2021). Functional Mock-up Interface for
Model Exchange, Co-Simulation, and Scheduled Execution.
https://fmi-standard.org/.

Gomes, Cláudio, Levi Lucio and Hans Vangheluwe (2019). “Se-
mantics of Co-Simulation Algorithms with Simulator Con-
tracts”. In: 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C). Munich, Germany: IEEE, pp. 784–
789. DOI: 10.1109/MODELS-C.2019.00124.

Gomes, Cláudio, Bart Meyers et al. (2018). “Semantic Ad-
aptation for FMI Co-Simulation with Hierarchical Simulat-
ors”. In: SIMULATION 95.3, pp. 1–29. DOI: 10 . 1177 /
0037549718759775.

Gomes, Cláudio, Bentley James Oakes et al. (2019). “HintCO
- Hint-Based Configuration of Co-Simulations”. In: Interna-
tional Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications. Prague, Czech Repub-
lic, pp. 57–68. ISBN: 978-989-758-381-0. DOI: 10 . 5220 /
0007830000570068.

Gomes, Cláudio, Casper Thule, David Broman et al. (2018).
“Co-Simulation: A Survey”. In: ACM Computing Surveys
51.3, 49:1–49:33. DOI: 10.1145/3179993.

Gomes, Cláudio, Casper Thule, Levi Lúcio et al. (2020). “Gen-
eration of Co-Simulation Algorithms Subject to Simulator
Contracts”. en. In: Software Engineering and Formal Meth-
ods. Ed. by Javier Camara and Martin Steffen. Vol. 12226.
Lecture Notes in Computer Science. Oslo, Norway: Springer
International Publishing, pp. 34–49. ISBN: 978-3-030-57505-
2 978-3-030-57506-9. DOI: 10.1007/978-3-030-57506-9_4.

Gravouil, A. and A Combescure (2001). “Multi-time-step expli-
cit–implicit method for non-linear structural dynamics”. In:
Int. J. Numer. Methods 50 (1), pp. 199–225.

Hovmand, M., G. Abbiati and L. V. Andersen (2021). “Real-
Time Hybrid Simulation with Nonlinear Numerical Substruc-
tures Based on State-Space Modeling”. In: 17th World Con-
ference on Earthquake Engineering. Sendai, Japan, submit-
ted.

Hovmand, Martin, Giuseppe Abbiati and Lars Vabbersgaard An-
dersen (2021). “Real-time hybrid simulation with nonlinear
numerical substructures based on state-space modeling”. In:
17 World Conference of Earthquake Engineering (17WCEE).
Sendai, Japan.

Idinyang, Solomon et al. (2019-07). “Real-time data coupling
for hybrid testing in a geotechnical centrifuge”. en. In: Inter-
national Journal of Physical Modelling in Geotechnics 19.4,
pp. 208–220. ISSN: 1346-213X, 2042-6550. DOI: 10 .1680/
jphmg.17.00063. URL: https:/ /www.icevirtuallibrary.com/
doi/10.1680/jphmg.17.00063 (visited on 2020-03-07).

Kübler, R. and W. Schiehlen (2000). “Two Methods of Simulator
Coupling”. In: Mathematical and Computer Modelling of Dy-
namical Systems 6.2, pp. 93–113. ISSN: 1387-3954. DOI: 10.
1076/1387-3954(200006)6:2;1-M;FT093.

Legaard, Christian Møldrup et al. (2020). “Rapid Prototyping
of Self-Adaptive-Systems Using Python Functional Mockup
Units”. In: 2020 Summer Simulation Conference. Summer-
Sim ’20. Virtual event: ACM New York, NY, USA, to appear.

Lelarasmee, E., Albert E. Ruehli and A. L. Sangiovanni-
Vincentelli (1982). “The Waveform Relaxation Method for
Time-Domain Analysis of Large Scale Integrated Circuits”.
In: IEEE Transactions on Computer-Aided Design of Integ-
rated Circuits and Systems. Vol. 1, pp. 131–145. ISBN: 0278-
00701. DOI: 10.1109/TCAD.1982.1270004.

McCrum, D.P. and M.S. Williams (2016-07). “An overview of
seismic hybrid testing of engineering structures”. en. In: En-
gineering Structures 118, pp. 240–261. ISSN: 01410296. DOI:
10.1016/j.engstruct.2016.03.039. URL: https://linkinghub.
elsevier. com / retrieve / pii / S0141029616300748 (visited on
2020-03-05).

McKenna, Frank, Michael H Scott and Gregory L Fenves
(2010). “Nonlinear Finite-Element Analysis Software Archi-
tecture Using Object Composition”. en. In: Journal of Com-
puting in Civil Engineering 24.1, p. 13.

Molina, Francisco J. et al. (2011-07). “Monitoring Damping in
Pseudo-Dynamic Tests”. en. In: Journal of Earthquake En-
gineering 15.6, pp. 877–900. ISSN: 1363-2469, 1559-808X.
DOI: 10 .1080/13632469.2010.544373. URL: http : / /www.
tandfonline.com/doi/full/10.1080/13632469.2010.544373
(visited on 2020-03-05).

Nakashima, Masayoshi (2020-04). “Hybrid simulation: An early
history”. en. In: Earthquake Engineering & Structural Dy-
namics 49.10, pp. 949–962. ISSN: 00988847. DOI: 10.1002/
eqe .3274. URL: http : / / doi .wiley. com /10 . 1002 / eqe . 3274
(visited on 2020-04-28).

Newton, Arthur Richard and Alberto L. Sangiovanni-Vincentelli
(1983-09). “Relaxation-Based Electrical Simulation”. In:
SIAM Journal on Scientific and Statistical Computing 4.3,
pp. 485–524. ISSN: 0196-5204. DOI: 10.1137/0904036.

Oakes, Bentley James et al. (2021). “Hint-Based Configura-
tion of Co-Simulations with Algebraic Loops”. en. In: Sim-
ulation and Modeling Methodologies, Technologies and Ap-
plications. Vol. 1260. Cham: Springer International Publish-
ing, pp. 1–28. ISBN: 978-3-030-55866-6 978-3-030-55867-3.
DOI: 10.1007/978-3-030-55867-3_1.

Pan, Peng, Tao Wang and Masayoshi Nakashima (2016). Devel-
opment of online hybrid testing: theory and applications to
structural engineering. en. Oxford [England] ; Waltham, MA:
Elsevier / Butterworth Heinemann. ISBN: 978-0-12-803378-
4.

Pegon, Pierre and Georges Magonette (2002). Continuous PsD
testing with nonlinear substructuring: presentation of a par-
allel inter-field procedure. Tech. rep. I.02.167. Ispra, Italy:
European Laboratory for Structural Assessment, Institute for
the Protection and the Security of the Citizen, Joint Research
Centre.

Seismic Hybrid Testing using FMI-based Co-Simulation

294 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181287

Sauca, A. et al. (2021-05). “Experimental validation of a hybrid
fire testing framework based on dynamic relaxation”. en. In:
Fire Safety Journal 121, p. 103315. ISSN: 03797112. DOI:
10 . 1016 / j . firesaf . 2021 . 103315. URL: https : / / linkinghub.
elsevier. com / retrieve / pii / S0379711221000552 (visited on
2021-04-09).

Sauder, Thomas et al. (2016-06). “Real-Time Hybrid Model
Testing of a Braceless Semi-Submersible Wind Turbine: Part
I — The Hybrid Approach”. en. In: Volume 6: Ocean Space
Utilization; Ocean Renewable Energy. Busan, South Korea:
American Society of Mechanical Engineers, V006T09A039.
ISBN: 978-0-7918-4997-2. DOI: 10 . 1115 / OMAE2016 -
54435. URL: https : / / asmedigitalcollection . asme . org /
OMAE/proceedings/OMAE2016/49972/Busan,%20South%
20Korea/281288 (visited on 2020-05-01).

Schellenberg, Andreas, Stephen A. Mahin and Gregory L.
Fenves (2007-10). “A Software Framework for Hybrid Simu-
lation of Large Structural Systems”. en. In: Structural Engin-
eering Research Frontiers. Long Beach, California, United
States: American Society of Civil Engineers, pp. 1–16. ISBN:
978-0-7844-0944-2. DOI: 10.1061/40944(249)3. (Visited on
2020-03-04).

Stojadinovic, Bozidar, Gilberto Mosqueda and Stephen A.
Mahin (2006-01). “Event-Driven Control System for Geo-
graphically Distributed Hybrid Simulation”. en. In: Journal
of Structural Engineering 132.1, pp. 68–77. ISSN: 0733-
9445, 1943-541X. DOI: 10.1061/(ASCE)0733- 9445(2006)
132:1(68). (Visited on 2020-03-04).

Session 4A: Applications (2)

DOI
10.3384/ecp21181287

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

295

296 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

NeuralFMU: Towards Structural Integration of FMUs into Neural
Networks

Tobias Thummerer Josef Kircher Lars Mikelsons

Chair of Mechatronics, Augsburg University, Germany, {tobias.thummerer@informatik,
josef.kircher@student, lars.mikelsons@informatik}.uni-augsburg.de

Abstract
This paper covers two major subjects: First, the presenta-
tion of a new open-source library called FMI.jl for inte-
grating FMI into the Julia programming environment by
providing the possibility to load, parameterize and sim-
ulate FMUs. Further, an extension to this library called
FMIFlux.jl is introduced, that allows the integration of
FMUs into a neural network topology to obtain a Neu-
ralFMU. This structural combination of an industry typ-
ical black-box model and a data-driven machine learning
model combines the different advantages of both model-
ing approaches in one single development environment.
This allows for the usage of advanced data driven mod-
eling techniques for physical effects that are difficult to
model based on first principles.
Keywords: NeuralFMU, FMI, FMU, Julia, NeuralODE

1 Introduction
Models inside closed simulation tools make hybrid model-
ing difficult, because for training data-driven model parts,
determination of the loss gradient through the Neural Net-
work (NN) and the model itself is needed. Nevertheless,
the structural integration of models inside machine learn-
ing topologies like NNs is a research topic that gathered
more and more attention. When it comes to learning sys-
tem dynamics, the structural injection of algorithmic nu-
merical solvers into NNs lead to large improvements in
performance, memory cost and numerical precision over
the use of residual neural networks (Chen et al. 2018),
while offering a new range of possibilities, e.g. fitting
data that was observed at irregular time steps (Innes et
al. 2019). The result of integrating a numerical solver for
ordinary differential equations (ODEs) into a NN is known
as NeuralODE. For the Julia programming language (from
here on simply referred to as Julia), a ready-to-use li-
brary for building and training NeuralODEs named Dif-
fEqFlux.jl1 is already available (Rackauckas, Innes, et al.
2019). Probably the most mentioned point of criticism re-
garding NeuralODEs is the difficult porting to real world
applications (s. section 3.1.2 and 3.1.3).

A different approach for hybrid modeling, as in Raissi,
Perdikaris, and Karniadakis (2019), is the integration of
the physical model into the machine learning process

1https://github.com/SciML/DiffEqFlux.jl

by evaluating (forward propagating) the physical model
as part of the loss function during training in so called
Physics-informed Neural Networks (PINNs). In contrast,
this contribution focuses on the structural integration of
Functional Mock-up Units (FMUs) into the NN itself and
not only the cost function, allowing much more flexibility
with respect to what can be learned and influenced. How-
ever, it is also possible to build and train PINNs with the
presented library.

Finally, another approach are Bayesian Neural Stochas-
tic Differential Equations (BNSDE) as is Haussmann et al.
(2021), which use bayesian model selection together with
Probably Approximately Correct (PAC) bayesian bounds
during the NN training to improve hybrid model accuracy
on basis of noisy prior knowledge. For an overview on the
growing field of hybrid modeling see e.g. (Willard et al.
2020) or (Rai and Sahu 2020).

To conclude, hybrid modeling with its different facets is
an emerging research field, but still chained to academic
use-cases. It seems a logical next step to open up these
auspicious ML-technologies, besides many more not men-
tioned, to industrial applications. Combining physical and
data-driven models inside a single industry tool is cur-
rently not possible, therefore it is necessary to port mod-
els to a more suitable environment. An industry typical
model exchange format is needed. Because the Functional
Mock-up Interface (FMI) is an open standard and widely
used in industry as well as in research applications, it is a
suitable candidate for this aim. Finally, a software inter-
face that integrates FMI into the ML-environment is nec-
essary. Therefore, we present two open-source software
libraries, which offer all required features:

• FMI.jl: load, instantiate, parameterize and simulate
FMUs seamlessly inside the Julia programming lan-
guage

• FMIFlux.jl: place FMUs simply inside any feed-
forward NN topology and still keep the resulting hy-
brid model trainable with a standard Automatic Dif-
ferentiation (AD) training process

Because the result of integrating a numerical solver into
a NN is known as NeuralODE, we suggest to pursue
this naming convention by presenting the integration of
a FMU, NN and a numerical solver as NeuralFMU.

DOI
10.3384/ecp21181297

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

297

By providing the libraries FMI.jl (https://github.
com/ThummeTo/FMI.jl) and FMIFlux.jl (https://
github.com/ThummeTo/FMIFlux.jl), we want to
open the topic NeuralODEs for industrial applications, but
also lay a foundation to bring other state-of-the-art ML-
technologies closer to production. In the following two
subsections, short style explanations of the involved tools
and techniques are given.

1.1 Julia Programming Language
In this section, it is shortly explained and motivated why
the authors picked the Julia programming language for the
presented task. Julia is a dynamic typing language de-
veloping since 2009 and first published in 2012 (Bezan-
son, Karpinsky, et al. 2012), with the aim to provide
fast numerical computations in a platform-independent,
high-level programming language (Bezanson, Edelman,
et al. 2015). The language and interpreter was origi-
nally invented at the Massachusetts Institute of Technol-
ogy, but since today many other universities and research
facilities joined the development of language expansions,
which mirrors in many contributions from different coun-
tries and even in its own conference, the JuliaCon2. In
Elmqvist, Neumayr, and Otter (2018), the library expan-
sion Modia.jl3 was introduced. Modia.jl allows object-
orientated white-box modeling of mechanical and electri-
cal systems, syntactically similar to Modelica, in Julia.

1.2 Functional Mock-up Interface (FMI)
The FMI-standard (Modelica Association 2020) allows
the distribution and exchange of models in a standard-
ized format and independent of the modeling tool. An ex-
ported model container, that fulfills the FMI-requirements
is called FMU. FMUs can be used in other simulation
environments or even inside of entire co-simulations like
System Structure and Parameterization (SSP) (Modelica
Association 2019). FMUs are subdivided into two major
classes: model exchange (ME) and co-simulation (CS).
The different use-cases depend on the FMU-type and
the availability of standardized, but optional implemented
FMI-functions.

This paper is further structured into four topics: The
presentation of our libraries FMI.jl and FMIFlux.jl, an ex-
ample handling a NeuralFMU setup and training, the ex-
planation of the methodical background and finally a short
conclusion with future outlook.

2 Presenting the Libraries
Our Julia-library FMI.jl provides high-level commands to
unzip, allocate, parameterize and simulate entire FMUs,
as well as plotting the solution and parsing model meta
data from the model description. Because FMI has already
two released specification versions and is under ongoing

2http://www.juliacon.org
3https://github.com/ModiaSim/Modia.jl

development4, one major goal was to provide the ability to
simulate different version FMUs with the same user front-
end. To satisfy users who prefer close-to-specification
programming, as well as users that are new to the topic
and favor a smaller but more high-level command set, we
provide high-level Julia commands, but also the possibil-
ity to use the more low-level commands specified in the
FMI-standard (Modelica Association 2020).

2.1 Simulating FMUs

Figure 1. Logo of the library FMI.jl.

The shortest way to load a FMU with FMI.jl, simulate
it for t ∈ {0,10}, gather and plot simulation data for the
example variable mass.s and free the allocated memory is
implemented only by a few lines of code as follows:

Listing 1. Simulating FMUs with FMI.jl (high-level).

using FMI
myFMU = fmiLoad("path/to/myFMU.fmu")
fmiInstantiate!(myFMU)
simData = fmiSimulate(myFMU, 0.0,

10.0; recordValues=["mass.s"])
fmiPlot(simData)
fmiUnload(myFMU)

Please note, that these six lines are not only a code snippet,
but a fully runnable Julia program.

For users, that prefer more control over memory and
performance, the original C-language command set from
the FMI-specification is wrapped into low-level com-
mands and is available, too. A code snippet, that simulates
a CS-FMU, looks like this:

Listing 2. Simulating CS-FMUs with FMI.jl (low-level).

using FMI
myFMU = fmiLoad("path/to/myFMU.fmu")
fmuComp = fmiInstantiate!(myFMU)
fmiSetupExperiment(fmuComp, 0.0,

10.0)
fmiEnterInitializationMode(fmuComp)
fmiExitInitializationMode(fmuComp)
dt = 0.1
ts = 0.0:dt:10.0
for t in ts

fmiDoStep(fmuComp, t, dt)
end

4The current version is 2.0.2, but an alpha version 3.0 is already
available.

NeuralFMU: Towards Structural Integration of FMUs into Neural Networks

298 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181297

fmiTerminate(fmuComp)
fmiFreeInstance!(fmuComp)
fmiUnload(myFMU)

Note, that these function calls are not dependent on the
FMU-Version, but are inspired by the command set of
FMI 2.0.2. The underlying FMI-Version is determined in
the call fmiLoad. Because the naming convention could
change in future versions of the standard, version-specific
function calls like fmi2DoStep (the "2" stands for the
FMI-versions 2.x) are available, too. Readers that are fa-
miliar with FMI will notice, that the functions fmiLoad
and fmiUnload are not mentioned in the standard defini-
tion. The function fmiLoad handles the creation of a tem-
porary directory for the unpacked data, unpacking of the
FMU-archive, as well as the loading of the FMU-binary
and its model description. In fmiUnload, all FMU-
related memory is freed and the temporary directory is
deleted. Beside CS-FMUs, ME-FMUs are supported, too.
The numerical solving and event handling for ME-FMUs
is performed via the library DifferentialEquations.jl5, the
standard library for solving different types of differential
equations in Julia (Rackauckas, Singhvi, et al. 2021).

2.2 Integrating FMUs into NNs

Figure 2. Logo of the library extension FMIFlux.jl.

The open-source library extension FMIFlux.jl allows
for the fusion of a FMU and a NN. As in many other
machine learning frameworks, a deep NN in Julia using
Flux.jl6 is configured by chaining multiple neural layers
together. Probably the most intuitive way of integrating
a FMU into this topology, is to simply handle the FMU
as a network layer. In general, FMIFlux.jl does not make
restrictions to ...

• ... which FMU-signals can be used as layer
inputs and outputs. It is possible to use any
variable that can be set via fmiSetReal or
fmiSetContinuousStates as input and any vari-
able that can be retrieved by fmiGetReal or
fmiGetDerivatives as output.

• ... where to place FMUs inside the NN topology, as
long as all signals are traceable via AD (no signal
cuts).

Dependent on the FMU-type, ME or CS, different setups
for NeuralFMUs should be considered. In the following,
two possibilities are presented.

5https://diffeq.sciml.ai/stable/
6https://fluxml.ai/Flux.jl/stable/

2.2.1 ME-FMUs
For most common applications, the use of ME-FMUs will
be the first choice. Because of the absence of an integrated
numerical solver inside the FMU, there are much more
possibilities when it comes to learning dynamic processes.
A mathematical view on a ME-FMU leads to the state
space equation (Equation 1) and output equation (Equa-
tion 2), meaning a ME-FMU computes the state derivative
~̇xme and output values~yme for the current time step t from
a given state~xme and optional input~ume:

~̇xme = ~fme(~xme,~ume, t) (1)
~yme =~gme(~xme,~ume, t) (2)

Different interfaces between the FMU layer and NN are
possible. For example, the number of FMU layer inputs
could equal the number of FMU layer outputs and be sim-
ply the number of model states. In Figure 3, the visual-
ization of the suggested structure is given. The top NN
is fed by the current system state ~xnn. The NN is able to
learn and compensate state-dependent modeling failures
like measurement offsets or physical displacements and
thresholds. After that, the corrected state vector ~xme is
passed to the ME-FMU, and the current state derivative
~̇xme is retrieved. The bottom NN is able to learn additional
physical effects, like friction or other forces, from the state
derivative vector. Finally the corrected state derivatives
~̇xnn are integrated by the numerical solver, to retrieve the
next system state ~xnn(t + h). Note, that the time step size
h can be determined by a modern numerical solver like
Tsit5 (Tsitouras 2011), with different advantages like dy-
namic step size and order adaption. This is a significant
advantage in performance and memory cost over the use
of recurrent NNs for numerical integration.

Note, that many other configurations for setting up the
NeuralFMU are thinkable, e.g.:

• the top NN could additionally generate a FMU input
~ume

• the bottom NN could learn from states~xme or deriva-
tives ~̇xme, for a targeted expansion of the model by
additional model equations

• the bottom NN could learn from the FMU output
~yme or other model variables, that can be retrieved
by fmiGetReal

• there could be a bypass around the FMU between
both NNs to forward state-dependent signals from
the top NN to the bottom NN

• of course, there is no restriction to fully-connected
(dense) layers, other feed-forward layers or even
drop-outs are possible

Session 4A: Applications (2)

DOI
10.3384/ecp21181297

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

299

ME-FMU

FF-NN

ሶԦ𝑥𝑚𝑒

𝑢𝑚𝑒 𝑡Ԧ𝑥𝑚𝑒

ሶԦ𝑥𝑛𝑛

Numerical Solver

න

Ԧ𝑥𝑛𝑛(𝑡 + ℎ)

FF-NN

Ԧ𝑥𝑛𝑛

Ԧ𝑦𝑚𝑒

Figure 3. Example for a NeuralFMU (ME).

To implement the presented ME-NeuralFMU in Julia,
the following code is sufficient:

Listing 3. A NeuralFMU (ME) in Julia.

net = Chain(
Dense(length(x_nn), ...),
...,
Dense(..., length(x_me)),
x_me -> fmiDoStepME(myFMU, x_me),
Dense(length(dx_me), ...),
...,
Dense(..., length(dx_nn)))

nfmu = ME_NeuralFMU(net, ...)

2.2.2 CS-FMUs

Beside ME-FMUs, it is also possible to use CS-FMUs as
part of NeuralFMUs. For CS-FMUs, a numerical solver
like CVODE (Hindmarsh, Serban, et al. 2021) is already
integrated and compiled as part of the FMU itself.

This prevents the manipulation of system dynamics at
the most effective point: Between the FMU state deriva-
tive output and the numerical integration. However, other
tasks like learning an error correction term, are still pos-
sible to implement. The presence of a numerical solver
leads to a different mathematical description compared
to ME-FMUs: The CS-FMU computes the next state
~xcs(t + h) and output ~ycs(t + h) dependent on its internal
current state ~xcs (Eq. 3 and 4). Unlike for ME, the state
and derivative values of a CS-FMU are not necessarily
known (disclosed via FMI).

~xcs(t +h) = ~fcs(~xcs,~ucs, t,h) (3)
~ycs(t +h) =~gcs(~xcs,~ucs, t,h) (4)

In case of CS-FMUs, the number of layer inputs could be
based on the number of FMU-inputs and the number of
outputs in analogy. As for ME-NeuralFMUs, this is just
one possible setup for a CS-NeuralFMU. Figure 4 shows
the topology of the considered NeuralFMU. The top NN
retrieves an input signal ~unn, which is corrected into ~ucs.
Note, that here training of the top NN is only possible if
the FMU output is sensitive to the FMU input. This is
often not the case for physical simulations. Inside the CS-
FMU, the input~ucs is set, an integrator step with step size h
is performed and the FMU output ~ycs(t + h) is forwarded
to the bottom NN. Here, a simple error correction into
~ynn(t + h) is performed, meaning the error is determined
and compensated without necessarily learning the mathe-
matical representation of the underlying physical effect.

Note that for CS, even if the macro step size h must
be determined by the user, it does not need to be constant
if the numerical solver inside the FMU supports varying
step sizes. If so, the internal solver step size may vary
from h, in fact h acts as a upper boundary for the inter-
nal micro step size. As a result, if the FMU is compiled
with a variable-step solver, unnecessarily small values for

NeuralFMU: Towards Structural Integration of FMUs into Neural Networks

300 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181297

CS-FMU

FF-NN

Ԧ𝑥𝑐𝑠(𝑡 + ℎ)

𝑢𝑐𝑠 𝑡

Ԧ𝑦𝑛𝑛(𝑡 + ℎ)

FF-NN

𝑢𝑛𝑛

Ԧ𝑦𝑐𝑠(𝑡 + ℎ)

න

ℎ

Figure 4. Example for integrating a CS-FMU into a NN.

h will have negative influence on the internal solver perfor-
mance, but large values will not destabilize the numerical
integration.

Other configurations for setting up the hybrid structure
are interesting, e.g.:

• the bottom NN could learn from the system state
~xcs(t +h) or state derivative ~̇xcs(t +h)

• the step size h could be learned by an additional NN
to optimize simulation performance

• there could be a bypass around the FMU between
both NNs to forward input-dependent signals from
the top NN to the bottom NN

The software implementation of the considered CS-
NeuralFMU looks as follows:

Listing 4. A NeuralFMU (CS) in Julia.

net = Chain(
Dense(length(u_nn), ...),
...,
Dense(..., length(u_cs)),
u_cs -> fmiInputDoStepCSOutput(

myFMU, h, u_cs),
Dense(length(y_cs), ...),
...,
Dense(..., length(y_nn)))

nfmu = CS_NeuralFMU(net, ...)

First, the function fmiInputDoStepCSOutput sets all
FMU-inputs to the values u, respectively the output of the
previous net layer. After that, a fmiDoStep with step size
h is performed and finally the FMU output is retrieved and
passed to the next layer. Because of the integration over
time inside the CS-FMU to retrieve new system states, it is
necessary to reset the FMU for every training run, similar
to the training of recurrent NNs.

3 Methodical Background
High-performance machine learning frameworks like
Flux.jl are using AD for reverse-mode differentiation
through the NN topology. Because all mathematical op-
erations inside the NN are known (white-box), this is a
very efficient way to derive the gradient and train NNs.
On the other hand, the jacobian over a black-box FMU
is unknown from the view of an AD framework, because
the model structure is (in general) hidden as compiled ma-
chine code. This jacobian is part of the loss gradient AD-
chain and needs to be determined.

Beside others, the most common and default AD frame-
work in Julia is Zygote.jl7. A remarkable feature of Zy-
gote.jl is, that it provides the ability to define custom ad-
joints, meaning the gradient of a custom function can be
defined to be an arbitrary function. This renders the possi-
bility to pass a custom gradient for a FMU-representation
to the AD-framework, which will be later used to derive
the total loss function gradient during the training process.

3.1 Gradient of the Loss Function
For the efficient training of NNs, the gradient of the loss
function according to the net parameters (weights and bi-
ases) is needed. In the following, three methods to derive
the loss gradient will be discussed: AD, forward sensi-
tivity analysis and backward adjoints. In the following,
only ME-NeuralFMUs are considered and the loss func-
tion l(~xnn(~p)) is expected to depend explicitly on the sys-
tem state~xnn (the NeuralFMU output) and only implicitly
on the net parameters ~p.

7https://fluxml.ai/Zygote.jl/latest/

Session 4A: Applications (2)

DOI
10.3384/ecp21181297

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

301

3.1.1 Automatic Differentiation (AD)
For white-box systems, like native implemented numer-
ical solvers, one possible approach to provide the gradi-
ent is AD (Rackauckas, Innes, et al. 2019). In general,
the mathematical operations inside a FMU are not known
(compiled binary), meaning despite AD being a very com-
mon technique, it is only suitable for determining the gra-
dient of the NN, but not the jacobian over a FMU. The
unknown jacobian ~J f mu over the FMU layer with layer in-
puts~u and outputs~y is noted as follows:

~J f mu =
∂~y
∂~u

(5)

Inserting~u =~xme and~y =~̇xme results in the jacobian ~Jme
for the FMU from the example in subsection 2.2.1 (ME),
inserting ~u =~ucs and~y =~ycs(t +h) results in the jacobian
matrix ~Jcs for subsection 2.2.2 (CS):

~Jme =
∂~̇x
∂~x

(6)

~Jcs =
∂~y(t +h)

∂~u(t)
≈ ∂~y(t)

∂~u(t)
(7)

The simplification in Equation 7 does not lead to prob-
lems for small step sizes h, because in practice, a small
error in the jacobian only negatively affects the optimiza-
tion performance (convergence speed) and not the conver-
gence itself. However, the quantity of the mentioned error
is dependent on the the optimization algorithm and param-
eterization and h should be selected on the basis of expert
knowledge about the model and optimizer or - if not avail-
able - as part of hyper parameter tuning.

3.1.2 Forward Sensitivities
To retrieve the partial derivative (sensitivity) of the sys-
tem state according to a net parameter pi ∈ ~p and thus
in straight forward manner also the gradient of the loss
function, another common approach is Forward Sensitiv-
ity Analysis. Sensitivities can be estimated by extending
the system state by additional sensitivity equations in form
of ODEs. Dependent on the number of parameters |~p|, this
leads to large ODE systems of size (1+ |~p|) · |~x| (Hind-
marsh and Serban 2006, p. 21) and therefore worsens the
overall computation and memory performance. Computa-
tions can be reduced, but at a higher memory cost (Rack-
auckas, Innes, et al. 2019, p. 15). For a ME-NeuralFMU,
the sensitivity equation for a parameter pi can be formu-
lated as in Hindmarsh and Serban (2006, p. 19):

d
dt

∂~xnn

∂ pi
=

∂~̇xnn

∂~xnn︸ ︷︷ ︸
~Jnn

·∂~xnn

∂ pi
+

∂~̇xnn

∂ pi
(8)

The jacobian of the entire NeuralFMU ~Jnn can be de-
scribed via chain-rule as a product of the three jacobians
~Jbottom (over the bottom part of the NN), ~Jme (over the ME-
FMU) and ~Jtop (over the top part of the NN):

∂~̇xnn

∂~xnn︸ ︷︷ ︸
~Jnn

=
∂~̇xnn

∂~̇xme︸ ︷︷ ︸
~Jbottom

· ∂~̇xme

∂~xme︸ ︷︷ ︸
~Jme

· ∂~xme

∂~xnn︸ ︷︷ ︸
~Jtop

(9)

Inserting Equation 9 into Equation 8 yields:

d
dt

∂~xnn

∂ pi
=

∂~̇xnn

∂~̇xme︸ ︷︷ ︸
~Jbottom

· ∂~̇xme

∂~xme︸ ︷︷ ︸
~Jme

· ∂~xme

∂~xnn︸ ︷︷ ︸
~Jtop

· ∂~xnn

∂ pi︸ ︷︷ ︸
~gtop_i

+
∂~̇xnn

∂ pi︸ ︷︷ ︸
~gbottom_i

(10)

Retrieving the jacobian ~Jme is handled in subsection 3.2,
the jacobians ~Jbottom and ~Jtop are determined by AD, be-
cause the NN is modeled as white-box and all mathemati-
cal operations are known. The remaining gradients, ~gtop_i
and~gbottom_i can be determined building an AD-chain, de-
pendent on the parameter locations inside the NN (top or
bottom part), the jacobian ~Jme is needed.

As mentioned, the poor scalability with parameter
count makes forward sensitivities unattractive for ML-
applications with large parameter spaces, but it remains
an interesting option for small NNs. To decide which
sensitivity approach to pick for a specific NN size, a use-
ful comparison according to performance of forward and
other sensitivity estimation techniques, dependent on the
number of involved parameters, can be found in (Rack-
auckas, Ma, et al. 2018).

3.1.3 Backward Adjoints
The performance disadvantage of Forward Sensitivity
Analysis motivates the search for a method, that scales
better with a high parameter count. Retrieving the direc-
tional derivatives over a black-box FMU sounds similar
to the reverse-mode differentiation over a black-box nu-
merical solver as in Chen et al. (2018). The name Back-
ward Adjoints results from solving the ODE adjoint prob-
lem backwards in time:

~a =
dl(~xnn)

d~xnn
(11)

d~a
dt

=−~aT · ∂~̇xnn

∂~xnn︸ ︷︷ ︸
~Jnn

(12)

The jacobian ~Jnn can be retrieved like in Equation 9. The
searched gradient of the loss function is then given as in
Hindmarsh and Serban (2006, p. 22):

dl(~xnn)

d~p
=~aT (t0) ·

∂~xnn

∂~p︸ ︷︷ ︸
~gtop

(t0)+
∫ t1

t0
~aT (t)

∂~̇xnn

∂~p
(t)︸ ︷︷ ︸

~gbottom

dt (13)

NeuralFMU: Towards Structural Integration of FMUs into Neural Networks

302 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181297

Here~gtop and~gbottom can be determined again using AD
and ~Jme. To conclude, the backward adjoint ODE system
with dimension |~x| has to be solved only once independent
of the number of parameters and therefore requires less
computations for large parameter spaces compared to for-
ward sensitivities. On the other hand, backward adjoints
are only suitable, if the loss function gradient is smooth
and bounded (Hindmarsh and Serban 2006, p. 22), which
limits the possible use for this technique to continuous sys-
tems and therefore to almost only research applications.

3.2 Jacobian of the FMU
Independent of the chosen method, the jacobian over the
FMU ~Jme is needed to keep the NeuralFMU trainable, but
is unknown and must be determined. In the following,
we suggest two possibilities to retrieve the gradient over a
FMU: Finite Differences and the use of the built-in func-
tion fmi2GetDirectionalDerivative.

3.2.1 Finite Differences

The jacobian can be derived by selective input modifica-
tion, sampling of additional trajectory points and estimat-
ing the partial derivatives via finite differences. Note, that
this approach is an option for ME-FMUs, for CS-FMUs
only if the optional functions to store and set previous
FMU states, fmi2GetState and fmi2SetState, are
available. Otherwise, sampling would require to setup a
new simulation for every FMU layer input and every con-
sidered time step, if the system state vector is unknown.
This would be an unacceptable effort for most industrial
applications with large models.

3.2.2 Built-in Directional Derivatives

The preferred approach in this paper is different and ben-
efits from a major advantage of the FMI-standard: Fully
implemented FMUs provide the partial derivatives be-
tween any variable pair, thus the partial derivative be-
tween the systems states and derivatives (ME) or the
FMU inputs and its outputs (CS) is known at any sim-
ulation time step and does not need to be estimated by
additional methods. In FMI 2.0.2, the partial deriva-
tives can be retrieved by calling the optional function
fmi2GetDirectionalDerivative (Modelica Associ-
ation 2020, p. 26). Depending on the underlying imple-
mentation of this function, which can vary between ex-
porting tools, this can be a fast and reliable way to gather
directional derivatives in fully implemented FMUs.

To conclude, the key step is to forward the direc-
tional derivatives over the FMU to the AD-framework
Zygote.jl. As mentioned, Zygote.jl provides a feature
to define a custom gradient over any function. In
this case, the gradients for the functions fmiDoStepME
and fmiInputDoStepCSOutput are wrapped to calls to
fmi2GetDirectionalDerivative.

Finally, we provide a seamless link to the ML-library
Flux.jl, meaning NeuralFMUs can be trained the same
way as a convenient NN in Julia:

Listing 5. Training NeuralFMUs in Julia.

nfmu = NeuralFMU(net, ...)
p_net = Flux.params(nfmu)
Flux.train!(..., p_net, ...)

As a final note, the presented methodical procedure, in-
tegrating FMUs into the Julia machine learning environ-
ment, can be transferred to other AD-frameworks in other
programming languages like Python.

4 Example
When modeling physical systems, it’s often not practical
to model solely based on first principle and parameterize
every physical aspect. For example, when modeling me-
chanical, electrical or hydraulic systems, a typical model-
ing assumption is the negligence of friction or the use of
greatly simplified friction models. Even when using fric-
tion models, the parameterization of these is a difficult and
error prone task. Therefore, we decided to show the bene-
fits of the presented hybrid modeling technique on an easy
to understand example from this set of problems.

4.1 Model

fixed

spring

c=10 N/m

mass

m=1 kg

Figure 5. The reference system in Modelica.

As in Figure 5, the reference system is modeled as one
mass oscillator (horizontal spring-pendulum) with mass
m, spring constant c and relaxed spring length srel , defined
by the differential equation:

s̈ = v̇ = a =
c · (s0 + srel− s)− f f ric(v)

m
(14)

The parameter s0 describes the absolute position of the
fixed anchor point, allowing to model a system displace-
ment or a constant position measurement offset. Further,
the friction force f f ric between the pendulum body and
the underlying ground is implemented with the non-linear,
discontinuous friction model from MassWithStopAndFric-
tion8 as part of the Modelica Standard Library (MSL). The
friction term for positive v denotes:

f f ric(v) = fcoulomb + fprop · v+ fstribeck · e− fexp·v (15)

This friction model consists of parameters for the con-
stant Coulomb-friction fcoulomb, fprop for the velocity-
proportional (viscous) friction and fstribeck for the expo-
nential Stribeck-friction. The FMU (white box) model on
the other hand, only covers the modeling of a continuous,
frictionless spring pendulum, therefore with f f ric(v) = 0.

8Modelica.Mechanics.Translational.Components.
MassWithStopAndFriction (MSL 3.2.3)

Session 4A: Applications (2)

DOI
10.3384/ecp21181297

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

303

The aim here is to learn a generalized representation
of the parameterized friction-model in Equation 15 from
measurements of the pendulum’s movement over time.
Further, a displacement of s0 = 0.1m is added to the FMU
model (modeling failure), which should be detected and
compensated. Both systems are parameterized as in Ta-
ble 1.

Table 1. Parameterization of the reference and FMU model.

Parameter Value Value Unit
ref. model FMU model

fprop 0.05 0.0 N·s/m

fcoulomb 0.25 0.0 N
fstribeck 0.5 0.0 N
fexp 2.0 0.0 s/m

mass.m 1.0 1.0 kg
spring.c 10.0 10.0 N/m

spring.srel 1.0 1.0 m
f ixed.s0 0.0 0.1 m

4.2 NeuralFMU Setup

We will show, that with a NeuralFMU-structure as in Fig-
ure 3, it is possible to learn a simplified friction model as
well as the constant system displacement (modeling fail-
ure) with a simple fully-connected feed-forward NN as
in Table 2. The network topology results from a sim-
ple random search hyper parameter optimization for a
NeuralFMU model with a maximum of 150 net parame-
ters and 8 layers. All weights are initialized with standard-
normal distributed random values and all biases with ze-
ros, except the weights of layer #1 are initialized as iden-
tity matrix, to start training with a neutral setup and keep
the system closer to the preferred intuitive solution. The
loss function is defined as simple mean squared error be-
tween equidistant sample points of the NeuralFMU and
the reference system.

Table 2. Topology of the example NeuralFMU.

Layer Inputs Outputs Activation

#1 (input) 2 2 identity
#2 (FMU) 2 2 none
#3 (hidden) 2 8 identity
#4 (hidden) 8 8 tanh
#5 (output) 8 2 identity

The corresponding code is available online as part of
the library repository9.

9https://github.com/ThummeTo/FMIFlux.
jl/blob/main/example/modelica_conference_
2021.jl

4.3 Results
4.3.1 Training

After a short training10 of 2500 runs on 400 data points
(each position and velocity), the hybrid model is able to
imitate the reference system on training data, as can be
seen in Fig. 6 for position and 7 for velocity. The train-
ing has not converged yet, further training will lead to a
improved fit. For the training case, the system was initial-
ized with mass.s0 = 0.5m (the pendulum equilibrium is at
1.0m) and mass.v0 = 0 m/s. Please keep in mind that the
NeuralFMU was only trained by data gathered from one
single simulation scenario.

Figure 6. Comparison of the mass position of the FMU, refer-
ence system and the NeuralFMU after 2500 and 5000 training
steps on training data.

Figure 7. Comparison of the mass velocity of the FMU, refer-
ence system and the NeuralFMU after 2500 and 5000 training
steps on training data.

10Training was performed single-core on a desktop CPU (Intel®
CoreTM i7-8565U) and took about 22.5 minutes. GPU training is un-
der development.

NeuralFMU: Towards Structural Integration of FMUs into Neural Networks

304 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181297

4.3.2 Testing

Even if the deviation between NeuralFMU and reference
system is larger for testing then for training data, the hy-
brid model performs well on the test case with a differ-
ent (untrained) initial system state (Figure 8 and 9). For
testing, the system is initialized with mass.s0 = 1.0m and
mass.v0 =−1.5 m/s.

Figure 8. Comparison of the mass position of the FMU, refer-
ence system and the NeuralFMU after 2500 and 5000 training
steps on testing data.

Figure 9. Comparison of the mass velocity of the FMU, refer-
ence system and the NeuralFMU after 2500 and 5000 training
steps on testing data.

The bottom part of the NN learned the physical effect
discontinuous friction in a generalized way, because the
net was trained based on the state derivatives instead of
the states themselves. A comparison of the friction model
of the reference system, the FMU and the learned fric-
tion model, extracted from the bottom part NN of the
NeuralFMU, is shown in Figure 10. The learned friction
model is a simplification of the reference friction model,
because of the small net layout and a lack of data at the
discontinuity near v = 0. Finally, also the displacement
modeling failure of the white-box model (FMU) was can-
celed out by the small top NN as can be seen in Figure 11.

Figure 10. Comparison of the friction models of the FMU, ref-
erence system and the NeuralFMU (bottom part NN) after 2500
and 5000 training steps on testing data.

Figure 11. Comparison of the displacements of the FMU, ref-
erence system and the NeuralFMU (top part NN) after 2500 and
5000 training steps on testing data.

5 Conclusion
The presented open source library FMI.jl (https://
github.com/ThummeTo/FMI.jl) allows the easy and
seamless integration of FMI-models into the Julia pro-
gramming language. FMUs can be loaded, parameterized
and simulated using the abilities of the FMI-standard. Op-
tional functions like retrieving the partial derivatives or
manipulating the FMU state are available if supported by
the FMU. The library release version 0.1.4 is compati-
ble with FMI 2.0.x (the common version at the time of
release), supporting upcoming standard updates like FMI
3.0 is planned. The library currently supports ME- as well
as CS-FMUs, running on Windows and Linux operation
systems. Event-handling to simulate discontinuous ME-
FMUs is supported.

The library extension FMIFlux.jl (https://github.
com/ThummeTo/FMIFlux.jl) makes FMUs differen-

Session 4A: Applications (2)

DOI
10.3384/ecp21181297

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

305

tiable and opens the possibility to setup and train Neu-
ralFMUs, the structural combination of a FMU, NN and
a numerical solver. Proper event-handling during back-
propagation whilst training of NeuralFMUs is under de-
velopment, even if there were no problems during training
with the discontinuous model from the paper example. A
cumulative publication is planned, focusing on a real in-
dustrial use-case instead of a methodical presentation.

Current and future work covers the implementation of a
more general custom adjoint, meaning despite Zygote.jl,
other AD-frameworks will be supported. Further, we
are working on different fall-backs if the optional func-
tion fmi2GetDirectionalDerivatives is not avail-
able. The finite differences approach for ME-FMUs is
already implemented, sampling via fmi2GetState and
fmi2SetState for CS-FMUs will be supported soon.

FMUs contain the model as compiled binary, there-
fore FMU related computations must be performed on the
CPU. On the other hand, deploying NNs on optimized
hardware like GPUs often results in a better training per-
formance. Currently, the training of the NeuralFMU is
completely done on the CPU. A hybrid hardware training
loop with the FMU on the CPU and NN on the GPU may
lead to performance improvements for wider and deeper
NN-topologies.

An extension of the library to the CS-standard SSP
(Modelica Association 2019), including the necessary ma-
chine learning back-end, is near completion. This will al-
low the integration of complete CSs into a NN topology
and retrieve a NeuralSSP.

Beside NeuralFMUs, FMIFlux.jl paves the way for
other hybrid modeling techniques and new industrial
use-cases by making FMUs differentiable in an AD-
framework. The authors are excited about any assistance
they can get to extend the library repositories by new
features and maintain them for the upcoming technology
progress. Contributors are welcome.

Acknowledgments
The authors like to thank Andreas Heuermann for his
hints and nice feedback during the development of the li-
brary. Further, we thank Florian Schläffer for designing
the beautiful library logos. This work has been partly sup-
ported by the ITEA 3 cluster programme for the project
UPSIM - Unleash Potentials in Simulation.

References
Bezanson, Jeff, Alan Edelman, et al. (2015). “Julia: A Fresh Ap-

proach to Numerical Computing”. In: CoRR abs/1411.1607.
arXiv: 1411.1607. URL: http://arxiv.org/abs/1411.1607.

Bezanson, Jeff, Stefan Karpinsky, et al. (2012). “Julia: A Fast
Dynamic Language for Technical Computing”. In: CoRR
abs/1209.5145. arXiv: 1209 . 5145. URL: http : / / arxiv. org /
abs/1209.5145.

Chen, Tian Qi et al. (2018). “Neural Ordinary Differential Equa-
tions”. In: CoRR abs/1806.07366. arXiv: 1806.07366. URL:
http://arxiv.org/abs/1806.07366.

Elmqvist, Hilding, Andrea Neumayr, and Martin Otter (2018).
“Modia - Dynamic Modeling and Simulation with Julia”. In:
Juliacon 2018. URL: https://elib.dlr.de/124133/.

Haussmann, Manuel et al. (2021). “Learning Partially Known
Stochastic Dynamics with Empirical PAC Bayes”. In: arXiv:
2006.09914 [cs.LG].

Hindmarsh, Alan C. and Radu Serban (2006-11). User Doc-
umentation for CVODES v2.5.0. Tech. rep. URL: https : / /
www. researchgate . net / profile / Radu - Serban / publication /
239581887 _ User _ Documentation _ for _ CVODES _ v210 /
links / 00b7d534f0be2a496f000000 / User - Documentation -
for-CVODES-v210.pdf.

Hindmarsh, Alan C., Radu Serban, et al. (2021-02). User Doc-
umentation for CVODE v5.7.0 (sundials v5.7.0). Tech. rep.
URL: https://computing.llnl.gov/sites/default/files/cv_guide-
5.7.0.pdf.

Innes, Mike et al. (2019). “A Differentiable Programming Sys-
tem to Bridge Machine Learning and Scientific Computing”.
In: CoRR abs/1907.07587. arXiv: 1907 . 07587. URL: http :
//arxiv.org/abs/1907.07587.

Modelica Association (2019-03). System Structure
and Parameterization. Document version: 1.0.
Tech. rep. Linköping: Modelica Association. URL:
https : / / ssp - standard . org / publications / SSP10 /
SystemStructureAndParameterization10.pdf.

Modelica Association (2020-12). Functional Mock-up Inter-
faceforModel Exchange and Co-Simulation. Document ver-
sion: 2.0.2. Tech. rep. Linköping: Modelica Association.
URL: https : / /github.com/modelica / fmi- standard/ releases /
download/v2.0.2/FMI-Specification-2.0.2.pdf.

Rackauckas, Christopher, Mike Innes, et al. (2019). “DiffE-
qFlux.jl - A Julia Library for Neural Differential Equations”.
In: CoRR abs/1902.02376. arXiv: 1902 . 02376. URL: http :
//arxiv.org/abs/1902.02376.

Rackauckas, Christopher, Yingbo Ma, et al. (2018). “A Compar-
ison of Automatic Differentiation and Continuous Sensitivity
Analysis for Derivatives of Differential Equation Solutions”.
In: arXiv: 1812.01892 [cs.NA].

Rackauckas, Christopher, Anshul Singhvi, et al. (2021-07).
SciML/DifferentialEquations.jl: v6.17.2. Version v6.17.2.
DOI: 10 .5281 /zenodo .5069045. URL: https : / / doi . org /10 .
5281/zenodo.5069045.

Rai, Rahul and Chandan K. Sahu (2020). “Driven by Data or De-
rived Through Physics? A Review of Hybrid Physics Guided
Machine Learning Techniques With Cyber-Physical System
(CPS) Focus”. In: IEEE Access 8, pp. 71050–71073. DOI:
10.1109/ACCESS.2020.2987324.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019). “Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational
Physics 378, pp. 686–707. ISSN: 0021-9991. DOI: https : / /
doi . org /10 .1016 / j . jcp .2018 .10 .045. URL: https : / /www.
sciencedirect.com/science/article/pii/S0021999118307125.

Tsitouras, Ch. (2011). “Runge–Kutta pairs of order 5(4) satisfy-
ing only the first column simplifying assumption”. In: Com-
puters & Mathematics with Applications 62.2, pp. 770–775.
ISSN: 0898-1221. DOI: https : / /doi .org /10 .1016/ j . camwa.
2011.06.002. URL: https://www.sciencedirect.com/science/
article/pii/S0898122111004706.

Willard, Jared et al. (2020). “Integrating Physics-Based Mod-
eling with Machine Learning: A Survey”. In: arXiv: 2003 .
04919 [physics.comp-ph].

NeuralFMU: Towards Structural Integration of FMUs into Neural Networks

306 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181297

Sensitivity Analysis of a Car Shock Absorber Through a
Functional Mock-up Units-Based Modelling Strategy

VUILLOD Bruno1,2 HALLO Ludovic1 PANETTIERI Enrico2 MONTEMURRO Marco2

1Commissariat à l’énergie atomique et aux énergies alternatives (CEA), France, ludovic.hallo@cea.fr
2Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université,

I2M UMR 5295, F-33405 Talence, France, {bruno.vuillod, enrico.panettieri,
marco.montemurro}@ensam.eu

Abstract
In Model-Based System Engineering (MBSE), some func-
tional sub-systems can have a considerable influence on
the overall system behaviour, whilst the effect of other
ones can be neglected. Of course, the former requires a re-
fined modelling approach, whilst the latter can be suitably
represented by means of low-fidelity models (usually 0D
models). Being capable of identifying the required pre-
cision level of sub-systems can help reducing the system
complexity, with a negligible impact on the overall accu-
racy and help deepen the calculations in the system parts
where it is necessary.

To determine which sub-systems models must be
refined, suitable indicators must be introduced to assess
their influence on the global system behaviour. To this
purpose, in this work, a sensitivity analysis based on
Sobol’s indices coupled with a simple mechanical model
developed in the Modelica environment is proposed to
achieve the aforementioned task.

Keywords: Modelica, Sensitivity Analysis, Sobol’s Index,
Dynamical System.

1 Introduction
The first step to generate a Modelica model consists of
setting the blocks scheme accounting for the global sys-
tem architecture. The second step, is to enrich this scheme
with additional components which include physical-based
responses. This task may be difficult to be realised be-
cause it needs specific attention and a deep knowledge of
multi-physics dynamical problems. Once the functional
system architecture is finalised, Modelica can be used to
solve it. This modelling approach, when complex systems
are analysed, can lead to prohibitive computational costs,
poor accuracy and incompatibility with project require-
ments, see, for instance, the different stages of a V-and-V
organisation for example (Plogert 1996).

A viable strategy to improve the modelling approach,
i.e. by proposing an efficient model constituting a good
balance between accuracy and computational costs, con-
sists in identifying those system parameters influencing
the most the considered system response. This task is any-

thing but trivial when using classical software. Modelica
can be conveniently employed to achieve this task because
it allows for splitting the whole system into sub-systems
and allows identifying the main parameters influencing its
overall behaviour.

In this paper, a model of a car shock absorber, based on
the Functional Mock-up Units (FMU) file export option of
Modelica, is developed and integrated in an in-house code
which performs the sensitivity analysis. The car shock ab-
sorber is based on a classic mass-spring-damper model en-
hanced with some fundamental notions of hydromechan-
ics. In particular, the proposed model is characterised by
11 input variables and a single output: the equilibrium po-
sition of the car shock absorber at the generic time. The
interest of using FMU relies on fast multi-physics simu-
lations, with the possibility to easily change the parame-
ters set. Therefore, a statistical analysis (which requires
a huge amount of simulation runs) can be carried out by
modifying the parameters set through the use of FMU. The
sensitivity analysis presented in this paper is based on the
use of Sobol’s indices (Sobol 1993), which allows for de-
termining the model parameters influencing the most the
considered output. Sobol’s indices allows expressing the
variance of a given output by accounting for the variance
of each input variable and for the coupling effects among
them (depending on the order of the Sobol’s inde). This
method is based on Hoeffding decomposition (Hoeffding
1948) and has been adapted to the discrete numerical sys-
tems by Saltelli (Saltelli 2002). The sensitivity analysis
proposed in this work is carried out through an in-house
code called Nebraska, coupled with the Modelica model
via its FMU file and a Python code.

Only a few literature references exist on the sensitivity
analysis based on Sobol’s indices and on the Hoeffding
decomposition: (Sobol 1993), (Hoeffding 1948), (Saltelli
2002). Nowadays, these approaches are being reconsid-
ered with the development of parallel and/or distributed
computing capabilities of modern computers, which en-
able a large number of runs in a reasonable time. Some
recent works make use of Sobol’s indices in different ap-
plications: global optimisation strategy based on meta-
heuristic algorithms (Janon 2019), metamodelling strate-
gies (Marrel et al. 2009) or extension of the Sobol’s index

DOI
10.3384/ecp21181307

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

307

theory to the case of dependent input variables (Chastaing,
Gamboa, and Prieur 2015).

The paper is organised as follows. In Section 2, the
mathematical formulation at the basis of the proposed
model is presented together with the fundamentals of the
Sobol’s analysis. In section 3, the details of the Modelica
model are provided, whilst Section 4 presents the numer-
ical results and the related discussion. Section 5 ends the
paper with some concluding remarks and prospects.

Notation. Upper-case bold letters are used to indicate
tensors and matrices, while lower-case bold letters indi-
cate column vectors.

2 System Description
2.1 The Mechanical System
The mechanical system analysed in this work is a car
shock absorber, illustrated in Figure 1. Four main ele-
ments can be identified within the CAD model: the piston
is a cylinder with a central hole, which allows for the oil
flow during motion. This allows also absorbing the spring
oscillations. The external piston radius is considered as
equal to the internal piston chamber radius, without gap.
The passengers and the car masses are loaded on the pre-
viously assembly via the top mounting ring.

The scheme shown in Figure 1 represents the CAD sys-
tem in functional diagram form: a spring-damper parallel
system fixed to a support structure represents the car shock
absorber submitted to the weight of the car and its passen-
ger.

Figure 1. a) CAD model of the car shock absorber with b) its
functional mechanical model.

The dynamic response of such system is governed by
the longitudinal displacement x(t) of the top chamber pis-
ton. It can be determined by solving the equilibrium equa-
tion of the system:

Ma =
q

∑
i=1

fext,i, (1)

where M = mP
4 + mC

4 is a quarter of the overall mass of
the system (i.e. car + passengers masses), a the accelera-
tion, whose component along the x axis, is equal to ẍ(t),

fext,i the generic i-th external force applied to the spring-
damper (see Figure 2) and q their total number.

Figure 2. Functional scheme and external forces applied to a
car shock absorber. The direction of the gravity acceleration is
represented by the g vector.

The external forces applied to the spring-damper sys-
tem are listed here below:

• Archimedes’ force:

fA =−Sphρoilgex, (2)

where Sp = π(r2
ext− r2

int) is the cross-section area of
the piston, rint and rext are the internal and exter-
nal piston radius, respectively, h is the piston height,
ρoil is the oil density, g is the gravity acceleration
and ex the unit vector of the x axis. Note that the
Archimedes’ force is applied to the piston which will
tend to rise in its chamber and exert a force in the di-
rection of the vector ex.

• Damper force:

fD =−sign(ẋ)Sp∆Pex, (3)

where ∆P is the pressure loss, computed by assuming
the physical model shown in Figure 3. The value of
∆P is thus computed as follows (Idel’chik 1966):

∆P = ρoil
ω2

0
2
(ζred +ζexp), (4)

where ω0 is the oil speed inside the piston. By im-
posing mass flux conservation, ω0 reads:

ω0 =
ẋSp

Sh
, (5)

with Sh = πr2
int is the cross-section area of the pis-

ton hole. In addition, ζred and ζexp are expressed as
follows:

Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling Strategy

308 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181307

ζred =

(
1
C
−1

)2

, ζexp =

(
1− Sh

Sp

)2

, (6)

with C = 0.63+0.37
(

Sh
Sp

)2
.

Figure 3. Different flows through the piston during its motion.

• Spring stress:

fS =−k(x−L0)ex, (7)

where k is the spring constant and L0 its unstreched
length. Note that, at initial time, the piston position
is smaller than the unstreched spring length, i.e. the
system is considered as pre-loaded.

• Weight action of the passengers:

wP =−mP

4
gex, (8)

where mP is the overall passengers mass.

• Weight of the car:

wC =−mC

4
gex, (9)

with mC the overall mass of the car.

2.2 Sensitivity Analysis Based on Sobol’s In-
dices

In this section, the fundamentals of the sensitivity anal-
ysis based on Sobol’s indices (Sobol 1993) is briefly in-
troduced. Sobol’s indices allow for the identification of
the input parameters having the stronger influence on the
system outputs.

Consider a multiple-input-single-output (MISO) sys-
tem whose transfer function is M : ξξξ ∈ Rn −→ Y ∈ R,
where n is the number of inputs and M is represented by
the physical model.

ξξξ
T
= (ξ1, . . . ,ξn) represents the vector of inputs. The

variability of the inputs is modelled via random vari-
ables characterised by their probability density functions
(PDFs): ∀i ∈ {1, . . . ,n},ξi ∼ dPξi (which must be read: ξi

follows a distribution of PDF dPξi). It is noteworthy that
Sobol’s indices can be defined either in the case of de-
pendent variables or in the case of independent variables
(Hoeffding 1948; Sobol 1993). In the following of this
work, only independent inputs will be considered, i.e. the
generic input variable cannot be expressed as a function
of the remaining inputs (neither explicitly nor implicitly).
This means that the probability measure of ξξξ is given by:

dPξξξ =
n

∏
i=1

dPξi . (10)

The objective of the sensitivity analysis is to determine
the relative influence of each parameter ξi, on the consid-
ered output value in term of variance. The Sobol’s index
Si of the variable ξi gives the percentage of variance on
the output associated solely to ξi. Similarly, Si, j gives the
percentage of the output variance associated to the couple
(ξi,ξ j) (and this concept must be extended to all possible
2n + 1 combinations of input variables). Mathematically,
the Sobol’s index of order 1 (Si) and of order 2 (Si, j) can
be expressed as follows:

Si =
Vi

V
,

Si, j =
Vi, j

V
,

(11)

with Vi the variance associated to ξi, Vi, j the variance as-
sociated to the couple (ξi,ξ j) and V the global variance
associated to the observed variable Y of the model M .
The above quantities are defined as follows:

V = Var(E(Y)) (12)

Vi = Var(E(Y |ξi))−Var(E(Y)) (13)

Vi, j =Var(E(Y |ξi,ξ j))−Var(E(Y |ξi))

−Var(E(Y |ξ j))+Var(E(Y))
(14)

where E(Y) is the expected value of Y , E(Y |ξi), the con-
ditional expected value of Y regarding ξi and E(Y |ξi,ξ j)
the conditional expected value of Y regarding the pair of
variables (ξi,ξ j). For a deeper insight in the matter, the
reader is addressed to (Philippe and Viano 2010).

The 2n+1 Sobol indices can provide precious informa-
tion for the sensitivity analysis, but their computation can
be prohibitive when a large number of variables are con-
sidered. In (Saltelli 2002), the author presents a numerical
integration scheme requiring N(n+2) simulations, with N
the total number of samples allowing the computation of
the n elementary indices (Si)i∈[1,n] together with the n total
indices defined by:

∀i ∈ {1, . . . ,n}, STi = Si +Si, j + . . .+Si,...,n. (15)

Session 4A: Applications (2)

DOI
10.3384/ecp21181307

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

309

The total Sobol’s indices give an indication of the influ-
ence of the variable ξi on the considered output as an iso-
lated variable and when ξi is combined with every other
set of variables. For example, if STi ≈ 0, the variable
ξi does not influence at all the considered output. Note
that in the rest of the paper, the indices Si are indicated as
SEi and called elementary Sobol’s indices. For a deeper
insight in the matter the interested reader is addressed to
(Héliot 2017-2018).

3 Numerical Model of the Car Shock
Absorber

The mechanical model of the car shock absorber consid-
ered in this study is built through the Modelica program-
ming language (Fritzson 2014) with the MapleSim soft-
ware (Maplesoft 2014) and interfaced with the Nebraska
code wherein sensitivity analysis by means of Sobol’s in-
dices is performed.

3.1 Modelica Model
To simulate the behaviour of the car shock absorber, the
Modelica programming language has been employed, and,
particularly, its capability to easily export model in FMU
format.

The Modelica model is shown in Figure 4. The Mod-
elica Standard Library (MSL) has been used to generate
the majority of the components of the mechanical sys-
tem. However, the mechanical behaviour of the damper
has been modelled via a customized damper force element
to reproduce the constitutive law of Eq. (3). It can be no-
ticed that the element MC of Figure 4 (which represents
a massless element with limited motion) has been intro-
duced to limit the motion in the piston chamber (to en-
sure geometric/physical consistency). The weight action
of the car is represented by the WC element, whilst the
one of the passengers is represented by the WP element.
The whole system is described by means of 11 parameters
among which only six are considered for the sensitivity
analysis.

When the car is loaded, its shock absorbers have the
function to limit the spring oscillations and to dissipate
them in a short time, at a given position. As a conse-
quence, the output considered for the sensitivity analysis
is the piston position at a given time x(t). As a refer-
ence, the time constant for shock absorption has been set
as τabs = 2 s with a stable piston position at x = 0.64 m.
The reference motion parameters are given in Table 1 and
correspond approximately to a physically admissible sit-
uation. Note that the piston initial position is defined at
xstart = Lbar + Lcham with Lbar the bag length in contact
with the floor (assimilable to the wheel) and Lcham the
length of the piston chamber which limit the piston dis-
placement. At t = 0 s, the spring is preloaded because
xstart < (L0 +Lbar).

Once the Modelica model is created and validated, the
FMU file is generated in co-simulation mode. The FMU

Figure 4. Modelica model of the car shock absorber.

Table 1. List of reference model parameters and their type.

Parameter Reference value Variable

k 9000 N.m−1 Yes
L0 0.45 m Yes
rint 0.002 m Yes
rext 0.03 m No
mP 150 kg Yes
h 0.02 m Yes
ρoil 884 kg.m−3 No
g 9.81 m.s−2 No
Lbar 0.5 m No
Lcham 0.25 m No
mC 1000 kg Yes

file of the mechanical system can be represented as a black
box for which input parameters with their respective inter-
vals of definition must be defined as reported in Table 2.
These intervals, have been chosen according to admissi-
ble mechanical conditions of the shock absorbers. In par-
ticular, the interval of definition of the parameter rint is
selected in order to ensure a complete or semi-periodic
absorbing behaviour.

3.2 Preliminary Analysis of the System
Before proceeding with the sensitivity analysis, the Mod-
elica model has been simplified. By evaluating the orders
of magnitude of the external forces, the Archimedes’ force
can be neglected with respect to the spring force since its
value differ by three orders of magnitude. As a conse-

Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling Strategy

310 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181307

Table 2. List of the model input variables and the related inter-
val.

Variable Interval

k [8000;11000] N.m−1

L0 [0.4;0.6] m
rint [0.001;0.005] m
h [0.01;0.04] m
mP [60;360] kg
mC [900;1300] kg

quence, the parameter h can be removed from the input
variables to be considered in the sensitivity analysis.

By applying this simplification, one can notice that, as
expected, no significant variation occurs in the piston mo-
tion. The relative difference between the piston motion of
the complete Modelica model and the counterpart of the
simplified model vs. the time is illustrated in Figure 5.
This difference is about 10−5 m, which represent 0.008 %
of the stabilised motion reference (at x = 0.64 m), thus the
two models can be considered as equivalent.

Figure 5. Percentage difference between the piston motion of
the complete Modelica model and the counterpart of the simpli-
fied model in % vs. the time.

4 Numerical Results
4.1 Observed behaviours
To evaluate Sobol’s indices, input variables are randomly
combined into several sets. Figure 6 shows the displace-
ment time history of the piston for nine sets obtained by
combining different values of the input variables. As it
can be inferred from these results, semi-periodic (set 2, 3
and 4) or completely damped motions (set 5, 6, 7, 8 and
9) can be obtained by acting on the input variables. In ex-
treme cases, the displacement of the piston is blocked due
to a significant value of spring pre-loading (set 1). The
displacement time history of the piston obtained with the
reference set of parameters of Table 1 is represented by

the red curve in Figure 6. The values of the input vari-
ables for the other sets are given in Appendix A: for each
set, the constant parameters are the same as the reference
set (see Table 1).

Figure 6. Piston position vs. time for 10 different sets. The red
curve is the reference solution.

4.2 Sensitivity Analysis
The values of Sobol’s indices, have been computed for the
considered variables vs. the samples number N for two
characteristic time values: t = τabs and t = 10τabs.

Figure 7. Sobol’s indices vs. samples number N for t = τabs.

The results of a Sobol’s analysis can be considered reli-
able only if convergence is achieved. The results of Figure
7 and of Figure 8 highlight that for sample numbers lower
than 15000, significant fluctuations exist. These are due
to numerical errors, especially for N < 500 where incon-
sistent negative values are obtained. When 3000 ≤ N ≤
15000, another inconsistency is observed since SEL0 and
STL0 are really not constant. For values of samples number
greater than 30000 convergence is achieved for all curves.

As a matter of fact, the standard uncertainty, ū, for the
Sobol’s indices computed for all the input variables when

Session 4A: Applications (2)

DOI
10.3384/ecp21181307

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

311

Figure 8. Sobol’s indices vs. samples number N for t = 10τabs.

the samples number is greater than 30000 is equal to:

ū =
σ̄√
D

=
5.78 ·10−3

√
40000−30000

= 5.78 ·10−5, (16)

where σ̄ is the average standard deviation and D the stud-
ied range.

Table 3 reports the values of the converged Sobol’s in-
dices at N = 40000. It must be noticed that, in this table,
all values have been multiplied by 100 to enable a better
reading.

Table 3. Elementary and total Sobol’s indices for t = τabs s and
10τabs s in percentage. Note that, by considering their definition
in section 2.2, the sum of total indices is not equal to 100 %.

Total Sobol’s in-
dex

Value at t = τabs Value at
t = 10τabs

ST K 21.40 % 21.38 %
ST L0 60.92 % 66.24 %
ST rint 9.56 % 0.01 %
ST mP 10.65 % 10.29 %
ST mC 22.66 % 21.62 %
Elementary
Sobol’s index

Value at t = τabs Value at
t = 10τabs

SE K 12.39 % 12.77 %
SE L0 44.93 % 50.85 %
SE rint 3.70 % 0.00 %
SE mP 4.93 % 7.16 %
SE mC 9.32 % 9.15 %
Interactions 24.73 % 20.07 %

A total Sobol’s index can help understanding the influ-
ence of a given input variable on the piston motion when
combined with other variables. For instance, in the case
of the total index of mP at t = τabs s, its value is 10.65 %,
which is at least two times smaller than the other ones, like
rint.

As far as variable L0 is concerned, always at t =
τabs s, a significant difference exists between its elemen-

tary Sobol’s index, 44.93 %, and the total one, 60.92 %.
This means that this parameter plays a crucial role on the
piston motion in combination with other parameters.

Finally, by prioritising the other indices, it can be con-
cluded that the parameter L0 is the one influencing the
most the motion of the piston.

The same remarks can be repeated for t = 10τabs, except
for rint whose elementary and total Sobol’s indices become
smaller than the ones related to the other input variables.
This is due to the fact that rint is involved only in the ex-
pression of the damper force. This force being function of
the piston speed, it is possible to link indirectly rint with
the others parameters. Thus, when the system reaches a
stable state, the piston velocity goes to zero and the influ-
ence of parameter rint too.

The results of Table 3 also highlight that the parameters
k, mP and mC present similar values of the total Sobol’s in-
dex at both time, t = τabs s and t = 10τabs s. Nonetheless,
if a greater range of rint is considered, the influence of
this parameter on the motion regime can be observed. In-
deed, for values of rint greater than 0.005 m, the motion of
the piston is mainly semi-periodic or completely periodic
without stable motion. This highlights the importance of
correctly defining the interval of the input variables to be
used during the sensitivity analysis. Furthermore, inas-
much as rint is the input variable with the weakest influ-
ence on the piston motion, its value can be set randomly
without influencing the final result. Conversely, particular
care must be put in choosing the value and the interval of
definition of the most influencing variables (like L0).

The coupling of the FMU file of the car shock absorber
Modelica model with the Nebraska code allows carrying
out for fast simulations to be carried out. In fact, the
Modelica model, shown in Figure 4, requires approxi-
mately 4.50 s to run while the sensitivity analysis with
Nebraska (which makes use of the FMU file generated
from MapleSim) takes approximately 5000 s for a total
of 280000 simulations. All the simulation presented in
this paper have been carried out on a DELL® laptop with
32 Gb RAM and an Intel core i7-10610 processor. From
the analysis of the time required to execute each step of
the simulation, one can conclude that about 50 % of the
overall time is required to solve (and integrate) the prob-
lem, while the remaining 50 % of the time is needed for
post-processing of results. In particular, the time required
to execute each step is:

1. Equations generation (1.131 s);

2. Equations handling and manipulation (0.219 s);

3. Initial values computation (0.224 s);

4. Integration step (0.710 s);

5. Post processing of results (2.216 s).

Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling Strategy

312 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181307

5 Conclusion

In this work a sensitivity analysis of a car shock absorber
model, carried out through the coupling of an in-house
code (Nebraska) based on Sobol’s indices and a FMU file
generated via MapleSim, has been presented.

The goal is to identify a reduced model capable of de-
scribing the motion of the piston. To this purpose, the in-
fluence of the different physical phenomena on the consid-
ered output has been investigated. The system, described
via several geometrical and mechanical parameters, has
been firstly analysed by observing the order of magnitude
of the different forces acting on the system. As a first
result, the initial model has been simplified by removing
those forces whose mechanical effects are negligible when
compared to others.

The simplified model was then used to generate the
FMU file, which was coupled with the based-Fortran code
Nebraska through a Python code (in-house developed)
which carried out the sensitivity analysis via Sobol’s in-
dices.

The analysis of both the elementary and total Sobol’s
indices of the input parameters of the mechanical system
allowed determining that the spring unstreched length (L0)
plays a crucial roles in the piston motion while the influ-
ence of rint is negligible. Note that this result holds solely
for the output considered in this study, i.e. the position of
the piston when a stable state is reached.

This study represents a first application of FMU to sim-
ulate mechanical systems with the aim of performing sen-
sitivity analysis. A further extension of the approach pre-
sented in this work could be its application to more com-
plex systems. In this context, the more influential sub-
systems, determined as a result of a sensitivity analysis
based on Sobol’s indices, or subsystems involving com-
plex physical phenomena that must be accurately repro-
duced, could be replaced by a external model imported
via a FMU file. As far as prospects of this work are con-
cerned, the FMU can be generated from dedicated finite
element models or meta-models, integrating the relevant
physical responses. This can help reducing the computa-
tional cost of the sub-system simulation required within
the global model of the mechanical system developed in
MapleSim.

Acknowledgements

The authors would like to thank Laurent JACQUI who de-
veloped the Nebraska code.

References

Chastaing, G., F. Gamboa, and C. Prieur (2015). “Generalized
Sobol sensitivity indices for dependent variables: numerical
methods”. In: Journal of Statistical Computation and Simu-
lation 85.7, pp. 1306–1333. DOI: 10.1080/00949655.2014.
960415.

Fritzson, Peter (2014). Principles of Object Oriented Mod-
eling and Simulation with Modelica 3.3: A Cyber-
Physical Approach. ISBN: 9781118989166. DOI: 10 . 1002 /
9781118989166.

Héliot, Maxime (2017-2018). “Studies and development of a
sensitivity analysis tool and application ti an aerothermal
model”. MA thesis. Cranfiel University.

Hoeffding, Wassily (1948). “A Class of Statistics with Asymp-
totically Normal Distribution”. In: Annals of Mathematical
Statistics 19.3, pp. 293–325.

Idel’chik, I.E. (1966). Handbook of hydraulic resistance. Ed. by
IPST Staff D. Grunaer P.E. The U.S. Atomic Energy Com-
mission and The National Science Foundation.

Janon, Alexandre (2019-06). “Global optimization using Sobol
indices”. working paper or preprint. URL: https : / / hal .
archives-ouvertes.fr/hal-02154121.

Maplesoft, Copyright (2014). MapleSim User’s Guide. ISBN:
9781926902326.

Marrel, Amandine et al. (2009). “Calculations of Sobol indices
for the Gaussian process metamodel”. In: Reliability Engi-
neering and System Safety 94.3, pp. 742–751.

Philippe, Anne and Marie-Claude Viano (2010). “Cours de prob-
abilités : Modèles et Applications”.

Plogert, Klaus (1996). “The tailoring process in the German V-
Model”. In: Journal of Systems Architecture 42, pp. 601–609.

Saltelli, Andrea (2002). “Making best use of model evaluation
to compute sensitivity indices”. In: Computer Physics Com-
munications 145.(2), pp. 280–297.

Sobol, I.M. (1993). “Sensitivity Estimates for Nonlinear Math-
emitical Models”. In: MMCE 1.4, pp. 407–414.

Acronyms

MBSE Model-Based System Engineering
MISO Multiple-Input-Single-Output
SE Sobol Elementary Index
ST Sobol Total Index
FMU Functional Mock-up Units
PDF Probability Density Function
CAD Computer Aided Design
MSL Modelica Standard Library

Session 4A: Applications (2)

DOI
10.3384/ecp21181307

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

313

Glossary

N Input variables sets number −
d Number of input variables −
ζ Proportional factor in singularity

pressure loss
−

τabs Absorbing motion time s
∆P Pressure loss Pa
k Spring constant N.m−1

L0 Spring unstreched length m
rint Internal piston radius m
rext External piston radius m
h Piston thickness m
xstart Piston initial position m
Lcham Length of the piston chamber m
Lbar Length of the bar linked to the

floor
m

ω0 Fluid speed m.s−1

g Gravity acceleration m.s−2

Sp Piston surface m2

Sh Piston hole surface m2

mP Passengers mass kg
mC Car and passengers mass kg
ρoil Oil density kg.m−3

ū Mean of standard uncertainly −
σ̄ Mean of the average standard de-

viation
−

Appendix A

Table 4. Variable parameters data for ten different sets.

Parameter set 1 set 2 set 3 set 4 set 5
K N.m−1 10768 10935 9513 9811 9830
L0 m 0.585 0.498 0.475 0.562 0.480
rint (10−3 m) 3.63 4.20 3.24 3.37 2.49
mP kg 239 140 178 213 111
mC kg 964 1182 1172 1252 1086
Parameter set 6 set 7 set 8 set 9 ref
K N.m−1 9329 8951 9306 10345 9000
L0 m 0.479 0.561 0.407 0.533 0.450
rint (10−3 m) 2.25 1.77 1.75 2.42 2.25
mP kg 196 135 359 310 150
mC kg 1287 1156 908 1151 1000

Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling Strategy

314 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181307

Detailed White-Box Non-Linear Model Predictive Control for
Scalable Building HVAC Control

Filip Jorissen1 Damien Picard1 Kristoff Six1 Lieve Helsen1,2

1Mechanical engineering, KU Leuven, Belgium filip.jorissen@kuleuven.be
2EnergyVille, Genk, Belgium

Abstract
Grey-box and black-box MPC approaches for building
HVAC applications often use lumped, low-order models
with a low level of detail. While such models require
smaller computation times, their accuracy is limited and
there are practical constraints related to data collection,
how to deal with multi-zone buildings and they often do
not explicitly model the building HVAC equipment. In
this paper we present an alternative approach based on de-
tailed white-box models. TACO, a custom toolchain that
builds upon physics-based Modelica models and JModel-
ica, is used to efficiently solve the resulting optimisation
problems. This paper presents a realistic case study model
of 79 zones and OCP results for this case study are dis-
cussed, demonstrating the feasibility of the approach and
the underestimated potential of detailed white-box MPC.
Keywords: Optimal control of hybrid systems, HVAC,
white-box modelling, building automation, TACO, JMod-
elica, MPC

1 Introduction
Building Heating, Ventilation and Air Conditioning
(HVAC) accounts for 15 % of the world final energy use
(International Energy Agency 2019). While building de-
sign standards become stricter, the building energy use is
to a large extent determined during operation, when con-
trol and the available building flexibility play an important
role. Model Predictive Control (MPC) is a methodology
for controlling the building HVAC equipment during this
operational phase. The goal of MPC is typically to find the
HVAC control set points (or control actions) that lead to
the lowest (operational, environmental or other) cost while
ensuring that comfort and other constraints are respected.

Most MPC research and companies use data-driven
approaches such as grey-box and black-box modelling.
These approaches fit model parameters using measure-
ments from a real building and thus rely on the avail-
ability of qualitative data, which may not be easy to ob-
tain in practice. Moreover, the main challenge of grey-
box modelling still is the need for a robust parameter es-
timation method (Drgoňa et al. 2020). For data-driven
approaches, building zones are therefore often lumped to
limit the complexity during the training phase. This lump-
ing phase inevitably leads to a loss of detail, which could

be problematic when different parts of the lumped zones
have a different behaviour. E.g. the set points for a lumped
zone with average heat load may not be sufficient to heat
the two consisting zones that have low and high heat load
respectively. Perhaps this infrequently poses problems in
practice, but managing these kinds of problems takes time
(which is expensive and a liability in a commercial con-
text), and model simplifications are likely to cause re-
duced energy efficiency and thermal comfort throughout
the building lifetime. Furthermore, simplified models typ-
ically require the development of a subcontroller that maps
MPC set points to device set points, which can be cumber-
some (Drgoňa et al. 2020).

Using models with a higher level of detail leads to
additional advantages. For instance, the detailed physics-
based model can be used to benchmark the actual system,
it can be used for fault detection (Frank et al. 2016),
model and results are easier to interpret (‘Explainable
AI’), the model could be easier to adjust and update
since it is physically interpretable, it could be reused for
retrofit analyses, or even to visualize the building using
augmented reality. Sometimes white-box models are used
to train a grey or black-box model. Why would you train
a simplified model if you already have a detailed model?
Often the answer to that question relates to computation
time, or to the inability of the white-box tool to perform
optimizations altogether. Our goal is to improve the
solver, rather than to simplify the model. We start from
physics-based Modelica models, and JModelica (Åkesson
et al. 2010) to keep the original model accuracy, at
acceptable computational cost. For a recent overview of
MPC for building applications we refer to (Drgoňa et al.
2020).

Considering the above and also the economic context
we present an MPC development workflow that is
designed with scalability in mind. More specifically, it
is designed to be robust against modelling errors (user
error), fast to use, easy to maintain and to extend, generic
for many types of HVAC devices and HVAC schematics,
low-demanding with respect to expertise to implement
and operate, and systematically applicable to (a class of)
buildings. Our approach uses detailed white-box Model-
ica models as a starting point, which can be refined using
measurement data during operation. The use of Modelica

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

315

unlocks efficient numerical algorithms that scale well
with the problem size and it facilitates collaborations on
model development (e.g. within IBPSA project 1). An
often quoted disadvantage of white-box modelling is the
effort required to describe building properties (Drgoňa
et al. 2020). By using automated modelling workflows,
this implementation effort is strongly reduced.

Few researchers have demonstrated white-box optimal
control methodologies that scale to the size and complex-
ity that is required for large buildings, assuming that the
goal is a qualitative implementation that sets individual set
points for individual actuators. (Sturzenegger et al. 2016)
have presented a respectable physics-based modelling ap-
proach, BRCM, that uses bi-linear models. A 20-zone
model with 300 states has been demonstrated and model
reduction has been used to reduce the number of states to
55. While the total conditioned floor area was 6000 m2,
only one of the six floors (1000 m2) was actually mod-
elled. In this work we present a white-box modelling ap-
proach that has been applied to case-study model that has
3421 state variables, 217 control inputs and 79 zones that
span 10 000 m2. Furthermore, multiple non-linear AHUs
and other HVAC equipment are included instead of only
using bi-linear HVAC. Th resulting proof-of-concept Op-
timal Control Problem (OCP) demonstrates the feasibility
of this approach even for complex multi-zone buildings.
Furthermore, the presented optimisation results illustrate
the potential of our approach. We present OCP results in
this work instead of MPC results since results of a sin-
gle optimisation with a long horizon are easier to interpret
than a concatenation of the first intervals of a sequence of
optimisations. We do not consider uncertainties on distur-
bance forecasts or modelling errors in this work. Clearly,
our approach would have to deal with these uncertain-
ties, as would any other approach. Note that the model
can indeed be used for MPC too, since MPC is control-
ling the modelled building (located in Luxemburg) since
a few months. A preliminary interpretation of the results
suggests that forecasting errors of weather and occupancy
dominate modelling errors.

2 Methodology
Our methodology uses detailed, physics-based (white-
box) models. We start by mapping each physical com-
ponent to a respective model. For the building envelope,
zones are grouped such that rooms that can be controlled
individually, are also modelled individually. For the build-
ing HVAC, components can be mapped to models one-
to-one as illustrated in Figure 1, or each group of com-
ponents that serves the same function is modelled using
one component model. E.g. each pump, valve, heat ex-
changer, etc. is modelled individually, but a set of two
redundant pumps, or a set of 20 solar collectors has 1
model per set. The component models are implemented
using the modelling language Modelica. For a description

of the building envelope models and equations, we refer
to the Modelica IDEAS library (Filip Jorissen, Reynders,
et al. 2018; KU Leuven and 3E 2012) and the Modelica
Buildings library (Michael Wetter et al. 2014; Wetter et
al. 2019). The models are parameterised using parame-
ters that are commonly available in the technical speci-
fications of the building HVAC equipment. Instantiating
the Modelica component models and making the required
connections between them is a tedious and error-prone
process. Therefore a browser-based tool has been de-
veloped that automatically generates the required Modeli-
ca/IDEAS code. This graphical user interface (GUI) only
allows valid building geometries to be specified, thereby
avoiding user errors. The GUI export of this geometri-
cal information is automatically mapped into the Model-
ica model as illustrated in Figure 2. Building geometry
information, such as orientations and surface areas, is au-
tomatically deduced from the export, while the user speci-
fies additional information such as material layers through
the GUI options.

Code generation of connections is automated, which
rules out errors such as unconnected ports or ports with
too many connections. Furthermore, sanity checks are
performed such as identification of unconnected devices,
(un)realistic thermal insulation values in outer walls,
missing parameters, etc.

The resulting workflow leads to a set of interconnected
Modelica component models that describe the relevant
physics:

• Thermal conduction, convection and radiation within
and outside of the building envelope,

• Thermal inertia of the building,

• Solar heat gains (considering glazing type and shad-
ing) and internal heat gains from occupants,

• Pressure-driven flow rates for aerolic, hydronic sys-
tem, including non-linear valve and damper models,

• Pumps and fan powers,

• Temperature dependent and mass flow rate depen-
dent heat flow rates in emission systems,

• Temperature dependent and flow rate dependent effi-
ciencies in production and distribution systems.

The resulting model is non-linear. The most important
non-linearities are the relation between flow rate and pres-
sure in fluid flow networks, and the strongly non-linear
relation between fan/pump power and flow rate. For more
details about these models see (Filip Jorissen, Reynders, et
al. 2018; F. Jorissen, Boydens, and L. Helsen 2019; Filip
Jorissen, Michael Wetter, and Lieve Helsen 2018; F. Joris-
sen, Boydens, and L. Helsen 2017; Filip Jorissen 2018).

Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control

316 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181315

(a) Hydronic schematic. Source: Boydens engineering
(b) Mapped model

Figure 1. Illustration of one-to-one component to model mapping

Figure 2. Automatically generated Modelica model. The drawn
icons depict zones, windows, exterior walls and interior walls.
Note that window icons are drawn on top of wall icons.

That Modelica model is translated into an optimisation
code using our Toolchain for Automated Control and Op-
timisation (TACO) (F. Jorissen, Boydens, and L. Helsen
2018), which extends the JModelica framework (Åkesson
et al. 2010). TACO identifies what equations must be
solved for what variables, splits variables that depend on
optimisation variables from those that do not, and per-
forms preprocessing on linear state1 interdependencies to
speed up code evaluation. The continuous time problem is
discretised at a user-defined non-equidistant set of points
in time. CasADi (Andersson et al. 2019) computes the
equation derivatives and generates C-code for evaluating
the objective, constraints, derivatives and other outputs.
The compiled code is coupled to a gradient-based NLP
solver and is portable to other (linux) machines. For more

1We distinguish state variables that are computed by a differential
equation from algebraic variables that are computed from an algebraic
equation.

details about the translation process that TACO performs
we refer to (F. Jorissen, Boydens, and L. Helsen 2018).

3 Case study
In this paper we present a case study building, Solarwind,
on which the presented methodology is applied. The office
building has a conditioned floor surface area of 10 000 m2

and was designed to be an examplary showcase towards
Luxembourg and the European design and construction
industry of a holistic and integrated operation and design
sustainability approach for future oriented office build-
ings. It uses geothermal heat pumps, concrete core acti-
vation (CCA), solar collectors, solar PV, passive cooling,
indirect evaporative cooling, a pellet boiler, a large stor-
age tank, etc. This building has been described in detail in
Chapter 2 of (Filip Jorissen 2018). Chapter 10 describes
an MPC for (a part of) the same building. That model is
substantially smaller and less detailed and complex than
the OCP that we present here. It also required manual
building-specific simplifications in the HVAC models that
conflict with the 1-to-1 mapping philosphy and the exper-
tise requirements that were outlined above. We now ex-
plain the building and its model together with the main
differences from the earlier MPC implementation.

3.1 Building envelope
The new model consists of six floors (instead of four) that
are modelled using 79 zones (instead of 32). We assume
that 6 people are present in each zone, between 7:00 and
19:00 on week days. Three zones have 9 occupants in-
stead of 6, to show the influence on the CO2 concentration
in the result section. Solar shading is not modelled to ar-
tificially increase the heat load and to make the optimisa-
tion problem more challenging to solve. A weather data

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

317

file for Uccle, Belgium is used. The building uses triple
glazing and is strongly insulated with a U-value of about
0.1 W/m2K.

3.2 Emission system
Ventilation is provided using six air handling units (in-
stead of 2), for which the supply and extraction fan pres-
sure, the heating coil valve, humidifier, heat recovery by-
pass (2 dampers), indirect evaporative heat exchanger con-
trol signal and active chiller control signal are optimised.
Most zones have a supply Variable Air Volume (VAV) and
an extraction VAV for which one control signal is opti-
mised. A VAV control signal of 0 % corresponds to a set
point of 50 % of the nominal flow rate2. Furthermore,
each VAV has a heating coil for which the heating fluid
flow rate is optimised using a two-way valve. The supply
water temperature of the VAV coil collector is controlled
using a three-way valve.

The concrete ceilings are heated or cooled using CCA,
except for the top floor, which uses chilled ceilings (CC)
instead. Each floor is subdivided in about six CCA or CC
sections. Each section spans one or more zones, is con-
nected to one of three collector connections (south, north,
or top floor), and its total flow rate is controlled using one
two-way valve. The supply temperature of each connec-
tion (i.e. group of sections) is controlled at the collector
using a three-way valve.

3.3 Production system
The main collector draws water from either a geothermal
heat pump, or the geothermal borefield using a series of
pumps and heat exchangers (see Figure 2.3 in (Filip Joris-
sen 2018) for more details).

A pellet boiler and solar collector feed hot water in a
20 m3 storage tank, which is used by the AHU heating
coils. The corresponding fluid loop consists of 2 heat ex-
changers, 6 pumps, 3 three-way valves and a pressure-
independent valve. Three domestic hot water tanks that
are present in the building are not modelled for this study
since realistic load profiles are not available.

3.4 Objective and constraints
We minimize the electrical power use and the pellet boiler
thermal power, the latter being scaled by 1/3 to consider
that pellet fuel has a different price than electricity. Var-
ious constraints are enforced, among them the minimum
and maximum supply air temperature (16 ◦C - 26 ◦C),
(building owner specified) zone temperature limits (22 ◦C
- 24 ◦C) and a CO2 concentration upper limit of 1000 ppm.

3.5 Horizon
For the purpose of this paper, we discretise the model in
720 intervals of 1 hour (i.e. 1 month). The resulting OCP
is instantiated 12 times to optimise a full year. We use an
OCP since it simplifies interpretation of the results com-
pared to an MPC running in a receding horizon fashion.

2The set point may not be obtained if the fan pressure is too low.

Each OCP has the same initial state. For easier result inter-
pretation we assume that all HVAC equipment is enabled
24/7.

4 Results
The resulting model has 217 control inputs, 3421 state
variables and 41 577 algebraic variables as reported by
the Modelica simulation software Dymola 2020. Since the
OCP has 720 control intervals, 156 240 control inputs are
optimised in each OCP. Computation time for one OCP
(single-core, 2 GHz) is a few days, depending on the cho-
sen convergence tolerance. Note that an MPC using this
model is orders of magnitude faster since its horizon is
shorter and warm starting can be used. At the time of writ-
ing, a revised version of this model is successfully control-
ling the modelled building, where the MPC is updated ev-
ery 15 minutes. Computation speed is thus not a problem,
even for white-box models of this size.

Figures 3 - 6 present OCP results for January, April
and August. We use these figures to illustrate some of the
strengths of our detailed white-box MPC approach, with-
out discussing each sub-plot in detail. Despite that these
are in fact OCP results instead of MPC results, we con-
sider that the results are representative for MPC. The pre-
sented results are direct outputs of the OCP. This is a first
strength: since the model is detailed, the outputs are de-
tailed too, which allows a thorough analysis of the results
without requiring additional simulations to see the impact
on subsystems that are lumped in the optimisation.

4.1 System coordination and constraints
In the top sub-plot of each figure, relevant zone temper-
atures are indicated, while CO2 constraints are also indi-
cated in the top of Figure 3. The results show that the
operational constraints of 22 ◦C - 24 ◦C are respected, as
well as the upper limit of 1000 ppm CO2. At the same
time, the third sub-plot in Figure 3 indicates that the AHU
fans usually operate at low pressures of 30 Pa while the
nominal system pressure is around 300 Pa. At the same
time, most VAVs are at or around the minimum opening
of 0%. However, the VAVs that correspond to zones with
a larger occupancy are occasionally opened to avoid vi-
olating the CO2 constraint. During the summer period,
the fan pressures are occasionally increased to accommo-
date the peak cooling load due to solar heat gains. This
illustrates the second strength of MPC: the coordination
of multiple devices to ensure that constraints are achieved
at minimum cost.

4.2 System dynamics
A third strength of MPC is illustrated in Figure 4: its abil-
ity to anticipate heating and cooling loads and to deal with
them accordingly using fast (VAV) and slow (CCA) react-
ing systems. During the August period, large heat gains
are present since we deliberately omitted solar shading in
the model. This causes both the upper and lower temper-
ature bounds to be reached within the same day (and in

Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control

318 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181315

22

24

Tz
on

e
[°

C
]

500

1000

pp
m

zo

ne
s

40

60

P
a

Extraction pressure AHU1 Supply pressure AHU1

0

20

°C

Outdoor T Sup. T AHU

0

100

VA
V

 [%
]

2.0

2.2

kg
/s

Sup. flow AHU1 Ext. flow AHU1

0 5 10 15 20 25 30
Time [day]

0

1

[-]

Humidifier IEH HP Bypass ret. 1 - Bypass sup.

(a) January

22

24

Tz
on

e
[°
C
]

500

1000

pp
m

zo
ne

s

30

40P
a

Extraction pressure AHU1 Supply pressure AHU1

20

30

°C

Outdoor T Sup. T AHU

0

100

VA
V
 [%

]

2.0

2.5

kg
/s

Sup. flow AHU1 Ext. flow AHU1

210 215 220 225 230 235 240
Time [day]

0

1

[-]

Humidifier IEH HP Bypass ret. 1 - Bypass sup.

(b) August

Figure 3. Results that are relevant to air handling unit 1

22

24

Tz
on

e
[°
C
]

0

20000

W

CCA south CCA north CCA 4th floor VAV coils

0

2

[%
]

Geothermal cooling valve

0

100

C
C
A

 2
 w
ay
 [%

]

25

30

°C

Sup. T VAV coils Sup. T CCA

0

10

°C

Outdoor T

0 5 10 15 20 25 30
Time [day]

7

8

C
O
P

COP

(a) January

22

24

Tz
on

e
[°
C
]

−25000

0

W

CCA south CCA orth CCA 4th floor VAV coils

0

5

[%
]

Geothermal cooling valve

0

100

C
C
A

 2
 w
ay
 [%

]

20.0

22.5

°C

Sup. T VAV coils Sup. T CCA

20

30

°C

Outdoor T

210 215 220 225 230 235 240
Time [day]

7.75

8.00

8.25

C
O
P

COP

(b) August

Figure 4. Heat pump, geothermal cooling, CCA and VAV operation.

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

319

different zones). The cooling is spread over the entire day
and the cooling peak is out of phase with the temperature
peaks, see sub-plots 1 and 2. The building is thus pre-
cooled, thereby considering the emission system delay.

This is illustrated once more during the winter period
around day 25, when there is a period of large solar irra-
diation. During the three days preceding the solar peak,
the CCA thermal power is relatively low and shifted to-
wards the VAV coils to avoid excess heat being stored
in the building thermal mass, which would overheat the
building during the sunny period.

4.3 Hybrid systems
A fourth strength of MPC is its ability to coordinate be-
tween multiple heating and cooling sources and to use the
one with the lowest cost. This is illustrated in Figure 3.
During winter, the AHU bypasses (see last sub-plot) are
both closed since heat is valuable during winter. During
summer, 4 AHU cooling options exist (free-cooling by-
passes, humidifier3, indirect evaporative heat exchanger
(IEH), chiller (HP)), which are all used. Even when no
immediate cooling is required and the outdoor tempera-
ture is low, the AHU bypasses are opened. This cooling
option reduces the fan power since the AHU internal pres-
sure drop decreases. Note that the lower supply air tem-
perature limit of 16 ◦ C is respected. When the outdoor
temperature is higher than the indoor temperature, cold is
recovered by closing the bypasses. When this does not
suffice, the humidifier and IEH are used. They have the
lowest cost since they only require a pump to be operated.
In some cases, the chiller is used, which is the most ex-
pensive cooling option. Thanks to the good coordination
of all other devices, this rarely happens.

Another example is shown in Figure 5, which shows
the operation of the solar collector, pellet boiler and stor-
age tank. During winter, the sun is at a low altitude due to
which the collector heat losses are often larger than the so-
lar heat gains. The solar thermal collector valve (see sub-
plot 5) is therefore only opened when the sun intensity is
sufficiently strong to reach a positive thermal power (see
sub-plot 2). The remaining high-temperature heat load is
provided by the pellet boiler. During the summer period,
there is abundant (free) heat available from the solar col-
lector due to which the pellet boiler is never activated.

4.4 Operational limits
A fifth strength of MPC is its ability to operate the system
at its limits. For instance, the geothermal borefield can
be used to passively cool the building using the CCA. A
borefield temperature of 15 ◦C is assumed. Directly us-
ing this low temperature would be the least costly since
less mass flow rate (and thus pump power) is required to
achieve the same heat flow rate. However, condensation of
moist air can occur on CCA when its temperature is low.
Therefore, a minimum supply water temperature of 18 ◦C

3The OCP does not contain a humidity constraint due to which the
humidifier can be used to cool.

was set. Figure 4 clearly shows that this minimum supply
water temperature is used during periods of large cooling
load (see sub-plot 5).

4.5 Efficient operation
A sixth strength of MPC is its ability to operate the avail-
able equipment at an efficient operating point. Figure 4
illustrates this for the heat pump operation in the three last
sub-plots. For lower outdoor temperatures, larger heat-
ing powers are required. This increases the required heat
pump supply water temperature, which reduces the heat
pump COP (excluding pump power). Note day 4, where
a day of large solar intensity (see sub-plot 2 of Figure 5)
‘charges’ the building, immediately reducing the heating
requirements, increasing the COP and also increasing the
COP during the days after the heating event, despite the
decreasing outdoor temperatures.

4.6 Exploiting flexibility
The seventh MPC strength is to shift heating loads using
the available system flexibility. We already discussed pre-
cooling using the CCA. Note that this effect could have
been more pronounced if the building solar heat gains
were smaller or if the comfort band were larger than 2 K,
allowing more drift of the indoor temperature. Hitting
both the upper and the lower comfort bound within the
same day limits the available system flexibility.

Additionally, the hot water storage tank flexibility is
used, which is allowed to fluctuate between 50 ◦C and 90
◦C. E.g. during the winter period in Figure 5 solar heat
is accumulated for three weeks until the last days of the
month when the heat is most useful. During summer, so-
lar heat is abundantly available and is even dissipated by
not closing the solar collector valve at night. Otherwise
the storage tank upper temperature limit of 90 ◦C would
be violated at day 233. Figure 6b shows the solar collec-
tor operation in April, where solar heat is stored between
sunny (see sub-plot 2) days 95 and 107 and used during
overcast days 108, 109, 117 and 118.

4.7 Reliable performance
Finally, we discuss the system operation during the inter-
mediate season, when well insulated buildings are often
hard to control. For instance, on cold but sunny days
the building can be overheated by conventional heating
curve-based controllers that increase heating set points de-
spite substantial solar heat gains. It is hard to determine
whether the building should be in heating mode, cooling
mode, or perhaps even in both within the same day. It
is interesting to see how MPC copes with such scenar-
ios, which is illustrated for the month of April in Figure 6.
Our MPC controller does not formally define a ‘mode’ but
based on the second sub-plot left we conclude that MPC
is in heating mode during the first two days and in cooling
mode for three days. During the remainder of the month,
the system is in a neutral mode despite the outdoor tem-
perature ranges from 0 ◦C to 20◦C. In this neutral mode,

Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control

320 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181315

22

24

Tz
on

e
[°
C
]

0

10000

W

Solar collector power Pellet boiler power

0

10000

Q
 A
H
U
 [W

]

50

60

°C

Storage tank

0

1

[-]

Solar collector valve Pellet boiler valve

0 5 10 15 20 25 30
Time [day]

0

10

°C

Outdoor T

(a) January

22

24

Tz
on

e
[°
C
]

0

20000

W

Solar collector power Pellet boiler power

0

20000

Q
 A
H
U
 [W

]

50

60

70

°C

Storage tank

0

1

[-]

Solar collector valve Pellet boiler valve

210 215 220 225 230 235 240
Time [day]

20

30

°C

Outdoor T

(b) August

Figure 5. Solar collector and pellet boiler operation.

22

24

Tz
on

e
[°
C
]

0

20000

W

HP th. ower Geothermal cooling ower

−20000

0W

CCA south CCA north CCA 4th floor VAV coils

0

50

C
C
A

 2
 w
ay
 [%

]

0

100

VA
V
 c
oi
l

 2
 w
ay
 [%

]

90 95 100 105 110 115 120
Time [day]

20

25

°C

Sup. T VAV coils Sup. T CCA

(a) Heat pump, geothermal cooling, CCA and VAV operation.

22

24

Tz
on

e
[°
C
]

0

20000

W

Solar collector power Pellet boiler power

0

10000

Q
 A
H
U
 [W

]

50

75

°C

Storage tank

0

1

[-]

Solar collector valve Pellet boiler valve

90 95 100 105 110 115 120
Time [day]

0

20

°C

Outdoor T

(b) Solar collector and pellet boiler operation.

Figure 6. System operation in April.

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

321

the system is simultaneously heating and cooling by ex-
changing heat within the system (see sub-plot 3 in Fig-
ure 6a). More specifically, the relatively warm CCA return
water is recirculated through the VAV heating coils, heat-
ing the supply air. The fifth sub-plot shows that the CCA
heat extraction is focussed on just a few CCA circuits and
the sixth sub-plot shows that heat dissipation does not use
all VAV circuits. This operating mode is particularly effi-
cient since fewer pumps and even the heat pump need not
be enabled. Perhaps more importantly, the low tempera-
ture differences allow simultaneous heating and cooling in
different zones and the comfort constraints are respected.
Furthermore, heat is also exchanged between warm and
cold CCA circuits, but this is not indicated in the graph.
Therefore, the total heat exchange is even larger than indi-
cated. Interestingly, this operating mode is automatically
discovered thanks to the level of detail of our white-box
MPC.

5 Conclusion
This paper presents a detailed white-box MPC approach
for buildings that is designed for commercial MPC appli-
cations, including large and complex buildings. The ap-
proach maps physical objects and devices into their re-
spective Modelica models using a custom browser-based
graphical user interface. The resulting Modelica model
is translated into an efficient MPC code using TACO.
The approach is applied to a case study office building
of 10 000 m2, resulting in a model of 79 zones. A dis-
cussion of OCP results for three individually optimised
months shows the strengths of the toolchain. All pre-
sented strengths are automatically achieved by our white-
box OCP, without substantial tuning or training. Each op-
timisation consists of 720 intervals of one hour, resulting
in 156 240 control inputs and 29 935 440 algebraic vari-
ables, which demonstrates the feasibility of large-scale
white-box optimisation. The presented case study is
currently being controlled by MPC, hence also demon-
strating the computational feasibility of this approach for
direction optimisation. Furthermore, the presented OCP
approach can be compared to other control methodolo-
gies, e.g. within the frame of IBPSA Project 1, WP 1.2
BOPTEST (Blum et al. 2019). Future work will present
real-life, operational results of our MPC approach.

Acknowledgements
We thank Boydens Engineering, Schuler SàRL, DRC
Technology Sa, Menerga nv and Climalux Sa for enabling
this research. We acknowledge the funding through the
VLAIO spin-off fellowship HBC.2018.2092 and through
the EU within the H2020-EE-2016-RIA-IA programme
for the project ‘Model Predictive Control and Innovative
System Integration of GEOTABS;-) in Hybrid Low Grade
Thermal Energy Systems - Hybrid MPC GEOTABS’
(grant number 723649). We acknowledge the univer-
sity of Leuven (KU Leuven) for funding the development

and valorization track of white-box MPC through the C3
project C32/18/063. This work emerged from IBPSA
Project 1, an international project conducted under the
umbrella of the International Building Performance Simu-
lation Association. Project 1 develops and demonstrates a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation.

References
Åkesson, J. et al. (2010). “Modeling and optimization with Op-

timica and JModelica.org – Languages and tools for solving
large-scale dynamic optimization problems”. In: Computers
& Chemical Engineering 34.11, pp. 1737–1749. DOI: 10 .
1016/j.compchemeng.2009.11.011.

Andersson, Joel A. E. et al. (2019). “CasADi: a software frame-
work for nonlinear optimization and optimal control”. In:
Mathematical Programming Computation 11.1, pp. 1–36.
DOI: 10.1007/s12532-018-0139-4.

Blum, D. et al. (2019). “Prototyping the BOPTEST framework
for simulation-based testing of advanced control strategies in
buildings.” In: Proceedings of the 16th International Confer-
ence of IBPSA. Rome, Italy.

Drgoňa, Ján et al. (2020). “All you need to know about model
predictive control for buildings”. In: Annual Reviews in Con-
trol 50, pp. 190–232. ISSN: 1367-5788. DOI: 10 . 1016 / j .
arcontrol.2020.09.001.

Frank, Stephen et al. (2016). “Hybrid model-based and data-
driven fault detection and diagnostics for commercial build-
ings”. In: 2016 ACEEE Summer Study on Energy Efficiency
in Buildings. Pacific Grove, CA.

International Energy Agency (2019). Global Status Report for
Buildings and Construction: Towards a Zero Emissions, Effi-
cient and Resilient Buildings and Construction Sector. Tech.
rep.

Jorissen, F., W. Boydens, and L. Helsen (2017). “Validated air
handling unit model using indirect evaporative cooling”. In:
Journal of Building Performance Simulation 11.1, pp. 48–64.
DOI: 10.1080/19401493.2016.1273391.

Jorissen, F., W. Boydens, and L. Helsen (2018). “TACO, an Au-
tomated Toolchain for Model Predictive Control of Build-
ing Systems: Implementation and Verification”. In: Journal
of Building Performance Simulation 12.2, pp. 180–192. DOI:
10.1080/19401493.2018.1498537.

Jorissen, F., W. Boydens, and L. Helsen (2019). “Implementa-
tion and Verification of the Integrated Envelope, HVAC and
Controller Model of the Solarwind Office Building in Mod-
elica”. In: Journal of Building Performance Simulation 12.4,
pp. 445–464. DOI: 10.1080/19401493.2018.1544277.

Jorissen, Filip (2018-04). “Toolchain for Optimal Control and
Design of Energy Systems in Buildings”. PhD thesis. Aren-
berg Doctoral School, KU Leuven.

Jorissen, Filip, Glenn Reynders, et al. (2018). “Implementation
and Verification of the IDEAS Building Energy Simulation
Library”. In: Journal of Building Performance Simulation
11.6, pp. 669–688. DOI: 10.1080/19401493.2018.1428361.

Jorissen, Filip, Michael Wetter, and Lieve Helsen (2018). “Sim-
plifications for Hydronic System Models in Modelica”. In:
Journal of Building Performance Simulation 11.6, pp. 639–
654. DOI: 10.1080/19401493.2017.1421263.

KU Leuven and 3E (2012). IDEAS. https://github.com/open-
ideas/IDEAS.

Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control

322 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181315

Sturzenegger, David et al. (2016). “Model Predictive Control of
a Swiss Office Building: Implementation, Results, and Cost-
Benefit Analysis”. In: IEEE Transaction on Control Systems
Technology 24.1, pp. 1–12. DOI: 10 . 1109 / TCST . 2015 .
2415411.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Wetter, M et al. (2019-09). “IBPSA Project 1: BIM/GIS and
Modelica framework for building and community energy sys-
tem design and operation – ongoing developments, lessons
learned and challenges”. In: IOP Conference Series: Earth
and Environmental Science 323, p. 012114. DOI: 10 .1088 /
1755-1315/323/1/012114.

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

323

324 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Software Architecture and Implementation of Modelica Buildings
Library Coupling for Spawn of EnergyPlus

Michael Wetter1 Kyle Benne2 Baptiste Ravache1

1Lawrence Berkeley National Laboratory, Berkeley, CA
2National Renewable Energy Laboratory, Golden, CO

Abstract
Spawn of EnergyPlus is a next-generation energy simula-
tion engine that targets control design and implementation
workflows. Spawn reuses the weather, lighting, loads, and
envelope modules from EnergyPlus through a precom-
piled library and couples them with HVAC and control
models implemented in Modelica. Thus, for Spawn, the
EnergyPlus HVAC models are removed. Spawn has been
designed to perform coupled simulation with any number
of EnergyPlus models, supporting simulation of a single
building or multiple buildings as part of a district energy
system.

This paper describes how the Modelica objects are im-
plemented and synchronized to allow the modular specifi-
cation at the Modelica-level that uses a Functional Mock-
up Unit (FMU) that contains the EnergyPlus model. A key
feature of our implementation is that multiple instances
of Modelica models call C functions, which jointly build
a data structure that defines parameters, inputs and out-
puts of the EnergyPlus model. This data structure is used
during the initialization to generate an FMU that contains
a fully configured EnergyPlus model. This FMU is then
accessed by all Modelica models to exchange with Ener-
gyPlus values for parameters, inputs and outputs during
the simulation. This setup allows the Modelica models to
be instantiated in a modular, object-oriented manner, as is
typical for Modelica, yet they jointly construct and use an
FMU that contains EnergyPlus.

Compared to an HVAC and envelope simulation that
uses a native Modelica building model of comparable level
of detail, the Modelica-EnergyPlus model translates about
35% faster and simulates about 50% faster.
Keywords: Modelica Buildings Library, Spawn of Energy-
Plus, Modelica External Object, FMI

1 Introduction
Modelica has been shown to be well suited to support re-
search, development and design of building and district
energy systems, including their control logic (Wetter and
Treeck 2017; Wetter, Treeck, et al. 2019). These appli-
cations typically require coupled simulations of the en-
ergy system and the building envelope. Coupled simula-
tion of building envelopes and energy systems has proven
challenging for various reasons. Building envelope mod-

els such as the ones in the Modelica Buildings (Wet-
ter, Zuo, Thierry S. Nouidui, et al. 2014), BuildingSys-
tems (Nytsch-Geusen et al. 2013) and IDEAS (Jorissen,
Reynders, et al. 2018) libraries add a significant amount of
code and a correspondingly large number of continuous-
time state variables. These result in long translation times
as Modelica tools do not yet satisfactory exploit repeated
structures to keep translation time reasonably short. For
simulation, the envelope model introduces a large number
of continuous time states. These present a problem for the
implicit ordinary differential equation solvers that are typ-
ically used on these stiff problems as these solvers scale
superlinearly in the number of states. At the same time,
the use of explicit solvers requires careful model tuning,
which is not practical for most users (Jorissen, Wetter, and
Helsen 2015). Finally, porting envelope models to Model-
ica would require considerable resources for porting algo-
rithms including for shading calculations, 3D heat trans-
fer, and coupled heat and moisture transfer through build-
ing fabrics, many of which may be better implemented in
traditional imperative code. Tools for converting 3D data
models for the building envelope would also need to be
adapted to support input for Modelica. While future ef-
forts by different building simulation developers may pro-
ceed along these lines, more advances are needed in Mod-
elica translators, and multi-rate solvers for systems of stiff
ordinary differential equation need to be accessible from
Modelica tools in order to make use of such models prac-
tical for simulation of large buildings.

The US Department of Energy (DOE) has sponsored
the development of EnergyPlus, a whole building energy
simulation program (Crawley et al. 2001), since 1996. En-
ergyPlus is built on fundamental assumptions that makes
it poorly suited to modeling building control sequences
as they are implemented in physical controllers. DOE has
also sponsored the development of the Modelica Buildings
Library which is well suited to model HVAC and controls,
but suffers from scalability to large building models for
the above mentioned reasons. Spawn of EnergyPlus (or
just Spawn) is the latest whole-building energy simulation
program sponsored by DOE. Developed by the National
Labs and industry, Spawn reuses the EnergyPlus envelope
model and couples it to Modelica HVAC and control mod-
els from the Modelica Buildings Library (Wetter, Benne,
et al. 2020), thereby combining the strengths of the two

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

325

Modelica

simulation manager

EnergyPlus
time step

EnergyPlus
time step

HVAC & controls

variable
time step

OutputVariable

EnergyPlus

OutputVariable

Actuator

Schedule

EnergyManagementSystem:Actuator

Schedule

Air temperature
Air humidity
Radiant internal gains
Air mass flow rate & temperature

Radiative temperature
Sensible heat flow rates to air
Latent heat flow rates to air
Heat gains from people

Thermal zone Thermal zone

Temperature of surface

Air-side heat flow rate

Zone surface Zone surface

Temperature of both surfaces
External heat flow rate at
both surfaces

Opaque construction Opaque construction

Figure 1. Partitioning of the envelope, room and HVAC model.

software approaches and implementations. Spawn is not
an imminent replacement for EnergyPlus. Rather, it is
intended to provide several capabilities that significantly
advance beyond EnergyPlus and the Modelica Buildings
Library. These include modeling of novel HVAC and dis-
trict energy systems, scalable simulation of large build-
ings, simulation of control sequences represented in ways
that also allow their implementation on building automa-
tion systems through a digitized control delivery process,
and intrinsic support of multi-physics simulation and co-
simulation with third party models.

This paper describes the additions to the Modelica
Buildings Library that enables coupling Modelica mod-
els to the EnergyPlus envelope model in a way that auto-
matically sets up the coupled simulation. While this im-
plementation is specific for the coupling of building enve-
lope models, a similar mechanism could be used to couple
other models for building or district energy systems, e.g.,
aquifer thermal energy storage in which individual bore-
holes are connected to the same subsurface model.

The paper is structured as follows: Section 2 describes
the variables that need to be exchanged between Model-
ica and EnergyPlus and states the requirements for cou-
pled simulations. Section 3 describes the implementation.
The key contribution is the mechanism that allows a deter-
ministic synchronization of the execution of multiple in-
stances of Modelica models. This synchronized execution
is necessary for the software to collect all data required
to generate one FMU for the whole building, before any
Modelica model requests parameter values or output val-
ues from this FMU. Section 4 shows examples of the im-
plementation, and Section 5 provides concluding remarks.

2 Requirements for Modelica Imple-
mentation

Figure 1 shows the variables that we require to be ex-
changed during the simulation between EnergyPlus and
Modelica. The coupling variables connect Modelica ther-
mal zone models, which implement the room air heat,
mass and pressure balance, with the EnergyPlus thermal
zone models that compute the convective heat gains from
building fabrics and from internal loads. To support ra-
diant systems, such as a radiant floors, coupling variables
connect surface temperatures and heat flow rates between
Modelica and EnergyPlus. Coupling variables are also
used to read the values of EnergyPlus output variables
for use in Modelica-implemented controllers, and to over-
ride EnergyPlus schedules and EnergyPlus Energy Man-
agement System actuators (Ellis, Torcellini, and Crawley
2007). The latter can be used to send signals to Energy-
Plus to control non-HVAC elements such as an active fa-
cade, lighting, or other equipment that contributes to heat
gains in the room and its surfaces.

To maximize usability and to enable drag-and-drop use
in a graphical Modelica editor by non-experts in Modelica,
the coupling needs to satisfy the following requirements.

1. To be able to graphically author and inspect models
in a graphical modeling environment, each model
(thermal zone, zone surface etc. as shown in Fig-
ure 1) should be its own instance, rather than being
part of an array of models. This also ensures that
translation and simulation diagnostics can be readily
understood, which would not be the case if models

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

326 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325

were referred to by an index of an array. Further-
more, if arrays of models were used, then wiring the
connections would be impractical, in particular for
large building models.

2. To enable simulation of multiple buildings, it should
be possible to programmatically collect instances of
models that belong to the same building in a hierar-
chical manner. It must also be possible to set com-
mon parameters centrally for all models that belong
to the same building.

3. The coupled simulation between Modelica and En-
ergyPlus should be set up automatically for the user.

4. To allow large synchronization time steps, coupling
should be done through slowly varying variables.

These requirements are addressed as follows. The first
requirement is addressed by having individual Modelica
classes (e.g., a model or block) for each object that com-
municates with EnergyPlus.

The second requirement is addressed by using inner
/outer declarations of a building model that is used to set
common parameters in the Modelica objects that commu-
nicate with the EnergyPlus building model. An example
of common parameters is the name of the outer building
declaration, which is used to determine which instances of
thermal zone models belong to the same building.

The third requirement is addressed by adding a C layer
to the Modelica Buildings Library, and a facility to the
EnergyPlus program, that exports EnergyPlus as an FMU.
This FMU is such that the required inputs and outputs, as
specified by the Modelica instances, are exposed through
its interface. This C layer invokes a command that gen-
erates the FMU, it loads the FMU, and it exchanges data
with the FMU.

The second and third requirements leads to the situation
that only after the Modelica model is partially initialized,
the configuration of the FMU and hence the content of its
modelDescription.xml file is known. Thus, the FMU
needs to be generated during the Modelica initialization,
and loaded before Modelica instances read parameter val-
ues from the FMU. This situation is a key reason for im-
plementing our custom code for managing the FMU. This
code is called using Modelica external C functions that are
synchronized through the here explained mechanism.

The fourth requirement is addressed by modeling in
Modelica the fast transients of the room air heat, mass
and pressure balance, and coupling to EnergyPlus via the
slower varying surface temperatures. This partitioning
also has the advantage that the room air temperature, hu-
midity and pressure, which are all connected to the HVAC
system, are all natively implemented in Modelica. This al-
lows using the same differential equation solver for these
variables and the HVAC system.

We selected FMI for Model Exchange, version 2.0,
rather than Co-Simulation because we allow certain sig-
nals to have direct feed-through. For example we allow

setting a window blind and receiving the updated room
daylight illuminance level at the same time step. This is
only allowed in Model Exchange. Note, however, because
EnergyPlus integrates its continuous time states using its
own solvers, the FMU exposes no derivative. For Model-
ica, it looks like a discrete time model.

3 Implementation
3.1 Modelica Classes
For the coupling, we implemented the following Modelica
classes:

Building Model that declares a building to which En-
ergyPlus objects belong to.

ThermalZone Model to connect to an EnergyPlus ther-
mal zone.

ZoneSurface Model to exchange heat with an inside-
facing surface of a thermal zone.

OpaqueConstruction Model to exchange heat with
both surfaces of an opaque construction. The con-
struction is modeled in Modelica. Heat is exchanged
with the room-facing front surface and the back-side
facing surface of an EnergyPlus construction.

Actuator Block to write to an EnergyPlus actuator.

OutputVariable Block to read an EnergyPlus output
variable.

Schedule Block to write to an EnergyPlus schedule.

These Modelica classes allow communication between
Modelica and EnergyPlus objects for thermal zones; ther-
mal zone surfaces, either for the inside-facing surface
only, or also its back-side facing surface (that may be lo-
cated in an adjacent zone, or be the outside, or the ground
temperature); Energy Management System (EMS) actu-
ators; schedules; and output variables. To associate the
Modelica classes to a building, the Building model is
instantiated using the inner component prefix, and the
other six classes use an instance of the Building model
with the outer prefix. Through this mechanism, every
instance that is in the instance tree below the Building

instance will be associated with that particular build-
ing, and multiple buildings can be modeled in one Mod-
elica model. All classes, other than Building, extend
from ExternalObject to communicate with code im-
plemented in C. In C, a data structure stores all build-
ing instances, and for each building instance, keeps track
of which of the above objects belongs to that build-
ing instance. This data structure is set up when invok-
ing the constructors of these Modelica instances via the
ExternalObject. After all constructors are called, an
FMU is generated for each building.

3.2 Constructor Synchronization
A key challenge was to enforce that all constructors are
called before the FMU is generated. The Modelica Lan-

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

327

guage Specification 3.5 does not guarantee that all con-
structors in a model are called before any Modelica func-
tion that uses a return value of a constructor is being used.
In early research code, some Modelica tools invoked a
function that uses the return value from the constructor
of the ExternalObject before all instances called their
constructor. As a consequence, the FMU exposed inter-
face variables for some but not all instances, and the sim-
ulation terminated. Therefore, we changed the Modelica
implementation to enforce the execution sequence shown
in Algorithm 1.

Algorithm 1 Required execution sequence for generation
and simulation of envelope model.

Data Let I be the set of all instances that
communicate with EnergyPlus.

Step 1: For all instances i ∈I ,
call constructor for i.

Step 2: For all instances i ∈I ,
initialize i.
If first call to any initialization,

construct and load FMU,
setup experiment.

Step 3: For all instances i ∈I ,
assign Modelica parameters by
getting their values from the FMU.

Step 4: For all instances i ∈I ,
at each synchronization step,
set inputs, time and get outputs from FMU.

Step 5: For all instances i ∈I ,
call destructor for i.
If last call to any destructor

terminate and unload the FMU.

A key challenge was to enforce that in Algorithm 1,
Step 1 is completed before Step 2 begins. While this
would have been easy to enforce by using one constructor
for the whole building model, such a centralized specifi-
cation is impractical. To enforce this calling sequence, we
therefore synchronized all objects using a connector that
uses a potential and flow variable, together with inner
and outer constructs that hide this complexity from the
user. Note that these inner and outer constructs are dif-
ferent from the ones described in Section 3.1. Our im-
plementation is based on the code provided by Beutlich
(2021), which was motivated by Elmqvist et al. (2015).

Listing 1 to 9 describe this implementation, us-
ing a minimum representative example that has only
one building and two thermal zones. The ac-
tual implementation is considerably larger and can be
found in the Modelica Buildings Library 8.0.0, pack-
age Buildings.ThermalZones.EnergyPlus. Listing 1
shows the package with the SynchronizeConnector

whose flow variable will be assigned by every ther-
mal zone. The SynchronizeConnector is instantiated
at the building level, as shown in Listing 2. The build-
ing sets its potential variable, which is needed for the

model to be well defined, and it declares a variable
isSynchronized whose value is set to the flow variable
of the connector. Listing 3 shows the implementation of
the thermal zone which extends ObjectSynchronizer

and through this extends statement, gets a reference
to the outer building and an instance of synchroniza-
tion connector synBui. The call to initialize takes as
an argument building.isSynchronized, which is com-
puted by the outer building instance, and this compu-
tation requires the return value nZ of initialize which
is assigned to building.synchronize.done via the
ObjectSynchronizer. The other code in ThermalZone

is a standard use of an external function interface that
returns adapter which encapsulates a pointer to the C
structure that contains the data structure needed to orches-
trate the FMU coupling. This external function interface is
shown in Listing 4. The two Modelica functions that com-
municate with the C implementation are shown in List-
ings 5 and 6, and the C implementation is shown in List-
ings 7 and 8.

Listing 1. Package that synchronizes all objects that belong to
the building.

within BuildingRooms;
package Synchronize

connector SynchronizeConnector
Real do "Potential variable";
flow Real done "Flow variable";

end SynchronizeConnector;

model SynchronizeBuilding
SynchronizeConnector synchronize;

end SynchronizeBuilding;

model ObjectSynchronizer
outer Building building;
SynchronizeBuilding synBui;

equation
connect(building.synchronize,

synBui.synchronize);
end ObjectSynchronizer;

end Synchronize;

Listing 2. Model that declares building-level parameters.

within BuildingRooms;
model Building

"Model that declares a building"
Synchronize.SynchronizeConnector

synchronize;
Real synchronization_done =

synchronize.done;
Real isSynchronized;

equation
synchronize.do = 0;

algorithm
isSynchronized := synchronization_done;

end Building;

Listing 3. Model that implements the thermal zone.

within BuildingRooms;
model ThermalZone

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

328 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325

extends Synchronize.ObjectSynchronizer;
constant String name=getInstanceName();
ZoneClass adapter = ZoneClass(name,

startTime);

parameter Real startTime(fixed=false);
parameter Integer nZ(
fixed=false, start=0)
"Total number of zones in building";

constant Real k=1;
Real tNext(start=startTime, fixed=true);
Real T(start=293.15, fixed=true);
Real Q_flow;

initial equation
startTime=time;
nZ=initialize(

adapter=adapter,
startTime=time,
isSynchronized=building.isSynchronized)

;
equation

when {initial(), time >= pre(tNext)} then
(tNext, Q_flow) =exchange(

adapter,
time,
T,
nZ);

end when;
k*der(T) = Q_flow;
nZ =synBui.synchronize.done;

end ThermalZone;

Listing 4. Model that implements the thermal zone.

within BuildingRooms;
class ZoneClass extends ExternalObject;

function constructor
input String name "Name of the zone";
input Modelica.SIunits.Time startTime;
output ZoneClass adapter;

external "C" adapter=ZoneAllocate(name)
annotation (
Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources
");

end constructor;

function destructor
input ZoneClass adapter;

external "C" ZoneFree(adapter)
annotation (
Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources
");

end destructor;
end ZoneClass;

Listing 5. Model that implements the thermal zone.

within BuildingRooms;
function initialize

input ZoneClass adapter;
input Real startTime;

input Real isSynchronized;
output Integer nZ "Number of zones";
external "C" ZoneInitialize(adapter,

startTime, nZ)
annotation (

Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources")
;

end initialize;

Listing 6. Model that implements the thermal zone.

within BuildingRooms;
function exchange

input ZoneClass adapter;
input Real t;
input Real T;
input Integer nZ;
output Real tNext;
output Real Q_flow;
external "C" ZoneExchange(adapter, t, T,

tNext, Q_flow)
annotation (Include="#include <

thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/
C-Sources");

end exchange;

Listing 7. Header file for C code that is a mock-up for the code
that instantiates and communicates the FMU for the building en-
velope.

#ifndef thermalZone_h
#define thermalZone_h

typedef struct Zone{
char* name;

} Zone;

#endif

Listing 8. C code that is a mock-up for the code that instantiates
and communicates the FMU for the building envelope.

#ifndef thermalZone_c
#define thermalZone_c

#include <string.h>
#include <stdbool.h>

#include "thermalZone.h"

static int nZon = 0; /* Number of zones */
static bool buildingIsInstantiated = false;

void* ZoneAllocate(const char* name){
Zone* ptrZone;

/* Allocate zone and assign name */
ptrZone = (Zone*) malloc(sizeof(Zone));
ptrZone->name =

malloc((strlen(name)+1) * sizeof(char))
;

strcpy(ptrZone->name, name);
/* Increment counter for zones */

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

329

nZon++;

ModelicaFormatMessage(
"Allocated zone %s\n", name);

return (void*) ptrZone;
}

void ZoneInitialize(
void* object,
double startTime,
int* nZ){
Zone* zone = (Zone*) object;

*nZ = nZon;
if (!buildingIsInstantiated){

/* Here, the actual implementation
constructs an FMU that
is shared by all zones.
This requires that all zones
executed ZoneAllocate().

*/
buildingIsInstantiated = true;
ModelicaFormatMessage(

"Initialized zone %s.
Instantiated building, nZ = %
d.\n",

zone->name, nZon);
}
else{

ModelicaFormatMessage(
"Initialized zone %s, nZon = %d\n

",
zone->name, nZon);

}
}

void ZoneExchange(
void* object,
double time,
double T,
double* tNext,
double* Q_flow){
Zone* zone = (Zone*) object;
/* In the actual implementation,

this is computed in an FMU.

*/

*Q_flow = 283.15-T;

*tNext = time + 1;
ModelicaFormatMessage(
"Exchanged with zone %s at time=%f,

nZon = %d\n",
zone->name, time, nZon);

}

void ZoneFree(void* object){
Zone* zone = (Zone*) object;
free(zone->name);
free(zone);

}

#endif

For the user, the complexity of the synchronization is
hidden. A building and its elements can be configured
using the same Modelica constructs as are used for other
instances, as Listing 9 shows.

Listing 9. Model that instantiates a building and two thermal
zones that belong to this building.

within BuildingRooms;
model MyBuildingInstance

"Building with two thermal zones, e.g.,
nZ=2"

inner Building building;
ThermalZone t1;
ThermalZone t2;

end MyBuildingInstance;

Simulating this model will give an output such as

Allocated zone MyBuildingInstance.t2
Allocated zone MyBuildingInstance.t1
Initialized zone MyBuildingInstance.t1.

Instantiated building, nZ = 2.
Initialized zone MyBuildingInstance.t2,

nZon = 2
Initialized zone MyBuildingInstance.t1,

nZon = 2
Initialized zone MyBuildingInstance.t2,

nZon = 2
Exchanged with zone MyBuildingInstance.t1

at time=0.000000, nZon = 2
Exchanged with zone MyBuildingInstance.t2

at time=0.000000, nZon = 2
...

3.3 C API
To control the FMU that contains the EnergyPlus envelope
model, we developed a library in C which uses the FMI Li-
brary (FMI Library 2021) to interact with the FMU. Fig-
ure 2 shows the UML sequence diagram. Each Modelica
object that communicates with EnergyPlus extends from
the Modelica built-in class ExternalObject. Through its
constructor, the Modelica instance calls the C code which
registers the object in a static struct, and stores pa-
rameters that are declared in Modelica. These parameters
include for example the name of a thermal zone so that it
can be matched to the thermal zone object in the Energy-
Plus model. Through the name of the outer instance of
Buildings, objects that belong to the same building are
registered accordingly. After all constructors are called,
the first call to initialize will invoke a program that
generates the FMU. Next, through the Modelica func-
tion getParameters, parameters such as the volumes of
a thermal zone that are computed by EnergyPlus are re-
trieved from the FMU and assigned to Modelica parame-
ters. During the simulation, the Modelica exchange func-
tion exchanges data and synchronizes time with the FMU.
Finally, the destructor of the Modelica ExternalObject

terminates and unloads the FMU.

3.4 FMU Generation
During the initialize step, an executable program
spawn is invoked to generate a unique FMU for each
Building configuration. spawn is invoked via a com-
mand line interface, which accepts a JSON file that speci-
fies the contents of the resulting FMU. All configuration is
specified by the Modelica classes described in Section 3.1.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

330 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325

Modelica C FMU generator FMU

constructor ()

registerObject()

return ptr
return ptr

initialize (ptr)

generateFMU ()

return

return n

Construct FMUConstruct FMU

getParameters(ptr)

getReal()

return p

return p

Initialize parametersInitialize parameters

exchange(ptr, t, u)

setTime(t)

advanceTime()

setReal(u)

getNextEventTime()

return tnext

getReal()

return y

return [y, tnext]

Simulation, when(initial(), t ≥ tnext)Simulation, when(initial(), t ≥ tnext)

destructor ()

terminate ()

DeconstructionDeconstruction

Figure 2. Sequence diagram for interaction with FMU.

The following steps are taken by the spawn program
during FMU generation.

1. Create a staging directory.

2. Copy required resources into the staging directory,
including the EnergyPlus input data file (IDF), and
weather files. These files are specified by the user
via parameters of the Modelica Building model.

3. Modify the given EnergyPlus IDF file so that it con-
forms to Spawn’s requirements. The primary mod-
ification is to remove any EnergyPlus HVAC and
control related objects.

4. Copy a custom EnergyPlus based shared library into
the staging directory.

5. Generate a modelDescription.xml file, according
to the variables that are requested via JSON input.

6. Compress the staging directory into zip format.

The resulting FMU is a self contained package with all
of the resources required for an EnergyPlus based build-
ing simulation. Although it is possible to interact with the
command line tool directly, it is currently not supported as
a stand-alone tool.

3.5 Changes to EnergyPlus
The coupling of EnergyPlus with Modelica introduces
unique requirements that EnergyPlus did not originally
address. First, EnergyPlus was its own simulation man-
ager and controlled the progression of simulated time; in
Spawn, time is managed by Modelica. Second, although
EnergyPlus included an External Interface feature for run-
time data exchange, the existing capability was insuffi-
cient for Spawn. Most importantly, the External Interface
feature limited the communication step to that of the zone
time step, a limitation that derived from EnergyPlus’ inter-
nal HVAC and control system models. In Spawn, HVAC
and control system models are simulated using Modelica.

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

331

We modified EnergyPlus to allow the EnergyPlus
HVAC loop to be bypassed, leaving the core EnergyPlus
zone heat balance calculation engine which, based on our
modifications, can be invoked at any simulated time even
below the traditional zone time step limit of one minute.

We also added a software layer on top of Energy-
Plus that facilitates simulation in which EnergyPlus is
advanced through time by another program, and data is
exchanged at each step. The former External Interface
approach to co-simulation was based on a client-server
architecture operating over a TCP/IP socket. However,
socket based communication involves serialization and
de-serialization at the endpoints that introduces a perfor-
mance penalty with every exchange. The new approach
implemented for Spawn is based on a co-routine design
pattern. The co-routine is implemented using two threads.
One thread contains the conventional EnergyPlus routine,
and a second thread is a control thread that implements
functions such as setTime, setReal, and getReal. In
the co-routine, only one thread is active at any moment in
time, and the two threads share memory, making data ex-
change between them efficient. The co-routine works by
ping-pong’ing between the two threads. The EnergyPlus
thread is blocked until a signal from the control thread
is sent to advance in time; in turn the control thread is
blocked until EnergyPlus signals that it has advanced to
the desired time. When the EnergyPlus thread is blocked,
the control thread can access EnergyPlus state and respond
to requests for data. This results in an efficient data ex-
change with EnergyPlus and limited modifications to En-
ergyPlus code. This software layer combined with Ener-
gyPlus is compiled as a shared library and included in the
generated FMU described in Section 3.4.

4 Examples
We will now show two examples. The first example shows
how translation and simulation time compares between
a scalable model that uses an identical Modelica HVAC
and control model with the envelope model of either the
Modelica Buildings Library (Wetter, Zuo, and Thierry
Stephane Nouidui 2011; Thierry Stephane Nouidui et al.
2012) or of EnergyPlus. The second example shows how
to configure a Modelica model that uses the EnergyPlus
envelope model to control a shade.

4.1 Translation and Simulation Time
This example shows how translation and simulation
time changes between a native Modelica implementa-
tion and the EnergyPlus-Modelica coupled implemen-
tation for a building model with detailed HVAC sys-
tem of varying size. For this example, we cre-
ated a scalable model of the Modelica Buildings
Library’s ThermalZones.Detailed.MixedAir thermal
zone model and the EnergyPlus envelope model
ThermalZones.EnergyPlus.ThermalZone. Both cases
model multiple floors that are representative of the large
office building from the commercial reference building

models for Chicago, IL (Deru et al. 2011). Each floor
has 4 perimeter zones and a large core zone. Each floor
is served by its own VAV system that includes an econo-
mizer, heating and cooling water-to-air coils and terminal
reheat boxes. The system controls the ventilation, heating
and cooling of all five zones based on ASHRAE Guide-
line 36 (ASHRAE 2018). Both cases use the same HVAC
model. The hot- and cold-water loops are modeled with
idealized heat sources and sinks.

The template models are scaled in size by varying the
number of floors as shown in Table 1. As each floor is
served by one HVAC system and has 5 thermal zones, the
case with 10 floors has, for example, 10 HVAC systems
and 50 thermal zones.

To have different state trajectories for each floor, each
floor was configured to have a slightly different design air
flow rate. This measure ensures that each floor triggers
state events that are not simultaneous to state events from
other floors, and that the adaptive time step solver com-
putes indeed different error estimates for each floor, which
overall may lead to more time steps as the number of di-
verse floors increases. Without this measure, the scaling
may have been non-representative as temperatures in dif-
ferent floors typically evolve on different trajectories.

The models are available from https://github.
com/lbl-srg/modelica-buildings, commit
15b90ae8bd5c4f3d6de23eee66b2efaab0c78b60.1 The
translated model with 10 thermal zones has 1700 con-
tinuous states and 48800 time varying variables if the
MixedAir model is used, and 810 continuous states
(about half of the native Modelica implementation) and
36800 time varying variables if the EnergyPlus model is
used. All models were simulated for the days indicated in
Table 1, using the Chicago TMY3 weather file. We used
Dymola 2021 on Ubuntu 18.04 with the CVode solver, a
tolerance of 10−5 and the sparse solver unless indicated
otherwise in the table.

Table 1 show the translation and simulation times. The
simulation time corresponds to the total CPU time re-
quired to simulate the compiled model. 2 Figure 3 shows
the CPU time as a function of model time, and the rela-
tive computing time for each day. As can be seen in the
figure, the slope of the CPU time is not constant over the
model time. These change in slope are attributed to the
change in dynamics of the state trajectories that occurs
during certain parts of the model time. As shown in the
plot, there are no step changes in the CPU time. A step
change would have indicated a numerical problem, which
may distort the total computing time as the numerical error
is not an artifact of the different envelope model but rather
of the resulting differential algebraic system of equations.

1Modelica package Examples.ScalableBenchmarks.ZoneScaling.
2This version of Spawn computes the numerically expensive shadow

calculations from January 1 to the start day of the simulation. For the
cases where the simulation starts in summer, this time is substantial.
Because this is planned to be corrected in future releases, we subtracted
this time in all reported results.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

332 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325

Table 1. Translation and simulation time for the MixedAir and
EnergyPlus thermal zone model.

Model Floors Translation
Time [s]

Simulation
Time [s]

MixedAir
days 1-5

2 47 81
4 89 223
10 230 973

EnergyPlus
days 1-5

2 31 (66%) 35 (43%)
4 57 (64%) 97 (43%)
10 139 (61%) 462 (48%)

MixedAir
days 1-5,
non-sparse

2 102
4 361
10 2570

EnergyPlus
days 1-5,
non-sparse

2 39 (38%)
4 115 (32%)
10 677 (26%)

MixedAir
days 180-185

2 66
4 160
10 583

EnergyPlus
days 180-185

2 30 (45%)
4 74 (46%)
10 264 (45%)

In summary, the models with the EnergyPlus thermal
zones translate about 35% faster. Their simulation time is
also about 50% faster for the cases with the sparse solver.
For the model with 10 zones, disabling the sparse solver
increases the computing time by a factor of 2.5 for the case
with the MixedAir model, and by about 1.5 for the case
with the EnergyPlus model.

4.2 Shade Control
This example illustrates how to interface with EnergyPlus
from different Modelica models. Figure 4 shows a model
of a building with three thermal zones, one of which has a
window with a shade. These are simulated in EnergyPlus.
Modelica models the window shade control sequence, for
which it obtains incident solar radiation from EnergyPlus
and sends the actuation signal back to EnergyPlus. Model-
ica also models the fresh air supply and an idealized cool-
ing system in each thermal zone. The air heat and mass
balances for each room are modeled in Modelica, and the
envelope heat transfer is modeled in EnergyPlus.

In the figure, the instance building specifies building-
level settings, such as the EnergyPlus IDF file. The three
blue icons in the middle connect to three EnergyPlus ther-
mal zones. The instance incBeaSou reads from Ener-
gyPlus the incident beam solar radiation on the window,
and the instance actSha actuates the window shade. In
the EnergyPlus model, the west-facing thermal zone has
a window blind that is open if its control signal is 0 or
closed if it is 6. The control sequence obtains the room
air temperature of the west-facing zone from the Model-
ica instance zonWes, and connects it to a hysteresis block
that switches its output to true if the zone temperature is
above 24◦C, and to false if it drops below 23◦C. The in-
stance incBeaSou obtains from EnergyPlus the incident
solar beam radiation on the outside of the window, and
feeds it into a hysteresis block that outputs true if its in-

0 1 2 3 4 5

simulation time [days]

0

500

1000

C
P

U
ti

m
e

[s
]

MixedAir, 2 floors

MixedAir, 4 floors

MixedAir, 10 floors

EnergyPlus, 2 floors

EnergyPlus, 4 floors

EnergyPlus, 10 floors

0 1 2 3 4 5

simulation time [days]

0.0

0.5

1.0

R
el

at
iv

e
co

m
p

u
ti

n
g

ti
m

e
[1

]

2 floors

4 floors

10 floors

(a) Winter days, with sparse solver.

180 181 182 183 184 185

simulation time [days]

0

200

400

600

C
P

U
ti

m
e

[s
]

MixedAir, 2 floors

MixedAir, 4 floors

MixedAir, 10 floors

EnergyPlus, 2 floors

EnergyPlus, 4 floors

EnergyPlus, 10 floors

180 181 182 183 184 185

simulation time [days]

0.0

0.5

1.0

R
el

at
iv

e
co

m
p

u
ti

n
g

ti
m

e
[1

]

2 floors

4 floors

10 floors

(b) Summer days, with sparse solver.

Figure 3. CPU time and relative computing time for Model-
ica Buildings Library MixedAir and EnergyPlus thermal zone
model. The relative computing time is the ratio of CPU time it
took to simulate the indicated day for Spawn compared to the
native Modelica model.

building

qIntGai[]

k=0

qIntGai[]

k=0

zonWesWest Zone TRad

air

q

TAir

zonWes

phi
zonEasEAST ZONE TRad

air

q

TAir

zonEas

phi

zonNorNORTH ZONE TRad

air

q

TAir

zonNor

phi

actSha

incBeaSou

0

shaT

22 °C 24 °C

shaH

10 W/m²200 W/m²

and

and2

greEquT

h=0

0 0.5

greEquH

h=0

0 0.5

booToRea

0
6

B R

m

m_flow

C

bou[]

m

bou[]

out

11.7

res

res1[]res1[]res1[]res1[]

cooNor

cooWes

cooEas

weaBus

Figure 4. Schematic diagram of the Spawn model
with shade control, available from the Buildings Library
as Buildings.ThermalZones.EnergyPlus.Examples.
SingleFamilyHouse.ShadeControl. Note that the ther-

mal zone models zon*, the output variable reader for the inci-
dent solar radiation incBeaSou and the actuator for the shade
actSha all communicate with the same EnergyPlus model via
C functions. Thus, the control loop from shade control to zone
temperature zonWes.TAir is closed via EnergyPlus.

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

333

put exceeds 200W/m2, and switches to false if it drops
below 10W/m2. The instance actSha connects to the ac-
tuator in EnergyPlus that activates this shade. If both out-
puts of the hysteresis blocks are true, then the EnergyPlus
shade actuator is deployed by setting the input of actSha
to 6. Otherwise, the input is set to 0. To the right of the
model, there are three idealized cooling systems that keep
the room air temperature below 25◦C in each of the three
zones. Also, each zone is connected to a constant, uncon-
ditioned outside air supply.

5 Conclusions
Through the use of inner/outer constructs and a flow
variable, we were able to ensure a correct synchroniza-
tion of Modelica models that communicate with a com-
mon data structure via C functions that each use a dis-
tinct pointer to memory obtained through a Modelica
ExternalObject. This was essential for enabling model
authoring in the same way as one typically does with Mod-
elica models that are instantiated in a distributed manner
within a larger Modelica system model. The implementa-
tion ensures that each constructor is called before the first
Modelica instance calls its initialization function that gen-
erates and imports the FMU, which is then accessed for
input and output by the different Modelica instances. The
resulting implementation allows simulating one or several
buildings, where each building is represented by an FMU
that can have any number of objects that are synchronized
with Modelica.

For a Modelica model that consists of a variable air vol-
ume flow system and detailed control sequence, coupled
to a multi-zone building envelope model that is imple-
mented either in Modelica or in EnergyPlus, the version
that uses EnergyPlus translates about 35% faster and sim-
ulates about 50% faster.

Acknowledgements
This research was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Build-
ing Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

The authors would also like to thank Thomas Beutlich
for pointing out and adapting a similar synchronization
problem from Elmqvist et al. (2015).

References
ASHRAE (2018-06). ASHRAE Guideline 36-2018 – High Per-

formance Sequences of Operation for HVAC systems.
Beutlich, Thomas (2021). Modelica Specification issue 2842.

URL: https : / /github.com/modelica /ModelicaSpecification /
issues/2842#issuecomment-776194950 (visited on 2021-03-
08).

Crawley, Drury B. et al. (2001). “EnergyPlus: creating a new-
generation building energy simulation program”. In: Energy
and Buildings 33.4. Special Issue: BUILDING SIMULA-
TION’99, pp. 319–331. ISSN: 0378-7788. DOI: https:/ /doi .
org/10.1016/S0378-7788(00)00114-6.

Deru, Michael et al. (2011-02). U.S. Department of Energy Com-
mercial Reference Building Models of the National Building
Stock. Tech. rep. National Renewable Energy Laboratory.

Ellis, Peter G., Paul A. Torcellini, and Drury B. Crawley (2007).
“Simulation of Energy Management Systems in EnergyPlus”.
In: Proc. of the 10-th IBPSA Conference. Ed. by Jiang Yi et al.
International Building Performance Simulation Association
and Tsinghua University. URL: http://www.ibpsa.org/.

Elmqvist, Hilding et al. (2015-09). “Generic Modelica Frame-
work for MultiBody Contacts and Discrete Element Method”.
In: 11-th International Modelica Conference. Ed. by Peter
Fritzson and Hilding Elmqvist. Modelica Association. Paris,
France, pp. 427–440. DOI: 10.3384/ecp15118427.

Jorissen, Filip, Glenn Reynders, et al. (2018). “Implementation
and Verification of the IDEAS Building Energy Simulation
Library”. In: Journal of Building Performance Simulation 11
(6), pp. 669–688. DOI: 10.1080/19401493.2018.1428361.

Jorissen, Filip, Michael Wetter, and Lieve Helsen (2015-09).
“Simulation Speed Analysis and Improvements of Modelica
Models for Building Energy Simulation”. In: 11-th Interna-
tional Modelica Conference. Ed. by Peter Fritzson and Hild-
ing Elmqvist. Modelica Association. Paris, France, pp. 59–
69. DOI: 10.3384/ecp1511859.

FMI Library (2021). URL: https : / / github . com / modelon -
community/fmi-library (visited on 2021-03-08).

Nouidui, Thierry Stephane et al. (2012-09). “Validation and Ap-
plication of the Room Model of the Modelica Buildings Li-
brary”. In: Proc. of the 9-th International Modelica Confer-
ence. Modelica Association. Munich, Germany, pp. 727–736.
DOI: 10.3384/ecp12076727.

Nytsch-Geusen, Christoph et al. (2013). “Modelica Build-
ingSystems eine Modellbibliothek zur Simulation komplexer
energietechnischer Gebäudesysteme”. In: Bauphysik 35.1,
pp. 21–29. ISSN: 1437-0980. DOI: 10.1002/bapi.201310045.

Wetter, Michael, Kyle Benne, et al. (2020-09). “Lifting the
Garage Door on Spawn, an Open-Source BEM-Controls En-
gine”. In: Proc. of Building Performance Modeling Confer-
ence and SimBuild. Chicago, IL, USA, pp. 518–525. URL:
https:/ /simulationresearch.lbl .gov/wetter/download/2020-
simBuild-spawn.pdf.

Wetter, Michael and Christoph van Treeck (2017-09). IEA EBC
Annex 60: New Generation Computing Tools for Building and
Community Energy Systems. ISBN: 978-0-692-89748-5. URL:
http://www.iea-annex60.org/pubs.html.

Wetter, Michael, Christoph van Treeck, et al. (2019-09). “IBPSA
Project 1: BIM/GIS and Modelica framework for building
and community energy system design and operation – ongo-
ing developments, lessons learned and challenges”. In: IOP
Conference Series: Earth and Environmental Science 323,
p. 012114. DOI: 10.1088/1755-1315/323/1/012114.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, et al. (2014).
“Modelica Buildings library”. In: Journal of Building Perfor-
mance Simulation 7.4, pp. 253–270. DOI: 10.1080/19401493.
2013.765506.

Wetter, Michael, Wangda Zuo, and Thierry Stephane Nouidui
(2011-11). “Modeling of heat transfer in rooms in the Mod-
elica "Buildings" library”. In: Proc. of the 12-th IBPSA Con-
ference. International Building Performance Simulation As-
sociation. Sydney, Australia, pp. 1096–1103. URL: https : / /
simulationresearch . lbl . gov / wetter / download / 2011 - ibpsa -
BuildingsLib.pdf.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

334 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325

Coupling physical and machine learning models: case study of a
single-family house

Basak Falay1 Sandra Wilfling2 Qamar Alfalouji2 Johannes Exenberger2 Thomas Schranz2

Christian Møldrup Legaard3 Ingo Leusbrock1 Gerald Schweiger2

1AEE-Institue for Sustainable Technologies, Austria b.falay@aee.at
2Institute of Software Technology, Technical University of Graz, Austria gerald.schweiger@tugraz.at

3DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, cml@ece.au.dk

Abstract
The emergence of Cyber-Physical Systems poses new
challenges for traditional modelling and simulation tech-
niques. We need to combine white, grey, and black box
models as well as different tools developed for specific
subsystems and domains. Co-simulation is a promising
approach to modeling and simulating such systems. This
paper presents a case study where a physical model of a
building’s heating system implemented in Modelica is co-
simulated with a machine learning model of a stratified
hot water tank implemented in Python. The Python model
is exported as Functional Mock-up Unit using UniFMU.
Keywords: Co-Simulation, Functional Mock-Up Inter-
face, Modelling, Machine Learning

1 Introduction
Future intelligent and integrated energy systems must have
a high degree of flexibility and efficiency to ensure reli-
able and sustainable operation (Lund et al. 2017). Along
with the rapid expansion of renewable energy, this degree
of flexibility and efficiency can be achieved by overcom-
ing the clear separation between different sectors and by
increasing connectivity and the associated data availabil-
ity through the integration of sensors and edge/fog com-
puting (Vatanparvar and Faruque 2018). All of these de-
velopments drive the transition towards so-called Cyber-
Physical Energy Systems (Palensky, Widl, and Elsheikh
2013). Cyber technologies (sensors, edge/fog comput-
ing, IoT networks, etc.) can monitor the physical systems,
enable communication between different subsystems, and
control them. Thus, the emergence of Cyber-Physical Sys-
tems poses new challenges for traditional modelling and
simulation approaches.

One of these challenges is that models need to com-
bine computational systems and data communication net-
works with physical systems. Furthermore, recent studies
showed that pure white-box models based on first princi-
ples deal with drawbacks such as time-consuming devel-
opment, validation problems or low computational speed
(Li and Wen 2014). Consequently, these approaches have
limited use for complex systems such as intelligent build-
ings outside of academia (Schweiger, Nilsson, et al. 2020).

Black-box approaches examine the system from the out-
side using input/output relations. Depending on the ap-
proach, they are computationally efficient but compared
to white-box approaches they lack in generalizability and
extensibility (Thieblemont et al. 2017). Beside white-box
and black-box models, grey-box models fall in between
(Harish and Kumar 2016). Several papers highlighted
the importance of combining white-, grey-, and black-
box models for analyzing and optimizing Cyber-Physical
Systems (O’Dwyer et al. 2019; Killian and Kozek 2016;
Thilker, Madsen, and Jørgensen 2021).

There are two options to simulate the interactions be-
tween subsystems; (i) the entire system can be modelled
and simulated with a single tool referred to as monolithic,
(ii) already established models for the respective subsys-
tems are coupled in co-simulation (Gomes et al. 2018).
A recent survey discussed the advantages, disadvantages,
and challenges of co-simulation approaches (Schweiger,
Engel, et al. 2018). This survey showed that experts con-
sider the Functional Mock-Up Interface (FMI) standard
to be the most promising standard for continuous-time,
discrete-event, and hybrid co-simulation.

In this paper, the physical parameters of a subsystem
(stratified storage tank) are not available. In this situation,
model calibration and parameter estimation approaches
can be used depending on availability of the measurement
data. On the other hand, machine learning models can
be as well used to mimic the behavior of the system by
construct relationships between input and outputs without
being dependent on the components parameters. Artificial
Neural Networks was used to model the stratified storage
tank in (Géczy-Vig and Farkas 2010). In this work, Ran-
dom Forest (RF) was used to model the temperatures in
each layer of the stratified storage tank. Since the states of
the other components influence the state of the stratified
storage, we have created a co-simulation workflow where
the machine learning and physical models can be cou-
pled. Physical and machine learning models are available
at https://github.com/tug-cps/NextHyb2 . Un-
fortunately, we cannot publish the data due to data privacy
policy. Therefore, we have additionally generated a syn-
thetic, open-source data set.

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

335

2 Method
2.1 Heating System of Single-family House
A single-family house with 180m2 floor area, located in
Austria with an annual energy consumption of 7500 kWh
was analyzed in this work. Figure 1 gives an overview of
the main components of the single-family house heating
system. The house, equipped with a floor heating system,
has three different heat sources: (i) a solar collector with
46m2 flat plate area, (ii) a stove which directly heats the
house, and the excess heat feeds the storage tank and (iii)
an air-to-water heat pump. Additionally, an estimated 3m3

storage tank bridges these three heat sources in order to in-
crease the efficiency of the heating system. The house has
an indoor pool (24m3), which is heated by the hot water
storage tank or directly by the solar collector.

Figure 1. Overview of the single-family house heating system.
Red line represents the supply and blue line represents the return
temperatures.

The following rule-based control strategy of the heating
system is given below.

• The priority of the solar collector is to maintain the
temperature of top layer of the storage tank at 52◦. If
this condition is satisfied, then the excess heat from
the solar collectors heats the indoor pool to 35◦.

• If the solar collector cannot meet the heating demand
of the indoor pool and if the top layer temperature of
storage tank is higher than 52◦, the storage tank heats
the pool.

• If these conditions don’t satisfy or the temperature of
the bottom layer of the storage tank drops below 35◦,
the heat pump turns on.

• If the temperature of the stove is higher than 40◦, the
excess heat is fed into the storage tank.

2.2 Measurement Data
In Appendix, Figure A.1 shows an overview of the heating
system components and the locations of the heat meters.
Temperatures are represented in (Tcomponent , mass flow
rate in dmcomponent . Four temperature sensors from top to
bottom respectively TStorage,1,TStorage,2,TStorage,3,TStorage,4
are located at the storage tank. The measured data from

the heat meters is between 01.02.2019 and 31.01.2020,
with a temporal resolution of 1 minute. Figure 2 gives
an overview of the data quality of the measurement data.
White lines represent the missing data points and corre-
sponding periods. 4% of the measurement data is miss-
ing; 65% of them falls into the period between November
2019 and January 2020, 25% of them falls into September
2019. In addition to missing values, there are wrong mea-
surements between November 2019 and January 2020 due
to the failures in the meters.

Figure 2. Missing data periods for the given measurement data

The missing parts of the data were imputed by taking
the profile of the previous day. Figure 3 demonstrates the
imputation of missing data points for four days in a row,
given in dashed lines. The measurement data was ignored
after November 2019 due to the bad quality of data. The
whole data set was resampled to 15-minute values to avoid
the over fitting the predictions of the ML model. After
post-processing, the dataset had 27840 datapoints. The
resampled data was later used for training and testing for
the ML model.

40

50

60

Te
m

pe
ra

tu
re

 L
ev

el
s i

n
 S

to
ra

ge
 T

an
k

[°
C

] Top Raw
Middle-top Raw
Middle-bottom Raw
Bottom Raw
Top Processed
Middle-top Processed
Middle-bottom Processed
Buttom Processed

2019-02
2019-03

2019-04
2019-05

2019-06
2019-07

2019-08
2019-09

0

500

1000

Vo
lu

m
e

flo
w

 [l
/h

r] Volume flow rate Processed
Volume flow rate Raw

Figure 3. Imputation of the missing data

One of the most critical features in the dataset is mass
flow rates from each component. Figure 4 shows the spar-
sity of the mass flow rates from each components. The
y-axis represent the total data points (27840) after pre-
processing, the x-axis represents the mass flow values of
the components. The black points in the figure show the
values that are not zero and the gaps between the black
points represent the zero values. Mass flow rate in the
stove has the highest percentage 99.8% of zero values and

Coupling physical and machine learning models: case study of a single-family house

336 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

the mass flow rate in the CollectortoPool has the lowest
percentage with 86%.

CollectortoStorageCollectortoPool Stove HP FloorHeating StoragetoPool
0

5000

10000

15000

20000

25000

D
at

ap
oi

nt
s

Figure 4. Visualization of data sparsity in mass flow rates of
each component

2.3 Physical Models
The physical models were implemented in the Modelica
language (Fritzson and Engelson 1998). Model-
ica is an open source, a-causal, object-oriented and
multi-domain modelling language. A discussion of
limitations and promising approaches of the Modelica
language can be found (Schweiger, Nilsson, et al.
2020). All the models used in this system are based
on the Modelica IBPSA Project 1 library (Wetter,
Treeck, et al. 2019) and the Buildings Library (Wet-
ter, Zuo, et al. 2014). Dymola was used to simulate
Modelica models (Brück et al. 2002). The following
sub - implemented in Modelica are: Solar system
(Buildings.Fluid.SolarCollectors.EN12975),
heat pump (Buildings.Fluid.HeatPumps.
CarnotTCon) and the indoor pool
(Modelica.Fluid.Vessels.ClosedVolume). The
energy demand of the house and the heat supply profile of
the stove were taken from the measurement data instead
of modelling these components. Since there was no
weather profile acquired within the given data period,
Typical Meteorological Year 3 (TMY3) for Austria were
generated from Meteonorm.

2.4 Machine Learning Model
There was no available information of the system param-
eters of the storage tank such as the insulation material
and the thickness, the wall thickness, the height or the lo-
cations of the temperature sensors. Therefore, the stor-
age tank was modelled based on RF. RF is a combination
of tree predictors which splits nodes based on a best split
of random subsets of the features, thus reducing the vari-
ance of the tree model and increasing the overall predictive
power of the model.

The RF model predicted the four temperature layers of
the storage tank. An overview of the input features for
the model is given in Figure 5. The static input features
are temperatures, Ti, and mass flow rates, dmi, from the
solar collector, heat pump, floor heating and stove. The

Static Features

TSolar,s(t), dmSolar(t), dmSolarStor(t)

Trooms,r(t), dmrooms(t)

TStove,s(t), dmStove(t)

Tpool,r(t), dmpool(t)

Random Forest
Model 4

Random Forest
Model 3

TStorage,1(t)

Random Forest
Model 2

Random Forest
Model 1

Tank Storage
ML ModelInput Features Output Features

TStorage,2(t)

TStorage,3(t)

TStorage,4(t)

THP,s(t), dmHP(t)

Dynamic Features

TStorage,4(t-1,..t-4)

TStorage,3(t-1,..t-4)

TStorage,2(t-1,..t-4)

TStorage,1(t-1,..t-4)

Pload, Tstorageroom

Figure 5. Input/Output features of the applied machine learning
model of the storage tank.

dynamic features are the four temperature layers of the
storage tank with a 1-hour look-back time with interval
15 minutes and 15 minutes prediction horizon, see Fig-
ure 6. The measured data was split randomly into training
(80%, 50 epochs) and testing (20%). The model hyper-
parameters are n_estimators = 100 which represents the
number of decision trees that achieves the best trade-off
between the accuracy and efficiency; max_depth that has
been set to an unlimited value so the nodes can expand au-
tomatically; and min_samples_split = 2. The implemen-
tation was done using the Python framework presented in
(Schranz et al. n.d.) based on Scikit-learn.

t-4 t-3 t-2 t-1 t

4 lookback time-steps

1 prediction time step

Figure 6. At time t, four look-back time-steps are used to predict
one time-step in future with each step = 15 minutes.

2.4.1 Model Performance Analysis
Two criteria were selected to evaluate the performance of
the RF model: the coefficient of variation of the Root
mean square error (CVRMSE) and mean absolute percent-
age error (MAPE) given in Equation 1 and Equation 2.

CV (RMSE) =

√
1
N ∑

N
i=1(Yi − Ŷi)2

Y
∗100 (1)

MAPE =
1
N

N

∑
i=1

(

∣∣Yi − Ŷi
∣∣

Yi
)∗100 (2)

where Y is the true value, Ŷ is predicted value, Ȳ is the
average of the true values over N test samples.

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

337

2.5 Co-Simulation
To integrate the ML model of the storage tank into the sim-
ulation environment, the ML model must be exported as
an FMU. The UniFMU tool (Legaard et al. 2021) was used
to generate a Python-based FMU. Therefore a template
of the FMU was generated using the command unifmu
generate python name.

To specify the behavior the dummy example in List-
ing 1, implemented by the generated FMU, is replaced
with the components of the ML model. A benefit of this
is that the scikit-learn code can be reused and inte-
grated into the FMU gradually. This makes sure that no
breaking changes occur. A crucial part of the FMUs im-
plementation is the fmi2DoStep method which instructs
the model to simulate forward in time for an amount of
time corresponding to the time step. For the storage-tank
FMU, this is equivalent to running one or more inference
steps of the trained model.

Listing 1. Implementation of fmi2DoStep by storage model.

from sklearn.ensemble import
RandomForestRegressor

from sklearn.datasets import
make_regression

...
def do_step(current_time,step_size,

no_step_prior):
self.temp_next=self.forrest(self.

temp_prevs)
return Fmi2Status.ok

3 Results and Discussion
3.1 Validation of the ML model
Table 1 shows the model performance on the test data set.
The ML model is imported as FMU in Dymola. Testing
of the FMU-ML model with the measurement data is per-
formed in Dymola environment, see Figure 7. TStorage,4
and TStorage,3 are the worst predicted target value accord-
ing to the CVRMSE and MAPE. The discussion of Table 1
is supported with the results of the testing.

Table 1. Performance metrics of predicting the four target tem-
perature values: TStorage,1, TStorage,2, TStorage,3 and TStorage,4 using
random forest models

CVRMSE MAPE

TStorage,1 0.0097 2.3056
TStorage,2 0.011 2.2656
TStorage,3 0.0157 4.9064
TStorage,4 0.0281 6.0215

Winter, spring and summer periods were chosen, aim-
ing to represent different boundary conditions. The only
difference in each test period was the initial values set for
the FMU-ML. These initial values of the static and dy-
namic input features were chosen from the measurement

data based on each period starting time. Since the strati-
fied hot water storage tank is a short term storage, the daily
predictions are representative. In these three figures, 9
days period for each season was chosen to show the model
prediction based on interactions of all heating supplies. In
Figure 8, Figure 9 and Figure 10, the first subplot repre-
sents the comparison between the true and the predicted
temperature values of each 4 layers of the storage tank.
The true temperature values of the top layer, middle-top
layer, middle bottom layer and the bottom layer are re-
spectively red, dark orange, blue and cyan dashed lines.
The predicted temperature values are represented the same
color code but in straight lines. In the second subplot, the
mass flow rates from different components are given. The
mass flow rates stand for when the specific component is
turned on/off.

Figure 7. Dymola layout of testing FMU-ML storage model

Figure 8 represents the frequently running components;
solar collector and pool heating for summer period. Based
on these components inputs, the ML model shows good
aggrement with the measurement data during the summer
period. One of the static input features, "PLoad", which
indicates whether at least one component in the system is
on, is introduced to capture the cooling behavior of the
storage tank. It is observed in the summer period during
the night when there is no load, the four temperature val-
ues of the storage tank decrease.

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

05/06/2019,

 00:00
06/06/2019,

 00:00
07/06/2019,

 00:00
08/06/2019,

 00:00
09/06/2019,

 00:00
10/06/2019,

 00:00 11/06/2019,

 00:00
12/06/2019,

 00:00
13/06/2019,

 00:00

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 8. Storage temperature levels predicted vs measurement
in summer period

The cold return water from the floor heating is fed into

Coupling physical and machine learning models: case study of a single-family house

338 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

the storage tank from the bottom and the middle layer.
These temperatures are expected to decrease as in the mea-
surement data. In Figure 9, between 18th and 19th March,
when the floor heating starts, the predictions of the tem-
perature of the bottom layer fails. On the 19th March,
when the heat pump is on, represented in the purple line,
the middle bottom temperature shows an increasing be-
havior. However, it cannot reach to the values of the mea-
surement data. On 20th March, only two components are
on as in the summer period. On this day, the prediction of
the temperature values can catch the measurement data.

20

30

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

14/03/2019,

 00:00
15/03/2019,

 00:00
16/03/2019,

 00:00
17/03/2019,

 00:00
18/03/2019,

 00:00
19/03/2019,

 00:00
20/03/2019,

 00:00
21/03/2019,

 00:00
22/03/2019,

 00:00

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 9. Storage temperature levels predicted vs measurement
in spring period

The winter period is selected between February and
March due to lack of winter representation from the data,
explain in Section 2.2. The bottom temperature layer of
the storage tank shows a decreasing behavior due to the
floor heating as in the measurement data. However, due
to the control strategies when the heat pump turns on, the
middle bottom temperature of the storage tank doesn’t in-
crease as in the measurement data profile.

20

30

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

25/02/2019,

 00:00
26/02/2019,

 00:00
27/02/2019,

 00:00
28/02/2019,

 00:00
01/03/2019,

 00:00
02/03/2019,

 00:00
03/03/2019,

 00:00
04/03/2019,

 00:00
05/03/2019,

 00:00

Days

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 10. Storage temperature levels predicted vs measure-
ment in winter period

From these three testing periods of the FMU-ML
model, it is observed that the temperature values of the
storage tank is predicted better when there is only col-
lector component is on. In Figure 4, data that represent
collector to storage and collector to pool is denser than
the other components data. Therefore, these static input
features can dominate the predictions more than the other
static features which are sparse. Additionally, the dynamic
features of the past predicted temperature values of the

storage tank are as well input features. Once these values
are predicted wrong, the error accumulates to the further
time steps. Results from these tests also show the the per-
formance of the TStorage,4 and TStorage,3 are worse than the
other predicted target values.

3.2 System simulation
In Appendix, Figure A.2 shows the system implementa-
tion in Dymola. All heating components explained in use-
case are framed with dashed lines in the figure. The figure
is visually simplified by hiding the source/sink component
inside of the ’StorageML_FMU’ component where the
supply or return fluid from each component is fed to stor-
age tank. All the simulations are run in a virtual Ubuntu
environment with 188 GB RAM and the Intel Xeon Sil-
ver 4215R CPU @ 3.2GHz CPUs. Dymola 2021 FD01
with Dassl solver and 10e-6 tolerance was used during this
study. The system simulation with the FMU-ML was run
10 times. The averages of the CPU times for the 32 days
simulation with 15 minutes interval is 228 seconds. The
CPU-time taken to calculate one grid interval highly de-
pends on how the ML algorithm is implemented, number
of inputs features, number of processors.

The translated model statistics are given in Table 2. The
originally described system has 1966 non-trivial DAEs,
after translation it is reduced to an ODE system with 42
continuous time states.

Table 2. Model statistics:Translated model statistics of the
single-family house with the FMU-ML storage component.

FMU-ML Model

Constants 1733
Parameters depending 654
Continuous time states 42
Time varying variables 777
Alias variables 1342
Sizes of linear system of equa-
tions

{5}

Sizes after manipulation of the
linear system of equations

{0}

Sizes of nonlinear system of equa-
tions

{6, 5, 3, 1, 1}

Sizes after manipulation of the
nonlinear system of equations

{1, 1, 1, 1, 1}

Number of numerical Jacobians 0

Figure 11 shows the results of coupling ML and phys-
ical models of the single-family house heating system.
The first subplot in Figure 11 shows the temperature lev-
els of the tank for a 32 days period. The second sub-
plot shows which component is switched on and the third
shows the load condition for the storage tank. Despite the
same real-world control strategies implemented into sys-
tem, weather profile that represents the the measurement
data is not available. The TMY3 from Meteonorm is used

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

339

20

40

60

Te
m

pe
ra

tu
re

 (°

C
) Top

Middle-top
Middle-bottom
Bottom

0

1

C
on

tro
ls

Solar to Storage
Storage to Pool
Solar to Pool
Heat pump
Room Heating
Stove

40 45 50 55 60 65 70
Time (day)

0

1

Lo
ad

 C
on

di
tio

n

Figure 11. Storage temperature levels according to the controls

for the system simulation and solar collector provides dif-
ferent outputs than the measurement data. And all outputs
based on the control strategies changes. Also the phys-
ical model parameters of the storage tank have not been
adjusted to give a good comparison. Therefore, the re-
sults from FMU-ML system simulation cannot be com-
pared with the measurement data.

Acknowledgements
The presented research is part of the project “NextHyb2”
(FFG project number 881150) financed by the Austrian
Research Promotion Agency FFG. We are grateful to
Klima Energie Fonds for sharing the data. We also would
like to acknowledge the contributions and the fruitful dis-
cussions of Carles Ribas Tugores and Walter Becke in the
context of the use case study.

References
Brück, Dag et al. (2002). “Dymola for multi-engineering model-

ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Citeseer.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: European Conference on Object-Oriented Pro-
gramming. Springer, pp. 67–90.

Géczy-Vig, P. and I. Farkas (2010). “Neural network modelling
of thermal stratification in a solar DHW storage”. In: Solar
Energy 84, pp. 801–806. ISSN: 2261-236X. DOI: 10 .1051 /
matecconf/201822501015.

Gomes, Cláudio et al. (2018). “Co-simulation: a survey”. In:
51.3. ISSN: 0360-0300. DOI: 10.1145/3179993.

Harish, VSKV and Arun Kumar (2016). “A review on modeling
and simulation of building energy systems”. In: Renewable
and sustainable energy reviews 56, pp. 1272–1292.

Killian, Michaela and Martin Kozek (2016). “Ten questions con-
cerning model predictive control for energy efficient build-
ings”. In: Building and Environment 105, pp. 403–412.

Legaard, Christian Møldrup et al. (2021). “A Universal Mech-
anism for Implementing Functional Mock-up Units”. In:
11th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications. SIMUL-
TECH 2021. Virtual Event, to appear.

Li, Xiwang and Jin Wen (2014). “Review of building energy
modeling for control and operation”. In: Renewable and Sus-
tainable Energy Reviews 37, pp. 517–537.

Lund, Henrik et al. (2017). “Smart energy and smart energy sys-
tems”. In: Energy 137.2, pp. 556–565. DOI: 10.1016/j.energy.
2017.05.123.

O’Dwyer, Edward et al. (2019). “Smart energy systems for sus-
tainable smart cities: Current developments, trends and future
directions”. In: Applied energy 237, pp. 581–597.

Palensky, Peter, Edmund Widl, and Atiyah Elsheikh (2013).
“Simulating cyber-physical energy systems: Challenges,
tools and methods”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 44.3, pp. 318–326. DOI: 10.1109/
TSMCC.2013.2265739.

Schranz, Thomas et al. (n.d.). “Energy Prediction under
Changed Demand Conditions:Robust Machine Learning
Models and Input Feature Combinations”. In: Building Simu-
lation 2021. International Building Performance Simulation
Association.

Schweiger, Gerald, Georg Engel, et al. (2018). “Co-simulation
an empirical survey: applications, recent developments and
future challenges”. In: MATHMOD 2018 Extended Abstract
Volume, pp. 125–126.

Schweiger, Gerald, Henrik Nilsson, et al. (2020). “Modeling and
simulation of large-scale systems: A systematic comparison
of modeling paradigms”. In: Applied Mathematics and Com-
putation 365, p. 124713.

Thieblemont, Hélène et al. (2017). “Predictive control strate-
gies based on weather forecast in buildings with energy stor-
age system: A review of the state-of-the art”. In: Energy and
Buildings 153, pp. 485–500.

Thilker, Christian Ankerstjerne, Henrik Madsen, and John
Bagterp Jørgensen (2021). “Advanced forecasting and distur-
bance modelling for model predictive control of smart energy
systems”. In: Applied Energy 292, p. 116889.

Vatanparvar, Korosh and Mohammad Abdullah Al Faruque
(2018). “Control-as-a-Service in Cyber-Physical Energy Sys-
tems over Fog Computing”. In: Fog Computing in the Internet
of Things: Intelligence at the Edge. Ed. by Amir M. Rahmani
et al. Cham: Springer International Publishing, pp. 123–144.
ISBN: 978-3-319-57639-8. DOI: 10.1007/978-3-319-57639-
8_7. URL: https://doi.org/10.1007/978-3-319-57639-8_7.

Wetter, Michael, C van Treeck, et al. (2019-09). “IBPSA Project
1: BIM/GIS and Modelica framework for building and com-
munity energy system design and operation – ongoing devel-
opments, lessons learned and challenges”. In: vol. 323. IOP
Publishing, p. 012114. DOI: 10 . 1088 / 1755 - 1315 / 323 / 1 /
012114. URL: https: / /doi .org/10.1088/1755- 1315/323/1/
012114.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica Build-
ings library”. In: Journal of Building Performance Simula-
tion 7.4, pp. 253–270. DOI: 10.1080/19401493.2013.765506.
URL: https://doi.org/10.1080/19401493.2013.765506.

Coupling physical and machine learning models: case study of a single-family house

340 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

A Appendix

Pool

Solar
Collector

Stove

TSolar,s
dmSolar

TSolar,r
dmSolar

THP,s
dmHP

THP,r
dmHP

TStove,r
dmStove

TStove,s
dmStove

Trooms,r
dmrooms

Tpool,s
dmpool

Tpool,r
dmpool

Heat
Pump

Storage Tank

TStorage,1

TStorage,3

TStorage,2

TStorage,4

Floor
Heating

Trooms,s
dmrooms

Figure A.1. Overview of the system hydraulic flow. The supply pipe is represented in red, return pipe in blue. In each pipe, the
temperature and mass flow rates are measured.

Figure A.2. Dymola layout of the single-family house heating system

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

341

342 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Underfloor heating system model for building performance
simulations

Stephan Göbel1 Elaine Schmitt1 Philipp Mehrfeld1 Dirk Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany,
stephan.goebel@eonerc.rwth-aachen.de

Abstract
The efficiency of heat pump systems is highly dependent
on the temperature gap between the sink and the source
side. Therefore, it is necessary to accurately model
the sink side to enable the most accurate and holistic
analysis of building energy systems. In both residential
and non-residential buildings, underfloor heating systems
are becoming more and more widely used. The use of
underfloor heating lowers the flow temperature of the
heating system compared to a radiator, which increases
the efficiency of a heat pump system. This paper provides
an underfloor heating system model including automatic
parametrization according to the European standard for
surface embedded heating and cooling systems EN 1264.
Since the model represents a whole underfloor system,
it consists at the system level of the distributor and
several heating circuits and takes the heat transfer at the
smallest level from a pipe element through different floor
layers into account. The model is verified for the system
requirements according to European standard EN 1264.
A parameter study with a variety of different underfloor
heating parameters and floor layers shows that reductions
in heat transfer in the underfloor heating system are
compensated by an increase in the flow temperature. The
highest influence on the temperature level of the system
is exerted by the pipe spacing T , which raises the flow
temperature by up to 10.9 K, from 36.6 °C (T = 100 mm)
to 47.5 °C (T = 400 mm). The model is freely available
on GitHub:
https://github.com/RWTH-
EBC/AixLib/tree/issue890_HOMProject_FloorHeating
Keywords: Building performance simulation, EN 1264,
automatic parametrization

1 Introduction
The accurate modelling of underfloor systems is impor-
tant since the combination with heat pumps is on the rise
and their efficiency is very sensitive to the temperature
gap between the source and the sink side. While the
source temperature is largely determined by the environ-
ment, the sink temperature is significantly influenced by
the heat transfer system. Thus, the heat transfer system in-
fluences the efficiency of the heat pump and the efficiency
of the entire building energy system. In a holistic anal-

ysis of a building energy system, accurate modelling of
the heat sink is therefore always of great importance. Un-
derfloor heating systems as an already widespread type of
heat transfer systems offer several advantages over con-
ventional radiator systems.

A great advantage is a uniform temperature distribution
in the room due to a large transfer surface. Thus, under-
floor heating systems transfer about two-thirds of the heat
flow to the room by radiation and one-third by convection
(Taschenbuch für Heizung + Klimatechnik 13/14 2012).
Due to the high amount of thermal radiation, there is an
increase in the temperature of the surrounding room sur-
faces, which leads to higher comfort in the room. From
an energy perspective, underfloor heating systems require
lower flow temperatures compared to conventional radia-
tors which increases the potential of heat pumps. Further-
more, the possibility of passive cooling in combination
with geothermal energy or even active cooling are promis-
ing methods in times of increasing cooling demand.

Hot water underfloor heating sytems according to EN
1264-1 (2021) are widely used. In this type of heating sys-
tems, water-flowing pipes (or other hollow sections) are
laid in the floor (Hestermann et al. 2010). The European
standard EN 1264 provides guidelines for surface embed-
ded heating and cooling systems for residential and non-
residential buildings and focusses on systems for thermal
comfort. The standard also specifies standardized prod-
uct characteristics by testing and calculation the thermal
output of heating for technical specifications and certifi-
cation. Additionally, the standard only describes systems
that are attached directly or by means of fasteners to the
structual base of the perimeter surfaces of the building.
The EN 1264 series is devided in five parts:

• Part 1: Definitions and symbols

• Part 2: Floor heating: Methods for the determination
of the thermal output using calculations and experi-
mental tests

• Part 3: Dimensioning

• Part 4: Installation

• Part 5: Determination of the thermal output

To the best of the authors’ knowledge, there are no mod-
els for underfloor heating in the known Modelica libraries

DOI
10.3384/ecp21181343

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

343

that allow a quick and easy parameterization according to
EN 1264 and fit the modelling approach of the AixLib li-
brary. Borrajo Bastero et al. (2019) indicates a model and
validation of a specific building. The focus of his work is
the modeling of a specific building energy system. The
design of the underfloor heating is not the main focus.
Thus, the length of each heating circuit of the system and
the associated pressure drop are not explicitly calculated.
The underfloor heating system model of Weitzmann et al.
(2005) uses the finite volume method where the heat flow
is considered only. Also in this work, the system is mod-
eled for a specific building. The key advantage of this
model is the validation against measured data. The model
considers the floor construction in detail. A quick trans-
ferability to other buildings does not seem to be possible.
Within this paper, a simulation model for an underfloor
heating system is presented. The model represents a wet
system and contains all components of an underfloor heat-
ing system. It consists of several heating circuits for the
heating of the individual rooms and a heating circuit dis-
tributor. In addition, the floor layers below and above the
heating pipes are implemented. The highlight of this work
is the automatic parameterization according to EN 1264-
3 (2020), which ensures a fast application of the devel-
oped model. To connect the model to a building, only the
building parameters, such as the number of rooms, room
size, specific heat load of each room, and wall construc-
tion have to be transferred to the model. Standard values
such as the pipe diameter or the pipe spacing can option-
ally be overwritten. Afterward, the system is dimensioned
using the design equations of the implemented standard.

In the following, we will describe the underfloor heat-
ing system model and its submodels for the discretized
pipe element, the heating circuit, the room level and the
heating circuit distributor in detail. Afterwards, we dis-
cuss the results and demonstrate the validity of the model.
We also show the influence of different parameters, such
as the pipe spacing or the floor layers on the return tem-
perature. At the end of this paper, we summarize the work
and give an outlook for further improvements.

2 Underfloor heating system model
The model represents a wet system and contains all com-
ponents of an underfloor heating system. It consists of the
distributor and several heating circuits to warm up indi-
vidual rooms. For that, the floor layers that are located
above and below the heating pipes which transfer the heat
to the rooms, are implemented in detail. The design ac-
cording to EN 1264-3 (2020) is part of the model and can
thus calculate its design parameters.

The floor heating model has the title UnderfloorHeat-
ingSystem and follows a hierarchical structure. This al-
lows the parameters to be passed to the respective sub-
models and makes parameterisation necessary only at the
top level. The submodels of the overall system can also be
used individually and are not only executable in the over-

all model.
The focus is set on the comprehensibility of the model.

In each level, therefore, only the equations are imple-
mented, which are crucial for this level. As can be seen
in Figure 1, the smallest element of the undefloor heating
system model represents a discretized pipe element. This
pipe element is connected several times in series on the
next higher level to form a heating circuit. In order to re-
alize several heating circuits within a room, a model with
parallel heating circuits exists on the next level.

The overall system at the top level connects the individ-
ual heating circuits from the rooms in a heating circuit dis-
tributor to distribute the total mass flow to the individual
circuits. The system level is also used to connect the build-
ing model and the energy system with the underfloor heat-
ing. Furthermore, it provides the design parameters for
mass flow and supply temperature. The individual model
setups are explained in more detail in the following chap-
ters.

Discretized pipe element: De-
scription of a pipe segment

Heating circuit: Connection
of discretized pipe elements

Room level: Placing multi-
ple heating circuits in one room

Overall system: Merging the
heating circuits in a distributor

Figure 1. Hierarchical model structure of the developed under-
floor heating system from the smallest pipe element to the com-
plete system

2.1 Discretized Pipe Element
The discretized pipe element as the basic model of the un-
derfloor heating system describes the thermal heat flow.
Figure 2 offers an overview about the pipe element model.
The aim of this model, called UnderfloorHeatingElement,
is to divide a heating circuit into short pipe sections so
that the decreasing fluid temperature within the pipe can
be calculated in arbitrarily small steps.

Each pipe element is interpreted by a volume model
with uniform fluid temperature, which represents the wa-
ter volume in that discrete pipe section. The discretized
pipe element model can calculate the water volume in two
different ways. On the one hand it can use the inner diame-
ter of the pipe, and the other it can use a time constant τ . In
the model for the pipe element, the maximum value for the
fluid velocity in the heating pipe is set to 0.5 ms−1. The
user can decide whether exceeding this value will cause a
warning or an error. If the water volume is calculated by
means of time constant and the fluid velocity in the pipe

Underfloor heating system model for building performance simulations

344 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181343

Heat conduction through pipe
(and optionally sheathing)

Heat transfer through wall
layers above the pipe

Heat transfer through ceiling
layers below the pipe

Transfer of the heat �low in the
direction of the room to be heated

Heat �low to the room/ground plate
located under the UFH system

Heat transfer from �luid to
pipe wall by turbulent �low

Additional resistance between
outer pipe and thermally
conductive layer

Figure 2. Model view of the discretized pipe element in Dy-
mola: The volume element "vol" contains the volume of water
that is in heat exchange with the pipe walls and floor/ceiling lay-
ers; fluid and thermal quantities are calculated at the ports for
connection to other quantities are calculated for the connection
with other models

exceeds the maximum value of 0.5 ms−1, the model gives
the user a default value for the inner diameter for which
the limit value is observed. If the parameter determina-
tion for the inner diameter is not intuitive for the user, this
gives the possibility to determine a reasonable value.

The heat transfer through the floor layers is represented
in the model UnderfloorHeatingElement, which means
that it is also discretized in the overall model. This is
necessary in order to generate the correct surface tempera-
tures of the floor and ceiling and, consequently, the actual
heat transfer into the rooms. Above a pipe section, there
is thus exactly the floor surface that is heated by this pipe
element.

Heat transfer through the discretized pipe element is
divided into heat transfer through the pipe and heat con-
duction through the floor layers involved. From the inner
pipe wall, heat is transferred by convection from the fluid
onto the pipe wall and heat conduction through the pipe
wall. For the interpretation of the heat conduction, the
simplified model of the AixLib CylindricHeatConduction
(Müller et al. 2016) was chosen, which calculates the
steady-state heat conduction in the hollow cylinder. This
keeps the parameterization simple for the user. Since the
inertia of the system is primarily caused by the floor layers
and the thermal conductivity for different pipe and sheath-
ing materials is given in EN 1264-2 (2021) Annex D, this
simplified way was chosen.

An additional resistance is implemented between the
outer wall of the pipe and the floor layers. This can be
interpreted primarily as the heat transfer between the pipe
outer wall and the heat-conducting layer. This thermal re-
sistance is indispensable because it is used to calculate the
average temperature of the heat-conducting layer, which
is transferred to the floor layers.

The heat conduction from the heat-conducting layer
through the floor layers is divided into the layers above
and below the floor heating. Therefore, there are two
components which use the model SimpleNLayer from the

AixLib. Those describe the transient heat conduction
through these layers. The model SimpleNLayer is based
on the consideration of two resistances and one capaci-
tance per layer. The parameterization of the floor and ceil-
ing layers is done by Records, analog to the High Order
Model of AixLib (Constantin, Streblow, and Müller 2014).
In these records, the material properties of the floor lay-
ers are stored, namely the density, thermal conductivity,
heat capacity and the thickness. Since the floor and ceil-
ing layers are already implemented in the underfloor heat-
ing model, it is necessary that they are bypassed or not
included in the building model it is used within.

2.2 Heating Circuit
The model for a heating circuit in the floor heating sys-
tem establishes the connection of several pipe elements.
Different properties of the heating circuits in the sys-
tem essentially determine the heat transfer to the heated
room. Important parameters for determining the heat-
ing circuit structure are summarized in this model, called
UnderfloorHeatingCircuit. The most important compo-
nent of the heating circuit model is the arrangement of
pipe elements connected in series, which are described by
the model UnderfloorHeatingElement from chapter 2.1.
Apart from that, the pressure losses and the average floor
surface temperature in the room are determined at this
level. Figure 3 shows the model’s structure.

Determination of the
average surface temperature

Connection of discretized pipe
elements to a heating circuit

Regulation valve

Transfer of the heat �low to
 the room to be heated

Input valve signal

Heat �low to the room / ground plate
located under the under�loor heating system

under�loorHeatingElement[]

TFlow

TFlow TReturn

Figure 3. Model view of a heating circuit in Dymola: The dis-
cretized pipe elements are connected to form a heating circuit
and can be controlled via the regulating valve

The number of pipe elements within a heating circuit
is specified by the user through the parameter dis. Tem-
perature sensors are placed directly in front of the first
and behind the last element to determine the flow and
return temperature in each heating circuit. Furthermore,
each heating circuit in the underfloor heating system is
equipped with a control device. For that, a valve is placed
in front of the first pipe element. The valve is designed
as an equal-percentage two-way valve, which can regulate
volume flows.

The nominal pressure loss is divided into the pressure
loss caused by the pipe resistance and the valve. The pres-
sure loss of the heating pipe dp_Pipe has a reference value

Session 4B: Buildings

DOI
10.3384/ecp21181343

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

345

of 100 Pam−1, but can also be adjusted by the user. The
pressure loss through the control device dp_Valve is based
on the data for a heating circuit distributor from Schütz
Energy Systems (2017). The model verifies that the limit
value of 250 mbar according to EN 1264-3 (2020) is not
exceeded.

To maintain comfort in rooms, the floor surface temper-
ature TF should not go beyond certain limits. The limits
for the average floor surface temperature TF,m are given
in EN 1264-2 (2021). However, the user can also specify
his limit value as a parameter. That the maximum value
for the average surface temperature is not exceeded is also
checked by the heating circuit model. With the mean sur-
face temperature, the user keeps control over an important
limit value in underfloor heating systems.

2.3 Room Level
The model UnderfloorHeatingRoom bundles the results of
one heated room in the underfloor heating system. The
main tasks of the model are the parallel connection of sev-
eral heating circuit models that belong to one room and
the calculation of the nominal mass flows of these heating
circuits according to EN 1264-3 (2020). An overview of
the model is shown in the Figure 4.

The maximum pipe length of heating circuits is be-
tween 80 m and 120 m depending on the manufacturer.
To meet this requirement, the user can specify a maxi-
mum pipe length for the room level model. If the max-

Parallel �low of several heating
circuits by multiple �luid port

Design calculations (EN 1264)

Heating circuits within a room

Heat �low to the room / ground plate
located under the under�loor heating system

Combining heat �lows from
several heating circuits for a single
heat �low to the room

Transfer of the heat �low to
the room to be heated

Input valve signal

under�loorHeatingCircuit[]

thermalCollectorCeiling

thermalCollectorFloor

m = CircuitNo

m = CircuitNo

Figure 4. Model view of the room level in Dymola for the un-
derfloor heating system: Several heating circuits located in par-
allel in one room; According to EN 1264, the required system-
dependent coefficients for the design are calculated

imum specified pipe length is exceeded, another heating
circuit is provided in the room whereas all existing circuits
within a room are identically parameterized and designed.
Accordingly, several identical heating circuits can be con-
trolled individually via the vectorized valve presetting.

The system-dependent coefficients are calculated ac-
cording to EN 1264-3 (2020). To determine these values, a
submodel EN_1264 is inserted into the room level model.
In this submodel, the system-dependent coefficient KH and
the limit of specific thermal output qG are calculated for
further use at the room level. To determine these values,
the necessary tables from EN 1264-2 (2021) are deposited.

The limit of specific thermal output qG is used in par-
ticular to check the plausibility of the input parameters. If
the value for qG exceeds the maximum limit of specific
thermal output qG,max, the model will report this with an
error and the user needs to adjust his input parameters.
Besides, the limit of specific thermal output is used to find
out whether the underfloor heating is sufficient to cover
the present heat load. If the calculated limit of specific
thermal output is below the specific heat load qdes, further
heat flow needs to be generated by other heating devices.
The model UnderfloorHeatingRoom informs about this as
well.

The Records for the floor and ceiling layers must be
constructed correctly for the model to define screed and
flooring as the layers above the heating pipe. The lower
floor layers must consist of insulation, load-bearing sub-
strate and plaster. If the ground plate is below the under-
floor heating, there must be four layers below the under-
floor heating. The top layer must then still be the insula-
tion layer. The assignment of the values in the Records
to the model is illustrated in Table 1. A correct definition
of the layers in the data set is a prerequisite for a correct
design of the underfloor heating system in the model.

In addition, compliance with the thermal resistance
specifications for insulation according to EN 1264-4
(2021) Table 1 is checked at the room level. For
rooms located above other heated rooms, the mini-
mum for the insulation’s thermal resistance is set at
Rλ ,Ins,min = 0.75m2 KW−1, for adjoining unheated areas
at Rλ ,Ins,min = 1.25m2 KW−1. In order to ensure a proper
comparison between the actual and minimal values, the
assignment of the floor layers from Table 1 must be ob-
served.

2.4 Distributor
The top level of the model for an underfloor heating sys-
tem includes the consolidation of all heating circuits in the
distributor and is called UnderfloorHeatingSystem. The
room level, which was represented in chapter 2.3, is in-
serted as a sub-model in the respective number of rooms
to be heated. The overall model can be used to connect
to the building and the energy system for detailed thermal
building simulation.

A heating circuit distributor divides the total mass flow
to the individual heating circuits and recombines them af-
ter passing through the room level in return. The flow
and return temperatures are recorded by sensors. With the
valve settings passed through from the individual heating
circuit to the overall system, each heating circuit in the un-
derfloor heating system can be controlled separately. The
heat flows of the heated rooms are transferred from the un-
derfloor heating to the rooms by means of discretized heat-
ports. The thermal connections via the heatports represent
the interface to the building model. Due to the discretiza-
tion of the pipe element and, consequently, the floor, each
room needs to have the same number of heatports corre-
sponding to the discretization number dis. Care should
be taken to assign the ports in such a way that the floor

Underfloor heating system model for building performance simulations

346 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181343

Table 1. Assignment of the thermal resistances from the records of the floor layers to the model on room level

Floor Layer Position in Record Thermal Resistance
Flooring wallTypeFloor[2] Rλ ,B

Screed wallTypeFloor[1] su/λE

Insulation wallTypeCeiling[1] Rλ ,Ins

Load-bearing substrate wallTypeCeiling[2] Rλ ,Ceiling

Plaster wallTypeCeiling[3] Rλ ,Plaster

Foam glas in floor plate wallTypeCeiling[3] Rλ ,Ceiling

Gravel under floor plate wallTypeCeiling[4] Rλ ,Ceiling

heating is located between the wall models for floor and
ceiling.

The design according to EN 1264-3 (2020) is done in
the model with the room that is connected to the building
model first. Since the design is done with the room that
has the highest specific heating load, care must be taken
to ensure that this room is first in the vectorial setup. If
this is not the case, the model will show an error. It is
therefore essential that the building model is subjected to
a heat load calculation before being used with the model
for the underfloor heating system. The final design of the
entire underfloor heating system according to EN 1264-3
(2020) determines a general flow temperature for the sys-
tem and the nominal mass flow rate for each room.

Distributor

Multiple room level models

Transfer of the heat flow to
the room to be heated

Heat flow to the room / ground plate
located under the underfloor heating system

Connection to building's
energy system

Design temperature
and mass flow

Input valve signal

Figure 5. Model UnderfloorHeatingSystem in which the needed
underfloor heating circuits are generated and designed for each
heated room

Figure 5 depicts a schematic of the UnderfloorHeat-
ingSystem which unifies the heating circuits of the indi-
vidual heated rooms. It includes the previously presented
models of chapters 2.1-2.3 in a hierarchical structure. It
contains an automated design according to EN 1264-3
(2020) and the nominal pressure loss calculation of the
heating circuit valves. Additional heating circuit parame-
ters can be assigned to each room via the vector parame-
terization.

3 Results and Discussion
The following chapter is divided into two parts. Firstly, the
model will be verified in a simplified test scenario. This is

followed by a parameter study to investigate the influences
of various system parameters such as the flooring or the
pipe spacing.

3.1 Model verification
The verification of the model is performed with two in a
simplified way designed room models. The first room has
a specific heat load of q

′′
des,1 = 50Wm−2 while the second

room’s heat load is q
′′
des,2 = 33Wm−2. The heat transfer

from the floor surface to the room is mapped according to
EN 1264-3 (2020) with a purely convective heat transfer
coefficient of αfloor = 10.8Wm−2 K−1. The verification
is carried out based on the room and return temperatures
that occur. The expected values must be achieved for var-
ious floor heating parameters within the standard limits.
For this reason, the simulation is performed with different
parameters for pipe spacing, inner diameter and pipe ma-
terial. The model is verified using the target room temper-
ature of 20 °C and the calculated return temperature from
the standard. In summary, the model was verified under
the following aspects:

• Room parameters (room size, specific heat load,
floor/ceiling wall parameters) of design room trans-
ferred into the underfloor system model

• Flow temperature and mass flow are equal to design
temperature and design mass flow, which are calcu-
lated by the model itself (Using EN 1264-3 (2020))

• There is no further control of mass flow or tempera-
ture

• All boundary conditions are steady-state

• ∆TRoom = Tdesign(= 20°C)−TRoom

• ∆Tr = ϑdesign−ϑr

Table 2 shows the results of the room ∆TRoom and return
temperatures ϑr,∆Tr from the simulations for verification
as absolute values with deviation.

The results show that the designed room with the higher
heating load has room temperatures between ϑroom1 =
19.9892...19.9935 °C which is slightly below the tar-
get room temperature of 20 °C The return temperature

Session 4B: Buildings

DOI
10.3384/ecp21181343

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

347

Table 2. Results of the verification of the overall model: Con-
sideration of two rooms with different heating loads at different
underfloor heating parameters

Room 1: q
′′
des,1 = 50Wm−2

∆TRoom[K] ϑr[
◦C] ∆Tr[K]

T = 100 mm -0.0108 31.7458 -0.0011
T = 200 mm -0.0065 34.7029 -0.0010
T = 350 mm -0.0075 40.2079 -0.0010
di = 21 mm -0.0071 38.2973 -0.0010

PP-pipe -0.0069 41.5902 -0.0010

Room 2: q
′′
des,2 = 33Wm−2

∆TRoom[K] ϑr[
◦C] ∆Tr[K]

T = 100 mm +0.0105 24.6451 -0.0024
T = 200 mm +0.0168 25.8692 -0.0027
T = 350 mm +0.0177 28.1566 -0.0032
di = 21 mm +0.0132 27.3619 -0.0030

PP-pipe +0.0125 28.7318 -0.0033

is achieved to two digits after the decimal point. For
the designed room with the lower heating load, the un-
derfloor heating system calculates room temperatures be-
tween ϑroom2 = 20.0105...20.0132 °C which are thus
slightly above the set temperature. The mean absolute per-
centage error (MAPE) for the return temperature of the
underfloor heating system is less than 0.011 %. The room
temperature is achieved with a MAPE of 0.0388 % for the
designed room 1 and 0.0706 % for the designed room 2.

Thus, the model can be seen as verified for the sys-
tem requirements according to EN 1264-2 (2021). The
small deviations are due to the division of heat transfer
at the floor surface into radiation and convection. While
the design according to the standard assumes constant heat
transfer coefficients, the model considers the dependence
of radiation on the room’s surface temperature. This justi-
fies small deviations in the heat transfer.

3.2 Influence of system parameters
A parameter study is performed to investigate the influ-
ence of the variable parameters on the the underfloor heat-
ing system. The influences of pipe spacing T , pipe ma-
terials with different thermal conductivities λmaterial, pipe
diameter di and pipe coating sC are considered. Besides,
the changes due to a variation of floor layers with differ-
ent thermal resistances Rλ ,F, screed thicknesses su and in-
sulation thicknesses sins are investigated. The results for
supply and return temperatures are examined since these
are of greatest importance for a building energy system.
For this purpose, all simulations are performed with a dis-
cretization of 50 pipe elements. The floors of all rooms are
discretized as well. The parameter study is performed in
conjunction with the single-family house of the High Or-
der Model from the AixLib library (Constantin, Streblow,

and Müller 2014). Table 3 shows the range of variation of
the parameters and the reference parameters.

Table 3. Reference and range of variation of different system
parameters

parameter reference min. max.
T [mm] 200 100 400
di [mm] 13 10 20
λmaterial [Wm−1 K−1] PE-RT 0.22 390
sC [mm] 0 0 4
Rλ ,F [mKW−1] 0.1 0.0118 0.188
su [mm] 60 40 80
sins [mm] 35 35 75

Generally, decreases in the total heat transfer within the
system are compensated by an increase in the flow tem-
perature. If the heat transfer to the room is not directly
affected, changes are compensated by increasing the mass
flow. This is to ensure the required heat flow at all times.

Figure 6. Influence of different system parameters on the return
temperature

Figure 6 summarizes the changes in return tempera-
ture due to various system adjustments. The pipe spac-
ing has the greatest influence on the temperature level of
the system. The return temperature can increase up to 3.5
K due to the necessary increase in the supply tempera-
ture. Also, the floor layer has a non-negligible influence.
Thus, the return temperature varies by about 2.5 K for the
used floor layers (elastomer, laminate, wood parquet, car-
pet, linoleum). The variation of the pipe material, the pipe
sheathing and the thickness of the screed layer are of little
significance concerning the return temperature. The re-
turn temperature changes by less than 1 K. The thickness
of the insulation layer also has the least effect on the return
temperature. Primarily, the changes in heat transfer due to
the insulation are compensated with an adjustment of the
mass flow.

4 Conclusion and Outlook
In this work, we present an underfloor heating system
model, which is built on four submodels. The model is
freely available on GitHub:
https://github.com/RWTH-
EBC/AixLib/tree/issue890_HOMProject_FloorHeating.
The smallest unit is a pipe element, which is connected

Underfloor heating system model for building performance simulations

348 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181343

in a row for several times to form an axial discretized
heating circuit.

Based on this, the next level model forms a connection
for a room, which may consist of several heating circuits.
The overall model connects several rooms to form an un-
derfloor heating system, whose heating circuits converge
in a distributor and enable connection for a building en-
ergy system.

The specifications of EN 1264-3 (2020) are included in
the model to allow direct use of the calculated supply tem-
perature and design mass flow. The model is verified for
the system requirements of EN 1264-2 (2021) and shows
an accuracy of less than 0.01 % (MAPE) concerning the
room temperature. In a parameter study, the influence of
different system parameters is investigated. The pipe spac-
ing has the greatest influence and can cause an increase in
the flow temperature by up to 10.9 K.

All in all, we show an underfloor heating model in Mod-
elica which is automatically parameterized by the inte-
grated variables of the standard. In future work, the model
will be integrated into building energy systems to allow a
holistic analysis of those.

Acknowledgements
This work has been supported by Federal Ministry for
Economic Affairs and Energy (BMWi), (grant numbers
03ET1595A).

References
Borrajo Bastero, Josué et al. (2019). “Model and Validation of a

Multi-family Building ‘Haus M’ Using Modelica”. In: Build-
ing Simulation 2019. Rome, Italy, pp. 4235–4242. DOI: 10.
26868/25222708.2019.210763. URL: http://www.ibpsa.org/
proceedings/BS2019/BS2019_210763.pdf.

Constantin, Ana, Rita Streblow, and Dirk Müller (2014). “The
Modelica HouseModels Library: Presentation and Evalua-
tion of a Room Model with the ASHRAE Standard 140”.
In: Proceedings of the 10th International Modelica Confer-
ence, March 10-12, 2014, Lund, Sweden. Linköping Elec-
tronic Conference Proceedings. Linköping University Elec-
tronic Press, pp. 293–299. DOI: 10.3384/ECP14096293.

EN 1264-1 (2021). Water based surface embedded heating and
cooling systems - Part 1: Definitions and symbols. European
Committee for Standardization.

EN 1264-2 (2021). Water based surface embedded heating and
cooling systems - Part 2: Floor heating: Methods for the de-
termination of the thermal output using calculations and ex-
perimental tests. European Committee for Standardization.

EN 1264-3 (2020). Water based surface embedded heating and
cooling systems - Part 3: Dimensioning. Berlin: European
Committee for Standardization.

EN 1264-4 (2021). Water based surface embedded heating and
cooling systems - Part 4: Installation. Berlin: European Com-
mittee for Standardization.

Hestermann, Ulf et al. (2010). Baukonstruktionslehre 1: Mit 138
Tabellen. 35., vollständig überarbeitete und aktualisierte Au-
flage. Wiesbaden: Vieweg+Teubner Verlag / GWV Fachver-
lage GmbH Wiesbaden. ISBN: 978-3-8348-0837-0. DOI: 10.

1007/978-3-8348-9386-4. URL: http://dx.doi.org/10.1007/
978-3-8348-9386-4.

Müller, Dirk et al. (2016). “AixLib - An Open-Source Model-
ica Library within the IEA-EBC Annex60 Framework”. In:
CESBP Central European Symposium on Building Physic-
s/BauSIM 2016. Ed. by John Grunewald. Stuttgart: Fraun-
hofer IRB Verlag, pp. 3–9. URL: urn : nbn : de : 101 : 1 -
201612202736.

Schütz Energy Systems (2017). Heizkreisverteiler:
Montageanleitung/- Technische Information. URL:
https : / / www . schuetz - energy . net / downloads /
anleitungen / montageanleitung - heizkreisverteiler / schuetz -
montageanleitung-fbh-heizkreisverteiler-de.pdf?cid=4jt.

Taschenbuch für Heizung + Klimatechnik 13/14 (2012). 76.
Aufl. ISBN: 3-8356-3301-5.

Weitzmann, Peter et al. (2005). “Modelling floor heating sys-
tems using a validated two-dimensional ground-coupled nu-
merical model”. In: Building and Environment 40.2, pp. 153–
163. ISSN: 03601323. DOI: 10 . 1016 / j . buildenv. 2004 . 07 .
010. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S0360132304001702.

Session 4B: Buildings

DOI
10.3384/ecp21181343

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

349

350 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

ScalableTestGrids - An Open-Source and Flexible Benchmark
Suite to Assess Modelica Tool Performance on Large-Scale Power

System Test Cases

Francesco Casella1 Adrien Guironnet2

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
francesco.casella@polimi.it

2Réseau de Transport d’Electricité, France, adrien.guironnet@rte-france.com

Abstract
This paper introduces ScalableTestGrids, an open-source
and flexible benchmark suite for assessing the perfor-
mance of Modelica tools on large-scale power system test
cases. The benchmark suite is built by using components
from the PowerGrids library and generic utility scripts cre-
ating the final runnable Modelica models. It does not
depend on confidential data; its structure makes any fu-
ture needed modification or evolution easy and straight-
forward. Results obtained with the OpenModelica tool are
also reported. The benchmark suite can be used by tool
developers to assess the capability of their tools to handle
large-scale power generation and transmission models.
Keywords: Benchmark, Power System Simulation, Large-
Scale Simulation, Performance, Open-Source

1 Introduction
Power systems are evolving at a very fast pace due to
a global demand for cleaner energy. This drives major
changes in the system structure, with a growing penetra-
tion of Renewable Energy Sources (RES) and an impor-
tant boom of High-Voltage Direct Current (HVDC) lines
(ENTSO-E 2020; IEA 2021). To be able to ensure the sys-
tem stability and to handle the new challenges arising in
a satisfying manner, System Operators (SO) have to adapt
the way they control, operate and design the grid. This
notably implies that power system simulation tools should
offer a great flexibility to cope with the pace of evolution
and a high-level of transparency to facilitate collaboration
and coordination between all the actors.

While traditional power system software use closed-
source models, solvers and data, and are difficult to adapt
to emerging technologies, Modelica offers an appealing
alternative. Its open-source, declarative and high-level na-
ture makes it a good candidate for modern, flexible and
transparent power system modelling.

These advantages have boosted the development of sev-
eral power system Modelica libraries in the recent years
(Winkler 2017), from first efforts to port existing tool
models (Bogodorova et al. 2013) to libraries carefully
designed to take full advantage of the declarative mod-

elling approach of the language while easing the transi-
tion for power system experts who are Modelica begin-
ners (A. Bartolini, F. Casella, and Guironnet 2019). It
has also led to academics usage of Modelica in other do-
mains than classical electromechanical simulations, such
as electromagnetic transient simulations (Masoom et al.
2020), dynamic phasor modeling (Mirz et al. 2019) or
power-electronics dominated grid simulations (Cossart et
al. 2020) as well as proof of concept for industrial use
(Francesco Casella, Andrea Bartolini, et al. 2016; Guiron-
net et al. 2018).

At the same time, efforts have been made to ease a wide
adoption by both development of automatic conversion
methods for creation of standard test cases (Razik, Dinkel-
bach, et al. 2018; Gómez et al. 2019) and computation
time improvements (Francesco Casella, Leva, and Andrea
Bartolini 2017; Braun, Francesco Casella, and Bachmann
2017; Henningsson, Olsson, and Vanfretti 2019), for ex-
ample through the use of DAE-mode integration. How-
ever, fundamental performance barriers remain on these
two fronts, hampering the full operational use of general-
purpose Modelica tools to handle simulations involving
national- or continental-scale grids; this motivated for in-
stance the development of a mixed C++/Modelica ap-
proach by RTE (Guironnet et al. 2018).

Indeed, it is important to remind the reader the oper-
ational constraints currently existing on automation and
performance for time-domain simulations in power sys-
tems. One fundamental process to ensure power system
stability is the so-called Dynamic Security Assessment,
that consists in simulating a large number of contingen-
cies to make sure that the grid is operating in a secure
and stable way (Loud et al. 2010; Panciatici, Bareux, and
Wehenkel 2012). For example, the French national grid
control center launches 65 different simulation scenarios
every 15 minutes for voltage stability, and 1270 different
scenarios every 30 minutes for transient stability. In ad-
dition to this real-time use, similar calculations are done
in day-ahead and week-ahead situations with comparable
performance constraints.

Currently available general-purpose Modelica simula-
tion tools are still not able to provide adequate support for

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

351

such applications, in particular because the standard ap-
proach followed for code generation requires flattening the
models to scalar equations, which leads to unacceptable
code generation time and generated code size, see, e.g.
(Francesco Casella, Leva, and Andrea Bartolini 2017). A
quantum leap is required in code generation technology,
which should avoid as much as possible to generate re-
peated code when hundreds or thousands of similar com-
ponents are instantiated in a system model, as is common-
place in national grid models. Significant improvements
may also be required on the simulation runtimes, e.g. to
handle events efficiently.

On the other hand, testing the performance of such ad-
vanced or experimental Modelica tools on large-scale, re-
alistic national power grid models is not a straightforward
task; in general, it requires a lot of domain-specific knowl-
edge to set up realistic test models and meaningful sim-
ulation scenarios, and possibly relies on confidential or
restricted-access data. The latter issue also makes it diffi-
cult to compare the performance of different tools, since
different tool developers may not have access to the same
models.

In order to fill this gap, the development of a Mod-
elica library based on the PowerGrids library (A. Bar-
tolini, F. Casella, and Guironnet 2019) was launched,
to offer open-source, easy-to-use, customizable and scal-
able benchmarks to all Modelica tools providers. The li-
brary captures the essential features of large-scale electro-
mechanical power grid models, while keeping the com-
plexity at the minimum possible level.

This library, called ScalableTestGrids, can be used
by people doing research and development on advanced
methods to handle large-scale Modelica models, to test
the ability of their methods and tools to handle the kind
of models that are required by SOs to run their daily oper-
ation. It can also be used to compare tools against each
other, to assess the improvements of a given tool over
time, and ultimately to make educated guesses possible
about when general-purpose Modelica tools could even-
tually be used for industrial-grade power system simula-
tions.

The rest of the paper will be organized in the following
way. Section 2 presents the requirements used for speci-
fying the benchmark suite while Section 3 introduces the
selected design. Section 4 provides the current benchmark
suite and gives the results obtained with OpenModelica
while sketching evolutions that could further improve the
performance. Finally, Section 5 serves as the conclusion.

2 Requirements
This section will introduce the main requirements used to
define the benchmark suite and their motivations.

The first requirement is that the benchmark suite is rep-
resentative of real power system test cases. This point is
very important and ensures that advanced tools take ad-
vantage of structural conditions really existing in large-

scale networks, rather than exploit artificial structural con-
ditions only appearing in the benchmark suite. In partic-
ular, large-scale power system test cases have two main
characteristics.

The first one is the very sparse structure of power sys-
tem. Indeed, in power systems, each electrical node is
only connected to a few other ones and the other physical
components are either connections between two nodes or
are interfaced to a single node. Controls are essentially
local even if a few wide-area ones exist but only affect
a very restricted subset of variables (frequency regulation
for example). Table 1 shows representative sparsity levels
for large-scale networks and Figure 1 shows the French
power system and enables to directly see the sparse nature
of the grid.

Figure 1. French Transmission System

The second characteristic is that large-scale networks
are built using relatively few component models, which
are instantiated a large number of times. This feature
should be exploited by the tool, which should avoid wast-
ing time and memory to generate repeated code structures.
The components are instantiated and connected on a one-
by-one basis, coming from a netlist description of the grid
structure, which is irregular, as shown in Figure 1. Table
2 illustrates this property with the number of components
for different large-scale test cases; the figures are taken
from the Horizon 2020 Pegase project reports.

The third requirement for the benchmark suite is that it
should be easily modified. In its current version the bench-
mark suite focuses on the impact of the system size, par-
ticularly the number of continuous variables, on the tool
performance. This already offers a lot of tough challenges
to address, but it could further evolve, for instance taking
into account issues arising with large numbers of discrete
variables and events. It is definitely of prime importance
that such changes can be included in a straightforward
way, considering the current pace of evolution in power
systems, ensuring that the benchmark suite consistently
captures the challenges posed to Modelica tools by such

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

352 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

Table 1. Sparsity levels for representative test cases with K nodes, N equations, NNZ non-zero elements in the Jacobian, density
factor d = NNZ

N.N (Razik, Schumacher, et al. 2019)

Test case K N NNZ d [%]
French Extra High Voltage with Simplified Loads 2000 26432 92718 0.013
French Extra High Voltage with Voltage-Dependent Loads 2000 60236 188666 0.0051
French + one neighbor Extra High Voltage with Simplified Loads 3000 47900 205663 0.0089
French + one neighbor Extra High Voltage with Voltage Dependent Load 3000 75300 266958 0.0047
French + neighb. countries Extra High Voltage with Simplified Loads 7500 70434 267116 0.0054
French Extra High Voltage + regional High Voltage with Simplified Loads 4000 90940 316280 0.0038
French Extra High Voltage + regional High Voltage with Voltage Dependant Loads 4000 197288 586745 0.0015
French + neighb. countries Extra High Voltage with Voltage Dependent Loads 7500 220828 693442 0.0014

Table 2. Number of components instances for representative test
cases

Test case Generators Loads Lines Transformers
French EHV 607 2905 2668 1040
French EHV + HV 725 7875 8592 2577
Continental European EHV 3483 7211 ∼ 16000 ∼ 5000

models.
The fourth requirement concerns the benchmark suite

scalability. The goal being to assess tool performance
on large-scale simulations, creating examples of different
size in a simple way is a must have. It means that from
a small test case, utility functions should exist to obtain
larger test cases with similar properties. These functions
should be as generic as possible to facilitate their use for
any kind of test case and should contain parameters en-
abling to define the final test case (its size for example).

Finally, the fifth requirement considered is related to
the usability of the benchmark suite. In order to maximize
its potential use, it is necessary that the initialization and
simulation work fine in different Modelica environments.
On the one hand, this implies that initialization should be
straightforward and robust. On the other hand, simulation
scenarios which are relevant but straightforward to simu-
late should be defined, ensuring that there are no potential
simulation issues even with the large-sized systems; at the
same time, the test cases should remain well representative
of real-life scenarios at all sizes. The goal of these bench-
marks is to show that a tool can handle systems of realistic
size with good performance, not to test corner cases or nu-
merically challenging situations.

3 Design
3.1 Package Structure
Considering the requirements laid out in Section 2, the
library has been structured in three main packages:

• A Components package, which defines the compo-
nents (based on the PowerGrids library) used to as-
semble the test cases.

• A GridModelGenerators package that contains the
utilities functions to create the actual test cases.

• A Models package, containing some instances of
automatically generated test cases for convenience,
e.g. to get them easily run by continuous integration
frameworks.

In the GridModelGenerators package, Modelica func-
tions are employed to create large-scale network model
using for-loops. This ensures that the library is fully
self-contained and does not rely on other languages (e.g.
Python or C) to generate the code of the test cases.

3.2 Model structure
A key feature of these models is that components and con-
nect statements are instantiated individually, as in a real-
life cases such as the one shown in Figure 1. Relying on
arrays of components and for-loop connection equations
could generate system structures that could be further op-
timized by smart tools, but that would be irrelevant to as-
sess the performance on real-life models, where such reg-
ular structures are absent.

The structure of the scalable grid model which is cur-
rently implemented as a benchmark in the library is shown
in Figure 2. At the top level, a meshed grid is repre-
sented, includings some nodes with large power genera-
tion systems, and some nodes with connection to local ra-
dial grids, which have a linear or tree-like structure. Twin
transmission lines are sometimes used to ensure higher
transmission capacity in the meshed part.

These structural features were represented by an ideal-
ized square, 2N × 2N-node meshed grid, with alternating
generation (round) and load (square) nodes. The nodes are
connected in the east-west direction by means of single
transmission lines, while twin parallel transmission lines
are used in the north-south direction.

Generator nodes contain a full-fledged synchronous
machine model, equipped with automatic voltage regula-
tion (IEEE AC4A type), power system stabilizer (IEEE
PSS2A type), and turbine governor with primary fre-
quency control (IEEE TGOV type), built with components
from the PowerGrids library. The generator is connected
to the meshed grid by a step-up transformer.

Load nodes contain a sub-system, built by the linear
connection of M transmission lines, each connected to a
PQ load at its end, and ultimately connected to the meshed
network by a step-up transformer.

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

353

Figure 2. Test case structure with N = M = 2

As one can notice on the figure, the final test case com-
prises 2N2 generators, 2N2M loads, 4N2 transformers and
6N(2N − 1) + 2N2M lines. Thus, by setting N one can
change the overall system size, while changing M allows
to modify the sparsity pattern and include a more or less
important part of the radial network in the system model.

The spatial structure of the grid is somewhat idealized,
having a very regular pattern that can be easily scaled up in
size. On the other hand, individual components are instan-
tiated and connected one-by-one, and full-fledged realistic
component models are used, so that the performance of a
Modelica tool on a benchmark suite containing the num-
ber of nodes listed in Figure 2 can be considered to be fully
representative of the performance on a model of a real-life
system of the same size.

3.3 Initialization and simulation
Regarding initialization, dynamic power grid models, in-
cluding the ones built with the PowerGrids library, are
strongly nonlinear, and thus require the results of a static
power flow computation to set up the start values for ini-
tialization; this is normally taken from the output of a sep-
arate tool. However, this would really be inconvenient in
the case of this benchmark suite. The test model was thus
conceived in order to have an initial power flow that is eas-
ily computed by the generated Modelica model, exploiting
symmetry features.

Consider first an idealized case, where an infinite num-
ber of nodes is present, with full symmetry of voltages
and power flows. Each generator node would then be sur-
rounded by four load nodes of identical voltage, while

each load node would be surrounded by four generator
nodes of identical voltage. Also, there is zero net active
power exchange between pairs of synchronous generators,
which thus have all the same phase. Assuming that the
load nodes have their nominal voltage magnitude (1 p.u.),
and that the generator node voltages have a zero phase, it
is possible to compute the complex power flows through
the lines surrounding each load node, and hence the power
flows and voltage phase and magnitude at both generator
and load nodes. The active power output of each genera-
tor is then set to be equal to the total active power input of
each radial sub-system, where each load takes 1/M-th of
the total active load, plus a small extra term for resistive
losses across the transmission lines.

In this way, power flow values can be easily computed
analytically and the results can be used to directly set the
start values of voltage and complex power at the generator
and load ports. The actual values of this ideal power flow
are thus hard-wired in the code generator of the system
model.

In fact, the actual grid has a finite extent, so it shows
some border effects, compared to the ideal symmetric in-
finite grid; for example, the generator at node 11 needs to
send its power through three lines only, instead of six, thus
it requires a somewhat higher voltage. However, the dif-
ference with respect to the symmetric case is small enough
that the symmetric power flow results can be used as start
values for the finite grid steady-state initialization prob-
lem, without causing any convergence issue.

The only requirements on the Modelica tool used to
simulate the test case are that it should use a sparse non-

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

354 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

linear solver to handle the initialization problem, since its
size prevents using a dense solver in all cases except the
smaller ones, and that it should preferably use homotopy
for the initialization process, to avoid issues related to the
controller saturations.

Once the system has been initialized at steady state, the
simulation scenario assumes that all loads in the upper half
of the network reduce their active power consumption by
10% at t = 1, regardless of the system size. This starts a
transient in which all synchronous generators initially ac-
celerate, due to the overall power imbalance; then, the pri-
mary frequency controllers reduce the turbine power out-
puts and stabilize the grid at a slightly higher frequency.
Some local and inter-area damped oscillations of voltage
and frequency ensue.

The symmetric nature of this perturbation is such that
the transients of individual currents and power flows in
the grid components in certain areas of the grid are similar
regardless of the system size. This makes the comparison
of simulation times across different grid sizes fair, since
more or less the same things happen in each component,
regardless of the grid size. This would not be the case if,
e.g., the perturbation was applied to one load only, since
the relative effect of such a perturbation would become
smaller with increasing system size, potentially requiring
less time steps from the variable step-size solver.

3.4 Generation of system models
Figure 3 shows a code fragment of the Modelica function
that generates the system models, showing how individual
components are instantiated and how individual connect-
equations are added to the system.

The Components package contains the component
models that are instantiated by the system model. In the
current library version, as already mentioned, the genera-
tor model utilized is the connection of a synchronous gen-
erator with a voltage regulator control (IEEE AC4A), a
power system stabilizer (IEEE PSS2A) and a speed reg-
ulator (IEEE TGOV). All these models are connected to-
gether to create the ControlledGenerator model that is in-
stantiated in the system model.

This model structure makes it easy to modify or extend
the test case, to include a new model or new levels of com-
plexity. For example:

• in order to assess the impact of discrete variables and
events, it is possible to create a composite model us-
ing the transformer physical model and a tap-changer
logic (available in the original PowerGrids library)
in the Components package, using it in place of the
simple transformer physical model when instantiat-
ing the radial part of the network;

• if one wants to see the effect of distributed RES
on performances, the load nodes can be enriched
by connecting a RES model in parallel with the PQ
loads;

• to include a new structure in the test cases, such as a
few HVDC lines between two sub-networks, an ex-
tra for-loop could be included in the code generation
function.

All these variants could be handled by Boolean parame-
ters of the code generation function, which would activate
the generation of the corresponding code.

4 Benchmark suite and results
The library has been used to create a first set of test
cases using the basic model described in Section 3.2: syn-
chronous generators with frequency and voltage regula-
tions, voltage-dependent loads, classical linear transmis-
sion lines and transformers models (no regulations nor sat-
urations).

Test cases were run with different values of N and M us-
ing OpenModelica version 1.18.0-dev-263-g3806526c07,
setting the the most favourable options: use of DAE-
mode, fixed-step homotopy solver for the initialization
part, sparse Kinsol/KLU solver for the time-domain part,
no tearing, which is too cumbersome for large systems,
and -O0 optimization of the C code compilation, to avoid
spending too much time on executable code optimizations.

The same experiments were performed on two differ-
ent machines: a 20-core Xeon E5-2650 workstation with
72 GB of RAM under Ubuntu 20.04, and on an 8-core
i7-8550U laptop with 16 GB of RAM under Windows 10
Pro, both 64-bits. During code generation, OpenModelica
can exploit multiple cores by running several threads in
parallel, e.g. for garbage collection; the generated C code
is also split in several files, that can be compiled in paral-
lel. Hence, simulations were run one at a time, to exploit
parallelism a much as possible.

The results obtained are collected in Table 3. Simula-
tions were ran successfully up to N = 11, M = 4 on the
workstation and up to N = 6, M = 4 on the laptop; larger
test cases could not be run due to memory limitations.
However, the expected performance figures for those cases
were extrapolated based on smaller test case results, and
shown in italics in the table.

Concerning the simulation part, performance remain
acceptable up to about 4000 components (i.e., generators,
transformers, lines, and loads) in the system. It is compa-
rable to the performance of existing domain-specific tools
and demonstrates that the computation time is compati-
ble with industrial uses of Modelica-based solutions for
power system stability. Above this size, further improve-
ments are needed, both on the software side - symbolic
Jacobians in DAE-mode for simulation, more efficient and
streamlined run-time code - and on the hardware side -
using last-generation high-performance hardware, for ex-
ample.

Code generation and compilation have reasonable per-
formance up to about 300 components in the system. This
means that general-purpose Modelica-based tools such as
OpenModelica can be used for research studies on small

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

355

algorithm
when initial() then

Modelica.Utilities.Files.remove(f);
print("within ScalableTestGrids.Models;", f);
print("model Type1_N_" + String(N) + "_M_" + String(M), f);
print(" extends Modelica.Icons.Example;", f);
print(" inner PowerGrids.Electrical.System systemPowerGrids(", f);
print(" initOpt = PowerGrids.Types.Choices.InitializationOption.globalSteadyStateFixedPowerFlow);", f);
for i in 1:2 * N loop

for j in 1:N loop
if i == N and j == div(N + 1, 2) then

print(" PowerGrids.Electrical.Buses.ReferenceBus BUS_GEN_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,
UStart = 400e3 * 0.966, portVariablesPhases = true);", f);

else
print(" PowerGrids.Electrical.Buses.Bus BUS_GEN_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,

portVariablesPhases = true);", f);
end if;

end for;
end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" PowerGrids.Electrical.Buses.Bus BUS_LOAD_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,

portVariablesPhases = true);", f);
end for;

end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" Components.ControlledGenerator GEN_" + String(i) + "_" + String(j) + "(GEN(SNom = 1e9, PStart = -806e6, QStart = -300

e6));", f);
end for;

end for;
for i in 1:N loop

for j in 1:N loop
for k in 1:M loop

print(" PowerGrids.Electrical.Loads.LoadPQVoltageDependence LOAD_" + String(i) + "_" + String(j) + "_" + String(k) + "(PRef
= Pvar, QRef = Qvar, UNom = 63e3, SNom = " + String(1e9 / M) + ", PStart = " + String(800e6 / M) + ", QStart = " +

String(100e6 / M) + ");", f);
end for;

end for;
end for;

...

print("equation", f);
for i in 1:2 * N loop

for j in 1:N loop
print(" connect(BUS_GEN_EHV_" + String(i) + "_" + String(j) + ".terminal, TRANSFORMER_GEN_" + String(i) + "_" + String(j) + "

.terminalB);", f);
end for;

end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" connect(GEN_" + String(i) + "_" + String(j) + ".terminal, TRANSFORMER_GEN_" + String(i) + "_" + String(j) + ".

terminalA);", f);
end for;

end for;

...

Figure 3. Part of the algorithm implemented to create the Modelica code of the system models

Table 3. Performance results for different system sizes

Xeon E5-2650, Ubuntu 20.04 i7 85506, Windows 10
N M #

equations

#
non-trivialeqs.

#
nodes

#
generators

#
transform

ers

#
lines

#
loads

#
solversteps

code
gen.tim

e
/s

C
com

pile
tim

e
/s

exec
size

/M
B

sim
.tim

e
/s

code
gen.tim

e
/s

C
com

pile
tim

e
/s

executable
size

/M
B

sim
ulation

tim
e

/s

2 4 12174 5091 80 8 16 68 32 297 17.4 3.6 13.5 0.8 26.7 12.7 21.0 1.0
3 4 28284 11801 180 18 36 162 72 319 40.7 8.9 31.2 1.9 66.8 25.1 36.7 2.2
4 4 51078 21307 320 32 64 296 128 315 75.3 15.7 56.2 3.5 125.3 41.2 59.0 4.2
6 4 116718 48683 720 72 144 684 288 294 178.5 36.8 128.2 8.2 305.4 66.0 123.1 10.7
8 4 209094 87211 1280 128 256 1232 512 300 329.1 69.6 229.6 15.8 600.0 140.0 240.0 20.0

11 4 397788 165913 2420 242 484 2354 968 322 737.5 163.8 438.0 34.6 1200.0 300.0 500.0 40.0
16 4 800000 350000 5120 512 1024 5024 2048 300 1500.0 350.0 900.0 70.0 2400.0 600.0 1000.0 80.0
23 4 1600000 660000 10580 1058 2116 10442 4232 300 3000.0 800.0 1800.0 150.0 5000.0 1200.0 2000.0 160.0
32 4 3200000 1400000 20480 2048 4096 20288 8192 300 6000.0 1800.0 3600.0 320.0 10000.0 2500.0 4000.0 320.0
45 4 6400000 2600000 40500 4050 8100 40230 16200 300 12000.0 4000.0 7500.0 700.0 20000.0 5000.0 8000.0 640.0
64 4 12800000 5600000 81920 8192 16384 81536 32768 300 24000.0 9000.0 18000.0 1500.0 40000.0 10000.0 16000.0 1280.0

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

356 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

test cases without any problem; as soon as the number of
components increases more, code generation becomes too
time-consuming for practical industrial use. As already
mentioned in the Introduction, as long as the structural
analysis and symbolic processing of the system equations
is done on a scalar basis, the code generation process and
the generated code size do not scale up well enough.

The use of non-expanded arrays in all the stages of the
compilation of the Modelica code into simulation code,
which would exploit the repeated instantiation of the same
model a large number of times, seems to be the most
promising path to push back these limits. To the au-
thor’s knowledge, such methods are currently not yet im-
plemented in any production-grade, general-purpose stan-
dard Modelica tool. They are in fact already available in
the IDA simulation tool (Sahlin et al. 2019), which how-
ever supports a variant of the language, IDA Modelica, a
subset of the full Modelica language, with some exten-
sions for separate compilation. Unfortunately the authors
did not have access to that tool at the time of this writ-
ing, so they were unable to assess its performance with
the proposed suite of benchmark models.

The results obtained clearly show that the most impor-
tant barrier for large-scale simulations is currently found
in the code generation and compilation time. This is an
even more difficult challenge, knowing that state-of-the-
art, domain-specific power system simulation tools don’t
need such phases during their operation and that one key
process is stability assessment demanding a large number
of simulations. On the other hand, the particular structure
of large-scale power system simulations, built by a small
number of different components which are instantiated a
large number of times in the system, is not yet really ex-
ploited in the back-end process, meaning that a large room
for improvement exist.

5 Conclusions
This paper introduces the ScalableTestGrids benchmark
suite, created on top of the PowerGrids library. This open-
source library, which is hosted on GitHub (ScalableTest-
Grids library 2021), offers a simple way to build bench-
mark models of electro-mechanical power generation and
transmission systems, that are scalable up to very large
size, representative of real-life system models, easy to cus-
tomize, and easy to simulate, except for their sheer size.

Experiments with the latest version of OpenModelica
were carried out on the benchmark suite, proving that
the simulation times that can be achieved with general-
purpose Modelica tools are already satisfactory. On the
other hand, results showed that fundamental progress
is still needed in the code generation and compilation
phases, to envision an industrial use of general-purpose
Modelica tools for large-scale power system stability sim-
ulations. In particular, a quantum leap in code generation
methods is required, to exploit the feature of these system
models, that contain very large numbers of instances of

relatively few component models.
In the future, the authors plan to use the benchmark

suite to measure the improvements achieved in Model-
ica tools for large-scale simulations, especially through
the use of vectorized code generation. Efforts are on-
going in this direction, for example the LargeDyn project
at Linkoping University, and HiPerMod project at Politec-
nico di Milano. They will also continue enriching it – e.g.,
by introducing more discrete variables or by adding new
power system components such as RES or HVDC lines
– to be able to assess the tools performance with diverse
power system structures.

As a final remark, the comparison of the performance
of different Modelica tools on the presented benchmark
suite goes beyond the scope of the present paper, since
the challenging nature of the benchmark suite may require
to use experimental or undocumented features of the tools
(which are not know to the authors of this paper), to obtain
the best performance, as was the case with OpenModel-
ica. Other Modelica tool developers are thus encouraged
to test their tools on this benchmark suite, to report their
best results, and to use it as a reference case to improve the
support of large power system modelling in their tools.

References
Bartolini, A., F. Casella, and A. Guironnet (2019-02). “Towards

Pan-European Power Grid Modelling in Modelica: Design
Principles and a Prototype for a Reference Power System
Library”. In: Proceedings of the 13th International Mod-
elica Conference, Regensburg, Germany, March 4–6, 2019.
Linköing University Electronic Press.

Bogodorova, T. et al. (2013). “A Modelica power-system library
for phasor time-domain simulation”. In: Proc. 4th IEEE PES
ISGT Europe.

Braun, Willi, Francesco Casella, and Bernhard Bachmann
(2017-05). “Solving large-scale Modelica models: new ap-
proaches and experimental results using OpenModelica”.
In: Proc. 12th International Modelica Conference. Prague,
Czech Republic, pp. 557–563. DOI: 10.3384/ecp17132557.

Casella, Francesco, Andrea Bartolini, et al. (2016-10). “Object-
Oriented Modelling and Simulation of Large-Scale Electrical
Power Systems using Modelica: a First Feasibility Study”.
In: Proceedings of the 42nd Annual Conference of the IEEE
Industrial Electronics Society IECON 2016. IEEE. Firenze,
Italy: IEEE, pp. 0–6. ISBN: 978-1-5090-3474-1.

Casella, Francesco, Alberto Leva, and Andrea Bartolini (2017).
“Simulation of large grids in OpenModelica: reflections and
perspectives”. In: Proc. 12th International Modelica Confer-
ence. Prague, Czech Republic, pp. 227–233. DOI: 10.3384/
ecp17132227.

Cossart, Q. et al. (2020-10). “An Open-Source Implementation
of Grid-Forming Converters Using Modelica”. In: 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-
Europe). IEEE.

ENTSO-E (2020). ENTSO-E Research, Development and In-
novation Roadmap 2020-2030. Tech. rep. ENTSO-E. URL:
https://eepublicdownloads.azureedge.net/clean-documents/
Publications/RDC%20publications/entso- e- rdi_roadmap-
2020-2030.pdf.

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

357

Gómez, Francisco J. et al. (2019-01). “CIM-2-mod: A CIM
to modelica mapping and model-2-model transformation en-
gine”. In: SoftwareX 9, pp. 161–167. DOI: 10.1016/j.softx.
2019.01.013.

Guironnet, A. et al. (2018-10). “Towards an open-source so-
lution using Modelica for time-domain simulation of power
systems”. In: Proc. 8th IEEE PES ISGT Europe. Sarajevo,
Bosnia and Herzegovina.

Henningsson, E., H. Olsson, and L. Vanfretti (2019-02). “DAE
Solvers for Large-Scale Hybrid Models”. In: Proceedings
of the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019. Linköing University Electronic
Press.

IEA, RTE (2021). Conditions and Requirements for the Tech-
nical Feasibility of a Power System with a High Share of Re-
newables in France Towards 2050. Tech. rep. IEA, RTE. URL:
https: / /assets . rte- france.com/prod/public/2021- 01/RTE-
AIE_rapport%20complet%20ENR%20horizon%202050_
EN.pdf.

Loud, Lester et al. (2010-08). “Hydro-Québec’s challenges and
experiences in on-line DSA applications”. In: pp. 1–8. DOI:
10.1109/PES.2010.5588120.

Masoom, A. et al. (2020-12). “Simulation of electromagnetic
transients with Modelica, accuracy and performance assess-
ment for transmission line models”. In: Electric Power Sys-
tems Research 189, p. 106799.

Mirz, M. et al. (2019-07). “DPsim—A dynamic phasor real-time
simulator for power systems”. In: SoftwareX 10, p. 100253.

Panciatici, Patrick, Gabriel Bareux, and Louis Wehenkel (2012-
09). “Operating in the Fog: Security Management Under Un-
certainty”. In: Power and Energy Magazine, IEEE 10, pp. 40–
49. DOI: 10.1109/MPE.2012.2205318.

Razik, Lukas, Jan Dinkelbach, et al. (2018-10). “CIMverter–a
template-based flexibly extensible open-source converter
from CIM to Modelica”. In: Energy Informatics 1.S1. DOI:
10.1186/s42162-018-0031-5.

Razik, Lukas, Lennart Schumacher, et al. (2019-06). “A Com-
parative Analysis of LU Decomposition Methods for Power
System Simulations”. In: Proc. 2019 IEEE PowerTech. IEEE.
Milan, Italy, pp. 1–6. DOI: 10.1109/PTC.2019.8810616.

Sahlin, Per et al. (2019-09). “On the scalability of equation-
based building and district simulation models”. In: Proceed-
ings 16th IBPSA International Conference and Exhibition.
Rome, Italy, pp. 2584–2590. DOI: 10.26868/25222708.2019.
210130.

ScalableTestGrids library (2021). URL: https : / / github . com /
PowerGrids/ScalableTestGrids (visited on 2021-05-07).

Winkler, D. (2017-09). “Electrical Power System Modelling in
Modelica - Comparing Open-source Library Options”. In:
Proc. 58th SIMS. Reykjavik, Iceland.

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

358 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

Continuous Development and Management of
Credible Modelica Models

Leo Gall1 Martin Otter2 Matthias Reiner2 Matthias Schäfer1 Jakub Tobolář2

1LTX Simulation GmbH, Munich, Germany, leo.gall@ltx.de
2German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, Germany

Abstract
Modeling and simulation is increasingly used in the design
process for a wide span of applications. Rising demands
and the complexity of modern products also increases the
need for models and tools capable to cover areas such as
virtual testing, design-space exploration or digital twins,
and to provide measures of the quality of the models and
the achieved results. In this article, we try to summarize
the state-of-the-art and best-practice from the viewpoint of
a Modelica language user, based on the experience gained
in projects in which Modelica models have been utilized
in the design process. Furthermore, missing features and
gaps in the used processes are identified.
Keywords: credible model, model requirement, data man-
agement, validation, verification, Modelica model

1 Introduction
The modeling of physical systems is a complex process
with many decisions, simplifications and assumptions on
its way, usually done by many different decision-makers.
In the real world, this often leads to simulation models and
simulation results that are not well documented. Due to
the increasing use of system simulation in nowadays prod-
uct development, there is an increasing need in traceable
model development with guarantees on model validity.

Models are often shared across organizational borders
(for example, from supplier to OEM). On this way the
direct access to model sources (for example to internal
repositories) and the model history is lost. To avoid this,
models have to “carry” documentation “with them”. If
only Black-Box Functional Mock-Up Units (FMU)1 or re-
sult data with simulation reports are shared, the require-
ments on credibility and traceability are even higher.

The ITEA 3 project UPSIM2 aims for system simula-
tion credibility via introducing a formal simulation quality
management approach, encompassing collaboration and
continuous integration for complex systems. It shall be
based on the recently proposed “Credible Simulation Pro-
cess” (Heinkel and Steinkirchner 2021).

In this article, it is tried to summarize the state-of-the
art in the development and management of credible Mod-
elica models, as a basis for future improvements in the

1https://fmi-standard.org/
2https://www.upsim-project.eu/

UPSIM project. The goal is to achieve a well-documented,
traceable development process for Modelica based “cred-
ible digital twins”.

The paper is structured as follows. First, a general
overview of the modeling and simulation process is given
in Section 2. Then, in Section 3, the former is particularly
discussed, focusing on requirements, level of details, val-
idation, etc. The management of Modelica libraries and
simulation data is finally elaborated in Section 4.

Even if several of the addressed points are valid for any
kind of model-based simulation, the focus of this paper is
on the Modelica point of view.

2 Modeling process
A modeling process can be roughly divided into the fol-
lowing steps, examined in the corresponding sections:

1. Definition of the requirements, Section 3.1.

2. Definition of the modeling task, Section 3.2
(based on the requirements - for which purpose is the
model needed?).

3. Implementation of the model, Section 3.3
(which detail is necessary for the modeling task,
based on which data?).

4. Calibration and validation of the model, Section 3.4
(determination of the parameters of the model based
on available data sources or measurement data).

5. Usage of the model.

The different steps in the modeling process are often per-
formed by different persons, either in the same company
or also across different companies (for example supplier
and OEM). Thus, in order to have a traceable model, all
relevant information has to be managed during the whole
modeling process. Therefore, a source-code management
(Section 4.1) and a version management (Section 4.2)
is necessary and the utilized resources need to be docu-
mented (Section 4.3)

One simple approach is to use a template with the
above-mentioned items (for example as Word or as Mark-
down document) and to store the filled-out template in
the model, for example as file model_history.md in the

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

359

root directory of the relevant Modelica package. For ev-
ery item a short summary must be included in the template
together with a description where the full details can be
found. This might be e.g., a report in the Resources di-
rectory of the package (cf. Section 4.3), a publication, an
internal report of the organization, or repositories or file
servers where simulation results or measurement data are
stored.

In the future, it would be also very helpful if the log-
comments of a version management system are automati-
cally extracted and attached to the model documentation,
in order to get easy access to this, usually, very valuable
information. In open-source projects the release informa-
tion of a software contains often a one-line comment and
a link to every issue and/or pull/merge request for this re-
lease. The same process could be also done for models
(Section 4.2).

Another approach to track changes of artefacts during
the modeling process is presented in (König et al. 2020).
The changes can be tracked more or less automatically
by collecting standardized information, which is sent by
the different tools involved in the modeling process, in a
database using server communication. Unfortunately, the
number of tools currently supporting this traceability ap-
proach is currently small, but is planed to be extended.

The focus of this paper is the development of a model
until a state “ready to use” is reached. The usage of
the model itself, including the maintenance of the model
throughout its whole life-cycle, is, in contrast, not consid-
ered in this paper.

3 Model development
3.1 Requirements
As described in Section 2, the modeling process starts with
the definition of the requirements to be fulfilled by the
final model. Requirements are typically developed and
defined textually in a document-based development pro-
cess using natural-language that might be following some
rules, such as the Easy Approach to Requirements Syntax
(EARS), see (Alistair and Wilkinson 2019). As a typical
example, see the requirements MIL-STD-704F for elec-
trical systems in US military aircraft (Department of De-
fense 2016). Definitions of requirements with natural lan-
guage might be supported with appropriate tools, such as
DOORS 3 from IBM or Reqtify4 from Dassault Systèmes,
to get support for collaboration, traceability and coverage
analysis.

There are several proposals and attempts to define
and check requirements more formally, such as (Schamai
2013) where it is proposed to generate Modelica code for
this purpose. At Electricité de France (EDF), the special
language FORM-L – FOrmal Requirements Modelling
Language, (Thuy 2014), was developed that formally de-

3https://www.ibm.com/products/requirements-management
4https://www.3ds.com/products-services/catia/products/reqtify/

fines requirements in a language close to the textual no-
tation used by system designers. The FORM-L language
is centered around the four basic questions: What, Where,
When, How Well. The example from (Bouskela and Jardin
2018) maps the natural language requirement

R1: While the system is in operation, the pump
must not be started more than twice.

into the following FORM-L definition:

requirement R1 is
for all pump in system.pumps
during system.inOperation
check
count (pump.isStarted becomes true) <= 2

FORM-L uses two and three-valued logic to define the
logical parts of requirements. The reason to use three-
valued logic is that in certain situations it is not possible
to state whether a property is satisfied (= true) or violated
(= false) and, therefore, a third value type undefined is in-
troduced.

In order to make the FORM-L language directly ac-
cessible for the Modelica community, the open source
Modelica library Modelica_Requirements5 was developed
(Otter et al. 2015). The library has about 200 model
and block components and about 50 functions. It al-
lows to define requirements with drag & drop and to
“bind” these definitions to Modelica models, so the re-
quirements are always checked when the models are sim-
ulated. It is then reported, whether requirements are
satisfied, violated, or not tested. Due to the needs of
the Modelica_Requirements library, some additional func-
tions have been introduced in the Modelica Standard Li-
brary (MSL)6, in particular the functions of sub-package
Modelica.Math.FastFourierTransform.

In (Bouskela and Jardin 2018), the new Extended Tem-
poral Language (ETL) is described for the simulation of
the temporal aspects of FORM-L. ETL introduces a four-
valued logic by the additional value undecided (meaning
that the “decision making” is in progress), in contrast to
undefined (meaning that the “condition” is not applicable).
There is also the Modelica package ReqSysPro under de-
velopment at EDF to practically use ETL within a Model-
ica model. For more details about the usage of FORM-L
in the Modelica community, see also (Bouskela, Falcone,
et al. 2021).

The abovementioned approaches define requirements
formally and perform simulations on Modelica models to
automatically retrieve answers whether requirements are
satisfied, violated, or whether no answer can be given. In
order to make that possible, corresponding scenarios must
be defined (see Section 3.2). Thus, particular simulation
runs must be selected to perform these tests. It might not
be obvious to determine suitable scenarios. Instead, the

5https://github.com/modelica-3rdparty/Modelica_Requirements
6https://github.com/modelica/ModelicaStandardLibrary

Continuous Development and Management of Credible Modelica Models

360 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

central question is to figure out the scenarios and environ-
mental conditions for which the requirements are not ful-
filled, for example to figure out a (valid) load condition or
an operating point, where a controlled system is unstable.

A standard approach is to use Monte Carlo Simulations,
generating parameter and initial values randomly accord-
ing to given distributions and perform simulations for ev-
ery randomly selected value set. Most Modelica tools sup-
port Monte Carlo Simulation. There are also dedicated
tools, such as Persalys7. The drawback for typical indus-
trial usage scenarios is, that the number of parameters and
initial values is so large, that it is easily possible that op-
erating points are not found where requirements are vio-
lated. An alternative is to utilize more intelligent search
processes:

• Since 1997, worst-case optimization is routinely
used at DLR’s Institute of System Dynamics and
Control to tackle such problems. Hereby, multi-
criteria optimization problems are defined so that
systems behave as worse as possible. For more de-
tails, see e.g. (Bals, Fichter, and Surauer 1997; Joos
2015; Labusch et al. 2014).

• (Corso et al. 2020) provides a survey of optimiza-
tion algorithms for black-box safety validation: “[..]
finding disturbances to the system that cause it to fail
(falsification), finding the most-likely failure, and es-
timating the probability that the system fails“.

• TestWeaver from Synopsis8 (Tatar and Mauss 2014)
automatically generates stimuli for co-simulations of
virtual ECUs, plant models and requirement watch-
ers. The main generation strategy is the Coverage-
Driven Generation which combines random, com-
binatorial and optimization strategies with the goal
to increase (discrete) coverage measures and to find
worst-cases for (continuous) quality measures.

3.2 Simulation scenarios
The next step in the modeling process is the definition of
the modeling task. This implies a definition of the simu-
lation scenarios, the model should be used for. Human-
readable Modelica code is very well suited for compact
storage of defined scenarios. But, there are many ways to
handle static and dynamic boundary conditions of a Mod-
elica model and to define test cases.

3.2.1 Parameters
When preparing a model for a specific simulation task, the
source of parameter values should be documented: Who
changed the default value and why? At the instance level,
changing parameters means introducing modifiers. Mod-
elica modifiers do not provide the ability to comment mod-
ifications. A good practice in larger Modelica projects

7https://persalys.fr
8https://www.synopsys.com/verification/virtual-prototyping/virtual-

ecu/testweaver.html

is to define at which hierarchical level the parametriza-
tion should happen. Therefore, if there is a defined level,
the source of parameters can be documented on Modelica
info layer: component data sheets, measurements, edu-
cated guess, optimization results, etc. Another approach
is to store parameters with this documentation in replace-
able hierarchical records in a separate Modelica library or
sub-library on a different file as the model, in order that
changes to parameters are directly/easily visible in the ver-
sion control system.

The parameter handling of Modelica should be im-
proved to better support the formal definition of credible
models. In principle, extensions could be introduced via
Custom Annotations (Zimmer, Otter, and Elmqvist 2014),
but large scale usage is currently not user-friendly. Fur-
thermore, a standardized solution is needed, supported by
all the Modelica tools. In particular, the following features
would be useful:

• Defining the domain of validity of the model, prefer-
ably with a language element and not just in the doc-
umentation.

• Define parameter tolerances and/or uncertain distri-
butions (such as normal or uniform distribution).

• Introduce an orthogonal concept to parameter propa-
gation by mapping parameter values, their tolerances
and distributions into a model, so that model struc-
ture/equations and model data can be much easier
separated. This could be done by the merge concept
proposed in (H. Elmqvist et al. 2021).

3.2.2 Boundary conditions

A specific system model can be used in different scenar-
ios: a) simulation of stationary load points, b) simulation
with dynamic boundary conditions, or c) with external
boundary conditions (e.g. co-simulation or hardware-in-
the-loop (HIL)).

The dynamic boundary conditions can be important for
the correct initialization of a model. One example would
be to initialize a system based on the correct environment
temperature and pressure. From our past experience, it is
hard to initialize based on external dynamic inputs, e.g.
coming from table data or via co-simulation. This is, be-
cause in Modelica, the start values of input variables can
not be directly used as initialization parameters (parame-
ters having lower variability as inputs). To overcome this
problem, users have to write additional initial equations
in order to assign input values to initialization parameters,
see example code in Listing 1.

If the equations allow initalization of dynamic
states via connectors, graphical solutions like
Modelica.Mechanics.Rotational.Components.
InitializeFlange9 are possible.

9https://doc.modelica.org/Modelica%204.0.0/Resources/-
helpDymola/Modelica_Mechanics_Rotational_Components.html

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

361

Listing 1. Initalization of states from output of CombiTimeTable

...
parameter SI.Temperature T_initial(fixed=false) "Init, to be set from table output";

Modelica.Thermal.HeatTransfer.Components.HeatCapacitor heatCapacitor(
C=100, T(start=T_initial)) "Component to be initalized";

Modelica.Blocks.Sources.CombiTimeTable combiTimeTable_Tamb
"Boundary condition on table file";

initial equation
T_initial = combiTimeTable_Tamb.y[1] "Get first time point of table data";

...

The open source Modelica library ExternData10 from
Thomas Beutlich and further contributors is very helpful
in this respect, because it allows to read data from CSV,
INI, JSON, MATLAB MAT (v4,v6,v7,v7.3), SSV (Sys-
tem Structure Parameter Values v1.0)11, TIR (Tire proper-
ties), Excel XLS and XLSX, and XML files at the start of
a simulation without newly compiling the model. A Clay-
tex TechBlog12 gives a good description how to use this li-
brary. Data from INI files can be read in a similar way with
the open source Modelica library DeviceDrivers13.

3.2.3 Test case definition

For the definition of test cases, usually a scripting lan-
guage is needed to describe the wide variety of occur-
ring situations. There is neither a standardized nor an ac-
cepted scripting language available in the Modelica com-
munity. Depending on user’s preferences and the support
of scripting languages in the used Modelica tool, one of
the following scripting languages is typically used: Dy-
mola functions or script files (mos-files), Microsoft Ex-
cel (called Excel in the following text) via Excel-plug-
ins such as XRG Score14 or TLK Simulator for Excel15,
Maple, Mathematica, Matlab, Python. Industrial users
have often a strong preference for Excel or Python.

A new, interesting possibility is proposed in (Buse and
Bellmann 2021) where one or more instances of a Lua
interpreter16 can be attached to a Modelica model via
the Modelica external object interface. Hereby complex
scenarios can be defined in a combination of Lua- and
Modelica-code. The Lua interpreter itself is a small DLL
(Dynamic Link Library) that is included in a Modelica li-
brary and therefore does not require any download or in-
stallation, contrary to other scripting environments that are
used with Modelica tools.

The following examples demonstrate how Dymola’s

10https://github.com/modelica-3rdparty/ExternData
11https://ssp-standard.org/
12https://www.claytex.com/tech-blog/using-external-data-in-your-

dymola-model/
13https://github.com/modelica-3rdparty/Modelica_DeviceDrivers
14https://www.xrg-simulation.de/de/produkte/applications/score
15https://www.tlk-thermo.com/index.php/en/simulator-suite
16https://www.lua.org/

scripting can be utilized for the definition of test cases.

Example 1: Automotive driving maneuvers There ex-
ists a range of well defined standard scenarios to identify
and verify the particular behavior of a vehicle. They are
typically referred to as open loop or closed loop driving
maneuvers. The former comprises for example ISO 4138
steady-state cornering, the latter ISO 3888 double lane
change. The example provided here uses Dymola built-
in functions.

Considering a vehicle’s architecture as defined in the
VehicleInterfaces library17(Dempsey et al. 2006), see Fig-
ure 1, the particular driving maneuver conditions can be
often controlled within the driver model only. Making
this element replaceable enables to adapt the desired driv-
ing conditions from outside, e.g. when simulating the
model. Utilizing this feature, there can even be imple-
mented a function to simulate various driving maneuvers
in one turn.

In the predefined vehicle’s architecture, called
ConventionalVehicle in Listing 2, a template of
a vehicle model is put together with its environment.
Therefore, a particular user’s vehicle model shall be
redeclared here and the architecture shall be checked
against possible compiling errors in a pre-processing
step. Then, the function in Listing 2 can be executed with
particular settings for each of the desired maneuvers. The
two exemplary maneuvers, mentioned above, are given in
Listing 2.

Listing 2. Run driving maneuvers

function runManouvers
input String modelSim =

"VehicleLibrary.ConventionalVehicle"
"Model to be simulated"
annotation (

Dialog(
__Dymola_translatedModel(
translate=false)));

input String priorRedeclarations = ""
"User defined prior modifications, e.g.
’redeclare class block(par1=...),’";

input String resultFile = "myVehicle"

17https://github.com/modelica/VehicleInterfaces

Continuous Development and Management of Credible Modelica Models

362 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

display

km/h

accessories

Set1

engine

Set1

transmission

6
Set1

driveline

Set1

chassis

NonLinear
Tire

Set1

brakes

Set1

driverEnvironment

Set1

road atmosphereworld

x

y

co
nt
ro
lB
us

Figure 1. Common vehicle’s architecture as defined in the VehicleInterfaces library and inherited in the PowerTrain library.

"Result file(s)";
input Boolean cornering40 = false
"ISO 4138 Cornering: R = 40 m";

input Boolean laneChange80 = false
"ISO 3888-1 Double lane change: v_x =

80 km/h";
...

protected
String problem;
String modifier;

algorithm
if cornering40 then

modifier :=
"VehicleLibrary.Drivers." +
"SteadyCornering" +
" driverEnvironment(" +
"vInit=2,Rcurve=40)";

problem :=
modelSim + "(" + priorRedeclarations

+ "redeclare " + modifier + ")";
ok := simulateModel(

problem = problem,
startTime = 0.0,
stopTime = 250,
resultFile = resultFile

+ "_StationaryCircle40m");
end if;

if laneChange80 then
modifier :=
"VehicleLibrary.Drivers.LaneChange" +
" driverEnvironment(" +
"vInit=22.22,variant=ISO3888_1)";

problem :=
modelSim + "(" + priorRedeclarations
+ "redeclare " + modifier + ")";

ok := simulateModel(
problem = problem,
startTime = 0.0,
stopTime = 15,
resultFile = resultFile

+ "_DoubleLaneChange80kmh");
end if;
...

end runManouvers

The core of the function are single simulation calls
of Dymola’s simulateModel function for each
of the maneuvers, carried out for the predefined
ConventionalVehicle model. Particular maneu-
ver conditions are given by the predefined attribute
modifier. Furthermore, maneuver specific simulation
conditions are set, such as the simulation stop time.
Moreover, each driver model contains an option to stop
the simulation once maneuver-specific conditions are
reached – for example the maximum lateral acceleration
for the steady-state cornering.

Besides fixed maneuver-specific attributes, the attribute
priorRedeclarations additionally enables to modify
the remaining blocks of the ConventionalVehicle.
Thus, for example variants of power train, environment
or controller can also be defined.

Example 2: Refrigeration cycle When simulating re-
frigerant cycles, there are usually subsequent tasks per-
formed interactively or via scripting: The first step might
be a parameter variation to define a suitable refrigerant
charge. Then, stationary results can be verified, e.g. by
checking the pressure-enthalpy-diagram. After this veri-
fication step, larger simulations studies on control points
and environmental parameters, like air temperature, mois-
ture and speed, can be defined.

3.3 Model complexity
After the definition of the simulation scenarios, the com-
plexity of the models should be considered. The decision
about complexity is based on the scenarios, the model is
implemented for.

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

363

3.3.1 Adequate modeling detail
Models describing every effect of a (technical) system,
don’t exist. A model is always created for a specified set
of scenarios. Utilizing the scenario-driven model for an-
other scenarios can either lead to inappropriate quality of
results, because the desired effects are not modeled, or it
needs an unnecessary parametrization effort and a lot of
computational resources, because it is too complex for the
expected outcome. An example of a mismatching vehicle
model is shown in Figure 2. Assuming a line-change ma-
neuver as a scenario, both submodels are inappropriate.
With the single-track model the roll angle of the vehicle
can not be evaluated and the FE-model, calculating the de-
formation of the rim, is far too detailed for this scenario.
Instead it can be assumed to be rigid .

chassis.fmu

one-track model

FE_rim.model

mismatching model assembly

h�ps://cdn.jvejournals.com/ar�cles/16988/xml/img4.jpg

upload.wikimedia.org/wikipedia
/de/8/84/EinspurKrae�e1.png

Figure 2. Mismatching model assembly. A simple single-track
model of a vehicle (left) versus a complex finite element model
of a wheel’s rim (right, from (Wei et al. 2016)).

The accuracy of the worst submodel in an assembly
(e.g. the less detailed) generally determines the total ac-
curacy. So it’s reasonable to assemble models of sim-
ilar complexity, depending on the aim of the use case.
In the example either a rigid rim or a more complex
chassis-model should be used. The adequate complexity
of a model also depends on the desired outcome of the
whole system. If the model has only a small influence on
the outcome, it can be modeled less complex.

A model developer should keep some questions in mind
while creating a scenario-driven model:

• What is the desired output of the model?
• Which accuracy does the model need?
• Which accuracy has the data used for calibration and

validation?
• Based on which data can the model be validated?

If a model is encapsulated as a FMU, its complexity is
not known in general if the source-code is not published.
In the above-mentioned example, this might be the reason
why the two models of largely different complexity are
even assembled. The complexity can be estimated by sim-
ulating the FMU and regarding the output (e.g. the trans-
lation statistics of the tool). This additional effort could

be avoided if a “scale” for the model complexity could be
stored in the FMU.

3.3.2 Model detail levels

The detail level of a model can be roughly characterized
by the following classification (adapted from (Kuhn, Otter,
and Raulin 2008), which in turn is based on a classification
sometimes used in aerospace industry):

• Level 1: Architectural level
Steady-state power consumption.
Models are described by algebraic equations based
for example on the energy balance between ports
(without dynamic response). Typical use: Rough
system design with power budgets.

• Level 2: Functional level
Steady-state power consumption and mean-value
transient behavior (e.g. inrush current or consump-
tion dynamics with regard to input voltage tran-
sients).
Models are described by differential-algebraic equa-
tions (without switching elements). Typical use: Sta-
bility studies, controller design.

• Level 3: Behavioral level
Detailed description of transient behavior (e.g.
switching and high frequency injection behavior).
Models are described by hybrid differential-
algebraic equations with events and switching
elements. Typical use: Network power quality
studies, verification of controllers.

• Level 4: Distributed level
Very detailed description of spatially distributed,
transient behavior (e.g. magnetic field in electrical
motor, stress field in a structure, flow around an air-
foil).
Models are described by partial differential equa-
tions, which are solved with FEM (Finite Ele-
ment Method), FVM (Finite Volume Method), CFD
(Computational Fluid Dynamics), or DEM (Discrete
Element Method). Typical use: Detailed vibration
investigations, design of structures or of the wind-
ings of electrical motors.

In Figure 3, the simulation of a DC/DC buck converter
is shown for model levels 1, 2 and 3. In (Kuhn, Otter,
and Raulin 2008), various alternatives are discussed how
to implement multi-level models in Modelica.

3.3.3 Selecting the model detail

A typical modeling process starts with a simple model for
one use case and then the complexity and number of use
cases is increased step by step. In the end the model con-
tains various physical effects and cover many use cases,
but for the initially anticipated simple use case it’s way
too complex.

Continuous Development and Management of Credible Modelica Models

364 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

Figure 3. Exemplary simulation results of architectural (left), functional (middle) and behavioral (right) model of a DC/DC buck
converter (Kuhn, Otter, and Raulin 2008). The right image contains high frequency switching leading visually to a "filled area".

degree of detail = 0

degree of detail = 1

degree of detail = 2

flange_a flange_b

Figure 4. A Modelica model containing three conditional com-
ponents reflecting different level of model’s detail.

A good practice to avoid such over-engineering is to
store development stages of different complexity and then
choose a suitable complexity for a specific use case. The
Modelica language provides the following possibilities to
switch between different modeling levels:

• Partial models.
• Conditional components.
• Replaceable components.
• If-clauses.

This modeling practice also simplifies the documenta-
tion, because it’s obvious to describe the differences be-
tween the levels of complexity, including the effects added
to the model step by step. On the contrary, the necessary
assumptions and simplifications can be described, to use
one of the less detailed models.

In Figure 4, a simple example for conditional com-
ponents is shown. Three different degrees of details
are modeled: a rigid connection (architectural-level, cf.
Section 3.3.2), a linear (functional-level) and a nonlin-
ear (behavioral-level) spring-damper behavior between

flange a and b. In this example, the particular de-
gree of detail – “stiff”, “linear” or “nonlinear” – can
be selected by changing the value of the parameter
degree_of_detail, as shown in Listing 3.

Listing 3. Conditional components

model ConditionalComponents
...
parameter Integer degree_of_detail=0 "

Parameter to switch between models
with different degree of detail";

Components.Detail_0 detail_0 if
degree_of_detail == 0;

Components.Detail_1 detail_1 if
degree_of_detail == 1;

Components.Detail_2 detail_2 if
degree_of_detail == 2;

equation
if degree_of_detail==0 then

connect(flange_a, detail_0.flange_a);
connect(detail_0.flange_b, flange_b);

elseif degree_of_detail==1 then
connect(flange_a, detail_1.flange_a);
connect(detail_1.flange_b, flange_b);

else
...

end if;
...

end ConditionalComponents;

The selection of an appropriate modeling stage depends on
the scenarios of the whole system. In Listing 3, the rigid
connection can be used if the component, represented by
this model, is very stiff in relation to other components in
the system. In contrast, the linear spring behavior is not
adequate, if the linear elastic range can be exceeded due
to large forces appearing in the system.

Similarly, to the connect-statements inside Listing 3, if-
clauses can be used to switch between different sets of
equations, with the disadvantage, that each branch must
have the same number of equations in Modelica. This
may lead to many dummy definitions. Another option in
Modelica are replaceable models. Unfortunately, they are
only beneficial if the interfaces (inputs, outputs, parame-
ters) of the different modeling stages are similar, because

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

365

they have to be adapted each time the replaceable model
is changed.

A disadvantage of storing different levels of detail is
the difficult testing strategy and higher effort for model
adaptations. Functionality tests and model updates must
be performed for each level. Therefore, it is advisable to
store only major development steps of different complex-
ity.

Typically, the level of detail should not only be switch-
able for a system model, but also for its sub-components.
Technically, such an approach cannot be implemented
fully satisfactory in the current Modelica language, be-
cause a feature to replace sub-components based on
Boolean expressions is missing.

If an FMU should be built, the parametrized switch
between different modeling stages (which is a structural
parameter) cannot be transferred, because the number of
state variables cannot be changed after the translation of
the model. An FMU can only contain one single degree
of complexity. It would be useful to support different lev-
els of modeling details in a future Functional Mock-Up
Interface (FMI) standard.

3.3.4 Physical versus data driven models

An important indicator for the credibility and the range
of validity of a model is the modeling basis. Models can
be based on physical equations or on data from measure-
ments, expert guesses or other sources.

Physical equations are usually public knowledge with
well defined assumptions. They usually cover a wide
range of physical applications and can be extrapolated
without immediately leaving their range of validity. Un-
fortunately, a proper parametrization is often difficult, be-
cause finding accurate parameter values (e.g. the friction
coefficient between two bodies in contact) can be costly.

Data driven models are using for example measurement
data. These data contain every single influence (e.g. the
environment temperature) on the system during the mea-
surement – even unknown ones. Consequently, the model
is only valid for exactly these circumstances and, more-
over, its extrapolation is limited. To put measurement
data into a Modelica model so called Combi-Tables can
be used. In this case the option “extrapolation triggers an
error” of the Combi-Tables should be selected.

Characteristic maps based on measurement data also of-
ten induce a higher numerical effort for Modelica tools.
This is because interpolation between the data points is
necessary, non resolvable non-linearities can appear, and
the variable described with the characteristic map can not
be selected as a state-variable.

A model based on measurement data must contain all
relevant information about the measurement (such as mea-
sured range, measurement methods and tools, measure-
ment precision, ...) best in a formal way, and not just in
the documentation.

Other kinds of data driven models can use mathemati-
cal approximations such as neural networks, response sur-

faces or optimization functions. Mathematical approxima-
tions are either used as a simplification of a physical model
to reduce computation time or as an attempt to generalize
measurement data by learning from the output of multi-
ple measurements. There are several publications on this
topic, also from the Modelica point of view (e.g. (Bruder
and Mikelsons 2020) and (Tundis et al. 2017)).

3.4 Model Calibration
Once a model is implemented, the modeling process goes
on with the calibration, validation and verification, to en-
sure that the model appropriately achieves the aims it was
made for. Since the scope of model calibration, valida-
tion and verification is very large, we can only give here
a short overview in the context of a typical use case for
a multi-physical Modelica model. For a broader overview
on the topic, a recent paper (Riedmaier et al. 2021) goes
into more details and gives many additional references.

Multi-physical Modelica models are typically used ei-
ther to represent a real physical system or to reproduce
the behavior of such a system as a part of a model-based
feed-forward or feed-back control system. Especially the
direct generation of inverse models from Modelica mod-
els is a powerful feature which can also be used during the
calibration process, see (Reiner 2011) or (Mesa-Moles et
al. 2019).

3.4.1 Goal definition

The aim of the calibration process is to parameterize mod-
els with the help of measurements with regard to defined
goals and criteria. For models, this generally means that
they should map the behavior of the real-world system as
precisely as possible. Figure 5 shows an overview of the
model calibration process.

The calibration of the parameters of these models is im-
portant in order to achieve a good representation of the
real system or to have a good controller performance, in
the case of model-based control.

For many physical systems the knowledge of the in-
dividual involved parameters can be quite different. For
example, for the model of a robot, the mechanical pa-
rameters such as link lengths or masses could be known
very precisely from data-sheets or CAD data, whereas the
friction or damping in connecting joints can be highly un-
known. Well known parameters should, thus, be included
in the models directly, in order to reduce the number of
unknown parameters for the calibration process. Addi-
tionally, the source of these parameters should be docu-
mented.

The aim of the calibration for model-based controllers
is an optimal control performance, as well as sufficient
disturbance suppression and vibration damping (in the
case of feed-back control). For Modelica models used as
part of a control system, this often means that the model is
calibrated directly on a HIL (Hardware-in-the-Loop) setup
(Reiner 2011).

Continuous Development and Management of Credible Modelica Models

366 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

Goal Defini�on System Analysis Sensor Selec�on Measurement plan Op�miza�on Evalua�on

Model Calibra�on

Compila�on of the
calibra�on goals

Selec�on of the
valida�on range and
opera�on condi�on

Nonlineari�es
Excita�on signals
Emergency strategy and

Safety for HIL setups
and measurements

System dynamics
Measurement range
Noise level
Sensor placement

Experimental procedure
Sta�s�cal verifica�on
Online/Offline analysis

Strategy
Method selec�on
Star�ng values
Verifica�on/Analysis

Quan�ta�ve goals
Qualita�ve goals
Robustness analysis

Goal of the calibra�on Understanding of the
system

Safety

System Dynamics
measurable

Test procedure Model/controller
parameter

Conclusion
Itera�on necessary?

Figure 5. Overview for the Modelica model calibration process using measurement data.

3.4.2 System Analysis
There are numerous approaches for the identification pro-
cess in the literature. In particular, however, a distinction
must be made between methods for verification and iden-
tification in the frequency domain and in the time domain.
Methods in the frequency domain are useful for systems
that have (approximately) linear behavior, or for individ-
ual operating points of a system for which this assumption
applies. Methods in the time domain are also suitable for
non-linear systems, but are usually associated with greater
effort (e.g. with regard to required computing time and ex-
periment effort / duration).

Multi-physics Modelica models are usually used for
modeling of complex non-linear systems. However, also
the generation of linear systems from Modelica models is
possible using numerical linearization, which is supported
by many Modelica tools. Nonetheless, the focus is on non-
linear models in the following.

In a second step of the calibration the physical system
has to be analyzed after the aim of the calibration has been
be defined.

Normally, models of a physical system do not contain
every detail or the entire operating range of the system, see
Section 3.3.1. It must, therefore, be investigated to what
extent an undesired or non-modeled behavior can be iso-
lated. For the verification of model-based controllers on
(HIL) test benches, further considerations must be made,
such as taking precautions to ensure safe operation of the
test bench in case of a controller failure (e.g. unstable be-
havior or violation of manipulated variable restrictions).
In addition, suitable emergency strategies (e.g. emergency
stop switch, mechanical emergency braking) must be im-
plemented. If the controlled system is unstable without
a controller, a robust parallel controller can also be help-
ful, which can be activated in the event of a fault and by-
passes the controller to be verified.

3.4.3 Sensor selection
Suitable sensors have to be selected based on the calibra-
tion objectives. It is important to consider the dynamics
and measuring ranges of the sensors used. If no single

sensor can capture the entire relevant dynamics of the sys-
tem, it must be examined whether a suitable result can
be achieved by merging several measurements and / or
sensors. Sensors generally have measurement noise and
offsets, that must be considered during measurements and
appropriately compensated / calibrated. This can also be
done during a pre-processing step. After an analysis of
the system, the sensor placement must be selected in such
a way that the dynamics of the system is reproduced as
clear as possible. This is especially important for elas-
tic mechanical systems (e.g. eigenmode shapes). In case
of doubt, different placements should be examined (in the
case of elastic systems, the measurements can be influ-
enced by vibration modes, for example).

3.4.4 Measurement plan

After suitable sensor selection and placement, a measure-
ment plan should be documented, for which the statistical
nature of measurements must also be considered. Criti-
cal measurements (e.g. measurements of parameters with
a large impact on the system dynamics) must always be
carried out several times and, if there is a broader spread
of the measurement results, they must also be processed
appropriately. Particularly in the case of large deviations,
the sensor selection and placement must be critically ex-
amined again.

For the verification and tuning of controller parameters
directly on the test bench, online methods are available, in
which the evaluation takes place directly after or already
during the measurements on the test bench. HIL setups
are suitable for this, in which the Modelica-based model
controller parameters can be changed with minimal effort.

Alternatively, however, offline methods can also be
used in this case by first identifying suitable Modelica
models of the controlled system in order to be able to de-
sign appropriate controllers with the help of simulations.
For the identification of Modelica models and model-
based observer systems of the physical system, an “of-
fline” method can always be used, because the change
of the Modelica models’ parameters does not change the
measurement data, which is, on the contrary, the case, if

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

367

the model is part of a feed-back system. This enables more
elaborate methods to be used. Since Modelica models typ-
ically also do not represent the physical system up to very
high frequency ranges, noisy measurement data should be
low-pass filtered before the calibration process if possible
using forward-backward filtering to avoid a phase shift in
the data.

3.4.5 Optimization

Suitable identification strategies for Modelica models are
optimization-based methods. Therefore, mathematical
criteria are to be defined which can then be minimized
using a suitable optimization algorithm by varying the pa-
rameters of the model. Appropriate start parameters have
to be selected for this purpose. An important difference
to classical optimization, however, is the statistical na-
ture of the measurement results, which must be appro-
priately considered for the criteria specification. In the
case of HIL optimization, mainly only optimization meth-
ods with a small number of steps (function evaluations)
are to be used, since HIL experiments are usually signifi-
cantly more time-consuming compared to pure numerical
evaluations. This normally means that local optimization
methods are to be preferred (e.g. gradient based methods
or surrogate optimization techniques).

For offline methods, nearly all optimization algorithms
can be used. However, because of the noise in the
data, usually those algorithms converge better, which are
gradient-free or robust against noise. For Modelica mod-
els, a wide range of optimization tools are available. There
are methods for optimizing the Modelica model directly
within Dymola using e.g. the DLR Optimization library
(Pfeiffer 2012), as well as many other external tools. The
latter use the Modelica model directly as an executable or
exported as an FMU within a chosen environment, such
as Python or Matlab, since the parameters of the Model-
ica models can still be changed, even after the compilation
and export, see e.g. (Leimeister 2019).

3.4.6 Evaluation

After the Modelica model of the system has been verified
the obtained results must be assessed quantitatively and
qualitatively with regard to the selected objectives. To en-
sure robustness and to avoid over-fitting, additional mea-
surements should be used for this step, which were not
used within the optimization process of the parameters. If
not all goals could be met during the calibration process,
the process must be carried out again iteratively after an
analysis of the results and, if necessary, a new modified
model or controller structure must be used.

As a final result, the obtained set of model parameters
should be documented, together with the model and the
original measurement data, as well as a detailed descrip-
tion of the overall process. For Modelica models, such
a documentation can be done directly within the model
(see also sec. 3.2.1).

4 Model management
The modeling process described in Section 3 is a com-
plex procedure with many steps and iterations. During the
modeling process as well as afterwards, the different mod-
eling stages should be traced. Therefore, a version and re-
vision management is needed, as well as an archiving of
measurement data, simulation results, etc.

4.1 Source code management using git
Modelica models and packages are stored in ASCII-files.
It is therefore obvious to store these files in a source code
management system, such as GitHub18 or GitLab19, which
provide a lot of additional functionality compared to pure
git20. Model developers can then profit from issue track-
ing, merge/pull requests, release handling, etc. One disad-
vantage of these widespread source code management sys-
tems is that access rights can be only defined for a whole
repository. In industrial projects, it is typically not desired
that everyone has access to the whole information and it is
then necessary to split the information over several repos-
itories, for example:

• A repository contains the source code of the Mod-
elica model or the Modelica package. Only model
developers have access to this repository.

• A repository contains the released versions (possibly
with encrypted Modelica packages), as well as an is-
sue tracker. Users of the model library have access
to this repository.

• A repository contains administrative information,
such as contracts, clearance, license information.
Managers have access to this repository.

Data to parametrize the models is often not stored in
a source code management system but is extracted from
database systems. Simulation results and measurement
data is often stored in binary format and, therefore,
a source code management system is not well suited. In-
stead, this data is typically stored at different locations
on a pure file system without version management. Al-
together this means that the information about a model
might be spread across several locations. Consequently,
it is advisable to maintain a document with information
about the different storage locations. Regarding the model
credibility, there is room for improvement.

Due to its textual nature, any change in the Modelica
model can be traced, read and understood by humans. But,
keeping minimal textual differences is a hard job for Mod-
elica tools, especially when users mix graphical and tex-
tual modeling. As the formatting of Modelica code is not
specified, the problem even increases if different Model-
ica tools are used within one project. To our experience, it

18https://github.com/
19https://about.gitlab.com/
20https://git-scm.com/

Continuous Development and Management of Credible Modelica Models

368 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

is a significant early step to establish implementation rules
for a project collaboration in order to keep model changes
traceable. A public starting point for these modeling con-
ventions is Modelica.UsersGuide.Conventions21.
Another best practice concerning Modelica code man-
agement is to seperate git commits for larger graphical
and documentation changes and for actual changes to the
model (like introducing new components or changing or
adding equations). Furthermore, all auto-formatting in
tools should be switched off.

4.2 Version management
While source-code management of Modelica models
works fine within one organization, most of the time
this important information is lost when delivering mod-
els across organizational boarders, e.g. from supplier to
OEM. Modelica has multiple ways of storing the current
revision information in annotations e.g. the revisions
and/or revisionID. See an example of MSL 4.0.0 in
Listing 4. One important limitation is that revisionId
and dateModified are usually stored only on the top
level package, so it cannot be used to see when an actual
class has been changed. For specific classes, one has to
rely on the non-formalized revisions annotation. Con-
ventions for how to structure and update the revisions
annotation are library specific, so far. The revisionId is
not automatically handled by most Modelica tools and it is
typically lost when generating an FMU based on Modelica
code.

While Modelica tools can give support on versioning
and releases, a library release still implies coordination
between multiple team members. One public resource for
release workflows is the Modelica Standard Library De-
velopers Wiki22

4.3 Model resources
By convention, non-Modelica language information, such
as manufacturer data sheets, data-files for CombiTables,
images, is stored in folder Resources which is located at
the top level directory of a library. It might be helpful to
distinguish – also in the structure of the Resources folder –
between model-data (parametrization data, e.g. for Com-
biTables) and documentation-data (e.g. example results or
information used for modeling). Model-data are necessary
for the functionality of the model, while documentation-
data is “only” nice to have, but can be extremely helpful
for the comprehension of the model. There is a smooth
transition between model-data and documentation-data.
For example, icon-graphics is irrelevant for the function-
ality of a library, but improves the user’s handling signifi-
cantly by giving a quick graphical impression of the com-
ponent.

As already mentioned in Section 4.1, larger measure-
ment databases are usually not stored within the Modelica

21https://doc.modelica.org/Modelica%203.2.3/Resources/-
helpDymola/Modelica_UsersGuide_Conventions.html

22https://github.com/modelica/ModelicaStandardLibrary/wiki

library. But, in order to understand the quality of cali-
brated models, we propose to store a minimal set of mea-
surement data, actually used for parameter optimization
within the Resources folder as documentation-data.

While the file structure of Modelica code is automati-
cally updated by a Modelica tool on the file system, the
central resources folder has to be organized manually.
This is error-prone and, depending on the chosen struc-
ture, hard to update when e.g. re-structuring the Model-
ica package. External links to larger measurement data
sources is not handled by the current Modelica package
concept and local resolving of the loadResource()23

function.
In order to be able to extract working system models

out of a larger library, Modelica tools are typically able
to store a so-called total model, including all required re-
sources. The storage of total models is not standardized in
Modelica, yet. The loadResource() function in com-
bination with a Uniform Resource Identifier (URI) helps
to avoid path issues and allows a Modelica tool to analyze
which resources are needed. As models can access files in
multiple ways, it still remains a tedious task to check e.g.
for missing resources or too much files to be copied.

4.4 Archiving of simulation results
Simulation results are usually stored in a file, in binary
or ASCII format. This includes reference data as input
for a model, as well as reference results that a simulation
should reproduce within some tolerance. Various result
file formats are used in the Modelica community, but there
is no satisfactory, standardized solution.

When results need to be exchanged, such as reference
results of the Modelica Standard Library, or of FMUs, they
are often stored in CSV format24 due to its widespread
support in tools. Hereby, the result is seen as a table,
where every column has a name (optionally with "."s to
mark hierarchical structures or "[..]" to mark elements of
an array) and represents a time series. The first column
contains the monotonically increasing value of the inde-
pendent variable (usually Time). A discontinuity is sig-
naled by two identical time instants. For an example see
listing 5.

Listing 5. Example of a CSV file with time event at 0.1 s

Time, control.w_ref, motor.w, on[3]
0.0, 0.0 , 0.0, 0
0.1, 0.0 , 0.0, 0
0.1, 1.0 , 0.0, 1
0.2, 1.0 , 0.1, 1
0.3, 1.0 , 0.2, 1

The essential advantage of this format is its simplicity, but
there are numerous drawbacks. Especially, it is not suited
for large data sets as needed to archive simulation results.

23Modelica.Utilities.Files.loadResource:
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/-
Modelica_Utilities_Files.html#Modelica.Utilities.Files.loadResource

24https://en.wikipedia.org/wiki/Comma-separated_values

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

369

Listing 4. Annotations relevant to versioning using the example of the Modelica Standard Library

package Modelica

// Sub=packages removed

annotation (
version="4.0.0",
versionDate="2020-06-04",
dateModified = "2020-06-04 11:00:00Z",
revisionId="6626538a2 2020-06-04 19:56:34 +0200",
uses(Complex(version="4.0.0"), ModelicaServices(version="4.0.0")),
Dymola(checkSum="469888163:3572996634"),
conversion(
from(

version={"3.0", "3.0.1", "3.1", "3.2", "3.2.1", "3.2.2", "3.2.3"},
script="modelica://Modelica/Resources/Scripts/Conversion/ConvertModelica_from_3.2.3

_to_4.0.0.mos")),
...);

end Modelica;

For larger data sets often the dsres (dynamic system re-
sults) storage format is used that was developed around
1996 by Martin Otter and used by Dymola. It was later
also used by OpenModelica25. There are several import-
ing and exporting scripts available, especially for Matlab
and for Python26. The dsres-format consists of a set of
matrices that are either stored in MATLAB MAT v4 bi-
nary format or in a textual format. The logical view is:

1. String vector name contains the names of the sig-
nals. An index i of this vector characterizes the cor-
responding signal i.

2. String vector description contains a description text
for the signal, typically with its unit.

3. Integer matrix dataInfo contains information where
and how a signal is stored: A signal i is stored in a
matrix j in column k with an interpolation type l and
an extrapolation type m. If k is negative, column |k|
has to be multiplied with -1.

4. The core data is stored in data_j matrices where ev-
ery column of a matrix contains the time series of
one signal. The first column is the independent vari-
able. Different matrices can have different time axes,
that is, different number of rows. Typically, two data
matrices are present: One matrix with two rows, that
stores the parameters as time series with two time
points, and one matrix with the time-varying signal
data that corresponds to the data stored in CSV file
format.

Due to the connector definition, a Modelica model has
typically many variables that are identical or have op-
posite sign. The time series of these signals are stored

25https://openmodelica.org/doc/OpenModelicaUsersGuide-
/latest/technical_details.html#the-matv4-result-file-format

26https://github.com/jraedler/DyMat/
https://github.com/kdavies4/ModelicaRes/

in a compact way with the dsres-format, because the ac-
tual time series of variables that are related by equations
v1 = v2 = −v3 = −v4 = ... are stored in one column of a
data matrix. If all variables of a Modelica model are stored
in a result file, then often the size of the file is reduced by
a factor of 4-5 by this technique. Furthermore, the second
data matrix is stored in such a way, that the binary result
file can be recovered, even if a simulation run crashes dur-
ing integration.

There had been a few attempts to define a standard-
ized time series file format based on HDF527, an open
source file format that supports large, complex, heteroge-
neous data and meta information stored hierarchically in
one binary file: In particular, the MTSF format (Modelica
Association Time Series File Format) (Pfeiffer, Bausch-
Gall, and Otter 2012) and the SDF format (Scientific Data
Format)28. In (Pfeiffer, Bausch-Gall, and Otter 2012) it is
reported that simulation results up to 200 Gbyte could be
stored and retrieved in HDF5 format on file. Although,
HDF5 looks attractive for scientific data sets and espe-
cially simulation result data, it has severe drawbacks, es-
pecially because it is complex and not suited for today’s
cloud-services. For a more detailed discussion, see (Tiller
and Harman 2014).

A more modern design is the recon29 format developed
by (Tiller and Harman 2014): Simulation results and meta
data are stored in a network friendly way using the JSON
format30 where the core data is packed with msgpack31.

4.4.1 Result meta data
The result format should store more than just numeric val-
ues. In order to interpret the results correctly, the follow-
ing additional information seems especially valuable:

27https://www.hdfgroup.org/solutions/hdf5/
28https://github.com/ScientificDataFormat
29github.com/xogeny/recon
30https://www.json.org/json-en.html
31https://msgpack.org/

Continuous Development and Management of Credible Modelica Models

370 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

• Which simulation tool and of which version gener-
ated the result? Which simulation settings have been
used?

• Which system model, which validated (sub-)models
and which boundary conditions/scenarios were used
to produce the simulation results?

• What are the interesting variables for analysis? In
large Modelica result files, finding relevant variables
for analysis might be difficult. Two possible ways to
improve this situation could be:
1) Predefined plots – based on figure annotations of
MLSv35 (Modelica Association 2021) – could be
also available in the result format.
2) The file modelDescription.xml of FMI defines the
system model interface – inputs, outputs and parame-
ters – in a re-usable, standardized way. This interface
information could also be available in result formats.

• What is the expected accuracy of the simulation?
The upcoming FMI for embedded systems (eFMI)
specification32 (Lenord et al. 2021) defines toler-
ances.

When generating reference results for the MSL, some of
this meta data is stored in a separate file creation.txt, see
an example in the MSL33.

The SSP Traceability Specification34 is currently un-
der development within the Modelica Association Project
"System Structure and Parameterization of Components
for Virtual System Design"35. The approach is based on a
so-called glue particle, an XML file providing a consistent
data schema along the simulation process. For specifics of
the proposed file format, see Simulation Task Meta Data in
file STMD.xsd. If this concept would be applied to Mod-
elica and supported by Modelica tools, it could save a lot
of today’s manual documentation work.

4.4.2 Results for post-processing
Most result formats are designed in a way, that the Model-
ica tool can conveniently write those files during simula-
tion. For archiving purposes, it is also important to retain
the readability of the files even when the source tool is no
longer available. Moreover, post-processing should also
be possible in any external tool, like Excel, Julia, Mat-
lab, Python, etc. If a standardized result file format would
be available, both issues could be solved by standardized
reading procedures for different languages.

5 Conclusions and outlook
The paper summarizes current challenges in Modelica-
related continuous development processes with regards

32https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-
alpha.4.html#definition-of-csv-data

33https://github.com/modelica/MAP-LIB_ReferenceResults/blob/
v4.0.0/Modelica/Blocks/Examples/PID_Controller/creation.txt

34github.com/PMSFIT/SSPTraceability
35ssp-standard.org

to modeling, simulation, data management and calibra-
tion/verification. A particular focus was given on the de-
velopment and handling of Modelica models and libraries.

Several aspects have been identified that need to be
improved to arrive at a reliable process for the develop-
ment of credible models and digital twins based on coher-
ent Modelica Association standards (Modelica language,
FMI, SSP, DCP, eFMI)36. The upcoming eFMI standard
(Lenord et al. 2021) goes already in the right direction by
including tolerance-defined reference results in an eFMI
model to support automatic tests and verification of gen-
erated production code. The glue particle approach in the
SSP-project might be used for all MA standards so that
tool chains from Modelica models to FMI, SSP, DCP, and
eFMI components are completely traceable and no infor-
mation is lost. Furthermore, additional information needs
to be added to define the domain of validity of a model. It
might also be necessary to add further quality measures.
Simulation results need to be stored in a standardized way
both for exchange between tools, as well as for archiving
purposes. The recon format with glue particle information
included might be considered for all Modelica Association
standards and reference files.

As an overall target, the UPSIM project description
states: “Enable companies to safely collaborate with sim-
ulations, in a repeatable, reliable, and robust manner, and
for implementing simulation in a Credible Digital Twin
setting as a strategic capability to become an important
factor in quality, cost, time-to-market, and overall compet-
itiveness.” This view could become a guideline for further
development of the Modelica Association standards.

Acknowledgements
This work has been partly supported by the European
ITEA3 Call6 project UPSIM37 – Unleash Potentials in
Simulation (number 19006). The work was funded by
the German Federal Ministry of Education and Research
(BMBF, grant numbers 01IS20072H and 01IS20072G).

We would like to thank the reviewers of this paper as
well as Tobias Bellmann for quite a lot of constructive im-
provement proposals. We would also like to thank Thomas
Alpögger, Daniel Bouskela, Andreas Junghanns, Martin
Krammer, Lars Mikelsons, Mugur Tatar for their com-
ments on some details that we have taken into account.

References
Alistair, Mavin Mav and Philip Wilkinson (2019). “Ten Years of

EARS”. In: IEEE Software 36.5, pp. 10–14. DOI: 10.1109/
MS.2019.2921164.

Bals, J., W. Fichter, and M. Surauer (1997). “Optimization of
magnetic attitude- and angular momentum control for low
earth orbit satellites”. In: Proceedings Third International
Conference on Spacecraft Guidance, Navigation and Control
Systems 1996. ESTEC, Noordwijk, The Netherlands. URL:

36https://modelica.org/
37https://itea3.org/project/upsim.html

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

371

https : / /ui . adsabs .harvard .edu/ link_gateway/1997ESASP.
381..559B/ADS_PDF.

Bouskela, Daniel, Alberto Falcone, et al. (2021). “Formal Re-
quirements Modeling for Cyber-Physical Systems Engineer-
ing: an integrated solution based on FORM-L and Modelica”.
In: Requirements Engineering - accepted for publication.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A New Tem-
poral Language for the Verification of Cyberphysical Sys-
tems”. In: 2018 Annual IEEE International Systems Confer-
ence (SysCon). URL: https://ieeexplore.ieee.org/document/
8369502.

Bruder, Frederic and Lars Mikelsons (2020). “Towards Grey
Box Modeling in Modelica”. In: Kuo CH., Lin PC., Essomba
T., Chen GC. (eds) Robotics and Mechatronics. ISRM 2019.
Mechanisms and Machine Science, vol 78. DOI: 10.1007/978-
3-030-30036-4_17.

Buse, Fabian and Tobias Bellmann (2021). “General Purpose
Lua Interpreter for Modelica”. In: Proceedings of the 14th
International Modelica Conference.

Corso, Antony et al. (2020). “A Survey of Algorithms for Black-
Box Safety Validation”. In: arXiv:2005.02979. URL: https :
//arxiv.org/abs/2005.02979.

Dempsey, M. et al. (2006). “Coordinated Automotive Libraries
for Vehicle System Modelling”. In: 5th International Mod-
elica Conference. Vienna, Austria, pp. 33–41. URL: https :
//modelica.org/events/modelica2006/Proceedings/sessions/
Session1b2.pdf.

Department of Defense (2016). Aircraft Electric Power Char-
acteristics (MIL-STD-704F_CHG-1). Tech. rep. URL: http :
/ /everyspec.com/MIL- STD/MIL- STD- 0700- 0799/MIL-
STD-704F_CHG-1_55461/.

Elmqvist, Hilding et al. (2021). “Modia - Equation Based Mod-
eling and Domain Specific Algorithms”. In: Proceedings of
the 14th International Modelica Conference.

Heinkel, Hans-Martin and Kim Steinkirchner (2021). Credi-
ble Simulation Process. Tech. rep. Robert Bosch GmbH and
PROSTEP AG. URL: https://setlevel.de/neuigkeiten/credible-
simulation-process.

Joos, Hans-Dieter (2015). “Application of Optimization-Based
Worst Case Analysis to Control Law Assessment in
Aerospace”. In: Advances in Aerospace Guidance, Naviga-
tion and Control. DOI: 10.1007/978-3-319-17518-8_4.

König, Christian et al. (2020). “Traceability in the Model-
based Design of Cyber-Physical Systems”. In: Proceedings
of the American Modelica Conference 2020. Boulder, USA,
pp. 168–178. DOI: 10.3384/ecp20169168.

Kuhn, Martin R., Martin Otter, and Loic Raulin (2008). “A Multi
Level Approach for Aircraft Electrical Systems Design”. In:
6th International Modelica Conference. Bielefeld, Germany,
pp. 95–101. URL: https://modelica.org/events/modelica2008/
Proceedings/sessions/session1d1.pdf.

Labusch, Andreas et al. (2014). “Worst Case Braking Trajecto-
ries for Robotic Motion Simulators”. In: IEEE International
Conference on Robotics & Automation (ICRA). Hong Kong,
China. DOI: 10.1109/ICRA.2014.6907333.

Leimeister, Mareike (2019). “Python-Modelica Framework for
Automated Simulation and Optimization”. In: Proceedings of
the 13th International Modelica Conference. DOI: 10.3384/
ecp1915751.

Lenord, Oliver et al. (2021). “eFMI: An open standard for phys-
ical models in embedded software”. In: Proceedings of the
14th International Modelica Conference.

Mesa-Moles, L. et al. (2019). “Robust Calibration of Complex
ThermosysPro Models using Data Assimilation Techniques:
Application on the Secondary System of a Pressurized Water
Reactor”. In: Proceedings of the 13th International Modelica
Conference. DOI: 10.3384/ecp19157553.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
pdf.

Otter, Martin et al. (2015). “Formal Requirements Modeling for
Simulation-Based Verification”. In: 11th International Mod-
elica Conference. Versailles, France, pp. 625–635. DOI: 10.
3384/ecp15118625.

Pfeiffer, Andreas (2012). “Optimization Library for Interac-
tive Multi-Criteria Optimization Tasks”. In: 9th International
Modelica Conference. Munich, Germany, pp. 669–680. DOI:
10.3384/ecp12076669.

Pfeiffer, Andreas, Ingrid Bausch-Gall, and Martin Otter (2012).
“Proposal for a Standard Time Series File Format in HDF5”.
In: 9th International Modelica Conference. Munich, Ger-
many, pp. 495–505. DOI: 10.3384/ecp12076495.

Reiner, M. (2011). “Modellierung und Steuerung von struk-
turelastischen Robotern”. PhD thesis. Technische Universität
München, Fakultät für Maschinenwesen.

Riedmaier, S. et al. (2021). “Unified Framework and Survey for
Model Verification, Validation and Uncertainty Quantifica-
tion”. In: Archives of Computational Methods in Engineering
28, pp. 2655–2688. DOI: 10.1007/s11831-020-09473-7.

Schamai, Wladimir (2013). “Model-Based Verification of Dy-
namic System Behavior against Requirements: Method, Lan-
guage, and Tool”. PhD thesis. University of Linköping. URL:
http://liu.divaportal.org/smash/record.jsf?pid=diva2:654890.

Tatar, Mugur and Jakob Mauss (2014). “Systematic Test and
Validation of Complex Embedded Systems”. In: ERTS 2014
- Embedded Real Time Software and Systems. Toulouse,
France. URL: https : / / www. researchgate . net / publication /
259871632_Systematic_Test_and_Validation_of_Complex_
Embedded_Systems/.

Thuy, Nguyen (2014). “FORM-L: A Modelica Extension for
Properties Modelling Illustrated on a Practical Example”.
In: 10th International Modelica Conference. Lund, Sweden,
pp. 1227–1236. DOI: 10.3384/ecp140961227.

Tiller, Michael and Peter Harman (2014). “recon – Web and net-
work friendly simulation data formats”. In: Proceedings of
the 10th International Modelica Conference. DOI: 10.3384/
ecp140961081.

Tundis, Andrea et al. (2017). “Model-Based Dependability
Analysis of Physical Systems with Modelica”. In: Hindawi,
Modelling and Simulation in Engineering, Volume 2017. DOI:
10.1155/2017/1578043.

Wei, Wang et al. (2016). “Vibration performance analysis of ve-
hicle with the non-pneumatic new mechanical elastic wheel
in the impulse input experiment”. In: Journal of Vibroengi-
neering, Vol. 18, Issue 6, 2016. DOI: 10 . 21595 / jve . 2016 .
16988.

Zimmer, Dirk, Martin Otter, and Elmqvist (2014). “Custom An-
notations: Handling Meta-Information in Modelica”. In: 10th
International Modelica Conference. Lund, Sweden, pp. 174–
182. DOI: 10.3384/ecp14096173.

Continuous Development and Management of Credible Modelica Models

372 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

Modeling of A Bearing Test Bench and Analysis of Defect Bearing
Dynamics in Modelica

Diwang Ruan1 Zhirou Li2 Clemens Gühmann1

1Chair of Electronic Measurement and Diagnostic Technology, TU Berlin, Germany
diwang.ruan@campus.tu-berlin.de , clemens.guehmann@tu-berlin.de

2School of Electronic Engineering and Computer Science, TU Berlin, Germany , lizhirou0423@hotmail.com

Abstract
In data-driven bearing fault diagnosis, sufficient fault data
is fundamental for algorithm training and validation, how-
ever, in most industry applications, only very few fault
measurements can be provided, which brings bearing dy-
namics model as an alternative to produce bearing re-
sponse under defects. In this paper, a Modelica model for
the whole bearing test rig was built, including test bearing,
driving motor and hydraulic loading system. For the test
bearing, a 5 degree-of-freedom (5-DoF) model was pro-
posed to identify the normal bearing dynamics, and a fault
model was employed to characterize the defect position,
defect size, defect shape and multiple defects. Theory
and process to implement the virtual bearing test bench
in Modelica were detailed, and 3 cases were conducted to
validate the effectiveness of the proposed model.
Keywords: Bearing Diagnosis, Fault Modeling, Modelica,
Bearing Test Bench

1 Introduction
Dynamics simulation under defect is essential for bearing
fault diagnostics. However, traditional research method
based on experiments is of high cost and low efficiency
since it requires a real test rig and the defect needs to
be generated artificially. Furthermore, out of safety con-
sideration, experiment-based research usually runs under
only some specific working conditions and defect sizes,
which restricts the exploration of bearing dynamics under
extreme conditions and fault specifications. To bridge the
gap, this paper proposes a virtual bearing test bench in
Modelica to serve as a general platform for fault bearing
dynamics simulation.

To date, the methods for fault bearing dynamics
simulation can be classified into 2 categories, namely
mechanism-based models and signal-based models. Cui
et al. (Cui, X. Chen, and S. Chen (2015)) built a 5-DoF
model to characterize bearing’s dynamic behavior. Be-
sides, a defect model was also established to deal with
defect position, defect shape and defect size (Liu, Shao,
and Lim (2012)). Whereas, other researchers investigated
the fault bearing dynamics response from the perspective
of signal analysis. The first model identifying the ampli-
tude spectrum of bearing with a single defect on the in-

ner race was proposed by McFadden in 1983 (McFadden
and Smith (1984)). In 2000, slight random variations were
further incorporated into the impulse responses to resem-
ble actual vibration signals caused by bearing faults (Ho
and R. Randall (2000)). After that, Cong et al. (Cong et
al. (2013)) put forward a new fault signal model for bear-
ing based on the combination of decaying oscillation fault
signal model and rotor dynamic response influence, espe-
cially, the defect load was divided into alternate load and
determinate load.

For real test bench, dynamics from driving and loading
systems also affect test bearing response. Nevertheless, to
our exhausted knowledge, nearly all published papers on
bearing fault modeling only focus on the bearing and just
set speed and load as constants, without considering the
dynamics from driving motor and loading actuator, which
leads to the goal to build a whole bearing test bench in this
paper.

The remainder of this paper is organized as follows.
Section 2 details the modeling theory of bearing test
bench, including 5-DoF bearing dynamics model, bearing
defect model, driving and loading system model. Section
3 outlines the model structure in Modelica and demon-
strates how to use this virtual test bench to simulate bear-
ing with specific defects. Section 4 concludes this paper.

2 Modeling in Modelica
2.1 Test Bearing
The ball bearing is composed of outer ring, inner ring,
cage and rolling elements. A normal bearing achieves dy-
namic balance in a stable operating condition, while a se-
ries of impulses will be generated once there is a defect
between the contact surfaces. In the following, a 5-DoF
dynamics model and a defect model will be introduced.

2.1.1 5-DoF Dynamics Model

This model describes the nonlinear dynamic behavior of
bearing, as shown in Figure 1. In the 5-DoF model, 4
DoF represents the horizontal and vertical direction of in-
ner and outer rings, and 1 DoF stands for the vertical direc-
tion of a unit resonator, which is modeled as spring-mass
system (Cui, X. Chen, and S. Chen (2015)).

Based on Newton’s second law, the bearing dynamic

DOI
10.3384/ecp21181373

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

373

Figure 1. The 5-DoF model of bearing (Cui, X. Chen, and S.
Chen (2015)).

equilibrium equations can be formulated as Equation 1
(Cui, X. Chen, and S. Chen (2015)).

msẍs +Rsẋs +Ksxs + fx = 0 ,

msÿs +Rsẏs +Ksys + fy = Fy −msg ,

mpẍp +Rpẋp +Kpxp − fx = 0 ,

mpÿp +(Rp +RR)ẏp +(Kp +Kr)yp −RRẏb ,

−KRyb − fy =−mpg ,

mRÿb +RR(ẏb − ẏp)+KR(yb − yp) =−mRg .

(1)

fx and fy are contact force at x and y axis respectively, Fy
is external load. The meanings and values of other vari-
ables are summarized in Table 1. According to Hertzian
contact theory, the contact force between rolling element
and raceways can be given by:

f j = Kbδ
1.5
j , (2)

with j from 1 to nb, nb is the number of rolling elements.
Kb stands for ball’s stiffness, δ denotes deformation. The
deformation of the jth ball, δ j, is determined by the dis-
placement between the inner and outer races, the angular
position θ j and the total clearance c caused by the oil film
and assembly clearance, as:

δraw j = (xs − xp)cosθ j +(ys − yp)sinθ j − c . (3)

The angular position of the jth ball can be calculated by
Equation 4.

θraw j =
2π(j−1)

nb
+ωct +φ0 , (4)

where φ0 is initial cage angular position and ωc is cage an-
gular frequency, which can be further obtained from shaft
frequency ωs like Equation 5.

ωc =

(
1− Db

Dp

)
ωs

2
, (5)

where Db and Dp are the ball diameter and pitch diameter
respectively.

Normally, for bearings in real applications, there exists in-
evitable sliding when a ball rolls on the raceways. The
sliding direction depends on where the ball is located,
when the ball enters into the load zone, the angular speed
of the ball center is faster than that of the cage, otherwise,
the ball slides backward. Consequently, when sliding con-
sidered , the angular position of each ball can be modified
by Equation 6 (Cui, X. Chen, and S. Chen (2015)).

θ j = θraw j +ξ j

(
1
2

rand
)

φslip . (6)

There are two constants and a sign function in Equation
6. φslip is a parameter defining the mutation percentage
of average contact frequency, which is normally between
0.01 and 0.02 rad. rand is a random number with uniform
distribution in the range of [0,1], and the sign function ξ j
is expressed as:

ξ j =

{
1, load zone
−1, else

(7)

Considering δ j should be nonnegative in physics, thus, its
final value is determined by:

δ j = Max(δraw j ,0) . (8)

With the contact force of each ball obtained from Equa-
tion 2, the total contact forces in x and y direction can be
determined with the Equations 9 and 10.

fx =
nb

∑
j=1

f j cosθ j , (9)

fy =
nb

∑
j=1

f j sinθ j . (10)

2.1.2 Defect Model
When bearing has defects either on races or balls, an ad-
ditional deformation, δ f au, will release when ball moves
over the defect zone. Thus, with defect considered, defor-
mation of the jth ball can be further identified as:

δraw j = (xs − xp)cosθ j +(ys − yp)sinθ j − c−δ f au j .
(11)

Once bearing deformation under defect is obtained, it can
be substituted into Equations 9 and 10, where the nonlin-
ear contact force can be calculated and further substituted
into Equation 1 to get the fault bearing response. Appar-
ently, δ f au changes with defect position, defect shape and
number of defects, which will be discussed respectively in
the following.

2.1.3 Defect Position
Firstly, four basic geometrical parameters are chosen to
characterize the defect, as demonstrated in Figure 2, the
defect width B, the defect depth Hd , the defect initial angle
φd and the defect span angle ∆φd . Take a defect on the

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

374 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373

outer ring as an example, the relation between ∆φd and B
can be expressed as:

sin
(

1
2

∆φd

)
=

B
Db +Dp

. (12)

Suppose the local defect depth is cd , the additional defor-

Figure 2. Size definition of defect on the outer ring.

mation δ f au generates only when a ball falls into the defect
zone within φd and φd +∆φd , so the deformation released
by defect on raceway is given by:

δ f au j =

{
cd , φd ≤ θ j ≤ φd +∆φd

0, else
(13)

The defect location on the outer ring or inner ring changes
with different rules. For the outer ring, the defect is fixed
at the defect initial angle φdo, however, for the inner ring,
the defect location changes with time when the inner ring
rotates. Thus, φd in Equation 13 can be further modeled
as follows.

φd =

{
φdo, defect on the outer ring
ωst +φdi, defect on the inner ring

(14)

Different from rings, when a defect happens on a rolling
element, the defect spins with ball speed ωb and its posi-
tion φs can be obtained like:

φs = ωbt +φsini , (15)

hereby the ball speed ωb can be calculated from shaft
speed as follows,

ωb =
ωs

2
Dp

Db

[
1−

(
Db

Dp
cosα

)2
]
. (16)

The defect on balls contacts the inner and outer ring pe-
riodically. Besides, the curvature radiuses of inner and
outer rings are different, therefore, the same defect span
angle ∆φd produces different angular widths. The angular

widths of defect on the outer ring and inner ring, ∆φbo and
∆φbi, can be calculated by Equations 17 and 18.

∆φbo = ∆φd
Db

Do
, (17)

∆φbi = ∆φd
Db

Di
, (18)

with Do and Di as the diameters of outer ring and inner
ring respectively.

Obviously, the curvature radius determines the depth
when ball enters into the raceway, and the curvature ra-
diuses of ball cdr, inner ring cdi and outer ring cdo can be
obtained respectively by Equations 19, 20 and 21 (Mishra,
Samantaray, and Chakraborty (2017)).

cdr =
1

2
(

Db −
√

D2
b −B2

) , (19)

cdi =
1

2
(

Di −
√

D2
i −B2

) , (20)

cdo =
1

2
(

Do −
√

D2
o −B2

) , (21)

During one revolution of the ball, defect contacts the
inner ring and outer ring in succession, with an angular
distance of π . So, cd can be given by Equation 22 (Mishra,
Samantaray, and Chakraborty (2017)).

cd =

{
cdr − cdo, 0 ≤ ϕs ≤ ∆φbo

cdr + cdi, π ≤ ϕs ≤ π +∆φbi
(22)

Deformation released by fault only appears on the fault
ball (kth ball). As a result, the contact deformation with
ball defect is given by:

δ j =

{
0, j ̸= k
cd , j = k

(23)

2.1.4 Multiple Defects

When bearing has multiple defects, the model is expanded
into a matrix. For simplicity, no matter how many and
what kind of defects the bearing has, the total impact on
the bearing vibration is supposed to be the sum of effect
that each defect has on each ball. Thus, a 3×nd matrix N
is defined to deal with multiple defects modeling.

N3×nd =

p1 p2 · · · pnd

φd1 φd2 · · · φdnd

∆φd1 ∆φd1 · · · ∆φdnd

 (24)

where pnd , φdnd
and ∆φdnd

stand for the nth
d defect po-

sition, defect initial angle and defect span angle respec-
tively. In this model, pi is defined with Equation 25 for

Session 5A: Testing

DOI
10.3384/ecp21181373

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

375

i = 1,2 · · ·nd .

pi =

1, outer ring fault
2, inner ring fault
3, ball fault

(25)

The deformation on each ball caused by each defect can
be determined based on above discussion. For a bearing
with nb rolling elements and nd defects, the deformation
depth is an nd ×nb matrix as:

δnd×nb =

 δ11 · · · δ1nb
...

. . .
...

δnd1 · · · δndnb

 (26)

The total deformation depth caused by all defects for each
ball is obtained through elementwise addition in column.
Therefore, a deformation vector with nb dimensions is
given as Equation 27.

δ1×nb =
[
δ1,δ1, · · · ,δnb

]
(27)

Consequently, the defect model for bearing with nd de-
fects is established. The calculation of contact force and
acceleration is the same as the single defect model.

2.1.5 Defect Shape and Size

Besides defect position, defect shape also has much in-
fluence on bearing acceleration response. Most existing
bearing defect models, however, simplify the defect depth
cd as a constant value. In practice, the value of cd differs
with defect shape as well as the ratio of defect size to ball
diameter (Cui, X. Chen, and S. Chen (2015)). In order to
accurately model the defect shape, the released deforma-
tion is modeled by a piece-wise function. In this research,
two ratios, ball to defect ratio ηbd and length to width ra-
tio ηd , are defined in Equation 28 and 29 for defect shape
modeling,

ηbd =
Db

min(L,B)
, (28)

ηd =
L
B
, (29)

where B and L represent the width and length of the defect
respectively (Cui, X. Chen, and S. Chen (2015)). With
the combination of these two ratios, the defect shape is
grouped into four types (Hr1, Hr2, Hr3, Hr4), which is
given by Equation 30 (Cui, X. Chen, and S. Chen (2015)).

cd =

Hr1 , ηbd ≫ 1
Hr2 , ηbd > 1andηd ≤ 1
Hr3 , ηbd > 1andηd > 1
Hr4 , ηbd ≤ 1

(30)

The maximal depth of defect for each case is denoted with
c
′
d , which will be explained later.

In case 1, the defect size is too small compared with ball
diameter, so the ball leaves defect immediately as soon as
it contacts the defect. Therefore, as shown in Figure 3(a),
there is no deformation change in the defect zone, and Hr1
can be modeled as:

Hr1 = c
′
d , 0 ≤ ϕ j ≤ ∆φd . (31)

For case 2, the ball’s moving path over the defect zone is
like a half-sine wave, as shown in Figure 3(b). The de-
formation released from defect increases gradually to the
maximum and then decreases, which can be given by:

Hr2 = c
′
d sin

(
π

∆φd
ϕ j

)
, 0 ≤ ϕ j ≤ ∆φd (32)

In case 3, as revealed in Figure 3(c), cd rises up to the
maximal depth gradually and remains at the maximum be-
tween φ1 and φ2. After that, cd begins to decrease when
the ball gets out of defect. This shape is expressed by
Equations 33 and 34.

Hr3 =

c
′
d sin

(
π

2φ1
ϕ j

)
0 ≤ ϕ j < φ1

c
′
d φ1 ≤ ϕ j < φ2

c
′
d sin

(
π

2φ1
ϕ j +

π

2

)
φ2 ≤ ϕ j < ∆φd

(33)

φ1 = ∆φdλ , φ2 = ∆φd(1−λ) , (34)

hereby λ is the ratio of φ1 to ∆φd . φ1 is the position where
the ball reaches defect bottom.

In case 4, since the ratio of ball to defect ηbd is less than
that in case 3. Thus, the ball reaches the defect bottom
within a complete 1/4 sine wave, and defect shape can be
modeled as:

Hr4 =

c
′
d sin

(
2π

∆φd
ϕ j

)
, 0 ≤ ϕ j < φ1

c
′
d , φ1 ≤ ϕ j < φ2

c
′
d sin

(
2π − 2π

∆Φd
ϕ j

)
, φ2 ≤ ϕ j < ∆φd

(35)

The maximum depth c
′
d is given by Equations (Cui, X.

Chen, and S. Chen (2015)):

Hd =
Db

2
−

√(
Db

2

)2

−
(

B
2

)2

, (36)

with
c
′
d = min(H,Hd) . (37)

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

376 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373

(a) Hr1 (b) Hr2

(c) Hr3 (d) Hr4

Figure 3. Defect depth cd under different defect shape.

Table 1. Bearing parameters.

Symbol Quantity Value

ms Shaft mass 3,263 8kg
Rs Shaft damping 1,376 8 ·103Nsm−1

Ks Shaft stiffness 7,42 ·107Nm−1

mp Pedal mass 6,638kg
Rp Pedal damping 2,210 7 ·103Nsm−1

Kp Pedal stiffness 1,51 ·107Nm−1

mR Resonator mass 1kg
RR Resonator stiffness 9,424 8 ·103Nsm−1

KR Resonator stiffness 8,882 6 ·109Nm−1

nb Ball number 9
Dp Pitch diameter 3,932 ·10−2m
Db Ball diameter 7,94 ·10−3m
φslip Ball slip angle 0,01 rad
rand Mutation percentage 0
Kb Ball stiffness 1,89 ·1010Nm−1

c Bearing clearance 0
α Contact angle 0◦

Table 2. Defect parameters.

Symbol Quantity Value

L Axial defect length 3 ·10−4m
B Race defect width 10 ·10−4m
H Radial defect depth 6 ·10−4m
λ Ratio of φ1 to ∆φd 0,2
φd Initial defect position 270◦

k Order of the defective ball 4
w Spall width 3 ·10−3m
φsini Initial position of spall 0◦

2.1.6 Parameters

Parameter specification of the 5-DoF dynamics model is
shown in Table 1, which includes geometrical and ma-
terial parameters (Mishra, Samantaray, and Chakraborty
(2017)). The defect model parameters can be defined by
users out of simulation requirements. In this paper, they
are set as in Table 2.

Once the bearing model has been finished, the charac-
teristic frequencies can be calculated by Equations 38-42,

Session 5A: Testing

DOI
10.3384/ecp21181373

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

377

including ball pass frequency of outer ring (BPFO), ball
pass frequency of inner ring (BPFI), ball spin frequency
(BSF), fundamental train frequency (FT F) and element
defect frequency (EDF). All of them will be used for
analysis and discussion in the following sections (Robert
B Randall and Antoni (2011)).

BPFO =
nb f
2

(
1− Db

Dp
cosα

)
, (38)

BPFI =
nb f
2

(
1+

Db

Dp
cosα

)
, (39)

BSF =
f Dp

2Db

[
1−

(
Db

Dp
cosα

)2
]
, (40)

FT F =
f
2

(
1− Db

Dp
cosα

)
, (41)

EDF = 2BSF . (42)

2.2 Driving System
Besides test bearing, the virtual bearing test bench also
consists of a driving module and a loading module, where
the loading module guarantees that test bearing works un-
der defined external load, and driving module is responsi-
ble for speed profile definition. In this paper, the driving
module is modeled by a DC motor and a shaft, while the
loading module is modeled by an electro-hydraulic servo
system.

Based on Newton’s second law and Kirchhoff’s voltage
law, the DC motor can be modeled as:

JM
dω

dt
+Cnω +TL = Te , (43)

LM
di
dt

+Ri+ e =U , (44)

where the generated torque Te and the back electromotive
force (EMF) e can be further modeled as following.

Te = Kt · i , (45)

e = Ke ·ω . (46)

The speed of the DC motor is controlled by a PID con-
troller.

2.3 Shaft
The connecting shaft is employed to transmit the moment
Te from DC-motor. Its dynamics is modeled as:

kS

∫
(ωin −ωout)dt + cS (ωin −ωout) = Te −TL , (47)

where kS is the stiffness and cS is the damping coefficient,
ωin and ωout are the input and output speed of the shaft, TL
is load torque.

2.4 Loading System
2.4.1 Components of Electro-hydraulic Servo System
The electro-hydraulic servo system consists of three com-
ponents: servo amplifier, servo valve and actuator. The
servo amplifier is used to convert signal from voltage to
current, the servo valve is a proportional relief valve, and
the actuator is a hydraulic cylinder. The asymmetrical
cylinder is controlled by a four-way valve with position
feedback.

2.4.2 Modeling of Electro-hydraulic Servo System
The servo amplifier is modeled as a proportional compo-
nent, which amplifies the control voltage and then converts
into current i to control the electromagnetic force acting
on the valve spool,

i(t) = K f ue(t) . (48)

The servo valve is modeled as a second-order system like
follows (Rydberg (2016)).

Gsv(s) =
QL(s)
I(s)

=
Kgy

s2

ω2
sv
+ 2ξsv

ωsv
s+1

. (49)

The gain is obtained from

Ksv =
KIE

KSF
·KQ , (50)

where KIF , KSF and Kq are the gain of current to force, the
stiffness of valve spool and the flow gain respectively. The
natural frequency and servo valve damping coefficient are
given by:

ωsv =
√

KsF/m , (51)

ξsv =
Bp

2
√

mKSF
. (52)

The actuator in this study is modeled as an asymmetric
cylinder, which can be regarded as a valve-controlled pis-
ton with position feedback. In general, three sub-models
are developed to describe the flow characteristics, flow
balance and force balance respectively. The flow charac-
teristics after linearization can be simplified as:

QL(s) = KqXv(s)−KcPL(s) , (53)

the flow balance equation is identified as:

QL(s) = ApsXp(s)+λcPL(s)+
vt

4βe
sPL(s) , (54)

and the force balance equation can be formulated as:

ApPL(s) = Mts2Xp(s)+BcXp(s)+FL , (55)

where Xv and Kc are the displacement of valve and the
flow-pressure factor. QL, Xp and PL stand for the load flow,
the displacement of piston and the pressure of the load

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

378 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373

Figure 4. Structure of the developed library in OpenModelica.

flow respectively. Ap, λc, Vt and βe are the piston area,
the total leakage coefficient, the cylinder volume as well
as the volume elastic modulus coefficient. Mt and Bc are
the mass of piston and the damping factor of cylinder.

Combining Equations 53 to 55 gives the transfer func-
tion of piston displacement to valve displacement, as
shown in Equation 56, where the total leakage λc is omit-
ted and the damping factor is assumed to be small (Mi-
tianiec and Bac (2011)).

Gh(s) =
Xp(s)
Xv(s)

=
Kq/Ap

s
(

s2

ω2
h
+ 2ξh

ωh
s+1

) , (56)

with

ωh =

√
4βeA2

p⃗

VtMt
, (57)

ξh =
Kc

Ap

√
βeMt

Vt
. (58)

In short, a proportional system is used to model the ampli-
fier, Gsv for the servo valve and Gh for hydraulic cylinder.
The loading system is also controlled by a PID controller.

3 Implementation
In this research, a model library is created for a virtual
bearing test bench in OpenModelica-v1.16.0. As shown
in Figure 4(left), 3 main modules like TestBearings, Driv-
ingSystem and LoadingSystem are packaged and can be
used as plug-in components in modeling. Figure 4(right)
displays the components used in each module, and they
are also sub-packaged with corresponding names. Like
the TestBearings package provides three instance mod-
els as Healthy, RaceDefect and BallDefect and a Com-

Figure 5. Layer diagram of the VirtualBench.

ponents sub-package containing a DoF model and another
sub-package named DefectModel.

These models can be constructed into any configura-
tion as required, all components, sub-packages and mod-
els can be used separately or in combination to meet user
demand. Nevertheless, a configuration instance, Virtual-
Bench, is provided at the top of Library.

3.1 System Configuration
Figure 5 demonstrates the layer diagram of proposed test
bench, which consists of physical part (top) and con-
troller part (bottom). The physical part is established
with models developed in above sections, and it outputs
three signals, namely rotational speed “omega”, acceler-
ation “accx” and radial load “load”. Moreover, the rota-
tional speed and radial load are inputs to the controller
part to provide required conditions for test bearing. The
TestBearing model has all parameters mentioned in Sec-
tion 2.1, with four pages of parameter-input dialog box
for users to define fault position, design parameters, mate-
rial parameters, and defect parameters. Specifically, “po-
sition” is a selection parameter to define where the de-
fect is located; design parameters include basic geomet-
rical information such as ball number, pitch diameter and
ball diameter; material properties include mass, stiffness,
and damping factor of the outer ring, inner ring, rolling
element as well as the resonator. Besides, the most im-
portant parameters are defect properties. Different param-
eters are required for different defect scenarios. As long
as the number of defects and other defect parameters are
given, this defect model can be used for multiple defects
as well. The operating conditions are provided by Motor,
Shaft, and E_hydraulicsServo. Generally, the TestBearing
model can be employed to study the vibration response of
fault bearing and all the parameters of any model or com-

Session 5A: Testing

DOI
10.3384/ecp21181373

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

379

Figure 6. Flowchart of simulation with the virtual bearing test
bench.

ponent can be defined by users for specific objectives.

3.2 Procedure of Virtual Bearing Test Bench
The flowchart in Figure 6 demonstrates the process to
run simulations with proposed virtual bearing test bench.
Firstly, the model configuration and precheck is required,
specific simulation model should be constructed based on
the developed Modelica components. After that, it is nec-
essary to set simulation period, interval length and the out-
put format. Then, in the step of Input data, geometrical
and material parameters, defect properties and operating
conditions should be defined, and some parameters can be
selected as variables to study the effects of defects on vi-
bration from different aspects. At last, run the simulation
and save results.

3.3 Case Simulation and Analysis
Based on the developed bearing test bench, three simula-
tion cases are conducted for validation. Case A focuses on
the defect position, case B and case C deals with multiple
defects and defect shape respectively. Simulation time and
interval length of 3 cases are set as 10 s and 0.0001 s, with
"DASSL" solver as the integration method.

3.3.1 Case A: Defect Position

In case A, three simulations are designed to obtain the
bearing responses when a defect occurs on the outer ring,
inner ring or a ball respectively. The signal characteristics
in both time-domain and frequency-domain are analyzed.

Figure 7 shows the time domain response and envelope
spectrum of bearing with a single defect on the outer ring.
The theoretical fault characteristic frequency (BPFO) is
35.91 Hz, corresponding to 0.0278 s. In time domain,
the impulse decaying oscillation repeats with a period of
0.0279 s, and the impulse magnitude is nearly constant. In
frequency domain, BPFO (35.94 Hz) is extracted in the
envelope spectrum, which is very close to the theoretical
value.

Figure 8 describes the simulated signal when a defect is

Figure 7. Response in time-domain and envelope spectrum of
bearing with outer race fault.

Figure 8. Response in time-domain and envelope spectrum of
bearing with inner race fault.

defined on the inner ring. The shaft frequency (fs) is set
as 10 Hz, so the theoretical BPFI is 54.09 Hz (0.018 s).
The vibration response from 5.1036 s to 5.1961 s repre-
sents the output during a whole revolution of inner ring,
with 5.1036 s - 5.1403 s standing for the load zone and
5.1403 s - 5.1961 s the non-load zone. The time interval
between 5.1036 s and 5.1961 s is 0.0925 s, which corre-
sponds to fs (10.14 Hz) in the envelope spectrum. Within
one cycle, there are three peaks at 5.1036 s, 5.1218 s and
5.1403 s, and every two adjacent peaks are 0.018 s apart
away, which is related to the BPFI. Furthermore, the inner
ring defect rotates with time, which results in load change
at the defect position. Thus, the signal presents various
amplitudes during one cycle.
The vibration response of bearing with a defect on the ball

is demonstrated in Figure 9. In time-domain, the time in-
terval between every two impulses is approximate 0.021 s.
When a defect occurs on a ball, the defect strikes both the
outer ring and inner ring in a full rotation. As a result,
peaks can be found in frequency-domain at EDF and its

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

380 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373

Figure 9. Response in time-domain and envelope spectrum of
bearing with ball fault.

harmonics, with fc as the sideband. The theoretical EDF
is 47.50 Hz, and the simulated value is 47.45 Hz.

In short, both time-domain and frequency-domain re-
sponses contain useful defect information. In time-
domain, defect position (outer ring, inner ring or ball)
can be deduced from the time interval between adjacent
peaks. In frequency-domain, defect position can be in-
ferred from the characteristic frequencies (BPFO, BPFI
or EDF) in the envelope spectrum. Furthermore, the am-
plitude of peaks under different fault positions varies ac-
cordingly. The peak amplitudes are nearly constant when
a defect occurs on the outer ring, however, the peak ampli-
tudes change during a cycle when a defect happens on the
inner ring or a ball. In addition, in the inner-ring defect, fs
can be found in the envelope spectrum as sideband, while
in the ball defect, the sideband is replaced by fc.

3.3.2 Case B: Multiple Defects

The second case focuses on multiple defects. The angle
between two adjacent defects is defined as ψ and the angle
between every two rolling elements in this study is 40◦.
Therefore, in total, there are 3 relations: ψ > 40◦, ψ <
40◦, ψ = 40◦. Given space limitation, only the case with
2 defects and ψ < 40◦ is simulated.

Two defects are defined at 255◦ and 285◦. Once the
rolling elements rotate, each ball collides with these two
defects successively, resulting in two sequences of colli-
sions. Therefore, in Figure 10, two impacts are observed
in a cycle, which identifies the number of defects. Accord-
ing to the direction of acceleration, the impacts at 5.0712 s
(B) and 5.0990 s (D) are caused by the defect at 255◦,
while the impacts at 5.0642 s (A) and 5.0920 s (C) by de-
fect at 285◦.

The time delay between two strikes due to multiple de-
fects on the races can be calculated as follows (Patel, Tan-

Figure 10. Bearing response with two defects on the outer ring
separated by 30◦.

Table 3. Time delay of two defects.

Φ 30◦

τ calculated [s] 0.0209
τ simulated [s] 0.0208

don, and Pandey (2014)).

τ(Φ) =

Φ

x ft
, x ≤ Φ

abs(x−Φ)

x ft
, x > Φ

(59)

with

ft =
{

BPFO, defects on outer ring
BPFI, defects on inner ring

(60)

The time delay between B and C is 0.0208 s, which cor-
responds to the angle between 255◦ and 285◦. The theo-
retical time delay and simulation result are summarized in
Table 3.

3.3.3 Case C: Defect Shape
Case C is designed to study the relationship between de-
fect shape and vibration response, with a rectangle de-
fect defined for validation. The defect is located at 270°,
the width and length are defined as 1.5 × 10−4 m and
3× 10−4 m. With shaft frequency set as 1 Hz and radial
load as −30 kN, the vibration signal is presented in Figure
11.

There are three peaks in a cycle, which appears at
4.5313 s, 4.6712 s and 4.8103 s respectively, as shown in
Figure 11. These 3 peaks represent the time points when
a ball enters and leaves the load zone, and then enters into
the load zone again, respectively. Only the balls in load
zone generate deformations, so the acceleration changes
suddenly at the entry and exit of load zone. Therefore, ac-
celeration between 4.5313 s and 4.6712 s in Figure 11 is
the signal that occurs in defect zone.

Session 5A: Testing

DOI
10.3384/ecp21181373

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

381

Figure 11. Acceleration in time-domain of bearing with a
rectangle-shape defect.

Figure 12. Signal output with a rectangle-shape defect: φ2: an-
gle between ball and defect start edge; cd2: additional deforma-
tion of ball caused by defect; ax: acceleration in x-direction.

To further study the signal in defect zone, the angle be-
tween ball center and the defect starting edge (φ2), and
the additional deformation generated by the defect (cd2)
are presented to demonstrate the transient process when
the 2nd ball passes through the defect zone. As shown in
Figure 12, φ2 and cd2 increase at 4.6012 s, indicating that
the ball enters into the defect zone at this time. Thus, ax
shows an impulse at this moment. Likewise, the peak at
4.6038 s is the result of ball exiting because φ2 changes
to 0 at this point. The change of cd2 presents a rectangle
profile, which agrees well with the defined defect shape.

4 Conclusion
In this paper, a model of the whole bearing test bench in-
cluding test bearing, connecting shaft, driving system and
loading system is developed in OpenModelica. The pro-
posed virtual test bench can be used to simulate bearing
dynamics response, especially under different defect sce-
narios characterized by defect position, multiple defects,
defect shape and defect size. It can be also employed as
an alternative to a real test bench to generate fault sig-
nals for fault diagnosis algorithm development and valida-
tion, which could be a good supplement of experimental
measurement when a large amount of data is required in
machine learning or deep learning methods. The model-
ing theory and implementation process of the whole best
bench are detailed, and three cases are designed to validate
its effectiveness.

Due to the advantages in characteristics of open source,

the OpenModelica has much superiority over the MAT-
LAB/Simulink, furthermore, it also has more user-friendly
interfaces with Python. In the future, the virtual bearing
test bench developed in this paper will be adopted to study
the transfer learning from the physics model to the real test
bench.

Acknowledgements
This work is supported by CSC doctoral scholarship
201806250024 and Zhejiang Lab’s International Talent
Fund for Young Professionals.

References
Cong, Feiyun et al. (2013). “Vibration model of rolling element

bearings in a rotor-bearing system for fault diagnosis”. In:
Journal of sound and vibration 332.8, pp. 2081–2097.

Cui, Lingli, Xue Chen, and Shujun Chen (2015). “Dynamics
modeling and analysis of local fault of rolling element bear-
ing”. In: Advances in Mechanical Engineering 7.1, p. 262351.

Ho, D and RB Randall (2000). “Optimisation of bearing diag-
nostic techniques using simulated and actual bearing fault
signals”. In: Mechanical systems and signal processing 14.5,
pp. 763–788.

Liu, Jing, Yimin Shao, and Teik C Lim (2012). “Vibration analy-
sis of ball bearings with a localized defect applying piecewise
response function”. In: Mechanism and Machine Theory 56,
pp. 156–169.

McFadden, PD and JD Smith (1984). “Model for the vibration
produced by a single point defect in a rolling element bear-
ing”. In: Journal of sound and vibration 96.1, pp. 69–82.

Mishra, C, AK Samantaray, and G Chakraborty (2017). “Ball
bearing defect models: A study of simulated and experimen-
tal fault signatures”. In: Journal of Sound and Vibration 400,
pp. 86–112.

Mitianiec, Wladyslaw and Jarosław Bac (2011). “Mathematical
model of the hydraulic valve timing system”. In: Journal of
KONES 18, pp. 311–321.

Patel, VN, N Tandon, and RK Pandey (2014). “Vibrations gener-
ated by rolling element bearings having multiple local defects
on races”. In: Procedia Technology 14, pp. 312–319.

Randall, Robert B and Jerome Antoni (2011). “Rolling element
bearing diagnostics—A tutorial”. In: Mechanical systems and
signal processing 25.2, pp. 485–520.

Rydberg, Karl-Erik (2016). Hydraulic Servo Systems: Dynamic
Properties and Control.

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

382 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373

Modelica Models as Integral Part of the
Building Design Process

Dipl.-Ing. Torsten Schwan1 Dipl.-Ing. Monika Wicke1
Dipl.-Ing. Alexander Hentschel1 Dipl.-Ing. René Unger1

1EA Systems Dresden GmbH, Germany, {torsten.schwan,
monika.wicke, rene.unger, alexander.hentschel}@ea-
energie.de

Abstract
The design process of buildings and energy supply

systems consists of several steps with increasing accuracy
and decreasing fault tolerance. Because of a wide range of
unknowns and increasing complexity, Modelica models
are often an integral part of the first design steps.
However, there are only rare updates and reuse of these
models in later phases and/or during building use.

This paper emphasizes the potential of a continuous
update and use of available Modelica models during all
steps of building design processes. It therefore regards an
example of a research greenhouse building for which the
initially developed Modelica models were continuously
updated and reused during the final phase of intensive
scientific monitoring. Furthermore, general insights in
latest scientific approaches indicate suitable steps of
partly-automated continuous model updates during the
whole building life span using BIM (Building Information
Modeling).
Keywords: Building Simulation, Monitoring, BIM
Integration, Integral Design Processes

1 Introduction
The building sector already represents one of the main

fields of application of numeric simulation models.
Especially, Modelica models therefore provide easy-to-
use interfaces, a lively user community and a great variety
of suitable toolsets and libraries. With its interdisciplinary
physical modeling approach, Modelica enables engineers
in many planning sections to analyze the cross-section
behavior and influences of different system components,
especially in the energy system with its HVAC and power
supply units and a complex building control. Here,
Modelica exploits its advantages in fast and accurate
modeling of complex non-linear differential algebraic
equation systems which are in this case caused by cross-
domain system dependencies, volatile renewables
availability and state-dependent storage behavior.

The design process of both newly constructed and
retrofitted buildings follows an extensive, hierarchically-
structured planning and implementation procedure which
consists of three general phases and nine steps.

Figure 1: Steps of German building design process
(Sommer, 2016)

It starts with a brief design description and variant
analysis (c.f. P1 & P2 in Figure 1) which were followed
by the development of all relevant planning documents
and the permission process (c.f. P3 in Figure 1).

A second phase (c.f. P4 to P7 in Figure 1) adds detailed
evaluations and design plans which are then the base of
the final construction (c.f. P8 & P9 in Figure 1). In case of
complex designs and/or new design approaches, a
certified engineering entity (i.e. university, engineering
office) uses the available measurement data in a final two
to three year monitoring phase to evaluate resulting
system efficiency and possible optimization measures.
This monitoring phase is basically part of P9 but actually
represents a separate design process step.

DOI
10.3384/ecp21181383

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

383

If engineers decide to use Modelica models during this
design process, their implementation normally starts in
phase P2 to get initial design feedbacks. These models are
then continuously updated during phase P3 regarding the
increasing level of detail and required accuracy of results.
However, further updates are not usual. The models
remain at the P3 level and will mostly no longer be a part
of later evaluations.

This is obviously not efficient as these models include
a high amount of the engineering knowledge which partly
gets lost when they won’t be refined and reused. A better
design process would take the models as basis of design
knowledge (c.f. BIM – Building Information Modeling)
and would align them as an integral part of the overall
planning process. Therefore, they can be the device-
under-test (i.e. DuT) of the final building controller
evaluation or something comparable describing the
reference behavior during the final monitoring phase.

2 Building Example
Building and energy system models based on the

Modelica modeling language and derived libraries are
mostly necessary to solve complex design decisions, like
storages and renewables dimensioning or optimal control
strategies. An exemplary building design process which
addresses all of these challenges regarding the
construction of a new research greenhouse building in the
city center of Leipzig, a major city in East Germany. As a
center of biological research, scientists and students of the
University of Leipzig will use it to identify and evaluate
effects of global warming on indigenous vegetation, and
to perform further research relevant experiments (e.g.
Craven et. al. 2019).

The first planning phases began in 2014 with some
basic discussions of the main goals as well as preliminary
design developments, c.f. 3D sketch of later building
within the surrounding public park (GEFOMA, 2014).
The building owner decided in the early stages to
highlight high energy efficiency and low carbon footprint
as major design goals besides versatile research
equipment and restrained park integration.

During the first design steps, several solutions were
discussed to cope with these challenges. Greenhouse
buildings are commercial buildings with significant
requirements on cooling power. The cooling system
design was therefore recognized as important at an early
design stage. Variant analysis showed that a partly solar-
powered cooling system might have the best chance to
meet the challenging goal of +50% carbon dioxide
emissions reduction. Existing funding regulations
required a mathematical verification of these potentials.

Because of the system complexity and the non-standard
greenhouse building type, suitable models became
necessary. They should describe both the cross-linked

interaction of building and planting as well as the energy
supply system partly including renewable cooling, heating
and power supply. Furthermore, these models had to
provide a sufficiently accurate comparison of the planned
energy efficient design approach and a comparable
reference solution.

A number of different greenhouse building simulation
platforms and solutions were available (e.g. Rodríguez et.
al., 2002). Even specific Modelica libraries have been
developed since then (e.g. Altes-Buch et. al., 2019).
However, Modelica models based on SimulationX and the
Green City library were chosen to handle these
challenges. The customized models developed - including
a brief discussion of results - were already described in
Schwan et. al, 2015.

Figure 2: 3D digital mockup of the greenhouse
building (GEFOMA, 2014)

All considerations and evaluations with the models of

2015 considered just the first design phase - including
steps 1 to 3 in Figure 1. In a usual model-aided design
process, the developed models would not be used or
updated within the following design phases or even during
the following building lifespan. However, this design
process was different as the planned building included
complex requirements on building use as well as
sophisticated solutions of energy supply and building
construction.

Nevertheless, the existing funding regulations
demanded a long-term monitoring phase at the beginning
of the use of the building. This monitoring phase includes
both the evaluation of high-resolution measurement data
of resulting system efficiency, as well as the proposal of

Modelica Models as Integral Part of the Building Design Process

384 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181383

optimization measures. For both, the developed models
are still necessary. On the one hand, the reference building
model provides a source of comparison to evaluate the
resulting carbon footprint savings. On the other hand, an
updated model which is calibrated and enriched with
available measurement data can provide further insight
regarding alternative and optimized system solutions and
control strategies. This is especially necessary if the
monitoring indicates optimization potential which needs
to be evaluated in detail regarding several suitable
solutions prior to final real-world tests.

3 Continuous Model Refinement
To become an integral part of the building design

process, Modelica models need to be refined continuously
during the whole process as well as during the whole
building life span in case of significant changes. This
work effort considers on the one hand the model updates
regarding increasing release versions of Modelica
language and the simulation environment. The
greenhouse building design process started in 2014 and
ended in 2020 which included an update for Modelica
from version 3.3 to 3.4 as well as several updates of
SimulationX from version 3.6 to 4.1.

On the other hand, there are several evaluation steps of
assumptions, accuracy tolerances and levels of detail
between the different phases and design process steps.
This often causes significant changes of the initially

developed models depending on the design progress as
well as the feedback to model requirements.

The first phase of the considered greenhouse building
design process required Modelica models of both the
energy supply system and the building including the
crops. This was necessary to evaluate both savings
potential from an improved building envelope and a better
shading system as well as an increased environmental
energy use via solar cooling. In later design phases,
especially during the monitoring phase, the implemented
cooling system model became more important.
Monitoring data was then used to calibrate the model
components and control, and to represent the building
loads of cooling power consumption.

This paper focuses on the development steps and use of
the cooling system model and neglects any simultaneous
progress of building or heating system models. Therefore,
Figure 3 shows the initial cooling system concept at
design step P2 (c.f. Figure 1).

This concept described a bivalent cooling power supply
by an absorption chiller and two peak-power chilled water
units. The thermal compressor used solar heat from two
types of solar collectors and heat from the local available
district heating grid as a heat source to provide basic
cooling power. A hybrid cooler is used as the recooler,
which always ensures a recooling temperature of less than
27°C. It furthermore produces additional cooling power
via free cooling in times of cold outdoor temperatures.

Hybrid Cooler Dry Cooler

Chilled Water
Units

Absorption
Chiller

Cold
Storage

Heat
Storage

Cooling
Circuit

Solar Collectors

District Heating Grid

Figure 3: Cooling system concept at design step P2 (GEFOMA, 2014)

Session 5A: Testing

DOI
10.3384/ecp21181383

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

385

This provides additional savings potential because
greenhouse buildings continuously require high light
intensity and thus cause significant cooling load even
during winter and transit time periods.

Cooling power peaks should be buffered with the 10 m3
cooling water tank and the chilled water units. Both tank
systems were initially planned as single lying tanks
underneath the laboratories. The chilled water units only
use dry coolers as recoolers because of reduced
requirements on recooling temperatures. These dry
coolers use a water-glycol mixture as heating medium to
avoid freezing outside the building shell. In contrast, the
hybrid cooler was planned to use water with an electric
trace heating system to avoid temperature drops at
additional heat exchangers for free cooling.

All these constraints were then used to model an
adequate mathematical and physical representation using
the Modelica language and derived simulation libraries.
Figure 4 shows this model which was based on the former
Green Building library in SimulationX (c.f. Schwan et. al.,
2015).

It almost shows a one-to-one representation of all
relevant system and control components as well as their
hydraulic and electric configuration and connections. The
individual components, such as absorption chiller and
chilled water units, used system parameters and operating
characteristics which were derived from data sheets of
typical system manufacturers but not from measurements.
The simulated total system efficiency thus significantly
depended on accuracy of this data, especially the EER
characteristic of the chilled water units and the COP of the
absorption chiller. The final P2 model evaluations showed
a total carbon footprint saving potential for the cooling
demands of about 51.06%, which is only about 1% higher
than the design goal of 50%. This potential included both
the savings of solar cooling and a better energetic standard
of the building envelope, and a smart shading system.

The overall design process including final tests of
building, planting area and energy supply system took
over 6 years. Since the beginning, there have been an
ongoing process of design updates with respect to system
details and accuracy. The P2 model was always refined in

Hybrid Cooler Dry Cooler Chilled Water
Units

Absorption
Chiller

Cold
Storage

Heat
Storage

Cooling
Circuit

Solar Collectors

District Heating Grid

Figure 4: Simulation model at design step P2 (Schwan et. al., 2015)

Modelica Models as Integral Part of the Building Design Process

386 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181383

order to be as up to date as possible and to be available for
any design question.

Already in P3, the final design step, the building owner
decided to change the hydraulic integration as well as the
heating medium of the hybrid chiller for system safety
reasons. An additional heat exchanger was therefore
necessary which however caused an additional
temperature drop and thus additional reductions of free
cooling potential. Analyses of the updated model showed
that this only slightly reduced the total carbon footprint
saving potential to about 50.08%, still above the major
design goal level.

Figure 6: Simulated cold storage temperature with the P2

model (Schwan et. al., 2015)

Further evaluations during the design process at the P5
step showed that the lying heat and cooling storage tanks
forced the mixture of the heating medium inside. Because

of their configuration, they would be responsible for very
low temperature spreads in both the cooling system as
well as the heat supply circuit of the absorption chiller.
This resulted in a significant increase of the required
circulation pumps volume flow and thus necessary costs
and auxiliary power consumption.

Figure 7: Simulated storage tank temperatures with

updated P5 model

To avoid these short circuits, both storage systems have
been changed to tank cascades with subsequent storage
tanks of 1/5 of the original storage size, each within
design step P5. With hydraulic connections between the
top of the previous and the bottom of the next tank, the
temperature difference between storage system input and
output could be increased to a maximum level.

These design decisions could be technically supported

Free Cooling
Heat Exchanger

Cooling Tank
Cascade

Heating Tank
Cascade

Figure 5: Cooling system concept at design step P9 (Zimmer, 2017)

Session 5A: Testing

DOI
10.3384/ecp21181383

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

387

and validated by the adapted simulation models. The
results in Figure 7 in comparison to the former system
behavior evaluated in Figure 6 show the effectiveness of
these measures concerning the increase of storage
temperature spread and cooling system temperature
reduction.

Further model updates during the design progress
mainly considered the level of detail of the implemented
control strategies as well as further insights from the
increasing availability of measurement data obtained from
monitoring and surrounding conditions.

The original control strategy defined the absorption
chiller as the basic cooling power source. If the solar heat
in the storage tank(s) was too low, remaining heat was
planned to be taken from the local district heating grid.
The implemented Modelica models showed that during
P2/P3 evaluations the solar collectors would provide only
about 30% of the required heat demand for cooling.
However, this was still efficient because of the expected
performance characteristic of the chosen equipment.

First tests after the implementation showed significant
influence of the heating system temperatures and
temperature spreads on the total absorption chiller
efficiency. This became another one of the unexpected
issues, because the desired system efficiency required
significantly higher heating system temperatures in both
flow (85°C instead of 75°C) and return (80°C instead of
50°C). However, the return temperature of the district
heating grid is limited to 55°C on the primary side.

|Thus, the originally planned system control is not

possible. The cooling system simulation model was
therefore updated according to latest analysis of system
operation and control as well as measured system
parameters. Further analyses compared alternative
solutions which were necessary to still achieve the major
design goal of 50% plus carbon footprint saving potential.
Therefore, available measurement data from the
monitoring as well as latest design documents were used
to again update the model regarding the final P9 system
status. This included updates of model components,
parameters, and hydraulic connections and nevertheless
integrated control algorithms (e.g. absorption chiller start-
up procedure depending on heat tank temperatures).
Furthermore, measurement time series of the total cooling
power consumption partly replaced the previous
simulated load curves.

4 Design Questions to the Models
One of the final measures in the P9 design step was the

final adjustment of the system control after the
construction of the building and energy system is finished.
Especially, the absorption chiller operation in particular
showed significant gaps between design phase and final
implementation.

The main issue was the implemented heat supply circuit
of the absorption chiller. It was designed to enable 50°C
maximum return temperature with a 25K temperature
spread because of district heating grid requirements.
However, this caused significantly lower system

Free Cooling
Heat Exchanger

Cooling Tank
Cascade

Heating Tank
Cascade

Figure 8: Simulation model at design step P9

Modelica Models as Integral Part of the Building Design Process

388 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181383

efficiency as the absorption chiller required a lower
temperature spread of about 5K at a higher temperature
level to provide adequate efficiency ratios. Monitoring
data of measured heat supply and recooling temperature
as well as resulting cooling power were used to calibrate
the corresponding model characteristics. Figure 9 shows
some exemplary results of the calibration process.

Figure 9: Comparison of measurement data and model

results during the calibration process

Again, a carbon footprint saving potential of 50% of a
comparable reference greenhouse building remained the
major design goal. For this purpose, the engineers
developed four technically-feasible solutions which might
help to compensate the resulting efficiency reduction due
to the changed boundary conditions.

1. Replacement of absorption chiller with a machine

with better efficiency ratio at the desired
temperature level (i.e. 75°C)

2. Variable control of cooling power output
depending on available solar heat storage tank
temperatures (i.e. 60°C to 75°C)

3. Increase of heat supply temperature level (i.e.
85°C)

4. Bivalent heat supply from solar heat storage tanks
and district heating grid

The first solution required significantly higher

investment costs than the other ones because it considered
the replacement of an already integrated system
component- the complete absorption chiller including all
peripheral components. In contrast, the second and third
option would not need additional investments besides the
engineering effort regarding the required controller
adaption.

The last solution only represented an optional way to
show the entire range of the technically-feasible
approaches. However, it would violate the requirements
of district heating gird because maximum return
temperatures of 55°C would not be allowed.

To find the right solution regarding the major design
goal, the continuously updated Modelica model of the

cooling system is predetermined. It is precisely here that
the strength of Modelica's approach of making models
usable for the entire design period up to the building's use
becomes apparent.

The required Modelica models must therefore represent
the real-world conditions as accurately as possible to
support those important design decisions. Intensive
calibration work and structural redesign of the hydraulic
model at the end of design phase P9 ensured this accuracy
regarding the physical system behavior. However, effects
of the control system are almost as important as the
component parameters and model structure. Therefore,
the complete technical description of the control system
was implemented using all available terms of the
Modelica language.

Figure 10: Section of the Modelica controller code of the

storage temperature control

Figure 10 therefore shows a small exemplary section of
the implemented controller code. It decides if the solar
heat storage reached the level “fully-discharged” or
“fully-charged” depending on simulated temperatures in
different tanks and in different tank positions. This again
shows the strength of Modelica models regarding the
support of the whole building design process. Specific
problems or even a complex system can be modeled in
different levels of representation (i.e. structural and text
view) and detail.

The final evaluation of the four simulation model
variants provides a conclusive result. Table 1 therefore
shows some decision-making factors. The calculation of
the total CO2 emissions per year requires the evaluation of
all energy flows, especially from fossil fuels or grid
power, to the building. Therefore, power consumption
from the electric grid and heat consumption from the
district heating grid are the most important values. They
will be multiplied with their individual CO2 emission
equivalent factors (i.e. power: 0.54kg/kWh, district
heating: 0.15kg/kWh) to calculate the simulated total CO2
emissions of each variant.

Furthermore, Table 1 also shows the generated local
renewable energy amounts. This includes renewable
cooling power via free cooling with the hybrid cooler and
solar heat from the two types of solar collectors. As
renewables, they are not part of the CO2 emissions

Session 5A: Testing

DOI
10.3384/ecp21181383

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

389

calculation (i.e. CO2 factor is 0kg/kWh) but they are listed
in Table 1 as well to enable a detailed discussion of
different influencing factors.

The last column of Table 1 includes the corresponding
values of a fictional reference greenhouse building with a
lower energetic building standard and conventional
cooling system with three independent chilled water units.
The calculated CO2 emissions of each variant are
compared to this reference solution to evaluate the savings
potential.

In contrast to the results of the first design phase, a
bivalent heat supply to the absorption chiller via solar heat
collectors and district heating grid (i.e. variant 4) doesn’t
meet the major design goal anymore. The total CO2
savings potential decrease below 40%. The measurements
showed that the deciding temperature level of the
absorption chiller results from average temperature
between flow and return (i.e. 75/50°C => 62.5°C) which
is much lower than the estimated temperature level during
the design phases P2/P3 (i.e. 75°C). The lower the heat
supply temperatures, the lower the absorption chiller
performance which results significantly higher district
heating consumption and higher CO2 emissions.
Furthermore, this control variant also significantly
reduces the free cooling potential because the cooling tank
temperature mostly remains on a low level because of the
infinite availability of district heating.

Variants 1 to 3 all meet the major design goal of 50%
CO2 saving potential. The higher heat supply temperature
level (i.e. 85°C) of variant 3 results in a higher cooling
power output of the absorption chiller which reduces the
operation time of the peak-power units. However, this
higher temperature level causes a lower solar collector
efficiency which is compensated by the better
performance characteristic of the absorption machine.

A new machine with a better performance characteristic
(i.e. variant 1 – 75°C) enables both a higher cooling power

consumption and higher solar collector efficiency.
However, this variant requires significantly higher
investment costs.

Variant 2 requires the lowest investment costs as it
needs only minor changes of the control strategy, and as
such it is preferred over variant 1. Variant 3 is more
expensive as well because the system of internal volume
flows (i.e. pumps and piping) must be converted to other
dimensions. The presented use of Modelica models
provided a conclusive design recommendation of variant
1 even at a very late step of the design process.

5 Process Integration
This paper presents the use of Modelica models as an

integral part of the complete design process. However,
complex commercial buildings in particular still require a
high level of manual effort for model updating and process
synchronization.

However, there are already ongoing processes and
scientific research, i.e. German FMI4BIM project, which
works on solutions which partly link simulation models
and derivatives (i.e. FMUs) to typical digital data
platforms used within building design processes (i.e. BIM
– Building Information Modeling). This approach already
shows a lot of application scenarios (c.f. Eckstädt et. al.,
2020).

Building Information Modeling (BIM) is a core concept
of Industry 4.0 mainly used by the construction industry
as a consistent approach of data management during the
whole design and construction process (c.f. Doan et. al.,
2019). It was once designed to provide a database of
building construction data, parameters and configurations
but is now extending to additional engineering domains of
the building sector, especially HVAC systems and
building control.

Therefore, BIM is predestinated to serve as an

Table 1: Simulation results of decision making factors regarding the analysis of variants

Modelica Models as Integral Part of the Building Design Process

390 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181383

independent model database during the whole building
design process and the following building lifespan. To
increase interoperability and tool-independency,
Modelica models should therefore be converted to FMUs
as it is proposed by the FMI4BIM consortium.

Therefore, BIM is predestinated to serve as an
independent model database during the whole building
design process and the following building lifespan. To
increase interoperability and tool-independency,
Modelica models should therefore be converted to FMUs
as it is proposed by the FMI4BIM consortium.

Figure 11 describes the basic approach of a BIM-based
building design process. All architectural data is stored in
the BIM database. Architects and engineers use these data
with each design step and refine the collected data and
information in the BIM model regarding the increasing
design knowledge and accuracy. Additional links to
suitable building and HVAC system FMUs (or coupled
FMU models) can extend this process to enable a full
integration of Modelica models.

The share of BIM-based building construction projects
is constantly increasing worldwide (c.f. Liu et. al., 2021).
Typical CAD tools began to integrate ifc-files (i.e. BIM
file format) export and import. BIM has become an
important issue in the field of building engineering. There
are even toolchains that already exist that automatically
generate and parameterize Modelica models with BIM
data (c.f. Nytsch-Geusen et. al., 2019). All these tools and
methods contribute to a more consistent building design
process and facility management.

Basically, the approach in Figure 11 extends the

existing BIM-based process with suitable links to models
represented by FMUs or FMUs libraries. Therefore, the
assigned model environment is updated with new
parameters and information during each design step.
Then, engineers and architects use the models for
individual analysis, e.g. energetic evaluation of different
HVAC system variants. The most preferred solution is
then fed back to the BIM environment as base for the next
design steps.

The model design, interfaces and FMU integration will
be defined by a standard or standard extension. This will
allow system manufacturers to provide individual
component FMUs of their products based on the
developed standard templates. This will contribute to both
security of intellectual property as well as integration of
expert knowledge.

6 Conclusion
The presented example building design process of the

new research greenhouse building of the University of
Leipzig shows the versatility of Modelica models
regarding upcoming design questions. Currently,
Modelica models are often used as base of decision-
making in the first design phase until step P3, the final
design. However, there is rarely any use of these models
after this phase.

The different design steps and phases have different
requirements regarding accuracy and level of detail. The
use of these models in subsequent design phases needs
continuous refinement and a consistent data base.

Figure 11: Basic approach of Modelica model (FMU) integration in BIM-based building design process

Session 5A: Testing

DOI
10.3384/ecp21181383

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

391

Therefore, BIM seems to be the means of choice as it
already represents a digital mockup of the continuously
refined building construction during all design phases.
Ongoing research activities focus on the integration of
different toolsets and databases, like BIM, GIS and
Modelica models. Open-source frameworks are thus
available to use BIM data in Modelica models (c.f. Wetter,
et.al., 2019).

Another research activity, i.e. FMI4BIM, currently
analyses approaches of a full BIM process integration of
Modelica models. Thus, a project specific BIM model
should be linked to the Modelica models which are
represented here by FMUs to provide a tool-independent
model exchange standard. One major outcome of the
presented exemplary greenhouse building construction
process considers the total process length corresponding
to the desired BIM workflow. Design and construction of
complex buildings can easily take several years. If
Modelica models (or derived FMUs) should be linked to
different process steps, a well-suited version management
is necessary. This doesn’t only consider the model’s level
of detail and accuracy, but also the version of current
Modelica language and Functional Mockup Interface
release, and the used simulation environment which is
also important. This is a particular challenge when
backward compatibility needs to be ensured.

Models can help identify optimal solutions of specific
design questions during all design steps via variant
analysis and parameter study. In case of a continuous
model refinement process, models can also serve as
virtual devices-under-test for the building control
development. This requires a significantly automated
process including controller design until the phase where
controller code is exported to specific targets (i.e. PLCs,
DDCs, etc.). Further research activities, such as ARCHE,
have special emphasis on this topic. This includes the
consistent decoupling of controller code and physical
model. Therefore, the Modelica Synchronous library
provides suitable approaches which describe boundaries
between clocked and continuous-time partitions of a
model (c.f. Elmquist et. al., 2012).

7 Acknowledgements

The presented research work and results were partly
encouraged by subsidies of the German Federal Ministry
of Economics and Technology.

References
Sommer, H., Projektmanagement im Hochbau - Mit BIM und

LEAN Management, Heidelberg, Berlin: Springer-Verlag,
2016.

Craven, Dylan, Winter, Marten, Hotzel, Konstantin, Gaikwad,
Jitendra, Eisenhauer, Nico, Hohmuth, Martin, König‐Ries,
Birgitta, Wirth, Christian (2019). Evolution of
interdisciplinarity in biodiversity science. In: Ecology and
Evolution 9(12), 6744-6755.

GEFOMA Großbeeren GmbH. IDIV greenhouse building
construction in Leipzig. Design documents, 2014.

Rodríguez, F., Yebra, L.J., Berenguel, M., Dormido, S. (2002).
Modelling and Simulation of Greenhouse Climate using
Dymola, In: IFAC Proceedings Volumes, Volume 35, Issue 1,
2002, Pages 79-84.

Altes-Buch, Queralt & Quoilin, Sylvain & Lemort, Vincent.
(2019). Greenhouses: A Modelica Library for the Simulation
of Greenhouse Climate and Energy Systems. In: 533-542.
10.3384/ecp19157533.

Schwan, Torsten, Unger, René, Pipiorke, Jörg (2015). Energy-
Efficient Design of a Research Greenhouse with Modelica.
In: 11th International Modelica Conference. Versailles,
2015.

Zimmer & Hälbig GmbH. IDIV greenhouse construction in
Leipzig. Revision documents, 2017.

Eckstädt, Elisabeth, Paepcke, Anne, Hentschel, Alexander,
Schneider, André, Nicolai, Andreas, Schumann, Falk (2020).
Simulationsszenarien für Gebäude-Energiesimulation in
frühen Planungsphasen. In: BauSIM 2020. TU Graz, 2020.

Doan, Dat & Ghaffarianhoseini, Ali & Naismith, Nicola &
Zhang, Tongrui & Rehman, Attiq Ur & Tookey, John &
Ghaffarianhoseini, Amirhosein. (2019). What is BIM? A
Need for a Unique BIM Definition. In: MATEC Web of
Conferences. 266. 05005. 10.1051/matecconf/
201926605005.

Liu, Ziwen Lu, Yujie, Shen, Meng, Peh, Lu Chang (2021).
Transition from building information modeling (BIM) to
integrated digital delivery (IDD) in sustainable building
management: A knowledge discovery approach based
review. In: Journal of cleaner production 2021 v.291 pp.
125223.

Nytsch-Geusen, Christoph, Rädler, Jörg, Thorade, Matthias,
Ribas Tugores, Charles (2019). BIM2Modelica – An open
source toolchain for generating and simulating thermal multi-
zone building models by using structured data from BIM
models. In: 13th International Modelica Conference.
Regensburg, 2019.

Wetter, M., von Treck, C., Helson, L., Maccarini, A., Saelens,
D., Robinson, D., Schweiger, G. (2019). BIM/GIS and
Modelica framework for building and community energy
system design and operation – ongoing developments, lessons
learned and challenges. In: Sustainable Built Environment
Conference. Graz, 2019.

Elmquist, Hilding, Otter, Martin, Mattsson, Sven Erik (2012).
Fundamentals of Synchronous Control in Modelica. In: 9th
International Modelica Conference. Munich, 2012.

Modelica Models as Integral Part of the Building Design Process

392 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181383

A Cloud-native Implementation of the Simulation as a
Service-Concept Based on FMI

Moritz Stüber1 Georg Frey1

1Chair of Automation and Energy Systems, Saarland University, Germany,
{moritz.stueber,georg.frey}@aut.uni-saarland.de

Abstract
Providing modelling and simulation capabilities as a ser-
vice promises to increase their value by improving accessi-
bility for non-expert users and software agents as well as
by leveraging cloud-computing technology to scale sim-
ulation performance beyond the capabilities of a single
computer. In order to reach this potential, implementa-
tions must align their design with the architectural styles
of cloud computing applications and the web in general.
We present an open-source, cloud-native Simulation as
a Service (SIMaaS)-implementation that gives access to
models and allows simulating them on the web. The im-
plementation uses Functional Mockup Units (FMUs) for
co-simulation as an executable form of a model and relies
on FMPy for simulation. It is realized as a microservice in
the form of a REST-based HTTP-API. Functionality and
performance are demonstrated by using the service to cre-
ate ensemble forecasts for PV systems and to search for an
optimal parameter set using a genetic algorithm. Concep-
tual limitations and the resulting opportunities for further
work are summarized.
Keywords: simulation as a service, cloud-native simula-
tion, service-oriented software architecture, FMI 2.0

1 Introduction
There exist scenarios in which it is useful to execute sim-
ulations on a distributed set of computing resources that
can be scaled according to demand and beyond the ca-
pabilities of a single machine. Examples for this include
simulations which are part of a series of many simulations
to be evaluated as a whole; as for example in parameter
fitting or sensitivity analysis applications. Also, simula-
tions might be part of a (recurring) larger process, such as
providing necessary forecasts for flexibility management
in the context of smart grids.

The term cloud computing denotes a set of desirable
characteristics for accessing a set of computing resources
over the internet, as well as characteristic service models
and deployment models (Mell and Grance 2011). From a
user’s point of view, the essential characteristics are that
software or computing resources are available as a ser-
vice via the internet, meaning that the resources are read-
ily available without the need for manual installation of
hardware and/or software. Consumers can use services

without the need for human activity on the side of the
provider (on-demand self-service), often without apparent
limitations, and they have access to metrics for their ser-
vice usage (measured service). Users are billed according
to service usage in terms of these metrics (pays-as-you-go
cost model).

Cloud-based end-user applications usually integrate
several services to realize their functionality as it has been
found that programmers can effectively realize the de-
sirable characteristics of cloud computing by exposing
pieces of functionality as a set of independent services in
a so-called Service-oriented Architecture (SOA). In the
abstract, SOA is “a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control
of different ownership domains” (OASIS 2006, line 864),
where a service is defined as the “mechanism by which
needs and capabilities are brought together” (OASIS 2006,
line 174). More specifically, a service can be seen as
the offer to perform work for others; as the service inter-
face which specifies information model, behaviour model
and applicable usage policies; and as a specific service in-
stance.

In practice, SOAs can be successfully realized as a
set of microservices in the form of Representational
State Transfer (REST)-based Hypertext Transfer Proto-
col (HTTP)-Application Programming Interfaces (APIs)
which exchange machine-readable representations such as
JavaScript Object Notation (JSON) and define their in-
terface according to a formal specification such as the
OpenAPI Specification (OAS). The term microservice is
used to point out that services best implement exactly one
functionality only (“do one thing well”). Representational
State Transfer (REST) is the name of the architectural
style of the web, in other words a name for its key de-
sign principles. Consequently, a REST-based1 HTTP-API
attempts to implement these design principles, acknowl-
edging the sucess of the web and attempting to inherit its
positive properties.

Applications which are intentionally designed to work
well in the cloud and consequently realize the de-
sired characteristics are called Cloud-native Applications
(CNAs). The goal of the presented work is to pro-

1Using the term REST-based instead of RESTful indicates that the
developers are aware that the term “RESTful” is frequently misused and
that their software does not fully realize the REST constraints.

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

393

vide a state of the art Simulation as a Service (SIMaaS)-
implementation based on an established open standard for
model export and to represent the ability to perform sim-
ulations as REST-compatible as possible withouth actu-
ally realizing the so-called Hypermedia As The Engine Of
Application State (HATEOAS) constraint. Furthermore, it
should be shown that the desired characteristics implied
by the term “cloud-native” are realized.

The remainder of this paper is organized as follows: first,
the concepts and abstractions for providing software as
a service in general and the motivation for providing
modelling and simulation as a service (MSaaS) are out-
lined in section 2. The high-level requirements that follow
from the choice of concepts are summarized. Second, the
software architecture and software stack for the developed
solution are explained in section 3. Restrictions posed on
Functional Mockup Units (FMUs) to be used with the im-
plemented software are stated. Third, exemplary use cases
for demonstrating functionality and performance are de-
scribed in section 4. Last, related work is outlined in sub-
section 5.1 and conceptual limitations of the devised so-
lutions as well as the resulting opportunities for further
research are discussed in subsection 5.2.

2 Concepts
Providing MSaaS is a multi-faceted endeavour at the in-
tersection of modelling and simulation (M&S), informa-
tion science and software development and -operations
(DevOps). The core hypothesis of MSaaS is that usability
and reuse can be increased by making M&S functionality
available to a broader audience via the internet; that func-
tionality can be improved by facilitating the composition
of M&S resources; and that performance can be improved
by deploying applications in the cloud (see Stüber, Exel,
and Frey 2018, section 2 for a detailed explanation and
references to original research).

Three recent reviews on MSaaS outline the design space
and identify high-level requirements and architectural
choices that should guide the design and implementation
of specific MSaaS solutions.

First, Shahin, Babar, and Chauhan map out the
Architecture Design Space (ADS) for MSaaS by present-
ing the results of a Systematic Literature Review (SLR)
performed with the aim to identify and describe the state
of the art (Shahin, Babar, and Chauhan 2020). They cate-
gorize the primary studies considered according to differ-
ent criteria such as the architectural style, the main drivers
for architectural decisions, and quality attributes. Addi-
tionally, they ponder the implications of the chosen ar-
chitectures and identify strenghts and weaknesses. The
authors conclude that MSaaS-realizations most often use
a layered approach to build applications; that container-
ization is employed to improve deployability; and that ef-
fective interfaces for end users that hide complexity and
technicalities motivate their development (Shahin, Babar,
and Chauhan 2020, section 5).

Second, Hannay, Berg, et al. (2020) reason about the in-
frastructure capabilities they deem necessary for realizing
entire MSaaS ecosystems at scale. Based on “a systemati-
zation of concepts from ongoing deliberations on MSaaS”
(Hannay, Berg, et al. 2020, section 3), the authors first
review the service concepts of the North Atlantic Treaty
Organization (NATO) MSaaS reference architecture (Han-
nay and Berg 2017) and then elaborate on the functional-
ity required for realizing MSaaS ecosystems. Their rea-
soning is structured around the themes data management,
service description and -discovery, composition and inter-
operability and the management of different components.
The findings are mostly conceptual in nature, likely useful
for verbalizing and contextualizing design questions and
-decisions when faced with implementing specific SOAs
containing M&S capabilities. The authors also note that
solutions for supporting, yet – from an operational per-
spective – highly relevant functionality such as logging,
metering and monitoring are readily available.

Third, Kratzke and Siegfried (2020) focus on the con-
sequences expected from leveraging the cloud for M&S
services. Using their work on and definition of CNAs
(Kratzke and Quint 2017) as a basis, they propose a def-
inition for what Cloud-native Simulations (CNSs) are in
terms of a textual definition (Kratzke and Siegfried 2020,
section 4.3), a cloud-native simulation stack and a cloud
simulation maturity model. They summarize the soft-
ware engineering trends in cloud computing as the evo-
lution of deployment strategies to maximize resource uti-
lization (smaller deployment units, elasticity); the use of
microservices as an architectural style that supports the
aforementioned; and the emergence of microservice en-
gineering ecosystem components for container orchestra-
tion, monitoring, et cetera. The authors conclude that the
same trends are to be expected for CNS architectures and
that, like CNAs in general, CNSs should strive to isolate
state in a minimum of stateful components.

In alignment with the findings of Kratzke and Siegfried,
section 4.2, we decided to create a microservice realizing
the SIMaaS-concept in the form of a REST-based HTTP-
API, relying on containers as deployment units to be op-
erated on a clustered elastic platform.

As a consequence of the decision for an interface design
based on REST, specifically the uniform interface con-
straints, M&S capabilities need to be represented as re-
sources of which representations can be transferred when
HTTP verbs are applied to them (Verborgh, Hooland, et al.
2015). In other words, a mapping between entities of the
application domain, such as a models and simulation re-
sults, and uniquely identifiable conceptual resources that
constitute the service interface is required.

In the context of the developed SIMaaS-API, the enti-
ties of the application domain to be exposed as resources
are models, model instances, simulations, and simulation
results2.

2The definitions below do not claim to be universally applicable;

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

394 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

Models are well-posed system models that could be sim-
ulated once all parameters are set; but the parameters
are not set yet.

Model instances are system models that do have all pa-
rameters set (either explicitly or by relying on default
values) and could be simulated as soon as initial con-
ditions and input values are provided. The parame-
ters of a model instance cannot be changed; a change
in parameters always leads to a new model instance.

Simulations combine a model instance with initial condi-
tions, input trajectories, a solver and the correspond-
ing solver settings. They also have a state, for ex-
ample new, running or finished, and link to
their result if and only if (iff) it exists. Like model
instances, simulations cannot be changed once they
are created.

Simulation results contain the actual results of exactly
one specific simulation. They cannot be updated ei-
ther.

REST demands that each message must be self-
descriptive, meaning that it must be actionable indepen-
dent of any possible prior interaction with the same client.
To support this, HTTP provides only a few methods with
specified semantics and properties, for example GET or
POST. In combination with the concept of resources, this
means that actions which are prevalent in classical M&S
environments such as Dymola need to be represented dif-
ferently (compare Verborgh, Hooland, et al. 2015, section
3.3). For example, there is no such thing as a SIMULATE
method in HTTP. Assigning a Uniform Resource Loca-
tor (URL) to an action contradicts the idea of resources
and is therefore incompatible with REST. Thus, the action
of starting a simulation is represented instead by POSTing
a representation of a new simulation-resource to the
API. Internally, the API starts the simulation as part of
the handler that registers the new simulation-resource.
Once the simulation is finished, a resource exposing the
simulation result is created.

As a consequence of this design, the application state
(the state of the interaction between service consumer and
service instance) is only stored in the state of the resources
exposed by the service, including their existence or ab-
sence. This is a desired property. However, it also means
that clients need to poll the simulation-resource by re-
peatedly sending GET-requests in order to know about the
existence of a result or the failure of a simulation (compare
subsection 5.2).

Note that the developed SIMaaS-API does not ex-
pose the Functional Mockup Interface (FMI) functions de-
scribed in the standard document (Modelica Association
2020), but more abstract/high-level functionality as out-
lined in Table 1.

they should be seen as specific to the developed software.

Based on the choice of resources and a decision on how
to represent actions of the application domain in terms
of the addition/update/removal of resources, the service
interface can be specified. Several specification formats
exist, of which the OpenAPI Specification (OAS)3 has
gained widespread support. Formally specifying the ser-
vice interface has several benefits: first, the service in-
terface description serves as unambiguous documentation
both for users and developers of the service. Second, parts
of the service implementation can be automatically gen-
erated from the service description, such as routines for
input validation, the routing of requests or a website ren-
dering the OAS for human users. Third, test cases for ver-
ifying that the API behaves as advertised can be generated
automatically from the service description.

However, relying on the OAS to specify an interface
that exposes models and the ability to simulate them
quickly leads to a conceptual problem: the OAS is a static
interface description written at design time, whereas the
parameters for model instantiation and triggering simula-
tions depend on the models to be used with the SIMaaS-
instance, which are only added at run time.

Three solutions to this problem suggest themselves.
First, the interface description could be kept so generic
that the differences between models are abstracted. This
would severly diminish the advantages of using a formal
service description outlined in the penultimate paragraph
and is therefore undesirable.

Second, the OAS could be regenerated dynamically
each time a model is added to or removed from the
SIMaaS-instance. This allows the OAS to be specific
enough to fully realize its potential. The translation of
constraints on parameters and inputs such as maximum or
minimum values or unit specifications can be automated
as long as these constraints are present in the model. This
approach is realized in the SIMaaS-implementation pre-
sented in this paper.

The third approach would be to not use a service inter-
face description at all and let users explore the capabilitites
of the server dynamically by following links. This is how
human users navigate websites as they are good at finding
a way to achieve their goal on a web page and understand
possible consequences of clicking links without actually
following them. However, this is a challenging tasks for
software agents and subject to ongoing research under the
term “hypermedia API”. The possibilities for turning the
presented SIMaaS-implementation into a hypermedia API
will be discussed further in subsection 5.2.

3 Implementation
Below, the software architecture and software stack cho-
sen to realize our goal of providing a state of the art
SIMaaS-implementation based on FMI as an established
open standard for model export are described. For prac-
tical reasons, some requirements are posed on FMUs to

3https://github.com/OAI/OpenAPI-Specification

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

395

Table 1. Overview of the service interface in terms of HTTP methods, exposed resources and their meaningful combinations.

Method Resource Description

POST /models Add a new model to the API-instance
GET /models/{model-id} Retrieve a model representation from the API
DELETE /models/{model-id} Delete a model representation from the API
POST /models/{model-id}/instances Instantiate a model for a specific system
GET /models/{model-id}/instances/{instance-id} Get a representation of a specific model instance
POST /models/{model-id}/instances/{instance-

id}/experiments
Trigger the simulation of a model instance by defining
an experiment

GET /models/{model-id}/instances/{instance-
id}/experiments/{experiment-id}

Retrieve a representation of a specific experiment def-
inition and its status

GET /models/{model-id}/instances/{instance-
id}/experiments/{experiment-id}/result

Retrieve a representation of the results of a specific
simulation run

be used with the service, which are explained in subsec-
tion 3.2. In order to get the exact same simulation results
from simulation of the FMU as when simulating the model
in a Modelica environment, the sequence of calling the
FMI methods implemented in FMPy had to be changed as
explained in subsection 3.3.

3.1 Software Architecture
Figure 1 shows the high-level software architecture. Ex-
actly one component (A) provides the service interface
in the form of a HTTP-API and stores the state, in other
words the resources exposed. At least one, but potentially
tens or even hundreds of stateless workers (W) run sim-
ulation jobs that they pull from a task queue (Q1). The
simulation results are propagated back to component A
through a second queue (Q2). Both queues do not store
data permanently, and neither do the workers. Requests
from users do not reach the API component directly but
instead arrive at a reverse proxy (R). This reverse proxy is
responsible for providing an encrypted Hypertext Transfer
Protocol Secure (HTTPS) connection to the outside world.

The specific software components and libraries used for
implementation were chosen based on the criteria that they
are well-suited for the job; Free/Libre and Open-source
Software (FLOSS); represent the state of the art; and that
their use avoids re-implementing functionality that already
has stable implementations.

The HTTP-API (A) possibly receives many requests at
once, most of which result in requests to storage or other
services which are operations that are very slow compared
to pure computations, meaning that significant amounts
of time are spent waiting. Therefore, Node.js4 was cho-
sen as the programming language as it provides excellent
support for non-blocking input-output (IO) operations us-
ing promises and the async/await-syntax. Also,
it is commonly used for implementing HTTP-APIs and
consequently offers many useful libraries that support im-
plementation, such as the Express-framework5 and the

4https://nodejs.org
5https://expressjs.com

openapi-backend6. Incoming requests are checked
for validity against their schema in the OAS. Valid re-
quests are then propagated to the appropriate handlers,
which alter or retrieve resource state and enqueue simu-
lation requests if necessary.

The internal representation of a simulation job couples
the worker implementation to the API. Workers retrieve
these representations from the task queue, which is im-
plemented using Celery7, using RabbitMQ8 as the mes-
sage broker (Q1). As a result of only coupling API and
worker through the task representation, the workers can
use Python9 as programming language. This enables the
use of the pandas10 package for representation and manip-
ulation of time series, and allows using FMPy11 for sim-
ulating FMUs. FMPy was chosen because it can be used
natively from within a Python environment; because it is
actively maintained and developed under an open-source
license; and because FMPy and its dependencies can be
installed easily, also as part of a container image. Worker
instances can be added or destroyed according to demand
and jobs are automatically distributed across all worker
instances that are available. Upon finishing a simulation
job, the results are propagated back to component A using
Redis12 as the result backend (Q2).

API and worker are implemented according to the
twelve-factor app13-method, which is the name of a set of
best practices for developing, operating and maintaining
Software as a Service (SaaS).

Each component is intended to be deployed as a con-
tainer. Containers are a lightweight packaging format for
an application and all of its dependencies. They are guar-
anteed to run on any host that runs a compatible container

6https://github.com/anttiviljami/
openapi-backend

7https://github.com/celery/celery
8https://www.rabbitmq.com
9https://www.python.org

10https://pandas.pydata.org
11https://github.com/CATIA-Systems/FMPy
12https://redis.io
13https://12factor.net

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

396 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

reverse proxy
(NGINX)

SIMaaS-API
(Node.js)

task queue
(Celery)

worker instances
(Python, FMPy)

- validate input
- route requests
- enqueue tasks
- store resource state
- serve resource
 representations
- cache results (for
 limited time)

message broker
(RabbitMQ)

result backend
(Redis)

W1

Wn

Q1

Q2

ARagents

HTTPS

HTTP amqp amqp

RESPRESPHTTP
HTTPS

Figure 1. Software architecture of the SIMaaS-implementation.

engine, for example the Podman14 engine. Containers
are also the basic building blocks for deploying on clus-
tered elastic platforms such as Kubernetes15. As such,
using containers as the deployment unit for the compo-
nents of the developed SIMaaS-implementation enables
their use on such platforms, which in turn enables using
advanced operation strategies such as automatic scaling in
response to demand or load-balancing requests between
several containers running the same component.

The source code for the SIMaaS-API and the workers
are available subject to the conditions of the MIT license16

at https://github.com/UdSAES/simaas-api
and https://github.com/UdSAES/
simaas-worker, respectively. For message bro-
ker and result backend, stock container images can
be used, which are for example available on Docker
Hub17. Consult the README documents in the API and
worker-repositories for details.

3.2 Requirements on FMUs
FMI 2.0 for co-simulation can be seen as a way to export
models and the corresponding solver in an open, widely
supported way. In other words, a FMU can be seen as
a standalone executable format of a single model using a
single solver for simulation. Obviously, the capabilities
and intended usage of FMI are more diverse; but for the
purpose of this work, we adopt this limited view.

In order to facilitate the implementation of the envi-
sioned software, we impose additional restrictions on the
FMUs concerning their parameterization, the supported
platforms for which binaries must exist, and the defini-
tion of inputs, outputs and parameters to be exposed via
the API. Note that none of these restrictions impose lim-
its on the actual models or their simulation; they merely
represent a concretization of the format supported by the
developed software.

Schmitt et al. (2015) investigated different possibili-
ties to parameterize models in Dymola with respect to

14https://podman.io
15https://kubernetes.io
16https://spdx.org/licenses/MIT.html
17https://hub.docker.com

their subsequent export as FMU. In section 3.3 of their
paper, they describe a method that “becomes favorable
if the user wants to exchange whole data sets of one
and the same model” (Schmitt et al. 2015, section 3.3),
which is exactly the case for the SIMaaS-implementation.
In short, parameters inside the model are set by inter-
component references to a record. This record has a pa-
rameter filename, which must be set to the path of a file
containing the values. All actual model parameters are set
by reading this file during model initialization. This can,
for example, be achieved using the DataFiles package
distributed with Dymola or one of the functions provided
in Modelica.Utilities.

The second requirement is that inputs and out-
puts of the models must be listed as such in the
modelDescription.xml file of the FMU because the
schemata for the trajectories that a service user needs to
supply/can expect as a result, which are part of the OAS,
are derived from this information.

Last, the FMU must contain binaries for GNU/Linux as
the containers are intended to be deployed on GNU/Linux
host systems.

3.3 FMI Calling Sequence
In FMI 2.0 for co-simulation, direct feedthrough is for-
bidden18. FMPy ensures this by calling the FMI func-
tions in the order fmi2GetXXX(), fmi2SetXXX(),
fmi2DoStep() in the simulateCS()-function19.

In some cases, this leads to significant differences be-
tween the simulation results of a model simulated natively
(for example in Dymola) and the simulation of the cor-
responding FMU. As an example, consider the simula-
tion of a model that calculates the power generated by a
photovoltaic (PV) module as a function of ambient con-
ditions (irradiance in the horizontal plane, temperature,
wind speed) and the orientation of the PV module. For
this calculation, the irradiance in the horizontal plane has

18Compare https://github.com/CATIA-Systems/FMPy/
issues/89#issuecomment-522949757

19https://github.com/CATIA-Systems/FMPy/blob/
69ec43813e6d5f8eb79da0d17c181fe57271f8ac/fmpy/
simulation.py#L1171

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

397

to be converted to the plane of array (POA), which re-
quires the sun’s position relative to the module. At 07:00
a.m., the sun’s position at 07:00 a.m. is calculated because
the calculation is part of the model. At this time instant,
inside the FMU, the irradiance data available is the data
for 06:45 a.m. (assuming an output interval of 15 minutes)
because of the calling sequence chosen by FMPy. When
using Dymola to natively simulate the Modelica model,
the irradiance data for 07:00 a.m. is used as intended.

For the special case of using FMUs as a portable ex-
port format of single models that are ready to be sim-
ulated using a single solver contained in the FMU, this
unnecessarily introduces systematic errors. Therefore,
we use a fork of FMPy which calls fmi2SetXXX(),
fmi2DoStep() and fmi2GetXXX() in this order for
the implementation of SIMaaS-workers.

4 Demonstration
The ensemble forecast for the power produced by a PV
system and the search for an optimal parameter set by
means of a genetic algorithm (GA) serve as examples for
demonstrating the use of the SIMaaS-implementation.

The code that executes the necessary requests is writ-
ten in Python in a concurrent fashion using Python’s
async/await mechanism and an asynchronous HTTP
library20. Request sequences such as the sequence for trig-
gering and retrieving the results of a specific simulation
(POSTing a new simulation resource, polling its status us-
ing repeated GET requests, GETting the result) are obvi-
ously still executed in order for each individual simula-
tion, but they are executed in parallel for several differ-
ent simulations, thereby testing/showing the ability of the
SIMaaS-API to handle many requests at once.

Like the API and worker implementations, the
demonstration code is available under the MIT li-
cense on GitHub: https://github.com/UdSAES/
simaas-demo. Please refer to the README and the
code itself for details.

4.1 Ensemble Forecast for PV Systems
A single trajectory of values such as those obtained as the
result of simulating a model implemented in Modelica im-
plies a level of exactness that does not fairly reflect the
uncertainties inherent to modelling process, parameteriza-
tion, and simulation.

One way to better understand and/or communicate the
actual meaning of a simulation is to perform a number of
simulation runs with slight variations in parameterization,
input trajectories and/or initial conditions as an ensemble
forecast. Ensemble forecasts created by varying the in-
put trajectories of each simulation run are representative of
situations where multiple simulations of the same model
instance are required.

Here, we use the repeated simulation of a model of a
photovoltaic (PV) system with the members of an ensem-

20https://github.com/aio-libs/aiohttp

ble weather forecast as input trajectories as an example.
The PV system model is exported from the pv-systems
library (Stüber 2020) according to the requirements on the
FMUs given in subsection 3.2. The FMU is then added to
the SIMaaS-instance and the request bodies to be sent for
triggering the individual simulation runs are prepared by
collecting the different weather forecasts. Once they are
ready, all request sequences are started in parallel. De-
pending on the number of workers that are started, the
simulations are either carried out in sequence (exactly one
worker) or in parallel (more than one worker).

Admittedly, executing one ensemble forecast consist-
ing of nine individual forecasts based on a computation-
ally lightweight model does not require the computing re-
sources of several nodes in the cloud. However, the ad-
vantage of using the SIMaaS-API instead of executing the
FMU locally quickly becomes visible when considering
that realistic real-world users for such ensemble forecasts
would be utility companies responsible for stabilizing a
section of the electricity grid. In this scenario, ensemble
forecasts for all renewable energy sources in the relevant
grid section would be required as part of flexibility man-
agement processes, likely to be re-calculated several times
per day.

4.2 Component Selection Using a Genetic Al-
gorithm

The second example for demonstration purposes is the
search for an optimal set of values for the components of a
temperature-dependent electrical circuit as shown in Fig-
ure 2, given the desired voltage at p2 over the temperature
range from −10 °C to 60 °C.

Figure 2. Thermistor network.

Suppose the resistors can each take one of the 70 values
of the E24-series between 300 Ω and 220 kΩ and suppose
there are nine possible values for both the resistance at
reference temperature and the temperature coefficient B
of the two thermistors. Then, there are 704 ∗92 ∗92 =

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

398 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

157529610000 different solutions, each resulting in a dif-
ferent voltage over temperature-curve. A rough estimate,
assuming a Central Processing Unit (CPU) time of 0.05 s
per simulation, puts the total time for testing every permu-
tation at around 250 years.

One possible alternative, suggested in an article on
edn.com (EDN 2008), is to use a genetic algorithm (GA)21

to search for a good solution without trying every permu-
tation. Each possible combination of component values is
seen as an individual. The fitness of an individual is eval-
uated by how close the voltage at p2 matches the desired
voltage over the relevant temperature range, for example
in terms of the Root Mean Square Error (RMSE). Because
the determination of the fitness of an individual is indepen-
dent of other individuals, the fitness values for an entire
generation can be evaluated in parallel. After the fitness
of each individual in a population is determined, the best
results are recorded and the next generation is created by
cross-over and mutation (subject to user-defined probabil-
ities). The algorithm is terminated by setting a threshold
for either an acceptable fitness value or a fixed number of
generations.

This example represents a situation where different
model instances are simulated with the same input. For
finding good solutions, a few hundred simulations are
likely required, many of which can be executed in par-
allel given a sufficiently high number of worker instances.
Using a SIMaaS-instance deployed on a clustered elastic
platform instead of running the GA locally becomes really
beneficial iff the number of individuals in a generation is
higher than the number of CPUs available locally.

Because the example is merely intended to serve as a
proof of concept, no detailed analysis of the performance
was carried out – neither with respect to the speed-up
achieved, nor with respect to the overhead introduced by
the additional software layers and the exchange of data
over the network.

For implementation of the GA, the Distributed Evolution-
ary Algorithms in Python (DEAP) framework (Fortin et al.
2012) was used. A tiny Modelica package containing the
necessary models and an example ready to be simulated in
Dymola is included in the simaas-demo-repository.

5 Discussion
While the use cases described in the previous section illus-
trate that there are scenarios for which the developed soft-
ware works and has benefits over other approaches, there
are some conceptual limitations inherent to its design that
should be discussed. Before summarizing these issues, we
outline related work within the Modelica community.

5.1 Related Work
The concept of MSaaS has been discussed extensively in
the literature. We refer the interested reader to key publi-
cations (Cayirci 2013; MSG-131 2015; Hannay, Berg, et

21See Pelikan (2011) for an excellent introduction.

al. 2020; Shahin, Babar, and Chauhan 2020; Kratzke and
Siegfried 2020) and focus this section on previous work
within the Modelica community.

Tiller (2014) motivates the use of web technologies for
the design of engineering tools in general, detailing po-
tential benefits for non-expert users. The FMQ platform
and its HTML5-based interface for human users are out-
lined; the use of a hypermedia API as the backend of the
FMQ platform is hinted at, but no details are given. The
FMQ platform also uses FMUs as an executable form of a
single model to be simulated using a single solver. It is a
proprietary product of Xogeny, Inc.

In their 2017 presentation of the
modelica.university platform, Tiller and Winkler
motivate the high-level requirements for and architecture
of the Aperion platform by Xogeny, Inc (presumably
the successor of the FMQ platform) in addition to present-
ing the modelica.university website itself. With
regard to concepts and the chosen technology stack, the
Aperion platform seems to be very similar to the work
presented in this paper, but it is a commercial product
and specifics are consequently not available publicly.
With regard to the use of truly RESTful technologies
such as hypermedia representations and generic software
clients that use them, Aperion seems to already have
realized some of our plans for further work as outlined in
subsection 5.2.

Bittner, Oelsner, and Neidhold (2015) outline work on
a web application based on FMI 1.0 for co-simulation.
Compared at a high level, the application’s architecture is
similar to what is presented in section 3 as there is also at
least a conceptual separation between API, storage, sim-
ulation components and front-end. The provided user in-
terface (UI) directly supports ranges for setting parameter
values and seems to be intended for use by engineers. De-
tails or source code are not readily available.

FMIGo!22 is a set of software tools for executing sev-
eral coupled FMUs over the internet. It is described in a
paper by Lacoursière and Härdin (2017) and available23

under the MIT license. In contrast to the concepts of the
SIMaaS-implementation explained in section 2 and the de-
sign concepts of the FMQ platform, FMIGo! choses not
to make use of the design principles of the web (REST)
and instead expose the capabilites of FMI withouth fur-
ther abstraction through the use of (low-level) message
passing protocols. Lacking the simplification of seeing
an FMU as nothing but an executable form of one model
with one solver, FMIGo! allows/demands chosing master
algorithms for co-simulation and exposes necessary nu-
merical details; but this clearly makes it a specialized tool
for simulation experts.

Elmqvist, Malmheden, and Andreasson (2019) present
the Web Architecture for Modeling and Simulation
(WAMS) in terms of several use cases, the correspond-

22https://www.fmigo.net
23https://mimmi.math.umu.se/cosimulation/fmigo

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

399

ing web application aimed at engineers with training in
M&S and a very brief overview of its software architec-
ture. FMUs are used for simulation using PyFMI and it is
claimed that a REST API is used for exposing capabilities
of the server, but the extent to which the REST constraints
are realized remains unclear. It appears that WAMS is an
internal project of Modelon AB.

Since version 0.2.25 (released in November 2020),
FMPy features the possibility to expose the UI of FMPy
including the ability to simulate FMUs as a web applica-
tion. Consequently, this approach falls in line with the
WAMS web application, also intended to be used by en-
gineers, and thus caters to use cases different to those that
motivate the work presented in this paper.

5.2 Results, Limitations and Outlook
The SIMaaS-implementation presented in section 3 has
several desirable characteristics. First, its design reflects
best practice and the state of the art for creating SaaS as
identified by Kratzke and Siegfried (2020). Second, the
decision to decouple API and workers, only linking them
by the internal representation of tasks in the task queue,
means that the implementation of how models are simu-
lated can be changed without having to change the pub-
lic service interface. This includes adding support for
FMUs for model exchange or for non-FMI-based models
as long as they can be expressed in terms of the resources
exposed by the API (models, model instances, simula-
tions, simulation results). For example, a user might have
legacy models written in Matlab or scientific computing
routines written in a general-purpose programming lan-
guage which cannot be exported as a FMU. Third, the
chosen software stack consists of proven and widely used
open-source components.

By deploying it on Kubernetes as an example of a clus-
tered elastic platform, horizontal scalability of the workers
was shown. Graceful handling of the addition or removal
of worker instances is ensured by using Celery as the task
queue implementation. Implementing automatic scaling
of worker instances in response to demand is only a ques-
tion of properly configuring Kubernetes resources.

From our point of view, the additional restrictions posed
on the FMUs to be supported by the software (subsec-
tion 3.2) are reasonable.

Using FMUs for co-simulation according to version 2.0
of the FMI standard allows using the proven solvers pro-
vided by native M&S-environments such as Dymola, but
the workaround for avoiding systematic errors described
in subsection 3.3 is problematic because it is not compli-
ant with the FMI standard and because it requires main-
tenance work to synchronize the fork of FMPy with up-
stream development. Therefore, support for FMUs for
model exchange and/or the upcoming FMI 3.0 standard
should replace the workaround in the future.

As the presented software is predominantly research
software and not a commercial product, some features
that are expected of the latter are not implemented yet.

For example, there is currently no access control (any
user that can reach the API can send all requests); but
it would be straightforward both from a conceptual and
practical persepective to add this, most likely using JSON
Web Tokens (JWTs). The pay-as-you-go cost model is not
currently supported, but it represents mostly an organiza-
tional and operational aspect that most likely should be
implemented using sidecar containers that form a service
mesh (Morgan 2019) and not as part of the application
code, anyway.

There exists neither an explicit threat model nor a sub-
sequent detailed consideration of security aspects. How-
ever, basic measures against misuse were implemented.
First, all requests by users are validated against the
schemata defined in the OAS. These schemata are as spe-
cific as possible, including the use of regular expressions
for string fields. Second, the process inside a container
is run as a non-privileged user to prevent easy privilege
escalation.

In contrast to the aforementioned aspects, which are of
practical nature, there also exist conceptual limitations
that keep the SIMaaS-implementation from reaching its
full potential. The first limitation is that clients are re-
quired to poll resources in order to find out about changes
of their state. This leads to potentially many requests that
would not have been necessary and raises the question
of how to set polling frequencies and eventual timeouts.
Moreover, the answer to this question depends on both the
current server load and the amount of workers available
which cannot be known a priori. It would be possible to
instruct the service to notify the consumer as soon as the
resource state changes, but this would mean that the con-
sumer has to become its own server for accepting such
notifications.

The second (and more important) limitation concerns
the required use of a static service interface descrip-
tion against which clients hardcode requests, meaning
that client code will break in case the service interface
changes. Dynamically re-generating the service interface
description to account for the different inputs, outputs and
parameters of models can, from an academic perspective,
only be seen as a workaround because a static service
interface description should not be necessary in the first
place. Instead, clients should construct their requests at
run time, based on information present in the representa-
tion received (starting at the root path of the service). This
requires an alternative format for resource representation,
for example the JSON-based Serialization for Linked Data
(JSON-LD), because JSON lacks support for natively en-
coding hyperlinks (Kellogg, Champin, and Longley 2020,
section 3) as well as the ability to explicitly encode the
semantics of data.

Ideally, software clients should be enabled to reason about
the options for advancing the application state at each step
of the interaction in order to make informed decisions
about which state transitions allow them to reach their goal

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

400 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

(a desired resource state) by following links; just like hu-
mans navigate websites. The technical feasibility of this
has been shown by Verborgh, Arndt, et al. (2017). Realiz-
ing such services opens exciting opportunities for building
generic clients that can achieve a class of similar, yet dis-
tinct objectives while being robust against changes of the
service interface as requests are assembled at run time and
not constructed at design time.

We are actively working towards realizing this vision
for the presented SIMaaS-implementation.

6 Conclusion
Previous work within the Modelica community to provide
M&S capabilities as a service can be categorized in three
different directions of work: providing model develop-
ment and/or simulation environments as web applications
in the browser for use by engineers; providing tools for
distributed co-simulation; and transferring M&S function-
ality to the web by translating them to the architectural
style REST, hoping to make use of the positive aspects
of the web’s design principles and cloud computing tech-
nology for M&S tooling as well as facilitating the use of
M&S by software agents in a distributed setting.

The SIMaaS-implementation presented in this paper
falls into the last category. It exposes models in the form
of FMUs for co-simulation and the ability to simulate
them as a REST-based HTTP-API that consists of an API
and several worker components which exchange data us-
ing queues. Worker instances can be scaled horizontally
when deployed on an clustered elastic platform such as
Kubernetes.

The design concepts, software architecture and soft-
ware stack are summarized and put into context by out-
lining related work and the achieved characteristics. Two
exemplary use cases are shown. Development continues
with the aim to fully support the HATEOAS principle
by adding a format for resource representations that en-
ables client-side reasoning, and to demonstrate the abili-
ties gained by doing so.

As of this moment, the presented SIMaaS-
implementation represents a functional building block
for SOAs, intended to be used in combination with other
services. The software is available under a permissive
open-source license, readily available for testing.

Acknowledgements
This work was supported by the SINTEG-project “De-
signetz” funded by the German Federal Ministry of Eco-
nomic Affairs and Energy (BMWi) under grant 03SIN224.

The authors would like to thank Lukas Exel and Florian
Wagner for sharing their views on and experience with
providing modelling and simulation as a service, as well
as for their work on early prototypes of the presented soft-
ware.

References
Bittner, Stefan, Olaf Oelsner, and Thomas Neidhold (2015-09-

18). “Using FMI in a cloud-based Web Application for Sys-
tem Simulation”. In: Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-23,
2015. Linköping University Electronic Press. DOI: 10.3384/
ecp15118845.

Cayirci, Erdal (2013-12). “Modeling and simulation as a cloud
service: A survey”. In: 2013 Winter Simulations Conference
(WSC). IEEE. DOI: 10.1109/wsc.2013.6721436.

EDN, ed. (2008-03-19). Genetic algorithm solves thermistor-
network component values. URL: https : / / www. edn . com /
genetic- algorithm- solves- thermistor- network- component-
values (visited on 2021-05-08).

Elmqvist, Hilding, Martin Malmheden, and Johan Andreasson
(2019-02-21). “A Web Architecture for Modeling and Simu-
lation”. In: Proceedings of the 2nd Japanese Modelica Con-
ference Tokyo, Japan, May 17-18, 2018. Linköping Univer-
sity Electronic Press. DOI: 10.3384/ecp18148255.

Fortin, Félix-Antoine et al. (2012-07). “DEAP: Evolutionary Al-
gorithms Made Easy”. In: Journal of Machine Learning Re-
search 13.70, pp. 2171–2175. URL: http: / / jmlr.org/papers/
v13/fortin12a.html.

Hannay, Jo Erskine and Tom van den Berg (2017-10). “The
NATO MSG-136 Reference Architecture for M&S as a Ser-
vice”. In: Proceedings of the NATO modelling and simulation
group symposium on M&S technologies and standards for
enabling alliance interoperability and pervasive M&S Appli-
cations (Lisbon, Portugal, October 19–20, 2017). STO-MP-
MSG-149, p. 3.

Hannay, Jo Erskine, Tom van den Berg, et al. (2020). “Mod-
eling and Simulation as a Service infrastructure capabilities
for discovery, composition and execution of simulation ser-
vices”. In: The Journal of Defense Modeling and Simula-
tion. Applications, Methodology, Technology. DOI: 10.1177/
1548512919896855.

Kellogg, Gregg, Pierre-Antoine Champin, and Dave Lon-
gley (2020-07). JSON-LD 1.1. W3C Recommendation.
https://www.w3.org/TR/2020/REC-json-ld11-20200716/.
W3C.

Kratzke, Nane and Peter-Christian Quint (2017). “Understand-
ing cloud-native applications after 10 years of cloud comput-
ing - A systematic mapping study”. In: Journal of Systems
and Software 126, pp. 1–16. ISSN: 0164-1212. DOI: 10.1016/
j . jss . 2017 . 01 . 001. URL: http : / / www. sciencedirect . com /
science/article/pii/S0164121217300018.

Kratzke, Nane and Robert Siegfried (2020). “Towards cloud-
native simulations – lessons learned from the front-line of
cloud computing”. In: The Journal of Defense Modeling and
Simulation. Applications, Methodology, Technology. DOI: 10.
1177/1548512919895327.

Lacoursière, Claude and Tomas Härdin (2017-07-04). “FMI Go!
A simulation runtime environment with a client server archi-
tecture over multiple protocols”. In: Proceedings of the 12th
International Modelica Conference, Prague, Czech Repub-
lic, May 15-17, 2017. Linköping University Electronic Press.
DOI: 10.3384/ecp17132653.

Mell, Peter and Timothy Grance (2011). The NIST Definition
of Cloud Computing. NIST Special Publication 800-145. Na-
tional Institute of Standards and Technology. DOI: 10.6028/
NIST.SP.800-145. URL: https://www.nist.gov/publications/
nist-definition-cloud-computing.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181393

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

401

Modelica Association (2020-12). Functional Mock-up Interface
for Model Exchange and Co-Simulation Version 2.0.2. Tech.
rep. Linköping: Modelica Association. URL: https : / / fmi -
standard.org.

Morgan, William (2019-11-09). The Service Mesh: What Every
Software Engineer Needs to Know about the World’s Most
Over-Hyped Technology. URL: https : / / buoyant . io / service -
mesh-manifesto (visited on 2021-05-07).

MSG-131, Specialist Team (2015). Modelling and Simulation
as a Service: New Concepts and Service-Oriented Archi-
tectures. Final Report AC/323(MSG-131)TP/608. North At-
lantic Treaty Organization NATO. DOI: 10.14339/STO-TR-
MSG - 131. URL: https : / / www. sto . nato . int / publications /
STO%20Technical%20Reports/STO-TR-MSG-131/$$TR-
MSG-131-ALL.pdf.

OASIS (2006). Reference Model for Service Oriented Architec-
ture 1.0. Tech. rep. URL: http : / /docs .oasis - open .org /soa-
rm/v1.0/.

Pelikan, Martin (2011). “Genetic Algorithms”. In: Wiley En-
cyclopedia of Operations Research and Management Sci-
ence. American Cancer Society. ISBN: 9780470400531. DOI:
10 . 1002 / 9780470400531 . eorms0357. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.
eorms0357. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470400531.eorms0357.

Schmitt, Thomas et al. (2015-09-18). “A Novel Proposal on
how to Parameterize Models in Dymola Utilizing External
Files under Consideration of a Subsequent Model Export
using the Functional Mock-Up Interface”. In: Proceedings
of the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015. Linköping University Elec-
tronic Press. DOI: 10.3384/ecp1511823. URL: https://2015.
international . conference . modelica . org / proceedings / html /
errata /errata_SchmittAndresZieglerDiehl .pdf. Revised ver-
sion.

Shahin, Mojtaba, M. Ali Babar, and Muhammad Aufeef
Chauhan (2020-07-24). “Architectural Design Space for
Modelling and Simulation as a Service: A Review”. In: Jour-
nal of Systems and Software 170, p. 110752. ISSN: 0164-
1212. DOI: 10.1016/j . jss.2020.110752. URL: http:/ /www.
sciencedirect.com/science/article/pii/S0164121220301746.

Stüber, Moritz (2020-12-24). UdSAES/pv-systems: v0.9.0. Ver-
sion 0.9.0. DOI: 10 . 5281 / zenodo . 4392849. URL: https : / /
github.com/UdSAES/pv-systems.

Stüber, Moritz, Lukas Exel, and Georg Frey (2018). “Using
Modelling and Simulation as a Service (MSaaS) for Facil-
itating Flexibility-based Optimal Operation of Distribution
Grids”. In: Proceedings of the 15th International Conference
on Informatics in Control, Automation and Robotics - Volume
2: ICINCO. INSTICC. SciTePress, pp. 613–620. ISBN: 978-
989-758-321-6. DOI: 10.5220/0006899106230630.

Tiller, Michael (2014). “Vehicle Thermal Management – A Case
Study in Web-Based Engineering Analysis”. In: Proceedings
of the 10th International Modelica Conference; March 10-12;
2014; Lund; Sweden. 96. Linköping University Electronic
Press, pp. 1073–1079. DOI: 10.3384/ecp140961073.

Tiller, Michael and Dietmar Winkler (2017-07-04). “model-
ica.university: A Platform for Interactive Modelica Content”.
In: Proceedings of the 12th International Modelica Confer-
ence, Prague, Czech Republic, May 15-17, 2017. Linköping
University Electronic Press, pp. 725–734. DOI: 10 . 3384 /
ecp17132725.

Verborgh, Ruben, Dörthe Arndt, et al. (2017-01). “The Prag-
matic Proof: Hypermedia API Composition and Execution”.
In: Theory and Practice of Logic Programming 17.1, pp. 1–
48. DOI: 10.1017/S1471068416000016. URL: http : / /arxiv.
org/pdf/1512.07780v1.pdf.

Verborgh, Ruben, Seth van Hooland, et al. (2015). “The fallacy
of the multi-API culture: Conceptual and practical benefits
of Representational State Transfer (REST)”. In: Journal of
Documentation 71.2, pp. 233–252. DOI: 10 . 1108 / JD - 07 -
2013-0098.

A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI

402 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181393

Python Framework for Wind Turbines
Enabling Test Automation of MoWiT
Johannes Fricke1 Marcus Wiens1 Niklas Requate1

 Mareike Leimeister1
1Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems,

Germany,
{johannes.fricke, marcus.wiens, niklas.requate,

mareike.leimeister}@iwes.fraunhofer.de

Abstract
The development and simulation of engineering systems,
especially wind turbines, is becoming increasingly
complex and elaborate. At the Fraunhofer Institute for
Wind Energy Systems (IWES), the in-house tool MoWiT
(Modelica library for Wind Turbines) is being developed
for load simulation. MoWiT is based on the modeling
language Modelica and is constantly evolving. It is, thus,
also becoming more and more enhanced. This results in
an increased need for automation for the complex
simulation setups and a need for quality assurance of
simulation code used. Test automation is used to always
ensure the quality of the code. The automation of various
simulations and the test automation for the load simulation
code are provided by PyWiT (Python Framework for
Wind Turbines), which will be presented here in more
detail.

Keywords Modelica, MoWiT, Python, Wind Turbines,
Test Automation

1 Introduction
To represent different operating conditions of wind
turbine systems, hundreds of input parameters are used for
the various load simulations. Additionally, the simulation
models for realistic estimation of loads and their influence
on the wind turbine are getting more and more complex.
This paper presents the Python Framework for Wind
Turbines (PyWiT), which is developed at the Fraunhofer
Institute for Wind Energy Systems (IWES). PyWiT
further automates the load simulations written in Modelica
using the Modelica Library for Wind Turbines (MoWiT)
– also developed at Fraunhofer IWES. In addition, PyWiT
is used for test automation of the load simulations to be
able to automatically detect unsuitable or incorrectly
implemented models and, thus, contribute to the quality
control of MoWiT in an automated manner. The procedure
for such a test automation is described in this paper and
explained based on some examples.

1.1 Motivation
In the load simulation of wind turbines, numerous cases
of environmental conditions are simulated in conjunction
with different operating conditions of the wind turbines.
In the design of wind turbines, for example, these include
the so-called "design load cases", which comprise several
hundred to thousands of simulations for a single wind
turbine. In addition to normal operation under various
wind conditions (speeds, profiles over the height, inclined
flows, turbulence) and – if offshore – also wave and
current conditions, these also include fault load cases in
which the turbine shuts down under certain conditions and
extreme weather conditions, such as gusts, extreme waves,
and strong currents. Furthermore, to reduce dependence
on chance, all simulations are run with multiple seeds for
wind and waves. The combination of all these parameters
results in a high number of simulations, which can only be
performed with reasonable effort through automation.

All the systems in MoWiT interact with each other,
which means that, when the code is changed in one model
in MoWiT, there can be changes in the results for many or
all the system parts at the same time.

1.2 Problem Description
As explained previously numerous combinations of input
parameters (e.g., wind speed, angle of attack, seed for
creating the wind fields, turbulence, etc.) are used in the
load simulation of wind turbines. This results in a high
three- or four-digit number of simulations for a single
turbine. The combination of all these parameters by hand
is therefore only possible with great effort and automation,
with respect to both combinatorics and the execution of
the simulations, as well as further processing of the
simulation results (error checking, sorting, filtering,
further evaluations) is inevitable.

Due to the strong coupling within MoWiT, even small
changes or code optimizations, as well as new
implementations of models, can quickly lead to different
results in many parts of the entire wind energy system
model. To prevent unwanted changes, e.g., due to
unsuitable models or incorrect implementation, tests are
implemented that automatically compare reference results

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

403

of the simulations with results of the current
implementation. Thereby, the effects of changes in the
code in different subsystems of the wind turbine, as well
as in the different output parameters (forces, moments,
generator power, etc.) can be detected and evaluated.

This paper introduces the Python Framework for Wind
Turbines PyWiT and explains its structure in more detail.
It is described how the program is structured, as well as
how and for which practical applications, in particular for
the test automation of MoWiT, it is used.

2 Material and Methods
In this section the used materials and methods are
presented. After a short introduction to MoWiT, on which
the framework PyWiT is based, PyWiT is explained in
more detail. Beside the rough program flow, the different
modular designed functions are described.

2.1 Modelica Library for Wind Turbines
MoWiT, which is available free of charge for academic
use, is developed in-house at Fraunhofer IWES as a
completely object-oriented simulation tool for fully
coupled aero-hydro-servo-elastic simulations of wind
turbines on- and offshore, with bottom-fixed or even
floating substructures. It is written in the open-source
object-oriented and equation-based modeling language
Modelica, which can be used for various engineering
systems to solve multi-physics problems. Detailed
information on the development of MoWiT, as well as on
the structure and components of this library can be found
in the literature (Leimeister et al.2020; Leimeister and
Thomas. 2017; Thomas et al. 2014; Strobel et al. 2011).

2.2 Python Framework for Wind Turbines
PyWiT, developed in-house at Fraunhofer IWES, is a
program coded in Python to manage simulations of wind
energy systems modeled in MoWiT. These simulations
are executed in Dymola (Dymola2021). The current
PyWiT version consists of six modules:

• Input Module,

• Experiment Generator (incl. Design of Experiments),

• Package Creator,

• Wind Field Generator,

• Simulation Manager, and

• Post-processing.

The single modules are organized in three main groups
“Input Generation”, “Simulation Manager”, and “Post-
processing”, as it is shown in Figure 1 by the simplified
activity diagram. It shows the possible processing paths
depending on the input point and decisions (indicated by
the diamond symbols) for a single input file. A simplified
presentation for one input file was chosen since the
additional loops for multiple files are unnecessary for the
understanding of the structure. The three main groups
represent the code structure and the responsibility of the
specific code. Additionally, the diagram shows the
intersection between the main groups. The single groups
are explained in more detail in the following subsections.

Figure 1 Simplified activity diagram for PyWiT

Design of
Experiments

Derived
Template

Custom
Template

Setup
Translation

Setup
Simulation

Post-
Processing

Setup Wind
Generator

Input YAML

Experiment
Generator

Serial
Processing

Parallel
Processing

Input Module Simulation Manager Post-Processing

Experiment
Group

Setup
Package

Simulation
Results

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

404 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

Input Manager
PyWiT is controlled by YAML files, which define a
structured format. A structured input file, which contains
all input parameters necessary for the simulations, can be
created for the user without programming knowledge.
PyWiT is started by specifying the input file(s) and the
available processors. The input files are processed by the
Experiment Generator into experiment groups, which are
handled by the Simulation Manager. The Experiment
Generator is responsible for sorting the data from the input
file and parameterizing the input objects. Each input file
results into one experiment group, which defines one set
of simulations for a single model. A single simulation is
represented by a data object, which contains all necessary
information for independent simulation. Furthermore,
there are three different types of input for the Input
manager according to Figure 1. The usual YAML input
specifies a fixed number of simulations by varying
parameter lists. A single simulation is defined based on the
common index for all lists, which leads to the requirement
of equal length for all varying parameter lists. An example
for the varying parameter lists is given in Listing 1.

Listing 1. Input Parameters
windSpeed: [9, 11, 13]

yawAngle: [-8, 0, 8]

randomSeed: [1, 2, 3]

This would result in three simulations, where the first
configuration is given by the first element of every list.
Derived templates offer simulation setups for, e.g., wind
speed ranges or other commonly simulated cases.

Every input file has the option of using the Design of
Experiments module. The Design of Experiments is used
to expand the input files by creating the varying parameter
lists from the combination of small parameter lists to
obtain a large number of simulations. Currently, the
Design of Experiments is based on the pyDOE2 library
(PyPi.org2021) and only combinatorial designs are
considered. The module offers designs, which are
commonly used in wind turbine simulations. A simple
example is given in Listing 2.

Listing 2. List created by Design of Experiments
windSpeed: [9, 9, 9, 11, 11, 11, 13, 13, 13]

yawAngle: [-8, 0, 8, -8, 0, 8, -8, 0, 8]

randomSeed: [1, 2, 3, 1, 2, 3, 1, 2, 3]

The parameter lists for wind speed and yaw angle from
Listing 1 are combined in a “full factorial” design, which
is the combination of each list elements of the first list with
all the other lists elements. This leads to nine simulations.
Additionally, using a “copy-stretch” design, the random
seed variable list from Listing 1 has been copied to the
appropriate length. Initially, the random seed list has three

elements and is therefore appended twice to itself to reach
a length of nine.

Simulation Manager
The Simulation Manager takes care of the four different
stages of processing for the experiment groups:

• Create Package,

• Translation,

• Generate Wind Fields,

• Simulation,

The processing of the experiment groups is separated into
two steps. First, the Simulation Manager splits all
Experiment Groups according to their runtime flags, so
that each of the four stages described above are performed
one after the other. The stages Wind Field Generation,
Translation, and Simulation can be performed in parallel.
The Package Creation is not parallelized, since it needs
only a computing time in the range of milliseconds.

It is possible to execute these steps independently of
each other if the prerequisites for the specific step are
already fulfilled. For example, it is possible to perform the
Translation step (possibly with the following steps)
without creating a package, if a package already exists. It
is also possible to create only wind fields if they are to be
used for other purposes than the simulation with PyWiT.
These wind fields are created by automatically writing
input files for TurbSim (Bonnie J. Jonkman2009), which
generates wind fields from these input files.

Furthermore, the step for creating packages implies that
the dependencies of all modules containing the physical
relationships of a wind turbine are determined in MoWiT
and all functions necessary for the simulation of a
particular model are copied together so that their
dependency is maintained. This package can then be
translated with Dymola, i.e., the physical
interdependencies are compiled into C code and result in
a translated model. This model already contains all the
necessary input parameters, which, however, can be
replaced by means of PyWiT to run different simulations
based on the same model.

Subsequently, the physical equations are solved
iteratively by Dymola. The results of each simulation are
MAT files, which contain time series for all previously
defined output parameters, as well as log files, which
contain information about set parameters and possible
errors in the simulation.

In addition to common time-series simulations, it is
also possible to perform modal analyses and subsequently
create Campbell diagrams.

Post-processing
The post-processing is constantly extended and includes
at the current level:

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

405

• Sorting, moving, and renaming of simulation results,

• Conversion of simulation results to CSV or NETCDF
data format,

• Clustering and averaging of specific time ranges for
entry into an Excel spreadsheet for verification of
results,

• Creating plots of different time series, probability
density functions (PDFs), and power spectral densities
(PSDs),

• Comparison if two time series are identical, and

• Fast Fourier transformations of different time series.

All Post-Processing modules described herein can be
executed in connection with or independently of
simulations. Furthermore, all these modules run
independently as a stand-alone version and can be used for
already existing files or new simulation results.

Test Automation
Through the various methods presented in this section,
PyWiT can be used for test automation of MoWiT in
addition to automatically performing simulations for
further development of wind turbines. The nature of the
input through YAML files allows the setup of different
tests of the models created in MoWiT, for which a package
is automatically generated, compiled, and simulated.
Afterwards, the different Post-processing modules can be
used to check the results of the test simulations and
compare them with reference results if necessary. For
example, it is possible to store a simulation file that has
been validated as a reference in the MoWiT structure and
to define this as a reference in the input file. The test model
is then simulated and, first, the log files of the test
simulation are checked for errors. Depending on the test,
the time series of the test simulation can then be compared
with the time series of the reference simulation. It is also
possible to create different plots or statistical data based
on the comparison. The comparison between the reference
results and the new simulation results are generated
automatically, but the decision whether changes to the
code must be made based on these comparisons is
currently the responsibility of an experienced engineer.

The test automation can either be started manually,
which is useful, for example, when a new model is written
in MoWiT before it is merged from the develop branch
into the master branch. In addition, it is possible to run
certain tests automatically on a regular basis (under
Windows, for example, through the task scheduler) to
obtain regular information about the quality of MoWiT.

3 Results
As described in the previous section, PyWiT offers
extensive possibilities for automating simulations and

various tasks around these simulations. Through the
Design of Experiments, it is possible to create various
combinations of input parameters by minimal user input
and to run simulations with them. Different Post-
processing modules can be used to evaluate the
simulations on the one hand and to test the MoWiT code
on the other hand. Thus, PyWiT extends the existing
MoWiT tool and automates otherwise labor-intensive and
error-prone tasks, leading to higher quality results and
reduction of working time and, hence, costs in wind
turbine development.

An example of an evaluation from test automation is
shown in Figure 2.

Figure 2 Comparison of the moment around the x-axis on a
blade of a reference model and a model with shifted
aerodynamic axis in the blade

Here, two models with identical input parameters were
compared. They differ in the position of the aerodynamic
axis in the blades of the wind turbine, which has an
influence on almost all result variables. As an example,
the moment in the root of a blade is shown here. In this
case, the blue line is considered the reference model,
which means that those results come from a valid
simulation. The orange line is compared to that valid
simulation, to see if the code still works reasonable. The
plot is created automatically, while the interpretation of
the results is made by hand. The mean values of the two
values only have small differences, but the changed
aerodynamic axis leads to higher-frequency oscillations
that are superimposed on the reference signal. Such a
figure, or one like it, can be evaluated by an experienced
engineer to determine if there are errors in the code and
where they may lie.

4 Discussion
The presented PyWiT framework eases the setup of
various simulation studies. Adjustments of simulation

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

406 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

setups are simplified and sped up by taking advantage of
object-oriented programming methods for the definition
of simulation cases. This is especially useful in the setup
of simulation series according to standards, e.g.,
(IEC2019; DNV GL. 2016). Along with the specific
standard, the simulation series can be defined by derived
YAML templates from class instances, which are
initialized by specific wind turbine parameters. Common
variable definitions are distributed to different simulation
cases by class inheritance. Specific wind conditions can
be implemented as single classes and used as modules in
the simulation series class.

Furthermore, high flexibility can be maintained by
implementation in individual packages. By the separation
of Experiment Generator and Simulation Manager the
coupling between code blocks is reduced. This makes
code adjustments more efficient. The Experiment
Generator produces single experiments, which can be
analyzed and thereby the errors in the setup are reduced.
An example would be the settings for wind conditions like
the wind shear. They can be specified for the generated
wind fields or directly in MoWiT but should be only set
in one of these options. The Design of Experiments for
this framework is carried out often for variables with more
than two levels. Since a full factorial design leads to a high
number of simulations, a combinatorial design offers a
possibility to reduce the simulation amount. However, a
combinatorial design could lead to bias in a simulation
series, when correlating influences are combined in the
design.

Implementation of a simulation framework can be a
complicated task. Our example shows one way of
structuring the required steps from the simulation
definition to the execution. A guideline for other
developers/researchers would be to develop code, which
can be changed without much effort. The reduction of
coupling in the code, aim for high flexibility, and coding
principles like DRY (Wilson et al.2014) are helping to
achieve that goal.

5 Outlook
PyWiT is already at a stage of development where it can
take over many tasks automatically; however, it is still in
constant further development. In addition to various
modules for Post-processing, also for the extension of test
automation, the applications Load Simulation
Verification, Distributed Computing with HTCondor, and
Optimization, which will be explained in the following,
are already ongoing or planned. At the end, further
planned advancements are briefly discussed.

5.1 Load Simulation Verification
Load Simulation Verification is a methodology, applied at
Fraunhofer IWES (Huhn and Popko2020), for comparing
different load simulation codes, such as FAST (Jason
Jonkman2018; DNV GL, 2018) or Bladed (DNV GL,

2018; DNV GL, 2018), etc.), with MoWiT. In addition to
various plots with time series, PSDs, and PDFs, the focus
here is on an XLSX file in which various sensors are
available for different input parameters. This XLSX file is
reviewed and evaluated by an experienced engineer and
any deviations in the simulations are evaluated.
An automatic execution of the simulations in MoWiT for
the verification and a subsequent creation of the different
plots, as well as the filling of the XLSX file, is in the alpha
version and is currently being tested in different projects.

5.2 Distributed Computing with HTCondor
In order to efficiently use computing resources, which are
often distributed over several computers, a distributed
computing system has been developed at Fraunhofer
IWES based on the open-source software HTCondor
(HTCondor2021). This system distributes the simulations
to the available computing resources and manages the
simulations that are entered into the queue system by
different users. The already tested system can easily be
extended by further computing resources. An integration
of the system for distributed simulation in PyWiT is
currently under development.

5.3 Optimization
The characteristic of PyWiT of automatically executing
tasks facilitates its usage for mathematical optimization
for a broad range of problems. One can make use of the
various existing open-source optimization libraries in
Python. Optimizing wind turbine parameters was already
possible and extensively used in a previous version of the
framework (Leimeister. 2019; Leimeister et al.2021).
These range from the design optimization of the entire
wind energy system or specific components, such as the
floating support structure, to controller tuning
optimization tasks or further applications. The objectives
are mostly related to cost minimization, load reduction, or
performance improvement (Leimeister et al.2020;
Leimeister et al.2020), but can also address system or
component scaling (Leimeister et al. 2019), as well as
reliability-based design optimization targets (Leimeister
and Kolios2021).

A major advantage of PyWiT for the further use for
solving optimization problems is the modular design.
Various simulations with different parameters used as
optimization parameters can be combined with various
objective functions and constraints which are defined in
the Post-processing module. Therefore, holistic and multi-
disciplinary applications are possible through
combination for realizing any kind of optimization
problem, e.g., multi-objective optimization of different
components or consideration of fatigue and extreme loads.

As for each optimization problem and corresponding
considered system certain optimization algorithms are
more suitable than others, the large number of different
optimization platforms, tools, and algorithms must be

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

407

exploited when aiming for solving diverse optimization
problems. However, each optimization algorithm has
certain parameters and options to be specified. Therefore,
a modular and standardized interface to different Python
optimization libraries is currently developed at Fraunhofer
IWES. It allows the easy use of different optimizers by
utilizing the same input definitions for the optimization
problem, comprising optimization parameters, objectives,
and constraints. PyWiT will be connected to the interface
in future.

5.4 Further Planned Advancements
Further advancements will include the fully automated
creation of different design load cases in a separate
module. The module will make use of the Design of
Experience module and contain the required
parametrization of turbine models and simulation setup.
This will replace the current template-based approach.
Another step includes further implementations for Post-
processing (DNV GL, 2018), which partially already exist
in separate tools. These comprise, among others, fatigue
load evaluation, using Rainflow Counting and Miner’s
rule, as well as other load evaluation methods.

6 Conclusions
In this paper, the Python Framework for Wind Turbines
PyWiT developed at Fraunhofer IWES is described. It was
shown that PyWiT already automates many tasks around
the simulation of wind turbines and, thus, makes the
development of wind turbines faster and cheaper. Besides
the automated input of many parameters by the Design of
Experiments, PyWiT can also be used for test automation
of the simulation code MoWiT to guarantee the quality of
the code. PyWiT is already used for many tasks at
Fraunhofer IWES, including load verification, but is under
constant development, especially in Post-processing.

References
Bonnie J. Jonkman (2009) “Turbsim User's Guide.”

Technical Report. National Renewable Energy
Laboratory.

DNV GL (2016-10) Loads and Site Conditions for Wind
Turbines (Standard DNVGL-ST-0437). November.
DNV GL AS, www.dnvgl.com/. Accessed 9 Oct.
2018.

--- (2018-01) Bladed Theory Manual: Version 4.9. 1 Jan.
2018.

--- (2018-01) Bladed User Manual: Version 4.9. 1 Jan.
2018.

Dymola: (Dynamic Modeling Laboratory) (2021).
Dassault Systèmes, 2021. Accessed 16 Apr. 2021.

HTCondor: High Throughput Computing (2021).
University of Wisconsin, Madison, USA, 2021.
Accessed 16 Apr. 2021.

Huhn, Matthias L., and Wojciech Popko (2020) “Best
Practice for Verification of Wind Turbine Numerical
Models.” Journal of Physics: Conference Series, vol.
1618, p. 52026. doi:10.1088/1742-
6596/1618/5/052026.

IEC (2019-02) Wind Energy Generation Systems - Part 1:
Design Requirements (International Standard IEC
61400-1:2019-02). 4.0th ed. International
Electrotechnical Commission. International Standard.

Jason Jonkman (2018-01) NWTC Information Portal
(FAST). 1 Jan. 2018, nwtc.nrel.gov/FAST. Accessed
21 Apr. 2021.

Leimeister, Mareike (2019-03) “Python-Modelica
Framework for Automated Simulation and
Optimization.” Proceedings of the 13th International
Modelica Conference, Regensburg, Germany, March
4–6, 2019, March 4-6, 2019, Regensburg, Germany,
The 13th International Modelica Conference,
Regensburg, Germany, March 4–6, 2019. Linköing
University Electronic Press, 2019pp. 51–58.
Linköping Electronic Conference Proceedings.

Leimeister, Mareike, et al. (2020) A Fully Integrated
Optimization Framework for Designing a Complex
Geometry Offshore Wind Turbine Spar-Type Floating
Support Structure.

Leimeister, Mareike, and Athanasios Kolios (2021)
“Reliability-Based Design Optimization of a Spar-
Type Floating Offshore Wind Turbine Support
Structure.” Reliability Engineering & System Safety,
vol. Document 32009L0028, no. 4, p. 107666.
doi:10.1016/j.ress.2021.107666.

Leimeister, Mareike, Athanasios Kolios, and Maurizio
Collu (2020) “Development and Verification of an
Aero-Hydro-Servo-Elastic Coupled Model of
Dynamics for FOWT, Based on the MoWiT Library.”
Energies, vol. 13, no. 8, p. 1974.
doi:10.3390/en13081974.

--- (2021) “Development of a Framework for Wind
Turbine Design and Optimization.” Modelling, vol. 2,
no. 1, pp. 105–28. doi:10.3390/modelling2010006.

Leimeister, Mareike, Athanasios Kolios, and Maurizio
Collu, and Philipp Thomas (2019-06) “Larger MW-
Class Floater Designs Without Upscaling? A Direct
Optimization Approach.” ASME 2019 38th
International Conference on Ocean, Offshore and
Arctic Engineering: Volume 1: Offshore Technology;
Offshore Geotechnics, June 9-14, 2019, Glasgow,
Scotland, UK, ASME 2019 38th International
Conference on Ocean, Offshore and Arctic
Engineering. American Society of Mechanical
Engineers, 2019.

--- (2020) “Design Optimization of the OC3 Phase IV
Floating Spar-Buoy, Based on Global Limit States.”
Ocean Engineering, vol. 202, no. 1, p. 107186.
doi:10.1016/j.oceaneng.2020.107186.

Leimeister, Mareike, and Philipp Thomas (2017-05) “The
OneWind Modelica Library for Floating Offshore

Python Framework for Wind Turbines Enabling Test Automation of MoWiT

408 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181403

Wind Turbine Simulations with Flexible Structures.”
Proceedings of the 12th International Modelica
Conference, Prague, Czech Republic, May 15-17,
2017, May 15-16, 2017, Prague, Czech Republic, The
12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017. Linköping
University Electronic Press, 2017pp. 633–42.
Linköping Electronic Conference Proceedings.

PyDOE2 1.3.0 (2021-04) PyPi.org. 1 Jan. 2021, pypi.org/
project/pyDOE2/. Accessed 20 Apr. 2021.

Strobel, M., et al. (2011-03) “The OnWind Modelica
Library for OffshoreWind Turbines - Implementation
and First Results.” Proceedings from the 8th
International Modelica Conference, Technical
Univeristy, Dresden, Germany, March 20-22, 2011,
March 20-22, 2011, Dresden, Germany, The 8th
International Modelica Conference, Technical
Univeristy, Dresden, Germany, March 20-22, 2011.
Linköping University Electronic Press, 2011pp. 603–
09. Linköping Electronic Conference Proceedings.

Thomas, Philipp, et al. (2014-03) “The OneWind
Modelica Library for Wind Turbine Simulation with
Flexible Structure - Modal Reduction Method in
Modelica.” Proceedings of the 10th International
Modelica Conference, Lund, Sweden, March 10-12,
2014, March 10-12, 2014, Lund, Sweden, the 10th
International Modelica Conference, Lund, Sweden,
March 10-12, 2014. Linköping University Electronic
Press, 2014pp. 939–48. Linköping Electronic
Conference Proceedings.

Wilson, Greg, et al. (2014) “Best Practices for Scientific
Computing.” PLoS biology, vol. 12, no. 1, e1001745.
Guidelines for effective coding. Write programs for
people, not computers. Let the computer do the work.
Make incremental changes. Don’t repeat yourself (or
others). Plan for mistakes. Optimize software only
after it works correctly. Document design and
purpose, not mechanics. Collaborate.,
doi:10.1371/journal.pbio.1001745.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181403

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

409

410 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Graph-Based Meta-Data Model for DevOps in
Simulation-Driven Development and Generation of DCP

Configurations

Stefan H. Reiterer1 Clemens Schiffer1

1Department E, Virtual Vehicle Research, {stefan.reiterer,clemens.schiffer}@v2c2.at

Abstract
To improve the quality of model-based development and
to reduce testing effort DevOps practices gain more and
more importance. However, most system engineers are
not DevOps specialists and there are a lot of manual steps
involved when writing build pipelines and configurations
of simulations. For this purpose, an abstract graph-based
meta-data model is proposed. This allows auto-generation
of scenario descriptions for the DCP standard and code
for the build server where the simulation is set up and
executed. A simple use case is described as an example
of how this could be applied in practice. Furthermore, a
Python implementation of a DCP master and a simple FMI
to DCP wrapper are presented in this work.
Keywords: Continuous Integration, DevOps, MBSE,
NoSQL Graph Data Bases, DCP, SysML, UML, SSP

1 Introduction
To tackle the growing complexity of software on elec-
tronic control units (ECUs) in cars or co-simulation of
physical phenomena of different parts of the vehicle the
use of practices from software development is on the rise.
Especially DevOps plays an important role. According
to Bass, Weber, and Zhu (2015) DevOps is a set of prac-
tices intended to reduce the time between committing a
change to a system and the change being placed into pro-
duction while ensuring high quality.

However, while DevOps is well established in software
development there remain a few challenges when simula-
tions come into play. Simulations are often very complex
and need a lot of expert knowledge from other fields like
mechanical or electrical engineering. Thus, there is a need
to provide frameworks which need only little knowledge
of DevOps tools like build servers to enable the applica-
tion of proper development practices.

Furthermore, when performing model-based engineer-
ing there may be several components available from pre-
vious or parallel projects. Thus, it would be convenient
to integrate them in the current workflow and test the sys-
tem in several variations (models, versions, or different
parameters). Hence, it would be more efficient to allow
automatic setup of existing artifacts and pipelines from an
abstract description provided in UML, SysML or the SSP

standard and then generate the necessary simulation setup
from that description, at least in a semi-automatic fashion.
For this, the Distributed Co-Simulation Protocol (DCP)
standard was chosen since it allows abstract description
of co-simulation configuration for very different kinds of
setups. In Section 2 a simple use case is provided as an
illustrating example.

To achieve this goal an abstract graph data structure
is introduced in Section 3 to build the link between sys-
tem engineering tasks, DevOps and co-simulation. Fur-
thermore, it is shown that the data structure is suited for
data transformations between general scenario descrip-
tions and co-simulation scenarios and we will discuss the
implementation of the use case in more detail in Section 4.

2 A Simple Use Case
In this section a typical process in development of simu-
lation models and the roles involved are described. A use
case for this process is derived. The challenges and poten-
tial benefits of applying dedicated DevOps methods are
highlighted.

2.1 Use Case Description
The following scenario is considered. A system engineer
wants to test two related software components. Their com-
mon behavior defines a system, which is subject to usage
in product development projects at a later point in time.
They know that there are two prototypes from develop-
ment available but they want to rely on the nightly version
to use the most up to date version. They want to experi-
ment and incorporate small changes, hence the software
components have to be build from scratch in a regular
fashion. To use them, the system engineer has to

• get access to the code,
• build a pipeline (or script) and
• set up a co-simulation scenario and run it.

See Figure 1 for a schematic of the use case. The con-
tent of the red box highlights what the system engineer has
to define. The code, shown in green boxes, is maintained
by developers. The boxes in blue are related to process
automation. Typically, a DevOps engineer is responsible
for implementing these activities. A clear separation of
tasks enables every member of the team to focus on their
respective role in the process.

DOI
10.3384/ecp21181411

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

411

FMU SDK

Buildserver

FMU 1

DCP 1

C Func 1

DCP 1 DCP 2

Master

Post

FMU SDK

Buildserver

FMU 2

DCP 2

C Func 2

Figure 1. Schematics of a Simple Build and Simulation Pipeline

• The system engineer defines the system designs in-
cluding model boundaries, their scope and in partic-
ular the flow of model signals between models. This
can either be done from scratch or by working in part
with previously established models.

• The model developer creates the models and their
implementation according to the previously defined
system design.

• The DevOps engineer provides build pipelines – or
templates for build pipelines – to build the models
and deploy the resulting instances of these models as
artifacts.

Similarly pipelines for running the simulation need to be
provided. These pipelines should be as flexible as possible
to be parametrized for different configurations and situa-
tions. In Figure 2 the description of the simulation partic-
ipants is depicted. Here as an example UML was used for
the proof of concept. However, this is not limited to UML
since other standards like SysML or SSP could be used for
the transformation as well since they are easily parsable.

2.2 Challenges
Although the tasks described in the previous subsection
are manageable in general, they suffer from several well-
known problems. First of all, the entire process is con-
sidered complex, and involves many different tasks as
sources for faults and errors. Fixing problems is time con-
suming and unnoticed errors can lead to disasters. Espe-
cially setting up the infrastructure for builds is not always

«ProtocolStateMachine»
DCP:Master

ACCFunction

 - acceleration: Real [1]

 + detected: Boolean [1]

 + velocity: Real [1]

 + velocity2: Real [1]

 + distance: Real [1]

ACCenv

+ velocity: Real [1]

 + detected: Boolean [1]

+ acceleration: Real [1]

 + velocity2: Real [1]

 + distance: Real [1]

flow2:DCP

flow4:DCP

flow3:DCP

flow5:DCP

flow1:DCP

«flow»

«flow»

«flow»

«flow»

«flow»

Figure 2. System described in UML

straight forward and needs proper configuration manage-
ment. This includes setup of scripts, pipelines, specific
software versions, etc. This may be an additional chal-
lenge for someone with little software engineering back-
ground. Even with the help of the developers and DevOps
engineers it may be cumbersome. Staff might not be avail-
able all the time. Reaction time might be limited, so sev-
eral of the arising issues may not be fixed immediately.
For these reasons it would be desirable to have dedicated
mechanism in place. This paper contributes by (1) intro-
ducing a method for setup of simulation-driven develop-
ment processes that rely on graphs, (2) provision of an
implementation consuming these graphs, automating the
build process, and generate prototypical systems for sim-
ulation and testing.

3 Co-Simulation Process Graphs and
the DCP Standard

In this section the idea of using a process graph for sim-
ulation execution is elaborated. The used co-simulation
standards are presented and the specific challenges of us-
ing graph-based DevOps methods for configuration man-
agement are identified. An theoretical overview of the im-
plementation is given.

3.1 Motivation
There are several data formats and tools available to tackle
the tasks for the systems engineer described in the previ-
ous section. However, the main problem for modern en-
gineers are the interfaces and steps which are necessary to
go from one domain to the other. Co-simulation protocols
like DCP on the one hand solve this problem from the view
of simulation by providing uniform interfaces and descrip-
tions of the simulation participants. Graph-based work-
flow descriptions on the other hand allow setting up con-
tinuous integration pipelines, as discussed e.g., for Gitlab
CI in (Pundsack 2018). Nevertheless, when dealing with
simulations there are problems. Existing graph-based so-
lutions for workflow descriptions either rely on structural
properties like having no directed cycles (directed acyclic
graphs or DAGs for short) or only work in an online set-

A Graph-Based Meta-Data Model for DevOps in Simulation-Driven Development and Generation of DCP
Configurations

412 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181411

Figure 3. Comparison FMI-based simulation and DCP-based
Simulation

ting. This stems from the fact that orders of workflows
can only be described by a graph if there are no cycles,
but when dealing with closed loop simulations such cy-
cles are introduced naturally. It is beneficial for optimiza-
tion, analysis and resource management tasks and auto-
matic code generation of build scripts to provide a data
structure which works offline and still describes all depen-
dencies and all communication ways.

3.2 Co-Simulation Standards

The FMI standard has greatly simplified the exchange of
simulation models across tool boundaries (Blochwitz et al.
2012). However, a corresponding standard for real-time
systems that includes network communication is miss-
ing. The Distributed Co-Simulation Protocol (DCP) is
an application-level communication protocol, designed
for cost-effective development processes and opportuni-
ties to easily integrate models into simulation environ-
ments (Krammer and Blochwitz 2018). It standardizes
the exchange of simulation-related configuration informa-
tion and data (Modelica Association Project DCP 2019).
The DCP standard fills this gap of FMI by standardizing
the behavior of the model and the exchanged messages on
the level of the communication protocol to simplify the
integration of different real-time systems. It reduces the
configuration effort required drastically thereby increas-
ing the efficiency of tests and simulations. See Figure 3
for a comparison of the two standards, for FMI see (FMI-
Working-Group 2020, p.97). Furthermore, the DCP stan-
dard defines a way to describe scenarios by providing a
specified XST tranformation for scenarios which can be
directly used for the automatic configuration of the sim-
ulation setup (Krammer and Benedikt 2018). Hence it is
perfectly suited for the goals of the use case from the fore-
going section, and we can use it as leverage for the au-
tomation of the whole workflow.

3.3 The Co-Simulation Process Graph
To use the leverage of the tools available without introduc-
ing a new software chain a graph-based meta-data model
was introduced which allows the description of workflows
and simulation scenarios in a unified manner. The so-
called co-simulation process graph was formally defined
in (S. H. Reiterer et al. 2020) and is an extension to the
classical process graph (Tick 2007). It solves the prob-
lem of cycles introduced by closed loop simulations and
models without the need of separating the workflow se-
quence and the topology of the simulations. By definition
a co-simulation process graph is a directed graph with the
following properties:

• The set of nodes consists of data nodes, transforma-
tion nodes, master nodes, signal nodes and commu-
nication (or gateway) nodes.

• To represent the instantiation of a process or the us-
age of a signal inside a simulation, copies of the
nodes which represent these instances are made. In-
stances have to be directly connected to their origi-
nals.

• Instead of using the bi-partite structure to represent
data transformations, only instances of processes can
connect to data nodes to perform operations. In this
way, the nodes which perform operations and their
instantiation can be determined with a suitable al-
gorithm, which determines a different partition of
the graph with help of the defined structure, to pro-
vide the correct order of executions. This is neces-
sary since it is allowed that transformation nodes are
neighboring, e.g., a Docker container which is built
and then used for executing a program afterwards.

• An information node can never be the successor or
predecessor of another information node. A process
must be placed in between. However, neighboring
process nodes are allowed. This may happen if a
program-performing transformation at a later stage
is modified beforehand by another process (e.g., pa-
rameterization of tools).

• A simulation is a sub-graph with the following prop-
erties: a) It contains the instance of a master node. b)
The instance of the master node is connected to all
instances of signal nodes that belong to the simula-
tion. c) All the other nodes inside the simulation (i.e.
the simulation participants and communication gate-
ways) neighbor a signal instance. d) Each instance
of a signal is only allowed to appear once inside a
simulation.

• Cycles are only allowed inside a simulation sub-
graph.

A more detailed description of the data structure and anal-
ysis of the used algorithms can be found in the paper (S.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181411

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

413

Reiterer and Kalab 2021), which was recently accepted in
the International Journal of Simulation and Process Mod-
elling. An example is shown in Figure 4. A possible exam-
ple is that the nodes c1 and c2 represent software sources
(e.g., source code of a model) b represents a build tool like
CMAKE and b1 and b2 represent two processes of this
build tool which are started, which leads to the simulation
units P1 and P2, while the node M represents a simulation
master. After the build in stage 1) the simulation is exe-
cuted and the master is configured by the information con-
tained in the node M and gets additional parameters from
node I, while the node O represents the output of the sim-
ulation. The nodes i j and o j represent in- and outgoing
signals like velocity or acceleration, while g j represents
the communication protocols (e.g., a network protocol like
IP) for j = 1,2.

It can be shown that a co-simulation process graph can
efficiently be transformed into a DAG. Those transforma-
tions are based on contractions which are of particular im-
portance since they allow a simplification of the graph to
make the representation more accessible for human users,
because the data structure was designed to be computer
friendly and can become quite complex.

The transformation nodes can also be filled with ex-
isting scripts and code snippets to improve reusability of
existing build scripts. This way the graph structure can
be either directly used as a simple low code platform for
programming pipelines or linked with existing technolo-
gies to make the combination of the continuous integra-
tion world with the realm of simulations easier. Since it is
a universal data structure it is not necessary to introduce
new tooling but allows linking the existing tools into the
framework.

See Figure 5 for the database view on the build graph
for the adaptive cruise control (ACC) function as a further
example. This graph contains all necessary steps for the
build steps of the ACC function participant. Additionally,
the database holds the signals which are associated with
the participant which should be used in the scenario de-
scription for the DCP simulation. Several manufacturers
have fixed catalogs of signals which are allowed to use.

Storing them in the database together with simulation
participant helps developers to avoid using wrong signals.

4 Implementation
In this section the details of the implementation are pre-
sented. This includes the description of the used simula-
tion participants and how the co-simulation standards are
used. Further the configuration management using meta-
data embedded in the process graph and the deployment of
the resulting configuration to the simulation are discussed.

4.1 General Implementation
The prototype of the graph transformation service was
implemented in Python with usage of the networkX li-
brary (Hagberg, Schult, and Swart 2008). The transforma-
tion service transforms the graph description of the build

b1

b

b2

M

c1 c2

P1 P2

P1 P2

g1

g2

M

I

O

o1

i1

i2

o2

1) Build Stage

2) Simulation Stage
Figure 4. Simple Example of a Co-Simulation Process Graph

pipeline from XML and stores it in a graph database. Here
ArangoDB was used due to the generous license model
for the community edition (BSD like license) and since it
is recommended as one of the stronger candidates (Fer-
nandes and Bernardino 2018). Furthermore, the scenario
description was drawn with the Eclipse plugin Papyrus
since it is one of the few free SysML/UML modeling tools
available which allow export of the UML diagrams as text
file (Lanusse et al. 2009). As a build server Jenkins was
used for which the build pipelines were generated. To ease
the deployment Docker containers were built in which the
simulations could run without worrying if the necessary li-
braries are available on the Jenkins slave which performs
the build process.

4.2 Implementation of the Use Case in Detail
From the abstract description depicted in Figure 2 a sim-
ple XML parser in Python was used to transform the
model exported from Papyrus to generate the necessary
nodes and edges for the simulation subgraph (in the sense
of Subsection 3.3) and the provided meta-information
which was entered into the description is parsed and en-
tered into the nodes.

The service then sends AQL (Arango Query Language)
queries to the graph DB and gets the related build pipelines
for the simulation participants and the master and com-
bines them. After this the DCP description file is gen-
erated from the graph description directly on the build
servers’ workspace where the simulation is executed.
Hereby the graph service enters all connections between
the participants and the configuration of the master. Fur-
thermore, the signals with the used value references are
taken from the database. After that all subgraphs for the
pipelines are connected and the necessary code for the
build server is generated and executed. See Listing 1 for
the generated code. In lines 4-13 the setup of the partic-
ipants is executed. The necessary commands and param-
eters for the setup are stored within the graph database.
In lines 14-18 a simplified configuration file is written
which represents the signal connections via reference val-
ues. However, this configuration is for demonstration
only. Every line in the configuration file config.ini rep-

A Graph-Based Meta-Data Model for DevOps in Simulation-Driven Development and Generation of DCP
Configurations

414 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181411

resent the connection of one output to one input referred
to by the corresponding participant name and value refer-
ence. For demonstration purposes we simply write these
lines one by one by diverting the output the echo com-
mands to the file. Note that these commands were auto-
matically generated from the structure of the simulation
graph. In a production environment such configuration
data has to be supplied in a structured manner, such as
an XML-file, a prototype which uses an advanced sce-
nario description format exists as well. Finally in line 20
the simulation is started; this is achieved by running the
dcpmaster-service in its own docker. This service in turn
uses the generated configuration file to configure and start
the simulation participants, which were started up before
and were waiting in an idle state for commands.

This pipeline can be subdivided in a build stage and a
simulation stage as depicted in Figure 4. During the build
stage the simulation participants are built. Two models are
to be simulated in the system: An adaptive cruise control
(ACC) function which controls the acceleration of a ve-
hicle based on the speed of the vehicle and the distance
to and speed of a vehicle ahead, if such a vehicle is de-
tected. This ACC functionality is tested by coupling it
with a second model that simulates the entire environment
of the ACC, including the ego-vehicle and its surround-
ings, refer to Figure 2 for the signal flow. Both models are
implemented as C code with accompanying meta-data. A
build pipeline template uses this code and meta-data from
a repository to build the models with their dependencies
resulting in finished artifacts, in this use case two FMUs.
These artifacts are then tested – both with respect to for-
mally complying to the FMI standard as well as their basic
functionality – and subsequently uploaded to an artifact
repository.

In the next step of the build stage the simulation envi-
ronment is set up. Docker containers are build in which
the simulation participants will run. A DCP wrapper for
FMUs was implemented based on the DCPLibrary – the
open-source reference implementation of the DCP. This is
used to the make functionality of each FMU available in a
DCP slave in a distributed FMI master configuration. This
is possible because the DCP standard was designed with
the goal of basic comparability with FMI in mind. Such
a wrapper can be used to integrate existing high-quality
FMU in a networked DCP-simulation or real time system.
During the simulation stage the simulation is configured
and executed. The docker containers – one for each sim-
ulation participant – are started. The configuration of the
scenario is generated from the meta-data of the simulation
graph, the lower part of Figure 4, this includes which input
is connected to which output, parameters and the timing
configuration. This configuration is provided to the DCP
master, which deploys this configuration to the slaves and
starts the simulation. In the use case the DCP master is
implemented in Python, demonstrating the interoperabil-
ity of DCP implementations. A feature was implemented
that reads in a DCP scenario description, containing slave

descriptions of all DCP slaves involved in the scenario and
the desired configuration details, and can generate from
this the necessary configuration sequence to roll out the
configuration and run the simulation. The master con-
trols the simulation with DCP protocol data units (PDUs)
that are sent via network connections to the DCP slaves.
The DCP slaves in turn exchange simulation data via data
PDUs until the master stops the simulation.

Listing 1. Generated Code for Simulation

1 stage(’Stage: Sim77706 77706,Sim888’) {
2 steps{
3 sh ’echo "Run Simuation Sim888"’
4 script {
5 DockerFolder = "

dcp_docker_run"
6 Key = "part1"
7 sh "cd ${DockerFolder}/;

docker-compose up -d $
{Key}"

8 }
9 script {

10 DockerFolder = "
dcp_docker_run"

11 Key = "part2"
12 sh "cd ${DockerFolder}/;

docker-compose up -d $
{Key}"

13 }
14 sh ’echo "ACCenv, 6, ACCFunction,

4" >> config.ini’
15 sh ’echo "ACCenv, 3, ACCFunction,

2" >> config.ini’
16 sh ’echo "ACCenv, 4, ACCFunction,

3" >> config.ini’
17 sh ’echo "ACCenv, 1, ACCFunction,

1" >> config.ini’
18 sh ’echo "ACCFunction, 5, ACCenv,

7" >> config.ini’
19 sh "cp config.ini dcp_docker_run/

dcp_py_master/ACC/"
20 sh "cd dcp_docker_run/; docker-

compose up dcpmaster"
21 } }

The simulation results are then post-processed with a
Python script, zipped and put on an artifact repository,
e.g., JFrog Artifactory, where they can be downloaded. In
Figure 6 an overview of the generation and linking proce-
dure is provided.

5 Conclusion and Outlook
In this work we presented a simple proof of concept to
showcase how CI pipelines could be described in the con-
text of simulations. For this an abstract graph model
was described which can be stored within a database and
can be used for splitting work and autogenerate simula-
tion scenarios out of model descriptions. A simple sim-
ulation was described in UML which was used directly
for generating the simulation configuration within the
pipeline. Furthermore, we demonstrated how the de-
scribed pipelines can be stored within a graph database

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181411

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

415

Pipeline 2

GraphDB

Post
Pipeline

Pipeline 3

GraphDB Model
Description

Master

P1 P2

Pipeline 1

Results

Transformation/
Generation

Code Generation

Build ServerRepos

Simulation

Figure 5. Transformation of Model and Linking of Subgraphs

Figure 6. Database View of the ACC Function Build-Graph

and how it can be used to merge existing pipelines to a
complete workflow containing all necessary steps. For the
simulation part we demonstrated how FMU participants
can be converted to DCP participants and how to roll them
out automatically via Docker containers within the gener-
ated pipeline. Connections between the participants are
automatically set with help of the graph data structure and
participants are automatically started with help of the pro-
vided meta-data. However, it is important to highlight that
this was a mere proof-of-concept. There are a lot of as-
pects regarding proper simulation description which still
are open. Currently only a primitive mapping was used
but there are several aspects regarding system design and
work processes which were not considered yet. Exten-
sions for SysML and SSP are planned to provide a proper
tool for systems engineering. Since the proposed graph
data structure is very abstract and very flexible there are
also quite a few topics which have to be investigated on the
implementation side. One topic is the algorithmic analysis
of the process graph; partial results were presented on the
Grazer Symposium of the Virtual Vehicle (S. H. Reiterer
2020). As already mentioned in Section 3.3 a compan-
ion journal paper was recently submitted and accepted (S.
Reiterer and Kalab 2021). In this work the algorithmic
and modeling aspects of the co-simulation process graph
model are described in detail. Furthermore, strategies to
optimize the resulting pipelines are investigated. Another
big topic is the proper integration of the graph database.
This includes versioning of graph-based pipelines within
the graph database and managing of configuration param-
eters and tool variation. Regarding the DCP standard there
are several questions remaining like defining a compre-
hensive standard for the description of the co-simulation
process graph elements (node and edge data) to ensure
generation of DCP scenario descriptions in a consistent
manner. This would not only open the possibility to de-
scribe DCP simulations as graphs but would also enable
computer aided analysis of the performance of simulations
on a large scale or automatically deploy different varia-
tions of scenarios.

Acknowledgements
This publication was written at Virtual Vehicle Research
GmbH in Graz, Austria. The authors would like to ac-
knowledge the financial support within the COMET K2
Competence Centers for Excellent Technologies from the
Austrian Federal Ministry for Climate Action (BMK), the
Austrian Federal Ministry for Digital and Economic Af-
fairs (BMDW), the Province of Styria (Dept. 12) and the
Styrian Business Promotion Agency (SFG). The Austrian
Research Promotion Agency (FFG) has been authorized
for the program management. They would furthermore
like to express their thanks to Desheng Fu for further in-
put and discussions and Prof. Eugen Brenner and Georg
Macher from the Institute of Industrial Informatics of the
TU Graz for their support. Also, many thanks to Martin

A Graph-Based Meta-Data Model for DevOps in Simulation-Driven Development and Generation of DCP
Configurations

416 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181411

Krammer from Virtual Vehicle for input and corrections
for this work.

References
Bass, Len, Ingo Weber, and Liming Zhu (2015). DevOps: A soft-

ware architect’s perspective. Addison-Wesley Professional.
Blochwitz, Torsten et al. (2012). “Functional mockup interface

2.0: The standard for tool independent exchange of simu-
lation models”. In: 9th International Modelica Conference,
pp. 173–184. DOI: 10.3384/ecp12076173.

Fernandes, Diogo and Jorge Bernardino (2018). “Graph
Databases Comparison: AllegroGraph, ArangoDB, Infinite-
Graph, Neo4J, and OrientDB.” In: DATA, pp. 373–380.

FMI-Working-Group (2020). Functional Mock-up Interface for
Model Exchange and Co-Simulation. https : / / github . com /
modelica / fmi - standard / releases / download / v2 . 0 . 2 / FMI -
Specification-2.0.2.pdf. Accessed: 2021-04-12, V 2.0.2.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008).
“Exploring Network Structure, Dynamics, and Function us-
ing NetworkX”. In: Proceedings of the 7th Python in Science
Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jar-
rod Millman. Pasadena, CA USA, pp. 11–15.

Krammer, Martin and Martin Benedikt (2018). “Configuration
of slaves based on the distributed co-simulation protocol”.
In: 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA). Vol. 1. IEEE,
pp. 195–202.

Krammer, Martin and Torsten Blochwitz (2018). “The Dis-
tributed Co-Simulation Protocol for the Integration of Real-
Time Systems and Simulation Environments”. In: Proceed-
ings of the 50th Computer Simulation Conference. DOI: 10.
22360/SummerSim.2018.SCSC.001.

Lanusse, Agnes et al. (2009). “Papyrus UML: an open source
toolset for MDA”. In: Proc. of the Fifth European Conference
on Model-Driven Architecture Foundations and Applications
(ECMDA-FA 2009). Citeseer, pp. 1–4.

Modelica Association Project DCP (2019). DCP Specification
Document, Version 1.0. Linköping, Sweden: Modelica Asso-
ciation. URL: http://www.dcp-standard.org.

Pundsack, Mark (2018). Out-of-sequence job execution using di-
rected acyclic graphs (DAG) MVC. https://gitlab.com/gitlab-
org/gitlab-foss/issues/47063. Accessed: 2019-11-11.

Reiterer, Stefan and Michael Kalab (2021). “Modelling Deploy-
ment Pipelines for Co-Simulations with Graph-Based Meta-
data”. In: International Journal of Simulation and Process
Modelling. Accepted.

Reiterer, Stefan H. (2020). “Continuous Deployment of ADAS
Functions over the Air”. In: 13. Grazer Symposium des
Virtuellen Fahrzeugs.

Reiterer, Stefan H. et al. (2020). “Continuous Integration for Ve-
hicle Simulations”. In: 2020 25th IEEE International Con-
ference on Emerging Technologies and Factory Automation
(ETFA). Vol. 1. IEEE, pp. 1023–1026.

Tick, József (2007). “P-graph-based workflow modelling”. In:
Acta Polytechnica Hungarica 4.1, pp. 75–88.

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181411

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

417

418 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Portable runtime environments for Python-based FMUs:
Adding Docker support to UniFMU

Thomas Schranz1 Christian Møldrup Legaard2 Daniella Tola2 Gerald Schweiger1

1Graz University of Technology, Austria, {thomas.schranz,gerald.schweiger}@tugraz.at
2DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, {cml,dt}@ece.au.dk

Abstract

Co-simulation is a means to combine and leverage the
strengths of different modeling tools, environments and
formalisms and has been applied successfully in various
domains. The Functional Mock-Up Interface (FMI) is
the most commonly used standard for co-simulation. In
this paper we extend UniFMU, a tool that allows users
to build Functional Mock-Up Units (FMUs) in virtually
any programming language, to support execution within
Docker. As a result the generated FMUs can be distributed
in an environment containing all runtime dependencies.
To describe the process of creating Dockerized FMUs us-
ing UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs.

Keywords: FMI, Co-Sim, Python, Tool-Coupling, Docker

1 Introduction

Complex, heterogeneous systems can be found through-
out all fields of science and industry. Due to increasing
complexity, market competition and specialization, sys-
tem evaluation and simulation-based analysis has become
more and more difficult (G. Schweiger et al. 2019). How-
ever, there often exist partial models for different parts of
these systems, albeit in different domains and developed
using different tools (Gomes et al. 2018). Co-simulation
is a means to combine and leverage the strengths of dif-
ferent modeling tools, environments and formalisms (Cre-
mona et al. 2019) and has been applied successfully in
various domains (Gerald Schweiger et al. 2018; Pedersen
et al. 2017; Nageler et al. 2018). The Functional Mock-
Up Interface (FMI) was found to be the most promising
standard for continuous time, discrete event, and hybrid
co-simulation in a survey by (G. Schweiger et al. 2019).
FMI is maintained by the Modelica association (Model-
ica Association 2021); it can be used to co-simulate com-
ponents packaged as Functional Mock-Up Units (FMUs),
each of which can be built using a different FMI-enabled
modeling tool.

1.1 Co-Simulation Tools

With Open Modelica (Asghar and Tariq 2010), Simulink1

or 20-sim2 users can generate FMUs based on com-
mon modeling languages such as Modelica or MAT-
LAB/Simulink using a graphical interface. The Universal
Functional Mock-up Unit (UniFMU) (Legaard et al. 2021)
tool allows users to build FMUs from arbitrary code in any
programming language; it supports Python, C# and Java
out-of-the-box. It uses a precompiled binary wrapper that
implements the methods specified in the FMI standard’s
C-headers to spawn a process that executes the FMU’s
actual code. This way the FMU can be built from code
written in an interpreted language or a language that uses
automatic garbage collection. However, this setup, allow-
ing for this kind of flexibility, requires the host machine to
provide the process with all runtime dependencies which
limits portability, especially between different host ma-
chines, and potentially necessitates a complicated setup
procedure.

There exists a number of distributed, FMI-based co-
simulation tools, many of which were analyzed in (Ha-
tledal et al. 2019). However, all of them require a tight
coupling between the co-simulation components and the
master algorithm. ProxyFMU, a tool developed by the au-
thors of (Hatledal et al. 2019) decouples the FMUs, in a
way that they become independent of the master algorithm
in a client/server solution that supports JavaScript, Python,
C++ and the JVM on the client side.

The authors of (Hinze et al. 2018) propose a method
for running FMUs inside Docker containers by placing
the entire FMU archive inside the container and extending
the master algorithm with a remote procedure call proto-
col. A distinction between their work and our approach is
that FMUs generated using UniFMU work with any FMI-
enabled master algorithm without the need to implement
any additional protocols.

1.2 Contributions
In this paper we extend UniFMU using the virtualization
environment Docker3, such that the FMUs can be shipped
with all runtime dependencies. We provide a general

1http://www.mathworks.com/products/simulink
2http://www.20sim.com
3https://www.docker.com

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

419

mechanism that can be leveraged for all languages sup-
ported by the tool. The resulting FMUs have nearly the
same portability as compiled FMUs (except for the depen-
dency on Docker) and require no language-specific setup
procedure, but still allow the use of non-compiled lan-
guages and languages that use automatic garbage collec-
tion. To explain the process of creating Dockerized FMUs
using UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs. The UniFMU tool (with the extensions for Dock-
erization) is available on Github4. The FMUs described in
this paper can be found in a separate repository5.

The rest of the paper is structured as follows. First, sec-
tion 2 introduces a robotic arm and a controller which is
used as a case study throughout the paper. Next, section 3
provides an introduction to UniFMU and describe how the
robotic arm and controller can be implemented as FMUs
using the tool. Then, section 4 describes the extension
of UniFMU that allows FMUs and their dependencies to
be deployed inside Docker containers. Afterwards, sec-
tion 6 provides a discussion of the results and outlines fu-
ture work on the tool. Finally, section 7 provides conclud-
ing remarks.

2 Case Study
To exemplify the process of using UniFMU we consider
the case of modeling a robotic arm coupled to a controller
as depicted in Figure 1. The example is chosen to high-
light how different modeling formalisms can be realized
by the tool. Specifically, the robotic arm described in
subsection 2.1 is inherently continuous, whereas the con-
troller described in subsection 2.2 is discrete.

RobotController

Figure 1. Connection between controller and robot model.

2.1 Robotic Arm
The robotic arm is modeled as a controlled inverted pen-
dulum. The states of the system are its angle θ , the an-
gular velocity ω and the current running through the coils
of the electrical motor i. The dynamics of the robotic arm
are described by Equation 1. Note that contrary to the vi-
sualization shown in Figure 7 the model only considers a
single joint that rotates around a single axis.

f (x) =

θ̇

ω̇

i̇

=

ω

K·i−b·ω−m·g·l·cos(θ)
J

u·Vabs−R·i−K·ω
L

 (1)

4https://github.com/INTO-CPS-Association/
unifmu

5https://github.com/Daniella1/robot_unifmu

where:
The derivative of the angle θ̇ is, per definition, equal

to the velocity of the arm ω . The derivative of the an-
gular velocity ω̇ is determined by the torque coefficient
K = 7.45 s−2A−1, the current i, the motor-shaft fric-
tion b = 5.0 kg · m2 · s−1 and the gravity acting on the
arm, denoted by m · g · l · cos(θ), with m = 5.0 kg, g =
9.81ms−2, l = 1.0 m. The change in current is determined
by the input from the controller u, the voltage across the
coils Vabs = 12.0 V , the resistance R = 0.15 Ω and the mo-
tor’s inductance L = 0.036 H.

2.2 Controller
A proportional-integral-derivative (PID) con-
troller (Åström and Murray 2010) is used to generate the
control signals sent to the robotic arm. The continuous
formalization of the controller is given by:

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd ė(t) (2)

where e(t) is a measure of the error of the variable being
controlled and Kp, Ki and Kd are coefficients used to tune
how the proportional and derivative terms are weighted.
In case of the robot, the controller is trying to minimize
the error between the desired angle θ ∗(t) and the true an-
gle θ(t). Thus, the error is defined as e(t) = θ ∗(t)−θ(t).

In practice, most controllers are implemented digitally,
which means that derivatives and integrals must be re-
placed by discrete approximations. There are several ways
to do this, the simplest being to replace derivatives by first-
order differences

ė(tk)≈ ėk =
ek − ek−1

T
,

and integrals by sums∫ tk

0
e(tk)≈ Ek =

N

∑
n=1

ekn ·T

where ek = e(tk), T is the sampling time and N = tk/T
is the number of samples between time 0 and tk. After re-
placing the continuous definitions in Equation 2 we obtain
an equation that can be implemented on a discrete con-
troller

uk = Kpek +KiEk +Kd ėk (3)

This discretization scheme is simple to implement

3 Modeling
In this section, we describe how UniFMU is installed and
how it is used to generate an FMU. We provide a brief
overview of the resulting FMU’s structure and method of
operation. Subsequently, we describe the FMUs used to
model the robotic arm and the controller. For illustrative
purposes both FMUs are implemented in Python, however
in the general case they can be implemented in a mix of
languages.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

420 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

3.1 Creating an FMU using UniFMU

UniFMU is a command line interface (CLI) that can be
installed through Python’s package installer pip or from
source following the instructions in the official repository.
Installation through pip uses a single command:

pip install unifmu

It should be noted that the FMUs generated with
UniFMU do not require Python during runtime, unless the
FMUs themselves are implemented in Python. To gen-
erate an FMU the tool has to be invoked with the sub-
command generate, and supplied with the language the
FMU is implemented in and the name it should have; for a
Python-based FMU with the name robot this looks like:

unifmu generate python robot

This generates an FMU with the structure shown in Fig-
ure 2. The binaries directory contains a precompiled
wrapper for Windows, Linux and MacOS that implements
the methods specified in the FMI’s C-headers and relays
them to the actual implementation of the FMU found in
the resources directory. model.py defines a class
that declares a set of methods that correspond to the meth-
ods in the FMI standard, such as FMI’s fmi2DoStep
which is implemented by the Python method do_step.
The actual overwrite used to model the robotic arm can be
seen in Listing 1.

robot.fmu

binaries

darwin64

linux64

unifmu.so

win64

resources

model.py

modelDescription.xml

Figure 2. The directory structure for a Python FMU. Note that
several files generated by the tool are omitted for simplicity.

3.2 Robotic Arm FMU

The robotic arm FMU is implemented in Python using a
numerical solver provided by the SciPy (Virtanen et al.
2020) package. The general procedure for solving an ODE
using Scipy is to define a function which evaluates the
derivative for a given combination of state and time. Using
Equation 1 as a reference the function f (·) can be defined
as shown in Listing 1.

Figure 3. Standalone test of robotic arm, with values θ0 = ω0 =
i0 = u(t) = 0.

1 def do_step(
self,current_time,step_size,no_step_prior
):

2 def f(t, y):
3 theta, omega, i = y
4 tau=self.k1*np.cos(theta)
5 domega=(self.K*i-self.b*omega-tau)/

self.J
6 di=(self.V-self.R*i-self.K*omega)/

self.L
7 dtheta=omega
8 return dtheta, domega, di
9 res=solve_ivp(f,(

current_time,current_time+step_size),y0)
10 self.theta,self.omega,self.i=res.y[:,-1]
11 return Fmi2Status.ok

Listing 1. Implementation of the fmi2DoStep method for the
robotic arm FMU.

Given the definition of the derivative, the solve_ivp
function can be used to obtain the solution for the next step
of the FMU and allows users to choose between solvers.
However, it is also possible to use any other Python li-
brary providing numerical solvers or to implement a cus-
tom solver. This is a very flexible solution as it allows
users to choose the type of solver that is suitable for the
particular ODE. After solving the ODE, the newly esti-
mated state is assigned to the instance, where it can be
accessed from other methods and the FMI.

To test the dynamics of the robotic arm FMU, a small
test program is written in Python which invokes the
do_step several times. The results are shown in Figure 3
for initial state and input θ0 = ω0 = i0 = u(t) = 0. We see
that the angle of the robot decreases from 0 to -1 over 10
seconds.

3.3 Controller FMU
The controller-FMU implements a simple control algo-
rithm that determines the signal sent to the motor based on
the difference between the desired and the actual current
angle. Similarly to how Equation 1 was translated into a

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

421

Python function describing the derivative of the state, we
use the control policy Equation 3 as a reference to imple-
ment the expression shown in Listing 2.

1 def do_step(self, current_time, step_size,
no_step_prior):

2 err=self.setpoint_t-self.measured_t
3 self.I=self.I+err*step_size
4 D=(err-self.p_err)/step_size
5 self.u=self.Kp*err+self.Ki*self.I+self.Kd

*D
6 self.p_err = err
7 return Fmi2Status.ok

Listing 2. Implementation of the fmi2DoStep method for the
controller-FMU.

In most practical situations, controllers are imple-
mented on a processing unit where updates to the out-
put would happen at a fixed update rate determined by the
controller’s clock frequency and the number of operations
needed at each update.

An implicit assumption of our model is that the step-
size used by the solver matches the update rate of the
controller. For small step sizes, the discrete approxima-
tion implemented by the model remains relatively accu-
rate. However, for larger step sizes the accuracy of the
discretization scheme is reduced, which may ultimately
cause the closed-loop system to become unstable. A
solution to mitigate the discretization error is to use a
more sophisticated discretization scheme, such as Tustin’s
method (Franklin, Powell, and Emami-Naeini 2020).

As in the robotic arm FMU, we can also use any ex-
ternal library for modeling the controller. For instance, a
package such as python-control6, can be used to evaluate
the performance of different controllers.

The functionality of the controller can be verified by
writing a small test program in Python that invokes the
do_step method of the FMU. To examine the closed-loop
behavior, the robot is replaced with a simple linear model
described by the ODE θ̇ = u. Executing the Python test
program, we obtain the step-response of the closed-loop
system (with surrogate model) as depicted in Figure 4.

4 Docker Support
A key contribution of this paper is extending UniFMU so
that the generated FMUs can be executed within a virtu-
alization environment using Docker. To create a Docker-
ized FMU the user can append the –dockerize switch to
UniFMU’s generate subcommand:

unifmu generate python --dockerize robot

The functionality is available for Linux and macOS and
all languages that the tool supports. Windows support
is under development, but is held back by limitations of
Docker’s networking capabilities when running on Win-
dows.

6https://python-control.readthedocs.io/en/0.
8.3/index.html

Figure 4. Standalone test of the controller FMU with using lin-
ear model for plant θ̇ = u, step size = 0.001, setpoint = 1.0

4.1 Setting up the image
A configuration file, referred to as the Dockerfile, pro-
vides instructions to build the environment on any host
machine. An excerpt from the Dockerfile used by
the robotic arm FMU can be seen in Listing 3. The first
line declares that the image for the FMU is assembled
ontop a pre-built Python 3.8. image from the Docker
container library. The second line invokes the package
manager pip to install packages required by the model.
For simplicity, the three dots represent the dependencies
required by the Python backend to communicate with
the binary. The third line instructs Docker to copy the
container_bundle directory into the image. The
container_bundle contains all files that are needed
during runtime, such as the actual model implementation
and all user-generated files and dependencies.

1 FROM python:3.8
2 RUN pip install ... scipy

roboticstoolbox-python matplotlib
3 COPY container_bundle resources
4 ...

Listing 3. Dockerfile used to assemble the image used by FMU
instances.

4.2 Instantiating a Dockerized FMU
The process of creating an instance of a Dockerized FMU
is depicted in Figure 5. The steps are as follows: First, the
binary will ensure that the image declared in the Dock-
erfile has been built. If this is not the case, it will au-
tomatically invoke the Dockerfile to build the image.
Next, from the image a container is created. The container
has access to all dependencies listed in the Dockerfile,
such as Python packages that were installed through pip
and everything inside the container_bundle. Note
that each instance of an FMU is executed within its own
container and removed after use. This ensures that no in-
stances of an FMU share any state or influence each other
directly.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

422 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

fmi2Instantiate

invoke build of

instantiate imageUniFMU
Binary

Docker Image

robot.py SciPy

python 3.8

Container

Figure 5. Deployment of a model inside the Docker container.

Figure 6. Co-simulation of the controller and the robot with the
set point = 1. Experiments of varying the controller parameters
are shown.

5 Results

A co-simulation was configured and run using the two
FMUs with the INTO-CPS tool-chain (Larsen et al. 2016).
We used a fixed step-size solver with a step-size of 0.001
seconds, set the desired angle to 1 radian and plotted θ as
a function of time for various values of Kp,Ki and Kd . The
corresponding plot can be seen in Figure 6. Fig. 7 shows
the robotic arm at an angle of 1 radian. The controller with
Ki = 0 exhibits a substantial steady-state error, whereas the
ones with an integral term converge within 10 seconds.
Besides, it can be seen that controllers with an integral
term cause the system to overshoot the setpoint. Tweaking
the coefficients of the controller allows us to balance the
tendency to overshoot and the steady-state error, such that
they meet the requirements of the application. Methods
based on heuristics exist for tuning PID controllers, which
could be applied to tune the controller for the robotic arm.
However, we considered applying these to be beyond the
scope of this example use case.

Figure 7. A visualization of the robot during the co-simulation.
The measured θ is equal to the set point = 1 rad, when con-
trolled with the PID-controller.

6 Discussion
A central objective of the FMI standard is to facilitate the
exchange of models generated by different tools. To do
so, FMI requires communication through a C-API, which
complicates implementing models in languages that can-
not be compiled into a C-compatible binary. UniFMU cir-
cumvents this issue by providing a generic C-binary that
handles all communication between FMI calls to the FMU
and the FMU’s actual code. Being able to use high-level
programming languages such as Python allows develop-
ers to leverage a large ecosystem of scientific libraries
and thus implement models quickly and efficiently, espe-
cially in contrast to writing everything from scratch. Con-
sider the implementation of the do_step method for the
robotic arm shown in Listing 1. The ODE is declared and
solved in eight lines of code. We believe that this has the
potential to simplify co-simulation for more modeling ap-
plications and engage more developers.

Another aspect to this approach is that the resulting
FMUs can be verified and debugged using the develop-
ment tools of the FMU’s language. For instance, it al-
lowed us to write small test programs for verifying the
FMUs before performing the co-simulation of the system.
In our experience, the ability to effectively test the individ-
ual models greatly reduces the number of issues encoun-
tered when integrating the models.

Using FMUs that require runtime dependencies to be
handled manually is counter-intuitive to the idea of sim-
ple, standardized model exchange. Consequently, in this
work we addressed this issue by providing a way to auto-
matically virtualize the runtime environment with all de-
pendencies inside a Docker container rather than requir-
ing the host machine to provide a suitable environment.
The way this Dockerization was implemented did not af-
fect UniFMU’s precompiled binaries and all changes to
the language-specific backends are simply additional con-

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

423

figuration options instead of hard dependencies on Docker
itself. The latter might be reused in the future to imple-
ment remote deployment.

7 Conclusion
Co-simulation is a key research interest. The FMI stan-
dard is among the most popular interfaces for model ex-
change and co-simulation. There are various tools to gen-
erate FMI-compliant FMUs. UniFMU is one such tool
that allows users to build FMUs from arbitrary code writ-
ten in any language. We used UniFMU to generate two
Python-based FMUs in order to co-simulate a robotic arm
and a controller. However, the resulting FMUs required
the host machine to provide a Python runtime environ-
ment with all dependencies preinstalled, effectively lim-
iting portability and ease of deployment. To address this
issue we extended UniFMU using the virtualization tool
Docker. With our extension, UniFMU is able to gener-
ate FMUs shipped with a Dockerfile that automati-
cally builds a runtime environment inside a container. This
way the FMUs are almost as portable as compiled FMUs
(except for the dependency on Docker) but still support
the use of non-compiled languages. Our extension is not
limited to Python but can be reused for other languages
as well. Besides, the changes we implemented can help
in developing a configuration for remote deployment of
FMUs in the future.

Acknowledgements
The authors would like to thank Thomas Schwengler for
their support with designing the Docker-integration.

The reported research was conducted within the
project NextHyb2 (881150) and project DigitalEner-
gyTwin (873599), which received funding in the frame-
work of ”Stadt der Zukunft” and "Energieforschung", a
research and technology program of the Austrian Ministry
for Transport, Innovation and Technology (BMVIT).

References
Asghar, Syed Adeel and Sonia Tariq (2010). Design and Imple-

mentation of a User Friendly OpenModelica Graphical Con-
nection Editor. eng.

Åström, Karl Johan and Richard M Murray (2010). Feedback
Systems: An Introduction for Scientists and Engineers. In En-
glish. ISBN: 978-1-4008-2873-9.

Cremona, Fabio et al. (2019-06). “Hybrid Co-Simulation: It’s
about Time”. en. In: Software & Systems Modeling 18.3,
pp. 1655–1679. ISSN: 1619-1366, 1619-1374. DOI: 10.1007/
s10270-017-0633-6.

Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini
(2020). Feedback Control of Dynamic Systems. eng. Eighth
edition, global edition. Harlow, United Kingdom: Pearson
Education Limited. ISBN: 978-1-292-27452-2.

Gomes, Cláudio et al. (2018-07). “Co-Simulation: A Survey”.
en. In: ACM Computing Surveys 51.3, pp. 1–33. ISSN: 0360-
0300, 1557-7341. DOI: 10.1145/3179993.

Hatledal, Lars Ivar et al. (2019-02). “FMU-proxy: A Frame-
work for Distributed Access to Functional Mock-up Units”.
In: pp. 79–86. DOI: 10.3384/ecp1915779. URL: https://ep.
liu.se/en/conference-article.aspx?series=ecp&issue=157&
Article_No=8 (visited on 2021-05-09).

Hinze, Christoph et al. (2018). “Towards Real-Time Capable
Simulations with a Containerized Simulation Environment”.
In: 2018 25th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), pp. 1–6. DOI: 10.1109/
M2VIP.2018.8600827.

Larsen, Peter Gorm et al. (2016). “Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-
CPS project”. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data),
pp. 1–6. DOI: 10.1109/CPSData.2016.7496424.

Legaard, Christian Møldrup et al. (2021). “A Universal Mech-
anism for Implementing Functional Mock-up Units”. In:
11th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications. SIMUL-
TECH 2021. Virtual Event, to appear.

Modelica Association (2021). Functional Mock-up Interface for
Model Exchange and Co-Simulation. https : / / www . fmi -
standard.org/downloads.

Nageler, P. et al. (2018-08). “Novel method to simulate large-
scale thermal city models”. en. In: Energy 157, pp. 633–
646. ISSN: 03605442. DOI: 10 . 1016 / j . energy . 2018 . 05 .
190. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S0360544218310363 (visited on 2021-05-06).

Pedersen, Nicolai et al. (2017). “Distributed Co-Simulation of
Embedded Control Software with Exhaust Gas Recircula-
tion Water Handling System using INTO-CPS:” in: Pro-
ceedings of the 7th International Conference on Simula-
tion and Modeling Methodologies, Technologies and Appli-
cations. Madrid, Spain: SCITEPRESS - Science and Technol-
ogy Publications, pp. 73–82. ISBN: 9789897582653. DOI: 10.
5220/0006412700730082. URL: http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0006412700730082
(visited on 2021-05-06).

Schweiger, G. et al. (2019-09). “An empirical survey on co-
simulation: Promising standards, challenges and research
needs”. en. In: Simulation Modelling Practice and Theory 95,
pp. 148–163. ISSN: 1569190X. DOI: 10.1016/j.simpat.2019.
05.001. URL: https: / / linkinghub.elsevier.com/retrieve/pii /
S1569190X1930053X (visited on 2021-05-06).

Schweiger, Gerald et al. (2018-12). “District energy systems:
Modelling paradigms and general-purpose tools”. en. In: En-
ergy 164, pp. 1326–1340. ISSN: 03605442. DOI: 10.1016/j.
energy.2018.08.193. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0360544218317274 (visited on 2021-05-06).

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python”. In: Nature Meth-
ods 17, pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

424 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

General Purpose Lua Interpreter for Modelica

Fabian Buse1 Tobias Bellmann1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{fabian.buse,tobias.bellmann}@dlr.de

Abstract
Simulation becomes more and more important in the de-
velopment of complex systems. Modeled systems often
are comprised of mechanical, electrical as well as soft-
ware systems. It is often not possible to evaluate the per-
formance of a system without considering some higher
level logic anymore. Scripting languages, such as Lua,
are usually well suited to implement these logic elements.
This paper shows the integration of the Lua interpreter into
Modelica, and gives examples how the library can be used
to help with the simulation of industrial robots or in the
development of a planetary exploration rover in the MMX
Mission.
Keywords: Modelica, Lua, script language, robotics, finite
state machine

1 Introduction
When simulating complex systems, it is often necessary
to model not only the mechanics, electronics and control
system correctly, but also the higher-level logic that gov-
erns the general behavior. However, this high-level logic
is generally difficult to implement with native Modelica
methods. Although it is possible to build a control logic
based on multiple inputs and outputs, e.g. by using state
machines, it is error-prone and not very flexible. The re-
quirement to balance all equations and unknowns can be
difficult and tedious if the different control states or modes
have distinct structures. If a model is to be used to test
and develop this high-level logic, the limitations of native
Modelica methods are even more pronounced. The devel-
oper with in-depth Modelica knowledge may not be re-
sponsible for developing and testing the high-level logic.
One common method to solve this problem is the FMI
standard (Blockwitz et al. 2012). With this approach the
system model is built in Modelica and then imported into
a different tool that is better suited to handle high-level
logic. The Modelica Lua library presented in this paper
was developed to combine Modelica’s strengths in phys-
ical modeling with the flexibility of a script-based inter-
preter to solve the problem stated before without the need
of an additional tool.

The concept of this library is an extension and general-
ization of the Lua interpreter presented and developed for
the DLR Robots library (Bellmann, Seefried, and Thiele
2020). Lua was chosen due to its lightweight, well main-
tained interpreter, its simple and easy to learn syntax and

already established application in other fields, such as
game development. With Lua being a commonly used
language, many tools and third party libraries are already
available to use.

1.1 Design Goal
The goal for this library was to provide an application
independent Lua interpreter with a lightweight interface.
The integration into existing Modelica models should be
as easy as possible. All basic Modelica data types, Real,
Integer, Boolean and String, should be supported as in-
put and output of Lua. In order to meet the requirements
of most applications, different modes of operation shall be
supported, both a loop-like repetition of the Lua script and
a single and serial execution of the script. To allow mul-
tiple instances or different systems controlled by Lua in
a single Modelica model, it is desired to allow multiple,
independent instances of the Lua interpreter in the same
Modelica model. It should also be possible to write Lua in
Modelica directly as a string or to load a script from disk.
It should be possible to use the full Lua functions and also
to enable third-party Lua libraries. Finally, the Lua library
should be platform-independent.

2 Structure of the library
From the previously stated goals a simple structure of the
library has been developed. The following section will
explain the general setup, both interfaces to the Modelica
and Lua side of the library as well as some further consid-
erations.

2.1 Implementation
Similar to the implementation of the Lua interpreter in the
DLR Robots library, each Lua interpreter instance runs
in a separate thread independent of the main Modelica
thread. The data exchange between the interpreter and
Modelica takes place via a data core which can be ac-
cessed by Modelica as well as Lua. Extending from the
implementation in the DLR Robots library, where no fur-
ther synchronization between Lua and Modelica was pos-
sible, the new Lua library offers various options. Simi-
lar to the original implementation, both programs can run
completely independently of each other, with the timing
on both sides being handled manually by custom signals
transmitted through the data core. To enable the timed
execution of certain instructions, waiting functions based
either on simulation-time or CPU-time are now provided.

DOI
10.3384/ecp21181425

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

425

Alternatively, the Lua code can be synchronized to spe-
cific time events. This can be further configured so that
Lua waits for Modelica, Modelica for Lua, or both. If syn-
chronization is activated, the data is only read and written
to the data core at this time to ensure data coherence.

2.2 Modelica Interface
The Modelica library, shown in Figure 1, was kept as sim-
ple as possible. The communication, script selection and
synchronization is handled by the main Lua block, inputs
and outputs are handled by their type specific blocks. To
reduce the total number of required blocks all interfaces
except strings are treated as vectors.

Figure 1. Structure of the Modelica Lua library as shown in
Dymola.

To define the hierarchy and enable multiple interpreter
instances an inner outer construct was chosen. Each in-
stance of a Lua block holds one independent interpreter, thus
the set and get blocks have their interpreter assigned based on
the model structure in Modelica. The main Lua block contains
all parameters defining the created instance. These parameters
can be divided into three categories, script, timing and synchro-
nization. The script category, defines what script to load or
if selected, the string containing the entire script, as well as a
unique name identifying the interpreter instance. Additionally,
further search directories for locating scripts or libraries can be
defined. The timing category defines the sampling time for com-
munication, as well as the start time for the script. The different
synchronization modes are configured here as well, if synchro-
nization is enabled, the communication time step is used as the
synchronization time step. In contrast, each get or set block is
only parameterized by its name and dimension. If the dimension
of a value in the data core does not match the requested size, the
returned data will be truncated or padded with zeros.

One critical feature for a flexible usage of this library is a
robust initialization setup. To ensure that the representation in
the data core is always consistent with the model state in Mod-
elica, the initialization of both get and set blocks is handled in

Modelica. For the set functions the initial value of the input is
simply communicated in an initial equation to the data core. For
the get blocks either an explicit start value can be defined or the
start value can be implicitly defined by the Modelica models and
equations connected to its output.

2.3 Lua Interpreter
The Lua interpreter itself is based on the official sources pro-
vided by the Lua community1. By encapsulating both the Lua
stack and an additional data broker into an external object, each
instance of the Lua block has separate interpreters. Due to the
separation of the Modelica and Lua thread an intermediate data
core is required. On both sides bindings to the data core have
been implemented to enable thread safe access. The correspond-
ing Modelica blocks were shown above. Lua bindings are pro-
vided in an additional Lua library modelica.lua, see Table
1, its functions correspond to the Modelica get and set blocks
as well as additional Modelica interfaces. Get methods in Lua
have an optional dim parameter. If dim is defined and larger
than zero, the returned data will have this dimension and will be
truncated or padded with zeros to match the desired size whereas
if it is not defined or zero, the returned value has the dimension
currently present in the data core.

2.4 Synchronization
The functions sync, wait and wait_until provide means
to synchronize the execution of the Lua code to Modelica. Two
approaches are available. First, a program is executed sequen-
tially and uses the wait and wait_until to perform actions
at predefined times. Both functions block until the required time
has passed:

local t = 0
t = Modelica.time() -- t = 0.0
Modelica.wait_until(10)
t = Modelica.time() -- t = 10.0
Modelica.wait(2)
t = Modelica.time() -- t = 12.0

The wait function can either use simulation or CPU time, with
simulation time as a default. Whereas the wait_until is al-
ways linked to simulation time. Alternatively, the code in Lua
can be structured in loop, where every cycle is synchronized to
a sampled clock in Modelica by using sync:

local t = 0
while(Modelica.sync())
do
-- this loop is executed with
-- the sample time defined in Modelica
t = Modelica.time()
-- t = current simulation time

end

The sync function blocks the Lua thread until the next pulse of
the clock in Modelica, its rate is defined in the parameters of the
Lua block. If the execution of the Lua code takes longer than
the defined sample rate, it is possible to block the execution in
the Modelica thread until the sync function is reached again.

2.5 Lua Libraries
One of the key features of Lua is the ability to use additional
libraries. This enables not only the usage of the extensive Lua

1https://www.lua.org/

General Purpose Lua Interpreter for Modelica

426 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181425

Table 1. Modelica interface functions provide in Lua.

Function Description

sync() synchronizes Lua to Modelica
dt() returns the current Lua time step, only works if sync is used
time() returns the current simulation time in seconds
setReal(name,u) writes a real value or vector u to the data core
setInteger(name,u) writes an integer value or vector u to the data core
setBoolean(name,u) writes a boolean value or vector u to the data core
setString(name,u) writes a single string u to the data core
getReal(name,dim) reads a real value or vector from the data core, dim is optional
getInteger(name,dim) returns an integer value or vector from the data core, dim is optional
getBoolean(name,dim) returns a boolean value or vector from the data core, dim is optional
getString(name) returns a single string from the data core
wait(duration, cpu_time) blocks for a specific duration, either in simulation or cpu time, if

cpu_time is not set it defaults to false
wait_until(time) blocks until the simulation time is reached
print(msg) prints a message with the ModelicaFormatMessage function, usually

to the log file resulting from model execution
terminate(msg) terminates the simulation, equivalent to terminate in Modelica

standard library which already supports basic file system sup-
port, basic math functions, and string manipulations but also
useful features like 3D vector math (Bjorn 2021) or finite state
machines (Conroy 2021). These libraries can be easily added to
the Lua script via the Lua require functionality, which is sim-
ilar to the C/C++ include. This require functionality is also
used to include the Modelica add-on to each loaded Lua script.

2.6 Logging
During the execution of a Lua script, the user can print out mes-
sages over the logging interface. Several output channels can be
used:

• Log messages to a file:

Logger.createFileOutput(title,
filename,append)

• The system console is used for logging:

Logger.createConsoleOutput(title)

• The Modelica message command is used to log to the
Modelica tool:

Logger.createModelicaLogOutput(title)

• A logging window is created to log messages in. (MS Win-
dows only):

Logger.createLogWindow(title,x,y,w,h)

After the initialization, the Logger.log command can be used
to log information in one of the output channels. The channel to
be used is defined by the parameter string title:

Logger.createLogWindow('Lua script log'
,100,100,300,150);

Logger.log('Lua script log', 'Some text
for the console')

It is also possible to add a timestamp at the beginning of the
text or, in case of the log window define different colors via the
severity flag (See Figure 2) or filter the shown messages (errors
only, errors and warnings, all) by setting the verbosity of the log
channel.

Figure 2. Logging window with log messages of varying sever-
ity and timestamps.

3 Examples

3.1 Library Examples

To provide an overview and show the functionalities some of
the library’s simple examples models will be shown here. The
examples in this section would be rather easy to replicate in pure
Modelica but are designed to highlight some of the core features.

The first example, shown in Figure 3, uses a synchronized
Lua script to count the number of times an input value u

exceeds a threshold of 0.5 and output it as y. Once the
counter exceeds five, it is reset to zero. The initial value
of the counter is set in Modelica. The used Lua code:

Session 6A: Interoperability

DOI
10.3384/ecp21181425

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

427

Figure 3. Diagram layer of a simple Lua example. Parameters of the Lua, input and output blocks are shown in more details.

local hysteresis = true
local threshold = 0.5
while(Modelica.sync())
do
local u = Modelica.getReal('u')
local y = Modelica.getInteger('y')
if u > threshold and hysteresis then
y = y + 1
hysteresis = false

elseif u < threshold then
hysteresis = true

end
if y > 5 then
y = 0
end
Modelica.setInteger('y',y)

end

reads out the initial values of the counter an then goes into
a while loop that is synchronized to Modelica with the sync
function. A simple if elseif block increments the counter
ywhen the input u exceeds the threshold. The resulting behavior
is shown in Figure 4.

A second example uses the publicly available finite state ma-
chine implementation by (Conroy 2021). In this example a state
machine switches between its states Green, Yellow, Red and
Black based on thresholds of a single input signal. When the
state Red is entered the counter nAlerts is incremented by
one, once this counter exceeds 20 the final state Black is ac-
tivated. The behavior of the output variable result can be
defined for each state individually. In case of the state Red,
result variable will hold the time since the state became ac-
tive. A variable state is used to communicate the active state
encoded into an integer to Modelica. The Modelica model,
shown in Figure 5 is rather simple and just provides the neces-
sary inputs and outputs. The Lua code first defines the structure
of the state machine based on its state transitions by defining the
event name as well as the start and end of the transition. Op-

0 2 4 6 8 10

Time [s]

0

2

4
u

y

Figure 4. Input u and output y of the simple Lua example.

tionally onEnter, onExit and run functions can be defined
for each sate. This structure and the function definition for the
Red state, as well as the Lua code triggering the events is shown
here:

-- import state machine library
local machine = require('statemachine')
local nAlerts = 0
local tRed = 0 -- time when red becomes

active
-- state machine definition
local fsm = machine.create({
initial = 'Green',
events = { -- event definitions
{ name = 'warn',

from = 'Green',
to = 'Yellow' },

{ name = 'alarm',
from = 'Yellow',
to = 'Red' },

{ name = 'calm',
from = 'Red',

General Purpose Lua Interpreter for Modelica

428 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181425

Figure 5. Input value and outputs result, nAlerts and
state of the simple state machine Lua example

to = 'Yellow' },
{ name = 'clear',
from = {'Yellow','Red' },
to = 'Green' },

{ name = 'panic',
from = 'Red',
to = 'Black'},

},

callbacks = { -- callback definitions

-- define function when Red becomes
active

onenterRed= function()
Modelica.print('Entering Red')
nAlerts = nAlerts + 1
Modelica.setInteger('nAlerts',nAlerts)
Modelica.setInteger('state',3)
tRed = Modelica.time()

end,

-- define function when Red becomes
inactive

onleaveRed = function()
Modelica.print('Leaving Red')

end,

-- define function while Red is active
runRed = function()
result = Modelica.time() - tRed

end,

-- callback definitions for other states
skipped

}})
-- state machine fully defined
-- main loop, executed in sync with

Modelica
while(Modelica.sync())
do
local value = Modelica.getReal('value')
-- trigger events
if nAlerts > 20 then
fsm:panic()

elseif value > 0.9 then
fsm:alarm()

elseif value > 0.5 then
fsm:warn()

elseif value < 0.0 then

fsm:clear()
elseif value < 0.5 then
fsm:calm()

end
fsm:run() -- executes run of active

state
Modelica.setReal('result',result)

end

In this case the state transitions are triggered by different
thresholds of the input value. The fsm:run() call exe-
cutes the run function associated with the active state. Since
the Modelica.print() function is called in every states’
onenter and onleave functions, the state-machine behavior
can be observed in the log generated by Modelica:

Lua[Example] @0.085: Leaving Green
Lua[Example] @0.09: Entering Yellow
Lua[Example] @0.18: Leaving Yellow
Lua[Example] @0.185: Entering Red
Lua[Example] @0.42: Leaving Red
Lua[Example] @0.425: Entering Yellow
...

Lua[Example] @20.18: Leaving Yellow
Lua[Example] @20.185: Entering Red
Lua[Example] @20.185: Leaving Red
Lua[Example] @20.19: Entering Black

Alternatively the previously described logger could be used in a
similar manner.

3.2 DLR Robots Library
The DLR Robots Modelica library was the first one to use Lua to
control the movements of a simulated robot (Bellmann, Seefried,
and Thiele 2020). However, in the version presented then, the
library was an integral part of the robot controller C code and
could not be used for other purposes. With the separation of
the Lua interpreter code in a stand-alone Modelica library, the
Robots library had to be adapted to utilize this new generalized
approach. The basic principle for controlling the robot stays the
same:

A movement command, e.g. a point-to-point (PTP) request,
sets a status flag (Robot Command State) and the desired tar-
get position in the virtual robot controller, the Modelica model
simulates the movement, while the Lua script waits until the ex-
ecution of the command is finished (Figure 6).

The major difference now is that the data is no longer stored
in a special robot controller code but in the data storage of the
ModelicaLua interpreter external object. Furthermore, the com-
mands for the robot are no longer hard-coded functions defined
in the compiled C interpreter but now defined in a small Lua
script using the commands from Table 1. For example, the com-
mand to move a robot on a Cartesian path from its current posi-
tion to the position (x,y,z,A,B,C) is defined like this:

Robots.ptpCartesianSpace =
function(x,y,z,A,B,C)
Modelica.setReal('brl_pos_ref',

{x,y,z,A,B,C})
Modelica.setInteger(

'brl_robotCommandState',
Robots.PTPCARTESIAN)

Robots.waitForRobot()
end

Session 6A: Interoperability

DOI
10.3384/ecp21181425

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

429

triggers

triggers

Start Robot Movement
from current position to

POS

(RobotCommand
State == IDLE?

Modelica Simulation

Wait for robot
command

Set
RobotCommandState to

IDLE

Movement finished

Command call: PTP
Cartesian to POS

Set
RobotCommandState to

PTPCARTESIAN

Set Reference Cartesian
Position to POS

Wait for robot to finish
its movement

(RobotCommand
State == IDLE?

Call next command

LUA Interpreter

no

yes

no

yes

Figure 6. Principle of how the execution of movement com-
mands is performed, from (Bellmann, Seefried, and Thiele
2020).

This allows the user to easily integrate new commands in the
robot controller script language, or modify the existing one. Fig-
ure 7, from (Reiser 2021), shows a simulation visualization of
two Mitsubishi RV7-FL robots, performing an assembly task.
In this use-case, two Lua interpreters run in parallel, each pro-
viding a single robot with the movement commands to perform
its task. Additionally, Lua script commands are used to operate
the robot tools, e.g. controlling the gripper.

3.3 MMX Rover Development
A second example for the usage of the Lua library is in the devel-
opment of the MMX rover (Ulamec et al. 2019; Bertrand et al.
2019; Buse et al. 2021). This rover, jointly developed by CNES
and DLR, will fly with JAXA’s MMX mission to the Martian
moon Phobos. There, it will be dropped onto the surface and
will come to rest in a random orientation. Once it has come to
rest, it has to unfold its legs in the correct order, to reorient itself
on its belly and stand up. This sequence, called up-righting by
the development team, must work reliably in a variety of situa-
tions. A simple example of the rover up-righting itself from its
back to the belly is shown in Figure 8.

The algorithm for controlling the up-righting sequence must
be developed and tested. Implementing this complex, nested
state machine with the Modelica state machine would be com-
plicated and would also require recompiling the model after each
change. With the Modelica Lua library, it is possible to test dif-
ferent variations of the algorithm quickly. Since the script is
loaded from disk, the same compiled model of the rover system

Figure 7. Two robots performing an assembly task programmed
by Lua scripts, see (Reiser 2021)

Figure 8. Visualization of the MMX up-righting sequence,
shown from top left, to bottom right

can be used to launch a multitude of instances with different,
random initial conditions to analyze the algorithm’s robustness.
Mechanical components of the rover as well as its interaction
with the environment are modeled with the DLR Rover Simula-
tion Toolkit (Hellerer, Barthelmes, and Buse 2017).

The Lua code used in this application performs multiple
tasks. First, the control functions specific to the rover itself
are abstracted in a separate Lua library. This enables a very di-
rect and comprehensive approach to program the rover actions.
Based on this, the high level logic of the rover is modeled as a
state machine using the same approach as in the example above.
The state machine controlling the rover has 36 unique states and
46 transitions in total. The StandUp state is used as an exam-
ple here. This state becomes active once the rover successfully
reoriented itself onto its belly and is now ready to stand up. This
corresponds to the transition from bottom-right to bottom-left in
the Figure 8. When the state becomes active, the onStandUp
function is called once, with the interface of the rover abstracted
into Rover a predefined angle and velocity is commanded:

onStandUp = function()
Rover:setTargetLegVelocity(

Rover.standupVelocity)
Rover:setTargetLegAngles(

Rover.legStandingAngles)
end

While the StandUp state is active, the runStandUp function
is called periodically, here a timer and the rover interface are
used to wait 15 seconds once the legs have reached the com-
manded target:

General Purpose Lua Interpreter for Modelica

430 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181425

runStandUp = function()
if not Rover:legsAtTarget() then
timer:reset()

elseif timer:elapsed() > 15 then
uprighting:Standing()

end
end

Once this condition is met, the next transition in the state ma-
chine is triggered by uprighting:Standing().

Other than controlling the rover itself, the Lua code also reads
initial configuration parameters and logs internal states to disk.
With the results of both Modelica and the Lua scripts, a statisti-
cal analysis of the systems behavior is performed. For example,
causalities between specific situations in the mechanical system
and behavior of the control logic could be identified.

4 Conclusions
The presented Modelica Lua library allows easy and fast inte-
gration of high-level logic into Modelica. The simple interface
makes integration into existing models easy. The library devel-
oped from the initial implementation in the DLR Robots library
has been extended and generalized and has proven its useful-
ness especially in the development of the MMX up-righting al-
gorithm. By providing access to existing third-party libraries in
Lua, a language widely used in game development, a wide range
of powerful tools is now available to be used in Modelica. It is
planned to release this library with an open source license to
make it available to the public.

References
Bellmann, Tobias, Andreas Seefried, and Bernhard Thiele

(2020). “The DLR Robots library – Using replaceable pack-
ages to simulate various serial robots”. In: Proceedings
of the Asian Modelica Conference 2020. DOI: 10 . 3384 /
ecp2020174153.

Bertrand, Jean et al. (2019). “Roving on Phobos: Challenges of
the MMX Rover for Space Robotics”. In: Proceedings of 15th
Symposium on Advanced Space Technologies in Robotics and
Automation.

Bjorn (2021). Lua vector math library. https : / / github . com /
bjornbytes/maf. [Online; accessed 3-May-2021].

Blockwitz, Torsten et al. (2012). “Functional mockup interface
2.0: The standard for tool independent exchange of simula-
tion models”. In: Proceedings of the 9th International Mod-
elica Conference. DOI: 10.3384/ecp12076173.

Buse, Fabian et al. (2021). “Wheeled locomotion in milli-
gravity: A technology experiment for the MMX Rover (ac-
cepted)”. In: 72th International Astronautical Congress. In-
ternational Astronautical Federation.

Conroy, Kyle (2021). LUA state machine library. https://github.
com / kyleconroy / lua - state - machine. [Online; accessed 3-
May-2021].

Hellerer, Matthias, Stefan Barthelmes, and Fabian Buse (2017).
“The DLR Rover Simulation Toolkit”. In: Proceedings of
Advanced Space Technologies in Robotics and Automation
2017. ESA’s Automation and Robotics group.

Reiser, Robert (2021). “Object Manipulation and Assembly in
Modelica”. In: Proceedings of the 14th International Model-
ica Conference 2021.

Ulamec, Stephan et al. (2019). “A rover for the JAXA MMX
Mission to Phobos”. In: 70th International Astronautical
Congress. International Astronautical Federation.

Session 6A: Interoperability

DOI
10.3384/ecp21181425

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

431

432 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Object Manipulation and Assembly in Modelica

Robert Reiser1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{firstname.lastname}@dlr.de

Abstract
This paper introduces a new library for the manipulation
and assembly of 3D objects using Modelica. The method
is based on collision detection, contact dynamics, position
and orientation control as well as states for object manip-
ulation. The aim is a stable and efficient simulation of
these processes close to real physics. 3D objects (both el-
ementary shapes and CAD objects) can be added from the
library browser to a model by drag-and-drop and are di-
rectly capable of being manipulated by multiple grippers
and conveyors or being assembled to an assembly. This
allows a high degree of flexibility and the modeling effort
can be decreased significantly.
Keywords: manipulation, grasping, gripper, assembly,
collision detection, contact dynamics, state machine

1 Introduction
The manipulation and assembly of objects is widely used
in multiple domains (e.g. in the production industry). This
leads to a high relevance for the modeling and simulation
of these processes. However, current simulation tools are
either specialized standalone software with restricted flex-
ibility (Miller and Allen 2004; León et al. 2010) or em-
bedded in plant planning software and therefore limited
to this specific domain (Kühn 2006). On the other hand,
the object-oriented modeling language Modelica (Model-
ica Association 2017) offers cross-domain flexibility.

In the work of Ferretti et al. (2006), a gripper was mod-
eled and simulated using the Modelica Multibody Library
(Otter, Elmqvist, and Mattsson 2003). The Modelica Con-
tact Library of Oestersötebier, Wang, and Trächtler (2014)
aims at the idealized simulation of contacts with non-
central contact blocks. In both works, the contact pairs are
pre-defined in the model. Therefore, an object cannot be
grasped by multiple grippers and can only be placed on the
same ground. Elmqvist et al. (2015) introduced a frame-
work for multibody contacts in Modelica using the dis-
crete element method where objects interact without pre-
defined connections. However, due to their complexity, all
models are not well suited for real time simulations.

The new solution presented in this paper aims at the
stable simulation of manipulation and assembly processes
in real-time close to real physics. The contact dynamics
model is therefore simplified and only used for the con-
tact between object and ground or conveyor and the initial
contact between object and gripper jaws. The stable con-

tact between object and gripper or within assemblies is
achieved by a "fixed connection" (nstead of contact forces
and torques (see subsection 3.3). 3D objects can be added
to a model without any pre-defined connection and are di-
rectly capable of being manipulated or assembled.

The developed library (which is currently only used in-
ternally) combines the flexibility of a non-causal, object-
oriented Modelica multi-body environment with the per-
formance of a collision detection algorithm in a linked
C library. Precise simulations of the contact and fric-
tional forces or multipoint contacts are out of the scope
of this work. However, the library is modular and can be
extended in multiple ways, e.g. adding precise physical
models for object contact.

The following section gives an overview of the library
including the blocks which can be used for modeling and
information about the usage of the library. Section three
deals with the models and algorithms including contact
detection, contact dynamics, hold control and manipula-
tion logic. The next section presents the concepts of object
manipulation and assembly.

In addition, two applications are shown, one for the ob-
ject manipulation and one for the assembly of an object.
In conclusion, the advantages and disadvantages of the so-
lution as well as future developments are discussed.

2 Overview
The first part of this section is about the available blocks
and the second part about the usage of the library. Figure 1
shows the structure of the library.

Figure 1. Overview of the library structure.

DOI
10.3384/ecp21181433

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

433

2.1 Blocks
The available blocks are shown in Figure 2 (visualization)
and 3 (model) and introduced in the following subsections.

2.1.1 Grippers

The TwoJawGripper is a simple gripper with two jaws
(it is possible to model grippers with more than two jaws).
It can be attached to a robot. The following parameters
can be set by the user. vMax is the maximum speed of the
jaws for closing and opening. jawPenMax defines the
maximum penetration depth for the jaws. Once the jaws
have contact to the manipulated object, the velocity is re-
duced in relation to the penetration until the given max-
imum penetration is reached. The graspDuration is
the time period after which the grasping transitions from
jaw contact to stable grasping and therefore the jaws will
stop the movement. There are two input states: close (jaws
move inwards with the maximum velocity) and open (jaws
move outwards with the same velocity). The gripper only
contains a kinematic model, i.e. the gripper and its jaws
are free of forces and torques.

2.1.2 Manipulated objects

The main object is the BoxManipulatedObject. It
is a cuboid whose dimensions dim can be defined by
the user. Additional parameters are the start position
rStart, the start orientation anglesStart, the mass
m and the inertia tensor as well as visualization proper-
ties. If useJawContact is true, the contact forces and
torques caused by the jaws are used for the duration de-
fined in graspDuration (only for the object and not
for the gripper). If false, the object is directly attached to
the gripper (close to real physics, see section 3).

The object can be used both as cuboid and as CAD ob-

Figure 2. Visualization of Modelica blocks for object manip-
ulation and assembly: TwoJawGripper (attached to robot),
Table (bottom right), BoxManipulatedObject (on top of
the table) and Conveyor (left).

Figure 3. Modelica model with robot, TwoJawGripper,
Table, BoxManipulatedObject and Conveyor.

ject. For the latter, the CAD object is only used for visual-
ization, i.e. the cuboid is still used for contact. Therefore,
it is possible to manually set the surface for grasping (e.g.
only a part of the CAD object is covered by the cuboid).

2.1.3 Ground objects
The Table can be used as a ground object and is param-
eterized by the dimensions dim and visualization proper-
ties. The BoxManipulatedObject can be placed on
a Table, which does not use forces and torques.

2.1.4 Conveyors
For the movement of objects, the Conveyor model can
be used. It is also free of forces and torques and rep-
resents a moving belt which leads to a relative veloc-
ity of the BoxManipulatedObject. The resulting
friction forces and torques move the object. The user
can set the parameters units (number of belt elements),
velocity, the belt dimensions, the frame dimensions
and visualization properties. It can be placed horizontally
or oblique to the ground. It is capable of moving objects
upwards within a angle which depends on the contact pa-
rameters set for the BoxManipulatedObject.

2.2 Usage
Blocks can be added from the library browser to a model
by drag-and-drop. There are no connections between the
objects in the model because contacts are not pre-defined.
All objects are directly capable for manipulation or as-
sembly. For the BoxManipulatedObject, the start
position and the start angles have to be defined. The ini-
tial position must be on top of a Table or Conveyor.
An initialization within a closed gripper is planned, but
not yet implemented. The parameter useJawContact
is true by default.

The TwoJawGripper has to be attached to a robot.
If the graspDuration (i.e. the period after the activity
transitions from jaw contact forces to stable grasping) is
changed, it must be changed both for the gripper and the
BoxManipulatedObject.

Object Manipulation and Assembly in Modelica

434 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181433

3 Models and algorithms
This section shows the main models and algorithms used
for the manipulation and assembly of objects. At first, the
contact detection concept is introduced. In addition, the
models for object forces and hold control are explained.
The last subsection contains the manipulation logic.

3.1 Contact detection with libccd
The contact detection of the presented Manipulation li-
brary is done by libccd, a library for the calculation of
collisions and penetrations between objects (Fiser 2018).
It is written in C, open source under the 3-clause BSD li-
cense (Open Source Initiative 2020) and implements the
following contact detection algorithms:

• Gilbert-Johnson-Keerthi (GJK)

• Expand-Polytope-Algorithm (EPA)

• Minkowski Portal Refinement (MPR)

For the purpose of this paper, the MPR algorithm is used
because it is more stable.

Minkowski Portal Refinement is a collision detection
algorithm developed by Gary Snethen (Snethen 2008). It
is similar to the GJK algorithm.

Both are limited to convex shapes and use the
Minkowski difference which can be described as "the re-
gion swept by Object A translated to every point negated
in Object B" (Serrano 2016). It is widely used in colli-
sion detection because the location of the origin indicates
if both objects collide. If the Minkowski difference in-
cludes the origin, there is a collision. (Serrano 2016)

The MPR algorithm also uses the Support Function,
which is a "function that takes a convex hull (or convex
polygon) and a support vector representing a direction of
search. The function returns the point on the body that is
farthest in the sense of a plane sweep using the support
vector" (Newth 2013).

The MPR algorithm in 2D can be described as follows
(Snethen 2008; Newth 2013) and is shown in Figure 4.
In general, it consists of two phases: portal discovery and
portal refinement.

The portal discovery starts from the Minkowski differ-
ence between two objects and the origin O (Figure 4a).

• The phase begins with the definition of an interior
point V0 within the Minkowski difference (e.g. the
geometric center). The origin ray is then defined as
the ray from V0 to O (Figure 4b).

• With the origin ray, the first support point V1 is de-
termined based on the support function. The second
support point V2 is discovered by a ray perpendicular
to the vector from V0 to V1 (Figure 4c, 4d).

• The support points V1 and V2 are now defining a
portal. If the origin passes through this portal, the al-
gorithm continues with the second phase. If not, the

Figure 4. Phases of the MPR algorithm (Snethen 2008). The
initial portal is discovered so that the ray from the interior point
V0 to the origin O passes through (V1 and V2 define the initial
portal). This portal is then refined until the origin is on the inside
of the portal (V1 and V2 (new) define the final portal). The shape
represents the Minkowski difference between two objects.

process above continues with finding a new support
point in normal direction to the portal (Figure 4e, 4f).

The portal refinement starts from an initial portal.

• It is checked, if O is inside the portal. If this is not
the case (Figure 4f), the portal will be refined.

• A normal perpendicular to the current portal is cre-
ated to find the next support point V3 and a new por-
tal is created (Figure 4g, 4h).

• This step is repeated until O is inside the portal (Fig-
ure 4i).

The MPR algorithm in 3D is similar with the portal be-
coming a triangle instead of a line segment. Based on the
MPR algorithm, libccd is able to determine if two objects
collide and if so to calculate the position, direction and
maximum depth of the collision.

The interface between libccd and Modelica is based on
unpublished work of Hellerer (2019). With this library it
is possible to define the mentioned object types in Model-
ica and perform collision detection in Modelica based on
libccd.

In addition, the unpublished library of Buse (2021) adds
collision groups and the memory handling on C, which
enables the usage of collision objects in Modelica models
by drag-and-drop.

In the context of object manipulation, the contact detec-
tion is limited to a single contact, i.e. an object can collide

Session 6A: Interoperability

DOI
10.3384/ecp21181433

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

435

BoxManipulatedObject

Table

Ground contact objectFnormal

Figure 5. Contact between BoxManipulatedObject
and Table based on the contact dynamics model. The
BoxManipulatedObject contains an object for ground
contact (green dotted, invisible in simulation visualization) with
larger dimensions to compensate the lower stiffness necessary
for fast simulations.

with multiple other objects, but only the contact with the
maximum depth is transferred to Modelica.

3.2 Contact dynamics model
This model is used for forces and torques between objects,
both for ground contact (object is placed on a table or con-
veyor) and jaw contact (interaction between jaws and the
grasped object).

The libccd uses support functions which are defined by
the geometry of the shapes during the initialization of the
simulation. During simulation, the current position, ori-
entation and velocity of all collision objects are constantly
transferred to the libccd. In return, information about the
collision are transferred to Modelica. These are the posi-
tion, direction and depth of a collision.

The contact dynamics model is simplified so that a fast
and stable simulation close to real physics is possible. The
normal force is based on a spring-damper-model:

Fnormal = k · spenetration +d · vpenetration (1)

where spenetration is the penetration depth and vpenetration
the velocity of the penetration. The spring constant k and
the damping constant d are set by the user. For the calcu-
lation of the friction force, the simplified Coulomb friction
model from (Andersson, Söderberg, and Björklund 2007)
is used:

Ff riction = µ ·Fnormal · sign(vtangential) (2)

which is simplified to

Ff riction = µ ·Fnormal · tanh(ktanh · vtangential) (3)

where µ is the coefficient of friction and vtangential the tan-
gential velocity. For simulation performance, sign() is re-
placed by tanh(), scaled by the coefficient ktanh.

Since hard contacts decrease the performance of the
simulation significantly, it is possible to use soft contact

parameters, i.e. lower stiffness (e.g. for ground contact).
To prevent objects from sinking in the ground when soft
contacts are used, the dimensions for the contact object
can be extended which compensates for the lower stiffness
and leads to visualizations close to reality. The dimension
for the ground contact object dimground is calculated by:

dimground = dim+
m ·g

k
·

2
2
2

 (4)

where dim is the dimension, m the mass and k the the
spring constant of the BoxManipulatedObject.

The BoxManipulatedObject contains three con-
tact dynamics models for ground and both jaw contacts,
each with its own collision object. Therefore, the contact
parameters can be set specifically for each contact. Fig-
ure 5 shows the BoxManipulatedObject and its col-
lision object for ground contact. The larger dimension of
the ground contact object compensates the lower stiffness
of the contact. The jaw contact objects are similar to the
ground contact object (see Figure 6). Each contact object
generates a force and torque which are summarized in the
BoxManipulatedObject.

3.3 Hold control
The hold control generates a "fixed connection" between
two objects and is used for stable grasping and stable as-
sembly. The concept consists of two objects:

• A low-level object (LLO) which is held by the top-
level object. It contains a controller for position and
orientation control.

• The top-level object (TLO) which is only necessary
for collision detection.

BoxManipulatedObject

Table

Jaw

Jaw contact objects

Gripper

FJawA FJawB

Figure 6. Contact between BoxManipulatedObject and
TwoJawGripper based on the contact dynamics model. The
BoxManipulatedObject contains one object for each jaw
contact (blue dotted, invisible in simulation visualization).

Object Manipulation and Assembly in Modelica

436 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181433

Table

Top-level object (TLO)

Gripper

BoxManipulatedObject

Low-level object (LLO)

r0

rBox

rGripper

Figure 7. Hold control used for the gripper. The LLO (invisi-
ble in simulation visualization) gets the position and orientation
from the TLO (invisible in simulation visualization). Based on
the initial difference (r0), the target position and orientation is
calculated and a PI-controller is used to keep the object there.

The procedure can be described as follows:
At first, the collision detection is disabled for the TLO.

Then it is moved into the LLO to get a penetration. From
the moment the LLO object should be held in place by
the TLO (i.e. the gripper closes), the ability of the TLO
to collide is activated. The LLO recognizes a collision
and stores the initial difference in position and orientation
between both objects:

r0 = TGripper · (rBox − rGripper) (5)

T0 = TBox ·TGripper
T (6)

where rBox is the position and TBox the rotation matrix of
the box. From the moment the gripper begins to close, the
LLO recieves continuously the position (rGripper) and ori-
entation (TGripper) of the TLO. Based on this information
and the stored initial difference, it is possible to calculate
the target position and orientation for the object:

rTarget = rGripper +TGripper
T · r0 (7)

TTarget = T0 ·TGripper (8)

A PI-controller and a gravity compensation for the
weight are finally used to keep the LLO in the target posi-
tion and orientation.

The forces and torques are only present in the low-level
object: in the grasped object (not in the gripper) and in the
sub-assembly (not in the assembly).

Figure 7 shows the application of the hold control
model for a gripper. The TwoJawGripper contains a
TLO. It is invisible in the visualization and penetrates the
BoxManipulatedObject, which contains the LLO.

3.4 Manipulation logic
The manipulation logic is used to switch between the
states of a BoxManipulatedObject. There are the
following states (see Figure 8):

1. GroundContact (initial state): The object can
be placed on a ground object (e.g. Table) or a
Conveyor.

2. JawContact (grasping part with jaw interaction
until hold control is used): Both ground contact
forces and jaw contact forces are used. This state
is only used if useJawContact is true.

3. Grasping (based on hold control): The object is at-
tached to the TwoJawGripper based on hold con-
trol for position and orientation. The transition from
state 2 to state 3 is done if the graspingTime is
over or if the grasping is stable (minimum relative
rotation and movement between jaw and object).

4. Assembly: Is used if the object is placed in an as-
sembly and grasping is over. Grasping is always
higher prioritized than Assembly.

5. Delay (between Assembly and Grasping):
This is necessary for the following condition:

• The object is part of an assembly.
• Assembly and object are grasped by a gripper.
• useJawContact is enabled.

In this case, the object would normally be instantly
controlled by the gripper. This delay holds the ob-
ject in Assembly state until JawContact for the
assembly is done. This state is necessary, if e.g. the
basis of an assembly is slightly rotated by the jaws:
all parts of the assembly have to be rotated as well.

The transitions between the states (shown in Figure 8) are
defined as follows:
a := graspingActive and useJawContact and

not stableGrasping and not
assemblyActive

b, c, f, g := graspingActive and (not
useJawContact or useJawContact and ((
stableGrasping or (time >=
graspInitTime + graspDuration))))

GroundContact Grasping Assembly

JawContact Delay
a b

c d

ef

gh

Figure 8. Manipulation states and their transitions.

Session 6A: Interoperability

DOI
10.3384/ecp21181433

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

437

d := not graspingActive and assemblyActive
e := graspingActive and useJawContact and

not stableGrasping and assemblyActive
h := not graspingActive and not

assemblyActive

4 Object manipulation and assembly
In this section, the concepts of object manipulation and
assembly are shown. This includes the placement of ob-
jects on ground and on conveyors, grasping objects with
grippers and the assembly of objects.

4.1 Object placement on ground
A BoxManipulatedObject contains a ground con-
tact object with the underlying contact dynamics model.
Based on this, the object can be placed on a Table as
mentioned in subsection 3.2 and shown in Figure 5.

4.2 Object transport with conveyors
The same model is used if the object is placed on
a Conveyor. The only difference is the velocity
of the Conveyor which leads to a movement of the
BoxManipulatedObject (see subsubsection 2.1.4).
Conveyors can be attached together. The subsequent

conveyor has to be slightly lower relative to the previous
one to avoid the BoxManipulatedObject from being
stuck between both Conveyors.

4.3 Object grasping with grippers
An object can be grasped by all TwoJawGrippers.
The BoxManipulatedObject contains two jaw con-
tact objects to apply forces and torques from both gripper
jaws (see subsection 3.2).

In addition, hold control is used for a stable connection
between object and gripper as explained in subsection 3.3.

A transfer of a BoxManipulatedObject from one
TwoJawGripper to another is possible to cover a wide
range of applications.

R

S G

A

Figure 9. Assembly with sub-assembly. R is assembled to S and
both S and G are assembled to A. The vectors are showing the
position differences between the object origins.

4.4 Object assembly
The assembly of objects is based on the same principle
as grasping, namely the hold control concept introduced
in subsection 3.3. The BoxManipulatedObject con-
tains a TLO and a LLO for assembly.

If two objects are assembled, one object must be de-
fined as base and the other one as module. The user has to
enable the TLO for the base and the LLO for the module.
Then it is possible to "attach" the module to the base.

The same applies if two modules are assembled to a
base. Both modules need an activated LLO and the base
represents the TLO for the hold control model.

For the representation of sub-assembly processes,
the definition of the TLO and LLO is more compli-
cated. Therefore, collision groups are used. For each
collision object, assemblyCollisionGroups and
assemblyIncludedGroups can be defined.

The concept is demonstrated with an example contain-
ing four objects: gray rod (R), orange sub-assembly box
(S), green box (G) and main assembly (A) (see Figure 9).

The following collision groups are defined:

R.assemblyCollisionGroups = {""}
R.assemblyIncludedGroups = {"SubAssembly"}
S.assemblyCollisionGroups = {"SubAssembly"}
S.assemblyIncludedGroups = {"Assembly"}
G.assemblyCollisionGroups = {""}
G.assemblyIncludedGroups = {"Assembly"}
A.assemblyCollisionGroups = {"Assembly"}
A.assemblyIncludedGroups = {""}

This means:

• R is a LLO in relation to S

• S is a TLO in relation to R and a LLO regarding A

• G is a LLO in relation to A

• A is a TLO in relation to S and G

Figure 9 shows the assembly for the example. The vec-
tors are showing the initial position differences used for
the hold control model. To manipulate an entire assembly,
the TwoJawGripper can only grasp the base object and
not the sub-assemblies. If a TwoJawGripper grasps a
sub-assembly, it can be disassembled.

5 Applications
In this section one example for object manipulation and
one for assembly are shown. The simulations are visu-
alized with the DLR Visualization 2 Library (Kümper,
Hellerer, and Bellmann 2021).

5.1 Object manipulation
In this example, objects are manipulated with grippers (at-
tached to robots) and Conveyors. The model is shown
in Figure 10 and the visualization illustrated in Figure 11.
There are the following objects:

• Orange box on front table (O)

Object Manipulation and Assembly in Modelica

438 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181433

Figure 10. Modelica model for the manipulation of three objects
(O, G and B) with robots, grippers and conveyors.

• Green box on front table (G)

• Blue box on back table (B)

At first, the robot in the front grasps object G and places
it on the right of the same Table. The initial orienta-
tion of G is rotated 8 degrees to the lateral surface of the
Table. Since the gripper is held in an orthogonal ori-
entation above the object, the jaws force the object into
the orientation of the gripper. Therefore, G will be placed
in a perfect orientation on the Table. Meanwhile, the
robot in the back moves B to the position between the two
robots in the back. The object is then handed over to an-
other robot (Figure 11 (middle)), while G is moved to the
back Table and O to the right of the Table. Object O
is rotated in the beginning as well. Finally, B is placed
on the Conveyor and moves back to the front, onto the
other Conveyor and then to the Table. The end of the
sequence is shown in Figure 11 (bottom).

The model was tested in Dymola 2020 (64-bit) on Win-
dows 10 on a Intel® Xeon® W-2135 workstation. A Rk-
fix2 solver with the fixed step of 0.001 was used. The
"CPU-time for integration" for the 40 s simulation was
19.1 s. Therefore the model is real-time capable.

5.2 Assembly of an object
This example is the same as mentioned in sub-
section 4.4. It shows the assembly of a mod-
ule cosisting of multiple BoxManipulatedObjects
with TwoJawGrippers and robots including a sub-
assembly. The model is shown in Figure 12. The initial
setting is visualized in Figure 13 (top). There are the four
objects R, S, G and A.

The first step is to assemble the rod into the sub-
assembly box. This is done by the left robot. Then both S
and G are assembled to the main assembly by both robots.

Finally, the right robot is able to grasp the entire assem-
bly as shown in Figure 13 (bottom) and to move it to the
second Table in the back.

In this example, the hold control model is used for
grasping and for assembly. R is "attached" to S in the
same way as a box is "attached" to a gripper. S and G are
connected to A similarly.

The same settings as in subsection 5.1 are used to sim-
ulate the model. The 40 s simulation took 14.5 s for inte-
gration, i.e. the model is real-time capable as well.

Figure 11. Manipulation of multiple objects with Grippers
and Conveyors with start (top), object handed over from one
robot to another (middle) and end of sequence (bottom).

Session 6A: Interoperability

DOI
10.3384/ecp21181433

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

439

Figure 12. Model for the assembly of the objects S, R, A and G.

Figure 13. Assembly of an object including a sub-assembly.
The grey rod is assembled to the orange box and both the sub-
assembly and green box are assembled to the blue base box.

6 Discussion
The successful application of the library for object ma-
nipulation and assembly was demonstrated in the previ-
ous section. Both mentioned models (Figure 10, 12) are
real-time capable. The simulation speed depends on the
number of manipulated objects in the model. Real-time
simulations are currently possible for models with up to
20 objects (depending on the number of robots, grippers,
conveyors and tables in the model). However, the library
still has restrictions and limitations:

• The contact detection algorithm is limited to one
contact, therefore an object can be placed on a ta-
ble but it is not possible to place another object on
top of the former object.

• If an assembly is grasped by a gripper, both the grip-
per and the base-object of the assembly must have
contact (i.e. it is not possible to grasp an assembly
by grasping a sub-assembly of the assembly).

• There are no forces and torques on top level. There-
fore, it is not possible to use the library for robot dy-
namic simulations.

Possible future developments are:

• Forces and torques for the top-level object (e.g. grip-
per) in the hold control model.

• Maximum hold force in the gripper. If the force ex-
ceeds the maximum, the connection will be disabled.

7 Conclusion
The combination of the non-causal, object-oriented Mod-
elica multi-body environment and the performant MPR
collision detection algorithm in C are the basis for a new
solution to the modeling and simulation of manipulation
and assembly processes. The real-time capability and sta-
bility were demonstrated in two use cases.

Blocks for manipulated objects, grippers, conveyors
and tables can be added from the library browser to a
model by drag-and-drop. This allows a low modeling ef-
fort with a high flexibility at the same time. The blocks
can be combined with all libraries in the Modelica envi-
ronment. Therefore, this library lays the foundation for
plant simulation on multiple levels of detail.

Acknowledgements
I would like to thank Tobias Bellmann for fruitful discus-
sions regarding the library, Fabian Buse for valuable dis-
cussions about and providing models for contact detec-
tion and contact dynamics, Matthias Hellerer and Bern-
hard Thiele for help with Modelica, Patrick Weber for pro-
viding the basis for the conveyor and Sebastian Kümper
for help with the visualization (all DLR).

This work benefited from the MFlex 2025 project
founded by the German Federal Ministry for Economic
Affairs and Energy (BMWi).

Object Manipulation and Assembly in Modelica

440 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181433

References
Andersson, Sören, Anders Söderberg, and Stefan Björklund

(2007). “Friction models for sliding dry, boundary and
mixed lubricated contacts”. In: Tribology International 40.4.
NORDTRIB 2004, pp. 580–587. DOI: 10 . 1016 / j . triboint .
2005.11.014.

Buse, Fabian (2021). ContactDynamics. Modelica Library. Un-
published work.

Elmqvist, Hilding et al. (2015). “Generic Modelica Framework
for MultiBody Contacts and Discrete Element Method”. In:
Proceedings of the 11th International Modelica Conference,
Versailles, France, September 21-23, 2015. The 11th Inter-
national Modelica Conference. Linköping Electronic Con-
ference Proceedings. Linköping University Electronic Press,
pp. 427–440. DOI: 10.3384/ecp15118427.

Ferretti, Gianni et al. (2006). “Modelling and simulation of a
gripper with Dymola”. In: Mathematical and Computer Mod-
elling of Dynamical Systems 12.1, pp. 89–102. DOI: 10.1080/
13873950500071405.

Fiser, Daniel (2018). libccd. Library for collision detection be-
tween two convex shapes. URL: https : / /github.com/danfis/
libccd (visited on 2020-04-28).

Hellerer, Matthias (2019). CollisionDetection. Modelica Li-
brary. Unpublished work.

Kühn, Wolfgang (2006). Digitale Fabrik. Fabriksimulation für
Produktionsplaner. 1. Aufl. München and Wien: Carl Hanser
Fachbuchverlag. 495 pp. ISBN: 978-3-446-40619-3.

Kümper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021). “DLR Visualization 2 Library - Real-Time Graphical
Environments for Virtual Commissioning”. In: 14th Interna-
tional Modelica Conference 2021. Ed. by Martin Sjölund et
al.

León, Beatriz et al. (2010). “OpenGRASP: A Toolkit for Robot
Grasping Simulation”. In: International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots.
Springer, pp. 109–120. DOI: 10 .1007 /978- 3 - 642- 17319-
6_13.

Miller, Andrew T. and Peter K. Allen (2004). “Graspit! A Ver-
satile Simulator for Robotic Grasping”. In: IEEE Robotics
& Automation Magazine 11.4, pp. 110–122. DOI: 10.1109/
MRA.2004.1371616.

Modelica Association (2017). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.4. Tech. Rep. Linköping: Modelica Associa-
tion. URL: https://modelica.org/documents/ModelicaSpec34.
pdf.

Newth, Joshua (2013). “Minkowski Portal Refinement and
Speculative Contacts in Box2D”. Master’s Thesis. San Jose
State University. URL: http://www.cs.sjsu.edu/faculty/pollett/
masters/Semesters/Spring12/josh/joshua_newth.pdf.

Oestersötebier, Felix, Peng Wang, and Ansgar Trächtler (2014).
“A Modelica Contact Library for Idealized Simulation of In-
dependently Defined Contact Surfaces”. In: Proceedings of
the 10th International Modelica Conference, March 10-12,
2014, Lund, Sweden. the 10th International Modelica Con-
ference, March 10-12, 2014, Lund, Sweden. Linköping Elec-
tronic Conference Proceedings. Linköping University Elec-
tronic Press, pp. 929–937. DOI: 10.3384/ecp14096929.

Open Source Initiative (2020). The 3-Clause BSD License. URL:
https://opensource.org/licenses/BSD-3-Clause.

Otter, Martin, Hilding Elmqvist, and Sven Erik Mattsson (2003).
“The New Modelica MultiBody Library”. In: Proceedings

of the 3th International Modelica Conference (Linköping,
Sweden). Ed. by Peter Fritzson, pp. 311–330. URL: https :
//modelica.org/events/Conference2003/papers/h37_Otter_
multibody.pdf.

Serrano, Harold (2016). Visualizing the GJK Collision detec-
tion algorithm. URL: https://www.haroldserrano.com/blog/
visualizing-the-gjk-collision-algorithm.

Snethen, Gary (2008). Minkowski Portal Refinement in 2D.
XenoCollide. URL: http:/ /xenocollide.snethen.com/mpr2d.
html.

Session 6A: Interoperability

DOI
10.3384/ecp21181433

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

441

442 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Portable and Secure Package Format for Executable Simulation
Modules based on WebAssembly

Moritz Allmaras*1 Andrés Botero Halblaub2 Harald Held2 Tim Schenk2

1Siemens Energy Global GmbH & Co. KG, Germany, moritz.allmaras@siemens-energy.com
2Siemens AG, Germany, {andres.botero,harald.held,tim.schenk}@siemens.com

Abstract
We propose a new format (Digital Twin Assembly –
dtasm) for self-contained executable co-simulation mod-
ules that is portable and sandboxed, yet offers perfor-
mance close to native machine code and is sufficiently
lightweight for running on embedded devices. Dtasm is
based on WebAssembly, a standardized bytecode format
for a stack-based virtual machine originally developed
for high-performance computations in web browsers. A
language-independent binary interface for such modules
is described that is functionally comparable to FMI for co-
simulation but not tied to a particular programming lan-
guage. We discuss the benefits and drawbacks of this ap-
proach and how it can address some specific issues for ex-
ecutable simulation modules running in parallel with the
operation of real systems.
Keywords: Simulation Modularization, Portability, Sand-
boxing, WebAssembly

1 Introduction
Recent industry trends towards digitization of production
facilities, plants, infrastructure and transportation have
amplified the need for digital twins not only during the
design and engineering of such systems, but also for sup-
porting their commissioning, automation and control dur-
ing operation. Use cases for such digital twins performing
online simulation range from virtual sensing, model pre-
dictive control and anomaly detection to optimal operation
scheduling (Boschert, Heinrich, and Rosen 2018; Tao and
Zhang 2017; Rasheed, San, and Kvamsdal 2020).

In contrast to the offline use of modeling and simulation
during design and engineering of systems, the execution
of numerical simulations in parallel to the operation of a
real-world system presents some challenges that typically
do not arise in offline scenarios:

• Computation needs to be sufficiently fast to keep up
with the progress of the real-world system, so some
kind of (soft or hard) real-time constraint needs to be
fulfilled.

• The simulation needs to run robustly and reliably
without human intervention for extended periods of
time.

*Corresponding author

• Failure modes need to be predictable and their ef-
fects deterministic. Online simulations often per-
form safety critical tasks in control and automa-
tion systems for which rigorous regulations regard-
ing testing and certification procedures are applica-
ble.

• The hardware on which online simulations are exe-
cuted is heterogeneous. Computing devices used for
carrying out online numerical simulations often need
to operate close to the "shop floor" of the actual phys-
ical systems to keep signal latency low. Hence, the
hardware in use varies between different plants. The
type of devices in use ranges from specialized mi-
crocontrollers (MCUs) to programmable logic con-
trollers (PLCs) to industrial PCs depending on the
specific application and scenario.

While the significance of each of these requirements
varies from application to application, they are major con-
tributors to the fact that online simulations in industrial ap-
plications are often customized solutions and cannot eas-
ily be re-used. Also, many established system simula-
tion tools have their own ways of exporting online-capable
simulations, often through code generation or compilation
of binaries with a proprietary API (see, e.g., Schijndel
(2014)), which further limits the reusability and compos-
ability of the resulting executable simulation modules.

On the other hand, as most of the industrial systems of
interest are composed of smaller subsystems and compo-
nents, the digital twin of such a system could also be mod-
eled as a composition of smaller, independent subsystem
or component twins. Just like for a physical asset such as
a pump, gear box or conveyor belt, the same brand and
model is deployed in many different real-world systems,
the same should be possible for their digital twin coun-
terparts: The digital twin of a component should be inde-
pendent of the authoring tool used for its creation and be
re-usable across as many different contexts and environ-
ments as possible.

In the future, components may be equipped with their
own digital twins from the factory, and modularity is a ma-
jor requirement for being able to integrate such supplier-
provided twins into a complex system simulation. An im-
plication of such a scenario is that the authors of digital
twins are different from the plant operators running the

DOI
10.3384/ecp21181443

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

443

twins on their infrastructure. Hence, an elevated level of
trust between producers and consumers of online digital
twins is required, and security boundaries need to be de-
fined that encapsulate supplier-provided twins in a safe,
yet performant sandbox during their online execution.

In this text, we present a new format for self-contained
executable digital twins that is both portable and sand-
boxed, yet allows close-to-native compute performance
and is sufficiently lightweight to be used on embedded
systems.

1.1 State of the Art
The modularization of industrial simulations has started
to gain traction with the more widespread adoption
of the Functional Mock-Up Interface (FMI) standard
(Blochwitz, Otter, Arnold, et al. 2011; Blochwitz, Otter,
Akesson, et al. 2012), which specifies a tool-independent
interface and packaging format (Functional Mock-Up
Unit (FMU)) for simulation modules. The FMU format
allows system simulation tools to export self-contained
simulation modules in such a way that they can be reused
in different environments and by different tools than they
have been authored in. FMI distinguishes Model Ex-
change (ME) and Co-Simulation (CS) modules, where Co-
Simulation modules include a numerical solver and hence
are most suitable for packaging executable simulations.
FMUs may contain code as binaries ("binary FMU") or
C sources ("source FMU") or both. The code contained in
an FMU exposes a set of C functions that are specified by
the FMI standard.

However, in the online simulation scenarios outlined
above, FMI also presents some challenges regarding
portability and the enforcement of security boundaries be-
tween the co-simulation master and the FMU instances:

• Binary FMUs only support the target platforms they
have been explicitly compiled for, i.e. the relevant
target platforms have to be known at compile time.

• Native binaries are difficult to sandbox from their ex-
ecuting environment. If loaded into a native process,
an FMU assembly can directly interact with the OS
kernel through system calls, and hence affect overall
system integrity. Hence, the use of native binaries in-
process requires a high level of trust in the authoring
party.

• From the point of view of the embedding application,
it is hard to determine upfront if a binary FMU is
actually self-contained or requires additional depen-
dencies to be dynamically linked at runtime (such as
specific version of C or C++ runtime libraries). The
availability of the correct version of such runtime de-
pendencies has to be ensured though, and they are not
specified in the model description.

• The runtime interface of FMI is specified in terms
of C function calls, hence implementation of the in-
terface in programming languages other than C and

C++ need to rely on the foreign function interface
(FFI) mechanisms of the respective programming
language. While this is common practice in most
programming languages, the implementation of the
FMI runtime interface is often less ergonomic and
safe than in C and C++.

• Source FMUs expose their internal implementation
and thus are not viable in many industrial con-
texts where intellectual property (IP) protection is
paramount.

• Source FMUs need an extra build step before they
can be executed, and the FMI standard does not spec-
ify the details of this build step. Consequently, the
build step is often proprietary to the generating tool
and thus difficult to automate across FMUs created
by different tools.

These limitations can impact the ability to exchange
and re-use FMUs across different applications and hard-
ware environments. In particular, additional measures are
necessary to enforce security boundaries between the host
environment and the code supplied by an FMU. An exam-
ple for such measures is execution in separate processes
connected through an interprocess communication (IPC)
mechanism (see e.g. Hatledal et al. (2019)). However, the
additional operational complexity of such multi-process
setups is considerable, and on many embedded targets the
necessary infrastructure and resources may not be avail-
able.

1.2 Digital Twin Assembly
Digital Twin Assembly is based on WebAssembly (Haas
et al. 2017), a W3C-standardized bytecode format for
a stack-based virtual machine, that has originally been
developed to enable high-performance computations in-
side web browsers. The core WebAssembly specifica-
tion (Rossberg 2019) is slim and low-level and is meant
as a compilation target for compilers of high-level pro-
gramming languages. Since it is independent of any other
web technology, WebAssembly has recently seen increas-
ing adoption in applications outside web browsers, such
as server-side execution of user-supplied code (Hall and
Ramachandran 2019), smart contract applications (Zheng
et al. 2021) and Internet of Things (Jacobsson and Willén
2018). We define a simple and portable interface to such
WebAssembly modules that functionally resembles FMI
for co-simulation, but is not tied to specific platforms or
language ecosystems.

1.3 Outline
Section 2 discusses the available options for the packag-
ing of executable simulation modules. In section 3, We-
bAssembly as the target format of dtasm is introduced, as
well as the application binary interface (ABI) that has been
developed to interact with simulations packaged as We-
bAssembly modules, and the strengths and weaknesses of

A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

444 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181443

the proposed format are discussed. Section 4 deals with
prototypical implementations of dtasm runtimes and mod-
ules that were created in the course of this work. The per-
formance of dtasm is compared with that of native binaries
for some exemplary cases. In section 5, we summarize
our findings and give an outlook on some further topics
regarding online simulation that dtasm could potentially
help to address.

2 Packaging of Executable Simulation
Modules

In this text, the definition we will use for executable sim-
ulation modules is very similar to co-simulation modules
in the sense of FMI:

• Modules carry a machine-readable description of the
model containing information such as model meta-
data, input, state and output variables, default values,
validity ranges for experimental conditions and ca-
pabilities of the module’s implementation.

• Modules allow the creation of independent instances
of the executable simulation.

• Values for constant parameters can be supplied and
initial conditions for state variables can be set.

• Progressing the module instance’s state from ti to ti+1
consists of the steps:

1. Values for the input variables at time ti are sup-
plied to the module instance,

2. a time step from ti to ti+1 is calculated,
3. values for output variables and states at time

ti+1 are returned.
• The internal state of a module instance can be reset to

the time step immediately preceding the current time
step.

• Instances can be terminated and disposed of at any
time.

The normal sequence of invocation for online simula-
tions (without considering potential reset of timesteps) is
depicted in 1. Just like for a co-simulation FMU, no re-
strictions on the internal implementation of the simula-
tor are imposed. It could, e.g., implement a numerical
solver for a differential algebraic equation (DAE), a for-
ward evaluation of a trained machine learning model or
even some simple table lookup mechanism.

2.1 Packaging Options
For packaging such executable simulation modules, there
are two common variants:

1. Packaging native machine code targeting certain
platforms.

2. Packaging the simulation’s source code in some
given programming language.

Binary packaging allows only the explicitly supported
platforms to execute the simulation modules. On other
platforms, virtualization mechanisms could be utilized,

but in practice such virtualization is complex and expen-
sive in terms of the needed compute and memory re-
sources and hence often not a feasible option at least on
embedded devices.

For source packaging, the sources need to be compiled
to native machine code by the embedder of the module
prior to execution on the target hardware. This allows
the source code to be compiled by specialized compilers
for the target hardware. In this case, the packaging for-
mat needs to specify the exact supported feature set of
the programming language, as well as all necessary op-
erations for compiling the source code to native machine
code. This option places the burden of compilation on the
embedder of the module, which in many cases necessi-
tates manual intervention and prevents the automated de-
ployment of such packages. Providing simulation’s source
code also exposes the intellectual property of the imple-
mentation, which is frequently a major obstacle for the
adoption of such package formats in industrial contexts.

Another option somewhat in between 1 and 2 is the
packaging of intermediate bytecode targeting a virtual in-
struction set architecture (ISA). For execution, the byte-
code is then either interpreted by an application-level vir-
tual machine or compiled to native machine code prior to
execution. Well-known examples of such bytecode for-
mats include Java bytecode, Common Intermediate Lan-
guage (CIL) (as used by the Common Language Run-
time of the .NET platform) and Python bytecode (used
by CPython). Traditionally, bytecode formats have not
received much attention as a target format for numeri-
cal computations since they are considered slow in com-
parison to native machine code due to the overhead in-
curred by interpretation or compilation. However, we be-
lieve that bytecode has some considerable advantages es-
pecially when used in online scenarios. Bytecode formats
are very portable since they do not depend on a certain
hardware instruction set, and they allow efficient sandbox-
ing of executable code by limiting access to resources and
intercepting system calls. However, many of the exist-
ing bytecode formats are rather complex and have explicit
support for some of the high-level constructs of the cor-
responding ecosystem (like garbage collection). Hence,
many of the existing bytecode formats are a poor fit as
compile targets for system-level programming languages
(like C, C++ or Fortran) that are commonly used in nu-
merical simulation.

3 Digital Twin Assembly Format
3.1 WebAssembly Bytecode
Starting in 2015, a bytecode format for a stack-based vir-
tual machine called WebAssembly (Wasm) has been de-
veloped by a working group of the World Wide Web Con-
sortium (W3C). Since then, WebAssembly has reached
stable version 1.0 and gained the status of a W3C-
recommended standard (Rossberg 2019). Its original goal
is the high-performance execution of computational logic

Session 6A: Interoperability

DOI
10.3384/ecp21181443

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

445

in
st

an
ti

at
e

d
o

 s
te

p
t 0

�
t 1

ou
tp

ut
y(

t 1
),

 x
(t

1)

in
it

ia
liz

e

re
tu
rn

Solve
x(t0)�x(t1)

t0 t1
tt2

in
pu

tu
(t

0)

d
o

st
ep

t 1
�

t 2

ou
tp

ut
y(

t 2
),

 x
(t

2)

Solve
x(t1)�x(t2)

in
pu

tu
(t

1)

re
tu
rn

re
tu
rn

in
pu

t
p,

 x
(t

0)

te
rm

in
at

e

…

Figure 1. Lifecycle and call structure for executable simulation modules.

in web browsers. The WebAssembly specification de-
fines a narrow low-level instruction set, with the inten-
tion that support for emitting Wasm bytecode can be easily
added to existing compiler toolchains. Most notably, the
LLVM compiler infrastructure (Lattner and Adve 2004)
was among the first to include a backend for generating
Wasm output, such that any programming language for
which an LLVM frontend exists can be compiled to Wasm
bytecode. In addition, WebAssembly is strongly and stati-
cally typed, and has a deterministic stack behavior that can
be statically analyzed, allowing interpreters and compil-
ers to aggressively optimize execution of the code. Con-
sequently, WebAssembly modules can be executed with
close to native performance in many scenarios (Jangda et
al. 2019). The narrow instruction set also allows the im-
plementation of lightweight interpreters for execution on
small, resource-constrained devices (Peach et al. 2020).
Sandboxing of the bytecode execution from the host en-
vironment has been an explicit design goal of the We-
bAssembly specification, since it is a paramount require-
ment for use in web browsers, where individual browser
windows need to be kept isolated from each other and the
host environment. Wasm modules cannot directly access
host memory or invoke system calls. Instead, memory is
provided as a contiguous linear block, and access to this
block is bounds-checked by the WebAssembly runtime.
System calls or calls to external libraries need to be ex-
plicitly enabled by the runtime (opt-in model) in order to
be callable from inside the sandbox. WebAssembly mod-
ules are statically linked and do not (yet) support dynamic
linking, so other than function imports and exports, they
are self-contained. In light of the requirements for online
digital twins discussed in section 1, WebAssembly offers
some unique advantages over binary and source packag-
ing:

• The bytecode is portable and can be executed on any
hardware for which a Wasm runtime exists.

• Performance can be close to that of native machine
code, at least in environments where just-in-time
(JIT) or ahead-of-time (AOT) compilation to native

machine instructions is possible.
• Module instances are sandboxed and cannot interfere

with each other or the host environment in uncon-
trolled ways.

• Implementation of modules can be carried out in any
programming language that supports compilation to
Wasm.

• Module code can be statically analyzed for memory
usage and instruction counts.

• The runtime has complete control over the execu-
tion such that running bytecode instances can be pre-
empted and a resumable snapshot of an instance’s
state can be taken by the runtime without requiring
explicit support by the module implementation.

• There is no undefined behavior, all operations are de-
terministic and hence the computed outputs are iden-
tical across different Wasm runtimes and host envi-
ronments.

As downsides of this approach the overhead due to the
WebAssembly runtime needs to be mentioned (unless the
modules are AOT compiled, which is only possible on lim-
ited set of platforms, and adds an additional compilation
step before execution). On platforms where JIT or AOT
compilation is not available (e.g., on many embedded de-
vices), Wasm modules need to be interpreted which causes
substantial performance degradation.

A WebAssembly module may interact with its host
environment through imported and exported functions.
Function imports are declared by name and signature and
linked by the runtime when the module is instantiated.
Function exports are also declared by name and signature
and can be called by the runtime once the module is instan-
tiated. A further mechanism for exchanging data is the use
of the linear memory blocks. A schematic overview of the
interactions between a Wasm module and its host is shown
in 2.

3.2 Interface

According to the description of executable simulation
modules given in Section 1, the interface that the module

A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

446 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181443

Host

Module Instance

instantiate

link

Host Application

Interaction at
instance creation

Interaction at
instance runtime

Figure 2. Interactions between WebAssembly modules and the host.

exposes includes the following functionality:

• Retrieve a model description from the module speci-
fying input, state and output variables, module capa-
bilities as well as potential constraints on compatible
timestep lengths,

• create a new instance of the simulation module and
initialize it with given parameters and initial values,

• set values for the input variables,
• calculate forward in time by a given timestep,
• retrieve the resulting values of the output and state

variables,
• reset state to the previous timestep,
• terminate the instance.

The creation of such high-level interfaces between We-
bAssembly modules and their host is complicated by the
fact that core WebAssembly only knows four basic data
types (32bit and 64bit variants of integers and floating
point numbers), and the signatures of any declared export
functions need to be expressed in terms of these data types.
More complex data structures can only be exchanged by
serializing them to linear memory, which is accessible
both to the module instance and to the host. Then, pointers
to locations inside linear memory can be passed as argu-
ments to a regular Wasm exported functions (pointers into
linear memory are just offsets from the start of the mem-
ory block). To handle heap allocation inside the linear
memory in a consistent way, a dtasm module exports an
allocator and a corresponding de-allocator function.

Since serialization and de-serialization need to be per-
formed on either side of the Wasm sandbox for this to

work, a serialization format should be chosen that is not
just lightweight, but also has implementations in many
different programming languages. After careful consider-
ation, we picked the FlatBuffers ((FlatBuffers 2021)) se-
rialization library for the dtasm ABI. In FlatBuffers, data
structures are described by a schema written in an inter-
face definition language (IDL), and a compiler provided
by the FlatBuffers project then generates source code for
serialization/de-serialization of such structures for a vari-
ety of target languages. The generated code is very per-
formant and lightweight (e.g., the code generated for C++
is a single, self-contained header file), and code genera-
tion supports a wide range of contemporary programming
languages. Furthermore, FlatBuffers (at least in some
programming languages) allows the validation of binary
buffers for a given schema. This is an important feature for
enforcing the security boundary between host and mod-
ules and for increasing the robustness of implementations.

The sequence of events for invoking a dtasm interface
function generally follows these steps:

• The host assembles the input data into a FlatBuffer,
determines its size and invokes the allocator function
exported by the dtasm module instance to allocate a
buffer in linear memory of the instance.

• The host serializes the input FlatBuffer into the allo-
cated memory block.

• The host allocates an additional buffer (of a default
size) for holding the results of the call.

• The host invokes the interface function, passing
pointers to the in- and output buffers as well as their

Session 6A: Interoperability

DOI
10.3384/ecp21181443

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

447

respective sizes.
• The module decodes the input buffer, processes it

and assembles the result into a result FlatBuffer.
• If the output buffer is sufficiently large to hold the

result FlatBuffer, the result is written to the output
buffer and the call returns. If not, the size of the re-
sult is returned, the host allocates a new large enough
output buffer and invokes the interface function again
with the same input.

• The host reads the result FlatBuffer from the output
buffer.

For a given programming language, much of the logic
involved in this procedure can be encapsulated into aux-
iliary libraries, such that the consumers of the ABI don’t
need to deal with the low-level details.

3.3 Model Description
Similar to the model description defined by the FMI stan-
dard, a dtasm module provides a model description that
contains

• metadata about the module (name, id, when and by
what tool it was created),

• module capabilities (e.g., can timesteps be reset, can
the module utilize derivative information),

• a list of model variables together with their causality,
data type and default value,

• infos about valid experiment conditions such as con-
straints on compatible timestep size, start and end
time of simulations.

Model variables can be of causality parameter, input,
local or output, and the supported data types are real, inte-
ger, boolean and string.

A more detailed description can be found as part of
the code repository in (dtasm 2021). The binary for-
mat of the model description is again described by a
FlatBuffers schema. Since FlatBuffers supports creation
of buffers from JSON files that are compatible with the
schema, model descriptions can be authored using JSON
for convenience. The binary representation is then em-
bedded into the module as a byte array literal, and can
be retrieved from instances of the module by invoking the
getModelDescription interface function.

Since module instantiation is already a part of the We-
bAssembly specification, no explicit interface function
is needed for instantiation. Likewise, since WebAssem-
bly modules cannot use any native resources, an explicit
terminate function in the interface is not needed and
instances can be terminated and disposed of simply by un-
loading them from the WebAssembly runtime.

4 Features and Limitations of dtasm
4.1 Features
Using WebAssembly bytecode as the target format for ex-
ecutable simulation modules has some interesting impli-
cations that we discuss in the following. As WebAssem-

bly is a very simple bytecode format, it is easy to target by
compilers for high-level programming languages, which is
confirmed by the number of existing compilers supporting
Wasm as output. On first look bytecode seems like an un-
usual format for executable numerical code. But consid-
ering, e.g., the LLVM compiler architecture (Lattner and
Adve 2004), it is based on a separation between frontend
and backend compilation, where the frontend generates in-
termediate bytecode (LLVM Intermediate Representation
(IR)) that is compiled to native machine code by the back-
end. WebAssembly can be thought of as replacing the in-
termediate bytecode by a portable, well-specified format
that can be easily targeted by other compilers as well. The
development of tools, infrastructure and supporting stan-
dards around WebAssembly has been strongly driven by
the Web community during recent years, which has lead to
a number of high-quality implementations and standards
being available as open source (e.g. Zakai (2011), WASI
(2021), and AssemblyScript (2021)).

Instances of WebAssembly modules can store internal
state on the stack, in linear memory or in global variables
(but as globals are seldomly used for this purpose, we dis-
regard them here). When a module instance is not cur-
rently executing a function, its stack is empty, so that a
snapshot of its state can be created simply by dumping the
content of its linear memory (which is just a contiguous
byte array) to a file. The instance can then be terminated,
a new instance be created and its linear memory read back
from the file, and the new instance then has exactly the
same internal state as the previous one. All this can be
achieved solely from the runtime without any explicit sup-
port by the module implementation. The memory dump is
even portable across different WebAssembly runtimes, as
the mechanism of linear memory is specified by the We-
bAssembly standard. E.g., this method could also be used
to reset timesteps for modules that do not explicitly sup-
port such functionality:

1. Store a dump of the linear memory after each
timestep.

2. If a timestep needs to be reset, the previous dump is
loaded into the instance’s memory to reset its state.

Depending on the size of the module’s memory, this
procedure can be quite expensive, hence explicit timestep
resetting support by the module should be preferred when
available.

Some more advanced features could even include pre-
emption of running module instances by the runtime, relo-
cation to other machines and resumption at the exact state
where preemption happened. Such operations are not yet
widely supported by popular Wasm runtimes, but many
projects are rapidly adding features in this direction. Pre-
emptive multitasking could prevent individual module in-
stances from occupying computational resources and al-
low a fair distribution of resources to all running instances.
Related is the concept of gas counting: The runtime can
monitor the consumed instruction count ("gas") of a We-

A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

448 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181443

bAssembly function and preempt the instance if the in-
struction count exceeds a certain threshold. This could
allow a fair distribution of compute resources among mul-
tiple active module instances.

4.2 Limitations
The WebAssembly standard in its current stage has some
limitations that impact its usefulness as a packaging for-
mat for executable simulations:

• Not all features of low-level programming languages
can be mapped cleanly to WebAssembly. In particu-
lar, non-local jumps, stack unwinding or multithread-
ing do not currently have support in WebAssembly,
although extensions of the standard for supporting
these features are planned.

• Specialized hardware acceleration units like GPUs
or TPUs are not accessible to WebAssembly mod-
ules. Support would need customized implementa-
tions outside of the Wasm specification.

• WebAssembly modules are statically linked, which
makes them rather large in size (an extension of the
Wasm spec allowing dynamic linking is planned).

• Available development tooling, especially in regards
to debugging support, is lacking behind other more
established ecosystems.

• The size of linear memory blocks is given in multi-
ples of 64kB, which is wasteful on embedded plat-
forms.

• Security of the Wasm sandbox model is not perfect,
e.g., side-channel attacks are not prevented by the
specification but need to be mitigated by runtime in-
dividually.

Also, the general overhead of a WebAssembly runtime
in terms of performance and memory usage is certainly not
negligible. Especially on embedded platforms, AOT com-
pilation or JIT compilation are often not available or not
feasible, so the only option are interpreters that are gen-
erally an order of magnitude slower than native code (see
Wasm3 (2021)). Very small devices with less than 64kB
memory or no support for dynamic memory allocation are
not suitable for running dtasm modules. Performance and
size of the runtime is often a tradeoff: While interpreters
can be very lightweight (Wasm3 is around 100kB in size
when compiled), JIT runtimes on the other hand include
native code generators and thus are often several tens of
megabytes in size.

5 Prototypical Implementation
Several implementations of dtasm runtimes and modules
have been developed during the course of this work, some
of which are available as open source (dtasm 2021).

5.1 Runtimes
Dtasmtime is a dtasm runtime library implemented in Rust
that builds upon (Wasmtime 2021), a popular open source
engine for WebAssembly modules featuring JIT compila-

tion. Dtasmtime supports loading and execution of dtasm
modules as well as saving and loading of instance state to
and from files. Interaction with dtasmtime from Rust ap-
plications happens through a high-level API, while an ad-
ditional lower-level C-compatible API is provided in order
to facilitate integration of the library into C/C++ and other
programming languages.

Additional dtasm runtimes have been implemented
based on the Wasm3 interpreter (Wasm3 2021) and the
V8 JavaScript engine. While Wasm3 by nature of inter-
pretation is substantially slower in execution performance
than JIT or AOT compiling runtimes, it is very lightweight
and allows execution of dtasm modules on embedded tar-
gets such as Arduino-class microcontrollers (see Figure
3). Implementation of a dtasm runtime in JavaScript al-
lowed running dtasm modules inside contemporary web
browsers as well.

5.2 Modules
For demonstration and benchmark purposes, a simple dou-
ble pendulum simulator (based on Wheatland (2004)) has
been implemented in C++ and Rust, and compiled into a
dtasm module using the WASI SDK (2021) in the case
of C/C++ and Rust’s integrated wasm32-wasi target.
Source code for both versions is available (dtasm 2021).

During the course of our experimentation, we also com-
piled dtasm modules from several source FMUs created
by various commercial and open source simulation tools
(Simulink/FMIKit, Dymola, OpenModelica). While most
of the resulting dtasm modules could be successfully com-
piled and executed, some FMUs were found to utilize
C/C++ functionality for error handling (e.g., exceptions,
non-local jumps) that are currently not supported by We-
bAssembly and had to be stubbed in order to compile
successfully. Such dtasm modules were then only opera-
ble under non-error conditions. As some FMUs utilized
resource files that are read at runtime (which core We-
bAssembly does not support), the WASI interface for read-
ing files from the host file system had to be made available
when executing such dtasm modules. Accessing external
files violates the self-containedness assumption on dtasm
modules and also may have security implications. If a
direct dtasm export was integrated into such simulation
tools (without the detour through FMU), this issue could
be avoided by embedding additional resource files directly
into the WebAssembly module.

5.3 Performance
One of the most interesting questions regarding dtasm is
the resulting performance overhead when comparing to
execution of native machine code, since this is one of the
major tradeoffs incurred by dtasm. This overhead consists
of several distinct contributions:

1. Raw computational performance of WebAssembly
compared to native machine code,

2. overhead afforded by the module interface,
mainly through copying of memory blocks and

Session 6A: Interoperability

DOI
10.3384/ecp21181443

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

449

Figure 3. Double pendulum simulator generated from a Simulink model running as dtasm module on an ESP32 MCU.

serialization/de-serialization,
3. performance overhead due to how efficiently the

Wasm runtime implements calls to Wasm export
functions and access to the Wasm linear memory,

4. optimization capabilities of the compiler used to cre-
ate the native machine code and the Wasm module
respectively.

Characterization of these overheads in isolation is dif-
ficult and will not be attempted here. The raw perfor-
mance overhead of Wasm for different engine implemen-
tations has been the subject of many benchmarks (see, e.g.,
Jangda et al. (2019), Denis (2021), and Wasm3 (2021)),
in which a best-case factor for JIT-based engines between
1.5 and 2.5 has been found, depending on the workload
and Wasm engine considered.

To compare performance of the dtasm prototype imple-
mentation to native execution, we used the C++ source
code of our double pendulum module and added an outer
loop that runs the simulation for a fixed number of steps,
still using the dtasm interface but directly from C++. This
combination was then compiled to native machine code
using GNU compiler collection (gcc). We performed the
same computation using the LLVM-compiled dtasm mod-
ule running in dtasmtime, and compared execution times.
Figure 4 shows the result for 10 million time steps of the
double pendulum simulator. The overhead of dtasmtime is
found to be around a factor of 2.4.

In an attempt to reduce the influence of 2 and 3 above
(in particular the overhead incurred by the dtasm inter-
face), we adapt the implementation of the double pendu-

Figure 4. Execution times of the double pendulum simulator for
107 time steps.

lum simulator to internally perform many small time steps
of fixed size, and reduce the number of steps on the outer
loop, thereby invoking the dtasm interface less often than
in the first case. Figure 5 shows the results for 105 inner
time steps and 104 outer loop steps (amounting to 109 time
steps total).

It can be seen that native and dtasmtime performance
are almost identical in this case. This implies that most
of the overhead incurred by running simulations as dtasm
modules indeed is due to interface calls. We note that the
significance of this comparison is very limited though, be-
cause we only tested a single simulation module. Many
features of more realistic simulators, such as extensive
numerical linear algebra operations, may yield a differ-
ent picture here. Also, no significant code optimizations
have been applied to either the simulation module or the

A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

450 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181443

Figure 5. Execution times of the double pendulum simulator for
105 inner time steps and 104 outer time steps.

dtasmtime implementation.
The performance of Wasm interpreters such as Wasm3

was found to be around a factor of 10 slower compared to
dtasmtime. Hence, the performance on embedded devices,
where JIT compilation is not an option due to resource
constraints, must be expected much lower than what is re-
ported above. While AOT compilation to native code may
be another option for such targets, it hinges on the avail-
ability of suitable compilers.

6 Conclusion
Packaging executable simulation modules as native ma-
chine code poses several challenges related to portability
and security: Machine code targets specific hardware plat-
forms and is difficult to sandbox from its execution envi-
ronment. Bytecode formats can help address both of these
issues since they target abstract machines with enforceable
security boundaries. Bytecode formats can serve as com-
pilation targets for higher level programming languages,
and application level virtual machines for bytecode of-
ten support secure sandboxes by design. WebAssembly
in particular is suitable for executable simulation modules
as it focuses on performance and is sufficiently low-level
to be used as compilation target for many of the program-
ming languages typically in use by numerical codes.

In this text, we introduced an efficient and language-
independent interface to WebAssembly modules that in
functionality resembles FMI for co-simulation. We dis-
cussed the rationale for our design decisions as well as the
advantages and drawbacks they entail. The design is suffi-
ciently lean to allow targeting embedded devices, although
the overhead created by the need for a virtual machine is
certainly considerable there.

We demonstrated feasibility by providing prototypical
implementations of dtasm runtimes and modules. A pre-
liminary performance test shows that the main overhead
is due to the module interface (which is not specific to
WebAssembly), but the performance of Wasm itself can
be expected comparable to the performance of native bi-
naries. Simulation code generated by established system
simulation tools can often be compiled into dtasm mod-
ules with manageable effort, allowing dtasm to take ad-

vantage of the existing system simulation ecosystem, e.g.,
through the export of source FMUs that are then compiled
into dtasm modules.

Dtasm modules can be instrumented at runtime in a
way that allows dynamic re-allocation to other compute
nodes at runtime. In the future, this could enable orches-
tration systems that dynamically dispatch running mod-
ule instances to compute nodes according to available re-
sources. Compute nodes close to the shop floor could then
be utilized as a single cluster instead of individually con-
figured devices.

While WebAssembly is still a comparably young tech-
nology, it has beneficial properties regarding portability as
well as sandboxing and shows promising results regarding
performance. It remains to be seen if WebAssembly can
be a relevant technology for packaging numerical simu-
lations in the future. A further adoption would certainly
hinge on support by existing system simulation tools to
export dtasm modules. Using source FMUs as an inter-
mediary for compiling to WebAssembly could be a viable
path forward in this direction.

References
AssemblyScript (2021). “A language made for WebAssembly”.

URL: https://www.assemblyscript.org/ (visited on 2021-03-
14).

Blochwitz, Torsten, Martin Otter, J. Akesson, et al. (2012).
“Functional Mockup Interface 2.0: The Standard for Tool in-
dependent Exchange of Simulation Models”. In: 9th Interna-
tional Modelica Conference. URL: https://elib.dlr.de/78486/.

Blochwitz, Torsten, Martin Otter, Martin Arnold, et al. (2011-
03). “The Functional Mockup Interface for Tool independent
Exchange of Simulation Models”. In: 8th International Mod-
elica Conference. Ed. by Christoph Clauß. Linköping Elec-
tronic Conference Proceedings. Linköping University Press,
pp. 105–114. URL: https://elib.dlr.de/74668/.

Boschert, Stefan, Christoph Heinrich, and Roland Rosen (2018).
“Next generation digital twin”. In: Proc. TMCE 2018.
Vol. 2018, pp. 7–11.

Denis, Frank (2021). “Benchmark of WebAssembly runtimes
– 2021 Q1 edition”. URL: https : / / github . com / jedisct1 /
webassembly-benchmarks/tree/master/2021-Q1 (visited on
2021-03-13).

dtasm (2021). “Digital Twin Assembly - A portable and sand-
boxed package format for executable simulation modules
based on WebAssembly”. URL: https://github.com/siemens/
dtasm (visited on 2021-04-29).

FlatBuffers (2021). “An efficient cross platform serialization li-
brary”. URL: https://google.github.io/flatbuffers/ (visited on
2021-03-13).

Haas, Andreas et al. (2017). “Bringing the Web up to Speed with
WebAssembly”. In: SIGPLAN Not. 52.6, pp. 185–200. DOI:
10.1145/3140587.3062363.

Hall, Adam and Umakishore Ramachandran (2019). “An execu-
tion model for serverless functions at the edge”. In: Proceed-
ings of the International Conference on Internet of Things
Design and Implementation, pp. 225–236.

Hatledal, Lars Ivar et al. (2019). “Fmu-proxy: A framework
for distributed access to functional mock-up units”. In: Pro-

Session 6A: Interoperability

DOI
10.3384/ecp21181443

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

451

ceedings of the 13th International Modelica Conference.
Linköping University Electronic Press.

Jacobsson, Martin and Jonas Willén (2018). “Virtual machine
execution for wearables based on webassembly”. In: EAI In-
ternational Conference on Body Area Networks. Springer,
pp. 381–389.

Jangda, Abhinav et al. (2019). “Not so fast: Analyzing the per-
formance of webassembly vs. native code”. In: 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pp. 107–
120.

Lattner, Chris and Vikram Adve (2004). “LLVM: A compilation
framework for lifelong program analysis & transformation”.
In: International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004. IEEE, pp. 75–86.

Peach, G. et al. (2020). “eWASM: Practical Software Fault Iso-
lation for Reliable Embedded Devices”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 39.11, pp. 3492–3505. DOI: 10.1109/TCAD.2020.
3012647.

Rasheed, Adil, Omer San, and Trond Kvamsdal (2020). “Digi-
tal Twin: Values, Challenges and Enablers From a Modeling
Perspective”. In: IEEE Access 8, pp. 21980–22012.

Rossberg, Andreas (2019). “WebAssembly Core Specification”.
URL: https: / /www.w3.org/TR/2019/REC- wasm- core- 1-
20191205/ (visited on 2021-03-14).

Schijndel, A.W.M. (Jos) van (2014). “A review of the applica-
tion of SimuLink S-functions to multi domain modelling and
building simulation”. In: Journal of Building Performance
Simulation 7.3, pp. 165–178. DOI: 10.1080/19401493.2013.
804122.

Tao, Fei and Meng Zhang (2017). “Digital Twin Shop-Floor: A
New Shop-Floor Paradigm Towards Smart Manufacturing”.
In: IEEE Access 5, pp. 20418–20427.

WASI (2021). “The WebAssembly System Interface”. URL:
https://wasi.dev/ (visited on 2021-03-14).

WASI SDK (2021). “WASI-enabled WebAssembly C/C++
toolchain”. URL: https://github.com/WebAssembly/wasi-sdk
(visited on 2021-03-14).

Wasm3 (2021). “Performance”. URL: https : / / github . com /
wasm3/wasm3/blob/master/docs/Performance.md (visited
on 2021-03-13).

Wasmtime (2021). “A small and efficient runtime for We-
bAssembly & WASI”. URL: https://wasmtime.dev/ (visited
on 2021-03-13).

Wheatland, Michael S. (2004). “The Double Pendulum”. URL:
http://www.physics.usyd.edu.au/~wheat/dpend_html/ (vis-
ited on 2021-03-14).

Zakai, Alon (2011). “Emscripten: an LLVM-to-JavaScript com-
piler”. In: Proceedings of the ACM international conference
companion on Object oriented programming systems lan-
guages and applications companion, pp. 301–312.

Zheng, Gavin et al. (2021). “WebAssembly (WASM)”. In:
Ethereum Smart Contract Development in Solidity. Singa-
pore: Springer, pp. 317–334. DOI: 10 . 1007 / 978 - 981 - 15 -
6218-1_11.

A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly

452 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181443

New Method to Perform Data Reconciliation with

OpenModelica and ThermoSysPro

Daniel Bouskela1 Audrey Jardin1 Arunkumar Palanisamy2

Lennart Ochel2 Adrian Pop3

1EDF Lab Chatou, France, {daniel.bouskela,audrey.jardin}@edf.fr

2 RISE AB, Sweden, {arunkumar.palanisamy,lennart.ochel}@ri.se
3 PELAB - Linköping University, Sweden, adrian.pop@liu.se

Abstract
Data reconciliation aims at improving the accuracy of

measurements by reducing the effect of random errors in

the data. This is achieved by introducing redundancies on

the measured quantities in the form of constraints based

on fundamental physical laws such as mass, momentum

and energy balance equations. These constraints are called

the auxiliary conditions. Modelica is an equational

language that was conceived to express models based on

first principle physics for the purpose of behavioral

simulation. This paper shows how to reuse such models

for the purpose of data reconciliation. The novelty is to

automatically extract the auxiliary conditions from the

Modelica model. Then the reconciled values are computed

using a least square method constrained by the auxiliary

conditions, as specified by the VDI 2048 standard. The

new method has been implemented in OpenModelica. A

simple example built with ThermoSysPro illustrates the

method in detail.

Keywords: data reconciliation, Modelica, model reuse,

cyber-physical systems, structural analysis

1 Introduction

The safe and efficient operation and maintenance of power

plants rely on plant data. Therefore, ensuring the quality

of plant measurements such as pressures, temperatures

and mass flow rates is essential. However, plant data are

subject to measurement errors that put a limitation on their

efficient use for plant monitoring, diagnosis and prognosis

because they lead to uncertainties in the assessment of the

plant state. The consequence is a decrease in production

because of safety regulations that put stringent limits on

plant operation. It is therefore important to compute the

best estimates of the measurement uncertainties in order

to regain satisfactory operational margins. Best estimates

can be obtained by combining statistics on the data with a

priori knowledge from the expert expressed in the form of

physical models. Data reconciliation has been conceived

for the process industry with this principle in mind and is

the subject of the VDI 2048 standard (VDI, 2017). It has

been used for several process related issues such as

finding lost megawatts in power plants (Langenstein et al.,

2004) or detecting sensor and actuator faults in hydraulic

systems (Bedjaoui et al., 2008). This paper follows the

VDI 2048 standard methodology.

Data reconciliation aims at improving the accuracy of

measurements by reducing the effect of random errors in

the data. The main difference between data reconciliation

and other data improvements techniques is that data

reconciliation uses a model to express the physical

constraints on the variables of interest and adjusts their

measured values such that the estimates satisfy the

constraints: the variables are thus reconciled. The physical

constraints on the variables of interest are called the

auxiliary conditions. The main benefit of introducing

redundancy in the form of auxiliary conditions is that the

estimates have lower uncertainties than the initial

measurements.

Dedicated tools such as VALI (Belsim, 2021) exist to

perform data reconciliation, but they require the physical

models to be specifically developed for that purpose. This

makes data reconciliation costly and difficult to use. A

natural answer to that problem is to perform data

reconciliation on existing Modelica models (Modelica

Association, 2021), developed and validated for the

general purpose of plant operation at large.

The objective of this paper is to present a new method

to perform data reconciliation using Modelica models.

The novelty of the method lies in the automatic extraction

of the auxiliary conditions from the Modelica model.

Once the auxiliary conditions are extracted, the variables

of interest can be reconciled using the inputs provided by

the user in the form of measurement data and correlation

matrices, and the numerical procedure described in the

VDI 2048 standard.

Although dynamic data reconciliation is possible

(Bedjaoui et al., 2008; Bai and Thibault, 2010), the VDI

2048 standard considers only steady-state data
reconciliation, which means that measurements are

conducted while the system is under quasi steady-state

conditions. For the parts of the system where this

assumption is not valid, additional uncertainties must be

added to fluctuating quantities. Therefore, the new

DOI
10.3384/ecp21181453

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

453

method presented in this paper only applies to static

models, i.e. models with physical laws expressed in the

form of algebraic equations. These models can be

obtained by removing the differential part of the physical

equations. Also, the VDI 2048 assumes that the auxiliary

conditions are exact physical laws. This means that the

model should be sufficiently representative of the real

system, for instance that leaks, or other serious

disturbances, are not overlooked. For the quantities such

as temperatures that cannot be represented by exact

physical laws, e.g. when dealing with thermal

correlations, additional uncertainties must be added to the

quantities to account for the uncertainties in the physical

laws. The uncertainties on variables of interest that cannot

be directly measured such as specific enthalpies can be

obtained using uncertainty propagation techniques

(Dutfoy et al., 2009).

The data reconciliation method is summarized in

Section 2. The new algorithm to automatically extract the

auxiliary conditions from a Modelica model is given and

applied to perform data reconciliation on the simple

example of a splitter in Section 3.

2 Data Reconciliation in a Nutshell

2.1 Mathematical Formulation

Let �̂� = {�̂�𝑖}1≤𝑖≤𝑛 be measurements on physical

quantities 𝑥 = {𝑥𝑖}1≤𝑖≤𝑛 that are constrained by exact

physical laws represented by a set of algebraic equations

𝒞 such that

 𝒞(�̅�) = 0 (1)

where �̅� denotes the vector of the true values of 𝑥. The

true values are unknown, and the objective is to provide

the best estimates for them. Notice that in general the

measurements do not satisfy Equation (1): 𝒞(�̂�) ≠ 0.
The random unbiased error 𝜀𝑖 on measurement �̂�𝑖 is

described by a Gaussian noise around �̅�𝑖:
 �̂�𝑖 = �̅�𝑖 + 𝜀𝑖 (2)

with

 𝜀𝑖 = 𝒩(0,𝜎
2) (3)

𝒩(0,𝜎2) being a Gaussian distribution of mean value 0

and standard deviation 𝜎. This is valid according to the

central limit theorem if a sufficient number of

measurements are conducted with sufficient accuracy.

The mean value of Equation (2) yields the true value of �̂�𝑖:
 �̅�𝑖 = 𝐸(�̂�𝑖) (4)

However, computing the true value using Equation (4)

requires a sufficient number of measurements with

different sensors and measuring techniques to avoid

biases, which is impractical when dealing with a large

number of measured quantities.

To find an estimate of the true value, the VDI 2048

standard states that the Gaussian distribution is applicable,

even with only one measured value for each variable 𝑥𝑖.
This assertion is justified by the fact that each measured

value deviates from the true value by a sum of random,

mostly independent deviations that makes the central limit

theorem applicable with good approximation.

The weight or half-width confidence interval for �̂�𝑖 is

defined by:

 𝑤�̂�,𝑖 = 𝜆𝑝 ∙ 𝜎�̂�,𝑖 (5)

where 𝜎�̂�,𝑖 = √𝐸[(�̂�𝑖 − �̅�𝑖)2] is the standard deviation of

�̂�𝑖 and 𝜆𝑝 is the quantile of normal distribution with

probability 𝑝. Then �̅�𝑖 lies within the confidence

interval �̂�𝑖 ± 𝜆𝑝 ∙ 𝜎�̂�,𝑖 with the probability 𝑝:

 𝑃(|�̅�𝑖 − �̂�𝑖| ≤ 𝜆𝑝 ∙ 𝜎�̂�,𝑖) = 𝑝 (6)

For 𝑝 = 95% , 𝜆𝑝 = 1.96 which yields the following

confidence interval:

 𝑤�̂�𝑖 = 𝜆95% ∙ 𝜎�̂�,𝑖 = 1.96 ∙ 𝜎�̂�,𝑖 (7)

The covariance matrix of �̂� is defined as:

 𝑆�̂� = {
𝑆�̂�,𝑖,𝑖 = 𝜎�̂�,𝑖

2

𝑆�̂�,𝑖,𝑗 = 𝑟�̂�,𝑖,𝑗 ∙ 𝜎�̂�,𝑖 ∙ 𝜎�̂�,𝑗
 (8)

where the correlation coefficients 𝑟�̂�,𝑖,𝑗 are such that

|𝑟�̂�,𝑖,𝑗| ≤ 1 . 𝑟�̂� is the correlation matrix. Expressed as

function of the weights, the covariance matrix is:

 𝑆�̂� = {
𝑆�̂�,𝑖,𝑖 = (𝑤�̂�,𝑖 𝜆𝑝⁄)

2

𝑆�̂�,𝑖,𝑗 = 𝑟�̂�,𝑖,𝑗 ∙ 𝑤�̂�,𝑖 ∙ 𝑤�̂�,𝑗 𝜆𝑝
2⁄

 (9)

The estimated values are found in the form of the

reconciled values of 𝑥 which are denoted �̿� in the sequel.

They are obtained by finding the point in the subspace

defined by Equation (1) which is closer to measurements

with lower uncertainties than measurements with higher

uncertainties. They are thus computed using a least square

method where the weighing matrix is the inverse of the

covariance matrix. Therefore, the objective function is:

 𝐽(𝑥) = (𝑥 − �̂�) ∙ 𝑆�̂�
−1 ∙ (𝑥 − �̂�) (10)

and the minimization problem to be solved is:

 {
 𝐽(�̿�) = min𝑥 ((𝑥 − �̂�) ∙ 𝑆�̂�

−1 ∙ (𝑥 − �̂�))

𝒞(�̿�) = 0
 (11)

The vector of improvements is defined as the difference

between the estimated values and the measured values:

 𝜈 = �̿� − �̂� (12)

The covariance matrices of the reconciled values and

of the improvements, derived from the general formula of

error propagation, are respectively:

 𝑆�̿� =
𝜕�̿�

𝜕�̂�
∙ 𝑆�̂� ∙ (

𝜕�̿�

𝜕�̂�
)
𝑇

 (13)

 𝑆𝜈 =
𝜕𝜈

𝜕�̂�
∙ 𝑆�̂� ∙ (

𝜕𝜈

𝜕�̂�
)
𝑇
 (14)

Noticing that

 𝐷𝑆�̂�
−1(𝜈1, 𝜈2) = 𝜈1 ∙ 𝑆�̂�

−1 ∙ 𝜈2 (15)

is a scalar product, then

 𝐽(𝑥) = 𝐷𝑆�̂�
−1(𝑥 − �̂�, 𝑥 − �̂�) = ‖𝑥 − �̂�‖

𝑆�̂�
−1
2 (16)

is the square of the distance between 𝑥 and �̂� weighted by

𝑆�̂�
−1. Let 𝑟 be the number of auxiliary conditions (i.e. the

size of 𝒞), which is also the redundancy level. Solving the

minimization problem of Equation (11) amounts to

finding a point �̿� on the r-dimensional surface defined

by 𝒞(𝑥) = 0 which is the orthogonal projection of the

New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

454 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181453

measured point �̂� on the surface 𝒞(𝑥) = 0. The projection

is done according to a metrics such that the coordinates of

the projected point are closer to measurements with lower

uncertainties than to measurements with higher

uncertainties. The uncertainties of the reconciled values

are thus reduced because the distance from the true values

to the orthogonal projection is always smaller than the

distance to the initial point:

 ‖�̿� − �̅�‖
𝑆�̂�
−1
2 ≤ ‖�̂� − �̅�‖

𝑆�̂�
−1
2 (17)

Moreover, the higher the value of r, the higher the

uncertainty reduction because each time r is increased by

one unit, one additional orthogonal projection is

performed to a smaller subspace that brings the reconciled

values closer to the true values. Thus, data reconciliation

provides the best estimate of the variables of interest from

the measured values �̂�𝑖, the weights 𝑤�̂�𝑖 and the auxiliary

conditions 𝒞(�̅�) = 0.

The optimization problem of Equation (11) can be

solved using the Lagrange multiplier method. The

Lagrangian is:

 𝐿(𝑥, 𝜆) = 𝐽(𝑥) + 2 ⋅ 𝜆𝑇 ⋅ 𝒞(𝑥) (18)

 where 𝜆 are the Lagrange multipliers. The values of

𝑥 that yield the minimum value of 𝐽(𝑥) are obtained by

solving the following equation system:

 {

𝜕𝐿

𝜕𝑥
= 2 ∙ 𝑆�̂�

−1 ∙ (𝑥 − �̂�) + 2 ∙
𝑑𝒞

𝑑𝑥

𝑇
⋅ 𝜆 = 0

𝜕𝐿

𝜕𝜆
= 𝒞(𝑥) = 0

 (19)

The vector of contradictions is defined as:

 𝑢 = (�̂� − �̅�) − (�̿� − �̅�) = �̂� − �̿� (20)

Therefore, the vector of contradictions corresponds, in

absolute value, to the vector of improvements. Its square

value is:

 𝐽0 = ‖𝑢‖𝑆�̂�
−1
2 = 𝐽(�̿�) = 𝑢 ∙ 𝑆�̂�

−1 ∙ 𝑢 (21)

Because 𝑢 is standard normally (i.e. 𝒩(0,1)) distributed,

𝐽0 being the square of 𝑢 is a 𝜒2-distributed function of r

degrees of freedom (according to VDI 2048). Therefore,

the following relationship holds with statistical certainty

of probability p:

 𝐽0 ≤ 𝜒𝑟,𝑝
2 (22)

If Condition (22) is not satisfied, then the result for the

reconciled values should be rejected because the vector of

contradictions is too large. This can happen if some

improvements are too large making the corresponding

reconciled values fall out of their confidence ranges. This

can be checked with the following individual tests:

 |�̿�𝑖 − �̂�𝑖| √𝑆𝜈,𝑖,𝑖⁄ ≤ 𝜆𝑝 (23)

where 𝑆𝜈,𝑖,𝑖 is the ith diagonal element of the covariance

matrix of the improvements. From the physical viewpoint,

the failure of Condition (23) means that the constraints are

not fully representative of the actual system behavior

(e.g., some system leaks are not modelled), thus that the

assumption that the constraints are exact physical laws is

not verified, or that the measurements are incorrect (e.g.,

due to faulty sensors or poor estimations of their

confidence level).

2.2 Numerical Resolution

The VDI 2048 standard recommends linearizing

Equation (1) under the assumption that the improvements

𝜈 are small:

 𝒞(𝑥) = 𝒞(�̂�) +
𝑑𝒞

𝑑𝑥
(�̂�) ⋅ (𝑥 − �̂�) (24)

and use an iterative method to solve Equation (19). This

amounts to constructing the suite {𝑥𝑘}0≤𝑘≤𝑁 such that:

{

𝑥0 = �̂�

𝑆�̂�
−1 ⋅ (𝑥𝑘+1 − 𝑥𝑘) +

𝑑𝒞

𝑑𝑥

𝑇
(𝑥𝑘) ⋅ 𝜆𝑘 = 0

𝒞(𝑥𝑘) +
𝑑𝒞

𝑑𝑥
(𝑥𝑘) ⋅ (𝑥𝑘+1 − 𝑥𝑘) = 0

�̿� = 𝑥𝑁

 (25)

𝑁 is chosen to satisfy the convergence criteria:

 𝐿(𝑥𝑁, 𝜆𝑁) 𝑟⁄ < 𝜀 (26)

𝜀 being a small number such as 𝜀 = 10−10, and 𝑟 being

the size of 𝒞.

Equation (25) can be rewritten as follows:

{

𝑥0 = �̂�

𝑥𝑘+1 = 𝑥𝑘 − 𝑆�̂� ⋅ 𝐹𝑘
𝑇 ∙ 𝜆𝑘

𝐹𝑘 ∙ 𝑆�̂� ∙ 𝐹𝑘
𝑇 ∙ 𝜆𝑘 = 𝒞(𝑥𝑘)

�̿� = 𝑥𝑁

 (27)

with

 𝐹𝑘 =
𝑑𝒞

𝑑𝑥
(𝑥𝑘) (28)

From Equation (19) and Equation (24), the reconciled

values are:

 �̿� = �̂� − 𝑆�̂� ∙ 𝐹𝑁
𝑇 ∙ (𝐹𝑁 ∙ 𝑆�̂� ∙ 𝐹𝑁

𝑇)−1 ∙ 𝒞(�̂�) (29)

From equations (13), (14) and (29), the correlation

matrices of the improvements and of the reconciled values

are given by:

 𝑆𝜈 = 𝑆�̂� ∙ 𝐹𝑁
𝑇 ∙ 𝐹∗ (30)

 𝑆�̿� = 𝑆�̂� − 𝑆𝜈 (31)

where 𝐹∗ is the solution of the equation

 (𝐹𝑁 ∙ 𝑆�̂� ∙ 𝐹𝑁
𝑇) ∙ 𝐹∗ = 𝐹𝑁 ∙ 𝑆�̂� (32)

3 Performing Data Reconciliation

with Modelica Models

3.1 Physical Laws and Boundary Conditions

A valid Modelica model is always a square model. A

square model has as many unknown variables as

equations to compute them. The model equations can be

divided into two groups:

• The group of physical equations that represent

physical laws such as the mass, momentum or energy

balance equations, or empirical laws such as thermal

or pressure losses correlations. This group is always

underdetermined because physical laws express

constraints between physical quantities, but do not

provide any means to compute them in a unique way.

• The group of boundary conditions that provide the

additional constraints to the group of physical

equations to form a square system. Boundary

conditions represent assumptions on the

Session 6A: Interoperability

DOI
10.3384/ecp21181453

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

455

environment of the system that are necessary to

undertake a numerical experiment through

simulation.

Let us take the Ohm’s law as a simple example. The

equation 𝑈 = 𝑅 ∙ 𝐼 expresses a constraint between the

voltage U, the resistance R and the current I. To compute

numerical values out of this equation, one must provide

values for exactly two quantities in the form of boundary

conditions, e.g., 𝑈 = 220 𝑉 and 𝑅 = 50 Ω, or provide a

physical correlation to e.g. compute 𝑅 as a function of the

temperature 𝑇 , in such case other boundary conditions

related to the thermal condition of the system must be

provided.

3.2 Well-posedness of the Data Reconciliation

Problem

As boundary conditions do not represent physical laws,

they cannot be part of the auxiliary conditions. Therefore,

to use a valid Modelica model to represent the auxiliary

conditions of a data reconciliation problem, the boundary

conditions that are related to the variables of interest

must be automatically removed from the Modelica model

before computing the reconciled values. Each removed

boundary condition must be replaced by a variable of

interest in the sense explained in Section 3.6. It will be

shown in the sequel that this action reduces by one unit

the number of auxiliary conditions. When reducing the

number of auxiliary conditions, it can happen that some

variables of interest are not constrained anymore by any

auxiliary condition.

 Therefore, for the data reconciliation problem to be

well-posed, the following conditions must be met:

 𝑓 = 𝑛 − 𝑟 ≥ 1 (33)

 𝑟 ≥ 1 (34)
𝒞(𝑥1, … , 𝑥𝑛) = 0 (35)

where 𝑓 is the number of degrees of freedom, 𝑛 is the

number of variables of interest and 𝑟 is the number of

auxiliary conditions (or number of redundancies).

Condition (35) means that all variables of interest must

appear in at least one auxiliary condition. The variables of

interest that do not appear in any auxiliary condition

cannot be reconciled (which means that their reconciled

values are equal to their measured values).

A valid Modelica model being a square model, 𝑓 = 0

and Condition (33) is thus violated. This is another way to

state why the model must be pre-processed to be fit for

data reconciliation. The extraction algorithm presented in

the sequel decreases the value of 𝑟 by removing boundary

conditions until no boundary conditions related to the

variables of interest are left. Violation of Conditions (34)

and (35) can thus happen when a group of variables of

interest is related to a larger group of boundary conditions.

The extraction algorithm will always satisfy

Condition (33) because static models always involve

boundary conditions, at least for energy systems as shown

in (El Hefni and Bouskela, 2019).

3.3 Simple Example: Splitter

This section presents an illustrating example of a splitter

that will be our companion throughout the rest of the

paper.

A splitter is a device that separates an incoming flow

into two outgoing flows. The physical laws of the splitter

are the mass, momentum and energy balance equations.

There is one mass balance equation and one energy

balance equation to account for the flow separation, and

three momentum balance equations, one for the incoming

pipe and one for each outgoing pipe to account for the

pressure losses inside the pipes. In the following it is

assumed that all mass flow rates are positive, the fluid

flowing from the left to the right in each pipe, cf. Figure 1.

The mass balance equation in the mixing volume is:

 0 = 𝑄1 − 𝑄2 − 𝑄3

where 𝑄𝑖 is the mass flow rate of the fluid in the ith pipe.

The energy balance equation in the mixing volume is:

 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3 +𝑊

where ℎ𝑖 is the specific enthalpy of the fluid in the volume

upstream of the ith pipe, and 𝑊 is the heating power.

The momentum balance equations in the 3 pipes are:

 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2

 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2

 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2

where 𝑃𝑖,𝑙 and 𝑃𝑖,𝑟 are resp. the pressure of the fluid

entering (at the left) and exiting (at the right) the ith pipe

(subscript l stands for left and subscript r stands for right),

and 𝑘𝑖 is the pressure loss coefficient in the ith pipe, which

is assumed to be an exact parameter.

The pressure 𝑃 inside the mixing volume is related to

the pressures in the neighboring pipes:

 𝑃 = 𝑃1,𝑟

 𝑃 = 𝑃2,𝑙

 𝑃 = 𝑃3,𝑙

The specific enthalpies entering the outgoing pipes are

equal to the specific enthalpy h in the mixing volume:

 ℎ2 = ℎ

 ℎ3 = ℎ

𝑃1,𝑏𝑐
ℎ1,𝑏𝑐 𝑃, 𝑇

Measurements to
be reconciled

Boundary conditions to be
eliminated from the model if
they influence variables to be

reconciled

𝑃3,𝑏𝑐
ℎ3,𝑏𝑐

𝑄1, 𝑃1, 𝑇1

𝑄2, 𝑃2, 𝑇2

𝑄3, 𝑃3, 𝑇3

𝑃2,𝑏𝑐
ℎ2,𝑏𝑐

Figure 1. Splitter

New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

456 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181453

The mean pressures inside the pipes are given, by:

 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄

 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄

 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄

where 𝑃𝑖 is the mean pressure of the fluid in the ith pipe.

The specific enthalpies in the volumes are related to

the temperatures by the following equations:

 ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃

 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1

 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2

 ℎ3 = 𝑐𝑝 ∙ 𝑇3 + 𝑏 ∙ 𝑃3

where 𝑇𝑖 is the mean temperature of the fluid in the ith

pipe. 𝑐𝑝 is the specific heat capacity of the fluid and

𝑏 accounts for the pressure dependence of the specific

enthalpy. Those two last quantities are assumed to be

exact parameters.

This model has 17 equations and 21 unknowns.

Therefore 4 boundary conditions are needed. There are

many different possibilities for choosing the boundary

conditions. For instance, one may fix the pressure at each

open end of the 3 pipes, or fix the pressure at the inlet of

the incoming pipe and the mass flow rates inside the 2

outgoing pipes. Additionally, the specific enthalpy or the

temperature of the fluid at the inlet of the incoming pipe

must be fixed, so that 4 boundary conditions are properly

fixed. The way to select the boundary conditions is

important to define the proper scenarios to perform

validation tests of the model, but does not matter for data

reconciliation as they will be eliminated.

For the purpose of this example, the equations

involving boundary conditions are:

 𝑃1,𝑙 = 𝑃1,𝑏𝑐

 𝑄2 = 𝑄2,𝑏𝑐

 𝑄3 = 𝑄3,𝑏𝑐

 ℎ1 = ℎ1,𝑏𝑐

where 𝑃1,𝑏𝑐 , 𝑄2,𝑏𝑐 , 𝑄3,𝑏𝑐 and ℎ1,𝑏𝑐 are the boundary

conditions with fixed values.

3.4 The Set 𝓒 of Auxiliary Conditions and the

Set 𝓢 of Intermediate Equations

The auxiliary conditions 𝒞(𝑥) = 0 must be automatically

extracted from the Modelica model ℳ(𝑥, 𝑧) = 0, where

𝑥 are the variables to be reconciled, and 𝑧 are the other

variables of the model.

The equations in 𝒞(𝑥) = 0 almost always involve a

subset 𝑦 of 𝑧 . This is why 𝒞(𝑥) = 0 will be denoted

𝒞(𝑥, 𝑦) = 0 in the sequel. The vector 𝑥 will be called the

variables of interest or the known variables as

measurement values are provided for 𝑥. The vector 𝑦 will

be called the intermediate variables.

The extraction problem consists in extracting the set of

auxiliary conditions 𝒞(𝑥, 𝑦) = 0 and the set 𝒮(𝑥, 𝑦) = 0
of intermediate equations that compute the intermediate

variables from the known variables. Therefore, the system

𝒞(𝑥, 𝑦) = 0 is a non-square problem that has more

variables of interest than equations, while 𝒮(𝑥, 𝑦) = 0 is

a square system that has as many equations as

intermediate variables.

3.5 Reformulating the Data Reconciliation

Problem with Sets 𝓒 and 𝓢

Equation (27) is rewritten to reveal set 𝒮:

{

𝑥0 = �̂�

𝒮(𝑥0, 𝑦0) = 0

𝑥𝑘+1 = 𝑥𝑘 − 𝑆�̂� ⋅ 𝐹𝑘
𝑇 ∙ 𝜆𝑘

𝐹𝑘 ∙ 𝑆�̂� ∙ 𝐹𝑘
𝑇 ∙ 𝜆𝑘 = 𝒞(𝑥𝑘)

𝒮(𝑥𝑘, 𝑦𝑘) = 0

�̿� = 𝑥𝑁

 (36)

with

 𝐹𝑘 =
𝑑𝒞

𝑑𝑥
(𝑥𝑘, 𝑦𝑘) (37)

𝐹𝑘 is computed by solving the following equation system:

 {

𝑑𝒞

𝑑𝑥
=

𝜕𝒞

𝜕𝑥
+
𝜕𝒞

𝜕𝑦
⋅
𝑑𝑦

𝑑𝑥

𝜕𝒮

𝜕𝑥
+
𝜕𝒮

𝜕𝑦
⋅
𝑑𝑦

𝑑𝑥
= 0

 (38)

The Jacobian matrices
𝜕𝒞

𝜕𝑥
,
𝜕𝒞

𝜕𝑦
,
𝜕𝒮

𝜕𝑥
 and

𝜕𝒮

𝜕𝑦
 can be computed

analytically from sets 𝒞 and 𝒮.

3.6 Algorithm to Extract Set 𝓒 and Set 𝓢

The extraction algorithm relies on the BLT (Block Lower

Triangular) decomposition of the equation system of the

full Modelica model ℳ.

Table 1. BLT of the Splitter.

Variable Equation

ℎ1,𝑏𝑐 ℎ1,𝑏𝑐 = 100000.0 binding

𝑄3,𝑏𝑐 𝑄3,𝑏𝑐 = 2.0 binding

𝑄2,𝑏𝑐 𝑄2,𝑏𝑐 = 1.0 binding

𝑃1,𝑏𝑐 𝑃1,𝑏𝑐 = 300000.0 binding

𝑄1 0 = 𝑄1 − 𝑄2 −𝑄3

𝑄2 𝑄2 = 𝑄2,𝑏𝑐

𝑄3 𝑄3 = 𝑄3,𝑏𝑐

𝑃 𝑃 = 𝑃1,𝑟

𝑃1 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄

𝑃2 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄

𝑃3 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄

𝑃1,𝑙 𝑃1,𝑙 = 𝑃1,𝑏𝑐

𝑃1,𝑟 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2

𝑃2,𝑙 𝑃 = 𝑃2,𝑙

𝑃2,𝑟 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2

𝑃3,𝑙 𝑃 = 𝑃3,𝑙

𝑃3,𝑟 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2

ℎ ℎ2 = ℎ

Session 6A: Interoperability

DOI
10.3384/ecp21181453

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

457

ℎ1 ℎ1 = ℎ1,𝑏𝑐

ℎ2 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3

ℎ3 ℎ3 = ℎ

𝑇 ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃

𝑇1 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1

𝑇2 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2

𝑇3 ℎ3 = 𝑐𝑝 ∙ 𝑇3 + 𝑏 ∙ 𝑃3

The BLT is obtained by assigning to each variable 𝑧 of

ℳ the equation 𝐸𝑧 that computes it. Because there is a

bijection between the set of equations and the set of

variables in ℳ, each equation 𝐸𝑧 can be uniquely labelled

by the name of the variable 𝑧 that it solves. Therefore, the

term Equation 𝑧 will refer to the equation that solves 𝑧, as

established by the BLT. The BLT of the Splitter is given

in Table 1. To avoid any confusion between variables and

equations, Equation 𝑧 will be denoted �̆�. For instance, �̆�1
stands for equation 0 = 𝑄1 − 𝑄2 − 𝑄3 , cf. Table 1. A

binding is a fixed value assigned to a variable (it is not an

equation although it can be found in the BLT).

In the following, the BLT of model ℳ will also be

denoted by ℳ because the BLT of ℳ contains all the

equations of ℳ . The set ℳ′ is the set ℳ without the

binding equations. In the example:

ℳ′ =ℳ − {ℎ1,𝑏𝑐 , 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐}

The overall principle of the extraction algorithm is

shown in Figure 2. The algorithm starts from set 𝒞′ which

is the set of equations of ℳ′ that compute the variables of

interest:

 𝒞′ = �̆� ∩ℳ′ (39)

Let us assume that the variables of interest are:

𝑥 = {𝑥𝑖} = {𝑄1, 𝑄2, 𝑄3, 𝑃1, 𝑃2, 𝑃3, 𝑇1, 𝑇2, 𝑇3, 𝑇}.
Then:

𝒞′ = {�̆�𝑖} ∩ℳ′ = {�̆�1, �̆�2, �̆�3, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2, �̆�3, �̆�}.

For each equation �̆�𝑖 in set 𝒞′, set 𝒮𝑖 is built by finding

the equations in ℳ′ that compute the intermediate

variables 𝑦𝑖𝑗 involved in �̆�𝑖 as a function of the variables

of interest which are known variables. This procedure is

called the chain rule in the following. Its formal

specification is shown in Listing 1.

Let us apply the chain rule to equation �̆�3. Equation �̆�3

involves intermediate variables 𝑃3 and ℎ3. This is denoted

by �̆�3 → �̆�3 and �̆�3 → ℎ̆3. Then carrying on with this chain

rule yields:

�̆�3 → ℎ̆3 → ℎ̆2 → ℎ̆1 → ℎ̆1,𝑏𝑐 → 𝑠𝑡𝑜𝑝.

The chain rule is stopped because ℎ1,𝑏𝑐 is a boundary

condition that cannot be included in the data

reconciliation problem. The outcome of the chain rule

applied to equation �̆�𝑖 is denoted 𝑟(�̆�𝑖) . The boundary

condition that made the chain rule fail for equation �̆�𝑖 is

denoted 𝑏(�̆�𝑖) . If the outcome is positive, i.e. if no

boundary condition has been encountered, then 𝑟(�̆�𝑖) =
𝑡𝑟𝑢𝑒. Else 𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒. Then:

 𝒮𝑖 = {�̆�𝑖𝑗|𝑟(�̆�𝑖) = 𝑡𝑟𝑢𝑒} (40)

Then 𝒮�̆�3 = ∅.

When applying the chain rule for all equations in

set 𝒞′, it turns out that �̆�1 is the only equation for which

the chain rule is not stopped, in this case because �̆�1 does

not involve any intermediate variable. As �̆�1 does not

involve any intermediate variable, 𝒮�̆�1 = ∅.

Set 𝒮 is the union of all sets 𝒮𝑖:
 𝒮 =∪ 𝒮𝑖 (41)

Then 𝒮 = ∅.

Set 𝒞 contains all equations �̆�𝑖 of 𝒞′ whose associated

set 𝒮𝑖 has been completed without stopping the chain rule.

�̆�1 is the only equation that complies with this rule, thus

𝒞 = {�̆�1}

which corresponds to the mass balance equation.

The variables of interest that can be reconciled are the

variables of interest involved in set 𝒞 or set 𝒮:

 �̿� = {𝑥𝑖 ∈ 𝑥|𝑥𝑖 ∈ 𝒞 ∪ 𝒮} (42)

Figure 2. Principle of the extraction algorithm

Listing 1. Procedure for extracting set 𝒮𝑖

set S = empty set;
set V_eq = set of intermediate variables y in equation �̆�𝑖;
call extract (S, V_eq, status, fail_eq);
// S contains 𝒮𝑖, status contains 𝑟(�̆�𝑖), fail_eq contains 𝑏(�̆�𝑖)ෳ
 define procedure extract (S, V, status, fail_eq)
 set status = SUCCEED;
 for each variable y in V
 if v is a boundary condition then
 set status = FAIL;
 else
 eq = equation in BLT – {bindings} that computes y;
 if eq exists and eq is not in S then
 insert eq into S;
 set V_eq = set of intermediate variables y in eq;
 call extract (S, V_eq, status, fail_eq);
 if status == FAIL then
 set fail_eq = eq;
 exit procedure;
 end if;
 end if;
 end if;
 end for;
end procedure;

New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

458 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181453

where 𝑥𝑖 ∈ 𝒞 ∪ 𝒮 means that 𝑥𝑖 is involved in at least one

equation of 𝒞 ∪ 𝒮 . Then �̿� = {𝑄1, 𝑄2, 𝑄3} . This means

that all variables of interest in 𝑥 − �̿� cannot be reconciled:

𝑥 − �̿� = {𝑃1, 𝑃2, 𝑃3, 𝑇1, 𝑇2, 𝑇3, 𝑇}
A larger set �̿�, and thus a higher redundancy level, should

be achievable as the model contains momentum and

energy balance equations which are appropriate to

reconcile pressures and temperatures. Therefore, the

algorithm should carry on in order to get into �̿� as many

variables of interest as possible.

To go forward, the idea is to replace in model ℳ the

boundary condition 𝑏(�̆�𝑖) that made the chain rule fail for

variable of interest 𝑥𝑖 by the variable of interest 𝑥𝑖 itself.

The exact rule is to replace the equation 𝑏(�̆�𝑖)ෳ that

computes 𝑏(�̆�𝑖) by equation (𝑥𝑖 = 0). Applying this rule

to �̆�3 amounts to replacing ℎ̆1,𝑏𝑐 by equation (𝑇3 = 0) .

Applying this rule to all variables 𝑥𝑖 such that 𝑟(�̆�𝑖) =
𝑓𝑎𝑙𝑠𝑒 yields a new model ℳ1:

ℳ1 =ℳ− {𝑏(�̆�𝑖)ෳ|𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒}

 + {(𝑥𝑖 = 0)|𝑟(�̆�𝑖) = 𝑓𝑎𝑙𝑠𝑒}
 (43)

For the example

 ℳ1 =ℳ− {ℎ1,𝑏𝑐, 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐}

+{(𝑇3 = 0), (𝑃3 = 0), (𝑄3 = 0), (𝑄2 = 0)}

The BLT for ℳ1 is given in Table 2.

Table 2. BLT of ℳ1.

Variable Equation

ℎ1,𝑏𝑐 ℎ1,𝑏𝑐 = 100000.0 binding

𝑄3,𝑏𝑐 𝑄3,𝑏𝑐 = 2.0 binding

𝑄2,𝑏𝑐 𝑄2,𝑏𝑐 = 1.0 binding

𝑃1,𝑏𝑐 𝑃1,𝑏𝑐 = 300000.0 binding

𝑄1 0 = 𝑄1 − 𝑄2 −𝑄3

𝑄2 𝑄2 = 0 binding

𝑄3 𝑄3 = 0 binding

𝑃 𝑃 = 𝑃1,𝑟

𝑃1 𝑃1 = (𝑃1,𝑙 + 𝑃1,𝑟) 2⁄

𝑃2 𝑃2 = (𝑃2,𝑙 + 𝑃2,𝑟) 2⁄

𝑃3 𝑃3 = (𝑃3,𝑙 + 𝑃3,𝑟) 2⁄

𝑃1,𝑙 𝑃1,𝑙 = 𝑃1,𝑏𝑐

𝑃1,𝑟 𝑃1,𝑙 − 𝑃1,𝑟 = 𝑘1∙𝑄1
2

𝑃2,𝑙 𝑃 = 𝑃2,𝑙

𝑃2,𝑟 𝑃2,𝑙 − 𝑃2,𝑟 = 𝑘2∙𝑄2
2

𝑃3,𝑙 𝑃 = 𝑃3,𝑙

𝑃3,𝑟 𝑃3,𝑙 − 𝑃3,𝑟 = 𝑘3∙𝑄3
2

ℎ ℎ = 𝑐𝑝 ∙ 𝑇 + 𝑏 ∙ 𝑃

ℎ1 0 = ℎ1 ∙ 𝑄1 − ℎ2 ∙ 𝑄2 − ℎ3 ∙ 𝑄3 +𝑊

ℎ2 ℎ2 = ℎ

ℎ3 ℎ3 = ℎ

𝑇 𝑇 = 0 binding

𝑇1 ℎ1 = 𝑐𝑝 ∙ 𝑇1 + 𝑏 ∙ 𝑃1

𝑇2 ℎ2 = 𝑐𝑝 ∙ 𝑇2 + 𝑏 ∙ 𝑃2

𝑇3 𝑇3 = 0 binding

We now reapply the extraction algorithm to ℳ1.

ℳ1
′ =ℳ1 − {ℎ1,𝑏𝑐, 𝑄3,𝑏𝑐,𝑄2,𝑏𝑐,𝑃1,𝑏𝑐, 𝑄2, 𝑄3, 𝑇, 𝑇3}

𝒞1
′ = {�̆�𝑖} ∩ℳ1

′ = {�̆�1, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2}.

Notice now that 𝒞1
′ is smaller than 𝒞′ by 4 units.

Extracting set 𝒮 yields:

�̆�1 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
�̆�1 → �̆�1,𝑙 → �̆�1,𝑟 → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

�̆�2 → �̆�2,𝑙 → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → �̆�2,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

�̆�3 → ℎ̆3 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

�̆�1 → ℎ̆1 → ℎ̆3 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → ℎ̆2 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

�̆�2 → ℎ̆2 → ℎ̆ → �̆� → �̆�3,𝑙 → �̆�3,𝑟 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
Then:

𝒞 = {�̆�1, �̆�1, �̆�2, �̆�3, �̆�1, �̆�2}

and:

𝒮�̆�1 = ∅

𝒮�̆�1 = {�̆�1,𝑙 , �̆�1,𝑟 , �̆�, �̆�3,𝑙 , �̆�3,𝑟}

𝒮�̆�2 = {�̆�2,𝑙 , �̆�, �̆�3,𝑙 , �̆�3,𝑟 , �̆�2,𝑟}

𝒮�̆�3 = {ℎ̆3, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟}

𝒮�̆�1 = {ℎ̆1, ℎ̆3, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟 , ℎ̆2}

𝒮�̆�2 = {ℎ̆2, ℎ̆, �̆�, �̆�3,𝑙 , �̆�3,𝑟}

𝒮 = 𝒮�̆�1 ∪ 𝒮�̆�1 ∪ 𝒮�̆�2 ∪ 𝒮�̆�3 ∪ 𝒮�̆�1 ∪ 𝒮�̆�2

 = {�̆�1,𝑙 , �̆�1,𝑟 , �̆�, �̆�3,𝑙 , �̆�3,𝑟 , �̆�2,𝑙 , �̆�2,𝑟, ℎ̆3, ℎ̆, ℎ̆1, ℎ̆2}

Notice that the original model has a 21-equation

algebraic system to be solved, whereas the extracted

system for data reconciliation has only an 11-equation

algebraic system to be solved (in fact two separate 11-

equation algebraic systems, one for solving set 𝒮 and the

other for computing the Jacobian matrix of set 𝒞, cf. resp.

Equations (36) and (38)).

The variables of interest that can be reconciled are

those who appear in set 𝒞 or in set 𝒮 . All variables of

interest appear in set 𝒞 or in set 𝒮, therefore all variables

of interest can be reconciled:

�̿� = {�̿�1, �̿�2, �̿�3, �̿�1, �̿�2, �̿�3, �̿�1, �̿�2, �̿�3, �̿�}

The redundancy level is 6 and the size of the algebraic

system is divided by approximately 2. The extraction

algorithm is completed∎

If the set of variables of interest is

𝑥 = {𝑄1, 𝑄2, 𝑄3},
then:

𝒞 = {�̆�1}
𝒮 = ∅

�̿� = {�̿�1, �̿�2, �̿�3}

All variables of interest can be reconciled, the redundancy

level is 1 and there is no algebraic system to be solved.

If the set of variables of interest is

Session 6A: Interoperability

DOI
10.3384/ecp21181453

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

459

𝑥 = {𝑃1, 𝑃2, 𝑃3},
then:

𝒞 = ∅
𝒮 = ∅
�̿� = ∅

No variable of interest can be reconciled. This is because

there are too many boundary conditions related to the

variables of interest. The data reconciliation problem is

thus ill-posed.

3.7 Numerical Results

The inputs for the numerical computations are the

measured values �̂�𝑖, the weights or half-width confidence

intervals 𝑤�̂�,𝑖 and the correlation matrix coefficients 𝑟�̂�,𝑖,𝑗.

In the following examples, the correlation matrix

coefficients are equal to zero: 𝑟�̂�,𝑖,𝑗 = 0 for 𝑖 ≠ 𝑗. Then

only the measured values and weights are provided.

In the computation of Table 3 and Table 4, the values

for the parameters are 𝑘1 = 𝑘2 = 𝑘3 = 1 bar. kg
−2. s−2,

𝑐𝑝 = 4.2 kJ. kg
−1. °C−1, 𝑏 = 0.19 kJ. bar−1 and 𝑊 =

1 MW. One can verify that the reconciled weights are

smaller than the measured weights.

Table 3. Inputs for the Splitter

Variable Measured value Weight

𝑄1 2.5 kg/s 0.196

𝑄2 1.15 kg/s 0.196

𝑄3 1.25 kg/s 0.196

𝑃1 6.1 bar 0.392

𝑃2 2.55 bar 0.392

𝑃3 2.45 bar 0.392

𝑇 114 °C 1.96

𝑇1 19 °C 1.96

𝑇2 113 °C 1.91

𝑇3 115 °C 1.91

Table 4. Reconciled values for the Splitter

Variable Reconciled
value

Reconciled
weight

Individual
test

𝑄1 2.49413 kg/s 0.0521606 true

𝑄2 1.20022 kg/s 0.120607 true

𝑄3 1.2939 kg/s 0.120293 true

𝑃1 6.29266 bar 0.250971 true

𝑃2 2.46206 bar 0.274044 true

𝑃3 2.34524 bar 0.276126 true

𝑇 114.124 °C 1.08222 true

𝑇1 18.5211 °C 1.7887 true

𝑇2 114.157 °C 1.08159 true

𝑇3 114.162 °C 1.08158 true

In the computation of Table 5, only the mass flow rates

are reconciled with the measured values of Table 3. One

can verify that the reconciled weights are smaller than the

measured weights but are larger than the values obtained

when reconciling the mass flow rates with the pressures

and the temperatures. This is consistent with the fact that

more information leads to better accuracy.

Table 5. Reconciled values for the Splitter

Variable Reconciled
value

Reconciled
weight

Individual
test

𝑄1 2.46667 kg/s 0.160033 true

𝑄2 1.18333 kg/s 0.160033 true

𝑄3 1.28333 kg/s 0.160033 true

In both calculations, the 𝜒2 -test of Condition (22) is

satisfied.

3.8 Interface with Modelica in OpenModelica

OpenModelica is an open source tool for the modelling

and simulation of Modelica models (Fritzson et al., 2020).

The data reconciliation interface with Modelica newly

implemented in OpenModelica aims at giving the

possibility to perform data reconciliation on a validated

Modelica model without having to modify the model.

To perform data reconciliation, three to four actions

are necessary:

1. Tag the boundary conditions.

2. Tag the variables of interest.

3. Provide the measured values and weights.

4. If necessary, provide the correlation coefficients.

In Modelica libraries, boundary conditions are most

often to be found in specialized components such as mass

flow rate, pressure and temperature sources and sinks. The

tagging of boundary conditions is therefore permanent

Listing 3. Tagging the variables of interest
model TSP_Splitter_DR
 TSP_Splitter splitter(
 pipe1(Q(uncertain = Uncertainty.refine)),
 pipe2(Q(uncertain = Uncertainty.refine)),
 pipe3(Q(uncertain = Uncertainty.refine)),
 pipe1(Pm(uncertain = Uncertainty.refine)),
 pipe2(Pm(uncertain = Uncertainty.refine)),
 pipe3(Pm(uncertain = Uncertainty.refine)),
 volume(T(uncertain = Uncertainty.refine)),
 pipe1(T(uncertain = Uncertainty.refine)),
 pipe2(T(uncertain = Uncertainty.refine)),
 pipe3(T(uncertain = Uncertainty.refine)));
equation
end TSP_Splitter_DR;

Listing 2. Tagging the boundary conditions

parameter Real Q0=100 "Fluid mass flow rate"

annotation(__OpenModelica_BoundaryCondition =

true);
 parameter Real h0=100000 "Fluid specific

enthalpy"

annotation(__OpenModelica_BoundaryCondition =

true);

New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

460 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181453

and should not interfere with the usual simulation

activities (i.e. DAE integration from initial conditions). It

also should not prevent the components to be used with

tools that do not support data reconciliation. Therefore,

the tagging of boundary conditions is done with a special

annotation. In Listing 2, two boundary conditions are

tagged: the fluid mass flow rate and the fluid specific

enthalpy.

The variables of interest are tagged by the user in a

different way for each data reconciliation problem. The

tags should not modify the original Modelica model, and

appropriate checks must be done by the tool to verify that

the tags refer to existing and eligible variables. Therefore,

the tagging of variables of interest is done with a special

modifier. In Listing 3, the name of the original model of

the splitter is TSP_Splitter. One instance of TSP_Splitter

is placed in model TSP_Splitter_DR that is especially

created to perform data reconciliation on the model

TSP_Splitter. The variables of interest in model

TSP_Splitter are tagged from model TSP_Splitter_DR

using the uncertain modifier. Checks are performed

by the tool to ensure that the tagged variables are eligible

to be tagged as variables of interest. Thus, the original

model is not modified and can be used in any Modelica

tool. The embedding model can however only be used in

tools supporting data reconciliation.

The measured values and weights are provided in a csv

file with 3 columns, cf. Listing 4 where the values are

given in SI units.

The correlation matrix is provided in an optional

separate csv file. No correlation matrix file is given for the

example.

3.9 Data Reconciliation with ThermoSysPro

ThermoSysPro is a Modelica library for the modelling

and simulation of power plants and energy systems at

large (El Hefni and Bouskela, 2019).

The ThermoSysPro model of the Splitter is shown in

Figure 3. It is equivalent to the model proposed in

Section 3.3, the equations being dispatched in the

following specialized components: SourceP (pressure

source), SinkQ (mass flow rate sink),

SingularPressureLoss (pipes), VolumeBTh (splitter

volume), HeatSource (thermal power). Therefore, for

instance the variable splitter.volume.T in Listing 4 is

the temperature 𝑇 inside the splitter volume. The

Modelica model has a total of 121 variables and 121

equations.

The model components used in the Splitter model are

modified as follows.

1. SourceP and SinkQ: The boundary conditions are

tagged as shown in Listing 2.

2. VolumeBTh: The temperature is computed from the

specific enthalpy with equation �̆� in Table 1.

3. SingularPressureLoss: The pressure loss is

computed from the mass flow rate with equation �̆�𝑖,𝑟
in Table 1 for 𝑖 = 1, 2, 3 . The temperature is

computed from the specific enthalpy with equation

 �̆�𝑖 in Table 1 for 𝑖 = 1, 2, 3. The mass flow reversal

equation in each pipe which according to the upwind

scheme should be (El Hefni and Bouskela, 2019, Eq.

4.114)

 ℎ𝑖 = {
ℎ𝑖,𝑙 if 𝑄𝑖 ≥ 0

ℎ𝑖,𝑟 if 𝑄𝑖 < 0

 is replaced by

ℎ𝑖 = ℎ𝑖,𝑙

under the assumption that mass flow rates are

positive, in order to avoid dependencies with

boundary conditions ℎ2,𝑟 and ℎ3,𝑟 so that

Condition (35) can be satisfied and all temperatures

can be reconciled. This replacement was performed

manually but could be done automatically as the sign

of 𝑄𝑖 is fixed and known beforehand.

Modifications in points 2 and 3 above are made to avoid

numerical difficulties when solving the algebraic

equations.

The extracted model has 10 variables to be reconciled,

6 auxiliary conditions and 41 intermediate equations.

Therefore, the size of the algebraic system to be solved is

divided by 3.

The results of the data reconciliation computation with

ThermoSysPro are shown in Table 6. They are different

from the results obtained without ThermoSysPro

displayed in Table 4 because the two splitter models are

equivalent, but not identical, however results stay within

their confidence intervals.

pressureSource

massFlowRateSink
2

massFlowRateSink
3

thermalPower

pipe1

pipe2

pipe3

volume

Figure 3. ThermoSysPro model of the splitter

Listing 4. Csv file for the measured values
Variable name; Measured value; Weight
splitter.pipe1.Q; 2.50; 0.196
splitter.pipe2.Q; 1.15; 0.196
splitter.pipe3.Q; 1.25; 0.196
splitter.pipe1.Pm; 6.1e5; 0.392e5
splitter.pipe2.Pm; 2.55e5; 0.392e5
splitter.pipe3.Pm; 2.45e5; 0.392e5
splitter.volume.T; 387; 1.96
splitter.pipe1.T; 292; 1.96
splitter.pipe2.T; 386; 1.91
splitter.pipe3.T; 388; 1.91

Session 6A: Interoperability

DOI
10.3384/ecp21181453

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

461

Table 6. Reconciled values with ThermoSysPro

Variable Reconciled
value

Reconciled
weight

Individual
test

𝑄1 2.49327 kg/s 0.0521266 true

𝑄2 1.19978 kg/s 0.120619 true

𝑄3 1.29349 kg/s 0.120306 true

𝑃1 6.29090 bar 0.250917 true

𝑃2 2.46296 bar 0.274003 true

𝑃3 2.34614 bar 0.276086 true

𝑇 113.987 °C 1.08228 true

𝑇1 18.351 °C 1.78902 true

𝑇2 114.019 °C 1.08165 true

𝑇3 114.025 °C 1.08163 true

4 Conclusion and Future Work

Performing data reconciliation on a Modelica model

requires to extract the auxiliary conditions that constrain

the variables of interest from the Modelica model and

remove the boundary conditions which are related to the

variables of interest. This is why, contrary to data

assimilation (Corona Mesa-Moles et al., 2019), data

reconciliation cannot be performed on a Modelica model

in a black box manner.

An extraction algorithm has been presented and

applied on a small example with 121 equations built with

the ThermoSysPro library. The extracted model has 10

variables to be reconciled, 6 auxiliary conditions and 41

intermediate equations, which shows that the extraction

algorithm reduces significantly the size of the algebraic

system to be solved (here by a factor of 3). Some

modifications were required in the ThermoSysPro library

to perform the numerical computations. They mainly

consisted in simplifying the equations that compute the

fluid properties and those that compute the specific

enthalpy according to the upwind scheme. These

simplifications around the measured values are acceptable

because data reconciliation assumes that the differences

between the measured and reconciled values are small.

This work demonstrates that Modelica can be used for

other purposes than for initial value problems, and that the

knowledge embedded in existing models can be utilized

also for data processing.

Future work will consist in verifying that the method

presented in the paper is applicable to larger models. A

preliminary experiment was conducted on the model of a

secondary side of a nuclear power plant to compute the

reactor nominal power. The model has 2002 variables and

equations and 26 variables to be reconciled. The

extraction algorithm produced 23 auxiliary conditions and

553 intermediate equations. This shows that a higher level

of redundancy and algebraic system reduction can be

achieved on larger models, making paradoxically data

reconciliation more efficient to perform on larger

Modelica models than on smaller ones.

Future work will also consist in computing the values

of the boundary conditions from the reconciled values,

have the new method certified by the VDI 2048 standard

committee and integrate the new modifier for tagging the

variables of interest into the Modelica standard.

Acknowledgements

This work was partially supported by DGE (France) and

Vinnova (Sweden) in the scope of the ITEA 3 OPENCPS

project.

References

Bai, S. and Thibault, J. (2010). “Dynamic Data Reconciliation”.

VDM Verlag. ISBN: 978-3-639-21779-7.

Bedjaoui, N., Litrico, X., Koenig, D., Ribot-Bruno, J. and

Malaterre, P.O. (2008). “Static and Dynamic Data

Reconciliation for an Irrigation Canal”. Journal of Irrigation

and Drainage Engineering, 134: 778-787.

Belsim (2021). “VALI Software Suite”. URL:

https://belsim.com/vali-software/ (visited on 2021-04-14).

Corona Mesa-Moles, L., Argaud, J.P., Jardin, A., Benssy, A. and

Dong, Y. (2019). “Robust Calibration of Complex

ThermosysPro Models using Data Assimilation Techniques:

Application on the Secondary System of a Pressurized Water

Reactor”. Linköping Electronic Conference Proceedings

157:56, s. 8.
Dutfoy A., Dutka-Malen I., Lebrun R. et al. (2009).

“OpenTURNS, an Open Source Initiative to Treat

Uncertainties, Risks’N Statistics in a Structured Industrial

Approach”. In: 41èmes Journées de Statistique, SFdS,

Bordeaux.

El Hefni, B. and Bouskela, D. (2019). “Modeling and Simulation

of Thermal Power Plants with ThermoSysPro”. Springer.
ISBN: 978-3-030-05104-4.

Fritzson, P., Pop, A., Abdelhak, K., Asghar, A. et al. (2020).

“The OpenModelica Integrated Environment for Modeling,

Simulation, and Model-Based Development”. Modeling,

Identification and Control. 2020;41(4):241-295.
Langenstein, M., Jansky, J., Laipple, B., Grauf, E., Schak, H., &

Eitschberger, H. (2004). “Finding megawatts in nuclear

power plants with data reconciliation”. In: Proceedings of the

12th International Conference on Nuclear Engineering. Vol.

2. American Society of Mechanical Engineers – ASME.
Modelica Association (2021). “Modelica – A Unified

ObjectOriented Language for Systems Modeling. Language

Specification Version 3.5”. Tech. rep. Linköping: Modelica

Association. URL: https://www.modelica.org/documents/

MLS.pdf.
VDI - Verein Deutscher Ingenieure (2017). VDI 2048 – Blatt 1

“Control and quality improvement of process data and their

uncertainties by means of correction calculation for

operation and acceptance tests, VDI-Handbuch

Energietechnik”, ICS: 17.020, 27.010.

New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

462 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181453

Use of Modelica to predict risk of Covid-19 infection in indoor

environments

Arnav Pathak Kilian Schneider Victor Norrefeldt

Fraunhofer-Institute for Building Physics, Fraunhoferstr. 10, D-83626 Valley, Germany

victor.norrefeldt@ibp.fraunhofer.de

Abstract

In the light of the Sars-CoV-2 pandemic, the dispersion

process of respiratory droplets released by potentially

infected persons has been investigated in many studies

using highly reliable but time consuming CFD methods.

With such simulations social distancing, wearing masks

and shifts in ventilation systems could be justified. This

work focuses on the same topic but uses the validated

Velocity Propagating Zonal Model (VEPZO) instead of

CFD simulations. It is implemented in Modelica and

allows fast simulation of the indoor environment on a

coarse grid which in many cases is a superior alternative

to complex CFD simulations in the trade-off between

effort and detail of the result. Based on the temperature

and airflow distribution, this model can be used to

predict the dispersion of aerosols in enclosed spaces and

thus the relative risk of Covid-19 infection. For model

verification, a documented outbreak in a restaurant in

Guangzhou is being investigated. An improved

ventilation pattern to contain viral load more locally is

developed.

1 . Introduction

Covid-19 is mainly transmitted from human-to-human

through inhalation of respiratory droplets. Transmission

of respiratory infectious diseases has been studied in

different disciplines for decades. Computational Fluid

Dynamics (CFD) simulation is an accurate and reliable

method to predict airflow patterns and thus lately the

risk of airborne cross infection in a crowded indoor

environment with an infected index patient. Zhang and

Li (2012) studied the dispersion process of respiratory

droplets released by a coughing person in a high speed

rail cabin using CFD simulations. Four cases of different

air supply and exhaust locations are reviewed. The

droplets’ dispersion characteristics and the maximum

dispersion distances under specified ventilation

conditions are investigated. This study demonstrates the

potential of improving cabin air ventilation for infection

control. In Goscé et al. (2014) the authors show the

dependency of walking speed on the rate of infection in

crowded underground corridors. Recent discussions

investigated infection risks also in aircraft cabins and

other indoor environments such as offices, classrooms
and restaurants. Yan et al. (2017) simulated a whole

fully occupied 7 row aircraft cabin and investigated the

influence of different ventilation systems on the droplet

dispersion for different respiratory activities of a single

person. The key particle transport information such as

the particle residence time yielded from the Lagrangian

tracking process was extracted and integrated into the

Wells-Riley equation (Sze To and Chao 2010) in

conjunction with CFD predictions. Villafruela et al.

(2016) focus on the validation of a 3-D transient CFD

model used to predict personal exposure to airborne

pathogens and infection risk in a displacement

ventilated room. After consideration of different

interactions of two exhaling persons, they conclude that

numerical simulations have the capacity to analyse the

dispersion of exhaled contaminants over time.

Melikov (2020) postulated a paradigm shift in

ventilation design which is needed in order to respond

to the current need. State of the art ventilation is mainly

based on mixing air distribution. This does neither

provide efficient removal of polluted air exhaled by

occupants before mixing nor the direct supply of clean

air to the breathing zone.

The investigated case of this paper is a so called super

spreader event taken place in a restaurant in Guangzhou,

China (Lu et al. 2020). With the help of the Velocity

Propagating Zonal model (VEPZO) (Norrefeldt et al.

2012) the case could be reconstructed and the infection

spread traced back to a poorly ventilated dining room.

Furthermore an alternative to the existing ventilation

system is developed in order to contain the spread of

potentially infectious aerosols.

2 . Methods

2.1 Implementation of the VEPZO model

Zonal models allow simpler and faster estimation of

indoor climate than complex CFD simulations. They use

similar mathematical theory, but subdivide the space

more coarsely into 10 to 100 zones exchanging air

through flow paths. These are usually based on the

Bernoulli-equation, causing numerical issues and a lack

of precision at a zero pressure difference due to the

square root function. The Velocity Propagating Zonal

Model (VEPZO) is an advanced type of zonal model,

developed at the Fraunhofer-Institute for Building
Physics. By introducing airflow velocity vectors and

making them a property of the zone, the airflow velocity

DOI
10.3384/ecp21181463

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

463

is no longer dissipated once it has entered a zone but

propagates into space. Therefore the zonal formulation

is still valid in areas with driving flows due to jets or

plumes and overcomes the need for correlation

formulation in those areas.

The two main components of the VEPZO model are a

zone model and a flow model (Figure 1). The zone

(cube) and the flow (grey rectangle) models are

connected by ports (rhombs) to form a room. These

ports allow the exchange of relevant information

between the flow and the zone model. The flow models

have two ports to connect adjacent zones. Each zone has

six ports, one for each boundary. A Boolean parameter

is assigned to each port to make the distinction whether

the port is connected to a flow model or whether there is

no flow because the zone is adjacent to a room boundary

surface.

Figure 1: Zonal model in x-z direction (y not shown); cubes:

zones; grey rectangles: flows; rhombs: airflow ports; red solid

squares: heat ports.

Each zone has a heat port (red square) allowing

exchanges with models of other components like e.g.

heat sources or walls to assess the local impact of these

heat releases on the airflow pattern and the temperature

distribution in a room. Models computing the

interaction of air properties like density, pressure,

temperature or specific enthalpy are available in the

Modelica.Media library and are used in the VEPZO

model (Figure 2). Depending on the application, the air

model can be changed from dry to moist air. Pollutants

can be taken into account by adding a tracer substance

(ExtraProperty) to the Media model.

Figure 2: Implementation of connector, position and velocities

2.2 Zonal Model

The main task of the zone model is to compute the mass

and enthalpy balance and air properties (density,

enthalpy, pressure, temperature, etc.) using air models

of Modelica.Media. Furthermore it determines a

characteristic velocity and viscous losses.

The zone model contains interfaces to various types of

fluxes, including those of air, gases and particles.

Air contained in a zone is assumed to be perfectly

mixed. The mass conservation takes into account the

amount of air exchanged with adjacent zones and

airflows provided by various sources or sinks

(ventilation, openings, etc.) in the zone. Heat flows due

to convection to walls or heat sources contained in the

zone are added to the thermal energy balance. A new

feature of the VEPZO model is that a characteristic

velocity vector (u,v,w) is assigned to the zones.

Knowing the mass flow and its direction across each of

the zone’s surfaces, the flow velocity across these

surfaces is determined. The zone shares the information

about its characteristic velocity with the flow models

surrounding it. This enables the VEPZO model to

propagate the airflow velocity throughout the room

without needing special correlations like jets or plumes.

2.3 Flow model

The main task of the flow model is to compute the

airflow rate between two adjacent zones. Furthermore,

the flow models are used to calculate the velocity

gradient needed for the calculation of viscous losses.

Two adjacent zones are connected by a flow model

computing the exchange of air between them. The

VEPZO model uses flow models in x-, y- and z

directions. The assumption of the VEPZO model is that

air only flows along these specific directions. A new

feature of the flow model used in the VEPZO model is

that the length of a flow path is taken into account. The

flow model computes the airflow acceleration or

deceleration from the forces acting on it (Figure 3).

replaceable package Medium = Modelica.Media.Air.SimpleAir

Modelica.SIunits.Pressure p;

Records.Position position;

Records.Velocities velocities;

flow Modelica.SIunits.MassFlowRate mdot;

stream Modelica.SIunits.SpecificEnthalpy h;

stream Modelica.SIunits.Density d;

stream Modelica.SIunits.MassFraction Xi[Medium.nXi];

stream Real ExtraProperty[Medium.nC];

Real dv_perp[2];

Real sum_d2v_perp_weighted;

Use of Modelica to predict risk of Covid-19 infection in indoor environments

464 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181463

Figure 3: Forces acting on airflow

Fp from pressure differences

Air contained in each zone has a certain pressure. When

two zones of common surface A are connected by a flow

model they process their pressure information p1 and p2.

The flow model calculates the resulting force.

 ijP ppAF (1)

FM from momentum difference

The characteristic velocity vectors of adjacent zones are

processed from the zone model to the flow model.

According to the flow direction (x, y or z) the flow

model chooses the proper component of the velocity

vectors (u1, v1, w1 and u2, v2, w2) to compute the force

resulting from the momentum difference between the

adjacent zones taking into account the surface A and

mean density ρ of the airflow.

Direction Momentum forces

x 2
i

2
jx,M uuAF

y 2
i

2
jy,M vvAF (2)

z 2
i

2
jz,M wwAF

Gravitational forces FG
Gravitational forces occur in the downward direction.

To compute the gravitational force, the surface A and

the length Δz of the flow path are considered to calculate

the volume V of the airflow. Multiplied with the mean

density ρ and the acceleration g it yields a force.

ijG zAgF (3)

Viscous forces FV,Flow
In the selected approach of the VEPZO model, flows are

connected and exchange information with zones only.

However, to calculate the shear stress, an information
exchange between parallel flow models would be

necessary. To avoid connections between the flow

models, viscous losses are calculated in the zone models

but used in the flow models. The characteristic velocity

vector provided by zones enables the flow model to

calculate the gradient of the two velocity components

perpendicular to the flow model direction. For example,

a flow model in z-direction can deliver the variation of

the characteristic velocities u1, u2 and v1, v2 in the x and

y-directions. If a wall is adjacent to the zone, the

velocity at the wall is assumed to be zero. Therefore, the

gradient is equal to the characteristic velocity divided by

half the distance of the zone’s centre from the wall.

The gradient information is transmitted from the flow

model to the zone model. In the zone model this gradient

causes shear stresses on its boundaries. This shear stress

takes into account the dynamic viscosity µ and the

derivation of the velocity w.r.t. the two other Cartesian

directions. Summing these shear stresses along the

boundaries and multiplying them with the surface area

yields the viscous forces in the zones.

Direction
Gradients in flow

model
Gradients at walls

x
ij

ij

x

v

ij

ij

x

w

i

i

x

v2

i

i

x

w2

y
ij

ij

y

u

ij

ij

y

w

i

i

y

u2

i

i

y

w2

 (4)

z
ij

ij

z

u

ij

ij

z

v

i

i

z

u2

i

i

z

v2

The forces acting on a flow path are summed up. This

yields the acceleration of the portion of air contained in

the flow path connecting two zones:

𝐴 ∙ ∆𝑥12 ∙ 𝜌 ∙ �̇� = 𝐹𝑝 + 𝐹𝑀,𝑥 + 𝐹𝑉𝑥,𝐹𝑙𝑜𝑤 + 𝐹𝐺,𝑥 (5)

The mass flow is obtained straight forward from the

velocity in a flow path. This mass flow information is

transmitted to the zone model.

�̇�𝑥 = 𝜌 ∙ 𝐴 ∙ 𝑢 (6)

3 . Experimental Validation

The VEPZO model was originally developed to

transiently calculate the indoor climate of an aircraft

cabin in a short time and to be able to develop an optimal

climate for passenger comfort and temperature

distribution. For such applications, the simulation was

validated in (Norrefeldt et al. 2015). The experimental

results used to validate the Thermal Model tests are

performed in the Thermal Test Bench that has been set

up in the CleanSky (Clean Sky JU 2011) project.

Simulation of heated equipment were compared to

measurements under various conditions which show

Session 6B: Applications (3)

DOI
10.3384/ecp21181463

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

465

that the model predicts equipment temperatures within

an accuracy of 1 Kelvin.

For the model setup, the Modelica Thermal Model

Generation Tool was implemented. Developed by

Pathak et al. (2014) it aims to enable the user to set up a

geometrically correct thermal model for complex

geometries that allows predicting the impact of heated

devices and their location on indoor climate.

To optimize the indoor climate, the VEPZO model has

also been coupled with a genetic optimization

algorithm. This algorithm optimizes a set of different

solutions by combination and selection based on

Darwin's theory of evolution. Using the example of a

hybrid ventilated classroom (window and additional

mechanical ventilation) under cold ambient conditions,

an optimal use of tilt windows and the arrangement of

heating devices to create optimal comfort and air quality

in the occupied area was investigated (Norrefeldt et al.

2013; Reim et al. 2015).

To further validate the VEPZO model, Lindner et al.

(2019) evaluated various climatic scenarios in an

aircraft galley near an exterior door (Figure 4). The door

represents a thermal bridge due to the structural

reinforcement of the metallic frame. As a result, the

crew often suffers from uncomfortably cold feet. With

the help of the VEPZO model, different approaches to

locally improve this area were evaluated by simulation

and the most promising solutions were implemented in

the test setup. Due to the short simulation time of about

10 minutes on a laptop with 2.7 GHz, many different

scenarios could be evaluated in a flexible and time-

saving way.

Figure 4 shows the comparison between the measured

(top) and simulated (bottom) temperature map. The

black dots describe sensor locations for the

measurement and zone or surface centres in the

simulation. The zonal grid is thus more refined than the

measurement grid. As the colour maps are interpolated

between the points, this geometrical difference leads to

different apparent colour gradients.

Comparing the plots show that the temperatures in the

left and right bottom corner are accurately predicted.

Because the adjacent zone is geometrically closer than

the adjacent sensors, the colour interpolation of the plot

seemingly shows a larger cold zone in the measurement.

In the middle of the galley, a hot air exhaust is

implemented at ground level. This leads to increased

surface temperature and to an increased temperature of

the bottom zone, especially between positions C and D.

A similar effect is measured, too. The plots in this area

seemingly differ because the zone above is closer than

the next sensor in the vertical direction. This leads to a

seemingly narrower heated zone in the measured plot

than in the simulated one.
At the jumpseat in position D, a warm mounting plume

is both simulated and confirmed by measurement.

Figure 4: Experimental results of temperature distribution from

derived improvement by means of an air heater (top) and results

from simulation (bottom)

4 . Extension for the evaluation of the risk

of infection with Covid-19

As part of the Fraunhofer vs. Corona initiative, the

VEPZO model is extended to include the spread of

potentially infectious aerosols and viruses in the indoor

environment. The aim is to assess potential Covid-19

infection risks in enclosed spaces. For this purpose,

humans become a heat and virus source in the

simulation. The viral concentration was added as an

extra property to the air medium model. This results in

the local distribution of the viral load emitted by an

infected person in the room. The source strength is

described using the concept of Quanta (Buonanno et al,

2020, Jimenez 2020) and can be adapted to the activity

of the person (e.g. 2.3 quanta/h for breathing, 11.4

quanta/h for speaking and 65.1 quanta/h for loud

speaking) and to personal protective equipment (none,

different types of masks, etc.). The assumption is, that a

higher exposure to a predicted concentration of quanta

correlates with an increased infection risk.
Modelling can be used to evaluate measures to reduce

the viral load. Such devices are functionally described

E D C B A

E D C B A

-10 0 10 20 30

T [°C]

Use of Modelica to predict risk of Covid-19 infection in indoor environments

466 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181463

in the model, for example, increased ventilation diluting

the quanta concentration or air filtration removing

quanta from the aspired air. Product specific

performance data, which are determined in the

laboratories of Fraunhofer IBP, can also be replicated in

these models. Due to the current situation in the Corona

pandemic, such a predictive model is a valuable tool and

of great importance to be able to prevent possible

transmission of infections.

A second concept to tackle the indoor hygiene in the

simulation is the concept of age of air. For this, an

equally distributed source of an arbitrary tracer gas is

distributed in the indoor space and the relative

concentrations are compared. In the zonal model, this is

achieved by adding an internal source of an “extra

property” to each zone. The intensity is proportional to

the zone’s volume. In the simulation, areas close to the

air inlet will thus have a relatively lower concentration

of such tracer and thus a low age of air, whereas poorly

ventilated spots or zones further downstream will

compute a higher concentration and thus a high age of

air.

The difference between both concepts is that the viral

emission considers a local source and its spread in space

whereas the age of air globally identifies where

relatively new respectively old air is available.

5 . Application

A well-documented superspreading event in a restaurant

in Guangzhou (Lu et al. 2020) was used as an

application and verification example of the modelling.

Starting from an index patient, the distribution of the

infectious aerosols is predicted. Figure 5 shows the

considered case of the restaurant and the ventilation

system. In retrospect, nine infections with Covid-19 of

members of three families could be attributed to this

event (Lu et al. 2020). All infected guest were seated on

the left three tables. Said families were in the restaurant

at the same time on January 24, 2020, together with 81

other persons (73 guests, 8 employees). The airflow rate

was 1 litre per second and per person, divided among a

total of five AC units (air conditioning). The air was

only circulated, there was no fresh air supply.

The simulation of a two hour exposure with the zonal

model with quanta emission took 1 min on a normal

notebook (1.6 GHz procressor with 8GB RAM). The

simulation was performed using the Esdirk 23 – order 3

stiff solver with a tolerance of 0.0001 and a fixed time

step of 30s. Flags were used for sparse, parallel

computation on 4 cores.

Figure 5: Schematic view of the ventilation system of the

considered case and area where infetions occurred (marked in

red)

Figure 6 shows the predicted age of air and the area of

increased quanta load calculated using the VEPZO

model. A challenge for the validation of such models is

the absence of measurement data for the distribution of

viral load. However, the comparison of the predicted

area of increased quanta load with the documented

infections shows that both are well inline.

The poor ventilation and low air exchange rate in this

case played a central role, which prevented rapid

renewal of the room air from taking place. This resulted

in air enriched with quanta load not being removed

sufficiently quickly. At the same time, it can be seen that

an increased local age of air is evident along the entire

length of the restaurant, but due to the airflow pattern,

infection only occurred in the left area.

Figure 6: Simulation of the documented case: age of air (left)

and increased quanta load in red (right)

With the help of the VEPZO model, an alternative

ventilation pattern avoiding mixture of air was

investigated to keep the dispersion area of the infectious

aerosols more locally confined. Figure 7 shows the

modified ventilation where fresh air is supplied centrally

at the ceiling along the entire length of the restaurant and

exhausted at the lower edges of the room. An

improvement in the age of air and particle dispersion
paths is clearly visible (Figure 8). With this ventilation

Old air

Fresh air

Session 6B: Applications (3)

DOI
10.3384/ecp21181463

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

467

arrangement, it is assumed that the number of infected

other guests would have been lower.

Figure 7: Schematic view of an optimum ventilation system for

the considered case found with the VEPZO model

Figure 8: Simulation of the optimised case: age of air (left) and

increased quanta load in red (right)

6 . Conclusion

It is shown that the VEPZO model allows quick

predictions of the local age of air and the dispersion of

compounds such as virally loaded aerosols in indoor

spaces. In particular, this simulation uses the notion of

quanta to represent Sars-CoV-2 loaded aerosols that

remain for longer time within air. Computations

converge in the order of minutes on a normal PC and

thus the burden to conduct such simulations is

considerably lower using the zonal modelling approach

than classically applied CFD methods.

For a final risk assessment, the duration of a person's

stay in such a particle cloud needs to be taken into

account, as well as the actual accumulation of infectious

viruses in the air due to various expiratory activities of
the infected person (breathing, coughing, sneezing,

singing) and the vulnerability of the inhaling person.

Nevertheless, a verified method is presented by which

the potential risk of infection with Covid-19 and

corresponding super spreading events can be predicted

by means of zonal models. Further investigations can be

based on this study and improvement measures can be

evaluated for their effectiveness in a short time in a

product-neutral or product-specific manner.

References

Buonanno, G., Stabile, L., and Morawska, L., (2020),

“Estimation of airborne viral emission: Quanta emission

rate of SARS-CoV-2 for infection risk assessment,”

Environment International 141,

doi:10.1016/j.envint.2020.105794

Clean Sky JU (2011). Available online at

https://cleansky.eu/, updated on 2020, checked on

1/14/2021.

Goscé, Lara; Barton, David A. W.; Johansson, Anders

(2014): Analytical modelling of the spread of disease in

confined and crowded spaces. In Scientific reports 4,

p. 4856. DOI: 10.1038/srep04856.

Jimenez, J.L., (2020), “SARS-CoV-2 aerosol

transmission estimator,”

https://docs.google.com/spreadsheets/d/16K1OQkLD4

BjgBdO8ePj6ytf-RpP-

MlJ6aXFg3PrIQBbQ/edit#gid=519189277

Lindner, Andreas J.M.; Pschirer, Marie; Norrefeldt,

Victor; Siede, Markus (2019): Case studies validating a

new climate concept for cold galley areas with the

DressMAN and the IESS model. In AST.

Lu, Jianyun; Gu, Jieni; Li, Kuibiao; Xu, Conghui; Su,

Wenzhe; Lai, Zhisheng et al. (2020): COVID-19

Outbreak Associated with Air Conditioning in

Restaurant, Guangzhou, China. In Emerging Infectious
Diseases 71 (15), pp. 841–843. DOI:

10.3201/eid2607.200764

Melikov, Arsen K. (2020): COVID-19: Reduction of

airborne transmission needs paradigm shift in

ventilation. In Building and Environment 186,

p. 107336. DOI: 10.1016/j.buildenv.2020.107336.

Norrefeldt, Victor; Grün, Gunnar; Sedlbauer, Klaus

(2012): VEPZO – Velocity propagating zonal model for

the estimation of the airflow pattern and temperature

distribution in a confined space. In Building and
Environment 48, pp. 183–194. DOI:

10.1016/j.buildenv.2011.09.007.

Norrefeldt, Victor; Grün, Gunnar; van Treeck,

Christoph (2013): Use of the VEPZO model to optimize

a hybrid ventilation system.

Norrefeldt, Victor; Pathak, Arnav; Lemouedda,

Abdellah; Siede, Markus; Grün, Gunnar (2015):

Index patient

Exhaust air (left AND right)

Supply air

Old air

Fresh air

Use of Modelica to predict risk of Covid-19 infection in indoor environments

468 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181463

Validation of the zonal thermal model VEPZO/RADZO

for cold outside conditions on a business jet mock-up.

In AST.

Pathak, Arnav; Norrefeldt, Victor; Lemouedda,

Abdellah; Grün, Gunnar (2014): The Modelica Thermal

Model Generation Tool for Automated Creation of a

Coupled Airflow, Radiation Model and Wall Model in

Modelica. In : Proceedings of the 10th International

Modelica Conference, March 10-12, 2014, Lund,

Sweden. the 10th International Modelica Conference,

March 10-12, 2014, Lund, Sweden, March 10-12, 2014:

Linköping University Electronic Press (Linköping

Electronic Conference Proceedings), pp. 115–124.

Reim, Hanna; Norrefeldt, Victor; Noisten, Peter;

Nasyrov, Vladislav; Stratbücker, Sebastian (2015):

Export of BIM data to energy simulation tools and more

refined zonal models. In Lake Constance 5D-

Conference.

Sze To, G. N.; Chao, C. Y. (2010): Review and

comparison between the Wells-Riley and dose-response

approaches to risk assessment of infectious respiratory

diseases. In Indoor Air 20.

Villafruela, J. M.; Olmedo, I.; San José, J. F. (2016):

Influence of human breathing modes on airborne cross

infection risk. In Building and Environment 106,

pp. 340–351. DOI: 10.1016/j.buildenv.2016.07.005.

Yan, Yihuan; Li, Xiangdong; Shang, Yidan; Tu, Jiyuan

(2017): Evaluation of airborne disease infection risks in

an airliner cabin using the Lagrangian-based Wells-

Riley approach. In Building and Environment 121,

pp. 79–92. DOI: 10.1016/j.buildenv.2017.05.013.

Zhang, Lei; Li, Yuguo (2012): Dispersion of coughed

droplets in a fully-occupied high-speed rail cabin. In

Building and Environment 47, pp. 58–66. DOI:

10.1016/j.buildenv.2011.03.015.

Session 6B: Applications (3)

DOI
10.3384/ecp21181463

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

469

470 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Model-Based Development of the

RespiraWorks Ventilator with Modelon

Impact

John Batteh1 Lixiang Li2 Edwin Chiu3 Ethan Chaleff4
1,2Modelon Inc., USA, {john.batteh,lixiang.li}@modelon.com

3,4RespiraWorks, USA, {edwin,ethan}@respira.works

Abstract
This paper describes the modeling and simulation of the

RespiraWorks ventilator in Modelica with Modelon

Impact and the Pneumatics Library. Following a brief

overview of the RespiraWorks open-source effort in

response to COVID-19, details of the pneumatic modeling

effort, including the implementation of new components,

are provided in support of the model-based development

process. The pneumatics models of several different

iterations of the ventilator design are shown. Lastly an

overview of the model calibration process is provided, and

the model results are compared with experimental data

collected from the ventilator prototype.

Keywords: pneumatics, ventilator, COVID-19

1 Introduction

The COVID-19 global pandemic has resulted in a shortage

of critical medical resources. In particular, there has been

an acute shortage of ventilators, especially in developing

countries. Ventilators are expensive medical devices

typically developed over 5-6 years. At the start of the

pandemic, three engineers, Ethan Chaleff, Edwin Chiu,

and Elizabeth Hillstrom, started an effort to develop a low

cost open-source ventilator. Within two weeks, two

prototypes had been built in a small Berkeley, CA garage.

Within a month, the group incorporated RespiraWorks, a

501(c)(3) non-profit organization. Today RespiraWorks

has grown to over 200 volunteers with a range of expertise

in 10 countries (RespiraWorks 2021).

 From its inception, the RespiraWorks mission is to

radically democratize the ventilator. The team set out to

create a full-featured ventilator that is affordable and easy

to build in countries with developing economies and low-

resource communities. With an open-source, IP-free

design, organizations can leverage local resources to help

their people. The group was motivated to remove money

as a barrier for people to obtain life-saving medical

equipment and to shift revenue motivation largely to those

manufacturing and delivering equipment to those in need.

 Many of the ventilator efforts spawned during the

pandemic were focused on providing a “bridge” ventilator

that provides temporary support until the patient can be

placed on a full feature ventilator, reducing but not

eliminating reliance on imported ventilators. The

RespiraWorks mission is to build a fully-featured, fully-

certified medical device capable of advanced respiratory

support for patients who may be on a ventilator for days

or weeks and whose benefit endures beyond the current

crisis. The team is committed to helping manufacturers

around the world build the ventilator and has signed a

memorandum of understanding with Foundry M in India

to develop and manufacture the ventilator for the Indian

market.

 The RespiraWorks team faced unique challenges at the

start of the effort. To make an impact in the current

pandemic, the development process needed to be

significantly shortened from the typical 5-6 years. Thus,

the team needed a flexible, efficient approach with

multiple designs developed in parallel. Ventilators are

inherently a physical system which are often designed

using a hardware-focused design – testing iteration loop.

With an organization with no physical base of operations

and no shared workspace and distributed globally, the

challenges of such a hardware-intensive distributed effort

were immense. Furthermore, supply chains were

significantly disrupted due to the pandemic with medical-

grade parts in short supply. To mitigate these challenges,

the team focused on automotive/industrial supply chains,

developed custom hardware and sensor solutions using off

the shelf parts, and utilized 3D printing for rapid

prototyping.

 As part of a coordinated hardware and model-based

design process, Modelon engaged with the RespiraWorks

team to support their efforts. Modelon donated licenses

for their new simulation platform Modelon Impact

including the Pneumatics Library (Modelon 2021). A

team of engineers from Modelon developed pneumatics

models of the various design iterations and provided early

feedback on design proposals. Simulation was used

extensively, especially early in the design process. Using

the browser-based Impact platform, Modelon support

enabled members of the RespiraWorks team to quickly

access the models and execute them to support design

iterations.

 The following sections in this paper provide an

overview of the ventilator modeling effort, including new

components developed to support the system design.

Pneumatic system models from several design prototypes

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

471

are described along with analysis results from a range of

simulations. Lastly an overview of the calibration process

is provided along with a comparison of the calibrated

model with experimental data from the design prototype

developed for the CoVent-19 Ventilator Challenge.

2 Model Component Overview

This section provides an overview of the key components

of the ventilator model built with the Modelon Pneumatics

Library (Modelon 2021). Following a description of a few

key components, the system model architecture is shown.

2.1 Blower

From the outset, the RespiraWorks team set out to design

a full-featured ventilator which did not rely on

compressed air, ambu-bag, or mechanical bellows. With

medical blowers in short supply and only available at a

high cost, the team focused on an automotive/CPAP

blower that was readily available through automotive

supply chains and able to operate at 1/5 the cost and peak

power of a medical blower. Figure 1 shows the X200N

12V DC blower and control board.

Figure 1. Ventilator blower and control board

 A custom blower model was implemented using the fan

model from the Modelon library as shown in Figure 2.

The fan model includes different options for specifying

the flow characteristic based on fan affinity laws. For the

X200N model, the table-based characteristic with volume

flow rate and power consumption as a function of pressure

rise was used. The data provided to characterize the flow

is shown in Figure 3 and provides the pressure and

volumetric flow but over a range of speeds. Since the

table-based model is characterized at a single speed, the

table characteristic was tuned to match the data provided

resulting in the flow map shown in Figure 4.

Figure 2. Blower model

Figure 3. X200N flow characteristics

Figure 4. X200N flow map

0

5

10

15

20

25

30

35

40

45

50

55

60

0 2 4 6 8 10 12 14 16 18

St
at

ic
 P

re
ss

u
re

 [
cm

 H
2

O
]

Airflow [m3/h]

30

31

32

33

34

35

36

37

38

39

40

41

42

43

0 2 4 6 8 10 12 14 16 18

Im
p

el
le

r
Sp

ee
d

 [
rp

m
]

Airflow [m3/h]

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000

V
o

lu
m

e
Fl

o
w

 [
lp

m
]

dp [Pa]

42000 RPM

36000 RPM

30000 RPM

24000 RPM

18000 RPM

6000 RPM

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

472 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

2.2 Venturi Flow Sensor

Medical flow sensors were completely unavailable at the

start of the pandemic. Thus, the RespiraWorks team

developed a custom venturi flow sensor using $20 of

commonly available automotive parts to replace the

roughly $500 cost of unobtainable medical parts. The

team arrived at the final design shown in Figure 5 after

roughly two dozen iterations. A custom venturi model was

implemented to provide the pressure difference based on

the characterization performed by the RespiraWorks team.

The venturi output pressure difference is provided as a

sensor signal to the controller for flow estimation.

Figure 5. Venturi flow sensor design

Figure 6. Venturi model

2.3 Pinch Valve

Ventilator designs rely on valves to control the air flow

during the patient inhale and exhale phases. Many

ventilators rely on solenoid valves. Electrical solenoid

valves deliver fast response as required at higher breathing

rates but at high cost. In addition, proportional solenoids

require a high-pressure source to deliver high flow. Thus,

using proportional valves on the air side would also

require high power blowers or compressors, or the use of

hospital-supplied medical compressed air which is not

always available. Early simulation work described in

Section 3.1 showed that without a fast, high flow valve,

the design would require high peak power capability in the

blower to reach specified performance targets.

 Thus, the team developed a custom pinch valve shown

in Figure 7 for flow control. The pinch valve uses an

electrically actuated lever to contract the tube, thereby

restricting the flow. Though the pinch valve is not capable

of completely closing the flow path, it effectively restricts

the flow for practical full range flow restriction. The

pinch valve was the key innovation that allowed the team

to provide a high-flow fast-response flow control without

needing to throttle the blower. It is this combination of

fast response and low pressure drop at high flow that

enabled the use of a commonly-available CPAP blower as

the air-side pressure source and also enabled the 5x

reduction in peak blower power by eliminating the need

to accelerate and decelerate the blower.

 To model the pinch valve, a variable table-based flow

model was implemented as shown in Figure 8. This model

is based on a flow map for the volumetric flow as a

function of pressure drop and opening. Based on data

provided by the RespiraWorks team, the pinch valve flow

map shown in Figure 9 was developed.

Figure 7. Pinch valve design

Figure 8. Pinch valve model

Figure 9. Pinch valve flow map

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

473

2.4 Proportional Oxygen Valve

To control oxygen flow to allow a variable ratio of oxygen

to air (FiO2), the RespiraWorks team designed a system

using a proportional oxygen solenoid valve. Figure 10

shows the characterization data for the PVQ30 solenoid

valve. This data was used create a map for the variable

table-based resistance model. The map is shown in Figure

11. Note that the hysteresis is not considered in the model

as a single average between the opening and closing

curves was used.

Figure 10. PVQ30 valve characterization data

Figure 11. PVQ30 valve data for model

2.5 Patient Model

A model of the patient is a critical need for model-based

design of the ventilator. The patient model simulates the

breathing mechanics of the patient and can be extremely

complicated to account for the various resistances and

capacitances in the airway, throat, and lung. In addition,

the patient model can include the mechanics of the

breathing process to account for an active patient (i.e. a

patient that can initiate and breathe either partially or

completely). Since full-featured ventilators can operate in

different modes and with patients requiring varying levels

of breathing assistance, the patient model is an important

part of the overall model-based development process.

 For this work, a simple equation-based model (Arnal

2018) that is typically used to characterize patients was

implemented in Modelica. The model includes an overall

lung resistance and capacitance and accounts for an active

patient with a musculatory pressure term that acts in

conjunction with the pressure at the airway opening

provided by the ventilator. The model is shown in Figure

12 and relates the lung pressure, volume, and flowrate.

The implementation allows for conditional input for the

musculatory pressure and also allows the resistance and

capacitance to be set via connectors for dynamic response

during a simulation or parameters.

Figure 12. Patient model

2.6 System Architecture

Figure 13 shows the system model architecture developed

to support model-based development of the ventilator. It

consists of three replaceable subsystems:

• Controller

• Ventilator

• Patient

The architecture allows flexible configuration of the

various subsystems including implementation of different

controllers to support the various ventilator designs. In

addition, the architecture supports unit testing of the

various components with simplified implementations (i.e.

patient test with ventilator as prescribed pressure trace,

etc.). Each subsystem is connected via an expandable

controlBus to facilitate configuration of the complete

system model and also to allow flexibility in the bus

variables for each subsystem implementation. Specific

implementations of the various subsystems are detailed in

the following section.

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

474 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

Figure 13. System model architecture

3 Simulation Results

To support the model-based design process of the

RespiraWorks ventilator, models were implemented of

several different ventilator design prototypes. Analysis

results from these models were fed back to the

RespiraWorks team to support design iterations. This

section provides an overview of several of the ventilator

designs, associated simulation results, and key findings

from the modeling effort to support subsequent design

iterations.

 The ventilator modeling and simulation was conducted

using the new simulation platform Modelon Impact based

on the Pneumatics Library (Modelon 2021). Modelon

Impact is a next generation system modeling and

simulation platform, leveraging the benefits of web and

open standard technologies. With openness at its core,

Modelon Impact supports standards such as Modelica,

FMI, Python and REST (Modelon 2021). The user-

friendly browser interface provides modeling experts the

tools they need to create, simulate, and experiment.

Steady-state or dynamic simulations can be executed from

the same model, reducing effort to get an answer (Coïc

2020b) Finally, the Modelon Impact API enables user-

specific workflows through Python-based custom

functions, and deployment of models to non-experts via

targeted web applications or Jupyter Notebooks (Coïc

2020a).

3.1 Initial Prototype

Modelon engaged with the RespiraWorks team just as the

initial system prototypes were being designed and tested.

Figure 14 shows a schematic of the initial prototype

design focused on basic hardware prove out and controls

requirements. Oxygen is introduced upstream of the

blower and mixes with air in a mixing chamber. This

design was an early attempt at the system design without

any active valve control. This design was meant to assess

the feasibility of a design concept where all phases of the

breathing process were controlled by the blower and a

fixed restriction valve on the exhale limb.

Figure 14. Initial prototype ventilator system

 Figure 15 shows the model of the initial prototype in

Modelon Impact. The blower speed is controlled to meet

a desired pressure P3 at the patient interface as shown in

Figure 16 without any pressure sensor dynamics or noise.

Note that the controller architecture includes a component

for sensor dynamics, but a null implementation of the

sensor dynamic component is used in this controller. In

this early phase of development, the desired pressure trace

was input directly to the model based on sample traces

developed for hardware testing.

Figure 15. Initial prototype ventilator system model

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

475

Figure 16. Simple controller for blower speed

Figure 17 shows some initial simulation results integrated

with the modeling view while Figure 18 provides a more

detailed look at several key results including the pressure

response, flowrates, and blower speed. These simulations

were run at low breathing rates (~ 6 breaths per minute)

and with low pressure targets (9 cm H2O). Based on these

initial simulations, the following observations were made:

• The blower speed commands indicate the wide

operating range required for a single breathing

event

• The blower transient response is a concern and

the current design would not meet targets for

higher breathing rates

• With the current design, the blower transient

response would also prohibit higher pressure

targets and thus higher flow rates

• Without control valves on the blower and exhaust

legs, there is an enormous amount of oxygen

waste and excess blower energy consumption as

much of the blower flow flows out the exhaust leg

as opposed to entering the patient

• It is possible to tune the exhaust resistance via the

tuning valve to reduce the oxygen waste during

the intake event but at the detriment to patient

exhale

• A fixed resistance on the exhaust limb would

likely not satisfy requirements over the full range

of operating conditions required for the ventilator

These initial simulation results highlighted the importance

of the blower transient response to achieve key ventilator

targets and also the need for active control valves. The

initial modeling work provided crucial feedback to the

RespiraWorks team regarding the blower requirements to

meet performance targets and led to the subsequent design

iterations, including the development of the pinch valve.

Figure 17. Experiment in Modelon Impact

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

476 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

Figure 18. Simulation results for initial prototype

3.2 Ventilator Mixing Concept

Based on the results from the initial prototype, the next

design iteration was modeled. They key design changes

for the ventilator mixing concept shown in Figure 19

include the following:

• Introduction of oxygen downstream of blower as

blower is not rated for pure oxygen flow

• Solenoid on exhaust leg

• Check valves upstream of mixing chamber and on

intake leg before patient

• Venturi and filter on both intake and exhaust legs

Figure 19. Ventilator mixing concept design

 The model for the ventilator mixing concept is shown in

Figure 20. This model includes the oxygen source as a

prescribed flowrate. The venturi sensors are also included

and provide the sensed pressure difference to the control

bus. The controller for the model is shown in Figure 21.

A custom source block is implemented to provide a

pressure command based on parameters for standard

ventilator characterization and allows the model to easily

run the range of conditions that are required for a full-

featured ventilator:

• RR: Respiratory rate in breaths per minute

• IE ratio: Inspiration time to exhalation time ratio

• PIP: Peak inspiratory pressure

• PEEP: Positive end expiratory pressure

• Plateau pressure

• Peak to plateau ratio: Peak pressure time to

plateau time ratio

Figure 20. Ventilator mixing concept model

Figure 21. Controller with blower speed and exhaust solenoid

based on configurable pressure source

0

2

4

6

8

10

12

30 35 40 45 50 55 60

P
re

ss
u

re
 [

cm
 H

2
O

]

Time [s]

controller.p_command.y ventilator.summary.P3

patient.P_lung

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

30 35 40 45 50 55 60

Fl
o

w
 [

l/
s]

Time [s]

blower_flow patient_flow exhaust_flow

0

5000

10000

15000

20000

25000

30000

35000

40000

30 35 40 45 50 55 60

B
lo

w
er

 S
p

ee
d

 [
R

P
M

]

Time [s]

command_blower_speed blower_speed

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

477

 Figure 22 shows simulation results from the ventilator

mixing concept with the pressure command settings at

RR=20 breaths/min, IE ratio = 1/2, PIP=25 cm H2O, and

PEEP = 6 cm H2O for a patient with R = 13 cm H2O s/L,

C=0.042 L/cm H2O. These results indicate the following:

• Solenoid eliminates exhaust flow during intake

event and reduces oxygen waste

• Even with relatively slow blower transient

response, ventilator is just able to meet PIP target

at higher breathing rates since exhaust is closed

during intake event

• Large flow when solenoid opens (roughly equal

to blower flow as blower speed has not reduced

plus flow out from dead exhaust volume) helps

reduce pressures and facilitate exhale

• Excess exhaust flow from intake (blower +

oxygen) until blower speed drops with blip at

start of exhaust event due to reduced back

pressure

• Blower speed increases around middle of exhaust

event to maintain PEEP level

These simulations indicate that the design is significantly

improved from the initial prototype and highlight the

importance of coordinated valve control along with

pneumatic system design.

Figure 22. Simulation results for ventilator mixing concept

3.3 CoVent Concept

The next design modeled was the CoVent concept design

shown in Figure 23. This design represents design intent

for the CoVent-19 Ventilator Challenge. The design

updates include the following:

• Addition of closed loop oxygen control via the

oxygen proportional solenoid valve and

pressurized oxygen source

• Intake blower and exhaust pinch valves

This concept provides full control of the air, oxygen, and

exhaust flows via the various valves and allows for closed

loop control of oxygen to meet a range of oxygen to air

ratios.

Figure 23. CoVent concept design

Figure 24. CoVent design model

 Along with the modeling effort, the hardware was being

developed for testing to support the CoVent-19 Challenge

submission. Figure 25 shows the hardware realization,

including the QuickLung to simulate the patient. Data

was taken on the hardware over the range of operating

conditions outlined in green in Table 1. These tests were

run with air only and also with oxygen only as the closed

0

5

10

15

20

25

30

23 24 25 26 27 28 29 30

P
re

ss
u

re
 [

cm
 H

2
O

]

Time [s]

controller.p_command.y ventilator.summary.P3

patient.P_lung

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

23 24 25 26 27 28 29 30Fl
o

w
 [

l/
s]

Time [s]

blower_flow patient_flow exhaust_flow

0

5000

10000

15000

20000

25000

30000

35000

40000

23 24 25 26 27 28 29 30

B
lo

w
er

 S
p

ee
d

 [
R

P
M

]

Time [s]

command_blower_speed blower_speed

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

478 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

loop FiO2 controller was not complete when the tests were

run. This data was made available for model calibration.

The data includes the pressure control setpoint, recorded

pressure, inhale and exhale venturi pressure difference,

inhale and exhale pinch valve command, and oxygen

valve command.

Figure 25. CoVent hardware realization

Table 1. Test settings for CoVent runs

 To facilitate running the model based on experimental

data for calibration and validation, the controller shown in

Figure 26 was developed. This controller reads the time

traces from the experimental data and provides them for

input to the model. In this design, the blower is always

run at max speed and the pinch valves are used to control

the intake and exhaust events along with the oxygen valve.

The valve commands are output from the experimental

data and used to drive the simulations. After running the

initial simulations driven by the experimental data, it was

readily apparent that the valve commands did not match

with the characterization data provided for the valves.

After consulting with the RespiraWorks controller

development team, the source of the difference was

identified as a feature in the controller that performs a

system calibration procedure to identify the min and max

operating point for the pinch valve and oxygen valve. In

addition, the controller includes a linearization table that

maps the valve command to the characterized valve

position shown in Figure 9 for a linear response in flow.

These tables were also implemented in the controller

shown in Figure 26 but were allowed to change in the

model for calibration purposes.

Figure 26. Controller for calibration/validation

 The overall calibration procedure for the model is as

follows:

• Run model with input flow rate and exhaust valve

active to tune overall system resistance and

exhaust pinch valve mapping

• Run model with all valves active and adjust

blower pinch valve and oxygen valve mapping

• Adjust time constants based on dynamic results

• Re-run all tests for validation

The goal of this calibration procedure is to produce a

model of the ventilator system that accurately reproduces

the response from the CoVent hardware and can be used

to support controller design and calibration. Note the

following regarding the calibration approach:

• The blower map was not adjusted

• System response from open loop controller inputs

provided as input to the model are difficult to

match

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

479

• Differences between the simulation and data will

exist, especially at steady state

• Overshoot in pressures will persist since

controller inputs are provided open loop

• Calibration goal is to get good match to pressures,

flowrates, and overall transient response for a

range of operating conditions since closed loop

controller would improve pressure tracking

 Figure 27 – Figure 31 (included at the end of the paper

for formatting reasons) compare simulation results with

experimental data recorded from the CoVent setup. Each

figure compares flow rates and pressures for a specific test

condition described in Table 1. Experimental data is

indicated in the legend with the “(exp)” label. In the flow

plot comparison, the intake and exhaust experimental flow

is compared with the blower flow, oxygen flow, and

exhaust flow from the model. Since the experimental data

was obtained with air only or oxygen only, one of the

modeled flow signals will be zero for a given test. In the

pressure plot comparison, the pressure setpoint is shown

along with the experimental patient pressure from the

QuickLung and the model equivalent pressure labeled P3.

 Figure 27 shows simulation results from Test 1 with

input air flowrate after tuning the exhaust pinch valve

mapping and overall system resistance (i.e. components

for which no flow characterization was provided). There

is excellent agreement in the pressure response when the

flowrate is provided as an input in the calibrated model.

The results provide validation that the venturi calculation,

exhaust valve mapping, and overall system resistance are

appropriate.

 Figure 28 – Figure 31 show results from different tests

in Table 1 with oxygen and air. In these tests, the full

model predictions for flowrates and pressures are

exercised based on the modeled controller shown in

Figure 26. These tests are run with input traces from the

experimental data for the intake pinch valve command,

oxygen valve command, and exhaust pinch valve

command in the modeled controller with resulting model

flows.

 In general, the results show good agreement with the

experimental data. The following observations can be

made:

• Overall response for oxygen only runs looks

reasonable

• Hysteresis effects (Figure 10) from the oxygen

valve are seen in data but not in model as model

overpredicts flow decrease during closing

command

• Overall response for air only runs looks

reasonable

• Intake flow overpredicted a bit which could be

attributed to the blower map

• Model results are consistent with higher flowrates

resulting in pressure overshoot

4 Summary

This paper describes the model-based development of the

open source RespiraWorks ventilator. Using the Modelon

Pneumatics Library in the Modelon Impact platform,

various design iterations of the ventilator were modeled.

The ventilator designs were tested in a configurable

system architecture in conjunction with controller

implementations and a model of the patient. The

RespiraWorks ventilator design for the CoVent-19

Ventilator Challenge was modeled and calibrated using

experimental data collected to support the challenge

submission. The calibrated model showed good

agreement with experimental data. Future work with the

model will focus on the application of the model for

controller design and tuning.

 The RespiraWorks team finished 3rd in the CoVent-19

Ventilator Challenge and is continuing their effort to

design and build their ventilator. For the latest updates on

the design process, visit the repository at
https://github.com/RespiraWorks/Ventilator

Acknowledgements

The authors would like to thank Anand Pitchaikani and

Midhun Joy from Modelon for their contribution to the

model development and Impact deployment at

RespiraWorks. The authors also extend their sincere

thanks to the entire RespiraWorks team, particularly

David Gershon, for his engagement with the modeling

effort.

References

Arnal, Jean-Michel, Aude Garnero, Mathieu Saoli, and Robert

Chatburn (2018). “Parameters for Simulation of Adult

Subjects During Mechanical Ventilation”. In: Respiratory

Care. February 2018. Vol. 63. No. 2. pp. 158–168. DOI:

10.4187/respcare.05775 .

Coïc C., J. Andreasson, A. Pitchaikani, J. Åkesson, and H.

Sattenapalli (2020), “Collaborative Development and

Simulation of an Aircraft Hydraulic Actuator Model”, Asian

Modelica Conference, Tokyo, Japan.

Coïc C., M. Hübel, and M. Thorade (2020), “Enhanced Steady-

State in Modelon Jet Propulsion Library, an Enabler for

Industrial Design Workflows”. American Modelica

Conference 2020, Boulder, Colorado, USA,

Modelon (2021). Impact. URL:
https://www.modelon.com/modelon-impact/.

Modelon (2021). Pneumatics Library. URL:
https://www.modelon.com/library/pneumatics-library/.

RespiraWorks (2021). URL: https://www.respiraworks.com.

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

480 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

Figure 27. Simulation results from Test 1, air only, input

flowrate

Figure 28. Simulation results from Test 1, oxygen only

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

481

Figure 29. Simulation results from Test 3, oxygen only

Figure 30. Simulation results from Test 5, air only

Model-Based Development of the RespiraWorks Ventilator with Modelon Impact

482 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181471

Figure 31. Simulation results from Test 7, air only

Session 6B: Applications (3)

DOI
10.3384/ecp21181471

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

483

484 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

In-silico virtual prototyping multilevel modeling system for
Cyborgs (CybSim) as a novel approach for current challenges in

biosciencies

Manuel Prado-Velasco

Department of Graphic Engineering and Multilevel Modeling in Bioengineering Group, University of Seville, Spain,
mpradov@us.es

Abstract
There is a lack of Modeling and Simulation software sys-
tems in the bioscience arena that give both solutions com-
pliant with current methodologies in drug discovery (phar-
maceutic) and precision medicine (healthcare) fields, be-
sides to support the addition of new biological mecha-
nisms under a multilevel and multiformalism perspective,
without penalize strongly the model sharing and reusing.
A novel modeling and simulation software that tries to
fill the previous gap has been designed (CybSim) and
it is presented in this work. CybSim is a platform for
multilevel modeling of physiological - cybernetic sys-
tems, compliant but not limited to Physiologically based-
, Pharmacokinetic and Pharmacodynamic (PBPK/PK/PD)
methodologies. This capability is governed through the
Physiological Scope setting value. The main physiologi-
cal components are mechanistic. The underlying mecha-
nisms may be changed during the model building thanks
to the separation between mechanisms and physiological
instances. This capability is based on a multi-layer design.
A preliminary version of CybSim has been implemented
with OpenModelica (v1.14.1). A PBPK semiphysiolog-
ical model published previously has been built as a case
study to demonstrate the feasibility of CybSim. The ac-
curacy of CybSim was verified during preliminary devel-
opment phases. The two pointed out capabilities of Cyb-
Sim demanded an object-oriented and acausal equation-
based modeling language, able to support classes’ redec-
laration, connectors’ causality, inner/outer scoping control
and packages organization. These features are not sup-
ported by other modern acausal equation-based modeling
languages like the EcosimPro language.
Keywords: Cyborgs, Physiological modeling, PBPK,
Mechanistic Modeling, acausal equation-based Modeling

1 Introduction
The field of modeling and simulation in biosciences is a
mature domain that joins efforts from many areas, includ-
ing biomedical engineering, mathematical biology, and
pharmacology. Two big projects that started at the end
of 1990’s and 2000’s may be cited as reference efforts in
bioscience modeling. The Physiome initiative was pre-

sented in a report from the Commission of Bioengineering
in Physiology to the International Union of Physiological
Sciences (IUPS) council at the 32nd World Congress in
Glasgow (UK) in 1993 (Hunter 2006, Box 1). The Virtual
Physiology Human (VPH) project was initiated by the Eu-
ropean Commission in 2007, after the publication of the
Strategy for a European Physiome (STEP) (Hunter and
Viceconti 2009). Both initiatives share as ultimate goal
the research and development in computational models,
data and tools for a better comprehension of human body
under an integrated approach. Many projects defined un-
der the umbrella of Physiome and VPH have pushed the
development of a software framework for building mech-
anistic mathematical multiscale models from cellular to
organ levels, with clinical, pharmacological and scientific
applications.

A primary objective of VPH - Physiome initiatives
was the establishment of model standards and reposito-
ries for which the well-known Extensible Markup Lan-
guage (XML) was selected as a basis approach. Two rel-
evant examples of modeling standards are CellML1 and
SBML2. CellML was created for the modeling of cell -
level dynamics, whereas SBML is a modeling language
for networks of biological compounds (e.g. metabolic
pathways) described using a systemic approach (Systems
Biology). SBML and CellML encode models, metadata,
and data, which represent the cited spatial scales (levels)
of the physiological system to be modelled, in a robust and
accurate manner. However, CellML and SBML models
must be linked during the numerical integration to sim-
ulate the full system. The modeling and simulation tool
that perform this task is an Achilles’ heel in this process,
because it should be compliant with CellML and SBML
and other standard modeling languages that represent the
remaining physiological levels (tissues, organs, and liv-
ing system). An interesting example is the Cardiac Phys-
iome Project shown in Hunter and Viceconti (2009, Fig-
ure 6). In practice, the integrated framework must manage
the interaction among models executed in different tools
(Sauro et al. 2004). This approach is limited to interact-
ing models that represent systems with weak coupling. On

1www.cellml.org
2www.sbml.org

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

485

the contrary the accuracy and stability of the full model is
degraded due to the jacobian deformation.

The increasing complexity of biosciences compels the
model standards to evolve. For instance, the SBML v3
standard tries to give response to the requirements of new
mathematical methods and physiological methodologies
(Keating et al. 2020). This is a second Achilles’ heel
of XML modeling languages, since mechanisms and ap-
proaches are restricted to fulfil those data formalisms and
levels.

As a consequence, although the SBML, CellML and
others XML based modeling languages are designed to
build multiscale and modular models under a reusable
context, the two aforementioned process limitations dif-
ficult the model reusing.

Due to the population requirements of the pharmacol-
ogy industry, the Non Linear Mixed Effect (NLME) mod-
els have guided the building of models in this field (Bon-
ate 2011). In addition, Pharmacokinetics (PK) and Phar-
macodynamics (PD) methodologies have defined during
decades the basis of the deterministic block of NLME
models due to their simplicity and success in the descrip-
tion of drug distribution and clinical responses. The PK
methodology has evolved to the Physiologically based -
PK approach (PBPK) to consider anatomical and physi-
ological features and to improve the predictive ability of
NLME models, which is required to address with Drug-
Drug interactions (DDI) and special or vulnerable popu-
lations, for which clinical trials are not suitable (Jones,
Gardner, and Watson 2009). As a consequence, most
of the mature commercial software tools on pharmacol-
ogy industry are based on NLME with PK/PD (NON-
MEM (2021)), or PBPK/PD (SimCyp (2021), GastroPlus
(2021), Open-Systems-Pharmacology (2021)).

The gold standard in Population PK/PD modeling,
NONMEM, has driven a different approach to achieve the
model reusing and sharing in pharmacological sciences.
Despite NONMEM models are built through their ordi-
nary differential equations (ODEs), the wide diffusion of
NONMEM, R mathematical software3 and SBML, pro-
moted the development of a new model standard, Phar-
mML, with the aim of promoting the model sharing. A
PK/PD model developed in PharmML is managed by a
compliant software tool that may also import SBML code
and convert the final model to NONMEM, R, SymCyp,
and other well-known modeling software tools (Bizzotto
et al. 2017).

The pharmacology industry has pushed the acceptation
and evolution of physiological models in the framework of
the Quantitative Systems Pharmacology (QSP), which is
an approach to translational medicine that combines com-
putational and experimental methods to the development
and use of molecules and biologic drugs at the beginning
of 2000’s (Azer et al. 2021). Many advances in QSP
Modeling are supported by PBPK/PK/PD-based NLME

3www.r-project.org/

approaches with increasing efforts to facilitate the inclu-
sion of new knowledge discovering and modeling strate-
gies from Physiome - VPH projects. However, PharmML
does not give a solution for the model sharing and reusing
requirement in QSP.

A different strategy to achieve the model reusing comes
from modeling languages based on equations’ formalisms
that do not depend on the algorithmic causality (Roa and
Prado 2006, Figure 8). This approach has proved its
feasibility in the engineering field with EcosimPro lan-
guage (EL) (Empresarios Agrupados 2019) and Model-
ica (Fritzson 2015) as two cutting edge object-oriented
(OO) and acausal equation-based modeling language ref-
erences. EL is a proprietary language implemented in the
EcosimPro software tool from Empresarios Agrupados In-
ternacional (EAI), whereas Modelica is a freely available
language from the Modelica Association, implemented in
many open and proprietary software tools. This modeling
approach has been hardly applied in the biosciences arena
so far.

Physiolibrary is a library of specialized Modelica com-
ponents for the building of complex physiological models
(Mateják et al. 2014) that tries to give a solution for the
lack of adoption of Modelica in biosciences. It emerged
from the construction of a large model of human physi-
ology, Physiomodel, which in turn is an extended Model-
ica version of the integrative human physiological model
called HumMod (Hester et al. 2011). The recent study
of Ježek et al. (2017) describes a methodology for cre-
ating cardiovascular system models with different com-
plexity based on Physiolibrary with the main objective of
demonstrating the feasibility of a standardized platform
for model reusing. They show an interesting model that
considers the complex interactions between cardiac cir-
culation and arterial systems, founded on a hierarchy of
subsystems that takes advantage of the encapsulation and
acausal equation-based nature of Modelica. However, nei-
ther Physiolibrary (Mateják et al. 2014) nor the derived
cardiovascular system model (Ježek et al. 2017) offer a
modeling and simulation software tool oriented to the spe-
cific requirements and challenges in biosciences. For in-
stance, it is not an easy task to adapt any of them for the
solution of parameterized population PBPK models that
predict the distribution, therapeutic response and potential
interactions of a drug, which is a current standard problem
in the pharmacology area.

PhysPK is a software tool for modeling and simula-
tion in biosciences implemented with EL that was de-
signed to fill the gap between open and specialized tools in
PBPK/PK/PD that offers multilevel model reusing (Prado-
Velasco 2016). It was created thanks to an agreement be-
tween EAI and me (2015 - 2018) in which I (intellectual
owner) worked as team leader, designer and main devel-
oper. Several studies have shown the feasibility and ac-
curacy of PhysPK to develop population PK and PBPK
models, bioequivalence analysis, and even to generate pre-
dictive engines for precision medicine (Reig-Lopez et al.

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

486 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

2020; Gonzalez-Garcia et al. 2017; Prado-Velasco, Boro-
bia, and Carcas-Sansuan 2020). However, the exten-
sion from PBPK to other modeling approaches is limited
through the change of the input/output role in selected
variables during the translation process, what induces nu-
merical problemas in non-desired flow-pressure transients
(any PBPK model in PhysPK is a cardiovascular model).
The impossibility to associate chemical names to the enu-
merated values and the difficulty to manage causal blocks
are additional limitations.

In addition, neither Physiolab nor PhysPK has the ca-
pability to select the physiological mechanisms during the
model building.

In summary, to the best of my knowledge, modeling
and simulation software systems fail to provide a standard-
ized framework for specialized bioscience areas like phar-
macology (Maharao et al. 2020), precision medicine (Po-
lasek, Shakib, and A. Rostami-Hodjegan 2019; Darwich
et al. 2017), toxicology (Paini et al. 2019; Bloomingdale
et al. 2017), and regulatory decision (Rowland, Lesko, and
Rostami-Hodjegan 2015; Shepard et al. 2015), with mul-
tilevel and evolutive model reusing and sharing capability.

The goal of this paper is to show a preliminary version
of a novel multilevel modeling and simulation software
for physiological - cybernetic systems (Cyborgs) based
on Modelica and implemented with OpenModelica 1.14.1,
called Cyborg Simulator (CybSim). It has been designed
for the aforementioned biosciences areas with emphasis
in model reusing. CybSim models may be built according
to different modeling methodologies, including PBPK/P-
K/PD, and the physiological mechanisms can be selected
during the model building, what facilites the model evolu-
tion. The diffusion of therapies where a machine is linked
to the human body, in a temporal (hemodyalizer) or more
permanent manner (artificial heart or insulin pump), is
considered through the inclusion of a dedicated machines
package. The current presence of computational control
and logic in almost all therapy machines explains the se-
lection of Cyborgs as system target. CybSim will be under
open source license and available for download.

The work is divided in two stages: a brief presentation
of the CybSim design (first) and a study case based on
the semiphysiological PBPK model of Mangas-Sanjuan
et al. (2018) to demonstrate the feasibility of CybSim
(second). The model from Mangas-Sanjuan et al. (2018)
was implemented in NONMEM and PhysPK (Reig-Lopez
et al. 2020). The experience achieved in that study
has facilitated a preliminary and succinct comparison of
CybSim against PhysPK. The accuracy of the CybSim
PBPK model was verified during the previous develop-
ment stages.

It is noted that a detailed analysis of more complex
physiological models exceeds the scope of this paper,
what justifies the use of very single mechanisms in the
study case.

2 Methods
The study is divided in two stages. The CybSim design
is briefly presented in the first stage, which includes two
steps.

1. General perspective of CybSim. It includes the pack-
age organization and some main setting properties.

2. Modeling strategy. The concept of multilayer design
is explained and associated to the separation between
mechanisms and physiological entities. Some design
concepts related to the machine and signals packages
are also presented in this context.

The second stage develops a study case based on a
semiphysiological PBPK - based model. It comprises two
steps.

1. Building of a semi-physiological model that includes
intestinal lumen, gut, liver, a systemic plasma com-
partment (central) and a peripheral compartment. A
solid form of parent drug (PD) is administered. This
drug is metabolized in a principal metabolite (PM)
and secondary metabolite (SM). The model is pre-
sented succinctly in the study case Section, although
a detailed description is available (Mangas-Sanjuan
et al. 2018; Reig-Lopez et al. 2020).

2. The CybSim model was executed under a periodic
administration of the PD solid form, first with the
original liver mechanisms of the reference model
(Mangas-Sanjuan et al. 2018), and second after the
modification of the molecular binding mechanism in
the liver.

The study case tries to show the feasibility of CybSim
to support the change of any underlying mechanism of a
physiological instance during the model building.

Other aspects of the CybSim modeling exceed the
scope of the paper. The accuracy of the model was ver-
ified during the building process.

3 CybSim design
3.1 General properties and architecture
Some key issues of the CybSim design are presented in
this Section. They referred to the preliminary version
0.2, implemented in OpenModelica 1.14.1. The Figure 1
shows the packages’s organization of CybSim. These are
grouped as follows:

• Specific units, main properties and simulation modes
of CybSim: SIunits, Properties.

• Connectors and partial classes for the main inter-
faces: Interfaces.

• Packages that manage biological and physiological
data: BioData.

Session 6B: Applications (3)

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

487

Figure 1. Packages’ organization of CybSim v0.2.

• Packages that supports the three CybSim lay-
ers: mechanisms, machines and physiological com-
ponents, and data-driven models: Mechanisms,
Machines, Physiology, Signals.

• Templates for model applications at different fields:
ModelsInterfaces.

• Auxiliary packages with mathematical meth-
ods and Optimization procedures: Math and
Optimization.

The main features of CybSim are summarized as fol-
lows:

• Physiological multiscope. Physiological subsystems
in CybSim may be built according to different mod-
eling methodologies, and thus with different scopes.
CybSim v0.2 includes PBPK, LPhys and DPhys. A
LPhys (general lumped parameter) model is a gen-
eralization of a PBPK model where the blood flow
rates result from the cardiovascular circulatory sys-
tem dynamics. Many times a PBPK, where blood
flow rates are set by the modeler, is the right choice
for a QSP study, and it has lesser computational re-
quirements. The PBPK physiological scope in Cyb-
Sim is compliant with the PBPK/PK/PD approach
addressed in the Introduction. The DPhys refers to
a spatially distributed modeling (not yet madure in

CybSim). The Listing 1 shows the PhysScopeType
enumeration type, which controls this feature and it
is defined in the properties package.

• Free definition of chemical compounds for models.
Chemicals compounds are addressed through a enu-
meration type (chemicals). The chemicalsDummy
type (see Listing 1) is assigned as initial chemicals
type, which must be redeclared in the final model, as
shown in Listing 9. Several key entities in CybSim
are defined in a vectorial (array) mode with chem-
icals as dimension. The physicochemical proper-
ties of the chemical compounds may be defined both
manually or from a chemical database.

• Chemical volumes. CybSim v0.2 considers three
modes of computing the chemicals volume in solu-
tion, governed by the ChemicalVolumeType enu-
meration (see Listing 1). The NoVolume mode (zero
volume) is commonly used for small molecules,
whereas the SmallAsSolvent considers the true
dissolved density of large molecules. This fea-
ture requires the discrimination between no large
and large molecules. A second enumeration type,
mcrChemicals, which must be redeclared in the
final model, defines the large molecules, whereas
chemicals includes all of them.

• Multilevel modeling. Multilevel is addressed as
synonymous of spatial multiscale. This feature is
achieved by means of the aggregation (connection)
of physiological components at each level, as shown
in the conceptual structure of Figure 2 for the physi-
ology subsystem. The same feature is available for
the machines and signals subsystem. This is di-
rectly derived from the OO and acausal equation-
based property of Modelica and it is available both
in textual and graphical model according to the Mod-
elica specification 3.4 (Modelica Association 2017)
(MSLv35 has been recently delivered). A key issue
here is that the granularity level of different tissues
may be different.

• Multilayer architecture. The physical mechanisms
that govern the dynamics of any physiological en-
tity are selected during the model building. Cyb-
Sim achieves this feature through the redeclaration
of the inherited mechanisms following the methodol-
ogy that is explained in the following Section. Con-
ceptually, the physiological layer is defined as a set
of physical and mechanistic components that may be
defined at different scales (levels) as shown in Fig-
ure 2. The mechanism layer is not a physical but an
organized set of abstract (partial) components. Al-
though it is not presented in the Figure 2 for the sake
of clarity, Machines and Signals may have a multi-
level definition and they pertain to Machine and Sig-
nals layers, respectively, but they have not a sepa-

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

488 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

Mechanisms Layer

0-level physiology

1-level physiology

2-level physiologyPhysiology Layer

Physiology subsystem
Machines

Signals subsystem

n-level physiology
...

Figure 2. Conceptual structure of a CybSim model that shows the difference between multilevel (multiscale) and multilayer
features for physiology entities and their mechanisms (dynamics). Machines and Signals subsystems are presented in the top level
of the physiology layer to simplify the structure.

rated mechanistic layer. The fast evolution of the
knowledge discovery in the biology field is the rea-
son for this design criterion.

• Genes and Systems Biology. CybSim include
metabolic networks based on a Systems Biology ap-
proach. This type of metabolic network is defined in
the Mechanisms layer using a set of network com-
ponents compliant with the Systems Biology Graph-
ical Notation (SBGN), which requires the third enu-
meration type, genes. It is declared initially as
the genesDummy type (see Listing 1), which must
be redeclared in the final model if Systems Biology
Metabolic Networks are used.

• Machines layer. A full machine-physiological sys-
tem model is considered a cyborg model in Cyb-
Sim. This generalization of a machine as a cyber-
netic component is based on the fact that near all
machines designed for therapy, support or function
enhancement include some type of automatic control
systems.

• Signals layer. Data-driven or functional models (Roa
and Prado 2006) are designed as Modelica blocks
and organized in a package. PD standard models or
PK metrics (e.g. Area Under the Curve, AUC) are
included here.

A detailed description of the implementation of these
features exceed the scope of this paper. However, some
relevant issues are clarified in the following paragraphs.

Listing 1. Chemicals definitions and main CybSim scopes

type chemicalsDummy = enumeration(
dummyCmp
) "Dummy Chemicals";

type genesDummy = enumeration(

dummyGen
) "Dummy Genes";
// ...
/* Mechanisms configurations */
type PhysScopeType = enumeration (
PBPK "Physiological -based

Pharmacokinetics with parametric body
Temperature",

LPhys "Lumped Physiology",
DPhys "Distributed Physiology"
) "Types of physiological approximations"

;
type chemicalVolumeType = enumeration (
NoVolume "First one is the most simple

mode",
AllAsSolvent "All compounds with the

same specific volume that solvent",
SmallAsSolvent "Non-small chemicals

consider different volume"
) "Volumes of chemicals compared with

solvent";

The physiological connectors depend on the scope type
as expected, since blood flow rates are user defined with
the PBPK scope, whereas they are solved according car-
diovascular and circulatory system with the LPhys scope.

The Listing 2 shows the definition of a PBPK input con-
nector as a causal connector that defines chemical and sol-
vent flow rates, and the definition of a LPhys blood con-
nector as an acausal connector that include chemical con-
centrations as Stream variables to address the reversion
of blood flow rates. The later occurs for example in the
arterio-venous fistula that connects a dialyzer with a pa-
tient. As a consequence, a PBPK model connected to a
dialyzer cannot describe some operating conditions that
occur with a clotted fistula in some patients. This is not
a limitation of CybSim, but of the PBPK modeling ap-
proach.

The class bloodConnDummy allows controlling the
types of Physiological connectors that may be rede-

Session 6B: Applications (3)

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

489

clared in some multiscope CybSim components using the
constrainedBy Modelica keyword.

Listing 2. Blood connectors

within CybSim;
encapsulated package Interfaces
// ...
partial connector bloodConnDummy
end bloodConnDummy;
partial connector inputDrag
replaceable type chemicals =

Properties.chemicalsDummy "Chemicals
in Cyborg";

input SI.VolumeFlowRate bvf (displayUnit
= "l/min") "Causal input volume flow
rate";

input SI.MassConcentration c[chemicals](
each displayUnit = "ug/l") "
Concentration of chemicals";

end inputDrag;
// ...
/* PBPK connectors */
connector inputBlood "Blood input

connector with PBPK scope"
extends bloodConnDummy;
extends inputDrag;

end inputBlood;
// ...
/* LPhys connectors */
connector bloodPort
extends bloodConnDummy;
replaceable type chemicals =

Properties.chemicalsDummy "Chemicals
in Cyborg";

SI.Pressure ps "static pressure at
connection point";

flow SI.VolumeFlowRate vf "inlet (>0)
volume flow rate at connection port
";

stream SI.MassConcentration c[chemicals
](each displayUnit = "ug/l") "
Concentration of chemicals";

end bloodPort;

A key declaration in Listing 2 is the replaceable
type chemicals that is defined by a shorthand inher-
itance from the chemicalsDummy enumerated declared
in the Listing 1. The type chemicals must be defined in
the user’s PBPK model according to the chemicals com-
pounds required by the modeler. This feature is not avail-
able in other acausal languages as EcosimPro language
(EL) (Empresarios Agrupados 2019).

A machine component may connected to any physio-
logical subsystem, and therefore it must adapt their con-
nectors and behaviour to the selected physiological scope.
This is achieved thanks to redeclare the machine model
and connectors as a function of the physiological scope
type, during model building. The Listing 3 presents the
technique used for the pharmaceutical drug form machine
shown in Figure 3. In this case, the DrugConn connector
and the DrugFormScope model that describes the drug-
Form behaviour may be redeclare, providing that connec-
tors derive from bryConnDummy and machine models de-

%name

Figure 3. The drug form icon shows two boolean inputs
(planned or instantaneous administration setting), one boolean
output that informs if a significant drug amount remains to be
dissolved, and a physical connector to the liberation lumen.

rive from drugFormDummy. The outer parameter PhysS-
cope has the inner declaration in the final Cyborg model,
where it is verified that selected connectors and machine
models are compliant with the physiological scope. A
deeper analysis exceeds the scope of the paper.

Listing 3. Main Modelica structure of the Ideal drug form ma-
chine

partial model drugFormDummy "Dummy base for
drug pharmaceutical form"

end drugFormDummy;
model drugFormPBPK "Drug pharmaceutical

form with PBPK scope"
extends drugFormDummy;
replaceable type chemicals =

Properties.chemicalsDummy "Chemicals
in Cyborg";

outer parameter Properties.PhysScopeType
PhysScope "Physiological scope of
machine component";

//...
end drugFormPBPK;
model drugFormLPhys "Drug pharmaceutical

form with LPhys scope"
extends drugFormDummy;
replaceable type chemicals =

Properties.chemicalsDummy "Chemicals
in Cyborg";

outer parameter Properties.PhysScopeType
PhysScope "Physiological scope of
machine component";

// ...
end drugFormLPhys;
model drugForm "Drug pharmaceutical form"
extends Icons.PharmaForm;
extends innerParamsdrugForm;
replaceable connector DrugConn =

Interfaces.volPortPBPK constrainedby
bryConnDummy

DrugConn pDrug(redeclare type chemicals =
chemicals) "Drug port"

replaceable class drugFormScope =
drugFormPBPK constrainedby
drugFormDummy

drugFormScope machine(redeclare type
chemicals = chemicals);

BooleanOutput bo "Boolean activation
signal when there is drug mass"

BooleanInput biPlan "Planned mode
administration signal activation"

BooleanInput biInst "Instantaneous mode
administration signal activation"

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

490 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

Figure 4. Main planned administration parameters in the drug
form. Tdrug is the temporal period, startTime is the starting
time of each drug administration in Tdrug, and the number of
administrations is nP.

equation
connect(machine.pDrug, pDrug);
connect(machine.bo, bo);
connect(machine.biPlan, biPlan);
connect(machine.biInst, biInst);

end drugForm;

The Drug form may perform both a planned and instan-
taneous pill administration, controlled by the boolean in-
puts biPlan and biInst. The Figure 4 shows the simpli-
fied diagram that appears in the drug form canvas to clar-
ify the meaning of several planned mode parameters. The
temporal area of the pill’s surface is modelled according
to its geometry. The area is considered by the connected
liberation locus (physiology) as a function of the under-
lying physicochemical mechanism (Berrozpe, Lanao, and
Guitart 2013, Ch. 19).

Other features of the CybSim design includes the ex-
ecution of physiological algorithms to calculate partition
ratios, in-vitro in-vivo extrapolation, and different types of
physiological scaling as functions of the BioData pack-
age.

3.2 Mechanisms - Physiological layers
This Section addresses the key aspects of the CybSim de-
sign that supports the mechanisms - physiological multi-
layer feature. I have selected a flow limited tissue (FLT)
(Berrozpe, Lanao, and Guitart 2013, Ch. 13) under the
PBPK modeling approach (CybSim physiological scope)
as a basic tissue that facilitates the description. In this re-
spect, the aim of the study is not to present the full equa-
tions and assumptions of a full PBPK either LPhys model.

The Figure 5 describes the Modelica classes associated
with the definition of the cited FLT component, called
sgnBryFlt, which is shown in Figure 6. Besides the arte-
rial and venous blood paths that connect to the tissue spa-
tial region, the chemical compounds may be transferred in
this tissue through a physiological barrier connected to the
boundary port. The main variables related to the FLT dy-
namics may connected via the signal connections to data-
driven models, as describen in the previous Section.

The FLT classes structure presented in Figure 5 was de-
signed to allow the selection of the underlying physical
mechanisms during model building. The eligible mech-
anisms for a PBPK component are organized according
to functional types in the sgnGeneralPBPK partial com-
ponent (Figure 5). A similar partial component, called
generalPBPK is used if the physiological component
does not require connectors to the Signals layer.

In agreement with the Figure 5, the fundamental struc-
ture of a PBPK FLT component appears in Listing 4. In
this example, the mechanisms are inherited through the
partial class generalPBPK. The equations section that ap-
pears commented in Listing 4 include very basic equations that
complete the definition of the flt connector variables.

Listing 4. Flow limited tissue code structure

model flt "flow limited tissue"
extends Icons.CausalEntity;
extends VFP.generalPBPK;
parameter Integer nBin = 1 "number input

blood perfusion volume flow rate"
annotation(Dialog(connectorSizing = true)

, Evaluate = true);
parameter Integer nBout = 1 "number of

output blood perfusion volume flow
rate vias"
annotation(Dialog(connectorSizing =

true), Evaluate = true);
Interfaces.inputBlood[nBin] inVBlood(

redeclare type chemicals = chemicals)
"Input blood perfusions"

Interfaces.outputBlood[nBout] outVBlood(
redeclare type chemicals = chemicals)
"Output blood perfusions"

equation
/* Basic Equations related to systemic

behaviour - connections */
// ...

end flt;

As pointed in Figure 5, the physiological dynam-
ics defined by the partial class sgnGeneralPBPK (and
generalPBPK) is obtained through the inheritance of mech-
anisms organized by functional types. The code struc-
ture of generalPBPK partial class is shown in List-
ing 5. In opposition to sgnGeneralPBPK that inherits
volRegionSgnPBPK, the component sgnGeneralPBPK
inherits directly innerWholeVarsPBPK since it has not con-
ditional interfaces to the Signals layer (see right column of Fig-
ure 5). A deeper description of this component exceeds the
scope of the paper.

Listing 5. general PBPK dynamics of a volumetric region

partial model generalPBPK "General whole
mechanism for volumetric regions with
PBPK scope"

extends Interfaces.innerWholeVarsPBPK;
extends PP.MassBalance.MasterPBPK;
extends PP.Elimination.MasterPBPK;
extends PP.PhaseDistribution.MasterPBPK;
extends PP.ChemicalActivity.MasterPBPK;
extends PP.MolecularBinding.MasterPBPK;
equation // Implicit relationship among

variables

Session 6B: Applications (3)

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

491

sgnGeneralPBPK

sgnBryFlt

Physiology.PBPK.Basic

Layers link equations

Physiology.PBPK.Tissues

A
gg

re
ga

ti
on

sgnGeneralPBPK

volRegionSgnPBPK

Mechanisms.VolRegion.FullProcesses

Extends Elimination.MasterPBPK

PartialProcesses

extends innerParamsPBPK;
replaceable class EliminationType;
EliminationType mechElimination(
 redeclare type chemicals);

MassBalance.MasterPBPK
ChemicalActivity.MasterPBPK
 ...

Signals.Interfaces

volRegionSgnPBPK

innerWholeVarsPBPK

Mechanisms.VolRegion.
Interfaces

RealOutput so_c[subchemicals]
 if get_c;
...

Extends

innerWholeVarsPBPK

Mechanisms.VolRegion.Interfaces

extends innerCommonVars;
extends innerThermodynamicVars;
extends innerMcrTraffickingVars;
extends innerSysBiologyVars;
extends innerDDIVars;

E
xt

en
ds

Figure 5. Simplified classes structure of the sgnBryFlt component (left blocks) in the Physiology layer, which inherits the
mechanisms sgnGeneralPBPK where it is defined the component dynamics. The sgnGeneralPBPK partial component is
defined through a set of replaceable classes. Each one describes a type of eligible behaviour (metabolism, elimination, binding,
etc.) related to a spatial volumetric region (partial processes, middle blocks). They are defined through equations that govern the
variables of the spatial region, declared as inner variables in the innerWholeVarsPBPK partial component. Partial mechanisms
work with the associated outer variables. The sgnGeneralPBPK full mechanism inherits volRegionSgnPBPK (right block)
that in turn inherits innerWholeVarsPBPK and declare some conditional structures that simplifies the connection of metrics
and other functional models of the Signals layer to the sgnBryFlt component.

// Concentrations
for i in chemicals loop
c[i]*vbulk = m[i];

end for;
// vbulk - mbulk and others
msolvent = mbulk - sum(m[i] for i in

chemicals);
vsolvent = msolvent*solventPropT();
if (chemVol ==

Properties.chemicalVolumeType.NoVolume
) then

vbulk = vsolvent;
elseif (chemVol ==

Properties.chemicalVolumeType.
AllAsSolvent) then

vbulk = mbulk*solventPropT();
else // SmallAsSolvent
...

end if;
// input bulk mass flow rate
mfbulkin = mfbulkinDuct + mfbulkinMem;
// Generation g and group - related
gbulk = gsolvent + sum(g);

end generalPBPK;

The eligible physical mechanism (see Figure 5) is called
MasterPBPK and it is organized in packages according to the
behaviour type. The Listing 6 shows the code of MasterPBPK
for the elimination behaviour. The class dummyPBPK is defined
to control the eligible elimination mechanisms.

Listing 6. Master model of the elimination dynamics in a volu-
metric region

partial model MasterPBPK "Master model for

Elimination mechanisms with PBPK scope"
extends innerParamsPBPK;
replaceable class EliminationType =

NullPBPK constrainedby dummyPBPK
annotation(choicesAllMatching = true);
EliminationType mechElimination(
redeclare type chemicals = chemicals,
redeclare type mcrChemicals =

mcrChemicals,
redeclare type genes = genes
);

end MasterPBPK;

The default elimination mechanism,
Elimination.NullPBPK is the null elimination mecha-
nism. Any volumetric region with this elimination mechanisms
does not eliminate chemical compounds. The linear plus
Michaelis - Menten (saturable) elimination is a well-known
mechanism that describes this type of behaviour in Pharmacoki-
netics. The removal of any chemical i according this one is as
follows:

ei = (Ke,i +
Vem,i

Kem,i +Ci
) ·Ci , (1)

in which the concentration Ci is equal to the unbound signifi-
cant phase (tissue) concentration cu,i if the mechanism’s param-
eter significantPhase is true, and to the unbound non-
significant phase (venous) concentration, cnu,i otherwise. In ho-
mogeneous volumetric regions both concentrations are the same.

Assuming that significantPhase is true, the Equation 1
may also be written as follows:

ei =Cli · cu,i , (2)

in which the term Cli is the intrinsic clearance of chemical i in

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

492 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

the region and phase considered, given as:

Cli = Ke,i +
Vem,i

Kem,i + cu,i
(3)

The variables cu,i must be substituted by cnu,i in equations (2)
and (3) if the elimination occurs in the non-significant phase.
A detailed description of the tissue intrinsic clearance for a
well-stirred region is shown in (Pang and Malcolm Rowland
1977). The elimination mechanism related to Equation 2 is im-
plemented in Listing 7.

Listing 7. Saturable elimination dynamics in volumetric region

partial model clearanceSat "Sat+Lin
elimination in volumetric region"

extends outerCommonVars;
outer parameter Boolean significantPhase

"Place of elimination phase for
chemicals";

outer parameter SI.VolumeFlowRate Ke[
chemicals] "Clearance of chemicals";

outer parameter SI.VolumeFlowRate Kesolv "
Clearance of solvent";

outer parameter SI.MassConcentration Kem[
chemicals] "Michaelis Menten constant"
;

outer parameter SI.MassFlowRate Vem[
chemicals] "Michaelis Menten velocity"
;

equation
if significantPhase then
for i in chemicals loop
e[i] = cu[i]*(Ke[i] + Vem[i]/(Kem[i] +

cu[i]));
end for;

else
for i in chemicals loop
e[i] = cnu[i]*(Ke[i] + Vem[i]/(Kem[i] +

cnu[i]));
end for;

end if;
//...

end clearanceSat;
//
partial model clearanceSatPBPK "Sat+Lin

elimination in volumetric region with
PBPK scope"

extends dummyPBPK;
extends clearanceSat;

end clearanceSatPBPK;

The variables that define the dynamics in a volumetric region
are defined in the partial class outerCommonVars, which is

%nBout %nBin

%nBdry

Figure 6. Flow limited tissue (flt) PBPK component with blood
ports (circles left-right), boundary port (rectangle below) and
signal connections (triangles) sgnBryFlt.

accesible to any single mechanism. The associated inner pa-
rameters are defined in the Master component, inherited from
innerParamsPBPK (Listing 6 and Figure 5). A deeper de-
scription of these outer-inner definitions exceeds the scope of
the paper.

The mechanism that defines the elimination behaviour is se-
lected during the procedure of building the model, through the
declaration of the sgnBryflt physiological component, as
seen in the Listing 8 for the central instance. As seen, the
value of the Ke,i linear parameter is modified from its default
value, using a 3-vectorial expression, what indicates that three
chemical compounds are defined.

Listing 8. Declaration of a FLT instance (central) in a PBPK
model

CybSim.Physiology.PBPK.Basic.sgnBryFlt
central(

redeclare type chemicals = chemicals,
redeclare class EliminationType =

CybSim.Mechanisms.VolRegion.
PartialProcesses.Elimination.
clearanceSatPBPK, Ke = {0, 5.5e-6, 8.3
e-6})

4 Study case
Figure 7 shows the diagram of the model defined in the Methods
Section. A detailed description of this one appears in (Mangas-
Sanjuan et al. 2018), whereas the comparative analysis of the
PhysPK vs NONMEM implementations may be seen in (Reig-
Lopez et al. 2020). The building of this model was performed
using the GUI of openModelica 1.14.1 (diagram view), although
the selection of non-default mechanisms for the physiological
components were completed in the Modelica code view of the
model, because openModelica 1.14 does not include this graph-
ical function.

The model has been parameterized for a low dose of PD (100
mg) administered with two intakes of 50 mg separated 12 h, for
a high absorption rate constant in the gut (drug of class II of
Biopharmaceutics Classification System), saturable metabolism
in gut and liver, and a reference value of the dissolution rate
constant (quality level).

The parameter values agree with those used in the first case of
(Mangas-Sanjuan et al. 2018, Fig. 2), excepting the division of
the 100 mg PD dose in two separated 50 mg PD doses, which is
applied now in agreement with the second step pointed in Meth-
ods to analyze a more complex scenario, after validating the ac-
curacy of the model against the results of (Mangas-Sanjuan et al.
2018) and (Reig-Lopez et al. 2020).

The final objective of this case study is to demonstrate the
feasibility of CybSim to select and change the underlying mech-
anisms of the model physiological instances during the building
process. With this goal, after simulating the model with the liver
mechanisms defined in (Mangas-Sanjuan et al. 2018) (first sim-
ulation), a linear molecular binding mechanism is added to the
liver and a new simulation is executed (second simulation).

The Listing 9 shows the structure of the Modelica code of the
semiphysiological model, including the definition of the Liver
tissue. The chemicals enumeration is set through the three
required chemicals compounds, PD, PM, and SM. The mecha-
nism associated with the chemical activity in the liver is rede-
clared as a saturable metabolism (MichaelisMentenPBPK),
during the initial model building. The boolean inputs biInst

Session 6B: Applications (3)

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

493

bloodSrc

11

c
A
b
s

a
b

barrCP

a b

periph

1

ba

liberloc

Liver

1 2

Gut

1 1

1

c
e
n
t
r
a
l

2
1

1

lumenGut

2

drF

AUC

AUC

sAUC

sAUC

Figure 7. Semiphysiological PBPK model published in (Mangas-Sanjuan et al. 2018; Reig-Lopez et al. 2020) that includes a drug
form (drF) from the machine layer, and two PK metric blocks (AUC and sAUC) from the signals layer.

and biPlan define a true planned and false instantaneous ad-
ministration mode for the drug form, as wished.

The execution of the model for a temporal window of 24
hours gives the plasmatic concentrations of PD, PM and SM un-
der the defined scenario (first simulation).

Listing 9. Main code structure and liver definition of semiphys-
iological model

model drF2cmpLivGut
extends

CybSim.ModelsInterfaces.Interfaces.
pbpkStr(redeclare type chemicals =
chemicals);

import CybSim.Properties;
import PQ =

CybSim.BioData.PhysicalChemical;
/* Chemical definitions */
type chemicals = enumeration(PD "Parent

drug", PM "Primary metabolite", SM "
Secondary metabolite");

CybSim.Physiology.PBPK.Basic.flt Liver(
redeclare type chemicals = chemicals,
redeclare class ChemicalActivityType =

CybSim.Mechanisms.VolRegion.
PartialProcesses.ChemicalActivity.
MichaelisMentenPBPK,

Kmm = {0.1, 0.01, 0.01}, Vmm = {0, 1e-9,
1e-9}, reactantsm={{
chemicals.PD,chemicals.PD,chemicals.PD
}},

Vtis0 = 0.003, nBin = 2, nBout = 1)
//...

equation
// ...
drF.biInst = false;
drF.biPlan = true;

end drF2cmpLivGut;

The Listing 10 shows how a linear molecular binding is ap-
plied to substitute the default (null) molecular binding of the
liver instance of the semiphysiological model.

The linear molecular binding mechanism modifies the
amount of free drug according to the unbound fraction drug val-
ues fu,i. These fractions are defined in the liver declaration as 5%
(0.05) for the PD, and 100% (1) for the metabolites. That is, the
PD is the unique compound that is bound to a macromolecule, in
such a way that only 5% is free. This is a very common situation
in physiological models.

Listing 10. Definition of the FLT liver instance with linear bind-
ing

CybSim.Physiology.PBPK.Basic.flt Liver(
redeclare type chemicals = chemicals,

// ...
redeclare class MolecularBindingType =

CybSim. Mechanisms.VolRegion.
PartialProcesses.MolecularBinding.
linearPBPK, fu = {0.05, 1, 1}, ...)

The execution of the model for the same temporal window of
24 hours gives the plasmatic concentrations of PD, PM and SM
in the second simulation.

5 Simulation results and discussion
Figure 8 shows the plasmatic (central) concentrations of the par-
ent drug and their metabolites during the first 24 hours, starting
with the first PD dose (50 mg).

The temporal distribution of the chemical compound was ac-
curately validated both for an unique dose of PD equal to 100
mg (Mangas-Sanjuan et al. 2018, Fig. 2) and for two sequen-
tial doses of PD equal to 50 mg. A detailed analysis of this
testing phase exceeds the scope of this paper that is focused to
demonstrate the feasibility of the CybSim design to support the
mechanisms - physiology architecture.

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

494 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

(a) Parent Drug. (b) Principal metabolite. (c) Secondary metabolite.

Figure 8. Plasma (central) concentrations for a low dose scheme (50+50 mg) without liver molecular binding.

(a) Parent Drug. (b) Principal metabolite. (c) Secondary metabolite.

Figure 9. Plasma (central) concentrations for a low dose scheme (50+50 mg) with liver molecular binding for PD (fu = 0.05).

The Figure 9 shows the plasmatic concentrations of PD and
their metabolites during the first 24 hours for the second simula-
tion. As expected, the PD concentration increases, whereas PM
and SM concentrations decrease, with respect to the first simu-
lation, due to the reduction of liver metabolism because of the
smaller amount of free PD.

The Area Under the Curve (AUC) blocks, which are con-
nected to the concentrations (all the chemicals) inside the central
compartment (AUC block) and to the total mass flow rate from
central to peripheral compartment (sAUC or single AUC), are
not presented here. However, they were used to evaluate the
parent drug and metabolites AUC in the target central compart-
ment and to calculate the total net amount of mass between cen-
tral and peripheral compartment during the first 24 horas. They
were used also to demonstrate the capabilities of CybSim related
to the Signals layer.

Although a detailed comparison between CybSim and
PhysPK exceeds the scope of this paper, CybSim overcomes sev-
eral important limitations of PhysPK due to the lack of classes’
redeclaration, inner/outer structures, packages organization, and
causality of connectors. These language characteristics are the
basis of the mechanisms - physiology multilayer, the multiscope
feature, the free definition of chemical compounds inside the
physiological instances, and many of the capabilities of the sig-
nals layer.

Summary
This study has presented a novel Modeling and Simulation soft-
ware system for the biosciences field, CybSim, that gives a
framework compliant with current methodologies and specific

solutions required in particular areas like pharmacology, preci-
sion medicine and toxicology. CybSim tries to overpass some
detected lacks related to model reusing and sharing in current
Modeling and Simulation software systems.

The outcomes demonstrate the feasibility of CybSim to fa-
cilitate the choice of the mechanisms underlying the physiolog-
ical entities in the process of model building. To the best of
my knowledge, this is the first biosimulation system that fulfils
that feature at the same time that offers modeling multiscope,
free definition of chemicals, multilevel modeling, metabolic net-
works based on the systems biology approach, machines integra-
tion and support for data-drive modeling.

Future works will be developed to evaluate those features,
and to complete the implementation of other packages related to
optimization (applied to population estimation and dosage per-
sonalization), and biodata (algorithms for in-vitro in-vivo corre-
lation, allometric scaling, and methods for computation of phys-
iological properties).

This is a first paper concerning the preliminary version 0.2
of the CybSim biosimulation system. More advances will be
performed and published shortly, including the evolution to the
available openModelica 1.18 that should give better solutions
to some relevant planned features. CybSim will be deployed
with availability for download under open source license, after
reaching the required minimal functionality.

References
Azer, Karim et al. (2021). “History and Future Perspectives on

the Discipline of Quantitative Systems Pharmacology Mod-
eling and Its Applications”. In: Frontiers in Physiology 12.

Session 6B: Applications (3)

DOI
10.3384/ecp21181485

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

495

Berrozpe, José Doménech, José Martinez Lanao, and Concep-
ción Peraire Guitart (2013). Tratado general de Biofarmacia
y Farmacocinética. Volumen II [General treatise of biophar-
macy and pharmacodynamics. Vol II]. Madrid, Spain: Edito-
rial Síntesis.

Bizzotto, R. et al. (2017). “PharmML in Action: an Interoperable
Language for Modeling and Simulation”. In: CPT Pharmaco-
metrics Syst Pharmacol 6.10, pp. 651–665.

Bloomingdale, P. et al. (2017). “Quantitative systems toxicol-
ogy”. In: Curr Opin Toxicol 4, pp. 79–87.

Bonate, Peter L. (2011). Pharmacokinetic-Pharmacodynamic
Modeling and Simulation. Second Edition. Springer, p. 618.
ISBN: 9781441994844.

Darwich, A. S. et al. (2017). “Why has model-informed preci-
sion dosing not yet become common clinical reality? lessons
from the past and a roadmap for the future”. In: Clin Phar-
macol Ther 101.5, pp. 646–656.

Empresarios Agrupados (2019). User Manual EcosimPro 6.0.
Report.

Fritzson, Peter (2015). Principles of Object-Oriented Modeling
and Simulation with Modelica 3.3. second edition. USA: Wi-
ley, p. 1250. ISBN: 9781-118-859124.

GastroPlus (2021). GastroPlus. Available online:
www.simulations-plus.com/software/gastroplus (accessed on
10 May 2021). Web Page.

Gonzalez-Garcia, Ignacio et al. (2017). “Comparison of FO –
FOCE population parameter estimation methods in PhysPK
2.0 against NONMEM 7.3”. In: PAGE 2017. Abstracts of the
Annual Meeting of the Population Approach Group in Eu-
rope, pp. 1–2.

Hester, R. L. et al. (2011). “HumMod: A Modeling Environ-
ment for the Simulation of Integrative Human Physiology”.
In: Front Physiol 2, p. 12.

Hunter, Peter J. (2006). “Modeling Human Physiology: The
IUPS/EMBS Physiome Project”. In: Proceedings of the IEEE
94, pp. 678–691.

Hunter, Peter J. and Marco Viceconti (2009). “The VPH-
Physiome Project: Standards and Tools for Multiscale Mod-
eling in Clinical Applications”. In: IEEE Reviews in Biomed-
ical Engineering 2, pp. 40–53.

Ježek, Filip et al. (2017). “Lumped models of the cardiovas-
cular system of various complexity”. In: Biocybernetics and
Biomedical Engineering 37.4, pp. 666–678.

Jones, Hannah M, Iain B Gardner, and Kenny J Watson (2009).
“Modelling and PBPK simulation in drug discovery.” In: The
AAPS journal 11, pp. 155–166.

Keating, S. M. et al. (2020). “SBML Level 3: an extensible for-
mat for the exchange and reuse of biological models”. In: Mol
Syst Biol 16.8, e9110.

Maharao, N. et al. (2020). “Entering the era of computation-
ally driven drug development”. In: Drug Metab Rev 52.2,
pp. 283–298.

Mangas-Sanjuan, V. et al. (2018). “Computer simulations for
bioequivalence trials: Selection of analyte in BCS class II and
IV drugs with first-pass metabolism, two metabolic pathways
and intestinal efflux transporter”. In: Eur J Pharm Sci 117,
pp. 193–203.

Mateják, M. et al. (2014). “Physiolibrary – Modelica library for
physiology”. In: 10th International Modelica conference.

Modelica Association (2017-04). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Spec-
ification Version 3.4. Tech. rep. Linköping: Modelica As-

sociation. URL: https : / / www . modelica . org / documents /
ModelicaSpec34.pdf.

NONMEM (2021). NONMEM. Available online:
www.iconplc.com/innovation/nonmem/ (accessed on 17
Jul 2021). Web Page.

Open-Systems-Pharmacology (2021). Open-Systems-
Pharmacology. Available online: www.open-systems-
pharmacology.org (accessed on 10 May 2021). Web
Page.

Paini, A. et al. (2019). “Next generation physiologically based
kinetic (NG-PBK) models in support of regulatory decision
making”. In: Comput Toxicol 9, pp. 61–72.

Pang, K. Sandy and Malcolm Rowland (1977). “Hepatic Clear-
ance of Drugs. I. Theoretical Considerations of a "Well-
Stirred" Model and a "Parallel Tube" Model. Influence of
Hepatic Blood Flow, Plasma and Blood Cell Binding, and the
Hepatocellular Enzymatic Activity on Hepatic Drug Clear-
ance”. In: Journal of Pharmacokinetics and Biopharmaceu-
tics 5.6.

Polasek, T. M., S. Shakib, and A. Rostami-Hodjegan (2019).
“Precision medicine technology hype or reality? The exam-
ple of computer-guided dosing”. In: F1000Res 8, p. 1709.

Prado-Velasco, Manuel (2016). “Bridging the gap between open
and specialized modelling tools in PBPK/PK/PD with PhysP-
K/EcosimPro modelling system: PBPK model of methotrex-
ate and 6-mercaptopurine in humans with focus in reusabil-
ity and multilevel modelling features”. In: PAGE. Abstracts
of the Annual Meeting of the Population Approach Group in
Europe, pp. 1–2.

Prado-Velasco, Manuel, Alberto Borobia, and Antonio Carcas-
Sansuan (2020). “Predictive engines based on pharmacoki-
netics modelling for tacrolimus personalized dosage in pae-
diatric renal transplant patients”. In: Scientific Reports 10.1,
p. 7542.

Reig-Lopez, J. et al. (2020). “A Multilevel Object-Oriented
Modelling Methodology for Physiologically-Based Pharma-
cokinetics (PBPK): Evaluation with a Semi-Mechanistic
Pharmacokinetic Model”. In: Computer Methods and Pro-
grams in Biomedicine 189, pp. 1–11.

Roa, Laura and Manuel Prado (2006). “Simulation Languages”.
In: Wiley Encyclopedia of Biomedical Engineering. Ed. by
Metin Akay. John Wiley and Sons, Inc., pp. 3186–3198.
ISBN: 978-0-471-24967-2.

Rowland, M, Lj Lesko, and A Rostami-Hodjegan (2015). “Phys-
iologically Based Pharmacokinetics Is Impacting Drug De-
velopment and Regulatory Decision Making”. In: CPT: Phar-
macometrics & Systems Pharmacology 4, pp. 313–315.

Sauro, Herbert M. et al. (2004). “Next Generation Simulation
Tools: The Systems Biology Workbench and BioSPICE Inte-
gration”. In: OMICS: A Journal of Integrative Biology 7.4.

Shepard, T et al. (2015). “Physiologically Based Models in Reg-
ulatory Submissions : Output From the ABPI / MHRA Fo-
rum on Physiologically Based Modeling and Simulation”. In:
pp. 1–5.

SimCyp (2021). SimCyp. Available online:
www.certara.com/software/simcyp-pbpk (accessed on
10 May 2021). Web Page.

In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current
challenges in biosciencies

496 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181485

Decarbonization of Industrial Energy Systems: A Case Study of
Printed Circuit Board manufacturing

Carles Ribas Tugores1 Gerald Birngruber2 Jürgen Fluch1 Angelika Swatek3 Gerald Schweiger2

1AEE INTEC, Gleisdorf, Austria {c.ribastugores,j.fluch}@aee.at
2Technical University of Graz, Graz, Austria {birngruber,gerald.schweiger}@tugraz.at

3ENERTEC - Naftz & Partner GmbH & Co KG, Graz, Austria a.swatek@enertec.at

Abstract
Decarbonization of industry is a key challenge to achieve
the Paris climate goals. Digitalization of the industry is
a cornerstone of this journey. In this paper we present
our modelling work towards the creation of a Digital En-
ergy Twin of the energy supply system of a printed cir-
cuit board manufacturing by means of a classical use case,
system design optimization. The simulation approach al-
lowed us to fairly compare the improvements done in the
energy supply system by evaluating those under the same
operating conditions. Integration of chiller’s waste heat
can cover most of the low temperature grid heat demand
while the additional generation of chilled water reduces
the amount of water pump from and back to the river.
Keywords: Digitalization, Industry, Modelling, Efficiency,
Decarbonization

1 Introduction
The industry sector is one of the largest energy consumers
and greenhouse gas emissions contributors. The chemical
sector is the biggest industrial energy consumer, account-
ing for 28 % of total global industry final energy demand
(Philibert 2017). The industrial sector must reduce its en-
ergy intensity and dependency on fossil fuels demands to
achieve the commitment of the Paris agreement to hold
global warming below 1.5-2°C (Luderer et al. 2018). A
new draft of Effort Sharing Regulation specifies a 36 %
emission reduction for Austria by 2030 compared to 2005
for sectors not covered by the emissions trading system
(European-Commission 2019). While the power sector
shows significant reductions in the different future tech-
nology scenarios, the share of industrial CO2 emissions
will increase to 44 % in the 2 °C scenario, and it has not
yet attracted the same level of attention as the transport
and power sectors (Philibert 2017). Three-quarters of the
worldwide industrial energy demand is dedicated for pro-
cess heat, with 52 % of that energy required in the low
and medium temperature level (Luderer et al. 2018). This
shows that the target of 80 % CO2 reduction can only be
reached if the process heat demand in the low and medium
temperature range is incorporated in the energy reduction
strategies.

The scientific community argues that digitization offers

opportunities for sustainability, such as improved resource
efficiency through optimized operation (Ghobakhloo
2020). A key concept in the digitalization are Cyber-
Physical Systems (CPS) and Digital Twins (DT) (J. Lee,
Bagheri, and Kao 2015; Tao et al. 2019). The emer-
gence of these concepts poses new challenges for tradi-
tional modeling approaches. Among other aspects, com-
putational systems and communication networks need to
be combined with physical systems (E. A. Lee and Se-
shia 2017); further, co-simulation approaches are needed
to couple different tools and modeling approaches (e.g.,
physical and machine learning) (Schweiger, Engel, et al.
2018).

In this paper, we present our ongoing modeling work
towards a Digital Energy Twin (DET) in the industry by
means of a real world case studies of the energy sup-
ply system of printed circuit board manufacturing plant at
AT&S. AT&S is a world leading company in the printed
circuit board industry (PCB). The goal of AT&S is to re-
duce the carbon footprint and fresh water use by yearly
5 % and 3 % respectively (AT&S 2021). The optimiza-
tion of the energy system is not an easy task as produc-
tion plants need to be regularly adapted to the customer
needs. AT&S is managing to improve the efficiency of
their plants but at the same time facing difficulties evalu-
ate the exact impact of the taken measures and potential
deviation with the expected results, i.e. to achieve an "op-
timum". We aim to develop a Digital Energy Twin tar-
geted to assist on the optimization of the operational con-
trol of the system. Due to the lack of a common under-
standing one the definition of the Digital Twin concept it
is important to note that thee authors follow the definitions
for Digital Model, Digital Shadow and Digital Twin given
by (Kritzinger et al. 2018). In a brief way, given a physical
object and its counterpart digital object, the three concepts
differ on the level of data integration. In a Digital Model
the data flow between physical and digital object occurs
manually. On a Digital Shadow, the information flow-
ing from the physical to the digital object is automated.
Thus, a change on the physical object will be automati-
cally communicated to the digital model. In the Digital
Twin the data flowing from physical to a digital object and
vice-versa are automated.

A reasonable implementation process of a Digital Twin

DOI
10.3384/ecp21181497

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

497

starts with a Digital Model, which data flow is step by
step automated. This is a resource intensive task which re-
quires in-deep knowledge of the system as well as large
amount of data. Due to the industry needs, it is clear
that not only a Digital Twin (which planned use cases are
rather related to the optimal operation of the system) is
of interest but a Digital Model (suitable to overall con-
trol strategies and system design offline studies) as well.
Thus, we intend to efficiently use the resources being use
to obtain a Digital Twin by making use of its "simplest"
version, i.e. the Digital Model. The presented use case,
scenario evaluation, aims to evaluate the added value of
the undertaken measures to improve the efficiency of the
plant by means of three exemplary scenarios. The plant is
based on the real system, though only a part of the whole
system has been included here.

2 Use Cases
Figure 1 shows an overview of the three scenarios con-
sidered. A subset of the actual warm and chilled water
production system at an industrial site located in Austria.

The cooling, heating, and water demand at AT&S can
be clustered into five main consumers: Two heat con-
sumers (a high and a low temperature grid). Data of
their temperature and energy requirements are available at
their main heat exchangers. HT grid supply temperature
varies between 80 °C and 50 °C. LT grid supply temper-
ature varies between 40 °C and 20 °C. The cooling de-
mand is divided into two consumers, a main cooling de-
mand with supply temperatures between 10 °C and 6.5 °C,
and a cooling demand for industrial processes, production
in short. The supply temperature for production should
not be lower than 11 °C (the supply temperature is set to
12 °C). The fifth main consumer corresponds to the pro-
cess water. It requires water at warm temperature level.
Exact demands for the industrial process and process wa-
ter are available as hourly average values.

Scenario 1 is the base case and corresponds to a for-
mer case where the use of the utilities was not optimized.
The base case is depicted at Figure 1 with help of arrows
with black edges. The heat demand is entirely supplied
by a gas boiler. The cooling demand is solely covered by
a compression chiller which waste heat is released to the
ambient by a dry cooler. The cooling demand for the in-
dustrial process (production) is covered by water from a
cold water storage. The mass flow leaves production with
a slightly higher temperature and is send into the warm
water storage. The warm water is later used to supply
the process water demand (this water cannot be reused for
the industrial process and is therefore treated and dumped
safely). In case that the water level of the warm water
storage is too high, water is pumped back into the river
(warm water overflow). Water from the warm water stor-
age is partially re-injected into the cold water storage to
temperate the cold water storage (overcooling protection)
and thus minimize the amount of water pumped back into

the river. The amount of water in the system is refilled
with fresh water to keep the cold water storage level above
a minimum threshold.

Scenario 2 is a successor of scenario 1 and integrates
the chillers’ waste heat. The waste heat is used to partly
supply the heat demand of the LT grid, see arrows with
dashed edges in Figure 1, thus reducing the amount of heat
needed to be supplied by the boiler plant and with it the
overall gas consumption.

Scenario 3 is an extension of scenario 2. Scenario 3
aims to reduce the amount of water overflowing the warm
water storage, and that needs to be pumped back into the
river. Here the condenser side of the chiller is indirectly
connected to the cold and warm water storage tanks by
a heat exchanger. The chiller can increase the amount
of chilled water produced, and this water is used to cool
down fluid from the warm water storage, which is re-
injected back to the cold water storage. The amount of
fresh water needed is then reduced, as well as the amount
of water overflowing in the warm water storage that needs
to be pumped back into the river. Because the supply of
warm water for the process water needs to be ensured,
the generation of additional chilled water only takes place
when there is enough warm water. A hysteresis block with
uLow and uHigh equal to 30 % and 90 % of the water level
ensures the warm water supply for the consumer "process
water". The additional chilled water yields an increase on
waste heat. The additional chilled water is only generated
under suitable conditions, i.e. there is enough heat de-
mand at the LT grid and the additional waste heat can be
thus used to further cover these need.

3 Method
3.1 Modeling and Simulation
The models were implemented in the Modelica language
(Fritzson and Engelson 1998). A discussion of limitations
and promising approaches of the Modelica language can
be found here (Schweiger, Nilsson, et al. 2020). The main
reason to opt for Modelica is the compliance of most Mod-
elica tools with the FMI standard. Notice that the devel-
oped modelica models for the energy supply system (par-
tially here presented) as well as Python data driven models
for selected production processes are later to be exported
as FMUs and imported into a project partner software (KG
2021) where the Digital Twin is to be hosted. Another
important aspect to decide for Modelica is the amount
of already free-available libraries for energy systems and
the acquaintance of the authors with those libraries. In
this regard, the models are based on the Modelica IBPSA
Project 1 (Wetter, Treeck, et al. 2019) and the Buildings
Library (Wetter, Zuo, et al. 2014). Dymola was used to
simulate Modelica models (Brück et al. 2002).

3.2 Model description and parametrization
A top level view of model is shown in Figure 2. The main
subsystem models are here briefly described.

Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing

498 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181497

Boiler plant

Fresh water inflow

High temperature

grid

Compression
Chiller

Cooling demand

Produc�on

Process water

Overcooling
protec�on

Dry cooler

Cold water storage Warm water storage

Low temperature

grid

Warm water

overflow

Figure 1. Schema of the industrial site. Arrows indicate mass flow rates. Arrows with dashed edges correspond to the scenario
2 and 3. Arrows with red edges correspond to scenario 3. Colours of the arrows indicate the temperature levels of the streams
qualitatively.

The consumers "high temperature grid", "cooling de-
mand", "production" and "process water" are modelled
with a custom model named "GenericDemand". In this
block the return temperature is prescribed. An instance of
Buildings.Fluid.Interfaces.PrescribedOutlet ensures that
the inflow mass flow rate is heated up (or cooled down)
according to the measured data. The mass flow rate go-
ing to each consumer is regulated so that the energy de-
mand is fulfilled. Notice that the mass flow rate leaving
"process water" is flowing into a sink and not back to the
water storages. The low temperature grid block contains
a "GenericDemand" block inside. Here the main differ-
ence with the other demand blocks is that the mass flow
rate used to cover the heat demand can come from two
different sources, the boiler plant and/or the compression
chiller. The waste heat coming from the compressor has
priority, heat from the boiler plants is used in case there is
a lack of waste heat or the waste heat supply temperature
is not high enough.

The cold and warm water tanks are modelled using two
instances of Modelica.Fluid.Vessels.OpenTank. These are
parametrized based on constructive details of the real
tanks. Total cross area and height are respected. Heat
losses are not considered.

The "storage cooling HX" is modelled with a heat ex-
changer model with constant effectiveness, ε = 0.8. The
mass flow rate on the chiller side is determined by the
overall control as explained in section 2. The mass flow
rate in the storage side is regulated so that the outflow tem-
perature, i.e. mass flow rate flowing into the cold water,
reaches a temperature of 13 °C.

The overcooling protection block contains mainly a
pump moves fluid from the warm water storage to the cold
one when the temperature of the cold storage drops below
its minimum allowed of 11 °C.

The cold and water storage logic controls is based on
models from the StateGraph library. It monitors the tem-
perature and water levels of the warm and cold storage and
includes the necessary logic to "activate/deactivate" dif-
ferent subsystems, e.g. the overcooling protection block,
fresh water supply and overflow (to keep water level of
the storages within certain limits) or the chiller (additional
generation of chilled water used in scenario 3).

The boiler plant is modelled using an instance of Build-
ings.Fluid.Boilers.BoilerPolynomial. The nominal power
of the boiler is set to 3.5 MW . The efficiency is defined
by a polynomial which coefficients are obtained by curve
fitting to measured data, see Figure 3.

The chiller installed at AT&S is TCHVBZ 31630
BT from the manufacturer Rhoss. It is modelled us-
ing the Buildings.Fluid.HeatPumps.ScrollWaterToWater
model. The necessary information to parametrize the
model cannot be directly obtained from a data sheet. For
that purpose the buildings library supplies Python code.
It mainly consists of the same implementation of the heat
pump and refrigerant properties available in Modelica as
well as a script. Given data on specific operating con-
ditions (each defined by inflow temperature, mass flow
rate and heat flow rate at the evaporator and condenser
as well as the electrical consumption of the compres-
sor) the script simulates the Python chiller model iter-
atively for all operating points adjusting the parameters

Session 6B: Applications (3)

DOI
10.3384/ecp21181497

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

499

Figure 2. Top level view of the Modelica model.

Figure 3. Measured boiler efficiency and fitted curved.

until an "optimum" parametrization that minimize the er-
ror between model output and given operational condi-
tions is found. The available version of the buildings’
heat pump model is ready to be used with the refriger-
ant R401. The chiller TCHVBZ 31630 BT uses R134a
as a refrigerant. Following the same approach used in
Buildings.Media.Refrigerants.R410A, an implementation
for R134a based on data from (Chemour 2021) is added
in Modelica and Python. In regard of the parametrization,
up to 28 different operating conditions were supplied by
the manufacturer for this chiller. The information is sum-
marized in the Appendix. The parametrization process is
sensitive to the data used. In some case the Python script
does not manage to find a proper parametrization. This
is the case when all 28 operating points or data related to
very different load conditions (e.g. full-100 % and low

Table 1. List of operating points per dataset. Operating points
number refer to points listed in Table A.2.

Dataset Operating points n°
A 4, 8, 12, 16, 20, 24, 28
B 3, 7, 11, 15, 19, 23, 27
C 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28
D 2, 6,10, 14, 18, 22, 26,
E 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27
F 1, 5, 9, 13, 17, 21, 25
G All points except 4, 8, 12, 16, 20, 24, 28
H 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26

load-25 % operation) is used. A list of datasets that were
used as input for the Python script that successfully out-
putted a "optimum" parameter set are listed in Table 1.

Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing

500 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181497

After the script is run for the datasets A to H, the ob-
tained parameter sets are cross checked with all 28 operat-
ing points. The heat pump is setup in a way that the inflow
temperatures at evaporator and condenser side as well as
the mass flow rate trough the evaporator correspond to the
measured data. The signal compressor frequency y is ad-
justed so that the outflow temperature at the evaporator
corresponds with the measured data, thus the chilled wa-
ter generated should agree with the measured data. The
mass flow rate at the condenser does not correspond to the
measured one, it is adjusted so that the outflow tempera-
ture matches the measured data.

The results show how for the parameter sets obtained
with A, B, C, E and G the chiller cannot deliver the re-
quested heat flow rate at the evaporator, see Figure 4. In
the case of the parameter sets obtained with D, F and H,
the chiller is able to deliver the requested chilled water for
most of the operating points.

Figure 4. Deviation of heat flow rate at evaporator Qe: Mea-
sured - model output.

From the three remaining parametrization sets, D shows
very good results for most of operating points but not for
full load operation. F and H shows better results for full
load operation but higher deviations for most of the other
operating points, see Figure 5. It is clear that if the datasets
used do not include operating points on full load, the ob-
tained parameter set or rather the parametrized model will
not be able to predict correctly the real system under such
conditions. However, the chiller does not operate at full
load. Because it is by now not planned to operate the
chiller in very different conditions than it is being oper-
ated, e.g. full load, the use of parametrization "D" suits
better our needs. In regard of the electrical consumption,
result obtained based on dataset D shows an average devi-
ation of +7 % with a minimum (overprediction) and maxi-
mum (underprediction) deviation of -7 % (point n°16) and
23 % (high load operation) respectively.

3.3 Model validation
The energy system is been monitored in detail and most of
the data are recorded. However, there is in some cases not
enough data (due to missing measurement equipment or
problems in the measuring device) to perform an energy
or mass balance of some subsystems, this is the case for

Figure 5. Deviation of electrical consumption P: Measured -
model output.

e.g. the boiler plant or the cold and warm water storage.
In this regard, the validation work have been focused on
the chiller. The same model used for the parametrization
check is here used, the only difference is that measured
data are used instead of single operating points. A time
period of six days, from 7th until 13th of Februar 2021, is
here presented.

The amount of chilled water as well as operating tem-
peratures are the same between model and measured data.
An overview of the temperature operating range is shown
in Figure 6. The chiller is working at low load (115 kW
of cooling capacity in average with a maximum and min-
imum of 182 kW and 71 kW respectively) and supplying
chilled water at low temperature ≈ 7 °C.

Figure 6. Operating temperatures for chiller during validation
time period.

The deviations between measured data and model re-
sults can be observed in the electrical consumption and
heat flow rate at the condenser and thus, EER. The differ-
ences are shown in Figures 7 to 9.

The results show how the model predicts a slightly
higher but similar electrical consumption than the real
system, being the average for the model and measured
62.8 kW and 60.9 kW respectively. These good agreement
in the power consumption yields a similar EER, 1.88 for
the model and 1.93 measured. Here is to point out that

Session 6B: Applications (3)

DOI
10.3384/ecp21181497

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

501

Figure 7. Electrical consumption P (measured and model out-
put).

Figure 8. Heat flow rate at condenser Qc (measured and model
output).

the operating conditions are similar to the operating point
number 20 (see Table A.2). Operating conditions under
which the model oversestimates the power consumption
by less than 2 %.

3.4 Scenario evaluation
The evaluation of the scenarios is due to limited measured
data done for a period of time equal to 150 days, roughly
five months.

Notice that since the exact costs of water overflow, fresh
water inflow, and dry coolers cannot yet be in detail eval-
uated (details of the system missing), thus the added value
of the scenarios is limited to the main production units
(boiler and chiller) as well as the amount of water pumped.
The following main KPIs are considered:

• Heat supplied to the LT grid by boiler plant in MWh,

• Waste heat recovery from chiller in MWh,

• Share of heat demand at LT grid supplied by waste
heat in %,

• Chiller electricity consumption in MWh,

• Fresh water into cold water storage in m3,

• Overflowed water at warm water storage m3.

4 Results and Discussion
Because the HT grid is merely supplied by the boiler plant,
this is not of interest for the scenario evaluation and dis-
cussion and thus, not included here. In regard of the heat
supply, once the waste heat of the chiller is integrated into
the LT grid, the amount of heat been supplied by the boiler
plant can be reduced from 1,053 MWh down to 104 MWh.
The rest of the heat demand (90.1% of the overall LT grid

Figure 9. Energy efficiency ratio (measured and model output).

heat demand) is covered by waste heat from the chillers,
see Figure 10.

Figure 10. Share of heat supplied to cover the LT grid heat
demand.

Figure 11. Total amount of fresh water needed divided into pro-
cess water and overflow.

The operation conditions of the chiller in scenario 1 and
2 are almost the same. The same amount of chilled water
(1,543 MWh) is produced. There is a slight difference on
the temperatures at the condenser side when heat is been
supplied to the low temperature grid that yield a slight
variation on the electricity consumption, being in scenario
2 -1.4 % lower than scenario 1.

The amount of fresh water needed remains the same,
15,202 m3. Most of it is pumped back into the river
(14,180 m3), and the rest (1,022 m3) is used as process
water, see Figure 11. The amount of water used to keep
the temperature at the cold water storage above its min-
imum allowed temperature of 11 °C decreases with time
due to an increase on the river temperature, see Figure 12.

The fact that not all the LT grid heat demand is covered
by the waste heat of the chiller and the high amount of wa-

Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing

502 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181497

Figure 12. 25 days averaged values of river temperature and
mass flow rate from warm to cold water storage (overcooling
protection).

ter been pumped back into the river (14,180 m3) motivates
scenario 3.

The amount of additional chilled water generated in
scenario 3 (112 MWh) is relatively low compared to the
overall amount of chilled water supplied to the main cool-
ing demand (1,543 MWh). It represents only 6.8 % of the
overall chilled water in MWh. The change in the electric-
ity consumption and amount of waste heat are low, both
slightly increasing. As a result, the share of the LT grid
heat demand supplied by waste heat is increased from
90.1 % in scenario 2 up to 91.8 %. The electricity con-
sumption is 390 MWh (6.6 % higher than scenario 2).

The main added value of scenario 3 is related to the
reduction of the amount of fresh water that is pumped
into the cold water storage, which is specifically reduced
by 32.9 % compared to scenario 1 and 2, i.e., down to
10206 m3. Furthermore, the amount of water that have to
be pumped back into the river, is also reduced by 35.2 %
respect to the scenario 1 and 2 down to 9184 m3.

5 Conclusion
Though the digitalization is often directed towards the cre-
ation of Digital Twins, the industry still lacks of ground-
work, e.g., Digital Models. The amount of work need
to create a Digital Model of a factory is high. Further-
more, it needs of expertise, in regard of the modeling task
itself as well as of the knowledge of the system. The
much-desired digitalization needs a positive balance be-
tween added value and effort. Thus, the use of the models
needs to be maximized by using it e.g. to assist on regular
tasks such as comparative analysis of potential improve-
ments of the system and evaluation of measures taken (as
here presented). In this regard, the improvements done in
the energy supply system could be fairly compared with
the former system. The results show the benefits of the
chiller’s waste heat integration as well as the generation
of additional chilled water. In regard of the model, high-
light that the heat pump model can predict accurately the
power consumption of the real chiller, though the results

are very sensitive to the data used on the parametrization
and the choose of a proper parametrization depends on the
real operation conditions and planned studies.

Acknowledgements
The research leading to these results has received fund-
ing from the Austrian Climate and Energy Fund Pro-
gramme Energy Research (e!MISSION) under FFG
project no. 873599.

References
AT&S (2021). AT&S Nachhaltigkeit. https : / / ats . net / de /

unternehmen/corporate-social-responsibility/.
Brück, Dag et al. (2002). “Dymola for multi-engineering model-

ing and simulation”. In: 2nd International Modelica Confer-
ence.

Chemour (2021). Freon™ 134a (R-134a). https://www.freon.
de/products/refrigerants/r134a. Chemour.

European-Commission (2019). Assessment of the draft National
Energy and Climate Plan of Austria. Tech. rep. European-
Commission.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A Uni-
fied Object-Oriented Language for System Modeling and
Simulation”. In: European Conference on Object-Oriented
Programming. Springer, pp. 67–90.

Ghobakhloo, Morteza (2020). “Industry 4.0, digitization, and
opportunities for sustainability”. In: Journal of Cleaner Pro-
duction 252, p. 119869. ISSN: 0959-6526. DOI: https://doi.
org/10.1016/j.jclepro.2019.119869.

KG, Eberle Automatische Systeme GmbH & Co (2021). Virtual
3D Systems. https://www.v3s.at/de/.

Kritzinger, Werner et al. (2018). “Digital twin in manufacturing:
A categorical literature review and classification”. In: IFAC-
PapersOnLine 51.11. 16th IFAC Symposium on Information
Control Problems in Manufacturing INCOM 2018, pp. 1016–
1022. ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.
2018.08.474.

Lee, Edward A. and Sanjit A. Seshia (2017). Introduction to Em-
bedded Systems: A Cyber-Physical Systems Approach. Mit
Press. ISBN: 978-0-262-53381-2.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A Cyber-
Physical Systems architecture for Industry 4.0-based manu-
facturing systems”. In: Manufacturing Letters 3, pp. 18–23.
ISSN: 2213-8463. DOI: https://doi.org/10.1016/j.mfglet.2014.
12.001.

Luderer, Gunnar et al. (2018). “Residual fossil CO 2 emis-
sions in 1.5–2 C pathways”. In: Nature Climate Change 8.7,
pp. 626–633.

Philibert, Cédric (2017). “Renewable Energy for Industry: From
Green Energy to Green Materials and Fuels”. In: Paris: Inter-
national Energy Agency.

Schweiger, Gerald, Georg Engel, et al. (2018). “Co-simulation–
an empirical survey: applications, recent developments and
future challenges”. In: MATHMOD 2018 Extended Abstract
Volume, pp. 125–126.

Session 6B: Applications (3)

DOI
10.3384/ecp21181497

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

503

Schweiger, Gerald, Henrik Nilsson, et al. (2020). “Modeling and
simulation of large-scale systems: A systematic comparison
of modeling paradigms”. In: Applied Mathematics and Com-
putation 365, p. 124713.

Tao, Fei et al. (2019). “Digital Twins and Cyber–Physical Sys-
tems toward Smart Manufacturing and Industry 4.0: Corre-
lation and Comparison”. In: Engineering 5.4, pp. 653–661.
ISSN: 2095-8099. DOI: https://doi.org/10.1016/j.eng.2019.
01.014.

Wetter, Michael, Christoph van Treeck, et al. (2019). “IBPSA
Project 1: BIM/GIS and Modelica framework for building
and community energy system design and operation–ongoing
developments, lessons learned and challenges”. In: IOP Con-
ference Series: Earth and Environmental Science. Vol. 323.
IOP Publishing, p. 012114.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica Build-
ings library”. In: Journal of Building Performance Simulation
7.4, pp. 253–270. DOI: 10.1080/19401493.2013.765506.

Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing

504 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181497

A Appendix

Table A.2. Detailed list of operating points for TCHVBZ 31630 BT

n° Tc−in [°C] Te−in [°C] Qe [kW] Qc [kW] P [kW]

1 40 7 1,150 1,568 418
2 42 7 959 1,295 336
3 43 7 684 953 269
4 46 7 321 434 113
5 35 7 1,240 1,633 392
6 36 7 1,023 1,331 308
7 38 7 739 981 241
8 41 7 343 446 103
9 29 7 1,346 1,705 359
10 31 7 1,109 1,393 284
11 33 7 805 1,021 217
12 36 7 371 467 95
13 19 7 1,467 1,766 299
14 21 7 1,218 1,460 242
15 23 7 904 1,079 175
16 26 7 408 489 81
17 39 10 1,294 1,736 442
18 41 10 1,066 1,409 343
19 43 10 767 1,038 270
20 46 10 357 472 115
21 29 10 1,452 1,817 366
22 31 10 1,202 1,492 290
23 33 10 883 1,099 217
24 36 10 403 500 97
25 19 10 1,593 1,899 306
26 20 10 1,343 1,591 248
27 22 10 1,002 1,178 176
28 25 10 450 533 83

Session 6B: Applications (3)

DOI
10.3384/ecp21181497

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

505

506 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Handling Multimode Models and Mode Changes in Modelica

Albert Benveniste1 Benoît Caillaud1 Mathias Malandain1

1Inria Centre de Rennes Bretagne Atlantique, University of Rennes 1, France,
{albert.benveniste,benoit.caillaud,mathias.malandain}@inria.fr

Abstract
Since its version 3.3, the Modelica language offers the
possibility to model multimode systems having different
DAE-based dynamics in each mode, thanks to the intro-
duction of state machines. When the differentiation index
and structure varies with mode changes, compilers gener-
ate erroneous simulation code, often resulting in runtime
exceptions. We propose in this paper a multimode struc-
tural analysis for both multiple modes and mode change
events and we show how correct code for restarts can be
generated. Our approach is illustrated on two simple but
representative mechanical systems.
Keywords: multimode DAE, structural analysis

1 Introduction
Since version 3.3, the Modelica language offers the pos-
sibility of specifying multimode dynamics, by describing
state machines with different DAE dynamics in each dif-
ferent state (Elmqvist, Gaucher, et al. 2012). This feature
enables describing large complex cyber-physical systems
with different behaviors in different modes.

While being undoubtedly valuable, multimode model-
ing has been the source of serious difficulties for non-
expert users of the current generation of Modelica tools.
Indeed, while many large-scale Modelica models are
properly handled, some physically meaningful models do
not result in correct simulations with most Modelica tools.
As such problematic models are actually easy to construct,
the likelihood of such bad cases occurring in large models
is significant.

It is unfortunately unclear which multimode Modelica
models will be properly handled, and which ones will fail.
As a consequence, quite often, end users have to ask Mod-
elica experts, or even tool developers themselves, to tweak
their models in order to make them work as expected.
While it is accepted that physical modeling itself requires
expertise, requiring expertise in how to get around tool
idiosyncrasies is not desirable. This situation hinders a
wider spreading of Modelica tools among a larger class of
users, such as Simulink-trained engineers.

As our review of two examples will reveal, this prob-
lem is mainly due to an inadequate structural analy-
sis, performed during compilation. As far as we know,
no industrial-strength Modelica tool implements a mode-
dependent structural analysis—a few academic prototypes
address this difficulty in part, see Section 3. Worse, it

is not even understood what kind of structural analysis
should be associated with mode change events.

Some years ago, we started a project aiming at address-
ing all the above issues. In this paper we explain our
approach, by illustrating it on two simple yet physically
meaningful examples that current Modelica tools fail to
properly simulate. The use of nonstandard analysis al-
lows us to perform the analysis of both modes and mode
changes in a unified framework, including the handling
of transient modes and that of impulsive mode changes.
Standardization techniques are then used in order to gen-
erate effective code for restarts at mode changes. As an ef-
ficient implementation of such methods in Modelica com-
pilers would greatly expand the class of multimode mod-
els amenable to reliable numerical simulation, we hint at
possible mechanizations towards the end of the paper; this
aspect is developed in both the companion paper (Ben-
veniste, Caillaud, and Malandain 2021). and the previ-
ously published article (Caillaud, Malandain, and Thibault
2020).

2 Two problematic examples
We review two small examples of multimode DAE sys-
tems and analyse how they are handled by two state-of-
the-art Modelica tools, OpenModelica and Dymola.

2.1 An ideal clutch

Figure 1. An ideal clutch with two shafts.

The clutch depicted in Figure 1 is an idealized clutch
interconnecting two rotating shafts. It is assumed that this
system is closed, meaning that the two shafts are not con-
nected to anything else, whence the corresponding model:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

if γ do ω1−ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(1)

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

507

In model (1), the dynamics of each shaft i is described by
ODE ω ′i = fi(ωi,τi) for some, yet unspecified, function fi,
where ωi is the angular velocity and τi is the torque applied
to shaft i. Depending on the value of the input Boolean
variable γ , the clutch is either engaged (γ = T, the constant
“true”) or released (γ = F, the constant “false”). When the
clutch is released, the two shafts rotate freely: no torque
is applied to them (τi = 0). When the clutch is engaged,
it ensures a perfect join between the two shafts, forcing
them to have the same angular velocity (ω1−ω2 = 0) and
opposite torques (τ1 + τ2 = 0). When γ = T, equations
(e3,e4) are active and equations (e5,e6) are disabled, and
vice-versa when γ = F. If the clutch is initially released,
then, at the instant of contact, the relative speed of the
two rotating shafts jumps to zero; as a consequence, an
impulse is expected on the torques.

The model yields an ODE system when the clutch is
released, and a DAE system of index 1 when the clutch is
engaged (see Section 5.1).

The clutch in Modelica: Figure 2 details the Modelica
model of the Ideal Clutch system. It is a faithful transla-
tion in the Modelica language of the two-mode DAE (1),
except that the two differential equations have been lin-
earized. Also, the trajectory of the input guard γ (here
called g) has been fully specified: it takes the value T be-
tween t1 and t2 and F otherwise.

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1; Real f2;
equation

der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

Figure 2. Modelica code for the idealized clutch.

This model is deemed structurally nonsingular by the
two Modelica tools we had the opportunity to test:
OpenModelica 1.17.0 (Fritzson et al. 2020) and Dymola
2021 (Dassault Systèmes AB 2020). However, none
of these tools generates correct simulation code from
this model. Indeed, simulations fail precisely at the in-
stant when the clutch switches from the uncoupled mode

(g=false) to the coupled one (g=true). This is evi-
denced by a division by zero exception, as shown in Fig-
ure 3.

Figure 3. Division by zero exceptions with Dymola 2021 (top)
and OpenModelica 1.17.0 (bottom) occuring when simulating
the Ideal Clutch Modelica model.

The cause of this exception is that none of these tools
performs a multimode structural analysis. Instead, the
structure of the model is assumed invariant, and a Dummy
Derivatives method (Mattsson and Soderlind 1993) is im-
plemented, which is correct on single-mode DAE sys-
tems, whereas it may fail on multimode systems unless the
model structure is independent of the mode. The structural
analysis methods in these tools do not detect that the dif-
ferentiation index jumps from 0 to 1 when the shafts are
coupled, and that the structure is not invariant. The divi-
sion by zero results from the pivoting of a linear system of
equations that becomes singular when g becomes equal to
true.

2.2 A Cup-and-Ball game

Figure 4. The Cup-and-Ball game.

We sketch here a multimode extension of the popular
example of the pendulum in Cartesian coordinates (Pan-
telides 1988), namely the Cup-and-Ball game illustrated
by Figure 4. A ball, modeled by a point mass, is at-
tached to one end of a rope, while the other end of the
rope is fixed, to the origin of the plane in the model. The
ball is subject to the unilateral constraint set by the rope,
but moves freely while the distance between the ball and
the origin is less than its length. The system is assumed
closed. The model for a 2D-version of this example is:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0≤ L2−(x2+y2) (κ1)
0≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
×λ (κ3)

(2)

Handling Multimode Models and Mode Changes in Modelica

508 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

where the dependent variables are the position (x,y) of the
ball in Cartesian coordinates and the rope tension λ .

The subsystem (κ1,κ2,κ3) expresses that the tension is
nonnegative, the distance of the ball from the origin is less
than or equal to L, and one cannot have a nonzero tension
and a distance less than L at the same time. Constraints κ1
and κ2 are unilateral, which is not supported by Model-
ica and related languages. Therefore, using the technique
presented in (Mattsson, Otter, and Elmqvist 1999), we re-
define the graph of this complementarity condition as a
parametric curve, represented by the following three equa-
tions:

s = if γ then−λ else L2−(x2+y2)
0 = if γ then L2−(x2+y2) else λ

γ = [s≤ 0]
(3)

Similarly to the clutch model, impulsive behavior is ex-
pected on the torques. However, an other possible dif-
ficulty is present: subsystem (κ1,κ2,κ3) of (2) leaves
the impact law at mode change insufficiently specified; it
could be fully elastic, fully inelastic, or in between. Can
both of these aspects be detected at compile time, using
some kind of structural analysis?

The Cup-and-Ball in Modelica: Figure 5 details the
Modelica model of the Cup-and-Ball game. It is a faithful
translation of the two-mode DAE (2) using rewriting (3).
The point mass, modeling the ball, initially stands at the
origin of the plane with zero velocity; the Boolean guard
γ , named gamma in the model, is thus set to false.

model CupAndBall
constant Real g=9.81;
constant Real L=1.0;
Real x(start=0,fixed=true);
Real y(start=0,fixed=true);
Real u(start=0,fixed=true);
Real v(start=0,fixed=true);
Real lambda;
Real s;
Boolean gamma(start=false,fixed=true);
equation

der(x) = u;
der(y) = v;
der(u) + lambda*x = 0;
der(v) + lambda*y + g = 0;
gamma = (s <= 0);
0 = if gamma then L^2 - (x^2 + y^2)

else lambda;
s = if gamma then - lambda

else L^2 - (x^2 + y^2);
end CupAndBall;

Figure 5. Modelica code for the Cup-and-Ball.

As is the case for the clutch model presented above,
this model is deemed structurally nonsingular by both
OpenModelica 1.17.0 and Dymola 2021, but the simu-
lation fails at the instant of mode change. Figure 6 de-
picts the resulting trajectory of variables y and gamma;

it ends when gamma switches from false to true, as
the tool is unable to correctly reinitialize the model af-
ter the mode change. Replacing condition s <= 0 with
last(s) <= 0 in order to break the fixpoint equation
defining variable gamma (see the introduction of Sec-
tion 6) leads to the same simulation results, but with a
division by zero error similar to that shown in Figure 3
occurring at the moment of mode change.

Figure 6. Trajectory of the Cup-and-Ball Modelica model: it
stops around t = 0.452s, when the rope becomes straight.

.

It appears from both exemples that some fundamental
study is needed to correctly simulate multimode models,
and that the problem is twofold: the varying structure of
the model has to be taken into account, and mode changes
have to be handled in a specific fashion.

Smoothing ‘if then else’ equations could help
solve both issues by essentially turning multimode models
into single-mode models, but this requires a delicate and
definitely non-modular tuning, as it depends on the differ-
ent time scales arising in the system. We believe that, as
the tools reputedly support multimode DAE models, they
should handle them correctly.

3 Related work
For the general literature on DAE and Modelica, we
refer the reader to https://www.modelica.org/
publications and (Benveniste, Caillaud, Elmqvist, et
al. 2019; Benveniste, Caillaud, and Malandain 2020).

Elmqvist, Mattsson, and Otter (2014) and Mattsson, Ot-
ter, and Elmqvist (2015) propose a high-level description
of multimode models as an extension to the synchronous
Modelica 3.3 state machines, by using continuous-time
state machines having continuous-time models as “states”.
State machines are transformed so that the resulting
equations can be processed by standard symbolic algo-
rithms supported by Modelica tools. Describing variable-
structure systems with causal state machines is discussed
in (Pepper et al. 2011). Dynamically changing the struc-
tural analysis at runtime is also proposed in (Höger 2014;
Höger 2017), with Höger (2014) proposing a dynamic ex-
ecution of the Σ-method (Pryce 2001), and by Nilsson
and Giorgidze (2010) in the context of their Functional

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

509

Hybrid Modelling paradigm. Such approaches typically
rely on the explicit declaration of reinitializations at mode
changes.

As such, the computation of correct restarts at mode
changes, while being a central issue in multi-mode DAE
systems, is not being tackled in the already mentioned ref-
erences. Some authors still address this issue.

Benveniste, Caillaud, Elmqvist, et al. (2017) tackled
this issue, as well as the problem of varying structure and
index, from a fundamental point of view, by relying on
nonstandard analysis to capture continuous-time dynam-
ics and mode change events in a unified framework. A
first structural analysis algorithm was presented in this pa-
per, by significantly modifying the original Pantelides al-
gorithm (Pantelides 1988). This first attempt suffers from
some deficiencies: the proposed structural analysis does
not boil down to the Pantelides algorithm in the case of
single-mode systems; it involves nondeterministic deci-
sions, an unwanted feature for the mathematical founda-
tion of compilers; and its mathematical study is incom-
plete.

(Trenn 2009b; Trenn 2009a) are important works as
they point out the difficulty in defining piecewise smooth
distributions. Liberzon and Trenn were able to define
complete solutions for a class of switched DAE systems
in which each mode is in quasi-linear form (Liberzon and
Trenn 2012): notably, switching conditions are time-based
only.

In (Benveniste, Caillaud, Elmqvist, et al. 2019), an in-
teresting subclass of multimode DAE systems was iden-
tified, which possibly exhibit impulsive variables at mode
changes. They extend the “quasi-linear systems” proposed
by Trenn et al.; in particular, switching conditions are no
longer restricted to be time-based, but can be state-based.
Nevertheless, the analysis and discretization schemes pro-
posed in (Benveniste, Caillaud, Elmqvist, et al. 2019) are
mathematically sound. Building on this work, Elmqvist
and Otter have developed the ModiaSim1 Julia packages
for semi-linear multimode DAE systems. It turns out that
the general approach of the present paper coincides with
the schemes proposed in (Benveniste, Caillaud, Elmqvist,
et al. 2019) when applied to the considered subclass. Our
present contribution thus extends and significantly im-
proves that work. An in-depth comparison can be found
in (Benveniste, Caillaud, and Malandain 2020).

4 Our contributions
Structural analysis of mode changes and code genera-
tion for restarts: We develop a structural analysis that
is valid at any time, that is, for both continuous dynam-
ics and mode changes. Impulsive behaviors may occur at
mode changes for certain variables. Whereas the few cur-
rent tools able to handle such situations discover them at
runtime, our structural analysis covers these situations and
handles them at compile time.

1https://modiasim.github.io/docs/index.html

Rejecting or accepting programs on a clear basis, at
compile time: Our structural analysis is precise enough
to properly identify models that are structurally over- or
under-specified at mode change events. In turn, mode-
dependent index/state/dynamics are not reasons for rejec-
tion: our approach handles such cases.

We now move to developing our approach by dis-
cussing the two examples from Section 2.

5 The ideal clutch
Its model was given in (1). We first analyze separately the
model for each mode of the clutch. Then, we focus on
mode changes and propose a comprehensive analysis.

5.1 Separate Analysis of Each Mode
In the released mode, i.e., when γ = F in System (1), the
two shafts are independent and one obtains the following
two independent ODEs for ω1 and ω2:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

τ1 = 0 (e5)
τ2 = 0 (e6)

(4)

In the engaged mode, however (γ = T), the two velocities
and torques are algebraically related:

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

ω1−ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(5)

System (5) is a DAE. Its structural analysis tells that equa-
tion (e3) must be differentiated and added to the model (it
is highlighted in red):

ω ′1 = f1(ω1,τ1) (e1)
ω ′2 = f2(ω2,τ2) (e2)

ω1−ω2 = 0 (e3)
ω ′1−ω ′2 = 0 (e′3)
τ1 + τ2 = 0 (e4)

(6)

Although this change of differentiation index is the root
cause of the runtime exceptions shown in Figure 3, solv-
ing this issue would not be enough for the correct simula-
tion of the model, because of the need of handling mode
changes.

As a matter of fact, while the cold initialization of the
engaged mode yields 6 dependent variables for only 5
equations, thus leaving one degree of freedom (the com-
mon velocity of the two shafts), the mode change γ : F→
T, when the clutch gets engaged, is physically determi-
nate, which makes the point that mode changes cannot be
handled as “cold restarts”.

Inferring by hand the reset values for rotation velocities
when the clutch gets engaged is definitely non-trivial. Fur-
thermore, these values depend on the whole system model,
so that the task of determining them becomes complex if
external components are added.

It is therefore highly desirable, for this example, to let
the compiler infer these reset values from model (1).

Handling Multimode Models and Mode Changes in Modelica

510 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

5.2 Mapping model to nonstandard analysis
If DAE dynamics is approximated in discrete time, then
the whole model becomes discrete-time. To avoid the
problem of approximation error, our idea is to use an “in-
finitesimal” time step in the discrete time approximation.
This will yield an approximation up to an infinitesimal ac-
curacy.

This can be made rigorous by relying on nonstandard
analysis (Robinson 1996; Lindstrøm 1988; Benveniste,
Caillaud, and Malandain 2020), which extends the set R of
real numbers to a superset ?R of hyperreals that includes
infinite sets of infinitely large numbers and infinitely small
numbers.

For the understanding of this paper, it is enough to know
the following about nonstandard analysis. There exist in-
finitesimals, defined as hyperreals that are smaller in abso-
lute value than any real number. The arithmetic operations
+, ×, etc., and usual relations, are lifted to ?R. For ev-
ery finite hyperreal x ∈ ?R, there is a unique standard real
number st(x) ∈ R such that st(x)− x is infinitesimal, and
st(x) is called the standard part (or standardization) of x.
Standardizing functions or systems of equations, however,
requires some care. One important issue is derivatives.
For t 7→ x(t) an R-valued (standard) signal (t ∈ R),

x is differentiable at instant t∈R if and only if there
exists a∈R such that, for any infinitesimal ∂ ∈ ?R,
x(t+∂)−x(t)

∂
−a is infinitesimal; then, a = x′(t).

(7)

We can then consider the time index set T⊆ ?R:

T= 0,∂ ,2∂ ,3∂ , · · ·= {n∂ | n ∈ ?N} (8)

where ?N denotes the set of hyperintegers, consisting of
all integers augmented with additional infinite numbers
called nonstandard, and ∂ is an arbitrary, but fixed, in-
finitesimal.2 The following features of T are important:
(1) any finite real time t∈R is infinitesimally close to
some element of T (hence, T covers R and can be used
to index continuous-time dynamics); and (2) T is “dis-
crete”: every instant n∂ has a predecessor (n−1)∂ (except
for n = 0) and a successor (n+1)∂ .

Let x be a nonstandard signal indexed by T. The
forward- and backward-shifted signals x• and •x are de-
fined by:

x•(n∂) =def x((n+1)∂) and •x((n+1)∂) =def x(n∂) ,

implying that an initial value for •x(0) must be provided.
For f (X) a function of the tuple X of signals, we set
(f (X))• =def f (X•) where the forward shift X 7→ X• ap-
plies pointwise to all the components of the tuple. For
example, f •(x,y)(t) = f (x•,y•) = f (x(t+∂),y(t+∂)).

2It is proved in (Benveniste, Caillaud, and Malandain 2020) that the
simulation code that is finally generated does not depend on the choice
of this infinitesimal time step.

Using (7), we represent, up to an infinitesimal, the
derivative x′ of a signal by its first-order explicit Euler ap-
proximation 1

∂
(x•−x). Solutions of multi-mode DAE sys-

tems may be non-differentiable or even non-continuous at
events of mode change. To give a meaning to x′ at any
instant, we define it everywhere as

x′ =def
1
∂
(x•− x) . (9)

The nonstandard expansion of two-mode system (4,6) is:

ω•1−ω1
∂

= f1(ω1,τ1) (e∂
1)

ω•2−ω2
∂

= f2(ω2,τ2) (e∂
2)

if γ do ω1−ω2 = 0 (e3)
and ω•1 −ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(10)

Note that the latent differentiated equation (e′3) of model
(6) has been replaced by the forward shifted equation (e•3)
(both are equivalent from a structural point of view). The
state variables are ω1, ω2 whereas the leading variables
are now τ1, τ2, ω•1 , ω•2 , in both modes γ = F and γ = T.
This yields a sort of explicit Euler scheme for model (1),
which is exact up to infinitesimals within each mode. The
structural analysis is correct in each mode.

5.3 Structural analysis of mode change γ:F→T

We focus on mode change γ : F→ T, when the clutch gets
engaged. At the considered instant, we have •γ = F and
γ = T. We unfold System (10) at the two successive (pre-
vious and current) instants by taking the actual values for
the guard at those instants into account:

previous
instant
γ = F

ω1−•ω1

∂
= f1(

•ω1,
•τ1) (•e∂

1)
ω2−•ω2

∂
= f2(

•ω2,
•τ2) (•e∂

2)
•τ1 = 0
•τ2 = 0

current
instant
γ = T

ω•1−ω1
∂

= f1(ω1,τ1)
ω•2−ω2

∂
= f2(ω2,τ2)

ω1−ω2 = 0 (e3)
ω•1 −ω•2 = 0
τ1 + τ2 = 0

(11)

We regard System (11) as an algebraic system of equations
with dependent variables •τi,ωi;τi,ω

•
i for i = 1,2, i.e., the

leading variables of System (10) at the previous and cur-
rent instants. System (11) is structurally singular, as it in-
cludes the following subsystem3 which has five equations

3Over- and underdetermined subsystems are structurally found
by computing the Dulmage-Mendelsohn decomposition of the sys-
tem (Dulmage and Mendelsohn 1958).

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

511

and only four dependent variables ω1,ω2,
•τ1,

•τ2:

ω1−•ω1
∂

= f1(
•ω1,

•τ1) (•e∂
1)

ω2−•ω2
∂

= f2(
•ω2,

•τ2) (•e∂
2)

•τ1 = 0
•τ2 = 0
ω1−ω2 = 0 (e3)

(12)

We resolve this conflict by applying the following princi-
ple:

Principle 1 (causality) What was done at the previous
instant cannot be undone at the current instant.

Applying (1) leads to removing, from subsystem (12), the
conflicting equation (e3). This yields the following non-
standard code for the restart at mode change γ : F→ T:

ω1,ω2,
•τ1,

•τ2 set by previous instant
ω•1 = ω1 +∂ × f1(ω1,τ1)

ω•2 = ω2 +∂ × f2(ω2,τ2)

ω•1 −ω•2 = 0
τ1 + τ2 = 0

(13)

The consistency equation (e3) : ω1 − ω2 = 0 has been
removed from System (13), thus modifying the original
model. However, this removal occurs only at mode change
events γ : F→ T. What we have done amounts to delaying
by one nonstandard instant the satisfaction of some of the
constraints in force in the new mode γ = T. Since our time
step ∂ is infinitesimal, this takes zero standard time.

5.4 Generating effective code for restart at
mode change γ : F→ T

We wish to use System (13) by identifying current values
for the states ωi with the left-limits ω

−
i i.e., the values of

the velocities just before the mode change. From these
values, we would then compute the restart values for the
velocities ω

+
i =def ω•i , together with the torques τi.

Unfortunately, hyperreals are unknown to computers,
hence, System (13) cannot be used as such, but needs to
be standardized, by “washing out” ∂ . Since the time step
∂ is infinitesimal, it is tempting to get rid of of it in (13) by
simply setting ∂ = 0. Unfortunately, doing this leaves us
with a structurally singular system, since the two torques
are then involved in only one equation.

This problem of structural singularity is in fact due to
the existence of impulsive variables. To discover them in
a systematic way, we perform an impulse analysis.

Impulse analysis: Before engaging the clutch, we must
generically assume ω1−ω2 6= 0. Since ω•1−ω•2 = 0 holds,
(ω•1−ω•2)−(ω1−ω2)

∂
= f1(ω1,τ1)− f2(ω2,τ2) cannot be finite

because, if it was, then the function ω1−ω2 would be con-
tinuous, contradicting the assumption that ω1−ω2 6= 0.
Hence, the hyperreal f1(ω1,τ1)− f2(ω2,τ2) is necessar-
ily infinite. However, we assumed continuous functions

fi and finite state (ω1,ω2). Thus, one of the torques τi
must be infinite at mode change, and because of equation
(e4) : τ1 + τ2 = 0, both torques are in fact infinite, i.e., are
impulsive.

Eliminating impulsive variables: We now assume that
the fi’s are linear in the torques, i.e., each fi has the form

fi(ωi,τi) = ai(ωi)+bi(ωi)τi , (14)

where b1 and b2 are the inverse moments of inertia of
the rotating masses and a1 and a2 are damping factors
divided by the corresponding moments of inertia. This
yields the following system of equations, to be solved for
ω•1 ,ω

•
2 ,τ1,τ2 at the instant when γ switches from F to T:
ω•1 = ω1 +∂ (a1(ω1)+b1(ω1)τ1) (e∂

1)

ω•2 = ω2 +∂ (a2(ω2)+b2(ω2)τ2) (e∂
2)

ω•1 −ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

(15)

We now eliminate the impulsive variables from Sys-
tem (15), namely, the two torques. Using (e4) yields
−τ2 = τ1 =def τ . Premultiplying the system of equations{

ω•1 = ω1 +∂ (a1(ω1)+b1(ω1)τ) (e∂
1)

ω•2 = ω2 +∂ (a2(ω2)−b2(ω2)τ) (e∂
2)

by the row matrix
[

b2(ω2) b1(ω1)
]

yields

b2(ω2)ω•1 +b1(ω1)ω•2 =
b2(ω2)(ω1 +∂ a1(ω1))+b1(ω1)(ω2 +∂ a2(ω2)) .

Using in addition (e•3) and setting ω• =def ω•1 = ω•2 yields

ω
• = +∂

b2(ω2)ω1 +b1(ω1)ω2

b1(ω1)+b2(ω2)

+∂
a1(ω1)b2(ω2)+a2(ω2)b1(ω1)

b1(ω1)+b2(ω2)
(16)

It is now legitimate to set ∂ = 0 in its right-hand side. This
yields, by identifying st(ωi) = ω

−
i and st(ω•i) = ω

+
i :

ω
+
1 = ω

+
2 =

b2(ω
−
2)ω

−
1 +b1(ω

−
1)ω

−
2

b1(ω
−
1)+b2(ω

−
2)

, (17)

where we recall that st(ω) is the standard part of ω , see
the beginning of Section 5.2. Eq. (17) provides us with the
reset values for the positions in the engaged mode, which
is enough to restart the simulation in this mode.

Figure 7 shows a simulation of the clutch where the re-
sets are computed following this approach. As expected,
the reset value sits between the two values of ω

−
1 and ω

−
2

when γ : F→ T (at t = 5s), and the transition is continuous
at the second reset (at t = 10s). An alternative approach
for the computation of the reset values, which does not
require the elimination of impulsive variables, is devel-
oped in (Benveniste, Caillaud, and Malandain 2020), see
also (Benveniste, Caillaud, and Malandain 2021).

Handling Multimode Models and Mode Changes in Modelica

512 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

Figure 7. Simulation of the clutch model with resets. Mode
change F→ T occurs at t = 5s and mode change T→ F occurs
at t = 10s.

6 The Cup-and-Ball example
Using (3), the original model (2) is rewritten as

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(18)

As stated in Section 2.2, two issues have to be addressed
by our structural analysis: the expected impulsive behav-
ior of the accelerations at mode changes, and the insuf-
ficient specification of the nature (elastic, inelastic or in
between) of the impact.

We implicitly add to model (18) the following two
equations, for each state variable v:

v′ =
v•− v

∂
; v′′ =

v•2−2v•+ v
∂ 2 , (19)

where

v•(t) =def v(t +∂) ,

v•2(t) =def v(t +2∂) and, more generally,
v•n(t) =def v(t +n∂) .

Equation (19) means that the derivatives x′,y′,x′′,y′′ are
interpreted using the explicit first-order Euler scheme with
an infinitesimal time step ∂ . Note that (19) implies

x′′ =
x′•− x′

∂
. (20)

After performing the substitutions given by (19), we ob-
serve that the subsystem collecting equations (k0)–(k4)
is a logico-numerical fixpoint equation, with dependent
variables x•2,y•2,λ ,γ . A possible solution would con-
sist in performing a relaxation, by iteratively updating the
numerical variables based on the previous value for the
guards, and then re-evaluating the guard based on the up-
dated values of the numerical variables, hoping for a fix-
point to occur. Such fixpoint equation, however, can have

zero, one, several, or infinitely many solutions. No char-
acterization exists that could serve as a basis for a (graph-
based) structural analysis. We thus decide to refuse solving
such mixed logico-numerical systems.

As a consequence, we are unable to evaluate guard γ ,
so that the mode the system is in cannot be determined:
model (18) is rejected.

To break the fixpoint equation defining γ , we choose
to systematically introduce infinitesimal delays to guards.
For the Cup-and-Ball, the predicate s≤ 0 then defines the
value of the guard at the next nonstandard instant.4 This
yields the corrected model (21), where the modification is
highlighted in red.

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(21)

This model is understood in the nonstandard setting,
meaning that the derivatives are expanded using (19). The
leading variables in all modes are λ ,s,x•2,y•2.

6.1 Structural analysis of mode change γ:F→T

Due to equation (k1), the mode γ = T (where the rope
is straight) requires index reduction. We thus augment
model (21) with the two latent equations shown in red:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = L2−(x2+y2)• (k•1)
and 0 = L2−(x2+y2)•2 (k•21)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(22)

Note that, as in System 10, the two latent equations (k•1)
and (k•21) were obtained by shifting (k1) forward, which
is equivalent to differentiating it for the structural analy-
sis. To perform structural analysis at the considered mode
change, we unfold model (22) at the successive instants

•2t =def t−2∂ , •t =def t−∂ , and t ,

where t denotes the current instant. In the following, equa-
tion (e1) at the instant t− 2∂ (respectively, t− ∂) will be
denoted by (•2e1) (resp., (•e1)).

4The condition triggering the mode change is based on the positions,
which remain continuous at mode changes, even though the velocities
are discontinuous. As a result, the shifting of this guard by an infinites-
imal time step only yields an infinitesimal change in the values of state
variables, which will be erased by the standardization process, so that
the numerical solution is not impacted by this change in the model.

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

513

In this unfolding, the two equations (k1) and (k•1) are
in conflict with selected equations from the previous two
instants, shown in blue in the following subsystem, whose
dependent variables are the leading variables at instants
t−2∂ and t−∂ , namely x,y,•2λ ;x•,y•,•λ :

0 = x−2•x+•2x
∂ 2 + •2λ •2x (•2e1)

0 = y−2•y+•2y
∂ 2 + •2λ •2y+g (•2e2)

0 = x•−2x+•x
∂ 2 + •λ •x (•e1)

0 = y•−2y+•y
∂ 2 + •λ •y+g (•e2)

0 = L2−(x2+y2) (k1)

0 = L2−(x2+y2)• (k•1)

We resolve this conflict by applying causality Principle 1,
which leads to erasing, in model (22), equations (k1) and
(k•1) at the instant of mode change •γ=F,γ=T. This yields:

at
[•γ=F

γ=T

]
:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(23)

System (23) uniquely determines all the leading variables
from the state variables x,y and x•,y•. In turn, equations
(k1) and (k•1), which were erased from this model, are not
satisfied. At the next instant, i.e., when •2γ=F,•γ=T,γ=T,
the same argument is used. We thus erase, in model (22),
the only equation (k1) at the next instant. This yields:

at

 •2γ=F
•γ=T
γ=T

 :

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(24)

Note that (k•1) is a consistency equation that is satisfied
by the state variables x•,y•. In turn, equation (k1), which
was erased from this model, is not satisfied. At subsequent
instants, equation erasure is no longer needed.

This completes the nonstandard structural analysis of
the mode change γ : F→T, i.e., when the rope gets straight.

6.2 Getting effective code for restart
Code generation for restarts consists in standardizing non-
standard systems (23) and (24), in a way similar to Sec-
tion 5.4. We focus on the standardization of the mode
change γ : F→ T, i.e., when the rope gets straight. Our
task is to standardize systems (23) and (24), by target-
ing discrete-time dynamics, for the two successive instants
composing the restart phase. This will provide us with
restart values for positions and velocities.

Due to the expansion of derivatives in equations
(e1,e2,e•1,e

•
2), tensions λ and λ • are both impulsive,

hence so are s and s• by (k2,k•2). We eliminate the im-
pulsive variables by ignoring (k2,k•2), combining (e1) and

(e2) to eliminate λ , and (e•1) and (e•2) to eliminate λ •. This
yields:

at
[•γ=F

γ=T

]
:
{

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•2

(25)

at

 •2γ=F
•γ=T
γ=T

 :

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(26)

In System (25) we expand second derivatives using (19),
whereas in System (26) we expand them using (20). Con-
sequently, System (25) has dependent variables x•2,y•2,
whereas System (26) has dependent variables x′•,y′•. We
are now ready to standardize the two systems.

System (25) to define restart positions: We expand
second derivatives using (19):{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y+∂ 2gx
0 = L2−(x2+y2)•2

(27)

Setting ∂ = 0 in this system yields a structurally regular
system. Hence, by a theorem proved in (Benveniste, Cail-
laud, and Malandain 2020), the so obtained system is the
correct standardization of System (27). In contrast, had we
set ∂ = 0 in System (23) (without eliminating impulsive
variable λ), we would get a structurally singular system,
an incorrect standardization.

In System (27) with ∂ = 0, we can interpret x and x• as
the left-limit x− of state variable x in previous mode, and
x•2 as the restart value x+ for the new mode. This yields{

0 = (y+− y−)x−− (x+− x−)y−

0 = L2−(x2+y2)+
(28)

which determines the restart values for positions. The con-
straint that the rope is straight is satisfied. Furthermore, as
0 = L2−(x2+y2)− also holds (the rope is straight at the
mode change), x+ = x−,y+ = y− is the unique solution of
(28): positions are continuous.

System (26) to define restart velocities: We expand
second derivatives using (20):

0 = (y′•− y′)x− (x′•− x′)y+∂ .gx
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(29)

By expanding x•2 = x•+ ∂x′•, the right-hand side of the
last equation rewrites

L2−(x2+y2)•2 = L2−(x2+y2)•

+ 2∂ (x•x′•+ y•y′•)
+ ∂ 2

(
(x′•)2 +(y′•)2

)
= 0 (using (29))

+ 2∂ (x•x′•+ y•y′•)+O(∂ 2)

(30)

Using this expansion, setting ∂ = 0 in (29) yields{
0 = (y′•− y′)x− (x′•− x′)y
0 = x•x′•+ y•y′• (31)

Handling Multimode Models and Mode Changes in Modelica

514 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

where the dependent variables are now x′•,y′•—other vari-
ables are state variables whose values were set at previous
time steps. System (31) is structurally regular, hence, it is
the correct standardization of System (29).

To get effective code for restart, we perform, in (31),
the following substitutions, where superscripts − and +

denote left- and right-limits, and continuity of positions is
used:

x = x− ; x• = x+ and x′ = x′− ; x′+ = x′• (32)

and similarly for y. This finally yields{
0 = (y′+− y′−)x−− (x′+− x′−)y−

0 = x+x′++ y+y′+
(33)

System (33) determines x′+ and y′+, which are the veloc-
ities for restart. The second equation guarantees that the
velocity will be tangent to the constraint. With (28) and
(33), we determine the restart conditions for positions and
velocities. Invariants from the physics are satisfied.

Our reasoning so far produces a behavior in which the
two modes (free motion and straight rope) gently alter-
nate; the system always stays in one mode for some posi-
tive period of time before switching to the other mode.

This indeed amounts to assuming that the impact is
totally inelastic at mode change, an assumption that was
not explicit at all in (21). So, what happened? In fact,
the straight rope mode was implicitly assumed to last for
at least three nonstandard successive instants, since we
allowed ourselves to shift (k1) twice.

6.3 Handling transient modes
Let us instead assume elastic impact, represented by the
cascade of mode changes γ : F → T → F, reflecting that
the straight rope mode is transient (it is left immediately
after being reached).

Consider again model (21). We regard the instant of
the cascade when γ = T occurs as the current instant. We
cannot add latent equations by simply shifting (k1), since
these shifted versions are not active in the mode γ = F. Set

S(T)={(e1),(e2),(k1),(k2)}
S(F)={(e1),(e2),(k3),(k4)}

Systems S•(T) and S•(F) are obtained by shifting once the
equations constituting S(T) and S(F); systems S•k(T) and
S•k(F) are defined similarly for all k ∈N. Consider the dif-
ferentiation array originally proposed by (Campbell and
Gear 1995), except that we take into account the trajectory
T, F, F, . . . for guard γ . Using shifting instead of differen-
tiation yields the following difference array:

An(S) =def
[

S(T) S•(F) S•2(F) . . . S•n(F)
]T (34)

The dependent variables of System An = 0 are x•2,y•2,λ ,
whereas x•(k+2),y•(k+2),λ •(k),k > 0 must be eliminated.
We look for the smallest n such that An = 0 is structurally

nonsingular in this sense. Unfortunately, although shift-
ing (k4) twice in System (21) produces one more equation
involving the leading variables x•2,y•2, this equation also
involves the new variable s•2, which keeps the augmented
system underdetermined; shifting other equations fails as
well. Therefore, the structural analysis rejects this model
as being underdetermined at transient mode γ = T.

The user is then asked to provide one more equation.
For example, they could specify an impact law for the ve-
locity y′ by providing the equation (y′)+ =−(1−α)(y′)−,
where 0 ≤ α < 1 is a fixed damping coefficient. This is
reinterpreted in the nonstandard domain as y′• = −(1−
α)y′, yielding the following refined system for use at
mode γ=T within the cascade γ:F→T→F:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = L2−(x2+y2) (k1)
0 = λ + s (k2)

(35)

The modified difference array is now structurally nonsin-
gular. The so modified model is accepted and two-step
restart code for the mode change is generated as before.

6.4 Consequences for the modeling language
Through the Cup-and-Ball example, we demonstrated the
need for the following user-given information: is the cur-
rent mode long or transient? Long / Transient is an infor-
mation regarding modes, that cannot be found by an au-
tomatic inspection of the model. It must be inferred from
understanding the system physics and must be manually
specified. The natural way of performing this is to pro-
vide a different syntax for specifying long modes on the
one hand, and events corresponding to transient modes on
the other hand (mode changes separating two successive
long modes need not be specified).

The ‘if’ and ‘when’ statements of the Modelica lan-
guage are fit candidates for this purpose. We devote the
‘if’ statement to long-lasting modes specified by a pred-
icate, while the ‘when’ statement, pointing to the event
when a predicate switches from F to T, could be further
restricted to be a zero-crossing condition, by which a R-
valued expression crosses zero from below (Bourke and
Pouzet 2013). Using this feature, the Cup-and-Ball exam-
ple with elastic impact is specified as follows:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s− ≤ 0];γ(0) = F (k0)

when γ do y′+ =−αy′− (τ1)
if not γ do 0 = λ (k3)

and 0 = (L2−(x2+y2))− s (k4)

7 Mechanization of the process
The approach developed in Sections 5.4 and 6.2 is a sys-
tematic way to define the solution of a multimode DAE

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

515

system, than can be generalized to large-scale and/or
multi-physics models. However, this reasoning:

• Requires identifying impulsive variables. We present
in companion paper (Benveniste, Caillaud, and Ma-
landain 2021) a calculus for this, which is ready for
automatization in a tool (this is under development
in our IsamDAE tool5).

• Requires eliminating impulsive variables. This is
easy if impulsive variables enter linearly in the
model—this was the case for the clutch and the
cup-and-ball examples. It is highly costly but still
doable if impulsive variables enter polynomially in
the model. It cannot be done practically in other
cases.

• Relies on a clever choice of how to map nonstandard
variables to restart conditions. This was straightfor-
ward for the clutch, but definitely not for the cup-
and-ball (Section 6.2), where expansion (19) for the
derivatives was used for resetting positions, whereas
expansion (20) was used for resetting velocities.

This is not realistic for implementation in a tool, except for
restricted classes of systems in which impulsive variables
enter linearly in the model.

However, in companion paper (Benveniste, Caillaud,
and Malandain 2021) we propose an alternative, which is
a good candidate for implementation, based on an impulse
analysis. This post-processing of the structural analysis
at mode changes is a simple and systematic calculus that
identifies impulsive variables at compile time and quan-
tifies their (possibly infinite) magnitude order, called im-
pulse order. When finite, the impulse order can be used to
rescale impulsive variables, which allows for computing
restart values for state variables as well as rescaled impul-
sive variables. When impulse orders are infinite, rescaling
no longer applies. It is, however, still possible to compute
restart conditions by using the nonstandard equations with
a small positive (standard) time step. This provides con-
verging approximations for the non-impulsive variables
(the state variables in particular).

8 Conclusion
Through the case study of two examples of multimode
DAEs that are currently not handled by the existing
Modelica tools (with the notable exception of Modia-
Math), we presented a mathematically sound and physics-
agnostic compilation process for DAE-based physical sys-
tems modeling languages. This method relies, in particu-
lar, on an extension of structural analysis to multimode
systems, that allows the handling of both modes and mode
changes in a unified framework.

Both examples studied in this paper are multimode
models with mode-dependent differentiation index and

5https://allgo18.inria.fr/apps/isamdae

impulsive behaviour at mode changes, which is not well
supported by existing Modelica compilers. This paper
showed how our approach handles such models: not only
is the structural analysis correctly performed in all con-
tinuous modes, but the computation of restart values at
mode changes is also handled at compile time, unless an
under/over-determination at a mode change event causes
the model to be rejected with proper diagnostics.

Ongoing works include the effective mechanization
of the process, which is detailed in the companion pa-
per (Benveniste, Caillaud, and Malandain 2021). An im-
portant bottleneck of this approach is that it needs to han-
dle all modes and all possible mode changes at compile
time: unfortunately, the number of modes tends to be
roughly exponential in the size of the model, and the a
priori number of mode changes is at least proportional to
the square of the number of modes. This is a limitation of
a model representation in which one characterizes the sub-
set of equations and variables active in any given mode.

A possible way of alleviating this issue is by shifting
to a dual representation, that provides predicates charac-
terizing the set of modes in which each equation and each
variable is active. In practice, not only does this approach
lead to a much more compact representation, but it also al-
lows for the design of efficient structural analysis methods
for multimode DAE systems, working in an ‘all-modes-
at-once’ fashion. Such a method was implemented in the
IsamDAE tool, and first results are reported in (Caillaud,
Malandain, and Thibault 2020). The examples coming
with this tool already include thermodynamical, electri-
cal and pneumatic models. Although only the structural
analysis of long modes is currently performed, the imple-
mentation of the structural analysis of mode changes is in
progress.

Acknowledgements
The authors are indebted to Hilding Elmqvist and Martin
Otter, John Pryce, and Vincent Acary. Khalil Ghorbal par-
ticipated to the first version of this approach.

This work was supported by the FUI ModeliS-
cale DOS0066450/00 French national grant (2018-
2021) and the Inria IPL ModeliScale large scale
initiative (2017-2021, https://team.inria.fr/
modeliscale/). Dymola licences were provided to the
authors by Dassault Systèmes in the context of the FUI
ModeliScale project.

References
Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.

(2017-04). “Structural Analysis of Multi-Mode DAE Sys-
tems”. In: Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, pp. 253–263.
ISBN: 978-1-4503-4590-3. DOI: 10.1145/3049797.3049806.

Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.
(2019). “Multi-Mode DAE Models - Challenges, Theory and
Implementation”. In: Computing and Software Science - State
of the Art and Perspectives. Ed. by Bernhard Steffen and Ger-
hard J. Woeginger. Vol. 10000. Lecture Notes in Computer

Handling Multimode Models and Mode Changes in Modelica

516 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181507

Science. Springer, pp. 283–310. ISBN: 978-3-319-91907-2.
DOI: 10.1007/978-3-319-91908-9_16.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2020). “The mathematical foundations of physical systems
modeling languages”. In: Annual Reviews in Control 50,
pp. 72–118. ISSN: 1367-5788. DOI: 10.1016/j.arcontrol.2020.
08.001.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2021-09). “Compile Time Impulse Analysis in Modelica”.
In: Proceedings of the 14th International Modelica Confer-
ence. Linköping University Electronic Press.

Bourke, Timothy and Marc Pouzet (2013-04). “Zélus: A Syn-
chronous Language with ODEs”. In: Hybrid Systems: Com-
putation and Control (HSCC). ACM. Philadelphia, USA,
pp. 113–118.

Caillaud, Benoit, Mathias Malandain, and Joan Thibault (2020-
04). “Implicit Structural Analysis of Multimode DAE Sys-
tems”. In: 23rd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC 2020). Sydney,
Australia. DOI: 10.1145/3365365.3382201.

Campbell, Stephen L. and C. William Gear (1995). “The index
of general nonlinear DAEs”. In: Numer. Math. 72, pp. 173–
196.

Dassault Systèmes AB (2020). Dymola official webpage. Ac-
cessed: 2021-06-28. URL: https://www.3ds.com/products-
services/catia/products/dymola/.

Dulmage, Andrew L. and Nathan S. Mendelsohn (1958). “Cov-
erings of Bipartite Graphs”. In: Canadian Journal of Mathe-
matics 10, pp. 517–534. DOI: 10.4153/CJM-1958-052-0.

Elmqvist, Hilding, Fabien Gaucher, et al. (2012-09). “State Ma-
chines in Modelica”. In: Proc. of the Int. Modelica Confer-
ence. Ed. by Martin Otter and Dirk Zimmer. Modelica Asso-
ciation. Munich, Germany, pp. 37–46.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin Otter (2014-
09). “Modelica extensions for multi-mode DAE systems”. In:
Proc. of the 10th Int. Modelica Conference. Ed. by Huber-
tus Tummescheit and Karl-Erik Arzen. Modelica Associa-
tion. Lund, Sweden.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Höger, Christoph (2014). “Dynamic structural analysis for
DAEs”. In: Proceedings of the 2014 Summer Simulation Mul-
ticonference, SummerSim 2014, Monterey, CA, USA, July 6-
10, 2014. SCS/ ACM, p. 12.

Höger, Christoph (2017). “Elaborate control: variable-structure
modeling from an operational perspective”. In: Proceed-
ings of the 8th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, EOOLT
’17, Weßling, Germany, December 1, 2017. Ed. by Dirk Zim-
mer and Bernhard Bachmann. ACM, pp. 51–60. ISBN: 978-
1-4503-6373-0. DOI: 10.1145/3158191.3158198.

Liberzon, Daniel and Stephan Trenn (2012). “Switched non-
linear differential algebraic equations: Solution theory, Lya-
punov functions, and stability”. In: Automatica 48.5, pp. 954–
963. DOI: 10.1016/j.automatica.2012.02.041.

Lindstrøm, Tom (1988). “An Invitation to Nonstandard Analy-
sis”. In: Nonstandard Analysis and its Applications. Ed. by
N.J. Cutland. Cambridge Univ. Press, pp. 1–105.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist (1999).
“Modelica Hybrid Modeling and Efficient Simulation”. In:

38th IEEE Conference on Decision and Control. Ed. by IEEE,
pp. 3502–3507.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist (2015-
09). “Multi-Mode DAE Systems with Varying Index”. In:
Proc. of the 11th Int. Modelica Conference. Ed. by Hild-
ing Elmqvist and Peter Fritzson. Modelica Association. Ver-
sailles, France.

Mattsson, Sven Erik and Gustaf Soderlind (1993). “Index Re-
duction in Differential-Algebraic Equations Using Dummy
Derivatives”. In: SIAM Journal on Scientific Computing 14.3,
pp. 677–692. DOI: 10.1137/0914043.

Nilsson, Henrik and George Giorgidze (2010). “Exploiting
structural dynamism in Functional Hybrid Modelling for sim-
ulation of ideal diodes”. In: Czech Technical University Pub-
lishing House.

Pantelides, Constantinos C. (1988). “The consistent initializa-
tion of differential-algebraic systems”. In: SIAM J. Sci. Stat.
Comput. 9.2, pp. 213–231.

Pepper, Peter et al. (2011). “A Compositional Semantics for
Modelica-style Variable-structure Modeling”. In: 4th Interna-
tional Workshop on Equation-Based Object-Oriented Model-
ing Languages and Tools.

Pryce, John D. (2001). “A simple structural analysis method for
DAEs”. In: BIT 41.2, pp. 364–394.

Robinson, Abraham (1996). Nonstandard Analysis. Princeton
Landmarks in Mathematics. ISBN: 0-691-04490-2.

Trenn, Stephan (2009a). “Distributional Differential Algebraic
Equations”. PhD thesis. Technischen Universität Ilmenau.

Trenn, Stephan (2009b). “Regularity of distributional differen-
tial algebraic equations”. In: MCSS 21.3, pp. 229–264. DOI:
10.1007/s00498-009-0045-4.

Session 7A: Modelica Language

DOI
10.3384/ecp21181507

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

517

518 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Reduced Index Mode-Independent Structure Model
Transformation for Multimode Modelica Models

Benoît Caillaud1 Mathias Malandain1 Albert Benveniste1

1Inria Centre de Rennes Bretagne Atlantique, University of Rennes 1, France,
{benoit.caillaud,mathias.malandain,albert.benveniste}@inria.fr

Abstract
Since its 3.3 release, Modelica offers the possibility to
specify models of dynamical systems with multiple modes
having different DAE-based dynamics. However, the han-
dling of such models by the current Modelica tools is not
satisfactory, with mathematically sound models yielding
exceptions at runtime. In this article, we propose a sys-
tematic way of rewriting a multimode Modelica model,
based on the results of an already implemented multimode
structural analysis. The rewritten Modelica model is guar-
anteed to be correctly compiled by state-of-the-art Mod-
elica tools. Simulation results are presented on a simple,
yet meaningful, physical system whose original Modelica
model is not correctly handled by state-of-the-art Model-
ica tools.
Keywords: Modelica, multimode DAE, structural analy-
sis, model transformations

1 Introduction
Since version 3.3, the Modelica language offers the pos-
sibility of specifying multimode dynamics, by describing
state machines with different DAE dynamics in each dif-
ferent state (Elmqvist et al. 2012). This feature enables
describing large complex cyber-physical systems with dif-
ferent behaviors in different modes.

While being undoubtedly valuable, multimode model-
ing has been the source of serious difficulties for non-
expert users of the current generation of Modelica tools.
Indeed, while many large-scale Modelica models are
properly handled, some physically meaningful models do
not result in correct simulations with most Modelica tools.
It is actually not difficult to construct such problematic
models, thus, chances are significant to produce such bad
cases in large models. Quite often, end users have to ask
Modelica experts, or even tool developers themselves, to
tweak their models in order to make them work as ex-
pected. This situation hinders a wider spreading of Mod-
elica tools among a larger class of users, such as Simulink-
trained engineers.

New language constructs have been proposed in the
past to address the limited capability of the Modelica lan-
guage to handle multimode models. The Sol (Zimmer
2010) and the Hydra (Giorgidze and Nilsson 2011; Nils-
son and Giorgidze 2010) languages have been designed

with the capability to enable and disable equations, de-
pending on the current mode of the system. For both lan-
guages, structural analysis is performed at runtime, when
the system switches to a new mode.

Some years ago, we started a project aiming at address-
ing all the above issues, with a different perspective in
mind, that consists in privileging compile-time, rather than
runtime, analyses. In (Benveniste, Caillaud, Elmqvist,
et al. 2019; Benveniste, Caillaud, and Malandain 2020)
we explain our approach, and we illustrate it on two sim-
ple, yet physically meaningful, examples in (Benveniste,
Caillaud, and Malandain 2021). One key feature of this
approach is structural analysis: it is important that this
task is performed for each mode and each mode change
at compile time, in order to avoid unexpected behaviour
at runtime. In (Caillaud, Malandain, and Thibault 2020),
we present an effective approach to achieve compile-time,
mode-dependent, structural analysis without enumerating
the modes (as this would not be able to scale up). The
advantages we see in our approach are twofold: (i) it pro-
vides, at compile-time, invaluable information that helps
users debug their models, and (ii) efficient code genera-
tion is possible since the automatic differentiation of latent
equations can be done at compile-time and blocks of equa-
tions can be compiled into functions that can be passed
directly to numerical solvers, without any further process-
ing.

In this article, we demonstrate how the results of this
multimode structural analysis can be used for transform-
ing a multimode Modelica model into its RIMIS (Reduced
Index Mode-Independent Structure) form, which is guar-
anteed to yield correct execution on state-of-the-art Mod-
elica tools. This method is illustrated on a water tank
model for which current Modelica tools fail to execute; in
this model, the differentiation index depends on the mode,
which is a problem for these tools. In particular, we ex-
plain how existing structural analysis methods fail to yield
correct execution code for this model, then demonstrate
the generation of a target code under RIMIS form, result-
ing in a correct simulation of the model. Our approach
is then formalized for its broad application to problematic
multimode models.

DOI
10.3384/ecp21181519

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

519

model WaterTank
 Real t(start=0,fixed=true); // time (to define input flow)
 constant Real xmax = 1.0; // max water quantity
 constant Real xmin = 0.0; // min water quatity
 constant Real y0 = 6.667; // default output flow
 constant Real rho = 0.8; // input flow parameter
 Real x(start=0.5,fixed=true); // stored water mass
 Real yh; // output flow correction, when tank is full
 Real yl; // output flow correction, when tank is empty
 Real z; // input flow
 Real sh; // parameter of the full-tank CC
 Real sl; // parameter of the empty-tank CC
 Boolean bh(start=false,fixed=true); // mode full-tank
 Boolean bl(start=false,fixed=true); // mode empty-tank
 // bh and bl satisfy assertion not (bh and bl)
equation
 // input flow law
 /* et: */ der(t)=1;
 /* e1: */ z = rho*y0*(1+
 Modelica.Math.cos(2*Modelica.Constants.pi*t));
 // tank level differential equation
 /* e2: */ der(x) = z + yl - yh - y0;
 // Complementarity condition 0 <= xmax - x # yh >= 0
 bh = (sh >= 0);
 /* eh1: */ sh = if bh then yh else x - xmax;
 /* eh2: */ 0 = if bh then x - xmax else yh;
 // complementarity condition 0 <= x - xmin # yl >= 0
 bl = (sl >= 0);
 /* el1: */ sl = if bl then yl else xmin - x;
 /* el2: */ 0 = if bl then xmin - x else yl;
end WaterTank;

Figure 1. Modelica model of the Water Tank system. Comments
of the form /* id: */ define equation labels appearing in
the dependency graphs in Figures 3 and 4.

2 The Water Tank system and failed
simulations with Modelica tools

The Water Tank system is a simple model of a closed
tank with a variable water inflow z and a default outflow
y0, where water is considered incompressible. When the
tank is full, a positive flow correction yh is added to the
outflow, as the tank cannot store more water; conversely,
when the tank is empty, a negative flow correction yl is
added to the outflow.

The corresponding Modelica model, given in Figure 1,
uses two complementarity conditions (Van Der Schaft and
Schumacher 1998) for the flow corrections. The first one,
encoded by the multimode equations eh1 and eh2, de-
pends on the Boolean variable bh, which is true if and
only if variable sh is nonnegative. The combined effect
of these two equations is that xmax−x and yh are always
nonnegative, and that at least one of those is equal to 0
at any time. Equations el1 and el2 encode the second
complementarity condition in a similar way.

This model fails to simulate properly with both Open-
Modelica 1.17.0 (Fritzson et al. 2020) and Dymola
2021 (Dassault Systèmes AB 2020); Figure 2 shows the
output of Dymola 2021. The root cause is that state-of-
the-art Modelica tools perform an approximate structural
analysis, disregarding the fact that the structure of the sys-
tem is mode-dependent. A more detailed explanation is
provided in Section 3.1.

Figure 2. Simulation of the Water Tank system with Dymola
2021, failing with a division by zero exception.

3 Structural analysis: from single- to
multi-mode

DAE-based languages and tools rely on structural anal-
ysis as a required preprocessing step of a DAE sys-
tem, needed for the generation of simulation code. This
analysis turns the original system into a reduced in-
dex (Campbell and Gear 1995) system, amenable to nu-
merical solvers, by differentiating one or several times all
or part of the equations.

Well-understood methods such as the renowned Pan-
telides algorithm (Pantelides 1988), the dummy deriva-
tives method (Mattsson and Soderlind 1993) or the less
known Σ-method (Pryce 2001) can be used for single-
mode DAE systems; however, the structural analysis of
multimode DAE systems is still in its infancy, and even
state-of-the-art Modelica tools have to rely, at least in part,
on an approximate ‘single-mode’ structural analysis for
the generation of simulation code from multimode mod-
els.

We show how the use of such single-mode methods can
lead to the runtime errors observed on the Water Tank
model shown above. We then introduce the exact multi-
mode structural analysis performed by the IsamDAE tool,
which will be used for the transformation of multimode
models at the core of this article.

3.1 Approximate structural analysis
Structural analysis of a DAE system only relies on the
knowledge of which numerical variables appear in which
equations. As such, an approximate structural analysis of
a multimode DAE system can be performed by abstract-
ing away all mode dependencies inside the equations; for
instance, an equation x = if cond then y else z will
be regarded by the approximate structural analysis as an
equation involving variables x, y and z.

Such an analysis of the Water Tank model shown in Fig-
ure 1 results in the decomposition shown in Figure 3. In
this decomposition, equation eh2 has to be solved for the
variable yh.

When performing the pivoting of this equation, mode

A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models

520 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181519

x -- el2 -> yl x yl -- el1 -> sl

yh yl z -- e2 -> x'

x -- eh2 -> yh x yh -- eh1 -> sh

t -- e1 -> z

et -> t'

Figure 3. Dependency graph resulting from the approximate
structural analysis of the Water Tank model. Vertices are equa-
tion blocks of the form R−E →W , where: E is the block of
equations; R is a set of variables to read (they are free variables,
i.e., parameters of the block of equations); and W is a set of vari-
ables to write (they are the unknowns of the block of equations).
When R is empty, the shorthand notation is E →W . Edges ex-
press causal dependencies, meaning that a block can be solved
only after all its predecessors have been solved.

dependencies have to be taken into account again. Equa-
tion eh2 reads:

0 = if bh then x−xmax else yh

which can be rewritten as an equation of the form 0 =
a yh+b where a and b are mode-dependent:

0 =(if bh then 0 else 1)×yh
+(if bh then x−xmax else 0)

Unknown yh can finally be isolated:

yh=−if bh then x−xmax else 0
if bh then 0 else 1

(1)

This technique may be used for the generation of simu-
lation code, but in this case, a problem is bound to occur
when Boolean variable bh is true. As a matter of fact,
equation (1) is exactly the equation responsible for the di-
vision by zero exception shown in Figure 2, which occurs
at the initial time, when bh is true.

3.2 Exact multimode structural analysis
The IsamDAE1 tool (Caillaud, Malandain, and Thibault
2020) has been used to perform a multimode structural
analysis of the model, resulting in the Conditional Depen-
dency Graph (CDG) shown in Figure 4.

Remark that the differentiation index of the system is
mode-dependent. For instance, equation el2 is used dif-
ferentiated, to compute the derivative of x, when bl is
true, while it is kept undifferentiated, to compute yl,
when bl is false. Also notice that equation eh2 is no

1https://team.inria.fr/hycomes/software/
isamdae/

not bl:
el2 -> yl

not bh and not bl:
yh yl z -- e2 -> x'

not bh and not bl

bh:
x' yl z -- e2 -> yh

bh

bl:
el2' -> x'

bl:
x' yh z -- e2 -> yl

bl

not bl:
x -- el1 -> sl

bl:
yl -- el1 -> sl

not bh:
eh2 -> yh not bh and not bl

bl

bh:
eh2' -> x'

bh

not bh:
x -- eh1 -> sh

bh:
yh -- eh1 -> sh

bh

bl

t -- e1 -> z
not bh and not bl

bh

bl

et -> t'

Figure 4. Conditional Dependency Graph resulting from the
multimode structural analysis of the Water Tank model. Ver-
tices are conditional equation blocks of the form p : R−E→W ,
where: E is the block of equations; p is a Boolean condition,
defining the set of modes in which the block has to be solved;
R is a set of variables to read, or free variables, i.e., parameters
of the block of equations; and W is a set of variables to write,
meaning that they are the unknowns of the block of equations.
When R is empty, the shorthand notation is p : E→W . When p
is the proposition true, it is omitted, and the notation becomes:
R−E →W , or E →W . Edges express causal dependencies,
meaning that a block can be solved only after all its predeces-
sors have been solved. They are labeled by Boolean conditions,
characterizing the modes in which the dependency applies.

longer used to compute yh in all modes, but only when
bh is false, thus preventing the runtime error explained
above.

We shall see next how the CDG (Figure 4) can be used
to transform the model into an equivalent one, that triggers
no runtime error when using Modelica tools based on an
approximate structural analysis.

4 A Reduced Index Mode-
Independent Structure (RIMIS)
form

Using multimode structural analysis to transform a mul-
timode Modelica model into a reduced-index model, that
simulates correctly with state-of-the-art Modelica tools, is
made difficult by the fact that the Modelica language does
not permit to enable or disable an equation depending on
the mode. Based on this limitation, the basic principle of
our model transformation is to evaluate all equation blocks
of the CDG in a mode-independent fashion, irrespectively
of the mode in which the system is. Of course, this leads
to useless computations during simulation. However, this

Session 7A: Modelica Language

DOI
10.3384/ecp21181519

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

521

turns out to be a systematic way to ensure a correct simu-
lation of multimode Modelica models.

The method proposed in this paper is detailed below, in
informal terms, then illustrated on a simple example. A
mathematical definition of the transformation is detailed
in Section 6. Remark that models with initial equations,
when or reinit statements are not covered in this pa-
per. Also note that models with non-scalar variables or
class instances of any kind are not considered here. It
is assumed that the models have been flattened according
to the procedure described in Chapter 5 of the Modelica
Language Specification (The Modelica Association 2021).
Because of a current restriction of the IsamDAE software,
mode variables are assumed to be of type Boolean.

4.1 The RIMIS form transformation
The method decomposes in the following seven steps:

1. Conditional Dependency Graph: The CDG of the
source model is computed by the multimode struc-
tural analysis method. This graph defines a block-
triangular decomposition of the reduced-index sys-
tem, for each mode of the system. It will be used
throughout the transformation.

2. Source Variables: Variable declarations are copied
unchanged, with the exception of real variables,
whose initialization parts are removed.

3. Replicate and Dummy Derivative Variables: For
each block of the CDG, replicates of written vari-
ables (unknowns) are declared. Whenever an un-
known appears differentiated, a dummy derivative
variable (Mattsson and Soderlind 1993) is declared.
Initialization statements for state variables are copied
from the source model. As an optional optimiza-
tion, non-leading replicate variables can be factored
among a disjunction of modes, in order to decrease
the number of variables in the resulting model.

4. Mode Equations: Equations defining mode vari-
ables are copied unchanged. For the sake of sim-
plicity, these equations are assumed to be of the form
b= (expr >= 0), where expr is a real expression.

5. Replicate and Dummy Equations: Equations are
replaced with replicates, according to the following
principle:

For each block in the CDG, equations appearing in
this block are replicated, substituting (i) every writ-
ten variable (unknown of the block) by the replicate
declared in step 3, and (ii) every read variable (pa-
rameter of the block) by the corresponding replicate,
if it is a leading variable. Both mode variables and
read state variables are left unchanged.

As a result, the single-mode structural analysis of the
resulting equation system yields a block-triangular
decomposition that contains all the blocks of the

CDG obtained by the multimode structural analysis
of the original model.

For each equation in the fresh model, the proposi-
tional formula conditioning the block in which this
equation appears can be taken into account: a par-
tial evaluation of the equation is performed (Jones,
Gomard, and Sestoft 1993). This has the effect of
simplifying the equation, by eliminating some of the
conditionals (if ... then ... else ... operators).

Note that the resulting equations may still be multi-
mode: in general, not all conditionals can be elim-
inated by partial evaluation. However, the fact that
the structure of the resulting equations is indepen-
dent of the mode is still guaranteed: the multimode
structural analysis ensures that each equation block
has the same structure (in particular, the same read
and written variables) in all the modes in which it is
defined, even if one or several of its equations con-
tain conditional statements.

First-order differential equations are also added in
accordance to the dummy derivatives method.

6. Multiplexing Equations: In order to retrieve the
values of the source model variables from the repli-
cates in the fresh model, mutiplexing equations have
to be added. These are multimode equations, con-
taining conditional operators, but these equations
contain no dynamics: each multiplexing equation fo-
cuses on a source model variable that corresponds to
several replicates in the transformed model, specify-
ing which of the latter currently holds the value of
the former.

7. Reinitializations: Reinitialization statements finally
have to be inserted, in order to reset replicate vari-
ables that are state variables to a correct value upon
the occurrence of a mode switching. Therefore, these
statements are triggered by mode changes.

4.2 Transformation of a simple model
We illustrate the method on a simplistic, yet relevant, two
equations model:

model TwoEquations
 Real x(start=0,fixed=true);
 Boolean p(start=false,fixed=true);
equation
 p = (x >= 1);
 1 = if p then x else der(x);
end TwoEquations;

This model has one real equation, one Boolean equation,
and no particular physical meaning. However, it captures
in a nutshell the difficulty raised with the Water Tank sys-
tem. As a matter of fact, the CDG (Figure 5) resulting
from the multimode structural analysis distinguishes be-
tween two cases:

A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models

522 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181519

p: e -> x

not p: e -> x'

Figure 5. CDG of the Two Equations model.

Figure 6. Failed simulation of the Two Equations model with
Dymola 2021.

• when p is true, x is a leading variable, meaning
that it is the unknown that needs to be solved;

• when p is false, the leading variable is x′, the first-
order time derivative of x, while x itself is a state
variable.

The approximate structural analysis of both Dymola
and OpenModelica determines that the leading variable is
x′ in all modes; however, the real equation is singular in
x′ when p is true. Unsurprisingly, an exception is raised
during simulation, as shown in Figure 6.

Let us apply the transformation one step after the other:

1. The CDG graph of the source model is shown in
Figure 5.

2. Declarations of variables x and p are copied.model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

Remark that the declaration of x has been stripped of
its initialization part.

3. Replicate variables are created according to the two
blocks of the CDG. Two leading replicate variables
x_2 (holding the value of x if p holds) and x_p_3
(holding the value of x′ if not p holds), and one
state replicate variable x_3 that is meaningful only if
not p holds, are declared.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

Note that the initialization of variable x in the source
model is copied here, to initialize the replicate state
variable x_3.

4. One mode equation is copied from the source
model.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

5. Replicate equations are generated from the CDG,
which has two blocks of one equation each.

From the block p : e→ x, one replicate equation is
generated by replacing variable x with its replicate
x_2, then performing the partial evaluation (Jones,
Gomard, and Sestoft 1993) under the assumption that
the Boolean condition p holds.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

From the second block not p : e→ x′, one replicate
equation is generated in a similar way.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

A differential equation is also generated, linking
replicate variable x_3 with its dummy derivative
x_p_3.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

6. One multiplexing equation is generated, to be
solved for variable x.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

7. Finally, the only case in which a state variable has to
be reinitialized is when entering the mode not p.
The value of replicate variable x_3 is then set to be
the left limit of x.

model OneEquation_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end OneEquation_rimis;

The complete RIMIS form of the Two Equations model
is given in Figure 7. The result of the successful simula-
tion of this model is shown in Figure 8. Remark that the
mode switching from p= false to p= true is correct,
and that the reinitialization statement is never evaluated,
as p remains true forever after time t= 1.

5 Successful simulations of the Water
Tank system in RIMIS form

The RIMIS transformation is illustrated on the Water Tank
model (Figure 1); the resulting model is shown in Fig-
ure 9. Simulation results obtained with Dymola 2021 are
shown in Figure 10. It can be seen that the simulation
is successful, with a correct behavior of the Water Tank
system, while the simulation of the original model failed
(Figure 2). A correct simulation has also been obtained
with OpenModelica 1.17.0 (Fritzson et al. 2020), under
the provision that the Newton solver is used instead of the
KINSOL nonlinear solver.

Session 7A: Modelica Language

DOI
10.3384/ecp21181519

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

523

model TwoEquations_rimis
 // Source variables
 Real x;
 Boolean p(start=false,fixed=true);
 // Replicate variables
 Real x_2;
 Real x_p_3;
 Real x_3(start=0,fixed=true);
equation
 // Mode equations
 p = (x >= 1);
 // Differential equations
 der(x_3) = x_p_3;
 // Multiplexing
 x = if p then x_2 else x_3;
 // Block e_3 -> x_p_3
 /* e_3 : */ 1 = x_p_3;
 // Block e_2 -> x_2
 /* e_2 : */ 1 = x_2;
 // Replicate reinitializations
 when not p then
 reinit(x_3,pre(x));
 end when;
end TwoEquations_rimis;

Figure 7. Two Equations model in RIMIS form.

Figure 8. Simulation of the Two Equations model in RIMIS
form with Dymola 2021.

6 Formalizing the RIMIS form trans-
formation

The mathematical definition of the RIMIS form transfor-
mation relies on the partial evaluation of equations. Once
variable renaming is also properly defined, the seven-step
transformation mentioned in Section 4.1 is formalized. Fi-
nally, an optimization aiming at reducing the transformed
model is presented.

6.1 Partial evaluation of expressions and
equations

Partial evaluation is an umbrella name for a set of pro-
gram transformation techniques that aim at specializing
a program by taking into account prior knowledge on its
input data, possibly improving its performances (Jones,

Gomard, and Sestoft 1993; Danvy, Glück, and Thiemann
1996).

In the context of the Modelica language, consider a
Boolean expression q, and a real expression e. The par-
tial evaluation of expression e, assuming q, is an expres-
sion e′ = πq(e), such that q implies e = e′ and free(e′) ⊆
free(e), where free(.) is the set of free variables appearing
in an expression.

To define the partial evaluation operator π , and for the
sake of clarity, we only consider the subset of the Mod-
elica expression language defined by the following gram-
mar, where p is a Modelica Boolean expression:

e ::= c where c is a constant
| e op e where op ∈ {+,-,*, . . .}
| v where v is an identifier
| v(e, . . .e)
| if p then e else e

Given a Boolean expression q and a real expression e,
the partial evaluation of e, assuming q, is defined by in-
duction on the structure of e:

πq(c) ≡ c
πq(e1 op e2) ≡ πq(e1) op πq(e2)
πq(v) ≡ v
πq(v(e1, . . .en)) ≡ v(πq(e1), . . .πq(en))
πq(if p then eT else eF) ≡ condq(p,eT ,eF)

where

condq(p,eT ,eF) ≡∣∣∣∣∣∣∣∣∣∣∣∣∣

πq and p(eT) if q and not p
is unsatisfiable, else

πq and not p(eF) if q and p
is unsatisfiable, else

if r where r is such that:
then πq and p(eT) p and q implies r, and
else πq and not p(eF) r implies p or not q

In the above definition, condition r is not unique: when-
ever possible, it should be chosen such that it is more con-
cise than p.

The extension of the partial evaluation operator to equa-
tions is straightforward:

πq(eLHS = eRHS) ≡ πq(eLHS) = πq(eRHS) .

6.2 Variable renaming
Before moving to the formal definition of the RIMIS trans-
formation, variable renaming must be defined, in order to
declare replicate variables and transform equations into
their replicates.

Given a Boolean expression p, an identifier v, and a
differentiation order n ≥ 0, the replicate of the n-th order
derivative of v, under condition p, is the identifier ρn

p(v).

A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models

524 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181519

model WaterTankRIMIS
 // Constants
 constant Real xmax = 1.0;
 constant Real xmin = 0.0;
 constant Real y0 = 6.667;
 constant Real rho = 0.8;
 // Variables
 Real t(start=0,fixed=true);
 Real x(start=0.5,fixed=true);
 Real yh;
 Real yl;
 Real z;
 Real sh;
 Real sl;
 Boolean bh(start=false,fixed=true);
 Boolean bl(start=false,fixed=true);
 // Dummy derivatives
 Real t_p;
 Real x_p;
 // Replicated algebraic variables
 Real sh_5; // sh if not bh
 Real sh_6; // sh if bh
 Real sl_2; // sl if not bl
 Real sl_4; // sl if bl
 Real x_p_4; // x' if bl
 Real x_p_7; // x' if not bh and not bl
 Real x_p_6; // x' if bh
 Real yh_5; // yh if not bh
 Real yh_6; // yh if bh
 Real yl_2; // yl if not bl
 Real yl_4; // yl if bl
equation
 // Boolean equations
 bh = (sh >= 0);
 bl = (sl >= 0);

 // Differential equations
 der(t) = t_p;
 der(x) = x_p;
 // Multiplexing equations
 yh = if bh then yh_6 else yh_5;
 yl = if bl then yl_4 else yl_2;
 sh = if bh then sh_6 else sh_5;
 sl = if bl then sl_4 else sl_2;
 x_p = if bh then x_p_6 else
 if bl then x_p_4 else x_p_7;
 // Block et -> t'
 t_p = 1;
 // Block not bh: x -- eh1 -> sh
 sh_5 = x - xmax;
 // Block not bl: x -- el1 -> sl
 sl_2 = xmin - x;
 // Block bl: el2' -> x'
 x_p_4 = 0;
 // Block not bh: eh2 -> yh
 yh_5 = 0;
 // Block x -- e1 -> z
 z = rho*y0*(1+
 Modelica.Math.cos(2*Modelica.Constants.pi*t));
 // Block not bl: el2 -> yl
 yl_2 = 0;
 // Block bh: eh2' -> x'
 x_p_6 = 0;
 // Block bl: x' yh z -- e2 -> yl
 yl_4 = y0 + x_p_4 + yh_5 - z;
 // Block not bh & not bl: yh yl z -- e2 -> x'
 x_p_7 = z + yl_2 - yh_5 - y0;
 // Block bh: x' yl z -- e2 -> yh
 yh_6 = z + yl_2 - x_p_6 - y0;
 // Block bl: yl -- el1 -> sl
 sl_4 = yl_4;
 // Block bh: yh -- eh1 -> sh
 sh_6 = yh_6;
end WaterTankRIMIS;

Figure 9. The Water Tank system in RIMIS form.

The operator ρ is assumed to satisfy the following axioms:

(Identity) ρ0
true(u) = u

(Injectivity) ρn
p(u) = ρm

q (v) implies u = v and
p ⇐⇒ q and
n = m

Checking the equivalence of two Boolean expressions is,
in general, a difficult problem. In this article, Boolean
expressions that appear in conditional statements are re-
stricted to propositional formulas only. Mode equations
are restricted to the form v=(e>= 0), where e is an affine
expression. Under these assumptions, equivalence check-
ing can be done with BDDAPRON, a logico-numerical
abstract domain library (Jeannet 2012) combining BDDs
(Boolean Decision Diagrams) (Bryant 1986) and poly-
hedra (Schrijver 1998). Such a use of BDDAPRON is
considered, among other program analyses, in Chapter 7
of (Schrammel 2012).

6.3 Formal definition of the RIMIS form
transformation

Consider a Modelica model M that can be decomposed in
the following parts:

M ≡ MD]RD]RI]ME]RE

where:

• MD is the set of mode (Boolean) variable
declarations and initializations;

• RD is the set of real variable declarations, stripped
of their initializations;

• RI is the set of real variable initializations;

• ME is the set of mode variable equations;

• RE is the set of real equations.

Remark that models with when and reinit statements
are not covered by the RIMIS form transformation, as this

Session 7A: Modelica Language

DOI
10.3384/ecp21181519

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

525

Figure 10. Simulation of the Water Tank system in RIMIS form
with Dymola 2021.

would require a multimode structural analysis of mode
changes (Benveniste, Caillaud, and Malandain 2020), that
is not yet implemented in the IsamDAE software (Cail-
laud, Malandain, and Thibault 2020). Because of a current
restriction of IsamDAE, mode variables are assumed to be
Boolean.

Model M is assumed to be structurally nonsingular in
all modes. Its CDG computed by the multimode structural
analysis (Caillaud, Malandain, and Thibault 2020) con-
sists in a set of blocks of equations and a set of directed
edges between blocks; let Blocks and Edges denote the
corresponding sets. A block b ∈ Blocks consists of four
parts:

• cond(b), a Boolean expression;

• Eqs(b), a set of equations, possibly differentiated;

• Read(b), a set of read variables (parameters of the
block of equations);

• Write(b), a set of written variables (unknowns of the
block of equations).

Elements of Eqs(b) are pairs of the form (0 = e,k), where
e is an expression and k≥ 0 is a differentiation order. Ele-
ments of Read(b) and Write(b) are pairs of the form (u,k),
where u is an identifier and k≥ 0 is a differentiation order.
An edge g ∈ Edges consists of three parts:

• cond(g), a Boolean expression;

• from(g), to(g) ∈ Blocks, two blocks.

The meaning of an edge g is that whenever cond(g) holds,
block from(g) has to be solved before block to(g). By
construction, cond(g) implies both cond(from(g)) and
cond(to(g)).

In addition, the multimode structural analysis computes
several functions and predicates on (differentiated) vari-
ables v = (u,k):

• leadingp(v) decides whether variable u is a leading
variable in some mode satisfying the Boolean for-
mula p;

• algebraicp(v) decides whether u is an algebraic vari-
able in some mode satisfying p;

• statep(v) decides whether u is a state variable in some
mode satisfying p.

For the sake of clarity, the following nota-
tions are introduced: leading(b) = {v ∈ Read(b) ∪
Write(b)| leadingcond(b)(v)} is the set of leading variables
appearing in block b; Defp(v) is the set of blocks that
define variable v in some mode satisfying the Boolean
formula p, either because v itself is written, or because a
higher order derivative of it is written:

Defp(u,k) = {b ∈ Blocks | p∧ cond(b) is satisfiable,
and ∃k′ ≥ k, (u,k′) ∈Write(b)}

The resulting RIMIS form model can be decomposed
in several parts:

RIMIS ≡ MD]RD]DECL] INIT]
ME]REPL]MULTI]DIFF]REINIT

where:

• MD is the set of mode (Boolean) variable
declarations and initializations, taken from M;

• RD is the set of real variable declarations, taken from
M;

• DECL is the set of replicate variable declarations,
defined below;

• INIT is the set of replicate variable initializations,
defined below;

• ME is the set of mode variable equations, taken from
M;

• REPL is the set of replicate equations, defined be-
low;

• MULTI is the set of multiplexing equations, defined
below;

• DIFF is the set of differential equations, defined be-
low;

• REINIT is the set of reinitialization equations, de-
fined below.

Replicate variable declarations (Section 4.1, step 3)
consist in the declaration of the following set of real vari-
ables:

DECL ≡
⋃

b∈Blocks,(u,k)∈Read(b)∪Write(b){
ρ i

cond(b)(u) | 0≤ i≤ k
} .

A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models

526 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181519

Replicate variable initializations (Section 4.1, step 3)
consist in the initialization of all replicate variables
ρ0

cond(b)(u) that are state variables, with the initialization
expression for u in M (RI(u)):

INIT ≡
{
(ρ0

p(u),RI(u))|ρ0
p(u) ∈ DECL and statep(u,0)

}
where ρ is a fixed replication operator as defined in Sec-
tion 6.2.

Replicate equations (Section 4.1, step 5) consist in the
differentiation to a given order of the equations of each
block of equations:

REPL ≡
⋃

b∈Blocks{
σb(πcond(b)(δk(q))) | (q,k) ∈ Eqs(b)

}
where π is the partial evaluation operator defined in Sec-
tion 6.1, equation δk(q) is the k-th order differentiation of
equation q, and σb is the substitution operator such that
σb(q) substitutes any variable u in equation q with the
replicate variable ρ0

cond(b)(u), any derivative of the form
der(u) by the replicate variable ρ1

cond(b)(u), and so on for
higher order derivatives.

Multiplexing equations (Section 4.1, step 6) serve two
purposes: (i) linking written variables and read variables
in different blocks, and (ii) defining the original real vari-
ables from M:

MULTI =
⋃

b∈Blocks,v=(u,k)∈Read(b)
{ρk

cond(b)(u) = casev(Defcond(b)(v))} ∪⋃
u∈RD{u = caseu,0(Deftrue(u,0)}

where casev is defined by induction over the set of blocks
Deftrue(v) that define variable v in some mode:

case(u,k)({b}) = ρk
cond(b)(u)

casev=(u,k)(b]B) = if cond(b)
then ρk

cond(b)(u)
else casev(B)

Differential equations (Section 4.1, step 5) serve the
purpose of defining replicate state variables from the repli-
cate dummy derivatives:

DIFF =
⋃

b∈Blocks,(u,k)∈Write(b)
{der(ρ i

cond(b)(u)) = ρ
i+1
cond(b)(u)}0≤i≤k−1

Finally, upon the occurrence of a mode change, reini-
tialization statements (Section 4.1, step 7) serve the pur-
pose of copying the state vector from a formerly active
replicate state variable to a newly active one:

REINIT =
⋃

b∈Blocks,(u,1)∈Write(b)
{when cond(b) then
reinit(ρ0

cond(b)(u) , pre(u));
endwhen}

6.4 Optimization
Modelica code generated with the procedure described in
Section 6.3 may contain multiplexing equations and reini-
tialization statements that can be eliminated thanks to the
optimization described below.

It may happen that a multiplexing equation is of the
form ρk

p(u) = ρk
p′(u). This typically happens when a block

b ∈ Blocks reads a variable that is written by exactly one
block b′ ∈ Blocks. In this case, no multiplexing equa-
tion needs to be generated, and replicate variable ρk

p(u)
does not need to be declared. Instead, every occurrence of
ρk

p(u) in equations q ∈ Eqs(b) shall be replaced by ρk
p′(u).

Remark that this optimization has been applied to the
Water Tank model in RIMIS form (Figure 9). For instance,
equation sh_5= x−xmax refers directly to variable x in-
stead of variable x_5, sparing both the declaration of the
replicate variable x_5 and the generation of the multiplex-
ing equation x = x_5. The same optimization has been
applied to variable z.

7 Conclusion
We presented a method for transforming multimode Mod-
elica models that yield simulation errors with state-of-the-
art Modelica tools (such as Dymola 2021 and OpenModel-
ica 1.17.0) into Reduced Index Mode-Independent Struc-
ture (RIMIS) models that simulate correctly with the same
tools.

This model transformation relies on the multimode
structural analysis as performed by the IsamDAE
tool (Caillaud, Malandain, and Thibault 2020). The out-
put of this structural analysis, which is a Conditional De-
pendency Graph (CDG) describing all possible equation
blocks in all modes and their dependencies, is used to
replicate equations and real variables as needed. This is
performed in such a way that the approximate structural
analysis implemented in most Modelica tools will create
the same equation blocks. Dummy derivatives (Mattsson
and Soderlind 1993) are also used so that the resulting
model is of index 0.

The 7-step RIMIS transformation was detailed on a
very simple multimode model, then applied to the Mod-
elica model of a water tank system; we showed that, while
both source models cause division by zero errors at run-
time, their RIMIS forms simulate correctly with both Dy-
mola 2021 and OpenModelica 1.17.0, yielding the ex-
pected behaviors for their variables. This process was for-
malized, paving the way towards its automation for the
handling of a wider class of multimode models by state-
of-the-art Modelica tools.

A possible drawback of this approach is that the size of
the RIMIS model may a priori be exponential in the size
of the source model, as both equations and real variables
could be replicated once for every mode of the system.
However, experiments on a number of parametric models
with the IsamDAE tool show that the number of blocks
in the CDG of such models tend to be linear in their size,

Session 7A: Modelica Language

DOI
10.3384/ecp21181519

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

527

except for rare pathological cases. As such, the size of
the RIMIS form of a multimode Modelica model will, in a
vast majority of cases, be linear in the size of the original
model, thus making our approach tractable even for large
models.

As a concluding remark, it can be noted that the illus-
trative models in this article are only made of linear equa-
tions, so that the evaluation of all equation blocks, both
active and inactive, at every time step is not an issue. For
nonlinear blocks, not only could this approach be compu-
tationally expensive, but it might fail altogether, as such
blocks might be singular outside of a given subset of the
modes.

A simple fix, that was not detailed above, consists in
transforming the equations from such blocks into condi-
tional equations, so that they become trivial equations out-
side of the set of modes in which they have to be consid-
ered. The matching between equations and variables that
is computed during the multimode structural analysis can
be used for this task, as it basically tells ‘which variable
has to be solved using which equation’; a nonlinear equa-
tion could then be replaced with the simple assignment of
a default value to its matched real variable in the modes in
which the equation block is inactive. This additional trans-
formation would still preserve the structure of the model,
in the sense that the approximate structural analysis would
still result in solving the same blocks for the same real
variables.

Acknowledgements
This work was supported by the FUI ModeliScale
DOS0066450/00 French national collaborative project,
the Glose Inria-Safran Tech bilateral collaboration, and
the Inria IPL ModeliScale large scale initiative (https:
//team.inria.fr/modeliscale/).

References
Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.

(2019). “Multi-Mode DAE Models - Challenges, Theory and
Implementation”. In: Computing and Software Science - State
of the Art and Perspectives. Ed. by Bernhard Steffen and Ger-
hard J. Woeginger. Vol. 10000. Lecture Notes in Computer
Science. Springer, pp. 283–310. ISBN: 978-3-319-91907-2.
DOI: 10.1007/978-3-319-91908-9_16.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2020). “The mathematical foundations of physical systems
modeling languages”. In: Annual Reviews in Control 50,
pp. 72–118. ISSN: 1367-5788. DOI: 10.1016/j.arcontrol.2020.
08.001.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2021-09). “Handling Multimode Models and Mode Changes
in Modelica”. In: Proceedings of the 14th International Mod-
elica Conference. Linköping University Electronic Press.

Bryant, Randal E. (1986). “Graph-Based Algorithms for
Boolean Function Manipulation”. In: IEEE Transactions on
Computers 35, pp. 677–691.

Caillaud, Benoit, Mathias Malandain, and Joan Thibault (2020-
04). “Implicit Structural Analysis of Multimode DAE Sys-
tems”. In: 23rd ACM International Conference on Hybrid

Systems: Computation and Control (HSCC 2020). Sydney,
Australia. DOI: 10.1145/3365365.3382201.

Campbell, Stephen L. and C. William Gear (1995). “The index
of general nonlinear DAEs”. In: Numer. Math. 72, pp. 173–
196.

Danvy, Olivier, Robert Glück, and Peter Thiemann, eds. (1996).
Partial Evaluation, International Seminar, Dagstuhl Castle,
Germany, February 12-16, 1996, Selected Papers. Vol. 1110.
Lecture Notes in Computer Science. Springer. ISBN: 3-540-
61580-6. DOI: 10.1007/3-540-61580-6.

Dassault Systèmes AB (2020). Dymola official webpage. Ac-
cessed: 2021-06-28. URL: https://www.3ds.com/products-
services/catia/products/dymola/.

Elmqvist, Hilding et al. (2012-09). “State Machines in Model-
ica”. In: Proc. of the Int. Modelica Conference. Ed. by Martin
Otter and Dirk Zimmer. Modelica Association. Munich, Ger-
many, pp. 37–46.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Giorgidze, George and Henrik Nilsson (2011). “Embedding a
Functional Hybrid Modelling Language in Haskell”. In: Im-
plementation and Application of Functional Languages. Ed.
by Sven-Bodo Scholz and Olaf Chitil. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 138–155. ISBN: 978-3-642-
24452-0.

Jeannet, Bertrand (2012-08). BddApron. URL: http : / /pop- art .
inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/.

Jones, Neil D., Carsten K. Gomard, and Peter Sestoft (1993).
Partial evaluation and automatic program generation. Pren-
tice Hall international series in computer science. Prentice
Hall. ISBN: 978-0-13-020249-9.

Mattsson, Sven Erik and Gustaf Soderlind (1993). “Index Re-
duction in Differential-Algebraic Equations Using Dummy
Derivatives”. In: SIAM Journal on Scientific Computing 14.3,
pp. 677–692. DOI: 10.1137/0914043.

Nilsson, Henrik and George Giorgidze (2010). “Exploiting
structural dynamism in Functional Hybrid Modelling for sim-
ulation of ideal diodes”. In: Czech Technical University Pub-
lishing House.

Pantelides, Constantinos C. (1988). “The consistent initializa-
tion of differential-algebraic systems”. In: SIAM J. Sci. Stat.
Comput. 9.2, pp. 213–231.

Pryce, John D. (2001). “A simple structural analysis method for
DAEs”. In: BIT 41.2, pp. 364–394.

Schrammel, Peter (2012). “Méthodes logico-numériques pour
la vérification des systèmes discrets et hybrides. (Logico-
Numerical Verification Methods for Discrete and Hybrid Sys-
tems)”. PhD thesis. Grenoble Alpes University, France. URL:
https://tel.archives-ouvertes.fr/tel-00809357.

Schrijver, A. (1998-04). Theory of linear and integer program-
ming. Wiley.

The Modelica Association (2021-02). Modelica, A Unified
Object-Oriented Language for Systems Modeling. Language
Specification, Version 3.5. URL: https://www.modelica.org.

Van Der Schaft, A. J. and J. M. Schumacher (1998). “Comple-
mentarity modeling of hybrid systems”. In: IEEE Transac-
tions on Automatic Control 43.4, pp. 483–490. DOI: 10.1109/
9.664151.

Zimmer, Dirk (2010). “Equation-Based Modeling of Variable-
Structure Systems”. PhD thesis. ETH Zürich, No. 18924.

A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models

528 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181519

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

Martin Sjölund1

1Department of Computer Science, Linköping University, Sweden, martin.sjolund@liu.se

Abstract
Modelica tools change the formatting of the source code
when performing operations in the graphical user in-
terface. These unintended changes cause problems for
source code management since a code review would
mostly go through changes that do not change any seman-
tics. The intent of this work is to present a workflow where
edits from an interactive graphical user interface does not
contain these unintended changes when using the source
code management system.

A diff tool that can merge two Modelica files and pro-
duce a merged copy is presented and evaluated. The diff
algorithm works by comparing syntax subtrees of Model-
ica code and having some domain knowledge about which
subtrees belong together, speeding up the diff algorithm.
The result is a merged file by taking formatting of the first
file and the semantics from the second file. This works
very well for smaller changes (a single edit) and scales
with file size (making the user interface faster for smaller
files).

To test the algorithm on a larger set of changes, a con-
version script was applied to a set of libraries. The effect
of applying a conversion script is a set of automated edit
operations, which cause unintended changes in the format-
ting of the source code. The diff algorithm with applied to
these changes and the performance was analyzed.

The results are very promising especially for Model-
ica libraries that are split into multiple files rather than a
large single file. Having a single large file takes slightly
longer to process and produces additional unintended for-
matting changes compared to a library developed as a set
of smaller files.
Keywords: Modelica, diff, file comparison, conversion
script, interactive user interface

1 Introduction
An important problem to handle for any software develop-
ment is the management of source code. It is important to
be able to see what changes are introduced in every new
version of your software and one common way of show-
ing this is with a simple text diff. However, most text diff
tools are very limited in what they can do and introduc-
ing any new whitespace in a line will often flag the entire
line. If you introduce a line break or move part of a line
around, you can often forget about seeing what you actu-
ally changed in a diff. Most text diff algorithms will use
something similar to Myers (1986) algorithm, performing

the diff on lines of code since its O(ND) scaling performs
poorly on when words are used items instead of lines.
There are algorithms available to improve the performance
of Myers (1986), such as diff-match-patch (Google 2019),
but they have most of the same drawbacks as the original.

When working with source code management systems
such as git, there are best practices to make the history
easier to read. Some of the following best practices make
it easier for Myers (1986) algorithm to work since there
are fewer changes to consider:

• every developer must use the same width for inden-
tation (tabular characters and/or spaces).

• include no trailing whitespace at the ends of line.

• use text line endings (to avoid CR/LF issues).

• don’t commit generated files such as binaries.

• commit only related work together.

Tools that compare source code of languages do ex-
ist, for example Diff/TS (Hashimoto and Mori 2008) and
GumTree, but these need domain knowledge about the
language to perform a diff on and need to be tuned to
produce good results (Matsumoto, Higo, and Kusumoto
2019).

How this problem relates to the Modelica language
(Modelica Association 2021) is probably apparent to any-
one who has collaborated on a Modelica project. Mod-
elica tools are graphical user interfaces where you move
components around, change some value, or drag and drop
components. This means that the source code needs to be
added, removed, or updated. If these operations are per-
formed internally to the Modelica tools, the internal rep-
resentation needs to be unparsed in order to write these
changes to file1. This unparsing will be slightly different
in all Modelica tools, and some tools may be smart enough
to at least only update the part of the class that changed.
In this work, OpenModelica (Fritzson et al. 2020) and its
graphical user interface OMEdit will be used to evaluate
the work. OpenModelica will update the entire class and
it will move something around since the internal represen-
tation for example only allows comments in certain places
(compare Listings 1 and 2).

1The edits could also be performed directly on a concrete syntax tree,
but this would require a full redesign of how Modelica code is handled
in Modelica tools and would be much harder to implement.

DOI
10.3384/ecp21181529

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

529

model M
MyModel m(
// ??? Works if we do this
x = 0,
// Disable heat port
y = false,
// Forces the model into mode 2
z = 200

);
end M;

Listing 1. Example listing with comment.

model M
MyModel m(x = 0, y = false, z = 200);
// ??? Works if we do this
// Disable heat port
// Forces the model into mode 2

end M;

Listing 2. The example in Listing 1 unparsed by OpenModelica
moves the comment.

What this paper tries to answer is how to perform a diff
of unparsed Modelica code in a way that would produce
small text diffs in a source code management system.

In order to be able to evaluate the proposed solution, a
large enough test set is required. The Modelica Language
Specification 3.4 (Modelica Association 2017) standard-
ized the concept of conversion scripts. Using conversion
scripts it is possible to for example rename a component in
a class of a library and to automatically upgrade a model
using the old version of the library with the new names.
This potentially changes every single line of code in a li-
brary that is converted in this way. The Modelica Standard
Library version 4.0.02 has a conversion script from major
version 3 and there are many libraries still using one of
these versions of the standard library. The diff algorithm
can be evaluated by applying the conversion script to these
libraries since a large set of real-world edit operations will
be produced.

2 Method
The Modelica diff algorithm was created over several iter-
ations. The current implementation will be presented.

Then the Modelica diff algorithm will be evaluated
based on how it performs for common operations in the
OMEdit GUI. Both quality and performance will be con-
sidered. Operations in OMEdit are mostly single edits
followed by running the Modelica diff algorithm. This is
what the algorithm was designed for.

Recently, support for conversion scripts was added to
OpenModelica. This works by converting the internal rep-
resentation of a loaded library, but it is also possible to

2https://github.com/modelica/
ModelicaStandardLibrary

create a script to write the changes to file, and merge these
files with the original ones. Conversion scripts can po-
tentially change every line of code, so this will serve as a
stress test for the Modelica diff algorithm.

3 The diff algorithm
The basis of our Modelica diff algorithm is the classical
Myers (1986) text diff algorithm with some additional op-
timizations based on ideas by Butler (2009) and Google
(2019).

The ideas used from Butler (2009) and Google (2019)
stem from the fact that you can easily check if the two
compared sequences have a common prefix or suffix. My-
ers (1986) scales with the sum of the sizes of the two in-
puts, and if there are only changes local to a part of the file
trimming away a common prefix and/or suffix will signif-
icantly improve performance of the algorithm. However,
these optimizations do not improve performance if there
are changes all over the file. In our algorithm, these checks
also ignore whitespace (so unparsed text will be consid-
ered equal).3

The implementation in OpenModelica is a generic im-
plementation because our diff algorithm is not based on
text (lexer tokens, etc).4 Instead of using a text diff,
the full algorithm is performing a diff on concrete syn-
tax trees. In order to start the diff algorithm, the inputs of
both files go through a lexer and a hand-written recursive-
descent parser which both preserve comments and whites-
pace. The output of the parser is a tree where nodes also
contain whitespace and comments belonging to this sub-
tree of the code. Where the Modelica grammar has nodes
that can be given a name (such as classes, elements, or
named modifications), this node is labelled by the parser.
Modelica models are not allowed to define the same name
twice in the same scope, making these labels unique.5

Tichy (1984) considers blocks of text as units and moved
them together instead of as in Myers (1986) where each
modified unit of text that is moved is considered one move.
However, as the algroithm presented below is a tree diff
algorithm it is more similar to for example Matsumoto,
Higo, and Kusumoto (2019) than Tichy (1984), as it works
on units already divided into blocks using domain knowl-
edge of Modelica and compares these instead of trying to
create blocks from text.

The tree diff implemented in OpenModelica6 works re-
cursively for each node where the diff algorithm runs on
the sequence of nodes in each subtree that is not equal to

3Due to the internal representation and unparsing in OpenModelica,
parentheses are also considered whitespace. This is done to not have a
diff when the unparsing adds or removes unnecessary parentheses.

4https://github.com/OpenModelica/
OpenModelica/blob/master/OMCompiler/Compiler/
Util/DiffAlgorithm.mo

5The labels are only unique for valid Modelica models. The quality
of the diff is decreased when performed on invalid models.

6https://github.com/OpenModelica/
OpenModelica/blob/master/OMCompiler/Compiler/
Parsers/SimpleModelicaParser.mo

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

530 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181529

the corresponding subtree in the other sequence. When
there is only 1 change in the entire sequence, most of the
file will be kept the same without any possibility of adding
whitespace in the wrong place. However, the algorithm is
no longer scaling as O(ND) since we may potentially per-
form this operation at each depth of the tree.

The tree diff algorithm has additional optimizations
performed on the result returned by the generic diff al-
gorithm:

1. Move operations are detected by looking only for
nodes with the same label in order to improve per-
formance. If there is a node deleted and added with
identical contents, the merged result contains the text
of sequence A in the position that it was moved to in
sequence B. This is also performed for comments,
trying to not move them.

2. Changes to whitespace are ignored unless they are
needed to separate two tokens in the merged text.

3. Indentation is preserved to match the previous line in
the original.

4. Nodes that are not equal to some node in the other
sequence are compared to each other (this is a recur-
sive algorithm). If the labels match, those nodes are
compared to each other. If there is only one node re-
maining, it may have been renamed and is compared.
The algorithm does not consider multiple renamed
nodes at the same time and will fallback to resetting
the formatting of the nodes in this case.

4 Evaluation
The diff algorithm has been extensively tested and im-
proved since it was introduced in OpenModelica back in
2015. The first version used Myers (1986) as token-based
diff, but this took several hours to perform a diff on 300
kB large files due to many whitespace changes7.

There are two aspects of the evaluation: quality and per-
formance. This section presents results for both of these
metrics. The computer used for the performance measure-
ments uses an AMD Ryzen 5900X CPU and has 32GB
RAM.

Listings 1 and 2 merge into the same content as List-
ing 1 in 633 µs. Some of the largest example models in
the standard library with a diagram where components can
be moved around are ComparisonPullInStroke and
BatchPlant_StandardWater8.

For BatchPlant_StandardWater, one component
was moved in the OMEdit GUI as shown in Figure 1,
causing an update to a component and two connections.

7https://github.com/OpenModelica/
OpenModelica/commit/dc2d3ef0465e

8Sizes were calculated based on OpenModelica’s unparsing of
the example and not the size of the file it is stored in. Batch-
Plant_StandardWater is not the only class stored in the file
it is defined in.

B5
level =

0.0009 m

V12
V15

HeatB5

Coolin…

Coolin…

controller
V11

V8 V9

V2 V4

V3vo
lu

me
2

V6

volume8

V23
V1

V2
2

V5

V24

V2
5

V2
0

V19

V1
0

V21 volume5

V18

P1 P2

B1
level =

0.2 m

system

g
de…

P1_on P2_on

B2
level =

0.2 m

B3
level =

0.02 m

B4
level =

0.015 m

B7
level =

0.009 m

pipeB1…pipeB1…

2

pipeB1… pipeB2…

pi
pe

B1
…

pi
pe

B6
…

pi
pe

B7
…

pi
pe

Pu
…

pi
pe

Pu
…

2

pi
pe

Pu
…

pi
pe

Pu
…

2

B6
level =

0.02 m

multiP…

volume4

Figure 1. The diagram for BatchPlant_StandardWater. Com-
ponent B2 is moved slightly down to the right in the example
described in the text.

For performance reasons, OMEdit performed all 3 updates
first and then called the Modelica diff algorithm, resulting
in Listing 3. This causes the connections to be indented
slightly incorrectly due to two adjacent nodes being up-
dated at the same time. Note that connections are slightly
more complicated to handle than components since they
do not have a name and the diff algorithm does not de-
tect that these were existing connections that were up-
dated. When OMEdit modifies the component, the visi-
ble and rotation modifiers are added because the compiler
does not keep track of which values are defaults and which
had explicit modifiers. This causes the formatting of those
annotation to be affected as well. The rest of the file re-
mains the same as before, which makes the diff readable.
The diff algorithm takes 0.55 s to run, which explains why
OMEdit tries to perform a few edits at the same time. To
illustrate that the updates look nicer, consider Listing 4
where only one connection was updated. The time it takes
is slightly lower than performing 3 diffs at the same time
(0.37 s), but not 3 times lower since the whole file needs
to be parsed and the common prefix/suffix optimization
saves some time here.

For ComparisonPullInStroke, a connection was
added to see how the Modelica diff algorithm handles
added connections. The new connection was added and
changed to red color and the updated diagram can be
seen in Figure 2. Listing 5 shows that the connection is
added at the correct indentation level, with the same for-
matting as OpenModelica’s default for added annotations.
The diff algorithm runs faster (0.08 s) than for the larger
BatchPlant_StandardWater file.

Session 7A: Modelica Language

DOI
10.3384/ecp21181529

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

531

@@ -292,8 +292,7 @@
diameter=0.011,
height=0)},

stiffCharacteristicForEmptyPort=false)
- annotation (Placement(transformation(extent={{50,180},
- {90,220}})));
+ annotation (Placement(visible = true, transformation(extent = {{98,

124}, {138, 164}}, rotation = 0)));↪→
Modelica.Fluid.Examples.AST_BatchPlant.BaseClasses.TankWithTopPorts B3(

redeclare package Medium = BatchMedium,
height=0.5,

@@ -546,10 +545,10 @@
points={{-130,220},{-120,220},{-120,230},{-90,230},{-90,221}}, color={0,127,255}));

connect(volume8.port_3, V6.port_a) annotation (Line(
points={{150,220},{130,220}}, color={0,127,255}));

- connect(V6.port_b, B2.topPorts[1]) annotation (Line(
- points={{110,220},{100,220},{100,230},{70,230},{70,221}}, color={0,127,255}));
- connect(B2.ports[1], V9.port_a) annotation (Line(
- points={{70,179},{70,175},{70,175},{70,170}}, color={0,127,255}));
+ connect(V6.port_b, B2.topPorts[1]) annotation(
+ Line(points = {{110, 220}, {118, 220}, {118, 165}}, color = {0, 127, 255}));
+ connect(B2.ports[1], V9.port_a) annotation(
+ Line(points = {{118, 123}, {118, 174.5}, {70, 174.5}, {70, 170}}, color = {0, 127, 255}));

connect(V9.port_b, pipeB2B3.port_a) annotation (Line(
points={{70,150},{70,144},{50,144}}, color={0,127,255}));

connect(pipeB2B3.port_b, B3.topPorts[2]) annotation (Line(

Listing 3. BatchPlant_StandardWater where component B2 was moved, the connections to it updated, and the Modelica
diff merged the changes. The text is a regular unified text diff of the files (since the whole file is 100 kB large).

@@ -547,7 +547,7 @@
connect(volume8.port_3, V6.port_a) annotation (Line(

points={{150,220},{130,220}}, color={0,127,255}));
connect(V6.port_b, B2.topPorts[1]) annotation (Line(

- points={{110,220},{100,220},{100,230},{70,230},{70,221}}, color={0,127,255}));
+ points={{110,220},{118, 220},{118, 165}}, color={0,127,255}));

connect(B2.ports[1], V9.port_a) annotation (Line(
points={{70,179},{70,175},{70,175},{70,170}}, color={0,127,255}));

connect(V9.port_b, pipeB2B3.port_a) annotation (Line(

Listing 4. BatchPlant_StandardWater where only one connection was updated and the Modelica diff merged the changes.
The text is a regular unified text diff of the files (since the whole file is 100 kB large). Note that there are fewer whitespace changes
than in Listing 3 (OMEdit also removed some lines when re-routing the connection).

@@ -407,6 +407,8 @@
color={0,0,255}));

connect(simpleSolenoid.flange, simpleLoad.flange_a)
annotation (Line(points={{0,-50},{20,-50}}, color={0,127,0}));

+ connect(simpleLoad.flange_b, advancedLoad.flange_b) annotation(
+ Line(points = {{40, -50}, {66, -50}, {66, 30}, {40, 30}}, color = {170, 0, 0}));

annotation (experiment(StopTime=0.05, Tolerance=1e-007), Documentation(
info="<html>

<p>

Listing 5. ComparisonPullInStroke where a connection was added, its color changed, and the Modelica diff merged the
changes. The text is a regular unified text diff of the files (since the whole file is 30 kB large).

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

532 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181529

advancedGround

advancedSource

advancedSolenoid

advancedLoad

m=0.01 kg

simpleGround

simpleSource

simpleSolenoid

simpleLoad

m=0.01 kg

comparisonWithFEA

Figure 2. The diagram for ComparisonPullInStroke.
The connection in red color was added and the examples try
to merge the text before this connection with the text after the
update.

The diff algorithm was also tested on libraries that had
the MSL 4.0.0 conversion script applied to them.9. Not all
files will have been updated, and the diff algorithm failed
on a few files. Figures 3a and 3b show a curve fitting on
the sets of files where there was a diff and where there
was no diff detected after merging, comparing size to how
long the diff operation takes. For smaller files, the scal-
ing is linear (around 8x higher for files with a diff than
those without). As files grow larger, they seem to have
quadratic scaling. Note that the number of edits are not
known for these files. If you consider all files in the same
set (Figure 3c), the scaling is quadratic as the files where
the content changed will dominate the overall times.

The conversion script test has also been grouped by the
library that was converted and a summary can be seen
in Table 1. One library that has few modified files, runs
fast, and produces a very good diff10 is the BioChem li-
brary. This is because the BioChem library mostly uses its
own units based on the SI units from the standard library.
The Buildings library is a much larger library, with many
changed files. Since Buildings is split into over 3000 files,
it does not use much memory although it takes almost a
minute to complete. The quality of the diffs in Buildings

9A copy of the text diff compared to the original is
available at https://gist.github.com/sjoelund/
b7574f7aaf052500b0835f14e4b25d95

10https://github.com/OpenModelica/BioChem/commit/517a9962647

 0

 10

 20

 30

 40

 50

 60

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106 4x106

Ti
m

e
[s

ec
on

ds
]

File size [bytes]

fit 8e-13*x2 + 6e-06*x

(a) Files where the contents changed (so there is a diff). There
is a slight quadratic trend in the scaling.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Ti
m

e
[s

ec
on

ds
]

File size [bytes]

fit 7e-07*x

(b) Files where the contents did not change (so there is no diff).

 0

 10

 20

 30

 40

 50

 60

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106 4x106

Ti
m

e
[s

ec
on

ds
]

File size [bytes]

fit 1e-12*x2 + 5e-06*x

(c) All files (both with and without diff).

Figure 3. Converted files larger than 4096 bytes plotted as time
it takes for the diff algorithm to handle problems of a given file
size.

Session 7A: Modelica Language

DOI
10.3384/ecp21181529

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

533

goes from great (Listing 6) to reasonable (Listing 7) with
no very bad results. ScalableTestSuite and Physiomodel
both have a single very large file in the library (and some
smaller ones), which causes a lot of memory to be needed.
Despite the large file, ScalableTestSuite produces a very
nice diff whereas Physiomodel has whitespace changes in
a lot of places. For the files where the diff algorithm failed,
OpenModelica’s unparsing of the internal form is used in-
stead. This changes too many lines to be able to tell what
semantic changes were actually performed.

5 Discussion
The method is limited to programmatically modified text.
If a regular text editor is used and the diff algorithm is used
to merge the changes, all the manual whitespace changes
are lost. This means it cannot be used as an enforced hook
in your source code management system since you would
never be able to fix broken whitespace.

Handling diffs in connections is difficult because the
connections do not have names. This means that subtrees
are only compared if a single connection was updated. In
practice, this does not seem to affect components in the
conversion script.

There is another limitation in that parenthesis are con-
sidered whitespace – the unparsing of OpenModelica
would need to be updated to preserve parenthesis where
added manually (and to not output parentheses in other
places either). This particular limitation sometimes causes
the merging to fail with catastrophic results. These merge
failures are detected by a sanity check that verifies that
the semantics before and after merging are the same. Re-
moving a parenthesis or moving parenthesis to the wrong
location is thus detected. Not all of the failures may be due
to this limitation of the diff algorithm – earlier versions of
the algorithm also failed because the parser did not handle
the full Modelica grammar.

The unparsing of text is also assumed to preserve for-
matting of real numbers. In OpenModelica, the parser
keeps the text instead of transforming the value into float-
ing point in order to produce something easier to per-
form the diff on. If another Modelica tool would read
1000000.0 and output 1e6, the diff algorithm would as-
sume this is a desired change.

If a Modelica tool would reorder for example modifica-
tions in annotations, this would cause the merged code to
also move the modifications around (possibly with some
changes to indentation and whitespace).

The algorithm has difficulty with performance and un-
intended edits when there are many changes at the same
time. In order to improve performance and quality of
the diff, Modelica libraries should be split into multiple
files as this vastly improves responsiveness of the OMEdit
GUI when moving objects around. This effect is also
seen when applying conversion scripts to libraries where
libraries with a small number of files have a lower qual-
ity in the diffs produced by the diff algorithm. The diff

algorithm could easily be extended to run in parallel for
libraries split into multiple files, further improving perfor-
mance at the cost of memory usage. Splitting the library
into multiple files also has a positive impact on load per-
formance since it is trivial to parse multiple files in paral-
lel11.

Continuously improving the diff algorithm has fixed a
lot of similar problems in the past, and with a bit more
finetuning for things like indentation the algorithm could
become even better.

The diff algorithm has not been evaluated on output
from other Modelica tools, but a reasonable way to do so
would be to run the diff algorithm on git commits in some
of these libraries.

6 Conclusion
The diff algorithm was intended to be used in an interac-
tive GUI with single changes between each modification
and it works well for this use-case. When the diff algo-
rithm is used on larger changes such as applying a con-
version script, the quality of the diffs goes down and it
works much better when the library is divided into many
smaller files. The good news is that even when the inden-
tation is changed, it is usually feasible to manually correct
these since there are only local changes (git diff will
not show you irrelevant edits). The time spent on making
sure there are only small changes saves time for the code
reviewer. Compared to existing tools that change format-
ting of the whole file even when not making any change,
it is a big step in the right direction.

Given the existing diff algorithm, the recommendation
for development of Modelica libraries would be to split the
library into more files since you get a faster response from
the user interface for each edit as well as fewer unintended
changes. This workflow is something that should work
well in most cases.

After fixing the remaining bugs and tuning the diff al-
gorithm, it should be able to run the conversion script on
all the tested libraries.

Detecting which connections belong together could be
resolved by making the unparsing include additional infor-
mation to both files that is then removed from the merged
file. This might allow tools to perform more edits at the
same time and still preserve formatting within each con-
nection. Alternatives include looking for the names of the
ports that are connected (but this might break if a connec-
tion is moved between ports), or perhaps by having named
connections in the Modelica specification.

Changes that improve the quality of diffs after applying
the conversion script would also improve the tool when
running on files modified by other Modelica tools (for ex-
ample if pull requests in Github need to be cleaned up to
see what changes are actually proposed).

11Loading files in parallel was implemented in OpenModelica back in
2014 and typical speedup is 5x for 8 threads with the garbage collection
as bottleneck. Loading a single large file vs. multiple files in a single
thread has no impact on performance in our experience.

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

534 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181529

Table 1. The performance of running the conversion script. The exact libraries converted are either the latest release or from a
master branch on Github (this has little relevance on the results, but only 1 copy of each library was used). Shown is the total file
sizes of all files in the library, the largest file size (to see if libraries not split into smaller files are more problematic to handle), how
many files were modified, how many the diff algorithm failed on, and how many files there were in the library. The time it takes
to run the conversion script and the total time to run the Modelica diff algorithm on all files in the library as well as the maximum
heap size for these phases are also provided. If the maximum heap size for the diff algorithm is the same as for the conversion
script, it means that the memory reclaimed by the garbage collector was enough to run the diff algorithm.

Library Size Max size Diffs Fail Files Conversion Diff
AdvancedNoise 340kB 39kB 12 0 107 0.2s 24MB 0.7s 24MB
AixLib 12,585kB 89kB 972 3 2,731 5.0s 490MB 36.4s 491MB
BioChem 564kB 231kB 3 0 134 0.6s 58MB 1.1s 107MB
BuildSysPro 7,110kB 79kB 871 12 1,948 3.2s 234MB 22.5s 235MB
BuildingSystems 7,574kB 132kB 676 2 2,089 3.2s 315MB 22.7s 316MB
Buildings 13,947kB 472kB 1,117 0 3,341 5.8s 474MB 39.4s 475MB
ConPNlib 50kB 6kB 1 0 37 0.1s 18MB 0.2s 18MB
ElectricalEnergyStorage 330kB 330kB 1 1 1 0.2s 33MB 1.2s 156MB
ExternalMemoryLib 28kB 28kB 1 0 1 0.1s 25MB 0.1s 25MB
FCSys 1,121kB 292kB 7 0 16 0.9s 58MB 2.8s 123MB
FastBuildings 181kB 4kB 8 0 131 0.2s 24MB 0.7s 24MB
HanserModelica 372kB 14kB 58 0 137 0.2s 33MB 2.0s 33MB
HelmholtzMedia 477kB 73kB 24 0 242 0.5s 33MB 1.4s 44MB
IBPSA 4,901kB 67kB 494 0 1,382 2.4s 186MB 13.8s 186MB
IdealizedContact 625kB 625kB 1 0 1 0.2s 44MB 6.6s 188MB
IndustrialControlSystems 717kB 19kB 11 0 241 0.3s 44MB 1.5s 44MB
KeyWordIO 58kB 7kB 7 0 38 0.1s 24MB 0.2s 24MB
LibRAS 255kB 14kB 36 2 80 0.2s 33MB 1.1s 33MB
MEV 75kB 75kB 1 1 1 0.1s 18MB 0.2s 44MB
ModelicaByExample 292kB 6kB 54 0 355 0.7s 33MB 1.7s 33MB
Modelica_DeviceDrivers 634kB 67kB 30 0 192 0.7s 44MB 2.0s 58MB
Modelica_Noise 290kB 23kB 12 0 101 0.2s 24MB 0.6s 24MB
Modelica_Synchronous 827kB 246kB 7 0 9 0.4s 44MB 7.2s 107MB
NcDataReader2 12kB 2kB 1 0 12 0.1s 18MB 0.0s 18MB
ObjectStab 243kB 44kB 22 0 159 0.3s 33MB 0.9s 44MB
OpenHydraulics 530kB 26kB 30 0 162 0.2s 44MB 1.7s 44MB
OpenIPSL 1,294kB 30kB 52 0 402 0.6s 90MB 3.9s 90MB
PNlib 816kB 76kB 5 0 224 0.3s 44MB 1.6s 59MB
PhotoVoltaics 271kB 21kB 35 0 118 0.2s 24MB 1.2s 33MB
PhotoVoltaics_TGM 100kB 7kB 20 0 20 0.1s 18MB 0.5s 18MB
Physiolibrary 886kB 265kB 7 0 10 1.0s 44MB 4.7s 123MB
Physiomodel 3,417kB 3,196kB 2 0 4 0.9s 186MB 44.8s 991MB
PowerGrids 643kB 26kB 17 0 202 0.3s 44MB 1.6s 44MB
PowerSystems 1,973kB 109kB 5 0 104 1.6s 90MB 3.7s 123MB
ScalableTestSuite 6,186kB 3,869kB 14 0 22 0.8s 254MB 45.8s 1,002MB
SiemensPower 400kB 16kB 95 0 169 0.3s 33MB 1.0s 33MB
SolarTherm 1,161kB 62kB 264 2 534 1.2s 74MB 4.7s 74MB
Spot 1,944kB 115kB 6 0 90 1.4s 90MB 3.9s 107MB
SystemDynamics 1,216kB 1,216kB 1 0 1 0.3s 74MB 3.5s 396MB
ThermalSeparation 4,642kB 1,123kB 134 4 533 3.1s 138MB 14.7s 270MB
ThermoPower 2,502kB 930kB 8 1 10 1.2s 106MB 19.8s 350MB
ThermoSysPro 4,588kB 343kB 594 0 980 1.9s 186MB 24.1s 300MB
iPSL 3,068kB 852kB 41 0 534 0.7s 106MB 5.7s 122MB

Session 7A: Modelica Language

DOI
10.3384/ecp21181529

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

535

@@ -3,7 +3,7 @@
"Controller for single zone VAV system"
extends Modelica.Blocks.Icons.Block;

- parameter Modelica.SIunits.Temperature TSupChi_nominal
+ parameter Modelica.Units.SI.Temperature TSupChi_nominal

"Design value for chiller leaving water temperature";
parameter Real minAirFlo(
final min=0,

@@ -11,10 +11,10 @@
final unit="1")
"Minimum airflow fraction of system"
annotation(Dialog(group="Setpoints"));

- parameter Modelica.SIunits.DimensionlessRatio minOAFra
+ parameter Modelica.Units.SI.DimensionlessRatio minOAFra

"Minimum outdoor air fraction of system"
annotation(Dialog(group="Setpoints"));

- parameter Modelica.SIunits.Temperature TSetSupAir
+ parameter Modelica.Units.SI.Temperature TSetSupAir

"Cooling supply air temperature setpoint"
annotation(Dialog(group="Setpoints"));

parameter Buildings.Controls.OBC.CDL.Types.SimpleController controllerTypeHea=

Listing 6. An example of a typical diff in Buildings, which looks good.

@@ -5,16 +5,16 @@

Modelica.Blocks.Sources.Sine mixAirTem(
amplitude=7.5,

- freqHz=1/86400,
+f =1/86400,

offset=20 + 273.15) "Mixed air temperature"
annotation (Placement(transformation(extent={{-100,80},{-80,100}})));

Modelica.Blocks.Sources.Sine retAirTem(
amplitude=10,

- freqHz=1/86400,
+f =1/86400,

offset=21 + 273.15) "Return air temperature"
annotation (Placement(transformation(extent={{-100,-70},{-80,-50}})));

Modelica.Blocks.Sources.Sine outAirTem(
- freqHz=1/86400,
+ f =1/86400,

amplitude=6,
offset=18 + 273.15) "Measured outdoor air temperature"
annotation (Placement(transformation(extent={{-100,-40},{-80,-20}})));

@@ -51,7 +51,7 @@
annotation (Placement(transformation(extent={{-100,-10},{-80,10}})));

Modelica.Blocks.Sources.Sine supAirTem(
amplitude=7,

- freqHz=1/86400,
+f =1/86400,

offset=13 + 273.15) "Supply air temperature"
annotation (Placement(transformation(extent={{-100,-100},{-80,-80}})));

equation

Listing 7. An example of an uncommon diff in Buildings. The results are reasonable, with only local changes. However, the
indentation has been changed except where freqHz was the first modification.

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

536 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181529

Future work includes not considering parentheses
whitespace, which requires changing OpenModelica to
never add or remove parentheses in its internal represen-
tation. This change would resolve most issues where files
failed to merge. Implementing this change would make
the algorithm only work in tools that preserved parenthe-
ses in its unparsing, making the diff algorithm only work
well with OpenModelica.

Given this knowledge, it can be concluded that the
given approach will not work to merge any arbitrary
changes of Modelica code. However, the approach should
work well when it is integrated with a tool that preserves
as much of the original structure as possible (including
positions of parentheses, the exact string representation of
floating point numbers, as well as the order of modifica-
tions and connections).

There are alternative approaches that would make li-
brary development easier, such as Modelica tools mak-
ing edits directly in the concrete syntax tree. However,
this approach requires a much more targeted approach and
needs to be considered at an early stage of development.
Another approach would be to use the same version of
a Modelica tool for all edits of Modelica code, or a for-
matter that enforces consistent formatting before making
a commit to the source code management system. This
approach makes it harder to make manual changes to the
source code since the tool may automatically revert the
changes as they do not conform to its formatting rules.

Acknowledgments
This research was funded by Vinnova in the ITEA EMPH-
YSIS project (grant number 2017-05121). Support from
the Swedish Government has also been received through
the ELLIIT project and through SSF in the LARGEDYN
project (grant number ITM17-0154).

References
Butler, Nicholas (2009). Investigating Myers’ diff algorithm:

Part 1 of 2. URL: https : / /www.codeproject . com/Articles /
42279 / Investigating - Myers - diff - algorithm - Part - 1 - of - 2
(visited on 2021-04-21).

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Google (2019). Diff Match Patch. URL: https : / / code . google .
com/p/google-diff-match-patch/ (visited on 2021-04-21).

Hashimoto, Masatomo and Akira Mori (2008). “Diff/TS: A Tool
for Fine-Grained Structural Change Analysis”. In: 2008 15th
Working Conference on Reverse Engineering, pp. 279–288.
DOI: 10.1109/WCRE.2008.44.

Matsumoto, Junnosuke, Yoshiki Higo, and Shinji Kusumoto
(2019). “Beyond GumTree: A Hybrid Approach to Generate
Edit Scripts”. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR), pp. 550–554.
DOI: 10.1109/MSR.2019.00082.

Modelica Association (2017-04). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Spec-
ification Version 3.4. Tech. rep. Linköping: Modelica As-
sociation. URL: https : / / www . modelica . org / documents /
ModelicaSpec34.pdf.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
html.

Myers, Eugene (1986). “An O(ND) difference algorithm and its
variations”. In: Algorithmica 1, pp. 251–266. DOI: 10.1007/
BF01840446.

Tichy, Walter (1984-11). “The String-to-String Correction Prob-
lem with Block Moves”. In: ACM Trans. Comput. Syst. 2.4,
pp. 309–321. ISSN: 0734-2071. DOI: 10 . 1145 / 357401 .
357404.

Session 7A: Modelica Language

DOI
10.3384/ecp21181529

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

537

538 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Numerically Robust Six-Equation Two-Phase Flow Model
for Stationary and Moving Systems in Modelica

Johannes Brunnemann1 Ales Vojacek1 Thomas Koch1

1XRG Simulation GmbH, Germany, {brunnemann,vojacek,koch}@xrg-simulation.de

Abstract
We present a physics based Modelica finite volume flow
model that separately balances vapour and liquid phase.
By using extensive state variables and a special mass flow
regularisation, the model can cope with the possible van-
ishing or emerging of a phase in a numerically robust way.
Although at prototype stage, the model already exhibits
all required capabilities. These are demonstrated in fea-
ture testers and in a model of a natural convection driven
cooling cycle operating under external acceleration forces.
Keywords: two phase flow, six equation model, evapo-
rating and cooling cycle, natural convection, moving sys-
tems, ClaRa library

1 Introduction
For the modelling of two phase flows, the assumption of a
homogeneous spatial mixture of liquid and vapour phase
is widely used in Modelica. Both phases are taken in ther-
mal and mechanical equilibrium (equal temperature and
static pressure) and form a lumped mass flow. However
these assumptions are not always applicable, in particu-
lar in situations where vapour and liquid phase are ex-
pected to move independently. Within the NAKULEK1

project options for passive cooling of power electronics
in aircrafts have been investigated regarding their dimen-
sioning and reliability under aircraft flight conditions. In
these cooling circuits liquid coolant evaporates at the hot
electronic equipment. The vapour then releases its heat
in a condenser, see figure 7. The flow of the coolant is
solely driven by natural convection. However sufficient
heat removal has to be ensured at any time during opera-
tion of the aircraft. Hence the effect of external acceler-
ation forces due to flight manoeuvres on the coolant flow
has to be analysed, in particular rotations of the cooling
circuit. These may lead to induced liquid flows, shift-
ing vapour and liquid volume fractions at different spatial
positions in the circuit. Experimental studies have been
conducted by the project partners TUHH (Albertsen and
Schmitz 2019) and ZAL (Quaium and Kuhn 2020), that
additionally employ phase change material at the evapora-
tor in order to buffer heat flow peaks.

Based on the ClaRa library (ClaRa Development Team
2021) a Modelica library containing supplementary sys-

1NAKULEK - Natural Circulation driven Cooling of Power Elec-
tronics (German: Naturumlaufkühlung für Leistungselektronik).

tem models of the test facilities was created by the project
partner XRG Simulation GmbH (Brunnemann 2020).

This paper introduces a central element of that library:
a detailed two phase flow model, based on a finite volume
realisation of the so called 6-equation approach. It pro-
vides balance equations for mass, energy and momentum
separately for vapour and liquid phase (hence 6-equation
model) and considers dynamic external acceleration while
allowing counter-directional movement of the phases. Al-
though the model is at prototype stage it already exhibits
all desired capabilities, as demonstrated in section 3.

2 Model Development
The 6-equation model approach is well established in the
literature (Whalley 1987; Sokolichin 2003; Brennen 2005;
Ghiaasiaan 2008) and realised in several power plant sim-
ulators, e.g. APROS (Hänninen and Ylijoki 2008). In
Modelica, two phase flows are mostly treated as homo-
geneous flows with common balance equations for both
phases (3-equation model) (as e.g. in (Francke 2014) or
the Modelica Standard library). Sometimes these homo-
geneous models are extended by phenomenological mod-
els for interphase velocity difference (slip) or heat transfer
and/or friction, e.g. in (Hoppe, Gottelt, and Wischhusen
2017).

An alternative treatment is the moving boundary ap-
proach (Jensen and Tummescheit 2002; Bonilla et al.
2012), where the spatial regions of single-phase and two
phase are computed dynamically, but the two-phase region
is still modelled as a homogeneous model.

In (Bauer 1999) a an advanced evaporator model was
presented, with a common energy balance of the phases
but (optional) separate momentum balance. This model
already demonstrated the advantage of extended balanc-
ing, however numerical problems occurred at vanishing
vapour phase.

Separate balancing of vapour and liquid phase, dou-
bles the number of balance equations per control volume.
Beside the doubling the equations, such an extension in-
troduces a substantial number of additional flows in the
balance equations, due to interaction of the co-existing
phases. An overview is given in Table 1.

2.1 Limitations of Specific Quantity Approach
For realizing a 6-equation model based on finite control
volumes in Modelica one has to consider that the control

DOI
10.3384/ecp21181539

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

539

Table 1. Flows considered in homogeneous 3-equation flow
model compared to 6-equation model. Simple doubling for both
phases is denoted by "(liq+vap)", interaction between phases
is denoted by "(liq↔vap)". Additional flows of the 6-equation
model are marked in blue.

Flow 3 equation 6 equation

Mass convective convective (liq+vap)
flows phase change (liq↔vap)

Enthalpy convective convective (liq+vap)
flows phase change (liq↔vap)

Heat to wall to wall (liq+vap)
flows interphase (liq↔vap)

Momen- static p static p (liq+vap)
tum flows water level (liq+vap)

dynamic p dynamic p (liq+vap)
phase change (liq↔vap)

wall friction wall friction (liq+vap)
interphase slip (liq↔vap)

gravity gravity (liq+vap)
external acceleration

volume V` and hence the volume fraction ε` =V`/Vtot of a
particular phase ` ∈ {liq,vap} varies with time. Only the
total volume Vtot = Vvap +Vliq is constant. Moreover for
single phase flow, the other phase is totally absent. For
an equation based Modelica model this implies that the
time evolution for states of that particular phase ` becomes
meaningless in the limit ε` → 0. This issue has been ad-
dressed e.g. in (Jensen and Tummescheit 2002; Bonilla et
al. 2012) where time evolution of states of the vanishing
phase are mapped onto those of the other phase as dummy
equation. For this mapping the form of the balance equa-
tions has to be modified: they need to be "switched over"
for volume fractions close to zero but also "switched back"
to the original zone physics if the volume of that zone ex-
ceeds a certain lower bound.

The ClaRa library (ClaRa Development Team 2021)
features pipe models using a homogeneous 3-equation fi-
nite volume approach, where a pipe flow is discretised
along flow direction into a one dimensional so called en-
ergy grid consisting of Ncv control volumes (energy cells).
In each energy cell specific enthalpy h and static pres-
sure p are chosen as states. Moreover flow velocity w is
balanced on a staggered flow grid consisting of Ncv + 1
flow cells, see Figure 1 with (for the 3-equation model
assumed) unified vapour/liquid control volumes. Time
evolution for pressure is derived from the mass balance
via Equation 11 and Equation 12 by using the fact that
V = const for the homogeneous 3-equation-approach.

While the 3-equation model assumes thermal and me-
chanical equilibrium (equal temperatures and static pres-
sure) as well as spatial homogeneity of the phases, the
6-equation model only assumes mechanical equilibrium

(equal static pressures). From that we created (as a
first attempt) a 6-equation model with state variables
hvap,hliq,wvap,wliq, p,εvap and tried to cope with vanish-
ing phases according to the "switching" of (Bonilla et al.
2012). However it turned out that the according modifi-
cation of the balance equations causes numerical stability
issues. In particular the "switching" procedure appears to
be problematic, as all balance equations are numerically
coupled. Additionally the "switch back" to physical time
evolution for an emerging phase turns out to be hard to de-
fine consistently. The definition of the state derivatives for
hvap/liq,wvap/liq becomes meaningless if massvap/liq→ 0.
Moreover the volume fraction εvap/liq is directly involved
into computation of friction pressure loss and heat trans-
fer through computation of contact surfaces. If εvap is a
state, then numerically it may happen that 0 ≤ ε ≤ 1 can
be violated by numerical precision. This in turn produces
numerical instabilities, e.g. diverging heat flows. A re-
thinking of these issues revealed the following insights:

1. It is easier to regulate flows in a conservation law
than to regulate the actual form of that law.

2. In the context of vanishing masses and dynamic con-
trol volumes we should refrain from using specific
quantities as states. Rather we should only balance
"countable" (extensive) quantities.

3. Static Pressure p and volume fraction εvap should not
be used as states.

2.2 From Specific to Absolute Quantities
Consequently we decided to base the 6-equation model
on absolute quantities, rather then specific quantities. See
Table 2 for a comparison. This means, that the specific

Table 2. Absolute and specific quantities. For completeness
particle number N and particle weight M are given in order to
illustrate the ’extensive’ nature of the absolute quantities. For
V = const , Equation 11 and Equation 12 can be used in order to
define a time evolution for pressure instead of mass.

Quantity absolute specific

particle number N

mass m M = m/N

internal energy U u =U/m

enthalpy H h = H/m

momentum I w = I/m

volume V v =V/m

quantities are not states. The time evolution of the system
does not depend on the behaviour of the specific quanti-
ties. They are just used as algebraic functions in order to
define the flows of enthalpy, momentum and volume as
well as inputs to the media model:

H f low = h ·m f low I f low =w ·m f low Vf low = v ·m f low (1)

Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica

540 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181539

Notice that these definition are independent of time vary-
ing cross sectional area A�,` or volume V`: mass and ab-
solute quantity are independent of volume as well as the
mass flow rate m f low,`, which can be computed from mo-
mentum I` according to

m f low,` = w` ·ρ` ·A�,` =
I`
δx

. (2)

Here we have used A�,` = ε` ·A� and the fact that over-
all control volume Vtot = A� · δx (δx is the discretization
length of the flow grid) is constant in time.

2.3 Alternative State Selection
We will now work out the transition to new extensive state
variables in detail:

{p`,h`,w`}→ {m`,U`,H`, I`} (3)

Avoidance of specific quantities introduces one more state
on the right hand side. In order to avoid p, ε as states,
we use absolute Enthalpy H` in addition to internal energy
U`. The model will be set up on a staggered grid according
to (Figure 1). Circles inside the control volumes in Fig-

......

......

J

j

in
le

t

ou
tle

t

...

...

...

...

design flow direction

1 2 j+1 Ncv Ncv+1j
1 J J+1 Ncv

flow cells

energy cells

I`

m`
U`
H`

Figure 1. Staggered grid used in model with inlet and outlet
connectors for each phase `∈ {1,2} ≡ {liq,vap}. Top line: flow
cells with momentum balance (I`). Bottom line: energy cells
with mass (m`) and energy (U`,H`) balance.

ure 1 represent state locations. Small " j" denotes flow cell
labels. Capital "J" denotes energy cell labels. The vol-
ume fraction εvap is variable in each control volume. Each
quantity "x" naturally defined on one of the grids can be
defined on the other grid by suitable interpolation. The
interpolated quantity "x" is marked by an overline.

We will denote the species index by `, where ` = 1⇔
liq, `= 2⇔ vap. Moreover we introduce the sign

σ` =

{
1 if `= 1
−1 if `= 2

With this convention we have for the total volume Vtot =
const =V1 +V2 and define the volume fractions

ε1 =
V1

Vtot
= 1− ε ε2 =

V2

Vtot
= ε , (4)

which implies

dV2

dt
=−dV1

dt
=Vtot

dε

dt
(5)

We assume mechanical equilibrium between the phases:

p = p1 = p2
d p
dt

=
d p1

dt
=

d p2

dt
(6)

2.3.1 Mass Balance

It is straight forward to show for the mass m`:

d
dt

m`[J] = m f low,`[j]−m f low,`[j+1]

+σ` m(cond)
f low [J]−σ` m(evap)

f low [J] (7)

Mass flows m f low,`[j] are computed from momentum I`
according to Equation 44. The phase change mass flows
m(cond)

f low ,m(evap)
f low are computed according to section 2.6.3.

2.3.2 Energy Balance

For the internal energy U` we have:

d
dt

U`[J] = H f low,`[j]−H f low,`[j+1]

+Q(`→int)
f low [J]+Q(`→wall)

f low [J]

+σ` H(cond)
f low [J]−σ` H(evap)

f low [J]

−p[J]
dV`[J]

dt
(8)

Note that we have neglected kinetic and potential en-
ergy. For large flow velocities of considerable masses or
for flows along vertical pipes these terms can be added.
The convective enthalpy flows H f low,`[j] are obtained
according to Equation 40. The conductive heat flows
Q(`→int)

f low [J],Q(`→wall)
f low [J] are described in section 2.6.1.

The enthalpy flows due to phase change are computed as

H(cond)
f low [J] = m(cond)

f low [J] ·h(bub)[i] (9)

H(evap)
f low [J] = m(evap)

f low [J] ·h(dew)[i] (10)

where h(bub),h(dew) denote bubble / dew specific enthalpy.
This assumes that the phase change enthalpy difference
∆h(evap) = h(dew)−h(bub), stays inside the outgoing phase:
condensation heat Q(cond)

f low = ∆h(evap)m(cond)
f low stays in-

side the vapour phase and conversely evaporation heat
Q(evap)

f low = ∆h(evap)m(evap)
f low is taken from the liquid phase.

In this way phase change is numerically stabilized, as liq-
uid phase is more cooled and vapour phase more heated
by phase change.

The last term on the right hand side of Equation 8 de-
notes possible expansion work, as the control volume of
each phase ` is variable (Skogestad 2009).

Session 7A: Modelica Language

DOI
10.3384/ecp21181539

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

541

2.3.3 Enthalpy Time Evolution

In the following we will leave out the `-index for sim-
plicity, but re-introduce it at the end. From the definition
of mass m = ρV it follows for the density ρ in a time-
dependent control volume V :

dρ

dt
=

1
V

{
dm
dt
−ρ

dV
dt

}
(11)

But from ρ = ρ(p,h) it also holds that

dρ

dt
=

∂ρ

∂ p

∣∣∣∣
h︸ ︷︷ ︸

d p
dt

+
∂ρ

∂h

∣∣∣∣
p︸ ︷︷ ︸

dh
dt

= A
d p
dt

+ B
dh
dt

(12)

This can be written as:

d p
dt

=
1
A

{
dρ

dt
−B

dh
dt

}
(13)

From U = H− pV it follows that

dH
dt

=
dU
dt

+
d p
dt

V + p
dV
dt

(14)

Moreover

dh
dt

=
d
(H

m

)
dt

=
1
m

{
dU
dt

+
d p
dt

V + p
dV
dt
− dm

dt
h
}

(15)

Here we have used Equation 14. Now we plug Equa-
tion 11 and Equation 15 into Equation 13. After some
algebraic manipulations we arrive at:

d p
dt

=
1
V

1
X

{
Y

dm
dt
−B

dU
dt
−Z

dV
dt

}
, (16)

where we have introduced the shorthands:

X = ρA+B Y = ρ+Bh Z = ρ
2+Bp

Now we can plug this into Equation 14 in order to replace
the d p/dt-term. After some manipulation this gives:

dH
dt

= ρ
A
X

dU
dt

+
Y
X

dm
dt
−ρ

W
X

dV
dt

. (17)

Here we have used W = ρ−pA.

Application to liq-vap-system Now we re-introduce
the species indices and set `= 1⇔ liq, `= 2⇔ vap. Using
Equation 16 we thus get:

d p1

dt
=

1
V1

1
X1

{
Y1

dm1

dt
−B1

dU1

dt
−Z1

dV1

dt

}
(18)

d p2

dt
=

1
V2

1
X2

{
Y2

dm2

dt
−B2

dU2

dt
−Z2

dV2

dt

}
(19)

Now we subtract Equation 19 from Equation 18. Using
Equation 6 and Equation 4, Equation 5 we can express:

Vtot
dε

dt
= −ε2X2Y1

Q12

dm1

dt
+

ε2X2B1

Q12

dU1

dt

+
ε1X1Y2

Q12

dm2

dt
− ε1X1B2

Q12

dU2

dt
(20)

where Q12 := ε1X1Z2 + ε2X2Z1. Writing out Equa-
tion 17 for both phases gives:

dH1

dt
= ρ1

A1

X1

dU1

dt
+

Y1

X1

dm1

dt
+ρ1

W1

X1
Vtot

dε

dt
dH2

dt
= ρ2

A2

X2

dU2

dt
+

Y2

X2

dm2

dt
−ρ2

W2

X2
Vtot

dε

dt

Now we plug in Equation 20 in order to replace the dε/dt-
term and can finally write for the time derivatives of the
total enthalpies :(

d
dt H1,

d
dt H2

)
=
(

d
dt m1,

d
dt U1,

d
dt m2,

d
dt U2

)
A (21)

with the matrix A given as

A=

Y1

X1
−ρ1

W1

X1

ε2X2Y1

Q12
ρ2

W2

X2

ε2X2Y1

Q12

ρ1
A1

X1
+ρ1

W1

X1

ε2X2B1

Q12
−ρ2

W2

X2

ε2X2B1

Q12

ρ1
W1

X1

ε1X1Y2

Q12

Y2

X2
−ρ2

W2

X2

ε1X1Y2

Q12

−ρ1
W1

X1

ε1X1B2

Q12
ρ2

A2

X2
+ρ2

W2

X2

ε1X1B2

Q12

2.3.4 Momentum Balance
As is the case for mass and energy balance, we use abso-
lute momentum I` as state variable, due to the time depen-
dence of the control volume V`. Also the cross sectional
flow area A�,` varies with time. Therefore we use mo-
mentum flows denoted by I f low, that is we balance forces
instead of force area densities (pressure drops).

d
dt

I`[j] = I(stat)
f low,`[j]+ I(grav)

f low,`[j]− I(wall)
f low,`[j]+σ` I(int)

f low,`[j]

+I(adv)
f low,`[J−1]− I(adv)

f low,`[J]+ I(WL)
f low,`[J−1]− I(WL)

f low,`[J]

+σ` I(cond)
f low,` [j]−σ` I(evap)

f low,` [j] (22)

Static pressure force. We have

I(stat)
f low,`[j]

A�
= ∆p[j]ε`[j]+Csupp

d
dt

(
∆p[j]ε`[j]

)
τpass[j]

2
(23)

where ∆p[j] = (p[J− 1]− p[J]) is the static pressure dif-
ference. A� denotes the overall cross sectional area of the
pipe. The second term on the right hand side can be ac-
tivated via Csupp ∈ {0,1} in order to suppress numerical
high frequency oscillations with τpass[j] = δx[j]/wsound[j]
the passing time of a sound wave through the length δx[j]
flow control volume V [j].

Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica

542 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181539

Force due to gravity and external acceleration. The
model considers acceleration ~ggrav due to gravity as well
as dynamic external accelerations ~gext due to movement
of the pipe. The resulting overall acceleration vector ~g
is given by ~g = ~ggrav +~gext . Now consider the unit vetor
~ex pointing into design flow direction of the pipe. It is
given by ~ex = (~rout −~rin)/|~rout −~rin|, where ~rout ,~rin are
the position vectors of the outlet, inlet frame connector
(see section 2.7). Now we can decompose~g into

~g =~g‖+~g⊥ (24)

where~g‖ =
〈
~g,~ex

〉
~ex,
〈
·, ·
〉

denotes the scalar product. Us-

ing g‖ = |~g‖| we can write for the overall force I(grav)
f low,`[j]

induced by gravity and acceleration:

I(grav)
f low,`[j] = g‖ m`[j] (25)

The remainder ~g⊥ in Equation 24 is perpendicular to de-
sign flow direction and is given by~g⊥ =~g−~g‖.
Water level force. Using g⊥ = |~g⊥| of Equation 24, we
can write

I(WL)
f low,`[J] =

m`[J]
δx[J]

WL`[J] g⊥ (26)

WL is the water level height, computed from the spatial
separation model (see section 2.6.4). At clear spatial
separation of the phases, WL causes ’acceleration’ pres-
sure p(acc)

` = ρ` · g⊥ ·WL` (mostly) inside the liquid. This
causes an effective static pressure p(e f f)

stat,` = pstat + p(acc)
` .

Since static pressure acts isotropically, this in turn results
in I(WL)

f low,` along flow direction (compare to Equation 23).

Here we use ρ` =
m`
V`

= m`
δxA�ε`

. Multiplying p(acc)
` by the

phase cross sectional area A�ε` Equation 26 is obtained.

Wall Friction and Interphase Friction. are denoted by
I(wall)

f low,`[j] and I(int)
f low,`[j], see section 2.6.2.

Force due to advection (dynamic pressure). Based on
the usual formulation of the advective force,

I(adv)
f low,` = w`

I`
δx

= w2
` ·ρ` ·A�,` , (27)

and seeing how the mass flow and flow velocity are com-
puted from the momentum state (Equation 2), we may
write:

I(adv)
f low,`[J] =

{
w`[j]m f low,`[j] if w`[J]> 0

w`[j+1]m f low,`[j+1] else
(28)

In this formulation we avoid the time varying cross sec-
tional area and density.

Phase Change Forces Beside mass and enthalpy trans-
fer, phase change also causes momentum transfer between
the phases.

I(evap)
f low,` [j] = m(evap)

f low [j] w1[j] (29)

I(cond)
f low,` [j] = m(cond)

f low [j] w2[j] (30)

Here the interpolated phase change mass flows are com-
puted according to Equation 45.

2.4 Regularization of the Media Data in Case
of a Vanishing Phase

We consider two VLE-media, one for the vapor phase and
one for the liquid phase, that take pressure p and specific
enthalpy p as inputs. Moreover we use a VLE-object tak-
ing the overall homogeneous specific enthalpy

hhom =
H1 +H2

m1 +m2

Due to the mechanical equilibrium assumption p =
p1 = p2 it holds for bubble specific enthalpy that
h(bub)

1 = h(bub)
2 = h(bub)

hom = h(bub) and for dew specific en-
thalpy h(dew)

1 = h(dew)
2 = h(dew)

hom = h(dew). We use the actual
specify enthalpy

h` =
H`

max(mreg,m`)
(31)

as auxiliary quantity in order to define the regularized spe-
cific quantities

h(reg)
1 = min

(
h(bub),h1

)
h(reg)

2 = max
(

h(dew),h2

)
(32)

Here we have introduced a regulator mreg for vanishing
phase. The thus defined specific enthalpies h(reg)

1 ,h(reg)
2

are taken as input to the VLE-media objects together with
static pressure p. Note that Equation 32 allows for a short
time that specific enthalpy h` of a phase ` enters two phase
region. However due to evaporation and condensations
mass flows of Equation 54 the phase will return to pure
phase after a while. The suggested construction avoids
numerical issues due to heavily varying media data inside
two-phase-region.

2.4.1 Pressure and Volume Fraction
The introduction of the new state variables now allows to
define static pressure p and volume fraction ε` in terms
of the new states. For ` = {1,2} = {liq,vap} we intro-
duce the overall enthalpy Htot = H1 +H2 and the total in-
ner energy Utot = U1 +U2 as well as the volume fraction
ε1 = εliq = 1− ε , εvap = ε2 = ε . Now we use the defini-
tions H` =U`+ pV` and Htot =Utot+ pVtot and Equation 6
in order to write down

p =
Htot−Utot

Vtot
ε` =

H`−U`

Htot−Utot
(33)

In turn this also allows to express the time derivatives

d
dt

p =
1

Vtot

(
d
dt

Htot−
d
dt

Utot

)
(34)

Differentiating ε` with respect to time and simplifying the
obtained expressions one gets for the time derivative of the
volume fraction:

− d
dt

ε1 =
d
dt

ε2 =
1

Vtot
· ε1X1R2− ε2X2R1

Q(reg)
12

, (35)

Session 7A: Modelica Language

DOI
10.3384/ecp21181539

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

543

where R` = Y`
dm`
dt −B`

dU`
dt and

Q(reg)
12 =

{
εreg if |Q12|< εreg

Q12 else

2.5 Consistent Interpolation of Half Spaced
Quantities on Staggered Grid

Here we give a brief description, how quantities defined on
either energy or flow cell grid Figure 1 can be consistently
defined on the other grid by interpolation.

Volume

V `[j] =
V`[J−1]+V`[J]

2
V tot[j] =V 1[j]+V 2[j] (36)

Cross Sectional Area

A�,`[j] = A�[j] ε`[j] A�[j] =
V tot[j]
δx[j]

(37)

Length of Volume Element

δx[j] =
δx[J−1]+δx[J]

2
(38)

Volume Fraction

ε`[j] =
V `[j]
V tot[j]

=
Vtot[J−1]
2Vtot[j]

ε`[J−1]+
Vtot[J]
2Vtot[j]

ε`[J] (39)

Mass of Flow Cells While the previous quantities are
defined in a straight forward way, the mass m`[j] of
a flow cell needs some additional considerations. In
a homogeneous 3-equation model one would choose
m`[j] = (m`[J − 1] + m`[J])/2. However this is not
consistent with the possible vanishing of a particular
phase. To see this recall Equation 2, that expresses
the mass flow m f low,` in terms of the momentum I`:
To see this, consider two neighbour energy cells, with
ε2[J−1] = 0 and ε2[J]> 0. Clearly, there cannot be vapour
mass flow from [J − 1] → [J], as m2[J − 1] = 0. Only
vapour mass flow in opposite direction [J]→ [J− 1] may
occur. And the model shall account for this. If we ’count’
mass as a state, then the pure mass flows carry that quan-
tity, similarly to e.g. enthalpy flows

H f low,`[j] = m f low,`[j]h`[j] , (40)

where the mass flow carries specific enthalpy h[j]. In the
latter case one often uses an upstream scheme in order to
define specific enthalpy h[j] at the center of a flow cell,
that is

h`[j] =
{

h`[J−1] if m f low,`[j]> 0
h`[J] if m f low,`[j]< 0

(41)

Accordingly we may use an upstream scheme for the mass
m`[j] of a flow cell:

m(up)
` [j] = ς

(I)
` [j] ·m`[J−1]+

(
1− ς

(I)
` [j]

)
·m`[J]

with ς
(I)
` [j] = sm(Ireg,0, I`[j]), where sm(·) de-

notes the stepSmoother function contained in

Modelica.Fluid.Dissipation.Utilities. Ireg is
a regulator. Then we set

m`[j] = max
(

mreg,m
(up)
` [j]

)
, (42)

with mreg a regulator. At present, the approach still uses
absolute boundaries for the regulators. In principle, these
should be scaled according to a characteristical smallest
number (such as smallest length or volume) of the system.
This way, the approach will be robust for varying system
sizes.

Flow Velocities The flow velocities can be well defined:

w`[j] = max
(
−ws[j],min

(
ws[j],

I`[j]
m`[j]

))
, (43)

where we limit the flow velocity to the speed of sound
ws in order to avoid unrealistic flow velocities in the limit
of small masses mreg, which may lead to unwanted fric-
tional momentum flows. By construction our model as-
sumes subsonic flow speeds. At energy cell flow locations
we use the averaged momentum

w`[J] = max
(
−ws[J],min

(
ws[J],

I`[j]+ I`[j+1]
m`[J]

))
Mass Flows are then written as

m f low,`[j] = ς
(m)
` [j] · I`[j]

δx[j]
, (44)

where ς
(m)
` [j] = sm(mmax,mmin,m`[j]) and mmax,mmin are

regularization parameters. This construction ensures that
outgoing mass flow of a particular phase goes to numeric
zero if the mass of that phase inside the control volume
approaches zero. In particular no mass of a phase ` can be
extracted from a control volume with ε` = 0. On the other
side mass can be easily injected from control volumes with
ε` > 0 into control volumes with ε` = 0. This becomes
especially important in situations, where e.g. vapour is
injected from the outside into a pipe entirely filled with
liquid.

Phase Change Mass Flows at momentum state location
are computed as the sum of the phase change mass flows
of the two adjacent energy half cells:

m(evap)
f low [j] =

m(evap)
f low [J−1]+m(evap)

f low [J]

2
(45)

m(cond)
f low [j] =

m(cond)
f low [J−1]+m(cond)

f low [J]

2
(46)

2.6 Replaceable Models
2.6.1 Heat Transfer
For each position J we have for the heat flows:

Q(`→int)
f low = ς

(m)
` ·αint ·A12 · (Tint −T`) (47)

Q(`→wall)
f low = ς

(m)
` ·α`,wall ·A`,wall · (heat.T −T`) (48)

Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica

544 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181539

Here again ς
(m)
` [J] = sm(mmax,mmin,m`[J]) denotes the

stepsmoother function. The mean interphase surface tem-
perature Tint is computed from imposing a steady state en-
ergy balance at the phase contact surface:

0 = ∑
`

Q(`→int)
f low (49)

Similarly the heat flow for the heat port is computed as

heat[J].Q f low = ∑
`

Q(`→wall)
f low [J] (50)

2.6.2 Momentum Transfer
Wall + interfacial friction/ heat transfer models should
give truly zero momentum/heat flow at vanishing phase.
As default we use a 0-equation turbulence (mixing length)
approach (VERSTEEG and MALALASEKERA 1995),
which describes the effect of turbulence by an effective
modification of dynamic viscosity µ`:

µ`[j] = µ
(0)
` [j] · (1+CF` ·Re`[j]); (51)

with Reynolds number Re`[j] =
∣∣w`[j]

∣∣ρ`[j]δx[j]/µ
(0)
` [j]

and a calibration factor CF`. Then we can write for the
friction between the phases

I(int)
f low,`[j] =

(w2[j]−w1[j])
max(lreg,∆l12[j])

µ`[j] A12[j] (52)

Similarly we have for the friction force between phase `
and the pipe walls:

I(wall)
f low,`[j] =

w`[j]
max(lreg,∆l`,wall [j])

µ`[j] A`,wall [j] (53)

Moreover A12 denotes the contact area between the phases
and ∆l12 the mean distance between the center of the phase
control volumes. Similarly A`,wall denotes the contact sur-
face area between phase ` and pipe wall and ∆l`,wall de-
notes the mean distance between phase control volume
and pipe wall. At present stage, we assume ideal phase
separation to derive these quantaties, as described in sub-
subsection 2.6.4. A flow regime model that computes A12
and and ∆l12 from an effective flow pattern (e.g., ideally
separated, homogeneous mixture) will be subject to future
work. Also, a more sophisticated turbulence model could
be implemented. From our experience Equation 51 en-
sures that wall and interphase friction play together in a
numerically stable way.

summary

CF

fluid[]fluid[]fluidInlet[]fluidInlet[] fluidOutlet[]fluidOutlet[]fluid_hom[]fluid_hom[]

par iCom

heat[]inletFrame outletFrame

eye[]

eye_int[]

inlet outlet

eye

Figure 2. Diagram layer with connectors and replaceable mod-
els for heat transfer, pressure drop, phase change, spatial distri-
bution and geometry.

2.6.3 Phase Change Models

The evaporation and condensation massflows are the
massflows from the liquid to the vapour phase control vol-
ume and vice versa. They are considered to be propor-
tional to the respective volume and, therefore, the avail-
able mass. Moreover, they scale with the steam quality
and come to a halt, if the outgoing phase vanishes:

m(evap)
f low [J] =

ς
(ε)
1 [J]
τevap

max
(
0,

h1[J]
h(bub)[J]

−1
)

max
(
0,m1[J]

)
m(cond)

f low [J] =
ς
(ε)
2 [J]
τcond

max
(
0,1− h2[J]

h(dew)[J]

)
max

(
0,m2[J]

)
(54)

Here ς
(ε)
` [J] = sm(εmax,εmin,ε`[J]) and εmax,εmin are reg-

ularization parameters. Moreover we have time constants
τevap,τcond . They can be thought of average time it takes
for bubbles to exit from liquid to vapour phase and mean
time it takes water drops coming from vapour phase in or-
der to enter liquid phase. Larger constants mean a slower
phase change mass flow, while smaller time constants
would imply very dynamic phase changes. The ansatz
could be improved by a flow regime depending boiling
model, considering the bubble formation, mean bubble di-
ameter and travel distance. The time constants should also
be affected by the contact area of the phases.

2.6.4 Spatial Separation

This model computes certain average contact areas and
distances as well as water level. So far a simple model is
implemented, assuming ideal phase separation and a cir-
cular pipe cross section.

A12[j] = 4 ·max(0,ε1[j] · ε2[j] ·A(0)
12 [j])

A`,wall [j] = max(0,ε`[j] ·Awall [j])

∆l12[j] = 4 ·max(d�/100,ε1[j] · ε2[j] ·d�/2)

∆l`,wall [j]] = max(d�/100,ε`[j] ·d�/2) (55)

here d� is the pipe diameter and A(0)
12 [j] = δx[j] · d� is

the maximum contact surface of the phases in a horizontal
cylindrical pipe at ideal separation. Water level WL1[J] is
computed from d� and liquid volume fraction ε1[J] for
a horizontal cylinder volume, assuming ideal separation.
Consequently WL2[J] = d�−WL1[J].

2.6.5 Geometry

The model features different geometries, smilarly to
ClaRa pipes, in particular it covers pipe bundles.

2.7 Connectors
Flow connectors are build from a two el-
ement array of ClaRa flow connectors
ClaRa.Basics.Interfaces.FluidPortIn and
ClaRa.Basics.Interfaces.FluidPortOut, one
for each phase. A vanishing phase is not problematic,

Session 7A: Modelica Language

DOI
10.3384/ecp21181539

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

545

since the static pressure is equal for both phases and
if we ensure to have a momentum state at one side of
the connector. Also in this case hout f low of that phase
is physically not relevant and can be set to a dummy
value. To connect the 6-equation model to a 3-equation
component, however, one would need a suitable adapter.
The adapter needs to ensure the compatibility with the
flow situation: In particular a homogeneous 3-equation
model cannot cope with counter flow of the phases.
One ClaRa.Basics.Interfaces.HeatPort_a
Heat port is attached to every control volume of the
energy grid. In order to account for external accel-
eration each model carries Frame connectors from
the Modelica.Mechanics.MultiBody package
Interfaces.Frame_a, Interfaces.Frame_b. They
also ensure consistency of three dimensional pipe
arrangements.

3 Applications
The newly developed 6-equation model was put into fea-
ture testing (single pipe) and system testing (several pipes
in system application). In this section we present three
prominent examples.

3.1 Feature Tests
3.1.1 Condensation in a Tilted Pipe
This is a classic example of counter-phase flow, which
is also a fair challenge for conventional CFD models:
Slightly overheated steam (at 3 bars) is injected from a

Figure 3. Condensation in the tilted pipe test model. Geometry:
length L=80 m, diameter d�=1 m, discretisation NCV =40, incli-
nation ∆z=20 m.

mass flow source into an inclined pipe from the inlet. The
bottom of the pipe is connected to a vapour and liquid
pressure boundary condition. The first and the last 20 m
of the pipe wall are heated to 295 °C. The middle section
of the pipe wall (40 m) is cooled to 5 °C, such that con-
densation occurs. The condensed liquid flows downward
in the direction of the slope. Pressure drop due to conden-
sation causes backflow of vapour in pipe section close to
the outlet. Hence, vapour is sucked into the pipe while liq-
uid rinses out at outlet. The selected results are presented
in Figure 4. The tester demonstrates applicability of the
model for heat exchangers where two phase flow occurs.

0.0
0.2
0.4
0.6
0.8
1.0

-2

-1

0

1

2

0 0.25 0.5 0.75 1

Vo
lu

m
e

Fr
ac

tio
n

[-
]

M
as

s
Fl

ow
[k

g/
s]

Tube length [-]

m f low,liqm f low,vap
εvap

Figure 4. Resulted steady state mass flow of vapour and liquid
together with volume fraction of vapour along the tilted pipe
during condensation scenario.

Not only the stationary hardware, but also moving devices
e.g. in vehicles, aircrafts or ships can be simulated.

3.1.2 Rotation Test
A horizontal tube is filled half with vapour and with liquid
(εliq = εvap = 0.5). The tube is then rotated 90°downwards
and back to the to the initial position. The tube is dis-

world

x

y

0
rotation1

varRotation

angles=rotIn

a

b

0
rotation3

v
l

2
1

2
1

trapezoid

firstOrder
PT1

Figure 5. Rotation test model. Geometry: L=10 m, Din=0.02 m,
NCV =41.

cretized with an odd number of control volumes. The
model is shown in Figure 5. The results of the simulation
scenario is presented in Figure 6 where the actual rotation
angle is displayed below, and above it, the volume frac-
tion of the liquid phase at the beginning, in the middle and
at the end of the tube is shown. Before the rotation, the
volume fractions are all at 50%. After the rotation, there
is no more liquid at the top of the tube, while the tube end
is completely filled with liquid. As expected, the volume
fraction settles vertically at 50% liquid and 50% vapour.
When turning back to horizontal position again, a decay-
ing wave formation is visible (enlarged area), before the
liquid level settles again uniformly at 50%.

3.2 Aircraft Cooling Circuit
3.2.1 Test Rig Model
The project partners at TUHH and ZAL (Albertsen and
Schmitz 2019; Quaium and Kuhn 2020) provided detailed
information on their passive cooling cycle test rigs, as well
as extensive data on the conditions and results of the mea-
surement campaigns. The basic structure of the respective

Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica

546 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181539

0

45

90

0 100 200 300 400 500 600
time [s]

0%

20%

40%

60%

80%

100%
L

iq
ui

d
vo

lu
m

e
fr

ac
tio

n
[%

]

49.5%

50.0%
50.5%

R
ot

at
io

n
an

gl
e

[°
]

Figure 6. Resulted liquid volume fraction of the rotation test
scenario.

test rigs was largely identical, the main difference being
the use of a single or three parallel evaporators. In both
cases, phase change material was considered as a heat load
buffer at the evaporator. Figure 7 shows our test rig model
within the Dymola graphical environment. The rising/-
downcoming pipes and mass flow meter, as well as the
evaporator and condenser models, are all based on the 6-
equation flow models described above.

vl
21

21

vl
21

21

3 eqn

6 eqn

B
12

Lx
10

T
xi

T, xi

v
l

2
1

2
1

m_flow_cooling

T_cooling

varPlanarRotation

a

b

firstOrder

rotationSet

world

x

y

PID

PID
p_set

p_measured

firstOrder3

booleanTable h_riser_out

h, xi

6
eq

nfirstOrder4

vl
21

21

fixedTranslation

a b

rotationSet1

sum1

Q_flow_wall

offset=0

20°R
is
er

Condenser

D
ow
ncom

er

Flowmeter

T
ub
e

E
va
po
ra
to
r

x

y

z

init inputs

Figure 7. Diagram of measurement test rig model.

3.2.2 Heat Up and Shut Down Scenario
The first test scenario involves a sudden increase in heat-
ing power at the evaporator, followed by a sudden shut-
down of the heater. Simulation results and measurement
data are compared in Figure 8. The model is brought to
steady state (corresponding the starting point of measured
data) in several steps. Simulation is started with liquid in
all the pipes and the cooling is on. After around 500 s, the
heating is switched on. PID controller removes portion
of flow until pressure reaches set point during operation.
At around 2000 s the PID controller is disabled and the

circuit is closed (self-regulating) and the system stabilizes
(reaches steady state at 710 W).

0

400

800

1200

1600

2400 2800

H
ea

tF
lo

w
[W

]

time [s]

0

4

8

12

16

2400 2800

Pr
es

su
re

dr
op

[k
Pa

]

time [s]

0

4

8

12

16

2400 2800

M
as

s
flo

w
[g

/s
]

time [s]

Q f low
Q f low,meas

d p
d pmeas

m f low,tot
m f low,tot,meas
m f low,liq
m f low,vap

Figure 8. Heat flow (left), Pressure drop between evaporator
inlet and condenser inlet (mid) and Mass flows of vapour and
liquid (right), during heat up and shut down scenario.

During steady state operation at 710 W, the total mass
flow through the system is around 11 g/s. Mass flow of
liquid mass flow of vapour in evaporator is 8 g/s and 3 g/s
respectively. During heat up to 1210 W, εvap increases.
As a consequence mass flow of liquid drops to 3 g/s and
mass flow of vapour increases to 5 g/s. After around 115
s (holding the new higher power level), a sudden power
off (0 W) is introduced. This causes a decrease of vapour
mass flow to 0 g/s and mass flow of liquid shortly increases
(peaking after 30 s from shut down) as evaporator walls
are still hot and pressure drop is high (caused by previous
high mass flow of vapour). After reaching the peak (14
g/s), the mass flow of liquid also goes to zero, as there
is no driving force (no heating). Figure 8 also shows the
pressure drop between evaporator inlet and condenser out-
let. There is higher pressure drop at higher heating power
resulting from higher mass flow of vapour. Simulation re-
sults are in very good agreement with measured values.
All steady state, heating ramp up and shut down processes
were captured very well. Although measurements only
provide information on the total mass flow, information on
vapour/liquid mass flow can be derived (using total mass
flow, pressure in the system and inlet/outlet temperature in
evaporator) and energy and mass balance equations. The
simulated results correspond very well to the derived val-
ues.

3.2.3 Rotation Scenario

The second scenario involves a rotation of the test rig run-
ning in steady state, reflecting a typical manoeuvre during
a flight. The system is heated up by 850 W and steady state
operation is achieved. At 2500 s a sudden (within 10 s)
clockwise rotation by 20°around Y axis is introduced. Af-
ter 300 s the system is turned back to normal position and
reaches its initial steady state. Our model already captures
the measured total mass flow drop during rotation qualita-
tively well. The quantitative deviation seems to be caused
by the sudden change of spatial liquid/vapour distribution

Session 7A: Modelica Language

DOI
10.3384/ecp21181539

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

547

and indicates that the currently simple models for friction
and spatial distribution need further elaboration.

0

5

10

15

20

25

2000 2500 3000

R
ot

at
io

n
an

gl
e

[-
]

time [s]

0

5

10

15

20

2000 2500 3000

M
as

s
Fl

ow
[g

/s
]

time [s]

m f low,tot
m f low,tot,meas
m f low,liq
m f low,vap

Rotation angle

Figure 9. Rotation angle (left) and Mass flows of vapour and
liquid (right) during the rotation scenario.

4 Summary & Outlook
In this paper we present a numerically robust implementa-
tion of detailed two phase model based on the six-equation
approach. To achieve this we introduce an alternative set
of extensive state variables from which specific quanti-
ties static pressure and volume fractions of the vapour and
liquid phase can be computed algebraically. The appli-
cability of the model is demonstrated in several testers.
Currently the model is further developed to feature more
detailed models for friction, spatial distribution and heat
transfer, e.g. (Hoppe, Gottelt, and Wischhusen 2017). It is
also straightforward to extend the model to feature multi-
component media. The model has potential application
in several areas of engineering, from aerospace, automo-
tive and naval systems design to power plants and process
technologies. Typical industrial systems with two phase
heat exchangers such as evaporators, boilers, steam gener-
ators and condensers would be typical example of appli-
cation, especially when it comes to non-standard transient
operation scenarios, e.g. start up/shut down, heat up/cool
down, filling or draining of the system under investigation.

Acknowledgements
The authors would like to thank the NAKULEK re-
search team as well as E. Makhova, T. Tumforde
and J. Eiden from XRG for support and discussions.
This work has been carried out
within the NAKULEK research
project, funded by the German
Federal Ministry for Economic
Affairs and Energy (grant num-
ber 20Q1519B).
Moreover we thank the anonymous referees for their valu-
able remarks.

References
Albertsen, Björn and Gerhard Schmitz (2019). NAKULEK - En-

twurf, Bau und Erprobung eines PCM-Kühlplatten Verbunds
für eine Naturumlaufkuehlung von Flugzeugsystemen : Ab-
schlussbericht. German. Technical University Hamburg, Ger-
many. DOI: https://doi.org/10.2314/KXP:1753985420. (Vis-
ited on 2021-04-19).

Bauer, O. (1999). “Modeling of two-Phase Flows with Model-
ica”. MA thesis. Department of Automatic Control, Lund In-
stitute of Technology, Sweden.

Bonilla, J. et al. (2012). “Object-Oriented Library of Switching
Moving Boundary Modelsfor Two-phase Flow Evaporators
and Condensers”. In: Proceedings of the 9th International
Modelica Conference, pp. 71–80.

Brennen, Christopher E. (2005). Fundamentals of Multiphase
Flows. Cambridge University Press. ISBN: 0521 848040.

Brunnemann, Johannes (2020). NAKULEK - Naturumlaufküh-
lung für Leistungselektronik : Schlussbericht. German. XRG
Simulation GmbH. DOI: https : / / doi . org / 10 . 2314 / KXP :
1755577478. (Visited on 2021-04-19).

ClaRa Development Team, ed. (2021). ClaRa. Version 1.6.0.
URL: https://claralib.com/.

Francke, H. (2014). “Thermo-hydraulic model of the two-phase
flow in the brine circuit of a geothermal power plant”. PhD
thesis. Technical University Berlin,Germany.

Ghiaasiaan, S. Mostafa (2008). Two-Phase Flow, Boiling and-
Condensation. IN CONVENTIONAL ANDMINIATURE SYS-
TEMS. Cambridge University Press.

Hänninen, Markku and Jukka Ylijoki (2008). The one-
dimensional separate two-phase flow model of APROS. En-
glish. VTT Tiedotteita - Meddelanden - Research Notes 2443.
VTT Technical Research Centre of Finland. 65 pp. ISBN:
978-951-38-7225-0. URL: http://www.vtt.fi/inf/pdf/tiedotteet/
2008/T2443.pdf (visited on 2021-04-19).

Hoppe, T., F. Gottelt, and S. Wischhusen (2017). “Extended
Modelica Model for Heat Transfer of Two-Phase Flows in
Pipes Considering Various Flow Patterns”. In: Proceedings of
the 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017. Linköping University Electronic
Press, Linköpings universitet, pp. 467–476.

Jensen, J.M. and H. Tummescheit (2002). “Moving Boundary
Models for Dynamic Simulations of Two-Phase Flows”. In:
Proceedings of the 2nd International Modelica Conference,
pp. 235–244.

Quaium, Farid and Holger Kuhn (2020). NAKULEK - Naturum-
laufkuehlung für Leistungselektronik : Abschlussbericht. Ger-
man. ZAL Center of Applied Aeronautical Research, Ham-
burg, Germany. DOI: https : / / doi . org / 10 . 2314 / KXP :
1747878758. (Visited on 2021-04-19).

Skogestad, S. (2009). Chemical and Process Engineering. CRC
Press. Chap. 11.

Sokolichin, Alexander (2003). “Mathematical modeling and nu-
merical simulation of gas-liquid bubbly flows”. Habilitation
Thesis, University of Stuttgart, Germany.

VERSTEEG, H. K. and W. MALALASEKERA (1995). An in-
troduction to computational fluid dynamics. The finite volume
method. Longman Scientific & Technical, pp. 62–67.

Whalley, P. B. (1987). Boiling, Condensation, and Gas-Liquid
Flow. Clarendon Press, Oxford.

Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica

548 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181539

Compile-Time Impulse Analysis in Modelica

Albert Benveniste1 Benoît Caillaud1 Mathias Malandain1

1Inria Centre de Rennes Bretagne Atlantique, University of Rennes 1, France,
{albert.benveniste,benoit.caillaud,mathias.malandain}@inria.fr

Abstract
Since its 3.3 release, Modelica offers the possibility to
specify models of dynamical systems with multiple modes
having different DAE-based dynamics. However, the han-
dling of mode changes by the current Modelica tools is not
satisfactory. An important difficulty is the occurrence of
impulsive behavior at some mode changes, for some vari-
ables. In this paper, we propose a compile-time algorithm
for identifying such impulsive behaviors and quantifying
them in terms of their magnitude orders. Such algorithm
can be used as an additional step of the structural analysis
of Modelica models.
Keywords: multimode DAE, structural analysis, impulsive
behaviors

1 Introduction
Modelica and other languages supporting object-oriented
modeling of physical systems rely on the formalism of
DAEs. Compilers of such languages perform sophisti-
cated preprocessing prior to generating simulation code
(Casella 2015). Index analysis and reduction (Mattsson
and Soderlind 1993) is one such important processing,
where selected equations are differentiated one or more
times until the Jacobian matrix with respect to the lead-
ing variables (i.e., the variables of maximal differentiation
degree in the system) becomes structurally regular.

Since its 3.3 release, Modelica offers the possibility
of specifying multimode dynamics, by describing state
machines with different DAE dynamics in each different
state (Elmqvist et al. 2012). This feature enables describ-
ing large complex cyber-physical systems with different
behaviors in different modes.

While being very valuable, this possibility has been the
source of serious difficulties for non-expert users. Al-
though many large-scale complex Modelica models are
properly handled, some physically meaningful models do
not give rise to correct simulation results—it is actually
not difficult to construct such problematic programs, thus,
chances are significant to produce such bad cases in large
models. Benveniste, Caillaud, and Malandain (2020) pro-
poses a structural analysis that is valid for multimode DAE
models, both within each mode and at mode changes, il-
lustrated in the companion paper (Benveniste, Caillaud,
and Malandain 2021).

One specific problem is due to the existence, in many
physical models, of impulsive behaviors for some vari-

ables. With existing tools, such models give rise to simu-
lations collapsing at runtime. Impulsive behaviors are al-
ready a problem from a mathematical standpoint, as they
do not fall within the existing concepts of solutions of a
DAE system—the definition used in (Campbell and Gear
1995) assumes smoothness of the trajectories.

To cope with this issue, distributions were considered
by some authors. To our knowledge, the most compre-
hensive approach was provided by Stephan Trenn. In his
PhD thesis (Trenn 2009a) and his article (Trenn 2009b), he
pointed out the difficulty in defining piecewise smooth dis-
tributions: several mathematically coherent definitions of
the “Dirac part” of such a distribution can be considered,
so that it has no intrinsic definition. This indicates that dis-
tributions are not the ultimate answer to deal with impul-
sive variables in multimode DAE systems. Still, Liberzon
and Trenn (2012) were able to define complete solutions
for a class of switched DAE systems in which each mode
is in quasi-linear form and switching conditions are time-
based, not state-based.

Another important step forward was done in (Ben-
veniste, Caillaud, Elmqvist, et al. 2019). An interesting
subclass of multimode DAE systems was identified, which
possibly exhibit impulsive variables at mode changes.
They extend the “quasi-linear systems” proposed by Trenn
in the sense that switching conditions are no longer re-
stricted to time-based ones, instead including state-based
switching conditions. The analysis and discretization
schemes proposed in (Benveniste, Caillaud, Elmqvist, et
al. 2019) are mathematically sound. Building on this
work, Martin Otter has developed the ModiaMath1 tool
for semi-linear multimode DAE systems. Since this work,
this approach was refined and extended by the authors of
this paper (Benveniste, Caillaud, and Malandain 2020),
and is illustrated on examples in (Benveniste, Caillaud,
and Malandain 2021).

Contribution of this paper: A complete structural
analysis of multimode DAE systems was only recently
proposed by the authors of this paper. In particular, this
approach distinguishes between long modes, in which the
dynamics is continuous-time and governed by a DAE sys-
tem for a positive duration, and transient modes, which are
zero duration events at which restarts can occur; note that,
as a result, chattering behavior such as encountered when

1https://modiasim.github.io/ModiaMath.jl/
stable/man/Overview.html

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

549

applying sliding mode control is not supported.
We develop here another important aspect of our ap-

proach, by focusing on impulsive behaviors. We explain
this aspect on the Cup-and-Ball example, a mild variation
of the popular 2D pendulum in which the straight rod is re-
placed by a rope. When the rope gets straight, an impulse
typically occurs for the tension if an idealized model is
considered. To analyze this behavior, we propose a gen-
eral compile-time analysis, acting as an additional step of
the multimode structural analysis presented in the com-
panion paper (Benveniste, Caillaud, and Malandain 2021).

Since distributions fail to properly handle impulsive be-
haviors in general, our mathematical tool for this is non-
standard analysis (Robinson 1996; Cutland 1988; Lind-
strøm 1988), which allows for a correct use of infinities
and infinitesimals in mathematical analysis. We use this
setting in two ways:

• First, we discretize the DAE dynamics in each long
mode using an explicit first-order Euler scheme with
an infinitesimal time step ∂ ; this provides us with
an approximation of the DAE solutions up to an in-
finitesimal error. Infinitesimal time steps are also
used to capture restarts at mode changes: the values
of states in the new mode are computed, from val-
ues before the change, in one or several infinitesimal
time steps.

• Second, we compute impulse orders, i.e., orders of
magnitude of algebraic variables at mode changes,
for both long and transient modes, with reference to
the infinitesimal time step ∂ ; for example, an order
of 1/∂ for an algebraic variable indicates that this
variable is impulsive.

We develop a compile-time calculus that evaluates the
impulse order of every algebraic variable, thus reveal-
ing its impulsive/non-impulsive nature. Finite impulse or-
ders can be used to renormalize impulsive variables when
implementing a numerical scheme that approximates the
restart values for each state variable of the system, thus
improving conditioning.

In the next section, we investigate the Cup-and-Ball ex-
ample, a two-mode variation of the celebrated pendulum
in Cartesian coordinates. In Section 3, we develop the im-
pulse analysis in its generality and explain how it can be
mechanized.

2 The Cup-and-Ball example
We sketch here a multimode extension of the popular ex-
ample of the pendulum in Cartesian coordinates (Pan-
telides 1988), namely the Cup-and-Ball game illustrated
by Figure 1. A ball, modeled by a point mass, is attached
to one end of a rope, while the other end of the rope is
fixed, to the origin of the plane in the model. The ball
is subject to the unilateral constraint set by the rope, but
moves freely while the distance between the ball and the

origin is less than its actual length. The system is assumed
closed and subject to no external interaction.

Figure 1. The Cup-and-Ball game.

2.1 The model

The considered model of the two-dimensional Cup-and-
Ball game is:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0≤ L2−(x2+y2) (κ1)
0≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
×λ (κ3)

(1)

where the dependent variables are the position (x,y) of the
ball in Cartesian coordinates and the rope tension λ .

The subsystem (κ1,κ2,κ3) expresses that the distance
of the ball from the origin is less than or equal to L, the
tension is nonnegative, and one cannot have a nonzero
tension and a distance less than L at the same time.
This is known as a complementarity condition, written as
0≤ L2−(x2+y2)⊥ λ ≥ 0 in the nonsmooth systems liter-
ature (Acary and Brogliato 2008), and is an adequate mod-
eling of ideal valves, diodes (Cellier and Kofman 2006,
Chapter 9.10), and contact in mechanics.

Note that, not only an impulsive behavior is expected
on the torques, but an other possible difficulty is present,
as subsystem (κ1,κ2,κ3) of (1) leaves the impact law at
mode change insufficiently specified; it could be fully
elastic, fully inelastic, or in between. We expect both of
these aspects to be detected at compile time, using some
kind of structural analysis.

However, before such a structural analysis is possible,
some changes are required in the model. As a matter of
fact, constraints κ1 and κ2 are unilateral, which is not
supported by Modelica and related languages. Therefore,
using the technique presented in (Mattsson, Otter, and
Elmqvist 1999), we redefine the graph of this complemen-
tarity condition as a parametric curve, represented by the
following three equations:

s = if γ then−λ else L2−(x2+y2)
0 = if γ then L2−(x2+y2) else λ

γ = [s≤ 0]

Compile-Time Impulse Analysis in Modelica

550 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181549

which allows us to rewrite model (1) as follows:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(2)

We then observe that the subsystem collecting equations
(k0)–(k4) is a logico-numerical fixpoint equation, with de-
pendent variables x,y,λ ,γ . A possible solution would con-
sist in performing a relaxation, by iteratively updating the
numerical variables based on the previous value for the
guards, and then re-evaluating the guard based on the up-
dated values of the numerical variables, hoping for a fix-
point to occur. Such fixpoint equation, however, can have
zero, one, several, or infinitely many solutions. No char-
acterization exists that could serve as a basis for a (graph-
based) structural analysis. We thus decided to refuse solv-
ing such mixed logico-numerical systems. As a conse-
quence, we are unable to evaluate guard γ , so that the
mode the system is in cannot be determined: model (2)
is rejected.

To break the fixpoint equation defining γ , we choose
to restrict ourselves to guards defined by left-limits; in
this example, this yields γ = [s− ≤ 0], where s−(t) =def
limu↗t s(u) (the modification is highlighted in red):

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s− ≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(3)

We are now ready to associate a structural analysis to
model (3) that will be valid both in long modes with
DAE dynamics, and at mode changes. To achieve this,
we will replace derivatives by their corresponding forward
Euler schemes, which will bring everything to a discrete
progress of time (both continuous dynamics and mode
changes).

To avoid introducing approximation errors, we will use
an infinitesimal time step ∂ , which is made mathemati-
cally formal by relying on nonstandard analysis.

2.2 Using nonstandard analysis
Nonstandard analysis (Robinson 1996; Lindstrøm 1988;
Benveniste, Bourke, et al. 2012) extends the set R of real
numbers into a superset ?R of hyperreals (also called non-
standard reals) that includes infinite sets of infinitely large
numbers and infinitely small numbers. Key properties of
hyperreals, needed for the informal discussion of the Cup-
and-Ball example, are the following:

There exist infinitesimals, defined as hyperreals that
are smaller in absolute value than any real number: an
infinitesimal ∂ ∈ ?R is such that |∂ | < a for any positive
a ∈ R. For x,y two hyperreals, write x ≈ y if x− y is an
infinitesimal.

All relations, operators, and propositional formulas
that are valid over R are also valid over ?R. For exam-
ple, ?R is a totally ordered set. The arithmetic operations
+, ×, etc. can be lifted to ?R. We say that a hyperreal
x is finite if there exists some standard finite positive real
number a such that |x|< a.

For every finite hyperreal x∈ ?R, there is a unique stan-
dard real number st(x) ∈ R such that st(x) ≈ x, and
st(x) is called the standard part (or standardization) of x.
Standardizing more complex objects, such as functions or
systems of equations, requires some care (see Theorem 1,
Section 2.5).

Every real function lifts in a systematic way to a hyper-
real function. This allows us to write f (x) where f is a
real function (regardless of its continuity properties) and x
is a nonstandard number.

Continuity and derivatives. Let t 7→ x(t) be an R-
valued (standard) signal (t ∈ R). Then:

x is continuous at instant t ∈ R if and only if,
for any infinitesimal ∂ ∈ ?R, one has x(t +∂)≈
x(t);

(4)

x is differentiable at instant t ∈ R if and only if
there exists a ∈ R such that, for any infinitesi-
mal ∂ ∈ ?R, x(t+∂)−x(t)

∂
≈ a. In this case, a =

x′(t).

(5)

We can then consider the time index set T⊆ ?R:

T= 0,∂ ,2∂ ,3∂ , · · ·= {n∂ | n ∈ ?N} (6)

where ∂ is a positive infinitesimal, and ?N denotes the set
of hyperintegers, consisting of all integers augmented with
additional infinite numbers called nonstandard. The im-
portant features of T are: (1) Any finite real time t∈R+,
where R+ denotes the set of nonnegative real numbers, is
infinitesimally close to some element of T (informally, T
covers R+ and can be used to index continuous-time dy-
namics); and (2) T is “discrete”: every instant n∂ has a
predecessor (n−1)∂ (except for n = 0) and a successor
(n+1)∂ .

Let x be a nonstandard signal indexed by T. We de-
fine the forward- and backward-shifted signals x• and •x
through

x•(n∂) =def x((n+1)∂) and •x((n+1)∂) =def x(n∂) ,

implying that an initial value for •x(0) must be pro-
vided. For f a function of the tuple X of signals, we set
(f (X))• =def f (X•) where the forward shift X 7→ X• ap-
plies pointwise to all the components of the tuple. For
example, f •(x,y)(t) = f (x(t+∂),y(t+∂)).

Session 7A: Modelica Language

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

551

By (5), this allows us to represent, up to an infinites-
imal, the derivative x′ of a signal by its first-order ex-
plicit Euler approximation 1

∂
(x•− x). Solutions of multi-

mode DAE systems may, however, be non-differentiable
and even non-continuous at events of mode change. To
give a meaning to x′ at any instant, we decide to define
it everywhere as the nonstandard first-order Euler incre-
ment.

Hence, we implicitly add to every system the following
two equations, for each state variable x:

x′ =
x•− x

∂
; x′′ =

x•2−2x•+ x
∂ 2 , (7)

where

x•(t) =def x(t +∂) ,

x•2(t) =def x(t +2∂) and, generally
x•n(t) =def x(t +n∂) .

Equation (7) means that the derivatives x′,y′,x′′,y′′ are in-
terpreted using the explicit first-order Euler scheme with
an infinitesimal time step ∂ . Note that (7) implies

x′′ =
x′•− x′

∂
. (8)

This yields the nonstandard expansion of the corrected
model (3):

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(9)

This model is understood in the nonstandard set-
ting, meaning that the derivatives are expanded using
(7). Therefore, the leading variables in all modes are
λ ,s,x•2,y•2.

We are ready to concentrate on structural analysis and
we will focus on the main difficulty with this Cup-and-
Ball model, namely the mode change γ:F→T, when the
rope gets straight. The reader is referred to the compan-
ion paper (Benveniste, Caillaud, and Malandain 2021) for
omitted details.

2.3 Structural analysis of mode change γ:F→T

Due to equation (k1), the mode γ = T (where the rope
is straight) requires index reduction. We thus augment

model (9) with the two latent equations shown in red:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = L2−(x2+y2)• (k•1)
and 0 = L2−(x2+y2)•2 (k•21)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(10)

Note that the two latent equations (k•1) and (k•21) were ob-
tained by shifting (k1) forward, not by differentiating it
as usually performed—the two, however, are equivalent
from the structural analysis standpoint, because of equali-
ties (7).

To perform structural analysis at the considered mode
change, we first unfold model (10) at the successive in-
stants

•2t =def t−2∂ , •t =def t−∂ , and t ,

where t denotes the current instant. In the following, equa-
tion (e1) at the instant t− 2∂ (respectively, t− ∂) will be
denoted by (•2e1) (resp., (•e1)).

In this unfolding, the two equations (k1) and (k•1) are in
structural conflict with selected equations from the previ-
ous two instants, shown in blue in the following subsys-
tem, whose dependent variables are the leading variables
at instants t−2∂ and t−∂ , namely x,y,•2λ ;x•,y•,•λ :

0 = x−2•x+•2x
∂ 2 + •2λ •2x (•2e1)

0 = y−2•y+•2y
∂ 2 + •2λ •2y+g (•2e2)

0 = x•−2x+•x
∂ 2 + •λ •x (•e1)

0 = y•−2y+•y
∂ 2 + •λ •y+g (•e2)

0 = L2−(x2+y2) (k1)

0 = L2−(x2+y2)• (k•1)

This conflict can be detected from structural informa-
tion only, using the Dulmage-Mendelsohn decomposi-
tion (Dulmage and Mendelsohn 1958). We propose to re-
solve this conflict by applying the following principle:

Principle 1 (Causality) What was done at the previous
instant cannot be undone at the current instant.

Applying Principle 1 leads to erasing, in model (10),
equations (k1) and (k•1) at the instant of mode change
•γ=F,γ=T. This yields the following system:

at
[•γ=F

γ=T

]
:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(11)

It uniquely determines all the leading variables from the
state variables x,y and x•,y•. In turn, equations (k1) and
(k•1), which were erased from this model, are not satisfied.

Compile-Time Impulse Analysis in Modelica

552 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181549

At the next instant, i.e., when •2γ=F,•γ=T,γ=T, the
same argument is used. We thus erase, in model (10), the
only equation (k1) at the next instant. This yields the fol-
lowing system:

at

 •2γ=F
•γ=T
γ=T

 :

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21)
0 = λ + s (k2)

(12)

Note that (k•1) is a consistency equation that is satisfied
by the state variables x•,y•. In turn, equation (k1), which
was erased from this model, is not satisfied. At subsequent
instants, equation erasure is no longer needed: the process
amounted to delaying by a few nonstandard instants the
satisfaction of some of the constraints in the new mode,
which actually took zero standard time. This completes
the nonstandard structural analysis of the mode change γ :
F→T, i.e., when the rope gets straight.

2.4 Impulse analysis at mode change γ : F→ T

We now focus on identifying possible impulsive behav-
iors at this mode change. This is achieved by analyzing
nonstandard systems (11) and (12) defining the values for
restart. The intent is that the former will set the restart
positions, whereas the latter will set the restart velocities.

Our impulse analysis not only identifies impulsive vari-
ables but also quantifies their order of magnitude, thanks
to the following notion of impulse order:

Definition 1 (Impulse order and analysis)

1. Given a nonstandard system of equations E defining
the values for restart, say that a dependent variable
x has impulse order o ∈R in E, if the solution of sys-
tem E is such that x∂−o is provably a finite non-zero
(standard) real number. Let [[x]] denote the impulse
order of x. By convention, the constant 0 has impulse
order −∞.

2. Say that x is impulsive if [[x]]> 0.

3. The impulse analysis of a system of equations S is the
system of constraints satisfied by the impulse orders
of the dependent variables of S.

Impulse analysis relies on the following generic as-
sumption, which expresses that DAE within long modes
must be reinitialized with finite values for the state vari-
ables:

Assumption 1 State variables are not impulsive; that is,
for any state variable v, one has [[v]]≤ 0.

As an example, if, in the new mode, a variable x is dif-
ferentiated up to order n, then its (n− 1)-th derivative is
a state variable and thus subject to Assumption 1. Conse-
quently, its k-th order derivatives for k = 0, . . . ,n− 2 are
continuous at the considered mode change.

We are now ready to successively analyze Systems 11
and 12.

System (11): The state variables are x,y,x′,y′. By As-
sumption 1, we get the following prior information, which
expresses that velocities are not impulsive:

[[x′•− x′]]≤ 0 ; [[y′•− y′]]≤ 0 . (13)

Conditions (13) imply that positions should be continuous.
While performing our impulse analysis, we include equa-
tion (8) relating second derivatives and first derivatives.
System (11) involves equation (e1) : x′′+λx=0, which, by
using (8), rewrites

x′•− x′+∂λx = 0 . (14)

By (13), equation (14) implies [[λ]] ≤ 1. Exploiting all
equations of System (11) yields the following information

[[λ]] = [[s]]≤ 1 , (15)

whereas other dependent variables have impulse order
zero. System (12) is handled similarly, with the same con-
clusion. In Section 3, we mechanize the impulse analy-
sis for an arbitrary restart system. Prior to doing this, we
now explain how this impulse analysis can be exploited
for generating effective code for restart.

2.5 Using impulse analysis in code generation
Code generation for restarts consists in standardizing non-
standard systems (11) and (12). See the introduction of
Section 2.2 for the meaning of “standardization”; note,
however, that standardizing systems of equations requires
more care than standardizing numbers, due to impulsive
behaviors and singularity issues that result.

We can exploit the impulse analysis through the fol-
lowing three different approaches. The method of Sec-
tion 2.5.1 is mostly described for didactic purposes, as it
requires the symbolic elimination of variables, which can
be very costly or even impossible in nonlinear systems. In
practice, the methods of Sections 2.5.2 and 2.5.3 shall be
used; both of these sections briefly address this topic.

2.5.1 Eliminating impulsive variables

When this is practical, the simplest method from a con-
ceptual point of view is to eliminate impulsive variables
from the restart system, as they are of no use for restarting
the new mode.

We still focus here on the standardization of the mode
change γ : F→ T, i.e., when the rope gets straight. Our
task is to standardize systems (11) and (12), by target-
ing discrete-time dynamics, for the two successive instants
composing the restart phase. This will provide us with
restart values for positions and velocities.

By (15), tensions λ and λ • are both candidates to be im-
pulsive, hence so are s and s• by (k2,k•2). We eliminate the
impulsive variables by ignoring (k2,k•2), combining (e1)
and (e2) to eliminate λ , and (e•1) and (e•2) to eliminate λ •.

Session 7A: Modelica Language

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

553

This yields:

at
[•γ=F

γ=T

]
:
{

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•2

(16)

at

 •2γ=F
•γ=T
γ=T

 :

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(17)

In System (16), we expand second derivatives using (7),
whereas, in System (17), we expand them using (8). Con-
sequently, System (16) has dependent variables x•2,y•2,
whereas System (17) has dependent variables x′•,y′•. We
are now ready to standardize the two systems.

System (16) to define restart positions: We expand
second derivatives using (7):{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y+∂ 2gx
0 = L2−(x2+y2)•2

(18)

Setting ∂ = 0 in System (18) yields a structurally regular
system, so that we can invoke the following result, proved
in (Benveniste, Caillaud, and Malandain 2020):

Theorem 1 (standardizing systems of equations) For
H : Rn+1 → Rn a C 1 (standard) function, consider the
nonstandard system of equations H(∂ ,X) = 0 where
X is a n-vector of variables. If system H(0,X) = 0 is
structurally nonsingular, then setting ∂ = 0 in system
H(∂ ,X) = 0 yields the correct standardization of it, mean-
ing that the solution x∗(∂) of H(∂ ,X) = 0 standardizes as
the solution x∗ of H(0,X) = 0.

By this theorem, setting ∂ = 0 in System (18) yields the
correct standardization of it:{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y
0 = L2−(x2+y2)•2

Then, in the resulting system, we interpret x and x• as the
left-limit x− of state variable x in previous mode, and x•2

as the restart value x+ for the new mode. This yields{
0 = (y+− y−)x−− (x+− x−)y−

0 = L2−(x2+y2)+
(19)

which determines the restart values for positions. Note
that the constraint that the rope is straight is satisfied.
Furthermore, as 0 = L2−(x2+y2)− also holds (the rope
is straight at the mode change), x+ = x−,y+ = y− is the
unique solution of (19): positions are continuous.

System (17) to define restart velocities: We expand
second derivatives using (8):

0 = (y′•− y′)x− (x′•− x′)y+∂ .gx
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(20)

By expanding x•2 = x•+ ∂x′•, the right-hand side of the
last equation rewrites

L2−(x2+y2)•2 = L2−(x2+y2)•

+ 2∂ (x•x′•+ y•y′•)
+ ∂ 2

(
(x′•)2 +(y′•)2

)
= 0 (using (20))

+ 2∂ (x•x′•+ y•y′•)
+ O(∂ 2)

(21)

Using this expansion of L2−(x2+y2)•2, setting ∂ = 0 in
(20) yields{

0 = (y′•− y′)x− (x′•− x′)y
0 = x•x′•+ y•y′• (22)

where the dependent variables are now x′•,y′•, whereas
other variables are state variables whose values are de-
termined by previous time steps. Note that System (22)
is structurally regular, so that we can invoke Theorem 1,
showing that System (22) is the correct standardization of
System (20). We are now ready to get effective code for
the restart. In System (22), we perform the following sub-
stitutions, where superscripts − and + denote left- and
right-limits, and the continuity of positions is used:

x = x− ; x• = x+ and x′ = x′− ; x′+ = x′• (23)

and similarly for y. This finally yields{
0 = (y′+− y′−)x−− (x′+− x′−)y−

0 = x+x′++ y+y′+
(24)

System (24) determines x′+ and y′+, which are the veloc-
ities for restart. The second equation guarantees that the
velocity will be tangent to the constraint. With (19) and
(24), we determine the restart conditions for positions and
velocities. Invariants from the physics are satisfied.

This is a satisfactory solution when the elimination of
impulsive variables is practical. In our example, they en-
tered linearly in the restart system, so that elimination was
straightforward. When this is not the case, elimination be-
comes costly or even impossible. Moreover, generalizing
and mechanizing this elimination process appears to be a
very difficult task. We thus need to look for alternatives
for computing the velocities for restart.

2.5.2 Rescaling impulsive variables

Focus again on System (12). Impulse analysis told us that
λ ,s both have impulse order ≤ 1. We thus rescale them
accordingly:

λ̂ =def ∂
1×λ and ŝ =def ∂

1×s (25)

Compile-Time Impulse Analysis in Modelica

554 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181549

Using this rescaling together with expansion (8), Sys-
tem (12) rewrites

0 = x′•− x′+ λ̂x (e1)

0 = y′•− y′+ λ̂y+∂g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21)

0 = λ̂ + ŝ (k2)

(26)

In System (26), (k•1) is a consistency equation satisfied as
a result of performing System (11) at the previous instant.
We can also discard equation (k2), which only serves to
determine the auxiliary variable s. Thus, we are left with
the sub-system collecting equations (e1),(e2),(k•21). We
can again expand the right-hand side of (k•21) by using
(21). In the resulting system, we can safely set ∂ ← 0
since it yields the following structurally regular system:

0 = x′+− x′−+ λ̂x− (e1)

0 = y′+− y′−+ λ̂y− (e2)

0 = 0 = x+x′++ y+y′+ (k•21)

(27)

System (27) determines x′+ = x′•,y′+ = x′•, and the
rescaled impulsive tension λ̂ , as functions of state vari-
ables x′,y′,x,y, which were identified with the left-limits
of velocities and positions at previous mode. Note that
eliminating the rescaled tension λ̂ from System (27) yields
System (24).

Rescaling impulsive variables is simpler than eliminat-
ing them. This method is also promising in terms of de-
signing and implementing algorithms for its mechaniza-
tion, as the computation of the impulse orders amounts to
finding a minimal solution to a system of linear unilateral
constraints. Unfortunately, it does not work in full gener-
ality since impulse orders can be infinite, as the following
example shows:

x = exp(y/∂) ,

where y is known to have impulse order zero. Indeed, the
impulse order of (y/∂)n is n. Since the exponential ex-
pands as a power series of infinite support, we deduce that
the impulse order of exp(y/∂) is the maximum of all im-
pulse orders of (y/∂)n, hence it is infinite. Thus, impulsive
variable x cannot be rescaled.

The last method addresses such cases, at the price of a
possibly poor numerical conditioning.

2.5.3 Bruteforce solving of the restart system
When none of the above methods apply, it is still possible
to solve system (26) with ∂ = δ (a small positive time
step) for the original variables λ and s, without rescaling
them.

Then, it is proved in (Benveniste, Caillaud, and Ma-
landain 2020), see also (Benveniste, Caillaud, and Ma-
landain 2021) that solving these systems for their depen-
dent variables and then discarding the values found for the
impulsive variables yields a converging approximation for

the states and velocities at restart. Moreover, first numer-
ical experiments on toy examples showed no issue as long
as the time step δ was kept reasonably high. Of course,
without rescaling, the numerical conditioning is likely to
be less favorable, so that rescaling is recommended when
impulse orders are finite. Works are in progress for the im-
plementation of this method, coupled with the rescaling of
impulsive variables of finite order.

2.6 Handling transient modes: elastic impact
Our reasoning so far produces a behavior in which the two
modes (free motion and straight rope) gently alternate; the
system always stays in one mode for some positive period
of time before switching to the other mode.

This indeed amounts to assuming that the impact is to-
tally inelastic at mode change, an assumption that was
not explicit at all in (9). So, what happened? In fact, the
straight rope mode was implicitly assumed to last for at
least three nonstandard successive instants, since we al-
lowed ourselves to shift (k1) forward twice.

Now, let us instead assume elastic impact, represented
by the cascade of mode changes γ : F→ T→ F, reflecting
that the straight rope mode is transient (it is left immedi-
ately after being reached).

We address transient modes in (Benveniste, Caillaud,
and Malandain 2020; Benveniste, Caillaud, and Ma-
landain 2021). We show that a structural analysis for elas-
tic impact can still be proposed, by suitably adapting the
notion of differentiation array proposed by Campbell and
Gear (1995). The so obtained structural analysis proves
that our original model (1) for the Cup-and-Ball is un-
derspecified at mode change γ : F → T, when the rope
gets straight. This underdetermination implies that the
model is ill-defined, as it admits an infinite number of so-
lutions. Completing it by adding an impact law, which
makes sense from a physicist’s point of view, is also ap-
propriate from the point of view of our structural analysis.

One possible choice is to complete the model with an
elastic impact law. This indeed corrects the restart system
at γ = T in the cascade of mode changes γ : F→ T→ F,
yielding

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = L2−(x2+y2) (k1)
0 = λ + s (k2)

(28)

where 0 < α < 1 is a damping factor. We proceed again
with the structural analysis. Variables x,y are the states,
so that their values are set by the previous instants. Cur-
rent equation (k1) creates a conflict with the past. Hence,
we discard it from System (28), which leaves us with the
following system:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = λ + s (k2)

(29)

Session 7A: Modelica Language

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

555

Model (29) is structurally nonsingular, recalling that y′′

and y′• can be interchanged for the structural analysis.
This refined model is therefore accepted by the structural
analysis.

The impulse analysis proceeds as for the previous case
of inelastic impact and effective code for restart can be
generated.

Note that any impact law could be used instead of the
one added in System (28), as long as it ensures uniqueness
of the solution for a fixed state before the impact.

In (Benveniste, Caillaud, and Malandain 2021), we also
discuss the consequences, for modeling languages such as
Modelica, of the need for stating as a side specification
whether a mode is transient or not.

3 General Impulse Analysis
In this section, we explain how the reasoning used for the
Cup-and-Ball example can be mechanized as a compila-
tion stage following multimode structural analysis. Prior
to developing this, we provide a simplified overview of
said multimode structural analysis.

3.1 Overview of multimode structural analysis
We consider multimode DAE systems possessing long
modes (having DAE-based dynamics for a positive dura-
tion) alternating with finite cascades of transient modes
(having a zero duration, such as the straight rope mode in
the Cup-and-Ball model with elastic impact).

We assume that the information regarding the type of a
mode (long vs. transient) is known by the compiler—the
two different Modelica primitives if and when should be
used to declare long and transient modes, respectively.

In addition, we require that the current mode is defined
by the left-limits of some predicates, see the reasoning
leading to the corrected model (9) for the Cup-and-Ball.

For such models, the structural analysis proceeds ac-
cording to the following steps:

1. The multimode model is mapped to its nonstandard
expansion by using a first-order explicit Euler expan-
sion for derivatives, with infinitesimal time step ∂ ,
and mapping left-limits to values at the previous in-
stant. In particular, the mode at each nonstandard
instant is known at the end of the previous instant.

2. The structural analysis for each specific mode is per-
formed, depending on its long/transient type:

• If the mode is long, then classical struc-
tural analysis applies: by, e.g., using Pryce’s
Σ-method (Pryce 2001), latent equations are
added for the DAE system associated to each
long mode;

• Alternatively, if the mode is transient, a struc-
tural analysis of the difference array associated
to the considered cascade of transient modes is
performed.

3. Having done this, given the mode at the current in-
stant:

• If no mode change occurs, then the (classical)
mode-specific structural analysis applies;

• Otherwise, the conflict that may possibly ex-
ist between consistency equations of the cur-
rent mode and leading equations of the pre-
vious mode is analyzed, using the Dulmage-
Mendelsohn decomposition; conflicting sub-
systems are identified and the equations from
the current instant that cause conflicts are
erased.

Implementing the multimode structural analysis in the
above described form would be very inefficient. For-
tunately, Caillaud, Malandain, and Thibault (2020) pro-
posed a very efficient algorithm for handling all the long
modes simultaneously without enumerating them, and ex-
tended the Σ-method in this “all-modes-at-once” frame-
work. A similar extension of the Dulmage-Mendelsohn
decomposition is being implemented.

3.2 General Rules of Impulse Analysis
3.2.1 Problem setting

Restart systems of equations, as resulting from the struc-
tural analysis at mode changes, are nonstandard systems
of equations of the following generic form:

expand X ′ as X•−X
∂

in 0 = H(X ′,X•,V,X) (30)

where V collects the algebraic variables, X collects the
state variables, and X•−X

∂
is the nonstandard semantics of

X ′. H(·, ·, ·, ·), seen as a vector function in its dotted argu-
ments, is by itself standard, since the equations of system
0 = H are obtained by shifting or differentiating equations
specified by the user. The reason for (30) being nonstan-
dard is indeed twofold:

1. Since X• is involved, the infinitesimal ∂ occurs in
time; and

2. Since X ′ is involved, the infinitesimal ∂ occurs both
in time and space, due to the expansion X ′← X•−X

∂
.

The occurrence of ∂ in time is not an issue: shifted
state variables will correspond to restart values for states,
whereas non-shifted ones correspond to values prior to the
change. In contrast, the occurrence of ∂ in space is the root
cause of possible impulsive behaviors. Identifying them is
the subject of impulse analysis.

3.2.2 The rules of impulse analysis

We now develop the impulse analysis introduced in Def-
inition 1. This analysis is useful as a postprocessing of
structural analysis, prior to generating effective code for
restarts. Note that Assumption 1 is still enforced in what
follows.

Compile-Time Impulse Analysis in Modelica

556 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181549

Figures 2 and 3 display the rules defining the translation
of a system of equations of the form (30) into its impulse
analysis, for the restricted class where only rational ex-
pressions are involved.

Figure 2 describes the syntax of a mini-language speci-
fying such systems of equations. The left column of Fig-
ure 3 gives the rules for mapping expressions to their cor-
responding impulse orders. The reason for the inequality
in (R6) is that in the sum e1+e2, the dominant terms in the
expansions of ei as series over ∂ may cancel each other.
For an example of this, see equation (e2) in System (12):
rewriting this equation as −g = y′′+λy, we see a case of
strict inequality for (R6) since gravity g has order zero,
whereas it is equal to the difference of two terms of order
one.

We will use Rule (R6) in the following way, thereby
reinforcing it. Consider an equation

e : z = x+ y .

We can rewrite e in the following equivalent ways: 0 =
x + y− z , x = z− y, or y = z− x. To each of them we
apply the max rule. This yields the following system of
constraints, called the impulse analysis of equation e:

[[z]]≤max{[[x]], [[y]]}
[[0]]≤max{[[x]], [[y]], [[z]]}
[[x]]≤max{[[z]], [[y]]}
[[y]]≤max{[[x]], [[z]]}

(31)

Note that the constraint [[0]] ≤ . . . is vacuously satisfied
since [[0]] = −∞. Then, among the three nontrivial in-
equalities of (31), at least two of them must be saturated.
We will use impulse analysis (31) for handling sums of
terms. This reinforcement of the max rule is formalized
by Rule (R8) of Figure 3, which mechanizes the associa-
tion, to any equation, of its different rewritings.

Using the rules of Figures 2 and 3 in the numerical ex-
pressions, we map any system of rational equations of the
form (30) into a system of constraints over impulse orders.

To cover functions beyond polynomials, we need to
extend R∪ {−∞} with +∞. In this extension, we take
the convention that −∞ + ∞ = −∞, justified by both
Rules (R1,R5) and the equality 0×x = 0 for any nonstan-
dard x. For functions f (x) = ∑

∞
k=0 akxk that can be rep-

resented as absolutely converging power series, we then
get

[[f (x)]] = [[
∞

∑
k=0

akxk]] = [[x]].sup(A) , (32)

where A={k | ak 6=0} is the support of the series and
sup(A) is the supremum of set A. In particular, if [[x]] >
0 and if the support of the series is infinite, we get
[[f (x)]] = +∞.

3.2.3 Particularizing the impulse analysis to systems
of equations for restarts

So far, Rules (R1)–(R8) of the impulse analysis apply to
any system of nonstandard equations. Here we particu-
larize the impulse analysis to systems of equations of the
form (30), where the only reason for ∂ to occur is the ex-
pansion of derivatives using the Euler scheme:

0 = H
(

X•−X
∂

,X•,V,X
)

The dependent variables are X•,V . It will be convenient
to introduce the auxiliary variables

U =def X•−X ,

so that the systems we consider take the following form,
where X•,V,U are the dependent variables:{

0 = H
(U

∂
,X•,V,X

)
U = X•−X

(33)

The following condition for System (33) can be assumed,
based on physical considerations (restart values for an
ODE or a DAE cannot be impulsive):

Assumption 2 Since X is a state, both X (a known value)
and X• must be finite.

First, the impulse orders [[X]] are all known, from previous
nonstandard instants. Next, from Assumption 2 we deduce
the inequalities:

[[X•]]≤ 0 and [[U]]≤ 0 . (34)

The impulse orders [[V]] are a priori unknown. We have,
however, more prior information, thanks to the structural
analysis. From the structural analysis at the considered
mode change, we know which consistency equations of
the new mode were conflicting with the dynamics of pre-
vious mode. Formally, call G=0 the subsystem collect-
ing all the equations that were erased while solving this
conflict—for the Cup-and-Ball model (10), at the instant
of mode change •γ=F,γ=T, G collects the bodies of the
two violated consistency constraints (k1) and (k•1).

As a result, G=0 no longer holds at the considered
mode change, and thus, G defines a tuple R of variables
(one per entry of G) called residuals, by setting

R = G , (35)

which are all finite and nonzero. An example of residual in
the Cup-and-Ball is r = L− (x2 + y2), which is both finite
and nonzero at mode change •γ=F,γ=T. The residuals are
found by the structural analysis.

Finally, the system of equations that we need to solve
collects all the above items, namely:

0 = H
(U

∂
,X•,V,X

)
U = X•−X
R = G

(36)

Session 7A: Modelica Language

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

557

e ::= 0 | c | ∂ | x | ec | e+ e | e× e
E ::= e = e | E and E

Figure 2. Syntax: E is a system of one or several equations e = e. An expression e is 0, a nonzero (standard) real constant c, the
infinitesimal ∂ , a variable x, the monomial ec, a sum, or a product.

(R1) [[0]] = −∞

(R2) [[c]] = 0
(R3) [[∂]] = −1
(R4) [[ec]] = c[[e]]
(R5) [[e1× e2]] = [[e1]]+ [[e2]]

(R6) [[e1 + e2]] ≤ max{[[e1]], [[e2]]}

E ` e = e′

[[E]] ` [[e]] = [[e′]]
(R7)

E ` x = y+ e or
E ` 0 = y− x+ e

}
and E 0 y = x− e

E ` E and y = x− e
(R8)

Figure 3. Rules: The left column displays the impulse order of the primitive expressions. Rule (R7) indicates that [[e]] = [[e′]] is an
equation of the impulse analysis [[E]] if e = e′ is an equation of E; rule (R8) indicates that, if E involves the equation x = y+ e but
not the equation y = x− e, then we augment E with the latter, i.e., we saturate E with the rule x = y+ e =⇒ y = x− e.

with dependent variables X•,V,U,R, and the following
prior information on impulse orders is known:

[[
1
∂
]] = 1 ; [[X•]]≤ 0 ; [[U]]≤ 0 ; [[R]] = 0 . (37)

System (36) is then mapped to its impulse analysis by us-
ing Rules (R1–R8) of Figures 2 and 3. A suitable con-
straint solver is then used to solve the resulting set of con-
straints on impulse orders, by using side information (37).
The choice of an appropriate constraint solver remains to
be done.

4 Conclusion
The correct handling of truly multimode Modelica models
(in which index and structure may vary with the mode) re-
quires significant add-ons to the existing structural analy-
ses. The companion paper (Benveniste, Caillaud, and Ma-
landain 2021) introduces, by means of two small but rep-
resentative examples, a truly multimode structural analy-
sis that applies both in modes and at mode changes. One
important difficulty is the correct handling of impulsive
behaviors for some variables.

In this paper, we introduced the impulse analysis of
multimode DAE systems, a complement to multimode
structural analysis for Modelica models. Impulse analysis
is performed at compile time, prior to generating simula-
tion code. It allows to identify impulsive variables, along
with the mode changes at which impulsive behavior oc-
curs. When impulsive behaviors occur in a model, then
the conditions for restart at the impulsive mode change
are generally known implicitly, not explicitly. Generat-
ing simulation code for restarts can thus be problematic.
Using our approach based on impulse analysis, impulsive
variables can be properly rescaled, so that correct explicit
code for restarts can be generated.

In this paper, we did not consider the computational
cost of performing true multimode structural analysis at

compile time: unfortunately, the number of modes tends
to be roughly exponential in the size of the model, and the
a priori number of mode changes is at least proportional
to the square of the number of modes. This is a limita-
tion of a model representation in which one characterizes
the subset of equations and variables active in any given
mode.

A possible way of alleviating this issue is by shifting
to a dual representation, that provides predicates charac-
terizing the set of modes in which each equation and each
variable is active. In practice, not only does this approach
lead to a much more compact representation, but it also al-
lows for the design of efficient structural analysis methods
for multimode DAE systems, working in an ‘all-modes-
at-once’ fashion. Such a method was implemented in the
IsamDAE tool, and first results are reported in (Caillaud,
Malandain, and Thibault 2020). The examples coming
with this tool already include thermodynamical, electri-
cal and pneumatic models. Although only the structural
analysis of long modes is currently performed, the imple-
mentation of the structural analysis of mode changes is in
progress.

Acknowledgements
The authors are indebted to several colleagues and friends
for valuable discussions: Hilding Elmqvist and Martin Ot-
ter, John Pryce, and Vincent Acary. Khalil Ghorbal con-
tributed to the first version of this approach.

This work was supported by the FUI ModeliS-
cale DOS0066450/00 French national grant (2018-
2021) and the Inria IPL ModeliScale large scale
initiative (2017-2021, https://team.inria.fr/
modeliscale/).

References
Acary, Vincent and Bernard Brogliato (2008). Numerical Meth-

ods for Nonsmooth Dynamical Systems. Applications in Me-
chanics and Electronics. Vol. 35. Lecture Notes in Applied

Compile-Time Impulse Analysis in Modelica

558 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181549

and Computational Mechanics. Springer-Verlag. ISBN: 978-
90-481-9680-7.

Benveniste, Albert, Timothy Bourke, et al. (2012). “Nonstandard
semantics of hybrid systems modelers”. In: J. Comput. Syst.
Sci. 78.3, pp. 877–910. DOI: 10.1016/j.jcss.2011.08.009.

Benveniste, Albert, Benoit Caillaud, Hilding Elmqvist, et al.
(2019). “Multi-Mode DAE Models - Challenges, Theory and
Implementation”. In: Computing and Software Science - State
of the Art and Perspectives. Ed. by Bernhard Steffen and Ger-
hard J. Woeginger. Vol. 10000. Lecture Notes in Computer
Science. Springer, pp. 283–310. ISBN: 978-3-319-91907-2.
DOI: 10.1007/978-3-319-91908-9_16.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2020). “The mathematical foundations of physical systems
modeling languages”. In: Annual Reviews in Control 50,
pp. 72–118. ISSN: 1367-5788. DOI: 10.1016/j.arcontrol.2020.
08.001.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2021-09). “Handling Multimode Models and Mode Changes
in Modelica”. In: Proceedings of the 14th International Mod-
elica Conference. Linköping University Electronic Press.

Caillaud, Benoit, Mathias Malandain, and Joan Thibault (2020-
04). “Implicit Structural Analysis of Multimode DAE Sys-
tems”. In: 23rd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC 2020). Sydney,
Australia. DOI: 10.1145/3365365.3382201.

Campbell, Stephen L. and C. William Gear (1995). “The index
of general nonlinear DAEs”. In: Numer. Math. 72, pp. 173–
196.

Casella, Francesco (2015-09). “Simulation of Large-Scale Mod-
els in Modelica: State of the Art and Future Perspectives”.
In: Proc. of the Int. Modelica Conference. Ed. by Hild-
ing Elmqvist and Peter Fritzson. Modelica Association. Ver-
sailles, France.

Cellier, François and Ernesto Kofman (2006). Continuous Sys-
tem Simulation. Springer. ISBN: 9780387261027.

Cutland, Nigel (1988). Nonstandard analysis and its applica-
tions. Cambridge Univ. Press.

Dulmage, Andrew L. and Nathan S. Mendelsohn (1958). “Cov-
erings of Bipartite Graphs”. In: Canadian Journal of Mathe-
matics 10, pp. 517–534. DOI: 10.4153/CJM-1958-052-0.

Elmqvist, Hilding et al. (2012-09). “State Machines in Model-
ica”. In: Proc. of the Int. Modelica Conference. Ed. by Martin
Otter and Dirk Zimmer. Modelica Association. Munich, Ger-
many, pp. 37–46.

Liberzon, Daniel and Stephan Trenn (2012). “Switched non-
linear differential algebraic equations: Solution theory, Lya-
punov functions, and stability”. In: Automatica 48.5, pp. 954–
963. DOI: 10.1016/j.automatica.2012.02.041.

Lindstrøm, Tom (1988). “An Invitation to Nonstandard Analy-
sis”. In: Nonstandard Analysis and its Applications. Ed. by
N.J. Cutland. Cambridge Univ. Press, pp. 1–105.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist (1999).
“Modelica Hybrid Modeling and Efficient Simulation”. In:
38th IEEE Conference on Decision and Control. Ed. by IEEE,
pp. 3502–3507.

Mattsson, Sven Erik and Gustaf Soderlind (1993). “Index Re-
duction in Differential-Algebraic Equations Using Dummy
Derivatives”. In: SIAM Journal on Scientific Computing 14.3,
pp. 677–692. DOI: 10.1137/0914043.

Pantelides, Constantinos C. (1988). “The consistent initializa-
tion of differential-algebraic systems”. In: SIAM J. Sci. Stat.
Comput. 9.2, pp. 213–231.

Pryce, John D. (2001). “A simple structural analysis method for
DAEs”. In: BIT 41.2, pp. 364–394.

Robinson, Abraham (1996). Nonstandard Analysis. Princeton
Landmarks in Mathematics. ISBN: 0-691-04490-2.

Trenn, Stephan (2009a). “Distributional Differential Algebraic
Equations”. PhD thesis. Technischen Universität Ilmenau.

Trenn, Stephan (2009b). “Regularity of distributional differen-
tial algebraic equations”. In: MCSS 21.3, pp. 229–264. DOI:
10.1007/s00498-009-0045-4.

Session 7A: Modelica Language

DOI
10.3384/ecp21181549

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

559

560 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Modular Model of Reversible Heat Pumps and Chillers for
System Applications

Fabian Wüllhorst1 David Jansen1 Philipp Mehrfeld1 Dirk Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, fabian.wuellhorst@eonerc.rwth-aachen.de

Abstract
Vapour compression machines such as heat pumps and
chillers are vital for achieving climate goals. Efficiency
of both depend mostly on system integration. In order
to simulate coupled energy systems, fast and stable sim-
ulation models are required. Hence, we implement an
open-source model for reversible vapour compression ma-
chines. The black-box based refrigeration cycle is replace-
able, additional inertia and losses are optional. Further-
more, we model relevant safety controls of vapour com-
pression machines. To show validity of the presented ap-
proach, we first calibrate two different black-box models
onto measured heat pump data. The table-based model fits
both measured temperature and power with minimal cal-
ibration effort. Second, we show influences of different
model options onto coupled building performance simu-
lations. Computation time increases up to 50 % when en-
abling all model options. Simultaneously, seasonal effi-
ciency decreases by up to 23 % when modeling all safety
controls. Keywords: Heat Pump, Chiller, Modular Model

1 Introduction
Heating and cooling account for half of Europe’s sec-
ondary energy demand (Heat Roadmap Europe 2017).
While cooling is already mainly achieved using electri-
cally driven chillers (e.g. air conditioners), heat pumps
(HPs) are set to replace gas or oil fired boilers (IEA 2020).
Thus, improving efficiency of both is a major goal of cur-
rent research.
As both chiller and heat pump are based on the same
vapour compression cycles, designation mainly depends
on which side contains the usable heat flow. Using a four-
way reversing valve, a heat pump may act as a chiller and
vice versa. Hence, in the following we refer to both as
vapour compression machines (VCM).
To increase efficiency of VCMs, improvements on compo-
nent level and system integration level are possible. Gen-
erally, the efficiency depends on the applied temperature
levels. These temperature levels on the other hand depend
mainly on the system integration. Thus, we focus on the
integration of VCM into an energy system.
To thoroughly assess efficiency on system level, sea-
sonal coefficients of performance (SCOPs) are re-
quired (Huchtemann and Dirk Müller 2012). While

Hardware-in-the-Loop experiments as in Mehrfeld,
Nürenberg, Knorr, et al. (2020) or field tests are cost inten-
sive, model-based simulation analysis offers a viable solu-
tion to not only assess the SCOP but also to find promising
control and system designs that optimize efficiency.
A model is always created based on the aim of the simu-
lation analysis (VDI 3633:2014-12 2014). Consequently,
numerous approaches for the modeling of VCMs exist
in literature. The following section will give a brief
overview.

2 Related work
The main distinction in models is between two
types: Modeling the refrigeration cycle with empiri-
cal data (black-box) and using physical-based equation
(gray/white-box) (Jin 2002). Black-box models are usu-
ally robust and require less computation time compared
to the latter. In most cases, empirical data is based on
steady-state operating points. Outside the given perfor-
mance maps, which are often small, extrapolations usually
yield non-physical results (Cimmino and Wetter 2017).
However, for certain investigation aims, partly higher ac-
curacies are achieved compared to gray-box models (Car-
bonell Sánchez et al. 2012). Afjei and Dott (2011) assign
investigation targets to the different model types. Gray-
box models are, due to the high level of detail and the high
flexibility, suitable for the investigation of new heat pump
concepts. For dynamic simulations on the other hand,
black-box models with dynamic effects are useful (Afjei
and Dott 2011).

2.1 Gray-box models
Cimmino and Wetter (2017) introduce two
gray-box models, ScrollWaterToWater and
ReciprocatingWaterToWater. By assuming a
simplified refrigeration circuit, the modeling of the
expansion valve is not required. Both models are non-
reversible. As refrigerant, R410A is used. HP internal
safety control is taken into account using temperature
protection. By calibrating the model with manufacturer
data, the parameters are defined and made accessible
via records (Cimmino and Wetter 2017). Dechesne
et al. (2017) model an inverter-controlled air/water HP
with consideration of the refrigeration circuit for the
refrigerant R410A. The possible icing of the evaporator

DOI
10.3384/ecp21181561

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

561

is taken into account through various assumptions.
However, a validation of these assumptions is not per-
formed (Dechesne et al. 2017). The model of a heat pump
with water as refrigerant is implemented by Chamoun,
Rulliere, Haberschill, and Berail (2012) for industrial
applications. In another contribution, they introduce a
screw compressor model for HP applications (Chamoun,
Rulliere, Haberschill, and Peureux 2013).

2.2 Black-box models
In the following, two black-box models of the IBPSA
library will be described (International Building Perfor-
mance Simulation Association 2018). In each, the two
variables electricity consumption Pel and used heat flow
Q̇Con are determined. Assuming a steady-state, adiabatic
process, Q̇Eva is then calculated:

0 = Pel + Q̇Eva − Q̇Con (1)

The models Carnot_TCon and Carnot_y are based
on the same principle, only the input variable changes.
Carnot_TCon sets the output temperature of the con-
denser TCon,out via an ideal heater. Using the output Q̇Con
and the COP, Pel and Q̇Eva are calculated. Carnot_y
determines Pel by the product of Pel,Nom and the input y
which is the part load set point between zero and one. For
both models, the COP is obtained using the Carnot effi-
ciency at nominal and current conditions. These model
approaches are valid for both chillers and heat pumps.
For chillers, condenser and evaporator are switched (In-
ternational Building Performance Simulation Association
2018).

For heat pumps, the AixLib library introduced an
approach obtaining Pel and Q̇Con through manufacturer
data based on EN 14511 (EN 14511-1:2018-03 2018; D.
Müller et al. 2016). Based on the same approach, the
IDEAS library contains a heat pump model as well (Joris-
sen et al. 2018).

Besides these open-source models, researchers have
presented their approach in various contributions. De
Coninck et al. (2010) calculates Pel and Q̇Con based on
the ambient temperature Tamb, the condenser temperature
TCon, and manufacturer data. Wystrcil and Kalz (2012)
use field test data to determine a four coefficient polyno-
mial of the COP as a function of the temperatures TEva,in
and TCon,out.

Until now, we focused our review on Modelica models.
However, the modeling approaches in other simulation
tools mostly do not differ. The assumption in Equation 1
is state of research for black-box approaches. Examples
are given in (Afjei and Wetter 1997; EN 12900:2013-10
2013).

This review highlights the gap in the current state of the
art, which can be summarized in two points.

1. Each contribution develops a new model. However,
the black-box approaches only differ in how Pel and

Q̇Use are calculated. To spend less time in model de-
velopment and more time in simulation analysis, a
uniform and modular approach is necessary.

2. Besides Cimmino and Wetter (2017), VCM internal
safety controls are disregarded. However, such con-
trols strongly influence the behaviour of the machine
in the energy system and thus, it’s SCOP (Mehrfeld,
Nürenberg, Knorr, et al. 2020).

Following the identified gaps, we present a new modular
model for reversible heat pumps and chillers. The vapour
compression cycle is modeled as a black-box. Contrary,
the interactions with the energy systems are gray-box
based. The model is presented in the following section.

3 Modular modeling approach
The following section presents our modeling approach.
The overall model is depicted in Figure 1. To ensure re-
useability of the approach, we implement all presented
models in the open-source library AixLib (D. Müller et
al. 2016). We aggregate all relevant inputs and outputs
using a pre-defined expandable bus connector. All bus
variables are listed in Table 1. In general, Set indicates
a control variable and Mea a physical variable. As core of
each VCM, we start with the black-box approach of the
vapour compression cycle.

Table 1. Pre-defined variables of the VCM bus.

Variable Explanation

nSet Relative compressor frequency
modeSet Set to false to reverse the device
onOffMea Boolean indicating if device is on
PelMea Measured electrical power
CoPMea Measured COP
iceFacMea Icing factor fice, see subsection 3.1
TOdaMea Outdoor air temperature
TEvaInMea Evaporator inlet temperature
TEvaOutMea Evaporator outlet temperature
TEvaAmbMea Ambient temperature at evaporator
TConInMea Condenser inlet temperature
TConOutMea Condenser outlet temperature
TConAmbMea Ambient temperature at condenser

3.1 Vapour compression cycle
In order to realize a reversible and modular VCM
model, we introduce a partial model named
PartialPerformanceData. Inputs to the model
are all bus variables listed in Table 1. Outputs are the
three main energy flows, Q̇Con,out, Q̇Eva,out and Pel,out.
Both HP and chiller models may extend this model and
connect these inputs to the outputs based on a black-box
approach.

The vapour compression cycle model, named
innerCycle, then uses this partial model as a re-

A Modular Model of Reversible Heat Pumps and Chillers for System Applications

562 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181561

innerCycle

con

C
V

eva

C
V

P
T
n

P
T
n

nt
hO
rd
er

K

K

TT

TT

sigBus

port_a1 port_b1

port_a2port_b2

ic
eF
ac
_i
n

nSet

sigBus

T_amb_eva

T_amb_con

modeSet

Figure 1. Partial model of a reversible thermal machine

placeable option. Based on the Boolean input modeSet,
the cycle switches between data for cooling and heat-
ing. This approach is visualized in Figure 2. At the

constZero

k=0

switchQEva switchQCon

sw
itchP

el

modeSet

PerformanceDataHPCooling

k=-1

gainEva

k=-1

gainCon

sigBus

QConQEva

P
el

PerformanceDataHPHeating

Figure 2. Black-box model of the reversible vapour compres-
sion cycle, exemplified for a HP

current state, we have introduced three performance data
approaches.

1. Functional approach: Any modelica function using
variables in Table 1 to calculate the outputs.

2. 2D-Data: All VCMs on the market require data
according to the EN 14511 (EN 14511-1:2018-03
2018). As table inputs, TEva,in and TCon,out are re-

garded. For non fixed-speed devices, the compres-
sor speed is necessary to model the part load be-
haviour. We account for part load by linearly multi-
plying model outputs with nSet. Note however, that
table data was not necessarily obtained at full load.
Hence, we introduce a third approach.

3. 3D-Data: Also based on EN 14511-1:2018-03
(2018), we add compressor speed as a table depen-
dency. While this solves the part load issue, only
some manufacturer publish tables this detailed.

All the above-mentioned approaches include two further
options. First, a scaling factor may be used to scale the
VCM according to demand. Second, we model the VCM
internal effect of possible evaporator frosting. As we
chose a black-box approach for the vapour compression
cycle, gray-box modeling of frost is challenging. Hence,
we adapt a black-box approach as well. The icing fac-
tor fice accounts for losses in evaporator efficiency due to
frosting effects. This factor has to be calculated using ex-
ternal models, e.g. according to the COP correction pro-
posed by Afjei and Wetter (1997). For output of the inner
cycle it follows:

Q̇Eva,out = fice · Q̇Eva (2)
Pel,out = Pel (3)

Q̇Con,out = Q̇Eva,out +Pel,out (4)

3.2 Inertia
As stated in the prior section, the innerCycle model is
based on stationary data points. Hence, transient calcula-
tion of the performance in the vapour compression cycle
does not take place. This is especially problematic dur-
ing on-off switching of the device. When the compressor
is switched on, it requires instantaneous electrical power.
However, the refrigerant and components have mass and
thermal inertias. As a result, the effective heat flow is de-
layed. Thus, we consider this inertia of the inner cycle by
adding a CriticalDamping filter. This adds an PT de-
lay of n-th order on the black-box outputs Q̇Con and Q̇Eva.
Again, usage and order of the filter are custom parameters.

3.3 Heat exchangers
The heat flow rates calculated in the InnerCyle are di-
rectly fed into the secondary fluids. Current open-source
models neglect heat losses with the ambient. However, the
dynamics during heat up and cool down phases may be rel-
evant for the system interaction. Thus, we extend the heat
exchanger HeaterCooler_u from the IBPSA. We add a
capacity between secondary fluid and ambient air, refer to
Figure 3. Thus, the ambient temperature influences the
secondary fluids. Heating the device up takes longer due
to higher capacity. Similarly, the capacity may transfer
heat to the secondary fluid during cool down, even though
the device is turned off. As some black-box data implic-
itly accounts for such losses, not all use cases require this
option. It’s usage is thus optional.

Session 7B: Energy (1)

DOI
10.3384/ecp21181561

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

563

V=V

vol

V=VpreDro
co
nI
ns

co
nO
ut

heatC
ap

C

GInn
heatLossIns

GOut
heatLossOut

pr
eH
ea

port_a port_b

port_out

Q
F
lo
w
_i
n

Figure 3. Model for evaporator and condenser

3.4 Safety controls
In section 2 we point out that current model approaches
neglect interaction of system controls with the internal
safety control of VCMs. As only the interaction with
the system is relevant to us, we regard all safety controls
which influence the long term performance of the system
level as relevant. Furthermore, the order of safety controls
is relevant in Modelica. We choose the following order,
going from set point generators over logical controls to
physical safety controls.

• Thermal disinfection: Frequent thermal disinfec-
tion of domestic hot water is required for HPs to en-
sure safety of users. Temperatures over 60 °C are
necessary (Van Kenhove 2018).

• Defrost: For air-source VCMs, evaporators may
need a defrosting control to ensure an operation with-
out frost on the coils. For reversible VCMs, we
model reverse cycle defrost. If the VCM is not re-
versible, defrost is modeled using auxiliary heaters.

• On/off control: Most VCMs require a minimal run
time, a minimal off-time and forbid frequent on/off
switching. All three requirements depend on nSet
and pre(nSet). Thus, they are included in one
model. Switching single requirements on or off is
achieved through booleans.

• Operational envelope: The compressor of VCMs
can only operate in a given operational envelope. If
outside of the envelope, pressure switches and ther-
mal resistors shut the VCM off. In the model, we
select TConOutMea and TEvaInMea as input for the
model. As in Cimmino and Wetter (2017), a hystere-
sis prevents frequent switching.

• Frost protection: For water or brine sources, the
fluid temperature may not fall below certain thresh-
olds to prevent phase change. Hence, we add a safety
control to ensure TEvaOutMea and TConInMea are
greater than a given threshold.

All controls aggregated, the resulting
SafetyController is depicted in Figure 4. Each
option may be disabled. To better analyze simulation
results, integer outputs show users the number of times
the control was used.

k=0

not1

not k=1

operationalEnvelope

onOffController

defrostControl

true

antiFreeze

nSet nOut

sigBusHP

modeOutmodeSet

E
R
R

Pel_deFro

E
R
R
_opeE

nv

E
R
R
_antF

re

Figure 4. Implemented safety controller for the VCM

3.5 System integration
Lastly, we adapt a model of the overall VCM system
by adding additional components used in VCM. These
include secondary pumps, fans and an auxiliary heater.
Again, all listed components are replaceable and optional.
Not optional is the system controller. It includes the safety
controls and the control to generate the signals nSet and
modeSet.

This system model is currently implemented for a
heat pump. An example is located in the package
AixLib.Systems.HeatPumpSystems.

For reference, the models may be viewed and tested on
the latest commit 38c19751b in the repository AixLib1.

4 Heat pump calibration
To show validity and modularity of our presented ap-
proach, we calibrate a brine/water HP with different black-
box approaches. As calibration method, we select the
approach presented in Mehrfeld, Nürenberg, and Dirk
Müller (2021).

Experiments are performed at a Hardware-in-the-Loop
test bench. Temperature inputs, outputs and consumed P̂el
are presented in Figure 5. Measured data is denoted using
the hat operator, e.g. T̂ . The data between 6000 and 8000 s
data is not used for calibration but for validation only. We
calibrate the NRMSE, refer to Equation 5, of both Pel and
TCon,out weighted equally.

NRMSE =
1

x̂max − x̂min
·
√

∑
n
i=1(xi − x̂i)2

n
(5)

1https://github.com/RWTH-EBC/AixLib

A Modular Model of Reversible Heat Pumps and Chillers for System Applications

564 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181561

Table 2. Data of the HP on the test bench according to EN 14511

Pel in W

TCon,out in °C
TEva,in in °C 0 10

35 1300 1500
55 1900 2300

Q̇Con in W

TCon,out in °C
TEva,in in °C 0 10

35 6100 8400
55 5700 7600

As calibration parameters, we select only those which are
most sensitive to our target values. These parameters are
mass flow rate at condenser ṁCon, volume of condenser
VCon and frequency of the inertia filter finertia. First, we

0 2,000 4,000 6,000 8,000
0

10

20

30

40

50

Time in s

T
in

°C

TCon,out TCon,in Validation
TEva,in TEva,out Pel

0 2,000 4,000 6,000 8,000
0

1

2

3

4

P e
l

in
kW

Figure 5. Experimental data for the calibration and validation

model the HP according to manufacturer data listed in
standard EN 14511 (EN 14511-1:2018-03 2018). The data
is stated in Table 2. Second, we use a Carnot approach
with a constant quality grade. The consumed electrical
power is constant at nominal conditions. This approach is
equivalant to the Carnot approach in the IBPSA for on/off
heat pumps. The equations are as follows:

Pel = Pel,Nom (6)

Q̇Con = Pel,Nom ·ξ ·
TCon,out

TCon,out −TEva,in
(7)

In this study, the quality grade ξ and nominal power
Pel,Nom are additional calibration parameters.

4.1 Results and Discussion
The resulting parameter values of both calibrations are
listed in Table 3 together with applied boundaries. Ad-

ditionally, time series plots for both cases are displayed in
Figure 6.

Table 3. Applied calibration parameters and results

Parameter Min Max Results
Table Carnot

ṁCon in kgs−1 0.2 0.6 0.404 0.214
VCon in L 1 50 4.47 1.59
finertia in µHz 1 300 12 13.2
ξ in % 5 50 - 43.18
Pel,Nom in kW 1.5 2.5 - 1.88

NRMSE Calibration 0.046 0.053
NRMSE Validation 0.041 0.055

0 2,000 4,000 6,000 8,000
0

10

20

30

40

50

Time in s

T
in

°C
T̂Con,out P̂el

TCon,out,Table P̂el,Table

TCon,out,Carnot P̂el,Carnot

0 2,000 4,000 6,000 8,000
0

1

2

3

4

P e
l

in
W

Figure 6. Time series plots for objectives of calibration.

First of all, both model approaches are able to reproduce
the measured temperature. This is possible due to the dy-
namics introduced by the additional inertia and volume of
the heat exchanger. For the validation part, source temper-
ature increases and thus induces an extrapolation of the
black-box approach. Hence, the error increases slightly.

However, the black-box is based on just four points (Ta-
ble) or two parameters (Carnot). As interpolation typically
yields sufficient accuracy, both approaches may be used
for typical operation limits for brine/water HPs. Look-
ing at the electrical power, both approaches differ. Obvi-
ously, the constant Pel,Nom leads to error prone model out-
puts. Not as obvious, the measured data according to EN
14511-1:2018-03 (2018) also shows discrepancies. Most
interestingly, the error is smaller during validation. As
TCon,out,Table is higher than T̂Con,out during validation, simu-
lated Pel,Table increases as well. Note that the results of the
calibration depend on the weighting of objectives. With a
higher weighting towards Pel, the fit would increase.

Session 7B: Energy (1)

DOI
10.3384/ecp21181561

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

565

Concluding, both approaches may be used based on the
aim of the simulation analysis. Minimal data input of just
four data points or two calibrated parameters yield accu-
rate representations when compared to experimental data.

5 Seasonal building performance sim-
ulations

The main goal of our contribution is to develop a modu-
lar model for the use in energy systems. Hence, our sec-
ond use case concerns the integration of said model into a
building energy system.

The building is based on the high-order approach in the
AixLib (D. Müller et al. 2016). Demand of domestic hot
water is neglected.

An air/water HP is simulated, hence the anti-freeze pro-
tection function is not applied. The simulation period is
equal to one heating period, which is defined from 1st Oc-
tober to the 30th April. Besides computation time and the
number of state events, the SCOP is calculated.

Model parameters are selected based on calibration re-
sults, scaled to the manufacturer data of an exemplary
fixed-speed HP. Thermal disinfection is performed once
a week by increasing the storage tank temperature above
60 °C for a duration of 15 min. If the outdoor temperature
falls below 5 °C, defrost cycles are modeled by a daily
10 min reversal of the refrigeration circuit.

To demonstrate influences of introduced models, we an-
alyze eight model configurations (MC). Together with rel-
evant results, they are listed in Table 4. The simulation
settings are stated in Table 5

Table 4. Definition and results of model configurations. Usage
of option is indicated by (x).

C
on

fig
ur

at
io

n

H
ea

tl
os

se
s

A
dd

iti
on

al
in

er
tia

s

O
pe

ra
tio

na
le

nv
el

op
e

O
n/

O
ff

co
nt

ro
l

T
he

rm
al

di
si

nf
ec

tio
n

D
ef

ro
st

C
om

pu
ta

tio
n

tim
e

in
h

st
at

e
ev

en
ts

in
th

ou
sa

nd

SC
O

P

1 o o o o o o 5.2 46.1 2.44
2 x x o o o o 6.9 45.7 2.21
3 x o x x o o 6.5 64.8 2.14
4 o x x x o o 7.2 61.8 2.36
5 x x x x o o 7.4 64.7 2.15
6 x x x x x o 7.5 65.3 2.14
7 x x x x o x 7.8 65.6 1.88
8 x x x x x x 7.8 66.0 1.88

5.1 Results and Discussion
Looking at Table 4, we want to analyze two influences in
detail.

Table 5. Simulation settings for all studied configurations

Setting Value

Start time 273 days
Stop time 485 days
Interval length 5 min
Solver Dassl
Tolerance 0.0001
Store variables at events true

First, the computation time in MC2 increased by a fac-
tor of 1.33. As both heat losses and inertias are active in
MC2, the direct impact of both options is not distinguish-
able. By comparing MC3 and MC4 to MC5, the impact
can be assessed. Neglecting the system inertias in MC3
leads to a 12.6 % reduction in computation time compared
to MC5. If the heat losses are not simulated, the com-
putation time decreases by 3.6 % compared to MC5. De-
spite increased number of state events, MC3 is faster than
MC2. Overall, the CriticalDamping block of third or-
der for mapping the inertia increases the computation time
without having a noteworthy impact on the SCOP. This in-
crease may be attributed in six additional continuous time
states introduced by the model option. The usage of heat
losses only introduce two new continuous time states. In
general, the usage of inertias should always be weighted
against the increased computation time.

Second, we analyze the influence of safety controls on
the computation time and SCOP. Both the computation
time and the number of state events increase between
MC1 and MC3 to MC8. The compliance with the operat-
ing envelope and on/off control evokes 15000-20000 state
events depending on the MC, resulting in an increase of
the computation time by at least 7.5 %. The operating
envelope is not exceeded at any time. Therefore, this
increase is due to compliance with the switching cycles.
In MC6, the influence of thermal disinfection is analyzed.
Compared to MC5, the SCOP is decreased by 0.5 %, and
the computation time is increased by 1.2 %. The chosen
period of 15 min as well as the week-based circuit are
possible reasons for the small influence. Overall, the
defrost control has the greatest influence on the SCOP. As
a result of reversing the refrigeration circuit, the SCOP
decreases by 12.6 %. On the one hand, this is due to the
fact that the table data already take defrosting losses into
account. On the other hand, the duration and timing of
the defrosting cycles in the use case are not based on
validated assumptions. Following defrost control, the heat
losses show the highest impact on the SCOP. Comparing
MC1 to MC2, the SCOP decreases by 9.4 %. To show that
this decrease is not induced by the additional inertias, we
compare MC4 to MC5. Here, the decrease amounts for
8.9 %. This is explained by the fact that inertias change
the dynamics of heat flow and not the quantity itself.

A Modular Model of Reversible Heat Pumps and Chillers for System Applications

566 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181561

Generally, the obtained SCOP may seem small. How-
ever, we examined a supply temperature of 55 °C using a
2 K bandwidth hysteresis control. For these systems, the
SCOPs are in similar ranges compared to SCOPs obtained
in field tests (Huchtemann and Dirk Müller 2012).

6 Conclusion
A modular model for reversible heat pumps and chillers
is presented. The vapour compression cycle is modeled
as a replaceable black-box. Contrary, relevant interactions
with the whole energy system are modeled as gray-box.
Most notably, safety controls such as on/off controls and
the operational envelope are regarded in the model. All
models are optional, enabling users to choose modeling
depth based on their simulation aim.

To demonstrate validity of our approach, we calibrate
two different black-box approaches onto measured data.
While both manage to reproduce supply temperatures, the
Carnot based approach fails to match electricity demands.

Besides calibration, we show influences of different
model options onto simulation speed and efficiency of heat
pumps. The presented results indicate that safety controls
should always be regarded neglected on system integration
level.

While the presented approach is reversible, our back-
ground focuses mainly on the use of VCM as a heat pump
in building energy systems. Calibration and validation of
chiller applications may show limitations of the approach.
Especially validation of experiments using a four-way re-
versing valve are of interest. As we neglect internal ef-
fects of the VCM, losses or dynamics during reverse cycle
mode may lead to poor model accuracy.

Last but not least, we already implemented various
black-box approaches in the AixLib (D. Müller et al.
2016). Researchers and practitioners are invited to con-
tribute new black-box approaches to this open-source
modeling library. Thus, the variety of simulation aims
covered by the presented modeling approach may in-
crease, yielding a more thorough understanding of heat
pumps and chillers in system applications.

Acknowledgements
References
Afjei, Thomas and Ralf Dott (2011). “Heat pump modelling for

annual performance, design and new technologies”. In: 12th
Conference of International Building Performance Simula-
tion Association, pp. 1–8.

Afjei, Thomas and Michael Wetter (1997). Compressor heat
pump including frost and cycle losses. URL: https : / /
simulationresearch . lbl . gov /wetter /download / type204_hp .
pdf.

Carbonell Sánchez, Daniel et al. (2012). “Numerical analysis of
heat pumps models: comparative study between equation-fit
and refrigerant cycle based models”. In: Solar energy for a
brighter future: book of proceedings: EuroSun 2012.

Chamoun, Marwan, Romuald Rulliere, Philippe Haberschill,
and Jean Francois Berail (2012). “Dynamic model of an in-
dustrial heat pump using water as refrigerant”. In: Interna-
tional Journal of Refrigeration 35.4, pp. 1080–1091. ISSN:
0140-7007. DOI: https://doi.org/10.1016/j.ijrefrig.2011.12.
007. URL: https://www.sciencedirect.com/science/article/pii/
S0140700711003082.

Chamoun, Marwan, Romuald Rulliere, Philippe Haberschill,
and Jean-Louis Peureux (2013). “Modelica-based modeling
and simulation of a twin screw compressor for heat pump ap-
plications”. In: Applied Thermal Engineering 58.1, pp. 479–
489. ISSN: 1359-4311. DOI: https : / / doi . org / 10 . 1016 /
j . applthermaleng . 2013 . 04 . 020. URL: https : / / www .
sciencedirect.com/science/article/pii/S1359431113002901.

Cimmino, Massimo and Michael Wetter (2017-07). “Mod-
elling of Heat Pumps with Calibrated Parameters Based on
Manufacturer Data”. en. In: pp. 219–226. DOI: 10 . 3384 /
ecp17132219. URL: https://ep.liu.se/en/conference-article.
aspx?series=ecp&issue=132&Article_No=22 (visited on
2021-04-17).

De Coninck, Roel et al. (2010). “Modelling and simulation of a
grid connected photovoltaic heat pump system with thermal
energy storage using Modelica”. In: 8th international confer-
ence on system simulation, p. 21.

Dechesne, Bertrand et al. (2017). “Comparison of a dynamic
model and experimental results of a residential heat pump
with vapor injection and variable speed scroll compressor”.
In: The 30th International Conference on Efficiency, Cost,
Optimization, Simulation and Environmental Impact of En-
ergy Systems.

EN 12900:2013-10 (2013-10). Refrigerant compressors - Rat-
ing conditions, tolerances and presentation of manufacturer’s
performance data. Tech. rep.

EN 14511-1:2018-03 (2018-03-14). Air Conditioners, Liquid
Chilling Packages and Heat Pumps for Space Heating and
Cooling and Process Chillers, with Electrically Driven Com-
pressors - Part 1: Terms and Definitions. Tech. rep. Brux-
elles, Belgium: CEN/TC 113. URL: https://standards.cen.eu/
dyn/www/f?p=204:110:0::::FSP_PROJECT:59177&cs=
18B95E474391A98AD6EAB83913BAE7714.

Heat Roadmap Europe (2017). Heating and Cooling - facts and
figures. URL: https : / /www.isi . fraunhofer.de/content /dam/
isi / dokumente / cce / 2017 / 29882 _ Brochure _ Heating - and -
Cooling_web.pdf.

Huchtemann, Kristian and Dirk Müller (2012). “Evaluation of
a field test with retrofit heat pumps”. In: Building and Envi-
ronment 53, pp. 100–106. ISSN: 03601323. DOI: 10.1016/j.
buildenv.2012.01.013.

IEA (2020). Heat Pumps. URL: https: / /www.iea.org/reports /
heat-pumps.

International Building Performance Simulation Association
(2018). IBPSA Project 1: BIM/GIS and Modelica Framework
for building and community energy system design and opera-
tion. URL: https://ibpsa.github.io/project1/.

Jin, Hui (2002). “Parameter estimation based models of water
source heat pumps”. Dissertation. Shanghai: Jiaotong Univer-
sity.

Jorissen, Filip et al. (2018). “Implementation and Verification of
the IDEAS Building Energy Simulation Library”. In: Jour-
nal of Building Performance Simulation 11 (6), pp. 669–688.
DOI: 10.1080/19401493.2018.1428361.

Mehrfeld, Philipp, Markus Nürenberg, Martin Knorr, et al.
(2020). “Dynamic evaluations of heat pump and micro com-

Session 7B: Energy (1)

DOI
10.3384/ecp21181561

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

567

bined heat and power systems using the hardware-in-the-
loop approach”. In: Journal of Building Engineering 28,
p. 101032.

Mehrfeld, Philipp, Markus Nürenberg, and Dirk Müller (2021).
“Model Calibration of an Air Source Heat Pump System for
Transient Simulations in Modelica”. en. In: 13th IEA Heat
Pump Conference. Jeju, Korea, p. 11.

Müller, D. et al. (2016). “AixLib – An Open-Source Model-
ica Library within the IEA-EBC Annex 60 Framework”. In:
BauSIM 2016.

Van Kenhove, Elisa (2018). “Coupled Thermohydraulic and Bi-
ologic Modelling of Legionella Pneumophila Proliferation in
Domestic Hot Water Systems”. PhD Thesis. Gent: University
Gent.

VDI 3633:2014-12 (2014-12). Simulation of systems in materi-
als handling, logistics and production - Fundamentals. Tech.
rep.

Wystrcil, Dominik and Doreen Kalz (2012). “Thermo-
hydraulische Modellierung eines Niedrigexergiesystems zur
Gebäudeheizung- und kühlung und exergetische Bewer-
tung von Regelungsstrategien”. In: Fourth German-Austrian
IBPSA Conference.

A Modular Model of Reversible Heat Pumps and Chillers for System Applications

568 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181561

Modelica Modeling and Simulation for a Micro Gas-Cooled

Reactor

Huimin Zhang1 Erhui Chen1 Yangyang Liang1 Li Wang1 Jun Wang1 Shuhong Du1

Liping Chen2 Fanli Zhou2 Ji Ding2 Haiming Zhang2
1China Nuclear Power Engineering Co., Ltd., Beijing, China,

{zhanghm, cheneh, liangyya, wanglie, wangjuna, dush}@cnpe.cc
2Suzhou Tongyuan Software & Control Technology Co., Ltd. Suzhou, China, {chenlp,

zhoufl, dingj} zhanghm}@tongyuan.cc

Abstract

Highly compact micro nuclear reactors which have

broad energy advantages in the application of ocean,

land, space, and sky, become a hot research topic in

the international nuclear industry recently. In this

paper, Modelica language was used in the system

modeling and simulation of a micro gas-cooled

reactor. The Modelica model was self-developed by

China Nuclear Power Engineering Company and the

MWorks developed by Suzhou Tongyuan was

chosen as the simulation platform. Two simulations

of a concept micro gas-cooled reactor design were

carried out. One is the extreme accident scenario and

the other is a normal load-following operation. The

simulation results showed that the reactor has good

inherent safety even under the extreme accident, in

which the reactor shutdown can be achieved only by

the negative reactivity result from the increase of core

temperature and the fuels were not damaged since the

decay heat was removed by passive air cooling from

outside of the reactor pressure vessel. The reactor

also has good load-following performance, which

can be achieved by simply adjusting the helium

inventory (or pressure) and the control rod position,

while the core temperature and power generation

efficiency kept constant.

Keywords: system modeling, system simulation,

micro-nuclear reactor, load-following

1 Introduction

The advanced micro nuclear energy system is a

specific nuclear energy technology with high

flexibility and sustainable and reliable energy supply,

and has a good application prospect in remote areas,

islands and other places with poor traffic and difficult

energy supply. The micro nuclear energy system with

the corresponding facilities can achieve the stable

supply of clean energy, and has broad energy

advantages in the application of ocean, land, space,

and sky.

The concept micro gas-cooled reactor researched

in this paper is a typical micro nuclear energy system

with complex structures and multi-disciplinary, such

as neutron physics, thermal engineering, energy

conversion, electricity and control. Compared with a

large-scale nuclear plant which adopt the traditional

‘divide and conquer’ design concept and is composed

of a large amount of fully decoupled subsystems, the

compact micro nuclear reactor has fewer subsystems

but its subsystems are tightly coupled due to the

constraints of the volume and weight. To handle the

complexity aroused from this coupling issue and to

better predict the reactor dynamic behavior, it is

necessary to perform the system simulation across

multiple disciplines and domains. Modelica is a

unified modeling language for complex physics

systems with multi-disciplinary. Oak Ridge National

Laboratory (ORNL) adopted Dymola platform based

on Modelica to establish the reactor model library

TRANSFORM for the system modeling and

simulation of high temperature gas-cooled reactor

(HTGR) (Hale et al. 2015), nuclear thermal

propulsion rocket(Rader et al. 2019)and molten salt

reactor(Greenwood 2018; Greenwood et al. 2018). In

China, MWorks platform based on Modelica

developed by Suzhou Tongyuan was used for the

integrated system simulation of manned spacecraft

(Bainan et al. 2020) and two-phase flow (Yanping et

al. 2021). In this paper, the MWorks platform was

used for the system modeling and simulation of the

concept micro gas-cooled reactor.

The whole system of the micro gas-cooled reactor

is shown in Figure 1. The direct Brayton cycle is used

for the heat-work conversion. As the medium of heat

transfer and work, the helium is heated by the reactor

core and then enters the turbine to expand, and then

enters the recuperator to reduce the temperature.

After further cooling by the precooler, the helium

flows across the two-stage compressor to increase the

pressure. Finally, the helium is heated by the

recuperator and returns to the reactor core to repeat

DOI
10.3384/ecp21181569

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

569

the thermal cycle process. The compressors, turbine

and generator are connected by a main shaft, and the

turbine provides torque power to drive the generator

and compressors to rotate.

As shown in Figure 2, the reactor core is composed

of 36 fuel bricks, an inner reflector assembly, an outer

reflector, a core barrel and 12 control drums. Graphite

is used as both the neutron moderator and the fuel

structure, and is the major material of the fuel bricks,

reflectors and control drums. The coated fuel

particles TRISO (the design temperature limit is 1600℃

(Yang et al. 2010)) are dispersed in the fuel bricks.

The coolant channels are distributed regularly inside

the fuel blocks as holes.

Figure 1. Main system of the micro gas-cooled reactor.

Figure 2. Sketch of reactor structure.

2 Modelica model

The Modelica model of the micro gas-cooled reactor

system was established, as shown in Figure 3. The

model consists of five subsystems and the data

exchange is accomplished by Modelica interface.

The five subsystems are described as follows:

(1) Reactor system. The core heat generated by the
reactor system provides the energy source for the

Brayton cycle. The reactor system focuses on the

core reactivity, nuclear power, thermal-hydraulic,

decay heat power and residual heat removal power.

The system includes the models of the point reactor,

decay heat power and thermal-hydraulic.

(2) Heat engine system. The heat engine system

focuses on the Brayton cycle to realize the heat-work

conversion. The system includes the models of

turbine, compressor, regenerator, precooler,

intercooler, and pipeline.

(3) Heat sink system. The heat sink system

provides the cold source for the precooler and

intercooler in the heat engine system, and is simply

realized by mass inlet boundary.

(4) Electricity system. The electricity system

converts the rotational kinetic energy in the heat

engine system into the electricity energy, and is

simply realized by a given load.

(5) Control system. The control system focuses on

the control of the power operation and heat sink.

The models of the reactor system, heat engine

system and control system will be discussed detail

below.

Figure 3. Modelica model of the micro gas-cooled reactor

system.

Figure 4. Modelica model of the reactor model.

2.1 Reactor system

The Modelica model of the reactor system is shown

in Figure 4, including the models of the point reactor,

decay heat and thermal-hydraulic. The decay heat

model is implemented by calling external C functions

by virtue of the external function interface in

MWorks. The helium inlet and outlet in the reactor

system are connected to the helium outlet and inlet in

the heat engine system, respectively.

2.1.1 Point reactor model

The reactor neutron model is based on the point

reactor neutron dynamics. The three-dimensional

effect of the neutrons space dynamics is neglected,

and the neutron flux distribution is fixed in space and

only change with time. The equations are listed as

Fuel

Coolant Channel

Reactor Vessel Reflector

Inner Reflector Fuel Region Inlet PlenumOutlet Plenum

Cold HeliumHot Helium

Gap

Reactor Vessel

Reflector

Control Drum

Fuel Brick

Inner Reflector

Core barrel

(a) Fuel Brick (b) Lateral cross section of reactor

(c) Vertical cross section of reactor

Modeling region

Modelica Modeling and Simulation for a Micro Gas-Cooled Reactor

570 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181569

follows:
6

1

 i i

i

dN
N C

dt
 (1)

 i i

i i

dC
N C

dt
 (2)

6

1

 i

i

 (3)

Xe ini T ext
 (4)

where N is the average neutron density, Λ is the

neutron generation time, β is the total delayed

neutron fraction, βi is the delayed neutron fraction of

group i, Ci is the precursor concentration of the

delayed neutron of group i, λi is the decay constant of

the delayed neutron of group i, and ρ is the net

reactivity. The initial reactivity (ρini), temperature

reactivity (ρT), xenon reactivity (ρXe) and external

reactivity (ρext) introduced by control rods are

considered in the model.

2.1.2 Thermal-hydraulic model

Thanks to the symmetry, one quarter of the whole

reactor is chosen in the thermal-hydraulic (T-H)

model as shown in Figure 5, including the fuel bricks,

inlet and outlet plenums, and thermal components

(reflectors, core barrel and pressure vessel). Since the

major material of the control drums is same as the

reflector, they are simply considered same and

merged into the reflector component in the T-H

modeling.

Figure 5. Modelica model of the reactor thermal-

hydraulic.

Since there is an amount of graphite inside core

which is thermal conductor, the heat conduction

phenomenon in the solid core regions is very

important and need to be modeled. In reality, gaps

may exist between the bricks, deteriorate the heat

transfer. At this preliminary work, the assumption of

no gap is taken and the heat conduction are ideally

considered between the fuel bricks, reflectors and

barrel.
Because the nuclear power in different fuel bricks

are not uniform, the heat transfer phenomenon in the

reactor region have the 3-dimentional behavior,

which should be taken into account in the modeling

and simulation. In this paper, a T-H model with

coarse 3-D nodalization is established by using the

lumped parameter method.

The nodalization of the fuel region is shown in

Figure 6. There are 13 lateral nodes each representing

a brick, and the fuel bricks are divided into 5

segments axially. Therefore there are 65 blocks, of

each contains a solid fuel block and a flow segment.

Each solid fuel block has a heat source which

receives the nuclear heat power, transfers heat energy

to the neighbor solid fuel blocks vertically and

laterally by thermal conduction, and releases heat

energy into the gas segment inside it by convection.

Figure 6. Nodalization of fuel region.

The energy function of the solid block is:

, , ,

, , , , , , , , ,

, , , 1, , , 1, , , , -1

He, , , , 1, , , , 1, , , , +1

block i j k

f i j k f i j k p i j k

nuclear i j k radial,i j k radial,i j k axial i j k

i j k radial i j k radial i j+ k axial i j k

dT
V C

dt

Q Q Q Q

Q Q Q Q

 (5)

where i, j, k represent the coordinates, Vf is the

segment volume, ρf is the density, Cp is the specific

heat capacity, Tblock is the temperature, Qnuclear is the

input nuclear energy, QHe is the output heat

convection energy with helium, Qradial is the heat

conduction energy with the radial segments of the

surrounding fuel assembly, Qaxial is the heat

conduction energy with the axial segments within the

fuel assembly.

Since no cross flow between flow channels, a flow

channel can be modeled as a pipe using the Modelica

standard library. The helium compression is

considered and the heat convection is calculated as

(Hale et al. 2015):

He He He He() blockQ h A T T (6)

He
He HeNu

channel

h
D

 (7)

0.333

He ,He

He

He He

0.8 0.4

He He He

2 Re Re
Nu

0.023Re Pr Re Re

p

crtical

crtical

m C

l
 (8)

Fuel region

Inner Reflector

Fuel Brick

Reflector VesselGap

Inlet Plenum

Outlet Plenum Boundary

BoundaryCold helium flow

Hot helium flow

Heat conduction

External air coolingBarrel

a) Lateral nodalization b) Axial nodalization

Flow channel

QHe,i,j,k

QHe,i,j,k-1

QHe,i,j,k+1

Session 7B: Energy (1)

DOI
10.3384/ecp21181569

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

571

where QHe is the heat convection energy, hHe is the

heat convection coefficient, AHe is the heat transfer

area, THe is the helium temperature, λHe is the

conductivity, cp,He is the specific heat capacity,

Dchannel is the channel diameter, mHe is the helium

mass flow rate, l is the channel length, NuHe is Nusselt

number, PrHe is Prandtl number, ReHe is Reynolds

number, Recritical is the critical Reynolds number

between the laminar and turbulent.

The T-H modeling of the reflector and vessel are

similar and simpler to the modeling of fuel region,

also related to the heat conduction.

For the gap between the barrel and vessel, heat

radiation is assumed to be the only heat transfer

process. For the external vessel cooling, the air

convection is simply modeled by setting a fixed

convection heat transfer coefficient.

2.2 Heat engine system

As shown in Figure 7, the heat engine system adopts

direct Brayton cycle to accomplish the heat-work

conversion, and the system is composed of the

turbine, compressors, recuperator, precooler,

intercoolor, and pipes. The high pressure helium

flows through the reactor core and gets heated, and

then flows into the turbine to expand and does work

to drive the main shaft to rotate. The rotating main

shaft drives the compressors to compress the helium

at the same time. The helium with relatively high

temperature from the turbine goes through the lower

pressure side of the recuperator and transfer heat to

the high pressure helium which comes from the high

pressure compressor. After that, the helium goes into

the precooler to reduce the temperature and then

enters the low pressure compressor. Then, the helium

with low temperature and low pressure is compressed

by the low and high compressors, which are

connected by the intercooler, and thus the helium

pressure is increased. Then the helium goes through

the higher pressure side of the recuperator, and the

temperature rises approximately to that at the turbine

outlet. Finally, the helium flows into the reactor core

and repeats such thermal cycle process again. The

turbine model and compressor model is established

to simulate the turbine and compressor. The heat

exchanger model is established to simulate the

recuperator, precooler, and intercooler. The working

medium in the two sides of the precooler and

intercooler are helium and cooling water, while the

working medium in the two sides of the recuperator

are both helium. The helium inlet and outlet in the

heat engine system are connected to the helium outlet

and inlet in the reactor system, respectively.

Figure 7. Modelica model of the heat engine system.

It is supposed that the helium flow is stable in the

turbine and compressor, and the process is adiabatic.

The ThermoPower library is used to establish the

model of turbine and compressor. The characteristic

curves, which are commonly used in the practical

engineering, are used to describe the working process

(Fernández-VillacéandPaniagua 2010).

The heat exchanger model is based on the models

of pipe, heat components, heat conduction, interface

and medium physical properties, as shown in Figure

8. The model of heat transfer and pressure drop in the

pipe model are used to simulate the heat transfer and

flow resistance between the fluid and pipe wall, and

the heat conduction model is used to simulate the heat

conduction between the cold and hot channel. The

heat exchanger is divided into several segments,

which are combined by the heat conduction model.

Figure 8. Modelica model of the heat exchanger.

2.3 Control system

The control system includes the power operation

control and heat sink control in current research stage,

as shown in Figure 9 and 10, respectively. The former

controls the motion of control rods in the reactor

system according to the monitored power and

reactivity. The latter controls the helium flow rate in

the precooler and intercooler in the heat sink system

according to the helium temperature. The control

system can be used to analyze the coupling matching

of the reactor system and heat engine system, and it

can also be used to explore the operation modes.

Modelica Modeling and Simulation for a Micro Gas-Cooled Reactor

572 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181569

Figure 9. Modelica model of power operation control

system.

Figure 10. Modelica model of heat sink control system.

3 Calculation and analysis

Based on the above-mentioned theories and Modelica

models, two simulations of the micro gas-cooled

reactor design were carried out. One is the extreme

accident scenario and the other is a normal reactor-

engine load-following operation.

3.1 Extreme accident

The extreme accident is defined as such scenario,

where the heat engines shut down and the helium

flow rate drops to zero, with all of the control rods

withdrew from the core. When the accident happens,

the heat from the reactor core will transfer to the outer

wall of the reactor pressure vessel, and then removed

by passive air cooling in the environment. It is

supposed that the accident happens after the reactor

works at full power for 80 h. The various powers and

average core temperature are shown in Figure 11

through Figure 13.
The control rods withdraw from core, introducing

positive reactivity to the reactor core, and then the

fission power rapidly rise up to 1.8 times of the full

power in 80s. As a result, the core temperature rises

promptly, leading to the rapidly increased negative

temperature reactivity, and consequently the total

reactivity decreases to a negative value. Therefore,

the fission power drops to nearly zero, and the reactor

shuts down. However, the total reactor thermal power

is not zero because of the decay heat result from the

continually generated fission products and activation

products. With the residual heat removal, the reactor

core temperature gradually goes down, leading to the

decrease of negative temperature reactivity. Then the

net reactivity increases and becomes positive after

about 1.2 h of the accident, and thus the reactor

achieves re-criticality. The final re-criticality power

is about 5.2% of the full power, and the total thermal

power which is the summation of the fission power

and the decay heat power is equal to the residual heat

removal power through the pressure vessel wall.

The maximum fuel temperature after the accident

is about 1211℃ (The fuel and graphite is not

separated, and the real maximum fuel temperature

will be higher than the simulated value), which is

lower than the design limit temperature (1600℃).

Therefore, the reactor shutdown can be achieved after

the accident only by the negative reactivity result

from the increase of core temperature, and the reactor

has good inherent safety. Tsinghua University has

done the similar accident experiments on high

temperature gas-cooled reactor-test module (HTR-10)

reactor in 2003 (Gou et al. 2018), and the reactor

shutdown was realized automatically by the negative

reactivity result from the increase of core temperature.

The safety of fuel and core can be guaranteed.

Figure 11. Nuclear fission power and decay heat power.

Figure 12. Reactor power and residual heat removal

power.

0

0.02

0.04

0.06

0.08

0.1

80 100 120 140 160 180

P
o

w
er

 r
at

io
n

Time [h]

Residual heat removal power

Total reactor thermal power

Fission power

Decay heat power

0

0.02

0.04

0.06

0.08

0.1

80 81 82 83 84 85

Session 7B: Energy (1)

DOI
10.3384/ecp21181569

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

573

Figure 13. Core average temperature.

3.2 Reactor-engine load-following

It is supposed that the actual electricity load is time-

dependent and fluctuates periodically. The

fluctuation period is 24 h, which consists of peak

period, steady period and low period. The demand

power is determined by the electricity load, as shown

in Figure 15. By simply adjusting the helium

inventory (or pressure, setup in MWorks as shown in

Figure 14) and the control rod position, the reactor

nuclear power and net output power change

periodically and synchronously, and the net output

power coincides well with the demand power, which

demonstrates that the function of load-following is

realized successfully.

 The reactor nuclear power and net output power

are 4.10 MW and 1.37 MW respectively, during the

peak period, and are 2.10 MW and 0.69 MW

respectively, during the low period. The electric

power generation efficiency is defined as the ratio of

the net output power to the nuclear power, which

changes little and nearly 33.0%, as shown in Figure

16.

As shown in Figure 17, the helium temperature at

the core inlet and outlet are about 435℃ and 750℃,

respectively, and both change periodically with a

light fluctuation (±3℃).

As shown in Figure 18, the negative temperature

reactivity changes little because of the nearly

constant core temperature. The negative xenon

reactivity changes periodically because of the

periodically changed xenon concentration, which

result from the fluctuating reactor power. Therefore,

the external reactivity introduced by control rods also

changes periodically to keep the reactor critical.

Figure 14. Helium pressure.

 Figure 15. Nuclear power and output power.

Figure 16. Power generation efficiency.

Figure 17. Helium temperature at core inlet and outlet.

Modelica Modeling and Simulation for a Micro Gas-Cooled Reactor

574 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181569

Figure 18. Core reactivity.

4 Conclusions

The system modeling and simulation for a micro gas-

cooled reactor were carried out by Modelica

language. The extreme accident and load-following

were taken as examples to calculate and analyze. The

simulation results showed that the reactor has good

inherent safety even under the extreme accident, in

which the reactor shutdown can be achieved only by

the negative reactivity result from the increase of core

temperature and the fuels were not damaged since the

decay heat was removed by passive air cooling from

outside of the reactor pressure vessel. The reactor

also has good load-following performance, which

can be achieved by simply adjusting the helium

inventory (or pressure) and the control rod position,

while the core temperature and power generation

efficiency kept constant.

It should be mentioned that this Modelica model

focus the system dynamic behavior, in which many

simplifications have been taken. More verification

will be carried out in future by comparing with the

simulation results of high fidelity simulations or

experiments. The simulation results is reasonable and

accepted for the system dynamic analysis.

References

Bainan, Z., Faren, Q., Tao, X., Yang, L., & Wei, W. (2020).

Model based development method of manned spacecraft:

Research and practice[J]. Acta Aeronauticaet Astronautica

Sinica, 41(7), 23967-023967. DOI:

https://doi.org/10.7527/s1000-6893.2020.23967

Fernández-Villacé, V., & Paniagua, G. (2010). "Simulation of

a combined cycle for high speed propulsion". Paper

presented at the 48th AIAA Aerospace Sciences Meeting

Including the New Horizons Forum and Aerospace

Exposition. DOI: https://doi.org/10.2514/6.2010-1125

Gou, F., Liu, Y., Chen, F.-B., & Dong, Y.-J. (2018). Thermal

behavior of the HTR-10 under combined PLOFC and

ATWS condition initiated by unscrammed control rod

withdrawal. Nuclear Science and Techniques, 29(9), 1-9.

DOI: https://doi.org/10.1007/s41365-018-0472-3

Greenwood, M. S. (2018). "Molten Salt-Fueled Nuclear

Reactor Model for Licensing and Safeguards

Investigations" (1650-3686). URL:

https://www.osti.gov/servlets/purl/1509585

Greenwood, M. S., Betzler, B. R., & Qualls, A. L. (2018).

"Dynamic System Models for Informing Licensing and

Safeguards Investigations of Molten Salt Reactors". URL:

https://www.osti.gov/servlets/purl/1456790.

Hale, R., Fugate, D., Cetiner, M., Ball, S., Qualls, A., & Batteh,

J. (2015). Update on ORNL TRANSFORM Tool:

Preliminary Architecture/Modules for High-Temperature

Gas-Cooled Reactor Concepts and Update on ALMR

Control. ORNL/SPR-2015/367, Oak Ridge National

Laboratory. URL:

https://www.ornl.gov/publication/update-ornl-transform-

tool-preliminary-architecture-modules-high-temperature-

gas-0

Rader, J. D., Smith, M. B., Greenwood, M. S., & Harrison, T.

(2019). "Nuclear Thermal Propulsion Dynamic Modeling

with Modelica". URL:

https://www.osti.gov/servlets/purl/1543223.

Yang, L., Liu, B., Shao, Y., Liang, T., & Tang, C. (2010). The

failure mechanisms of HTR coated particle fuel and

computer code. Chinese Journal of Nuclear Science and

Engineering, 30(3), 210-215, 222. URL:

https://inis.iaea.org/search/search.aspx?orig_q=RN:45021

255

Yanping, H., Xiaokang, Z., & Ji, D. (2021). Simulation Model

Architecture and Concept Validation for Thermal

Hydraulic Characteristics of 9.59.Two-Phase Fluid Based

on Modelica[J]. Nuclear Power Engineering, 42(1), 1. DOI:

https://doi.org/10.13832/j.jnpe.2021.01.0001

Session 7B: Energy (1)

DOI
10.3384/ecp21181569

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

575

576 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Energy-based Method to Simplify Complex Multi-Energy
Modelica Models

Joy El Feghali1 Guillaume Sandou1 Hervé Guéguen2 Pierre Haessig2 Damien Faille3

1Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,
France, {joy.el-feghali,guillaume.sandou}@centralesupelec.fr

2IETR, CentraleSupélec, Rennes, France, {herve.gueguen,pierre.haessig}@centralesupelec.fr
3Electricité de France, R&D, PRISME Department, 78400, Chatou, France, damien.faille@edf.fr

Abstract
Energy production and consumption systems increasingly
require more flexibility. The design of new control so-
lutions can be a step, among others, towards flexibility.
However, these control solutions often rely on the use of
complex models, which are difficult to both manipulate
and simulate. This paper presents a proof of concept of a
method that reduces the complexity of multi-energy mod-
els modeled with Modelica language. This complexity-
reducing method is based on simplifying the model’s com-
ponents that contribute less to the total energy using an
energy-based ranking technique. The proposed solution is
successfully applied to a complex city district model. A
property of the Modelica language further allows redec-
laration of low-ranked components without being com-
pelled to fully redesign the model. Criteria verifying the
multi-energy reduced model’s precision, while respecting
physical constraints, are also introduced.
Keywords: energy-based ranking, model reduction, multi-
energy systems, Modelica

1 Introduction
A significant research effort is required in energy produc-
tion to reduce fossil energy use and move towards a size-
able renewable energy penetration. Alongside this, opti-
mizing energy consumption at the utility level (residential,
tertiary, and industrial sectors) can increase global energy
efficiency and decrease energy needs. The energy transi-
tion thus requires greater flexibility both on the production
and consumption sides. This need has to be supported by
new control systems. For this purpose, dynamical models
are needed for control design.
The Modelica language (Fritzson and Engelson 1998) has
been chosen as the modeling framework for dynamical
models, thanks to its ability to capture multi-physics sys-
tems. However, this physical modeling may lead to com-
plex or even intractable models, which cannot be used
for control purposes and control law design. As a re-
sult, a suitable model obtained from a reduction of the
full physical-based model is often necessary. This paper
aims to provide a methodology to reduce the model’s com-
plexity by using a reduction technique applied to Modelica

models.
In the model reduction literature, conventional methods
are widely used, such as modal truncation method (Mar-
shall 1966) and balanced truncation or Moore’s method
(Moore 1981). The modal truncation method aims to sep-
arate slow dynamics and fast dynamics in a modal base,
while eliminating fast dynamics that influence the sys-
tem less. With Moore’s method, less controllable and
less observable states are eliminated in a balanced base.
These methods also require a linear system where eigen-
values and singular values are identified. However, physi-
cal models used for energy systems are not always linear,
in which case energy models need to be linearized before
applying reduction methods. This approach was used for
Modelica models in Kim et al. (2014), building models
were simplified in Modelica using physical properties and
then reduced using Moore’s method. Since this method is
dedicated to LTI models, the physically simplified model
of the building in Modelica was linearized before using
the reduction method in Matlab. Although interesting for
some specific components such as buildings, these meth-
ods appear hard to be generalized in the case of multi-
energy systems due to the versatility of the non-linearities
that need to be taken into account and the different oper-
ating conditions that should be considered.
Another drawback of these methods comes with the loss of
the model structure. The models are indeed often obtained
thanks to a change of basis in the model variables with
difficult-to-interpret physical meaning. Methods, like the
aggregation of states, allow preserving the structure of the
model. Deng et al. (2014) applied this method to a non-
linear building model. An analogy is used between the
linear dynamics part and a continuous-time Markov chain
to apply a Markov chain aggregation method. For Model-
ica models, additional work should be done to verify if the
model is compatible with a particular state representation
form before applying the method.
With the goal of maintaining the model’s structure, Sodja,
Škrjanc, and Zupančič (2019) and Sodja, Škrjanc, and
Zupančič (2020) use an energy-based method applied
to Modelica models, presenting reduction techniques for
differential-algebraic equations (DAE) implemented in
Modelica and reduction techniques for object diagrams.

DOI
10.3384/ecp21181577

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

577

The method is based on ranking procedures that help to
eliminate equations or components with less of an influ-
ence over models. The methodology seems to be extend-
able to multi-energy systems and particularly well suited
to the Modelica framework. Thus, this paper is based on
the same approach used in Sodja, Škrjanc, and Zupančič
(2019), where components are ranked according to their
energy contribution to the system. The components that
contribute less to the total energy of the system are simpli-
fied. This energy-based ranking method can be applied to
Modelica language models after some adaptation to ease
the energy flow calculation in the multi-energy system
components. In this paper, the ranking-procedure method
is applied on a multi-energy system benchmark provided
by our industrial partner. The low-ranked components will
be automatically replaced using a Modelica property. Cri-
teria for local and global error calculation are introduced
to maintain a good precision of the reduced model while
respecting the physical constraints.
In Section 2, the energy-based ranking method used in
Sodja, Škrjanc, and Zupančič (2019) will be detailed. In
Section 3, a solution to reduce the model with simple user
intervention is presented. Particularities of multi-energy
models are highlighted, and the city district model used to
test the simplification method is introduced in Section 4.
In Section 5, the numerical results both from the simula-
tion times and representativeness points of view are pre-
sented. In Section 6, additional perspectives are proposed.

2 Energy-based ranking method
The energy-based ranking method ranks the components
of a model according to an energy metric. Initially intro-
duced for bond graphs, this method was extended in Sodja,
Škrjanc, and Zupančič (2019) to reduce Modelica models
due to the similarity of the structure between the object-
oriented models in Modelica and the bond graphs. While
Modelica models can contain flow and effort variables,
their product does not always correspond to the energy
flow. Further modifications in the model are thus needed
to calculate the energy flow. A metric is then chosen to
rank the components of the model. Low-ranked compo-
nents will be replaced with simplified component models.

2.1 Energy-flow calculation
All connections to a component i should be identified to
calculate the energy flow in Modelica. The sum of all en-
ergy flows exchanged with other components k gives the
total energy flow of a component i as defined in Equa-
tion 1.

Ėi(t) =−∑
k

Ėi,k(t) (1)

The energy flow variable of each component defined in
Equation 1 may not be directly available in the models
and should be calculated by adding equations for energy
flow calculation. Each Modelica component has a con-
nector that links with a neighbor component k, and the

information transferred through connectors helps to cal-
culate the energy flowing to the component i. For exam-
ple, with an electric pin connector of Modelica Standard
Library, the voltage v and the current i are available. The
product of these two variables gives the energy flow at the
pin Ė = v∗ i. Another example is a heat port connector of
Modelica standard library; the temperature T and the heat
flow rate Q f low are available. The energy flow at the port
is Ė = Q f low. Further examples of mechanics and fluid
connectors can be found in Sodja, Škrjanc, and Zupančič
(2019).
The energy flow is calculated during the simulation of the
full model, after which the energy metric is calculated.
For that purpose, a suitable energy metric should be cho-
sen first.

2.2 Activity Calculation
Several metrics were introduced in (Sodja, Škrjanc, and
Zupančič 2019), and the activity metric was chosen be-
cause it gives an idea of the error that the reduction causes.
Initially, the activity was introduced in Louca (1998) for
bond graphs. Activity of the component i, as defined in
Equation 2, describes the energy flowing to a component i
during a time interval [t1, t2].

Ai =
∫ t2

t1
|Ėi(t)|dt (2)

Each component that stores or dissipates energy will have
an activity value; this helps to rank the components rel-
ative to their energy contribution to the system. The re-
duction idea is to simplify the components ranked at the
bottom due to their low energy contribution. In the case
of eliminating a component, its contribution is removed,
causing a difference between the full and the reduced
models. The activity ranking thus gives the error value
from a global perspective.
Notice that the activity ranking is not absolute but depends
on the simulation inputs and the time interval. Indeed,
the activity integral in Equation 2 is computed on a given
simulation duration with particular input signals. In the
car suspension example in Sodja, Škrjanc, and Zupančič
(2019), it is shown that a high-frequency road profile input
(i.e., sharp edges) yields the elimination of slow-moving
components and vice versa.

3 Modelica implementation of the re-
placeable components

A key question is how to remove a low-ranked component,
or more precisely by which simplified model it should be
replaced. The removal of a component leads to remov-
ing all of its connections. In Sodja, Škrjanc, and Zupančič
(2019), the low-ranked components were removed man-
ually by the user, and some modifications were needed
to be done to avoid initialization problems. With large
complex models, manual manipulation of the components
may not be the best solution. Automatic modifications are

Energy-based Method to Simplify Complex Multi-Energy Modelica Models

578 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181577

Listing 1. Example of the replaceable Envelope

model Building
replaceable OneZoneEnvelope Envelope

constrainedby BaseEnvelope
annotation(choices(choice(redeclare

OneZoneEnvelope Envelope), choice(
redeclare EmptyEnvelope Envelope)));
...

thus needed. In this paper, the authors propose replac-
ing the low-ranked component with a simplified compati-
ble component model with a minimum user intervention.
A simplified component model can be created with the
same connections to other components as the full com-
ponent model but without all of its equations that bring
complexity to the model. These equations could be re-
moved, linearized, or replaced depending on the physics
of the component. Suppose low-ranked components are
replaced with empty component models, where all internal
connections and equations are removed. In that case, the
energy-based component’s contribution is set to zero or
the maximum or the mean energy value. Several compat-
ible models can be defined in order to replace low-ranked
components. The replacement choice will be left to the
user, depending on the study.
Modelica has properties that help to replace a component
with another compatible component model without hav-
ing to redesign the system. Suppose a model Building that
contains an Envelope component and an EnergySystem
component. At the upper-level of the model Building, the
Envelope will be replaced with another simplified model
by choosing from a list of predefined components.
The following Modelica keywords replaceable,
constrainedby, choices and redeclare help re-
placing the components (Tiller 2014). When components
are created in the full model, the keyword "replaceable" is
added to the component declaration to address a property
to the component that it can change its type.
The keyword "constrainedby" is used to specify a con-
straining type for all the new compatible types by which
the component can be replaced. The constrained type can
be a base component model that compatible models in-
herit from.
In order to create a list of component types, new type
choices are added to the annotation of the replaceable
component in the full model. The choices determine
the component model types’ possibilities for replacement.
The example of the replaceable Envelope’s declaration in
the model is given in Listing 1. At the upper-level of
the complete model, using the keyword "redeclare", the
replaceable component changes its type. The user can
choose from a list of predefined component models and
replace the original component model. The expression
with "redeclare" is automatically added to the declaration
of the component in the Modelica model, at the upper-
level, when choosing from a list. An example of the text

Listing 2. Example with redeclare at the upper-level of the
model Building

model BuildingUpperLevel
Building bldg(redeclare EmptyEnvelope

Envelope);
end BuildingUpperLevel;

in Modelica for the Envelope redeclare at the upper level
is shown in Listing 2.

4 Multi-energy system case-study
In this paper, the interest of the authors is to reduce the
complexity of multi-energy models in Modelica by apply-
ing the energy-based reduction method. Multi-energy dis-
tricts are considered, combining different types of energy
production and consumption. These multi-energy districts
are formed of buildings interacting with an electrical grid
and a district heating network. The two latter systems can
interact by a combined heat and power unit or by the elec-
trical consumption of the district heating network. Renew-
able energy systems can also be connected.
The energy-based reduction method can be applied to
these district Modelica models by choosing buildings as
components to be ranked. Since buildings interact with
different types of energy systems, they will have multiple
energy flow variables. The energy flowing to a building is
the power demanded from each of the connected energy
systems. With a district composed of buildings commu-
nicating their power demands while interacting with an
electrical grid and a district heating network, each build-
ing will have three types of activities: the active electrical
activity APelec , the reactive electrical activity AQelec and the
heating activity APheat . These variables correspond to the
different energies flowing to the building for a chosen in-
terval. Due to the multi-energy aspect of the system, these
variables are separated.
After applying the energy-based ranking, the low-ranked
buildings will be replaced with a simplified buildings
model. At the source level, the error between the full and
reduced models can be determined with the activity rank-
ing. However, due to the interaction of the buildings with
other systems like the electrical grid and heating network,
removing a building causes error from a local perspective
in the electrical grid model and heating network model.
The precision of the reduced model should be checked at
all levels, and the physical constraints of the model should
be respected. For example, physical constraints for the
electrical grid are checked for the voltage and the current
values of the lines. The voltage should stay within a range
of ±5% of the nominal medium voltage for medium volt-
age lines and ±10% of the nominal low voltage for low
voltage lines. The current value should not exceed the Imax
of the line.
Criteria of signals in the electrical grid and district heating
network models are used to validate the reduced model de-

Session 7B: Energy (1)

DOI
10.3384/ecp21181577

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

579

pending on the system’s physics. Criteria help to analyze
how the signal is affected by the removal of the compo-
nent.
The principles of the reduction of multi-energy models are
applied in the case of a city district provided by Électricité
de France (EDF R&D). The system is modeled using EDF
R&D Modelica libraries.

4.1 Description of the model
The chosen system is a sizeable multi-energy district lo-
cated in the southern suburbs of Paris described by the
PowerGrid demonstrator (Bouquerel et al. 2019). The dis-
trict is composed of 719 buildings, one electrical grid, and
one district heating network. The district’s model in Dy-
mola is complex due to its scale, and the computation time
is thus long, raising the need for a reduction method. A
smaller use case of 20 buildings is issued from the Pow-
erGrid model to test the energy-based reduction method
before applying it to a larger-scale model. These 20 build-
ings are connected to an electrical grid, and 12 of them are
also connected to a district heating network. The build-
ings are local producers; they produce energy through
photovoltaic panels (PV panels). The district heating net-
work comprises a heat pump assisted by a storage tank
that delivers hot water through pipes. EDF R&D Mod-
elica libraries are used to model the system in Dymola:
BuildSysPro (Plessis, Kaemmerlen, and Lindsay 2014)
for buildings, PowerSysPro (Tavella 2020) for the elec-
trical grid, and MixSysPro, an internal EDF R&D library
for the district heating network.

T_outside

P_total,heat

P_total,elec
Q_total,elec

Buildings_Model
HeatGrid_Model

ElecGrid_Model

Figure 1. The multi-energy model in Dymola

The upper-level of the district model is composed of the
buildings model, the electrical grid model, and the heating
network model as shown in Figure 1.
In the buildings model as shown in Figure 2, the system
is composed of an envelope model and an energy-system
model. The envelope model calculates the interior tem-
perature that is used in the energy-system model. In the
energy-system model, the electrical power and heating
power demands are calculated according to the consump-
tion scenario. Buildings have solar panels, so they produce
electrical power that the building will consume. If the PV

production is higher than the need, the rest will be deliv-
ered to the electrical grid. The outputs of the buildings’
model are the power demanded from the heating network
and electrical grid. Each building connected to the elec-
trical grid share its active Ptotal,elec(t) and reactive elec-
trical power Qtotal,elec(t). These electrical powers add all
the electrical consumption demands of a building while
reducing the amount produced locally by the PV panels.
Each building connected to the heating network share its
total heating consumption Ptotal,heat(t). The heating power
includes the hot water demand and the heater demand.

Envelope

Energy System

time

time_s

Temp_ground BC_ground

Temp_out BC_out_air

K

T_outdoor_sensor

SWR_windows

SWR_facades

SWR_roofs_diffuse

SWR_roofs_direct

SWR_roofs_AOI

SWR_roofs[]

+
+1

+1

SWR_roofs[]

+
+1

+1

Temp_out.y [1] - 20

Temp_sky
BC_sky

scenarios_B061

T_outdoor_K

out_air_port

sky_port

indoor_ports[] BATIMENT0000000005011407_P

BATIMENT0000000005011407_Q

BATIMENT0000000005011407_P_DHN

BATIMENT0000000356487656_P

BATIMENT0000000356487656_Q

BATIMENT0000000356487656_P_DHN

BATIMENT0000000322361256_P

BATIMENT0000000322361256_Q

BATIMENT0000000322361106_P

BATIMENT0000000322361106_Q

BATIMENT0000000322361106_P_DHN

BATIMENT0000000005011480_P

BATIMENT0000000005011480_Q

BATIMENT0000000322361275_P

BATIMENT0000000322361275_Q

BATIMENT0000000322361275_P_DHN

BATIMENT0000000005011403_P

BATIMENT0000000005011403_Q

BATIMENT0000000005011403_P_DHN

BATIMENT0000000322361273_P

BATIMENT0000000322361273_Q

BATIMENT0000000322361273_P_DHN

BATIMENT0000000322361280_P

BATIMENT0000000322361280_Q

BATIMENT0000000322361254_P

BATIMENT0000000322361254_Q

BATIMENT0000000322361260_P

BATIMENT0000000322361260_Q

BATIMENT0000000322361227_P

BATIMENT0000000322361227_Q

BATIMENT0000000322361227_P_DHN

BATIMENT0000000322361232_P

BATIMENT0000000322361232_Q

BATIMENT0000000322361232_P_DHN

BATIMENT0000000322361121_P

BATIMENT0000000322361121_Q

BATIMENT0000000322361121_P_DHN

BATIMENT0000000322361089_P

BATIMENT0000000322361089_Q

BATIMENT0000000322361089_P_DHN

BATIMENT0000000005011458_P

BATIMENT0000000005011458_Q

BATIMENT0000000005011458_P_DHN

BATIMENT0000000356487694_P

BATIMENT0000000356487694_Q

BATIMENT0000000322361274_P

BATIMENT0000000322361274_Q

BATIMENT0000000322361274_P_DHN

BATIMENT0000000320456131_P

BATIMENT0000000320456131_Q

BATIMENT0000000005011465_P

BATIMENT0000000005011465_Q

Figure 2. Buildings model in Dymola

The electrical grid model is composed of 23 lines. The 20
buildings are connected to low voltage or medium voltage
lines as shown in Figure 3. The inputs of the electrical grid
model are the electrical power demands of each building.
The current and voltage of the lines are calculated within
the model with power flow calculation.

src

225000

mvlv11

SNom

A B
~ ~

mvlv24

SNom

A B
~ ~

Ln3

Imax

A B
~ ~

Ln677

485

A B
~ ~

Ln714

485

A B
~ ~

Ln715

485

A B
~ ~

Ln716

485

A B
~ ~

Ln717

485

A B
~ ~

Ln718

485

A B
~ ~

Ln719

485

A B
~ ~

Ln676

485

A B
~ ~

Ln702

485

A B
~ ~

Ln703

485

A B
~ ~

Ln712

485

A B
~ ~

Ln713

485

A B
~ ~

Ln720

485

A B
~ ~

Ln769

375

A B
~ ~

Ln770

485

A B
~ ~

Ln771

485

A B
~ ~

Ln772

375

A B
~ ~

Ln773

375

A B
~ ~

Ln774

375

A B
~ ~

Ln775

375

A B
~ ~

Ln776

375

A B
~ ~

Ln777

375

A B
~ ~

Bldg9

~

Bldg16

~

Bldg3

~

Bldg5

~

Bldg13

~

Bldg14

~

Bldg17

~

Bldg20

~
Bldg11

~

Bldg10

~

Bldg1

~

Bldg7

~

Bldg12

~

Bldg15

~

Bldg18

~

Bldg8

~

Bldg6

~

Bldg19

~

Bldg2

~

Bldg4

~

hvmv

SNom

A B
~ ~~

buildingsPowerBus

Figure 3. Electrical grid model in Dymola. The highlighted
framed buildings are the subject of the subsection 5.2

The heating network model in Figure 4 contains the heat
pump and the storage tank that feed the 12 substations
connected to the 12 buildings. The buildings are as-
signed to one of the three subnetworks. The red and
blue connections correspond to the hot water and cold wa-
ter circulations, respectively. The inputs of the heating
network model are the heating power demands of each

Energy-based Method to Simplify Complex Multi-Energy Modelica Models

580 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181577

building. The substations’ return temperature Treturn(t)
is calculated in the heating network model and depends
only on the outside temperature. All buildings thus have
the same return temperature Treturn(t). The mass flow is
calculated for a building i connected to a substation i:

ṁi(t) =
Ptotal,heati (t)

cp(Tsupplyi (t)−Treturn(t))
with Tsupplyi(t) the tempera-

ture received at the substation i and cp the fluid specific
heat capacity.

Figure 4. District heating network model in Dymola. The high-
lighted framed buildings are the subject of the subsection 5.2

4.2 Impact of the reduction on the multi-
energy model

The simplification of the low-energy buildings affects both
the electrical grid and district heating network models
from global and local perspectives.
For the electrical grid, the global level corresponds to the
electrical source level. The local level corresponds to
the medium voltage and low voltage lines. Power, volt-
age, and current values of the lines will change in the
electrical grid model due to the building simplification.
The electrical power at the source level will vary slightly
when removing a building with low energy contribution.
However, at the line directly connected to the building re-
moved, there will be a 100% error of the power, but which
is supposed to be non-significant for the rest of the grid.
The power error can be deduced from the activity ranking
and the lines’ position according to the buildings removed.
The error of the current and voltage of the lines should be
calculated by simulating the reduced model and compar-
ing values with the full model. The voltage at a line is
not allowed to vary significantly compared to the nomi-
nal value; the threshold is chosen to be 1%. The reduced
model can be validated if the voltage and current values at
the electric lines do not exceed the physical allowed lim-
its.
For the district heating network, the global level corre-
sponds to the heating source, and the local level is at the
substations. At the heat pump and storage tank level, the
power error will be minor when a low-energy building is
removed. At the substation’s level, there will be a 100%
error of power. In the district heating network, the tem-
perature and the mass flow should be analyzed. The re-

duced model’s mass flow and temperature should not vary
significantly compared to the full model’s values. At the
substation level of the building removed, the mass flow
will be equal to zero because the power is set to zero. The
substation’s model ensures a minimum mass flow. The
temperature Tsupplyi(t) received by a building i may vary
when removing a building on the same subnetwork due to
losses in the pipes that depend on the mass flow.

4.3 Replacing buildings with empty buildings
models

As stated in section 3, a low-ranked component could be
replaced with different types of component models; differ-
ent possibilities thus exist for building replacement. When
the building’s energy contributions are chosen to be elim-
inated, as done in this study, the active and reactive elec-
trical power values and the heating power values are set
to zero. Later on, it can be set to another value. Since
the building model comprises an envelope model and an
energy-system model, a predefined empty model is cre-
ated for each.
All subcomponents and internal connections are removed
from the envelope and energy-system models; connectors
and parameters only remain. The removal of the internal
connections decreases the number of equations of the full
model. The energy system model’s outputs are the active
and reactive electrical power values connected to the elec-
trical grid and the heating power value connected to the
district heating network. These values are set to zero.
Other surrogate models of buildings can be defined, like
an energy-system connected only to the electrical grid or
the heating network. Energy systems without PV panels
can also be possible. It would be interesting to compare
all the results of these possibilities of simplification. This
paper’s work is limited to replacing the envelope model
and the energy-system model with empty models.

5 Results
The energy-based ranking method is applied to the district
model. The full model does not have to be simulated to
obtain the ranking; the simulation of the buildings model
is only needed. In the case where the model of the build-
ings is too large for the solver and cannot be simulated,
each building can be simulated separately. In other ap-
plications, a limitation of the method can appear when the
model cannot be simulated to calculate the activities of the
components.
For each building, three types of activities are analyzed:
the active electrical activity APtotal,elec , the reactive elec-
trical activity AQtotal,elec and the heating activity APtotal,heat .
The three activities are obtained by applying the Equa-
tion 2 for a one-year interval with Ptotal,elec(t), Qtotal,elec(t)
and Ptotal,heat(t) considered as the three energy flowing to
the building. The horizon could also be chosen to be a
single season of interest. However, in this case study, all
buildings share the same synthetic consumption scenario.

Session 7B: Energy (1)

DOI
10.3384/ecp21181577

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

581

Thus the effect of seasonal variations affects activity mag-
nitudes but cancels out in the activity ranking.
The activities are calculated for each of the 20 buildings
during the simulation. The ranking of the buildings for
each of the three activities is then deduced. The ranking
depends on the model, especially on the input scenario and
the parameters of the system. As the ranking is roughly the
same between the three tables’ shared buildings, only the
Table 1 from the electrical active power point of view is
presented. The buildings that will be simplified are easily
identified.
Differences in the ranking of the three activities can hap-
pen due to a difference in the scenario between buildings
or a change in the time slot. In this case, a suitable replace-
ment building model will have to be found that combines
the simplification according to multiple ranking.
A limitation of this method is when a majority of build-
ings have similar and low activity values. Then, it is not
possible to remove low activity buildings while preserv-
ing most of the total activity of the system. Aggregation
might be an alternative solution to combine buildings with
similar properties. When using aggregation, the nodes of
each of the district heating network and the electrical grid
should be aggregated as well. A work on aggregating the
nodes of a Modelica district heating network model can be
found in Falay et al. (2020).

Table 1. Ranking of the buildings from the electrical active
power point of view

Buildings Activity
[MWh]

Relative
(%)

Accumulated
(%)

Building 20 2 270 26 26
Building 15 1 294 15 41
Building 16 890 10 51
Building 14 627 7 58
Building 12 618 7 65
Building 17 612 7 72
Building 13 526 6 78
Building 03 400 5 82
Building 06 325 4 86
Building 11 260 3 89
Building 18 223 3 91
Building 05 197 2 94
Building 09 151 2 95
Building 10 143 2 97
Building 04 95 1 98
Building 19 77 1 99
Building 08 51 1 100
Building 07 14 0 100
Building 02 14 0 100
Building 01 13 0 100
Total 8 800

5.1 Simulation time
The multi-energy model, shown in Figure 1, is simulated
for a one-year period with one-hour sampled inputs us-
ing CVODE solver with a variable step. The building
model interacts with the electrical grid and district heat-
ing network models; this interaction causes higher simu-
lation time. The simulation time is expected to decrease
when buildings are simplified. The number of equations
decreases linearly as in Figure 5 with the decrease of the
number of buildings to simulate. The simulation time does
not follow a linear decrease as shown in Figure 6. For ex-
ample, simplifying the four low-ranked buildings leaves
16 buildings to simulate. The full model’s simulation time
is thus reduced by almost a factor of two.

0 2 4 6 8 10 12 14 16 18 20

Number of buildings simulated

2000

4000

6000

8000

10000

12000

14000

N
u

m
b

e
r

o
f

e
q

u
a
ti
o
n

s

Number of equations of the full model

Figure 5. Number of equations of the full model

0 2 4 6 8 10 12 14 16 18 20

Number of buildings simulated

0

50

100

150

200

250

300

C
P

U
ti
m

e
 (

s
)

Simulation time of the full model

Figure 6. Simulation time of the full model

5.2 Reduced model verification
After the reduction is applied, the accuracy of the city dis-
trict reduced model should be verified. Criteria for sev-
eral signals are defined to calculate the error generated by
the simplification of the buildings. The red indices in the
criteria definitions correspond to the values of the signals
obtained with the reduced model’s simulation.
Criteria are introduced for the electrical grid verification
in Equation 3, Equation 4 and Equation 5 with I(t), U(t)
the values of the current and voltage at a line obtained with

Energy-based Method to Simplify Complex Multi-Energy Modelica Models

582 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181577

the full model’s simulation. Unom is the nominal value of
the voltage at a line. Equation 4 represents the mean ab-
solute error (MAE) of the current relative to the current’s
maximum value. T is the time span of the signal values.
Equation 6 and Equation 7 are introduced for the heating
network with Tsupply(t), ṁ(t) the values of the received
temperature and the mass flow at a substation of a build-
ing obtained with the full model’s simulation.

CI∞(line i) =
||I(t)− Ired(t)||∞
||I(t)||∞

(3)

CIMAE(line i) =
1
T
∫ T

0 |I(t)− Ired(t)|
||I(t)||∞

(4)

CU∞(line i) =
||U(t)−Ured(t)||∞

Unom
(5)

CT∞(building i) =
||Tsupply(t)−Tsupply,red(t)||∞

||Tsupply(t)||∞
(6)

Cṁ∞(building i) =
||ṁ(t)− ṁred(t)||∞
||ṁ(t)||∞

(7)

The case study is composed of 20 buildings. The four
buildings ranked last in the ranking of Table 1 are removed
at once, which leaves a model of 16 buildings to simulate.
The removal of the contribution of these buildings affects
the variables’ values of the electrical grid and heating net-
work, which should be validated using the defined criteria.
The electrical grid is composed of 23 lines connected to
medium and low voltage buildings. After reducing the
buildings, the current of these lines does not surpass the
maximum value Imax allowed of the line, and the voltages
at the lines are far from the limits. Equation 3, Equation 4,
and Equation 5 are represented in Figure 7 and Figure 8.

ln
71

9

ln
71

4

ln
71

7

ln
71

6

ln
67

7

ln
71

8

ln
71

5

ln
72

0

ln
77

7

ln
77

1

ln
70

2

ln
71

2
ln
3

ln
67

6

ln
70

3

ln
77

5

ln
71

3

ln
76

9

ln
77

0

ln
77

2

ln
77

3

ln
77

4

ln
77

6
0

10

20

30

40

50

60

70

80

90

100

C
ri
te

ri
a

 (
%

)

CI and CI
MAE

 values of all the lines: 4 buildings removed

CI

CI
MAE

Figure 7. Error on the current of the lines of the electrical grid
with respect to Equation 3 and Equation 4

In Figure 7, the error is 100% for the lines 772, 773, 774 et
776 because these lines are directly connected to the four
removed buildings (see Figure 3). For the other lines, the
error on the current does not exceed 30% of the maximum
value of the current with the full model’s simulation, and
the MAE criterion values are small. These values are ac-
ceptable since the current values of the reduced model are

ln
3

ln
67

7

ln
71

4

ln
71

7

ln
71

8

ln
71

9

ln
71

5

ln
71

6

ln
67

6

ln
70

2

ln
71

2

ln
72

0

ln
70

3

ln
71

3

ln
77

7

ln
77

5

ln
77

1

ln
77

6

ln
76

9

ln
77

2

ln
77

3

ln
77

0

ln
77

4
0

0.2

0.4

0.6

0.8

1

1.2

C
U

 (
%

)

CU values of all the lines: 4 buildings removed

Figure 8. Error on the voltage of the lines of the electrical grid
with respect to Equation 5

far from the Imax limits. In Figure 8, the criteria on the
voltage values do not exceed 1% of the nominal voltage
value of the line, except for line 774, where the building
is removed. Voltages are less sensitive than the currents to
the variation of the power values of the buildings. The er-
ror on the lines depends on the position of the line relative
to the building removed. In Figure 9, the different criteria
values are presented for line 3 at the source level with re-
spect to the number of buildings simulated. As expected,
the current criteria values increase when more buildings
are removed. The voltage at the line 3 does not vary sig-
nificantly.

0 2 4 6 8 10 12 14 16 18 20

Number of buildings simulated

0

10

20

30

40

50

60

70

80

C
ri
te

ri
a

 (
%

)

Criteria of the line 3

CI

CI
MAE

CU

Figure 9. Criteria of the line 3 while removing buildings

The district heating network is affected when removing
buildings. The power demand is set to zero; this sets the
building’s mass flow ṁred of the reduced model to zero.
Building 1, 2, 7, and 8 are the four removed buildings, and
they have an error of mass flow of 100% between the full
and reduced model, not shown in Figure 10. The other
buildings are negligibly affected depending on their po-
sitions relative to the removed buildings (see Figure 4).
In Figure 11, buildings on the same subnetwork have the
same temperature error; this is because of the way of mod-
eling the losses in the pipes in the district heating network.
Buildings on subnetworks that are not affected have a zero

Session 7B: Energy (1)

DOI
10.3384/ecp21181577

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

583

bl
dg

1

bl
dg

12

bl
dg

13

bl
dg

14

bl
dg

15

bl
dg

16

bl
dg

18

bl
dg

2

bl
dg

4

bl
dg

6

bl
dg

7

bl
dg

8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 10. Error on the demanded mass flow of the buildings of
the district heating network with respect to Equation 7

bl
dg

1

bl
dg

12

bl
dg

13

bl
dg

14

bl
dg

15

bl
dg

16

bl
dg

18

bl
dg

2

bl
dg

4

bl
dg

6

bl
dg

7

bl
dg

8
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 11. Error on the received temperature of the buildings of
the district heating network with respect to Equation 6

error. In Figure 12, the different criteria values are pre-
sented at the heating source level for the number of build-
ings simulated. The error is expected to increase when
buildings are simplified. However, mass flow error values
are high when simulating 5, 7, and 8 buildings. No expla-
nation is yet certain, but this result is affected by the sub-
network assigned to the removed buildings, where there
are heat losses.
An energy criterion at line 3 is defined in Equation 8,
where ∑k |Ptotal,elec(k)| is the sum of one-hour samples
over a one year simulation (8761 samples). The results in
Figure 13 reflect the error on the demanded power, caused
by the removed building’s contribution from Table 1.

CE(line 3) =
|∑k |Ptotal,elec(k)|−∑k |Ptotal,elec,red(k)||

∑k |Ptotal,elec(k)|
(8)

6 Conclusion
In this paper, a proof of concept for the method of reducing
complex multi-energy models is presented. This method
conserves the model’s physical meaning by reducing the
model’s components using energy-based ranking. Com-
ponents are removed or replaced with a simpler model

0 2 4 6 8 10 12

Number of buildings simulated

0

10

20

30

40

50

60

70

80

C
ri
te

ri
a

 (
%

)

Criteria at the source level

Figure 12. Criteria at the source level of the district heating
network while removing buildings

0 2 4 6 8 10 12 14 16 18 20

Number of buildings simulated

0

10

20

30

40

50

60

70

80

C
E

 (
%

)

CE of the line 3

Figure 13. Error on the energy at the electric source level

using the replaceable and redeclare properties. The re-
duced model has a shorter simulation time, the precision
is evaluated by the criteria proposed, and the physical con-
straints were respected. It is interesting for future work to
find a suitable number for removed buildings by compro-
mising between the simulation time and the model’s pre-
cision. An estimation of the local error at the electrical
grid and heating network levels is practical and replaces
simulating the reduced model and the full model to com-
pare them. As a next step, we will test our method on a
larger scale model and on a different time horizon and in-
puts. For cases when this ranking-based model reduction
doesn’t apply well (e.g. when a large fraction of com-
ponents share similar low activity values), a to-be-defined
component aggregation strategy would be complementary.

Acknowledgements
This work has been supported by Électricité de France
(EDF R&D) and RISEGrid Institute. This work reuses
parts of the PowerGrid demonstrator which was partly
funded and supported by BPI France through the French
FUI ModeliScale research project. The authors would like
to thank Jean-Philippe Tavella, Dominique Croteau, Has-
san Bouia, and Clément Flinois for their support with the
model implementation and expertise in the various fields.

Energy-based Method to Simplify Complex Multi-Energy Modelica Models

584 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181577

References
Bouquerel, Mathias et al. (2019). “Requirements modelling to

help decision makers to efficiently renovate energy systems
of urban districts”. In: Proceedings of the 2019 Summer Sim-
ulation Conference, pp. 1–12.

Deng, Kun et al. (2014). “Structure-preserving model reduction
of nonlinear building thermal models”. In: Automatica 50.4,
pp. 1188–1195.

Falay, Basak et al. (2020). “Enabling large-scale dynamic simu-
lations and reducing model complexity of district heating and
cooling systems by aggregation”. In: Energy 209, p. 118410.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: European Conference on Object-Oriented Pro-
gramming. Springer, pp. 67–90.

Kim, Eui-Jong et al. (2014). “Urban energy simulation: Simpli-
fication and reduction of building envelope models”. In: En-
ergy and Buildings 84, pp. 193–202.

Louca, Loucas Sotiri (1998). “An energy-based model reduction
methodology for automated modeling.” PhD thesis.

Marshall, SA (1966). “An approximate method for reducing the
order of a linear system”. In: Control 10, pp. 642–653.

Moore, Bruce (1981). “Principal component analysis in linear
systems: Controllability, observability, and model reduction”.
In: IEEE transactions on automatic control 26.1, pp. 17–32.

Plessis, Gilles, Aurelie Kaemmerlen, and Amy Lindsay (2014).
“BuildSysPro: a Modelica library for modelling buildings and
energy systems”. In: Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden.
096. Linköping University Electronic Press, pp. 1161–1169.

Sodja, Anton, Igor Škrjanc, and Borut Zupančič (2019).
“Realization-preserving model reduction of object-oriented
models using energy-based metrics”. In: Simulation 95.7,
pp. 607–620.

Sodja, Anton, Igor Škrjanc, and Borut Zupančič (2020). “Cyber-
physical modelling in Modelica with model-reduction tech-
niques”. In: Journal of Systems and Software 163, p. 110517.

Tavella, Jean-Philippe (2020). PowerSysPro library. URL: https:
//bitbucket.org/simulage/powersyspro/wiki.

Tiller, Michael (2014). Modelica by Example. URL: https://mbe.
modelica.university/components/architectures/replaceable/.

Session 7B: Energy (1)

DOI
10.3384/ecp21181577

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

585

586 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

A Case Study on Condenser Water Supply Temperature
Optimization with a District Cooling Plant

Kathryn Hinkelman1 Jing Wang1,2 Chengliang Fan1,3 Wangda Zuo1,2 Antoine Gautier4

Michael Wetter4 Nicholas Long2

1Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, USA,
{kathryn.hinkelman,jing.wang,chengliang.fan,wangda.zuo}@colorado.edu

2National Renewable Energy Laboratory, USA, nicholas.long@nrel.gov
3School of Civil Engineering, Guangzhou University, China

4Lawrence Berkeley National Laboratory, USA, {agautier,mwetter}@lbl.gov

Abstract
District cooling (DC) continues to proliferate due to in-
creasing global cooling demands and economies of scale
benefits; however, most district-scale modeling has fo-
cused on heating, and to the best of our knowledge, re-
searchers have yet to model cooling plants featuring wa-
terside economizers in DC settings. With the Model-
ica Buildings library expanding its capabilities to district
scale, this study is one of the first to demonstrate how
the open-source models can be used for detailed energy
and control analysis of a DC plant. For a real-world case
study, we developed and validated high-fidelity models for
a DC central plant at a college campus in Colorado, USA,
and we optimized the condenser water supply tempera-
ture (CWST) setpoint across multiple time horizons us-
ing the Optimization library in Dymola. Results indicate
that annual CWST optimization saves 4.7% annual plant
energy, with less than 1% of additional energy savings
gained through daily optimization. This confirms previous
studies’ findings that high frequency CWST optimizations
are not necessary for the studied system.
Keywords: District Cooling, Optimization, Chiller Plant,
Waterside Economizer, Modelica Buildings Library

1 Introduction
District cooling (DC) systems typically provide cooling
services to buildings from central plants and are increas-
ing in demand. In the United States for example, DC
serves 174 million square meters of floor space, deliver-
ing 15 GW of chilled water annually (ICF LLC and Inter-
national District Energy Association 2018). This is cur-
rently more than any other country, but global installa-
tions are growing rapidly, particularly in the Middle East
(Marafeq Qatar 2015). With buildings consuming 36%
of global energy (International Energy Agency 2019) and
space cooling growing faster than any other end use (In-
ternational Energy Agency 2018), many are looking to DC
for its energy efficiency and economic benefits (Anderson,
Rezaie, and Rosen 2021; Oppelt et al. 2016; Zabala et al.
2020). Rather than individual buildings producing their

cooling needs with individual air conditioning equipment,
centralized plants produce chilled water (CHW) that can
be distributed to multiple buildings connected to the dis-
trict. This aggregation of cooling equipment to a district
scale enables the centralized maintenance, the use of more
efficient chillers, and the integration of renewable energy
resources.

Current modeling and simulation work tends to focus
on district heating (DH) with limited focus on DC. A
simple Scopus search involving the keywords “model”
and either “district heating” or “district cooling” produces
20,109 and 1,230 results, respectively. While some DH
research can be applied to DC – as suggested in some DH
case studies (del Hoyo Arce et al. 2018; Falay et al. 2020;
van der Heijde et al. 2017) – there are also important dif-
ferences that make DC modeling unique. For example,
cooling generation efficiency has heightened sensitivity to
even small changes in CHW temperature (e.g., 0.1K) (Op-
pelt et al. 2016), and "low delta-T syndrome" (ASHRAE
2013) is a common energy efficiency problem among DC
systems and chiller plants.

Several groups have made valuable contributions to DC
modeling literature. High-fidelity and reduced-order mod-
eling techniques have been adapted to reduce plant energy
consumption (Chow et al. 2004), peak loads (Gang et al.
2015), and implement model predictive control (Zabala et
al. 2020; Matsouka and Hill 2020), to name a few. While
a variety of chiller types have been studied – including
compressor, absorption, turbo, and double-effect varieties
– to the authors’ best knowledge, none of the previous lit-
erature modeled chiller plants with waterside economiz-
ers (WSEs) in DC applications. Further, we only found
one study that used Modelica for DC plant modeling (Za-
bala et al. 2020); yet Modelica is a promising platform
for these applications due to its acausal modeling scheme,
multitude of variable time-step numerical solvers, and rich
open-source libraries with high re-usability potential. This
work demonstrates how the popular, open-source Model-
ica Buildings library can be applied for detailed modeling
of chiller plants with WSE for DC applications.

The university wants to identify energy efficiency im-

DOI
10.3384/ecp21181587

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

587

provements with little to no financial investments in equip-
ment upgrade. Thus, condenser water supply temperature
(CWST) optimization was selected for its past successes
in reducing chiller plant energy consumption (Lan Wang,
Lee, and Yuen 2018). The condenser water supply is the
water entering the condenser of the chillers, and its tem-
perature setpoint affects the chillers’ operating efficiency,
the economizing heat exchanger’s effectiveness, and the
required cooling tower fan power. Several past works
in chiller plant simulation include CWST optimization
(Karami and Liping Wang 2018; Ling et al. 2018), and
several optimization time horizons from hourly to monthly
have been studied (Huang, Zuo, and Sohn 2017).

In this work, we modeled the DC plant for an existing
college campus featuring six connected buildings in Col-
orado, United States (ASHRAE Climate Zone 5B). The
objectives of this case study are to (1) demonstrate the
application of Modelica and the Buildings library for de-
tailed energy analysis of a DC plant with a WSE, and (2)
identify the the optimal CWST setpoint by evaluating sev-
eral optimization time horizons. While we selected CWST
optimization for this case study, it is important to note that
the model can be used for other analyses as well, such as
replacing the chillers or adding thermal storage. In Sec-
tion 2, we present the mechanical and control systems for
the case study DC plant. This is followed by the Model-
ica implementation in Section 3, and the verification and
validation of equipment and system models in Section 4.
Presentation of the optimization methodology and the op-
timization results are in Sections 5 and 6. Section 7 con-
cludes the paper with future work.

2 System Description
The case study site is a college campus in Colorado’s
Denver Metropolitan area with a central plant providing
chilled water for space and process cooling to six build-
ings. This section presents the mechanical and control
systems for the DC plant.

2.1 Mechanical System
As depicted in Figure 1, the cooling plant is a primary-
only chilled water system with parallel connections be-
tween a WSE and two chillers on both the plant side (the
condenser water (CW) piping) and the load side (the CHW
piping). Following standard nomenclature, the condenser
water supply (CWS) is the plant-side water being sup-
plied to the chillers, and the return (CWR) is returning
to the cooling towers. Similarly, the chilled water supply
(CHWS) is being supplied to the district, while the return
(CHWR) is returning to the plant. Both the CW and CHW
loops contain bypasses. The CW bypass valve is a two-
position directional valve to switch between cooling tower
and bypass modes, while the CHW bypass valve modu-
lates to maintain the minimum CHW flow rate through
the evaporator of the chillers. Although both the CW and
CHW pumps are equipped with variable frequency drive
(VFD) motor controllers, the CW pumps modulate their

CHW Return
from District

W
at

er
si

de

E
co

no
m

iz
er

C
hi

ll
er

s

Condenser
Water Pumps

CW Bypass

Chilled Water
Pumps

CHW Supply
to District

CHW Bypass

Cooling Towers

Check
Valve

Two-Way
Valve

S
um

p

CWR

C
W

S
C

H
W

S C
H

W
R

Figure 1. Schematic diagram for the central plant.

speed to maintain a constant flow rate setpoint, while the
primary-only CHW pumps operate at variable speeds to
maintain a differential pressure setpoint at a distant build-
ing. Further details regarding the nominal equipment in-
formation can be found in the Appendix (Table 3).

2.2 Control System
The control system includes four levels (Figure 2): a top-
level Master Control, Systems Control, Units, and De-
vices. First, the Master Control determines the operating
state of the entire plant and sequences the various "sys-
tems". Second, the Systems Control represents the col-
lection of similar "units" physically connected in the pro-
cess loop. This control level determines correct number
of units that should be running to meet the demand (e.g.,
staging of various equipment). Third, Units represent the
collection of devices that combine to perform a specific
task. The Units Control level prescribes the setpoint for
equipment operation. Lastly, the Devices layer contains
single-input single-output (SISO) systems, providing the
fundamental building blocks of the control. These are lo-
cal control setpoints predominantly met by proportional
integral (PI) controllers.

At the top Master Control level, the cooling plant can
operate in three active cooling modes in addition to the
Off mode: (1) Free Cooling (FC) mode, (2) Mechani-
cal Cooling (MC) mode, and (3) Pre-Mechanical Cool-
ing (Pre-MC) mode. The state graph in Figure 3 depicts
the switching conditions to move between each of these
states. Switching conditions include the total cooling load
Q̇C (calculated from temperature and mass flow sensors at
the plant); the wetbulb temperature WBT and its switching
setpoint WBTSet ; the chilled water mass flow rate ṁCHW ;

A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant

588 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181587

Master Control
(e.g., cooling mode)

Systems Control
(e.g., chiller/pump staging)

Units
(e.g., CW loop, chiller subsystem)

Devices
(e.g., local SISO PI controllers)

Figure 2. Four control levels of the central plant.

𝑄𝐶 > 0 and
𝑊𝐵𝑇 >𝑊𝐵𝑇𝑆𝑒𝑡

𝑄𝐶 > 0 and
WBT≤ 𝑊𝐵𝑇𝑆𝑒𝑡

𝑄𝐶 = 0
for 15 min

𝑄𝐶 = 0
for 15 min

𝐶𝐻𝑊𝑆𝑇 > 𝐶𝐻𝑊𝑆𝑇𝑆𝑒𝑡 + 1.67°𝐶 or
𝑊𝐵𝑇 >𝑊𝐵𝑇𝑆𝑒𝑡 + 0.56°𝐶 or

𝑚𝐶𝐻𝑊 > 𝑚𝑊𝑠𝑒 ,𝐶𝐻𝑊,𝑀𝑎𝑥 + 0.631 𝑘𝑔/𝑠

for 15 min

𝐶𝐻𝑊𝑆𝑇 < 𝐶𝐻𝑊𝑆𝑇𝑆𝑒𝑡 − 1.67°𝐶
for 15 min

𝐶𝑊𝑆𝑇 ≥ 𝐶𝑊𝑆𝑇𝐶ℎ𝑖 ,𝑀𝑖𝑛
for 120 s

𝑊𝐵𝑇 <𝑊𝐵𝑇𝑆𝑒𝑡 − 0.56°𝐶 and
𝑚𝐶𝐻𝑊 < 𝑚𝑊𝑠𝑒 ,𝐶𝐻𝑊,𝑀𝑎𝑥 − 0.631𝑘𝑔/𝑠

for 15 min

MCFC

OFF

Pre-
MC

Figure 3. Master control logic for selecting plant cooling mode.

the maximum allowable chilled water mass flow rate for
the WSE ṁWse,CHW,Max; the chilled water supply temper-
ature CHWST and its setpoint CHWSTSet ; the condenser
water supply temperature CWST ; and the minimum con-
denser water supply temperature allowed by the chiller
CWSTChi,Min. The offset and dead band temperature of the
control signals as well as the waiting times are adjustable.
For this plant, the maximum WSE chilled water mass flow
rate is 120.5 kg/s. The wetbulb temperature transition set-
point, the chilled water supply temperature setpoint, and
minimum chiller condenser water supply temperature are
6.7◦C, 6.1◦C, and 10.0◦C, respectively.

3 Modelica Implementation
The DC plant is implemented in Modelica using compo-
nents from the Modelica Buildings library version 7.0.0
(Wetter et al. 2014) and Modelica Standard Library ver-
sion 3.2.3. New system and equipment-level models were
developed as part of this study, which will be open-source
released in the Modelica Buildings library. The system
models are presented in a top-down approach in the fol-
lowing sections.

3.1 Mechanical System
Shown in Figure 4, the central cooling plant model con-
tains several control blocks on the left with the condenser

water (green lines) and chilled water (blue lines) loops on
the right. The system’s design schematic (Figure 1) and
Modelica diagram contain one-to-one modeling relation-
ships, allowing users to clearly interpret the configuration.
We connected the inlet and outlet ports of the plant to a
district model that reflected the tabulated heat flow rate
(broken down by mass flow rate and change in CHW tem-
perature) of the real district from 2018 measured data.

For this case study, the cooling plant features two
chillers with a WSE connected in parallel on both the
chilled water and condenser water sides. We instantiated
the Buildings.Applications.DataCenters.ChillerCooled.
Equipment.Nonintegrated model with the optional CHW
supply temperature control on the WSE disabled, which
implements the ElectricEIR chiller model, based on the
DOE-2 electric chiller (Hydeman and Zhou 2007).

New subsystem models for the cooling tower with CW
bypass and a parallel cooling tower model were developed
based on the Modelica Buildings and Modelica Standard
libraries. For the cooling tower model, we instantiated the
Merkel model from the Modelica Buildings library, based
on the variable speed Merkel model in EnergyPlus version
8.9.0 (United States Department of Energy 2018).

The chilled water pump subsystem was modeled as
three parallel speed controlled pumps with inline isolation
valves. For the constant speed condenser water pumps,
the subsystem included two parallel mass flow controlled
pumps. When appropriate, flow controlled pumps (as op-
posed to speed controlled pumps) typically reduce the size
of the nonlinear system of equations in the model, which
in turn reduces the simulation run time. However, to note,
modelers should use caution when evaluating the energy
consumption of ideal pumps that enforce the flow rate re-
gardless of head, because if the pump works against a
closed valve, then unrealistic electric power spikes can oc-
cur because the power is proportional to the product of the
enforced mass flow rate times the pump head, which can
be arbitrarily high for this idealized model.

3.2 Control System
The four control layers are implemented in Modelica. The
Master control (Figure 5) mirrors the schematic state dia-
gram shown previously in Figure 3. Six real inputs decide
the state of the Master control mode: Off, FC, MC, or Pre-
MC. An integer output ranging from 0 to 3 corresponds to
the cooling mode status. This control is packaged as one
block and instantiated in the top-level system model for
the central plant. All Systems control blocks follow a sim-
ilar implementation.

Figure 6 exemplifies the CW loop control implemen-
tation. This includes determining the operating state
through the CW control mode staging (Systems level),
specifying the temperature setpoint in the CW loop sub-
system (Units level), and implementing the local PI con-
trollers for the cooling tower fan and bypass valves (De-
vices level). Depending on the cooling mode (FC, MC,
Pre-MC), either the chilled water or condenser water sup-

Session 7B: Energy (1)

DOI
10.3384/ecp21181587

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

589

T
T

T

m
_f
lo
w

M

MM

dT

+
+1

-1

pro1

cp

m
_flow

2

Check Valve

CHW Pumps
Expansion

Chillers with
Parallel WSE

Cooling Towers
with Bypass

CW Pumps

CW Loop

CHW Loop

Tank

Bypass Valve

CHW supply to district CHW return from district

Expansion Tank

CW Loop Control

CW Pump
Speed Control

CW Pump
Staging

CHWST
Setpoint

Chiller
Staging

WSE
Staging

Wetbulb
Temperature

Measured
Pressure Drop

Cooling Mode
Control

CHW Bypass

CHW Pump
Staging & Speed

CWST Setpoint
(MC Mode)

Figure 4. Diagram of Modelica model for the district cooling plant.

off

m
ecC

oo

active
con1

tW
ai

Q
Loa <

0 and
T

W
etB

ul >
 T

S
w

i

co
n8

tW
ai

Q
Lo

a
>

=
0

stateGraphRoot

root

freC
oo

active

preM
ecC

oo

active

con2

tW
ai

Q
Loa <

 0 and
T

W
etB

ul <
 T

S
w

i

co
n3

tW
ai

T
W

et
B

ul
 <

 T
S

w
i -

 T
D

ea
B

an
 a

nd
m

_f
lo

w
_

C
H

W
 <

=
m

_f
lo

w
_

sw
i -

 m
_f

lo
w

_d
ea

B
an

con4

tW
ai

T
C

H
W

S
up

 >
 T

C
H

W
S

u
pS

et +
 T

C
H

W
D

if or
T

W
etB

ul >
=

 T
S

w
i +

 T
D

eaB
an or

m
_flow

_
C

H
W

 >
 m

_flow
_sw

i +
 m

_flow
_d

eaB
an

con5

tW
ai

T
C

H
W

S
up

 <
 T

C
H

W
S

u
pS

et - T
C

H
W

D
if

co
n6

12
0

s

T
C

D
W

S
up

 >
=

T
M

in
E

nt
C

hi

co
n7

tW
ai

Q
Lo

a
>

=
 0

else: 0

swi
MC,FC,PreMC

CHWST Setpoint

CHWST

CWST

Wetbulb
Temperature

CHW Mass
Flow Rate

Flow Rate
Total Heat

Cooling Mode

Off

FC

MC

MC
Pre

Figure 5. Diagram of the Modelica model for the master con-
trol.

ply temperature will be controlled. Further, the condenser
water supply temperature setpoint changes between MC
and Pre-MC modes. In FC mode, the chilled water sup-
ply temperature is controlled. If the measured temperature
reading is greater than the setpoint plus the dead band,
then the cooling tower fan PI controller is engaged to
maintain the setpoint and the CW bypass valve is closed.
If the measured temperature reading is less than the set-
point minus the dead band, then the cooling tower fans are
off, the CW bypass valve opens, and the cooling tower iso-
lation valves are controlled with the PI controller to main-
tain the setpoint. This control model is also instantiated
on the top system model of the central plant.

Following the control logic of the real system, the three
CHW pumps stage on/off based on the campus chilled wa-
ter flow rate and the pump speeds (Systems level). The
CHW pump speeds are modulated to maintain the pres-
sure drop setpoint, with the pressure drop measured at the
furthest connected building (Units level). For the two CW
pumps, their staging is determined based on the cooling

A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant

590 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181587

k=TCWSupSetMC

1

mecCooMod

2

preMecCoo
k=273.15 + 10

k=TCHWSupSet

PI

1

fanCon

proFan[]proFan[]B
I

booToRea[]

B
I

booToRea[]

off

k=0

PI

proVal[]proVal[]

B
I

ope

k=1

TSet

TSet1

fcMod

=
conInt

TMea

Cooling Mode

Cooling Towers
On State

Fan Speed

Cooling Tower
Valve Positions

CWST

CHWST

CWST Setpoint - MC

CWST Setpoint
PreMC

CHWST Setpoint
FC

Fan PI Control

Bypass PI Control

CW Control Mode
Staging

Fan Control
Switch

Isolation

Switch
Control
Valve

Bypass

Setpoint
Valve

Bypass Valve Position

Cooling Tower
Valve Position

Fan Speed

Figure 6. Diagram of the condenser water loop control.

mode and number of chillers running. Their flow rates are
controlled at constant setpoints depending on the equip-
ment running (1 chiller, 2 chillers, or 1 WSE).

Most Devices control was implemented with SISO PI
controllers. For control and numerical stability, the pro-
portional gain k and integral time constant Ti were tuned
carefully. Consistent with past experiences in dynamic hy-
draulic models, we found values of k = 0.1 and Ti = 120s
were effective for most control valve applications. Stable
pump and fan control parameters varied across the model.

3.3 Simulation Settings

All simulations ran in Dymola 2021 on Linux. While
there are many suitable numerical solvers in Dymola for
this type of application, CVODE (Hindmarsh, Serban, and
Reynolds 2020) was selected for its suitability for solving
stiff numerical problems (e.g., the system of differential
algebraic equations contain both fast and slow dynamics,
which make the selection of a variable time step size dif-
ficult for the solver), and in our experience, it typically
simulates thermo-fluid systems quickly and robustly. All
simulations ran using a tolerance of 1e-6. The computer
contained 32 GB of RAM.

4 Verification and Validation

To establish an accurate baseline model, we validated ma-
jor cooling equipment and system-level operation with re-
spect to the measured data. We evaluated the Coefficient
of Variation of the Root Mean Square Error (CVRMSE)

using hourly time steps as follows:

CV RMSE =

√
∑(yi−ŷi)2

N−1

ȳ
(1)

where yi is the individual measured data, ŷi is the corre-
sponding simulation-predicted data, ȳ is the mean of the
measured dataset, and N is the total number of datapoints.

Due to uncertainties and gaps in measured data, vali-
dation of the entire DC plant for one year of measured
data was not possible. This is consistent with many past
DC and chiller plant modeling endeavors (Oppelt et al.
2016; Fu et al. 2019). Thus, two time periods represent-
ing typical summer and winter conditions were selected
to validate the model, encompassing both full and part
load conditions. With hourly data, the CVRMSE needs
to be within 30% for the model to be considered validated
(ASHRAE 2014).

Chilled water heat flow, mass flow, supply temperature,
and return temperature were used to validate the model
based on the limited availability of historical measure-
ments. Ideally, the pump, chiller, and fan power would be
used to validate the model; however, these electrical data
points were not available. Thus, we verified equipment
and system-level performance with design documents and
by consulting plant operators. Historical data was used to
the full extent possible to validate the model.

The validation results are summarized in Table 1. The
simulations fell within the 30% CVRMSE threshold for all
locations. During the summer period, the plant operated
in mechanical cooling mode with the chiller meeting the
cooling demand. While the plant operated in free cooling

Session 7B: Energy (1)

DOI
10.3384/ecp21181587

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

591

Table 1. Validation results targeting CVRMSE less than 30%.

Equipment/ CVRMSE (%)

System Q̇CHW ṁCHW TCHWS TCHWR

Summer Period (Aug. 1-14, 2018)

Plant 18.8 12.9 8.9 10.3
Chiller 28.2 18.5 10.3 8.3

Winter Period (Jan. 28- Feb. 11, 2018)

Plant 14.6 3.1 6.2 11.3
WSE 15.6 3.1 11.3 7.1

mode with the WSE meeting the entire cooling demand
during the winter period.

Figure 7 visualizes the primary chiller’s validation re-
sults. Upon inspection, the simulated CHW mass flow rate
and supply and return temperatures match the measured
data well. However during the nighttime, the measured
CHW outlet temperature drifts below the minimum allow-
able value per the control specifications. Contrarily, the
CHW outlet temperature is well controlled at the desired
setpoint in the simulation. It is unknown why the real sys-
tem does not maintain the CHW outlet temperature, and
while it is undesirable from a control standpoint, it may
be unavoidable due to the real system’s transients and ex-
traneous system requirements not included in the model.
Based on these validation results, the accuracy of the DC
plant model is within acceptable limits of the real system’s
measured data and expected performance.

0

20

40

60

80

M
as

s F
lo

w
Ra

te
 (k

g/
s)

Simulated
Measured

Aug 1 Aug 2 Aug 3 Aug 4 Aug 5 Aug 6
Date

4

6

8

10

12

14

Te
m

pe
ra

tu
re

 (
C)

CHW Inlet CHW OutletCHW Inlet CHW Outlet

Figure 7. Primary chiller validation results in early August with
the highlighted region indicating the control limits for the CHW
leaving temperature.

5 Optimization Problem
We formulated a sequence of single objective optimiza-
tion problems that, collectively, minimize the plant’s an-
nual energy consumption. The sequence of problems were
formulated as follows. Let τ = 1 year and M ∈N be the
number of intervals over which the optimization problem
was solved. Then, we solved the set of problems Pi, with

Pi min
x∈ [TCWS,TCWS]

EPla,i(x), (2)

EPla,i(x) =
∫ ti+1

ti
(PCH(x,s)+PCWP(x,s)

+PCHWP(x,s)+PCT (x,s))ds

with ti ∈ {ti ∈ R | ti = iτ/M, i ∈ {0, . . . ,M− 1}}, where
the independent variable x is CWST setpoint, EPla,i is
the total plant energy during the optimization period t ∈
[ti, ti+1), PCH is the power of the chillers, PCWP is the
power of the condenser water pumps, PCHWP is the power
of the chilled water pumps, PCT is the power of the cool-
ing towers, TCWS is the condenser water supply temper-
ature low limit, and TCWS is the condenser water supply
temperature high limit. Through this method, the CWST
setpoint is selected for each interval (e.g., there are 365
setpoints for a daily optimization case with M = 365).

Based on the chiller’s specification documents, the con-
denser water supply temperature low and high limits are
10.0◦C and 29.4◦C, respectively. These are used through
the optimization process.

Optimization problems with time horizons of one day,
week, month, and year are solved using the Optimiza-
tion library version 2.2.4 (Pfeiffer 2012). Released along-
side Dymola 2021, this library allows multi-objective op-
timization of complex systems within Dymola’s model-
ing and simulation environment. The user interface allows
for quick formulation of optimization problems, while the
model’s state values can be reinitialized for consecutive
optimization runs without needing to rerun the entire opti-
mization. For numerical optimization algorithms, we em-
ployed the simplex method due to it quicker computational
speed as a local method and suitability for handling func-
tions that are not smooth. Optimization and simulation
tolerances of 1e-5 and 1e-6 respectively are used for all
cases.

6 Results
For all cases, the optimized CWST setpoint and energy
savings followed similar trends (Figure 8). Due to the lim-
ited number of MC hours in winter and fall seasons, the
optimized CWST setpoint often stayed at the current set-
point during these times. The optimized CWST setpoint
during MC mode was generally above the current setpoint
for all cases.

The CWST optimization reduced the plant’s annual en-
ergy consumption under all time horizon cases (Table 2),
while still meeting the cooling loads at the building end

A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant

592 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181587

10

15

20

25

30

CW
ST

 S
et

po
in

t (
C)

Baseline Daily Weekly Monthly Annually

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

20

40

60

80

M
on

th
ly

 E
ne

rg
y

(M
W

h)

Figure 8. Condenser water supply temperature optimization results across multiple time horizons.

Table 2. Condenser water supply temperature optimization re-
sults across multiple time horizons. Energy values represent the
plant’s annual site energy, and savings are relative to the plant’s
current implementation (baseline).

Optimization CWST (◦C) Energy Savings

Time Horizon Mean SD (MWh) (%)

No optimization
(baseline)

15.6 N/A 567.5 –

Daily 17.9 2.7 536.8 5.4
Weekly 18.6 2.9 538.9 5.0
Monthly 19.5 2.6 539.6 4.9
Annually 20.5 N/A 541.0 4.7

users. Annual energy savings were achieved from 4.7%
(annual optimization) to 5.4% (daily optimization). Be-
cause the CWST is controlled in MC mode while the
CHWST is controlled in FC mode, the energy savings
from CWST optimization occurred during MC mode only.
During mechanical cooling, the annual energy savings
ranged from 7.4% with annual optimization to 8.6% with
daily optimization.

7 Conclusion
Modeling and simulation of DC systems present ample
opportunities for energy-efficient cooling systems at dis-
trict scales. While Modelica is promising for this applica-
tion, research in this area is still generally lacking, particu-
larly for central plants featuring free cooling from WSEs.
This work aimed to fill this gap by demonstrating how
the new models contributed to the open-source Modelica
Buildings library can be used for detailed energy analysis
and optimization of a DC plant with a WSE connected in
parallel with the chillers.

Through CWST optimization cases, around 5% plant

energy was saved with minimal improvements achieved
by decreasing the optimization time horizon. This indi-
cates that the seasonal variation on daily through monthly
scales does not greatly affect the optimization results,
reconfirming the results achieved in previous studies
(Huang, Zuo, and Sohn 2017). We recommend that the
plant implement the annual CWST optimization because
it is a robust and simple control retrofit.

The CWST optimizations exemplify retrofit strategies
that are possible with the detailed Modelica models, but
are by no means comprehensive. In the future, we plan
to pursue additional retrofit strategies with higher energy
saving potentials, including integrating the WSE with the
chillers, adding thermal storage, and integrating the high-
fidelity plant model with a complete district model to
evaluate co-operational strategies across buildings and the
plant.

Acknowledgements
This work was supported by the Building Technolo-
gies Office of the U.S. Department of Energy, under
contract numbers DE-AC36-08GO28308 and DE-AC02-
05CH11231. This research was also supported by the Na-
tional Science Foundation under Award No. IIS-1802017.
BIGDATA: Collaborative Research: IA: Big Data Ana-
lytics for Optimized Planning of Smart, Sustainable, and
Connected Communities. Further, this work emerged
from the IBPSA Project 1, an international project con-
ducted under the umbrella of the International Building
Performance Simulation Association (IBPSA). Project 1
will develop and demonstrate a BIM/GIS and Modelica
Framework for building and community energy system
design and operation. The authors would also like to
thank the campus facilities team for their assistance with
data collection, expert advice, and overall support of this
project.

Session 7B: Energy (1)

DOI
10.3384/ecp21181587

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

593

References
Anderson, Austin, Behnaz Rezaie, and Marc A. Rosen (2021).

“An innovative approach to enhance sustainability of a
district cooling system by adjusting cold thermal storage
and chiller operation”. In: Energy 214, p. 118949. ISSN:
03605442. DOI: 10.1016/j.energy.2020.118949.

ASHRAE (2013). “District Cooling Guide”. In: District Cool-
ing Guide. Atlanta, GA: American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc. ISBN:
9781936504428.

ASHRAE (2014). ASHRAE Guideline 14-2014: Measurement
of Energy, Demand, and Water Savings. Tech. rep. Atlanta,
GA.

Chow, Tin Tai et al. (2004). “Energy modelling of district cool-
ing system for new urban development”. In: Energy and
Buildings 36.11, pp. 1153–1162. ISSN: 03787788. DOI: 10.
1016/j.enbuild.2004.04.002.

del Hoyo Arce, Itzal et al. (2018). “Models for fast modelling
of district heating and cooling networks”. In: Renewable and
Sustainable Energy Reviews 82.July, pp. 1863–1873. ISSN:
18790690. DOI: 10.1016/j.rser.2017.06.109.

Falay, Basak et al. (2020). “Enabling large-scale dynamic simu-
lations and reducing model complexity of district heating and
cooling systems by aggregation”. In: Energy 209, p. 118410.
ISSN: 03605442. DOI: 10.1016/j.energy.2020.118410.

Fu, Yangyang et al. (2019). “Equation-based object-oriented
modeling and simulation for data center cooling: A case
study”. In: Energy and Buildings 186, pp. 108–125. ISSN:
0378-7788. DOI: 10.1016/j.enbuild.2019.01.018.

Gang, Wenjie et al. (2015). “Performance Assessment of District
Cooling System Coupled with Different Energy Technolo-
gies in Subtropical Area”. In: Energy Procedia 75, pp. 1235–
1241. ISSN: 18766102. DOI: 10.1016/j.egypro.2015.07.166.

Hindmarsh, Alan C, Radu Serban, and Daniel R. Reynolds
(2020). User documentation for CVODE v5.1.0 (SUNDIALS
v5.1.0). Tech. rep. Lawrence Livermore National Laboratory.
URL: https://computing.llnl.gov/projects/sundials/sundials-
software.

Huang, Sen, Wangda Zuo, and Michael D. Sohn (2017). “Im-
proved cooling tower control of legacy chiller plants by opti-
mizing the condenser water set point”. In: Building and En-
vironment 111, pp. 33–46. ISSN: 03601323. DOI: 10.1016/j.
buildenv.2016.10.011.

Hydeman, Mark and Guo Zhou (2007). “Optimizing chilled wa-
ter plant control”. In: ASHRAE Journal 49.6, pp. 44–54. ISSN:
00012491.

ICF LLC and International District Energy Association (2018).
U.S. District Energy Services Market Characterization. Tech.
rep. Washington DC: U.S. Energy Information Administra-
tion. URL: https://www.eia.gov/analysis/studies/buildings/
districtservices/pdf/districtservices.pdf.

International Energy Agency (2018). The Future of Cooling:
Opportunities for energy-efficient air conditioning. Tech.
rep., p. 92.

International Energy Agency (2019). 2019 Global Status Report
for Buildings and Construction: Towards a zero-emissions,
efficient and resilient buildings and construction sector. Tech.
rep., pp. 1–48.

Karami, Majid and Liping Wang (2018). “Particle Swarm op-
timization for control operation of an all-variable speed
water-cooled chiller plant”. In: Applied Thermal Engineer-

ing 130, pp. 962–978. ISSN: 13594311. DOI: 10 . 1016 / j .
applthermaleng.2017.11.037.

Ling, Li et al. (2018). “Energy saving analysis of the cooling
plant using lake water source base on the optimized control
strategy with set points change”. In: Applied Thermal Engi-
neering 130, pp. 1440–1449. ISSN: 13594311. DOI: 10.1016/
j.applthermaleng.2017.10.152.

Marafeq Qatar (2015). District Cooling: GCC and Qatar. Tech.
rep. April.

Matsouka, Kenichi and David Hill (2020). “Online Optimization
of Cooling Water System in a District Cooling Plant by Using
Digital Twin”. In: ASHRAE Transactions 126.2, pp. 427–434.

Oppelt, Thomas et al. (2016). “Dynamic thermo-hydraulic
model of district cooling networks”. In: Applied Thermal En-
gineering 102, pp. 336–345. ISSN: 13594311. DOI: 10.1016/
j.applthermaleng.2016.03.168.

Pfeiffer, Andreas (2012). “Optimization Library for Interactive
Multi-Criteria Optimization Tasks”. In: Proceedings of the
9th International Modelica Conference. Vol. 76. Munich,
Germany, pp. 669–680. DOI: 10.3384/ecp12076669.

United States Department of Energy (2018). EnergyPlus Ver-
sion 8.9.0 Documentation: Engineering Reference. Tech.
rep., p. 1716. URL: https : / / energyplus . net / sites / all /
modules / custom / nrel _ custom / pdfs / pdfs _ v8 . 9 . 0 /
EngineeringReference.pdf.

van der Heijde, Bram et al. (2017). “Dynamic equation-based
thermo-hydraulic pipe model for district heating and cool-
ing systems”. In: Energy Conversion and Management 151,
pp. 158–169. DOI: 10.1016/j.enconman.2017.08.072.

Wang, Lan, Eric W.M. Lee, and Richard K.K. Yuen (2018). “A
practical approach to chiller plants’ optimisation”. In: Energy
and Buildings 169, pp. 332–343. ISSN: 03787788. DOI: 10.
1016/j.enbuild.2018.03.076.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Zabala, Laura et al. (2020). “Virtual testbed for model predictive
control development in district cooling systems”. In: Renew-
able and Sustainable Energy Reviews 129. ISSN: 18790690.
DOI: 10.1016/j.rser.2020.109920.

Appendix
See Table 3 for the plant’s nominal information.

A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant

594 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181587

Table 3. Nominal information for the central cooling plant equipment.

Equipment Qty. Nominal Equipment Information Unit Value

Chiller 2

Nominal Capacity kW 2 450

Design Efficiencies Coefficient of Performance (COP) – 6.80
kW/ton kW/ton 0.517

Evaporator

Flow Rate m3/s 0.0878
Pressure Loss kPa 29.0

Design Entering Temperature ◦C 12.2
Design Leaving Temperature ◦C 28.4

Condenser

Flow Rate m3/s 0.133
Pressure Loss kPa 64.6

Design Entering Temperature ◦C 23.3
Design Leaving Temperature ◦C 28.4

Compressor
Number – 1

Speed Type – Variable
Power kW 366

Waterside
Economizer 1

Nominal Capacity kW 2 820
Design Approach Temperature ◦C 1.7

Chilled Water Side Flow Rate m3/s 0.121
Pressure Loss kPa 48.4

Condenser Water Side Flow Rate m3/s 0.151
Pressure Loss kPa 83.1

Chilled
Water Pump 3

Head kPa 252
Power kW 29.8

Flow Rate m3/s 0.0883
Speed Type – Variable

Condenser
Water Pump 2

Head kPa 338
Power kW 55.9

Flow Rate m3/s 0.126
Speed Type – Variable

Cooling
Tower 2

Nominal Capacity kW 2 813
Nominal Flow Rate m3/s 0.158

Number of Cells – 2
Nominal Fan Power kW 22.4

Fan Speed Type – Variable

Design Temperatures
Hot Water ◦C 28.2
Cold Water ◦C 22.6

Wetbulb ◦C 17.8

Session 7B: Energy (1)

DOI
10.3384/ecp21181587

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

595

596 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Long Term Technical and Economic Evaluation of Hydrogen
Storage Technologies for Energy Autarkic Residential Complexes

L. Schindhelm1 A. Vojacek2 J. Brunnemann2

1Fraunhofer Institute for Chemical Technology, Pfinztal, Germany lucas.schindhelm@ict.fraunhofer.de
2XRG Simulation GmbH, Hamburg, Germany, {vojacek,brunnemann}@xrg-simulation.de

Abstract
We present an assessment of different types of hydrogen
storages used as long term energy buffers for a local com-
munity complex of households in terms of economics and
energy autarky. The models used in this study are partly
based on the TransiEnt Modelica Library, which is being
developed for the dynamic simulation of coupled energy
supply systems with high shares of renewable energies. It
turns out that dynamic simulations are mandatory in order
to optimise the system parameters. Starting from a best
case evaluation of a one year linear optimisation we de-
velop a forecast based control logic of the whole energy
system, including its physicalities. Based on our results, a
storage consisting of pressurized gas bottles has proven to
be the most favourite solution in terms of price and level
of autarky. A liquid organic hydrogen carrier might be a
competitive alternative for larger urban districts.
Keywords: Energy system, autarky, economic, long term,
Hydrogen storage, Control logic, TransiEnt library, ClaRa
library, Linear optimisation

1 Introduction
1.1 Context of this Project
The German Renewable Energy Law (BMU 2021) aims
for 80 % of electrical and 60 % of primary energy supply
from renewable energy sources (RES). The energy den-
sity with respect to surface area is magnitudes smaller
for RES than for centralized energy systems like nuclear
power plants. Energy transmission lines would have to be
scaled to the massive volatile peak power output of RES,
especially photovoltaics (PV), in order to transport energy
e.g. from one part of the country to the other. Decen-
tralized energy systems can be an alternative to reduce the
costs and organizational difficulties of building additional
transmission capacity by various means of local energy
storage and smart energy management.

Funded by the 6th energy research program (BMU
2011) the joined research project "Energy Buffer" (EP)
was carried out. In the course of this project a "hydrogen
battery"(HB) comprising an PEM-electrolyser (ELY), a
PEM-fuel cell (FC) (Proton Motor Fuel Cell GmbH 2021),
an energy management (EMS) and a pressurized hydro-
gen storage (pressure level: 30 bar) was designed and a
demonstrator build from market-available components. A

modular design was applied to a passive house residential
area in Stadtroda (Thuringia, Germany) (9 houses and one
central facility) as the key reference point. The residen-
tial area is planned to be 99 % time- and energy quantity-
autarkic (level of autarky LoAtime = LoAenergy = 0.99). PV
is the exclusive energy source. The heat supply is based on
a detailed prescribed concept (Frey 2019) and the passive
house standard (PHI 2021).

The process of developing the project EP started as
early as 2011. Recent commercial designs with similar pa-
rameters can be found in (Stiftung Umwelt Arena Schweiz
2021) and (HPS Home Power Solutions GmbH 2021).

Technological and economic evaluations of hydrogen
storages in energy supply systems have been carried out
earlier, e.g. in (Macagno 2004). In Modelica, the mod-
eling and simulation of hybrid renewable energy systems
containing among others PV and storages have been in-
vestigated in (Fritzson 2013), numerical implications of
such models have been analysed in (Kofman 2016). In a
recent work (Bentvelsen 2019) investigated a controllable
electrolyser using OpenModelica. There a wind turbine
provides electric power which is scheduled by a forecast
based control algorithm between an industrial local grid
and an electrolyser. A Modelica model of a fuel cell and a
metal hydride storage has been developed in (Scarisbrick
2019), focusing on physical aspects of the components.
A hydrogen production system for residential buildings
has been modelled and investigated in (Henriquez 2018).
There again the focus was put on the component mod-
elling, while the control algorithm is not presented in de-
tail.

While in the cited literature individual system compo-
nents models have been created for the particular simu-
lation study the work presented in this paper is based on
standard components of the TransiEnt library (TransiEnt
v1.2.0 2020), which are extended by certain physicalities,
such as load depending efficiencies, minimum loads or
limits on yearly start/stop cycles. These properties are rel-
evant for operating the system using an underlying control
logic, which is based on a 24h ahead weather and demand
forecast model.

1.2 Outline of Paper
In subsection 2.1 the main results of a preliminary lin-
ear optimisation of the HB system are presented, which

DOI
10.3384/ecp21181597

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

597

is based on certain idealisations of the real system. These
results serve as an upper bound on the performance of the
real system. The necessity of developing a dynamic model
of HB in Modelica for a more extractable and realistic ap-
proach is developed in subsection 2.2. There we also elab-
orate on different available storage technologies and dis-
cuss pros and cons of two storage types that were finally
analysed.

Used libraries and physicality-based models of system
components that were newly developed in this work are
shown in subsection 2.3. The steps of developing the cru-
cial dynamic system logic and the effects of improving
the logic regarding system performance in comparison to
results from linear optimisation are presented in subsec-
tion 2.4. The control logic is then compared to the initial
linear optimization (LO) results for a one year time period.
We show that a 24h ahead forecast model is sufficient in
order to bring the real system close to the idealised LO
result, if physicalities are neglected. In section 3 the anal-
ysed setups of HB are evaluated in terms of their autarky
level and costs. An assessment of the feasibility of HB in
the temporary economic state and policies can be found in
section 4. Usability and ability of the developed Modelica
libraries and models are depicted in section 4 as well to
conclude this work.

2 Preliminary Work
2.1 Linear Optimisation
Firstly, a linear optimisation approach for modelling was
taken to further guide the development of a more de-
tailed physical model in Modelica, in particular, it pro-
vided results of an ideal case. The components of the
HB and PV have been modelled for the optimisation in
oemof (Hilpert et al. 2018). Oemof uses mixed-integer
linear programming (MILP) to mathematically optimise
the system for minimising the electrical energy import
from the superior grid. Heat supply and its electricity de-
mand are modelled and simulated in TRNSYS (University
of Wisconsin–Madison Solar Energy Laboratory 1975),
where transient physical models are utilised under use of a
case-specific control logic. The electricity demand of the
heat supply is used as input data for the oemof simulation,
whereas the waste heat of ELY and FC are input data for
the TRNSYS simulation. In this way there is an implicit
serial coupling between both tools.

2.1.1 Parameters of Physical Models and Input Data

In Table 1 the main parameter sets, that are used in the
optimisation, are shown. Further, there were considered
additional technical constraints for ELY and FC such as
maximum start-stop cycles per annum 500/1500 and max-
imum runtime 2000/4500 respectively. The electrical de-
mand, excluding heat supply, is extracted from real data
of sonnen GmbH, processing nine individual houses’ an-
nual electrical consumption between 2-3 MWh/a. Note
that ELY and FC units each consist of two independent

modules in order to better cope with partial load. The op-
timisation time step is one hour.

Table 1. Characteristics of the system components.

Device Efficiency Capacity el. Power

% kWh kW

FC 47 - 4.7
ELY 51 - 5.8
hydrogen
storage -

13422
(400 kg) -

lithium-ion
batteries

93.3/91.6
(out/in) 106 33.3

PV n.a. - 90
heat pump - - 9 x 2.1

2.1.2 Interpretation of Optimisation Results
This section focuses on the optimisation results regard-
ing capacity of the hydrogen storage, since the cost of
the storage capacity is comparably high (∼ 1000e per
kg H2). Further, capacities and peak power values were
determined within technical and regulatory limits. Rea-
sonable engineering guesses and preliminary optimization
were used (e.g. for number of FC modules etc.). The set of
applicable devices was further limited to the product port-
folio of the participating companies and by some budget
restrictions. Hence, initial, quite rigid device choices had
to be made, that are taken as granted in this study.

The optimisation results are in good agreement with the
calculation of ideal Modelica model excluding physicali-
ties (see Figure 6 in subsubsection 2.4.3) whose main out-
come are presented in Table 3 and in Table 4.

Table 2. Level of autarky from LO in terms of energy and time.

Capacity of storage [kg] LoAenergy LoAtime

400 0.96 0.98
300 0.92 0.94
200 0.88 0.92

It is clearly visible that the storage capacity of 400 kg
hydrogen shows the best performance regarding autarky
(see Table 2). The PV supply gap and the high energy
demand of the heat pumps in the winter months lead to
a rapid decline of the state-of-charge (SOC). As a conse-
quence, high amounts of hydrogen have to be stored and it
is crucial to maximize the stored hydrogen mass in sum-
mer. For this, decisions, like storing an energy surplus
in the batteries for short-term or in the HB for the long-
term, have to be made. It is of great importance to maxi-
mize the productivity of FC and ELY without overstretch-
ing the operational constraints. This overstretching could
easily happen, if e.g. ELY is always switched on if mini-
mal energy surplus sufficient for its operation is detected.

Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic
Residential Complexes

598 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181597

ELY than could lose crucial hours of high productivity. In
this optimisation study the solver has ex-ante knowledge
of all input data sets, so the decision, e.g. when to run
which module of ELY, is not reproducible in real condi-
tions and extremely dependent on the highly specific input
data. Since there is only a cost penalty for using the supe-
rior grid to cover the energy demand, each solver run can
use the full range of a constraint limits and options, what
may lead to inscrutable behaviour of the components. It
is possible that one module is switched off for one hour
and is then reactivated for the next hour, while the second
module runs for the switched off hour. Another exam-
ple of this artefact is the decision, when to start filling the
tank. Especially, in the case of 200 kg hydrogen, it was
observed that the systems only starts producing hydrogen
later in the year. It is enough to fill the tank in this spe-
cific case, but dependencies of weather and real demand
are not accounted for. Therefore, this behaviour is not de-
sirable for the system while using a real process control
and, consequently, not foreseeing the time profiles of de-
mand, PV etc. on a one year time scope. To achieve this,
a control system has to be implemented, that can manage
short-term and long-term storage decisions.

In order to test and validate the optimisation results un-
der real conditions, XRG Simulation GmbH received the
task to develop such a process control logic and to simu-
late the system in Modelica using the same input data as
processed in linear optimisation.

2.2 Request for a Modelica System Model
By using a dynamic Modelica System Model it is possi-
ble to implement the requested more dynamic and com-
prehensible (logic) model of the demonstrator. Follow-
ing tasks and aspects are adressed in the Modelica System
Model to add significant value to the results of the linear
optimisation:

• implementing an extractable distribution logic of
electric power depending on time and load (ELY-FC-
grid-batteries)

• inclusion of on/off cycles of components and their
physical constraints, i.e. start-up / shut down delays,
minimum/maximum loads and battery capacity

• avoidance of faulty switching (artefact from linear
optimization) on/off modules of ELY and FC

• analyzing of different H2-storage technologies, espe-
cially utilising improved physicalities

• optimisation of the system parameters and its control
logic under real operation

Consequently, a Modelica model, was developed, which
shall describe the energy system at a higher degree of
physical precision, while still performing with efficient
calculation time simulating one calendrical year.

2.3 Component Model Library
TransiEnt v1.2.0 (2020) Modelica library was chosen as
starting point for modelling. It already includes a compre-
hensive collection of models to describe and analyse in-
tegrated energy systems with high share of renewable en-
ergies according to environmental and economic aspects.
The library was developed in the research project Tran-
siEnt.EE and its successor project ResiliEnt.EE (2021).
The TransiEnt library uses the ClaRa v1.3.0 (2020) Mod-
elica library which allows dynamic simulation of thermal
hydraulic energy systems such as power plants, thermal
storages etc. This library combination creates a compre-
hensive and powerful tool for modelling local energy sys-
tems and power plants. All supplement models developed
within this project have been put together in a Modelica
library. It consists of models of control logic, ELY, FC,
storages, compressor, separator, cost models of key com-
ponents and additionaly handy models such as sensors for
measurement of power on ElectricPowerPort and calcula-
tion the cost to/from grid etc.

Selection of applicable H2-storage technologies.
In order to select applicable storage technologies to be

modelled an extensive literature study (HydrogenEurope
2020; Hydrogenious 2020; FuelCellStore 2020) was per-
formed. It evaluates the current state of the art of hydro-
gen storage technology for small scale residential areas.
The study revealed two preferable storing techniques for
hydrogen: pressurized and liquid organic carrier LOHC.
Pros ("+") and cons ("-") of these technologies are:

Pressurized Storage System

+ most common hydrogen storage technology

+ very simple release mechanism, minimal complexity
at customer site

+ price relatively low

- heavy system due to pressurised components (steel
pressure tanks/bottles)

- low storage density

- different pressure levels used for different applica-
tions

Within this paper we consider 28 bars tanks (approx. 2
kg/m3 at 20°C) and 200 bars bottles (approx. 14 kg/m3 at
20°C).

Liquid Organic Hydrogen Carrier (LOHC)

+ demonstrator units already built (Hydrogenious
2020) with parameters sufficient for this project.

+ H2 stored at ambient condition (temperature, pres-
sure), hardly inflammable, non-explosive

+ light weight system (i.e. storage in plastic canisters)

- lower overall efficiency (energy required for releas-
ing H2 (approx. at 300°C) from LOHC, at times
when there is no excess of PV power)

Session 7B: Energy (1)

DOI
10.3384/ecp21181597

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

599

Other approaches of storing the hydrogen are currently
either too expensive, too complex for a small scale ur-
ban place, high energy demanding, technically immature
or inquiring specific condition of the underground such
as e.g. salt caverns, exhausted oil and gas fields etc.
These storage systems are: Liquefied H2; Cold- and cryo-
compressed H2; Material-based H2 storage; Hydride stor-
age systems; Surface storage systems and Underground
storage. Consequently, these systems have not been fur-
ther evaluated in this work.

Model of ELY&FC&Pressurized Storage. The model
of ELY, FC and H2 pressurized storage was implemented
as one lumped component in very simple manner. The
mass mH2of H2 in the storage was balanced according to
Equation 1.

d
dt

mH2 =−
1

LHVH2

(
ηELY P(el,set)

ELY +
P(el,set)

FC
ηFC

)
(1)

Here ηELY = 0.51 and ηFC = 0.47 are the efficiencies of
ELY and FC. Moreover P(el,set)

ELY and P(el,set)
FC are their elec-

tric power input values. The model assumes the lower
heating value LHVH2 of H2 as 120 MJ/kg, i.e. LHVH2=33.33
kWh/kg. The model was further elaborated to capture time
dependent efficiencies, modularity (2 ELYs and 2 FCs),
stand by losses of ELY/FC, simple compressor, pressure
dependent storage etc.

Model of Liquid Organic Hydrogen Carrier Storage.
LOHC is a good alternative to pressurized H2 storages as
pointed out before. Demonstration units have been built
(e.g. by Hydrogenious (2020) with storing capacity ṁH2 =
9.1 kg/h and ṁH2 = 3 kg/h releasing capacity. The maxi-
mum parameters of the exemplary households are 0.2 kg/h
and 0.6 kg/h of ṁH2 in ELY and FC respectively. Hence,
the the size of the demonstration unit would be sufficient
for our project.

The previous lumped model of ELY, FC and storage of
H2 (Equation 1), is adapted to capture dehydrogenating
specific enthalpy h(dh), needed for extracting H2 out of the
LOHC.

d
dt

mH2 =−

(
ηELY P(el,set)

ELY
LHVH2

+
1

LHVH2−h(dh)

P(el,set)
FC
ηFC

)
(2)

According to (Krieger 2019) heat up of the liquid (around
300°C) for H2 extraction (dehydrogenation) is realised
by burning of H2. A similar amount of heat is re-
leased (at slightly lower temperature around 250 °C)
during the storage of H2 (hydrogenating). Following
Hydrogenious (2020), approximately 10 kWh of heat
are needed in order to release 1 kg of H2. Hence,
h(dh) was set to h(dh) =10 kWh/kg. Taking into account
LHVH2=33.33 kWh/kg, the overall efficiency of the pro-
cess, electric power → H2 → electric power, for LOHC
can be evaluated to ηLOHC. It is only 0.165 (Equa-
tion 3) compared to 0.25 for pressurized technology

(Equation 4).1 The overall efficiency of LOHC (0.165)
corresponds to findings in (Krieger 2019). This signifi-
cantly reduces the attractiveness of LOHC storage, unless
the heat produced during hydrogenation is utilized for the
dehydrogenation.

ηLOHC = ηELY ·ηFC ·

(
1− h(dh)

LHVH2

)
(3)

ηPressurized = ηELY ·ηFC ·ηcomp (4)

This is illustrated in Figure 6. The LOHC H2 storage runs
empty more than two weeks earlier compared to the pres-
surised storage. Figure 7 presents a comparison from an
el. energy flow perspective. It is evident that LOHC needs
to take more electric power from the grid for a longer pe-
riod of time.

Model of H2 Drying Process. The aim of modelling
the H2 drying process was to estimate the energy con-
sumption of that physical process. The model considers
the drying of water-vapor saturated H2, which is produced
in ELY at 50-70 °C, to 200 ppm H2O which fulfils the
FC-requirement of 500 ppm H2O with sufficient margin.
The actual ELY available for this project uses a down-
stream zeolite filled adsorber. The adsorber material has to
be exchanged or regenerated (dried out) every 200 hours
of operation. This is certainly not acceptable for a contin-
uous long term operation.

Therefore a more useable drying unit based on a con-
densation/freezing process which is common in practice
(Bensmann et al. 2016; Tjarks et al. 2018; Kopp et al.
2017) was modelled in Modelica. The core of the model
is a separator (XRG Simulation 2021). It is designed as a
pipe that contains a water tank where liquid water is col-
lected. The separator is surrounded by pipes that are filled
with cooling liquid. The incoming H2 gas is cooled down
in order to decrease its saturation water content until liq-
uid water occurs and freezes. The cooling liquid can also
be used to reheat the frozen water.

The H2 drying was added to the energy system model
in order to evaluate the electric power consumption of this
process. It was observed that electrical consumption of
the exemplary households rises due to the drying process
of H2 just by 70 kWh/year (~0.2 kWh/kg H2), which is
~0.5 % of the overall generated LHVH 2 or ~0.2 % of total
consumed el. power/year.

System Models. The overall model of the system has
been developed at different levels of complexity. Firstly, a
simple model with no logic has been created in Modelica,
entirely from TransiEnt library components.

It uses all boundary conditions given from the linear
optimisation results (such as electricity production from
PV, electricity demand of households, electricity flow
to/from batteries, electricity production from FC and elec-
tricity demand by ELY). Only the electricity flow from/to

1Efficiency of the considered compression work ηcomp in the overall
energy system is close to 1.

Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic
Residential Complexes

600 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181597

the grid is let free to be calculated. The boundary con-
ditions are specified by hourly based time tables supplied
by a text file. The model is connected to a lumped grid
model, including primary and secondary control models.
It includes a lumped generator model to mimic the syn-
chronous grid of Continental Europe (UCTE).

In the final system model, (see Figure 1), fixed bound-
ary conditions for usage of ELY/FC and batteries were
replaced by physical models and corresponding control
logic. The system model plus the control logic were kept
the same for all storage technologies.

genericDataTableElectricityConsumption

el
ec
tr
ic
D
em
an
d

UCTE

IntegratedGrid

line

eta

pVPlant

genericDataTablePowerGenerationFromPV

battery

pV_power

control

electrolyserFuelCell

2 PH elelectricDemand_power

mass_H2 PID

PID

batteryRelativeCapacity

target_batteryCapacity_rel

batteryEnergy

consumptionAdd

+

Figure 1. Final model of the energy system of households with
control logic.

Resulting Objectives. Using the described inputs and
models, the goal is to perform a technical and eco-
nomic evaluation of pressurized and LOHC based H2 stor-
age technologies for three different H2 storage capacities
{200,300,400} kg for 30 years of operation. In particular
we have to tackle the following tasks:

1. Re-examine the results of linear optimisation: are
they consistent with the physical model?

2. Develop a control logic of the energy system storage
in order to answer e.g.

(a) Shall excess power produced from photovoltaic
(PV) be firstly stored in batteries (if they have
capacity available) or shall it be used to fill up
H2 storage?

(b) If the two modules of ELY/FC shall oper-
ate, can/shall battery in some scenario supply
power to ELY to charge H2 storage?

3. Capture physical constraints (physicalities)
(a) ELY/FC: startup time (heat up and lower ef-

ficiency), efficiency, power consumption dur-
ing standby mode, two separate modules, each
with minimum operation power

(b) compressor for pressurised bottle storage

(c) pressure dependent storage capacity
(d) power consumption of hydrogen drying pro-

cess (condensation/freezing)

4. Add weather and consumption forecast model into
control logic.

5. Incorporate a cost model for all H2 system compo-
nents in order to predict the costs over 30 years.

2.4 Creating a Detailed Control Logic
In the sequel, we describe the emergence of the control
logic as a step by step iteration benchmarked by the linear
optimisation result. The initial simple Modelica model is
further enhanced towards a more sophisticated logic and
the previously described objectives.

2.4.1 Re-examination of Linear Optimisation Result

Figure 2 gives a comparison of the resulted energy flow
to/from grid 2 by the simple system model of para-
graph 2.3 and the linear optimisation model (see subsec-
tion 2.1) for a one year evaluation. There is a clear agree-
ment of the results. Although, a slight deviation (max.
6%) can be observed, which is caused by hourly sampling
of the linear optimsation: The values assumed constant by
linear optimisation are not necessarily constant through-
out 1 hour in the dynamic model.

-40

-30

-20

-10

0

10

0 0.25 0.5 0.75 1

E
ne

rg
y

[M
W

h]

time [year]

E_to_grid (Modelica)
E_from_grid (Modelica)
E_to_grid (LO)
E_from_grid (LO)

Figure 2. Comparison of el. energy flow results from a Mod-
elica and linear optimisation model with no logic for 200 kg H2
storage.

Simulation starts in the beginning of March which
brings more sunny days and the PV power exceeds the
household consumption together with battery and ELY ca-
pacity. This results in a continuous rise of Energy put to
the exterior electric grid until October (2

3 of the year). The
Energy taken from the grid starts to dominate from around
November (3

4 of the year) as soon as the H2 storage is
emptied and the power of PV is almost zero.

2.4.2 Model with Simple Logic

A next step was the development of a very first simple
logic for distribution of energy flows between grid, batter-

2Energy from a grid has a positive sign and Energy to a grid has a
negative sign.

Session 7B: Energy (1)

DOI
10.3384/ecp21181597

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

601

ies, ELY and FC. The logic 3 is depicted in Figure 3.

El. Power Consumption

+El. Power Production

Excess
Power

Battery
Full

Charge
Battery

Storage
Full

Run ELY

El. Power
to Grid

Battery
Empty

Discharge
Battery

Storage
Empty

El. Power
from Grid

Run FC
yes

no

yes

no

yes

no

yes

no

yes

no

Figure 3. First simple control logic.

This logic is plugged into the simple overall energy sys-
tem model (paragraph 2.3) and replaces fixed boundary
conditions of battery, ELY and FC by realistic compo-
nents, as shown in Figure 1. Hence, it uses electricity pro-
duction from PV and electricity demand of households as
table based bounday condition and the rest is calculated,
i.e. electricity flow to/from batteries, electricity produc-
tion from FC and electricity demand by ELY, electricity
flow to/from grid). The simple logic model further as-
sumes 1 lumped battery module, 1 lumped FC module and
1 lumped ELY module.

Figure 4 reveals the limitations of the simple logic.
Maximum mass of H2 in storage that is possible to reach
with this simple logic is only 230 kg, while the results
from linear optimisation show 400 kg. It reveals much
lower H2 production (of Modelica simulation) which re-
sults in a clear lack of H2 in the storage already in the be-
ginning of December (5

6 of the year). Clearly this is caused
by the fairly immature control logic applied for initial im-
plementation. Hence, further enhancement of the control
logic was required.

0

100

200

300

400

0 0.25 0.5 0.75 1

M
as

s
[k

g]

time [year]

mass_H2 (Modelica)

mass_H2 (LO)

Figure 4. Comparison of resulted mass of H2 in storage from a
Modelica and linear optimisation model with simple logic.

It was found that the capacity of the battery stays most
of the time in its upper range and frequently reaches its

3If max. power of the components is reached then the excess power
is taken or send to the grid.

maximum and thus limits its further usage. This is dif-
ferent from the linear optimisation result and indicates an
important direction for improvement.

2.4.3 Model with Improved Logic

Based on the previous unsatisfactory behaviour of the en-
ergy distribution in the system, an improved logic was
worked out, see Figure 5. It was based on the simple logic
and several extra features were added.

The first enhancement. The battery usage is optimised
such that if battery is able to unload, i.e. has capacity,
it shall distribute its power between household consump-
tion demand and ELY. This is controlled according to a
PID controller, see Figure 1. The PID controls the capac-
ity level of the battery based on a Forecast model which
computes target charge capacity for batteries. The princi-
ple of the Forecast model is as follows: The model looks
24 hours ahead for a predicted power consumption Pcon(t)
of households and assumed power production from PV
PPV (t). The integrated sum for upcoming 24 hours of
the two above-named powers gives the required needed
capacity for the batteries Estore as given in Equation 5.
The relative EstoreRel is defined as in Equation 6 where
EbatteryNom is the nominal battery capacity (e.g. maximum
battery capacity). Then one can derive the relative target
capacity of battery EbatteryTarget according to Equation 7
using limited EstoreRel . The EbatteryTarget is then kept con-
stant for each upcoming 24 hours. In the simulations, the
minimum value of EbatteryTarget was set to 0.35 in order
to have some margin for electricity demand needs. Oth-
erwise, electricity from the grid would be frequently un-
intentionally used. Finally, the control logic contains a
PID controller that keeps relative battery storage EbatteryRel
close to the value of EbatteryTarget by using the free capac-
ity of battery to charge ELY. The EbatteryRel is prescribed
as in Equation 8.

Estore =
∫ t0+24h

t0
(Pcon(t)+PPV (t))dt (5)

EstoreRel =
Estore

EbatteryNom
(6)

EbatteryTarget = 1−min(1,max(0,EstoreRel)) (7)

EbatteryeRel =
Ebattery

EbatteryNom
(8)

The second enhancement. The logic is enabled to si-
multaneously run ELY and charge batteries if there is
enough excess power.

The key set of rules for the improved control logic can
be summarized as follows:

• Charging of battery:
Battery is charged if there is excess of power while
battery is not yet full. The charging power is de-
rived as excess power minus the power taken by ELY.

Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic
Residential Complexes

602 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181597

El. Power Consumption

+El. Power Production

Excess
Power

Battery
Full

Storage
Full

Run ELY

El. Power
to Grid

Battery
Empty

Storage
Full

Discharge
Battery for

Demand and
for running
ELY accord.
to Forecast

Discharge
Battery

Storage
Empty

El. Power
from Grid

Run FC

Run ELY w.
Max. Power

+ Charge
Battery
w. rest

ELY
Power
Limit

Reached

Run ELY

yes yes

no

yes

no

no

no

yesyes

no

yes

no

yes

no

Figure 5. Advanced control logic.

• Discharging of battery:
Battery is discharged for a load demand or for the
ELY if there is a load demand and battery and H2
storage is not full.

• FC usage:
FC is used if there is a load demand and battery is
empty and H2 storage is not empty.

• ELY usage:
ELY is used if there is excess power and battery is
full and storage is not full. Further, use ELY if there
is excess power to simultaneously charge ELY and
battery and if there is enough power to charge both
ELY and battery (otherwise only ELY, i.e. ELY has
priority). Finally, use ELY from battery power, but
only if there is net demand for power in the system
(otherwise undesired charging of battery with simul-
taneous discharging of battery for ELY would ap-
pear). It would go against each other.

Resulting system operation. Finally, with this im-
proved logic, a maximum of 400 kg of H2 can be reached
as presented in the Figure 6 (curve labelled as ideal) which
is in agreement with the linear optimisation analysis. Sub-
sequently, the battery usage is enhanced. However, what
the Figure 6 additionally shows is that when further phys-
ical constraints (subsection 2.4), to mimic realistic be-
haviour of the system, is implemented, H2 mass reduces
dramatically. For example, the maximum of H2 mass in
storage barely reaches 340 kg, i.e. just 85 % of the ide-
alized scenario. The LOHC process only reaches 300 kg,
due to the worse efficiency of the process. In Table 3,
the main results are shown for 400 kg pressurized H2 stor-
age for ideal (no physicalities) and real (with physicalities)
case.

Note that ELY and FC units each consist of two inde-
pendent modules (two numbers in brackets in Table 3) and

0

100

200

300

400

0 0.25 0.5 0.75 1

M
as

s
[k

g]

time [year]

ideal
LO real (press.) noiseNeutral

noisePessimisticreal (LOHC)

Figure 6. Comparison of resulted mass of H2 in storage from
Modelica and linear optimisation (LO) model with improved
logic for ideal (no physicalities) and real (with physicalities de-
scribed in subsection 2.4) pressurised+LOHC case together with
real pressurised case with neutral and pessimistic noise.

Table 3. Overview of results for pressurized 400 kg H2 storage
for ideal (no physicalities) and real (with physicalities) case.

Quantity Valueideal Valuereal

El.power f romGrid 1.6 MWh 3.8 MWh
El.powertoGrid 17.3 MWh 16.7 MWh
Start/Stop ELY {256/256}/a {278/277}/a
Start/Stop FC {136/136}/a {223/223}/a
Runtime ELY {3043/3040}h/a {2814/2813}h/a
Runtime FC {1603/1585}h/a {1332/1330}h/a

for the case with physicalities, the minimum power limi-
tation of one unit causes more start/stop cycles. However,
it remains well below the limits.

-20

-10

0

10

0 0.25 0.5 0.75 1

E
ne

rg
y

[M
W

h]

time [year]

E_from_grid_ideal
E_from_grid_press_real
E_from_grid_LOHC_real
E_to_grid_ideal
E_to_grid_press_real
E_to_grid_LOHC_real

Figure 7. Comparison of el. energy flow results of a ideal pres-
surized 400 kg H2 case (no physicalities) together with pressur-
ized real and LOHC technology (with physicalities).

Figure 6 further demonstrates the functionality of the
logic in case of forecast errors: Random noise is added
to the original boundary condition of the real case. The
noisePesimistic case introduces random noise to power
consumption with range (0% to +20% of original) and
noise to PV production (0% to -20% of original values).
Similarly in the noiseNeutral case the range was cho-
sen for power consumption and PV production (±20% of
original values).

Session 7B: Energy (1)

DOI
10.3384/ecp21181597

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

603

Variation of geographic location Our system model
was further extended to consider different geographic lo-
cations. The reference site was Jena (Germany) and we
chose one northern and one southern European city, i.e.
Copenhagen (Denmark) and Marseille (France) respec-
tively. A model from HumanComfort Modelica library
HumanComfort v.2.11 (2020) was used in order to calcu-
late the sun position dependent on the location and solar
time. Together with the maximal possible solar irradiance
(1367 W/m2) the Extraterrestrial irradiance on horizontal
earth´s surface (GextHor) is calculated for each location for
the whole one year period. The value of GextHorRe f for
Jena was used as a base and the scaling factors for the two
other locations (rCopenhagen for Copenhagen) were derived
as a ratio of the day integrals of the corresponding GextHor
values as follows:

rCopenhagen(t) =
∫ t+24h

t GextHorCopenhagen(τ)dτ∫ t+24h
t GextHorRe f (τ)dτ

(9)

and rMarseille for Marseille was derived in similar manner.
Using these ratios the reference electricity PV produc-
tion for Jena was scaled for the other locations. Finally,
EbatteryTarget (Equation 7) was recalculated (for Copen-
hagen and Marseille) and used in the improved control
logic. Certainly this is a simplified approach (the same
weather data is assumed since we don´t have weather data
for reference site, fixed PV efficiency, horizontal PV, same
consumption power (heating), neglect different sunrise/-
sunset time). But it demonstrates the universality of the
system model and can be improved without much effort.
The resulting simulations indicate e.g. that the maximum
of H2 mass in storage barely reaches 310 kg (9 % reduc-
tion) for Copenhagen, while for Marseille the maximum
of H2 mass reaches 366 kg (8 % increase). Further com-
parisons are displayed in Table 4.

3 Evaluation of results
3.1 Level of autarky
One of the key performance indicators for effectiveness of
H2 storages is the Level of autarky (LoA), indicating how
self-sufficient the system is. We consider two levels of
autarky here. One, in terms of energy taken from the grid
LoAenergy, and the other with regard to time span of energy
taken from the grid LoAtime. 4

LoAenergy = 1−
∫ 1year

0

(
Pcon(t)−Pprod(t)

)
σ(t)dt∫ 1year

0 Pcon(t)dt
(10)

LoAtime = 1−
∫ 1year

0 σ(t) dt∫ 1year
0 t dt

(11)

Here a time dependent characteristic function σ(t) is in-
troduced:

σ(t) =
{

1 i f power taken from grid
0 else (12)

4Overproduced energy sent to the grid was not counted.

Pprod is the power actual provided by the internal sys-
tem (PV, battery, FC) and Pcon is the actual power demand.
If Pprod < Pcon then the difference results in power taken
from the grid. Comparison of different variants of H2 stor-
ages with regard to level of autarky is summarized in Ta-
ble 4.

Table 4. Comparison of different variants of H2 storages with
regard to level of autarky.

Type of H2 storage/capacity
of storage [kg] LoAenergy LoAtime

Pressurized/400 (real) 0.91 0.93
Pressurized/300 (real) 0.89 0.91
Pressurized/200 (real) 0.87 0.89
LOHC/400 (real) 0.84 0.88
Pressurized/400 (ideal) 0.96 0.96
Pressurized/300 (ideal) 0.92 0.93
Pressurized/200 (ideal) 0.88 0.91
No storage (batteries only) 0.79 0.84
Pressurized/400 (realCopenhagen) 0.87 0.89
Pressurized/400 (realMarseille) 0.96 0.97

The results of ideal simulations, i.e. without physi-
calities show good agreement with the linear optimisa-
tion analysis (Table 2). However, one can see how the
level of autarky drops when real behaviour of compo-
nents is considered. The variant with 400 kg pressurized
storage has the highest autarky level considering physi-
calities (LoAenergy = 0.91 and LoAtime = 0.93). Here the
complex of households would take from the electric grid
∼ 3.4 MWh/year (out of total consumed el. power 37.5
MWh/year) and it would need to take electric power from
the grid for ∼ 25 days out of the whole year. The worst
combination regarding LoA is the LOHC variant due to
the poor efficiency of the LOHC process (LoAenergy = 0.84
and LoAtime = 0.88). This variant would increase both
LoAenergy and LoAtime by just 4% as compared to a sys-
tem with batteries only, without H2 storage. As one would
intuitively expect, the difference in LoA is mainly driven
by the time it takes until the H2 storage is empty in autumn
(Figure 6).

3.2 Cost Model
Together with the technical analysis, an economical anal-
ysis for 30 years of operation was performed as well. For
this, a one year simulation is extrapolated to 30 years of
operation by simple duplication. We are aware that this
neglects possible future developments, fostering energy
autarkic settlements. These are for example: increasing
electricity price over time, additional profit from CO2 cer-
tificate trade, control energy offer and negative electric-
ity prices. Moreover governmental subsidiary programs
for storage technologies as well as improved efficiency of
FC/ELY and lower component prices. The simplified cost
extrapolation can be seen as a conservative point of view:
any of the mentioned future energy market and technol-

Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic
Residential Complexes

604 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181597

ogy improvements will lower our cost prognosis in favour
of a storage technology. Determination of costs for the
different H2 storage variants was accomplished with help
of the so called collectCosts models implemented in
the TransiEnt Modelica library. They were included in the
hydrogen system components and cover investment, oper-
ational and maintenance, demand (e.g. purchasing of el.
energy), revenues (e.g. selling el. energy) and other costs.
The economical analysis was performed under the follow-
ing assumptions:

• Only hydrogen system components costs were con-
sidered (PV and batteries were the same for each
variant so it was omitted). 5 (Table 5)

• Price of occupied land was included for storages only
(300 e/m2). (Table 5)

• Energy costs were included:
Demand (from grid) as 0.3e/kWh
Revenue (to grid) as 0.1e/kWh

• Lifetime of components was covered.
ELY/FC : 10 years
Bottles / Tank / Compressor: 20 years
LOHC storage: 20 years

• Annuity factor for 30 years set for 1/30 (i.e. numeri-
cal zero interest rate).

• No operational and maintenance cost were assumed
but is adaptable in the model 6 7

Table 5. Costs for hydrogen related components.

Components Cost [ke]

ELY (2x5.8 kW units) 60
FC (2x4.7 kW units) 130
Bottles ({200/300/400} kg) 90/130/170

additional land cost 8/12/16
Tank ({200/300/400} kg) 220/360/440

additional land cost 17/26/34
Compressor 70
LOHC storage ({200/300/400} kg) 390/430/470

additional land cost -/-/8

The final comparison of different variants of H2 stor-
ages (type and capacity {400,300,200} kg) with regard to
costs for 30 years of operation is summarized in Table 6.
As expected, the cheapest variant for a H2 storage is 200
kg with bottles. However, the 400 kg storage using bottles
is "just" 150 ke more expensive and offers much more

5Component cost data sourced: LOHC (Hydrogenious 2020), pres-
surized bottles (BBA 2017), pressurized tank (ELKUCH 2019).

6in (Gstöhl and Pfenninger 2020) 7.5 % of initial investment sum is
assumed.

7The last two assumptions might seem too primitive. However there
are other uncertainties, such as constant electricity price etc., which have
larger impact on the costs. In the scope of this work it is sufficient for
comparison of the technologies.

Table 6. Comparison of different variants of H2 storages with
regard to costs in ke for 30 years of operation.

Storage/capacity Invest. Reven. Deman. Total

Bottles/400 956 50 34 941
Bottles/300 879 60 39 858
Bottles/200 813 81 55 786
Tanks/400 1365 50 34 1349
Tanks/300 1136 60 39 1115
Tanks/200 919 81 55 893
LOHC/400 1307 50 56 1313
No storage 0 147 72 -75

flexibility, hence much higher level of autarky. The 400
kg storage using tanks is the most expensive variant (∼1.5
times more than 400 kg bottle storage) even more expen-
sive than the LOHC. At the moment the HB system is not
economically competitive in comparison to standard en-
ergy supply. These findings are supported by Grosspietsch
et al. (2018).

4 Summary & Outlook
From today’s perspective, applying a H2 storage does not
pay off economically. This points towards a necessity
for adjusting political/economical conditions as well as a
need for technical improvements, see subsection 3.2. As
for today, pressurized and LOHC storages of H2 are the
favourite choices in terms of technical readiness, safety
and economy. Based on our results, a storage consist-
ing of pressurized gas bottles gives the most economic
solution. If the LOHC technology becomes more afford-
able in the future and most importantly its efficiency be-
comes higher or if there exists a possibility to recuper-
ate the heat produced during hydrogenation then LOHC
might become a real option. Safety is a pro of LOHC,
since H2 is stored under ambient condition and in a hardly
inflammable state.

The developed system model including control logic is
quite universal: without much modelling effort, it can be
extended by other energy producers, e.g. by wind tur-
bines and a wind forecast, while keeping the control logic
model untouched. Also maintenance costs and annuities
can be included. Hence, the energy system can be cus-
tomized to specific technological set ups. Also the geo-
graphic location of the house complex can be varied by
providing weather and modified (merely) heat consump-
tion data. This enables location dependent design studies
for residential complexes. Further, our model can be used
for an optimised system design based on physicalities also
regarding storage tank and battery capacity.

Our work demonstrates how a linear optimisation can
guide the development of a more detailed physical Model-
ica model of the storage system. Simultaneously it points
out the necessity of dynamic simulations in the design pro-
cess of the storage: The effects of control decisions and

Session 7B: Energy (1)

DOI
10.3384/ecp21181597

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

605

physicalities integrated over the investigated operational
time period of 1 year have a substantial impact on the level
of autarky (e.g. 96%→ 91% wrt. total energy consump-
tion) and maximum mass (∼ 15% decrease) of stored hy-
drogen.

Modelica has proved to be an adequate numerical tool
to tackle these kinds of analyses. Using a combination
of TransiEnt and ClaRa library as well as e.g. XRG’s
HumanComfort and HVAC library opens the door for de-
tailed system models of residential house complexes, in-
cluding the buildings and their heating systems.

Acknowledgements
This work has been supported
by the German Federal Ministry
for Economic Affairs and En-
ergy within the scope of the 6th

energy research program (grant
number 03ET6059A).
The authors thank the anonymous referees for valuable
comments and suggestions.

References
BBA (2017). Ed. by BBA Müller GmbH. fetched Apr., 6th 2021.

URL: https : / /www.messe- essen- digitalmedia .de /uploads /
E301/pdf/company/bba-mueller-gmbh-e2f6e-info.pdf.

Bensmann, B. et al. (2016). “Optimal configuration and pres-
sure levels of electrolyzer plants in context of power-to-gas
applications”. In: Applied Energy 167.1–2, pp. 107–124.

Bentvelsen, R. F. P. (2019). “Modeling and Scheduling of a Con-
trollableElectrolyser in an IndustrialGrid”. MA thesis. Delft
University of Technology, Netherlands.

BMU, ed. (2011). Berlin. URL: http : / / www .
verwaltungsvorschriften - im - internet . de / bsvwvbund _
13122011_KIIII54603022.htm (visited on 2021-04-11).

BMU (2021). Gesetz für den Ausbau erneuerbarer Energien
(Erneuerbare-Energien-Gesetz - EEG 2021). German. Ed. by
German Federal Ministry of Justice and Consumer Protection
and German Federal Office of Justice.

ClaRa v1.3.0 (2020). Ed. by ClaRa Development Team. fetched
Apr., 6th 2021. URL: https://claralib.com/.

ELKUCH (2019). Ed. by LUDWIG ELKUCH AG. fetched Apr.,
6th 2021. URL: https://www.elkuch.com.

Frey, Hartmut (2019). Energieautarke Gebäude: Auf dem Weg zu
Smart Energy Systems. 1. Auflage 2019. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN: 3662578743.

Fritzson, Arash M.; Dizqah Alireza Maheri; Krishna Busawon;
Peter (2013). “Modeling and Simulation of a Combined Solar
and Wind Systems using OpenModelica”. In: Annual Open-
Modelica Workshop, LinkÃ¶ping University,Sweden.

FuelCellStore (2020). Ed. by Fuel Cell Store. fetched Apr., 6th
2021. URL: https://www.fuelcellstore.com.

Grosspietsch, David et al. (2018). “How, When, and Where? As-
sessing Renewable Energy Self-Sufficiency at the Neighbor-
hood Level”. In: Environmental science & technology 52.4,
pp. 2339–2348. DOI: 10.1021/acs.est.7b02686.

Gstöhl, Ursin and Stefan Pfenninger (2020). “Energy self-
sufficient households with photovoltaics and electric vehi-
cles are feasible in temperate climate”. In: PloS one 15.3,
e0227368.

Henriquez, A. M. (2018-06-08). “Model of hydrogen produc-
tion system for investigating the energy flexibility of residen-
tial buildings”. MA thesis. UNIVERSITY OF LIEGE BEL-
GIUM, p. 76.

Hilpert, S. et al. (2018). “The Open Energy Modelling Frame-
work (oemof) - A new approach to facilitate open science in
energy system modelling”. In: Energy Strategy Reviews 22,
pp. 16–25.

HPS Home Power Solutions GmbH, ed. (2021). HPS System –
picea. URL: https : / /www.homepowersolutions .de /produkt
(visited on 2021-07-05).

HumanComfort v.2.11 (2020). Ed. by XRG Simulation. fetched
Apr., 6th 2021. URL: https : / /www.xrg - simulation .de / en /
products/xrg-library/humancomfort/.

HydrogenEurope (2020). Ed. by Hydrogen Europe AISBL.
fetched Apr., 6th 2021. URL: https://www.hydrogeneurope.
eu/.

Hydrogenious (2020). Ed. by Hydrogenious LOHC Technolo-
gies GmbH. fetched Apr., 6th 2021. URL: http://www.hystoc.
eu/.

Kofman, G. Migoni; P. Rullo; F. Bergero; E. (2016). “Efficient
Simulation of Hybrid Renewable EnergySystems”. In: Inter-
national Journal of Hydrogen Energy 41.32.

Kopp, M. et al. (2017). “Energiepark Mainz: Technical and eco-
nomic analysis of the worldwide largest Power-to-Gas plant
with PEM electrolysis”. In: International Journal of Hydro-
gen Energy 42.19, pp. 13311–13320.

Krieger, Christoph (2019). “Process engineering consideration
and optimization of the release of hydrogen from organic
carrier materials (LOHC)”. Doctoral dissertation. Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), p. 121.

Macagno, M. Santarelli; S. (2004). “A thermoeconomic analy-
sis of a PV-hydrogen system feeding the energy requests of
a residential building in an isolated valley of the Alps”. In:
Energy Conversion and Management 45 (3), pp. 427–451.

PHI (2021). Passive House Institute (PHI) website. URL: https:
//passivehouse.com/ (visited on 2021-04-13).

Proton Motor Fuel Cell GmbH (2021). PEM-fuel cell. URL:
https://www.proton-motor.de/en/ (visited on 2021-04-21).

ResiliEnt.EE (2021). - Resilience of integrated energy networks
with a high share of renewable energies. URL: https://www.
tuhh.de/transient-ee/en/index.html.

Scarisbrick, Constantin (2019). “Simulation of a Fuel Cell and a
Metal Hydride Storage System”. Diploma Thesis. Technical
University of Vienna, Austria. 73 pp.

Stiftung Umwelt Arena Schweiz, ed. (2021). Umweltarena Brüt-
ten. URL: http://www.umweltarena.ch/ (visited on 2021-07-
05).

Tjarks, Geert et al. (2018). “Energetically-optimal PEM elec-
trolyzer pressure in power-to-gas plants”. In: Applied Energy
218.12, pp. 192–198.

TransiEnt v1.2.0 (2020). Ed. by TransiEnt Development Team.
fetched Apr., 6th 2021. URL: https://www.tuhh.de/transient-
ee/index.html.

University of Wisconsin–Madison Solar Energy Laboratory
(1975). TRNSYS, a transient simulation program. Madison,
Wis. : The Laboratory, 1975.

Vezzoli, Carlo (2018). Designing sustainable energy for all:
Sustainable product-service system design applied to dis-
tributed renewable energy. Green energy and technology.
Cham, Switzerland: Springer.

XRG Simulation (2021). “in-house Modelica library for Fuel-
Cells and Electrolysers”.

Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic
Residential Complexes

606 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181597

Modelling the Synchronisation Control for a Hydro Power
Controller

Jonatan Hellborg Tonje Tollefsen Khemraj Bhusal Dietmar Winkler

Department of Electrical Engineering, IT and Cybernetics, University of South-Eastern Norway, Porsgrunn, Norway
(contact: dietmar.winkler@usn.no)

Abstract
This paper presents the modelling of a synchronisa-
tion control as used inside a typical hydro power con-
troller for small hydro power plants. It was built us-
ing the open-source modelling language Modelica by use
of the Modelica Standard Library (Modelica Association
2019), the OpenIPSL (ALSETLab et al. 2018) and the
OpenHPL (TMCC 2019).

The resulting model allows for both transient and long-
term simulations for the complete hydro power system
with the main functions available and working. This in-
cludes water-level control, frequency control, voltage con-
trol with a power factor control and the synchronisation
sequence.
Keywords: Modelica, hydro power, synchronisation, hy-
dro power controller

1 Introduction
As the importance of the transition to a carbon-neutral so-
ciety increases, so does the need for tools that accelerates
this problem. Because Norway is a country with great pos-
sibilities for hydro power, both large and small, there ex-
ists an inherent need for tools that allows for accurate sim-
ulations of existing plants but also the ability to simulate
plants before they are built.

Norway holds a special place in the European elec-
trical power grid because of the large usage of hydro
power. Not only is 98 % of Norway’s electrical power
hydro (Petroleum and Energy 2016), but it also ac-
counts for an incredible 50 % of Europe’s reservoir capac-
ity. (Statkraft 2020)

As more focus is given to the transition to a completely
carbon-neutral society, the development of small scale hy-
dro power has seen an increase, and with this increase
comes the need for better tools that allow for better and
more accurate simulations. These tools and the knowl-
edge required to properly utilise them will help engineers
and designers to find potential design flaws earlier in the
design process, before the turbine is deployed. This be-
comes more and more important as more smaller com-
panies (or even municipalities) decide on building small
hydro power systems.

2 The Hydro Power Controller
A typical hydro power controller is made up of several
components that realise different key functionalities of a
hydro power station. They can be grouped into two main
groups:

• The turbine governing functions act on the hydro tur-
bine by providing the control signal for the guide
vanes or nozzle opening (depending on the turbine
type).

• The generator governing functions provide the sig-
nal for the excitation system in order to control the
voltage and/or power-factor.

The controller implemented as part of this work is a
typical hydro power controller for small hydro power sta-
tions (with a power rating between 1MW and 10 MW). It
provides the following functionalities:

1. Turbine governing

(a) Speed control

(b) Water-level control

2. Generator governing

(a) Voltage regulation

(b) Power-factor control

A typical hydro power controller contains several addi-
tional functions which are not focus of this work.

2.1 Turbine Governing
The Turbine governor is the main controller of the hy-
draulic turbine. The governor regulates the turbine-
generator speed by controlling the flow rate of the water
into the turbine. A higher water flow through the turbine
means more torque is applied to the turbine runner which
results in a higher applied mechanical power. Depending
on the power balance the speed of the turbine and the di-
rectly connected generator will either increase or decrease.

The system of governing basically consists of a con-
trol section and a (mechanic/hydraulic) actuation section,
see Figure 1.

DOI
10.3384/ecp21181607

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

607

Figure 1. Basic Governor Control System (OD Thapar 2008)

2.1.1 Speed Control

The speed control is responsible for keeping the speed
at which the turbine is spinning as close as possible to a
given set-point so that the generator, which is directly cou-
pled with the turbine, can produce the correct frequency.
The controller has four different operation modes:

• Disconnected

• Normal

• Unstable

• Isolated

Each of these modes uses different sets of control pa-
rameters to suite the different nature of the electrical load
experienced by the generator.

2.1.2 Water-Level Control

The main purpose of the water-level control in the hy-
dro power system is to maintain an optimal water-level at
the intake. This kind of control is especially common for
small hydro power stations with small intake reservoirs
(e.g., run-of-river types) where the varying precipitation
can cause quite a change in the water-level. Operators
use different strategies for their hydro power plants which
means that the water-level controller needs to accommo-
date a different water-flow to guide vane opening charac-
teristic.

A PI controller usually controls the output signal for
the guide vanes for bringing the process variable (i.e., the
water-level) to the desired value. If there is increment of
the water-level at the intake, the guide vanes opening of
the turbine should then respond by increasing the opening
of the guide vanes so that the desired set point is reached.

If the water-level is below any specific level, the water-
level controller will stop the turbine. This is important to
avoid running out of water which then would lead to air
getting into the waterway.

2.2 Generator Governing
2.2.1 Voltage Regulation

When a varying load is subjected to a generator then volt-
age at the armature terminals will vary to a certain extent.
The amount of this variation determines the regulation of
the machine. The voltage regulation,V R, of a generator
can be defined as the change in terminal voltage from full

load, Vf l , to no load, Vnl , expressed as a percentage of full
load volts, when the speed and excitation field current are
held constant (Pterra Consulting 2021).

V R =
Vnl −Vf l

Vf l
·100% (1)

The full-load voltage is the terminal voltage when full
load current is drawn. The no-load voltage is the one when
zero current is drawn from the supply, i.e., open circuit
terminal voltage.

The purpose of a voltage regulator is to keep the voltage
within the prescribed range.

The voltage regulation is normally achieved by an exci-
tation system which usually consists of an automatic volt-
age regulator (AVR), an exciter, measuring elements, a
power system stabiliser (PSS) and limitation and protec-
tion units, see Figure 2.

Figure 2. Block diagram of an excitation system of a syn-
chronous generator (Pterra Consulting 2021)

The current and voltage produced by the exciter is usu-
ally controlled by the AVR. In case of sudden distur-
bances, there may be negative influences on the damping
of power swings. For this, a supplementary control loop,
the PSS, is introduced. The PSS produces an additional
signal which is injected into control loop in order to com-
pensate any voltage oscillations.

2.2.2 Power Factor Regulator
In general, an excitation system used in synchronous gen-
erators is expected to aid in the regulation of the system
grid voltage. However, for small hydro power plants, the
voltage regulation from the excitation system will not have
a large impact on the system grid voltage. Therefore, op-
erators of small hydro power plants often utilise a power
factor regulator to regulate the excitation voltage so that
the generator operates at power factor 1. The power factor
regulator is connected to the AVR as an outer loop con-
trol that takes direct control of the excitation voltage. It is
important to note that a power factor regulator may not be
suitable to handle voltage instability that may occur from
faults, and therefore should not act as a replacement for
the AVR entirely (IEEE 2016).

2.3 Synchronisation
Synchronisation is the process of synchronising the gener-
ator terminal voltage(s) with an existing distribution grid

Modelling the Synchronisation Control for a Hydro Power Controller

608 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181607

in order to make an electric connection. This process
should be executed as such that the least amount of dis-
turbance is caused to both, the generator and the grid.

The generator synchronisation conditions are as fol-
lows (Chapman 2012):

1. The RMS line voltages of the generator must be
equal to the electrical grid. Otherwise, it may cause
a large current flow when the switch is closed.

2. The generator must have the same phase sequence
as the grid; in order to avoid different current flow
between the phases.

3. The phase angles of the generator and the electrical
grid phases must be equal.

4. The generator frequency must be slightly higher than
the nominal frequency of the electrical grid. This is
to prevent the generator from consuming power in-
stead of supplying power, during frequency stabili-
sation. If the frequencies are not nearly equal, it will
cause large power transients to the generator during
the connection process until it stabilises at a common
frequency.

In order to achieve the synchronisation process success-
fully a hydro power controller needs to engage the turbine
governing and generator governing functions in a well
planned sequence.

3 Modelling
All the main controller functions as described in the pre-
vious section are implemented in Modelica (Modelica As-
sociation 2013) by use of components from the Modelica
Standard library (Modelica Association 2019).

The controller model is split up into separate sub-
models for each of the sub-controllers function:

• Synchronisation Control

• Frequency Control

• Water-level Control

• Excitation System Controller

Those sub-models are then combined to make up the
complete hydro power controller as shown in Figure 3.

Each of these sub-controllers are active during different
conditions and during different steps in the synchronisa-
tion sequence. An example of this is the frequency con-
troller which is only active before synchronisation, with
the objective of bringing the generator up to its nominal
speed so that the frequency matches that of the grid. After
this has been achieved, the frequency controller is deac-
tivated and the water-level controller is activated which
ensures maximum power is produced.

waterLevel

add

+
+1

+1

frequency

excitation

synchronisation

n
o
t1

n
o
t

GVO_output

H_is

H_sp

ch
o
se

n
P

a
ra

m
e
te

r
F_is

F_sp

EFD_output

E
C

O
M

P

E
F

D

X
A

D
IF

D

P_is

Q_is

PowerFactor_sp

Angle_is

Angle_sp
syn

ch
S

ta
rt

V_is

V_sp

y

Figure 3. Implementation of the hydro power controller in Mod-
elica

3.1 Synchronisation Control
The model of the synchronisation control is shown in Fig-
ure 4.

The synchronisation control decides when to close the
circuit breaker and to do this it takes in 6 measurement in-
puts (Vgrid, Vgen, fgrid, fgen, anglegrid and anglegen) as well
as a true/false signal that tells the controller when to
allow synchronisation. The controller checks if the mea-
surements are within a set range of each other and if they
are, the corresponding block sends a true signal which
activates the next block. The sequence of checks are as
follows:

1. Voltage

2. Frequency

3. Angle

4. Phase sequence

Normally, the synchronisation would only be permit-
ted when all of the above measurements are within the
allowed range. However, in the developed model the last
requirement (phase sequence) is ignored because it is as-
sumed to be the same for the generator and the grid at all
times.

The synchronisation controller will also increase the
frequency set-point with a configured offset. This is to en-
sure that the generator operates at a slightly higher speed
than the grid. The reason behind this is that when the grid
and generator synchronises, the generator (operating at a
higher speed) will be slowed down causing a sudden burst
of energy to flow into the grid. This is preferable to the
alternative where the grid has a slightly higher frequency
than the generator, as this would cause the generator to act

Session 8A: Energy (2)

DOI
10.3384/ecp21181607

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

609

freqOffset

k=FrequencyOffset

add

+
+1

+1

switch

VoltageLimitCheck

and1

and

FrequencyLimitCheck

and2

and

AngleLimitCheck

and3

and
rSFlipFlop

R

S Q

Q!not1

not

n
o
t2

n
o
t

f_grid

f_gen

F_sp

y

S
yn

c
h

S
ta

rt

V_gen

V_Grid

angle_gen

angle_grid

Figure 4. Synchronisation controller in Modelica

like a motor for a short moment. It is important to note that
this difference should be kept at a minimum, most prefer-
able zero, but that a slightly higher generator frequency is
better than a lower one (Chapman 2012).

3.2 Frequency Control
The frequency controller (often also called speed con-
troller) is based on a PID Structure with some added func-
tionality, see Figure 5. The frequency controller has four
different sets of PID parameters, each active during differ-
ent operational modes:

• Disconnected

• Normal

• Unstable

• Isolated

These four parameter sets are implemented in Model-
ica using four different sets of component, giving four dif-
ferent outputs. Depending on the given integer input the
correct output is selected and is used as the output for the
frequency controller.

Parameterset 1

add

+
+1

-1

k=K_p[1]

P_Gain_1

-

feedback
add1

+
+1

+1

k=K_droop[1]/100

Droop_Gain_1

limiter_input

uMax=2

TransferFunction_Filter_1

b(s)

a(s)

limiter_input1

uMax=1

parameterSetDecider
k=K_p[1]

I_Gain_1 Integration_1

b(s)

a(s)

switch1

const

F_is

y1

u
1

F_sp

u
2

Figure 5. Frequency controller in Modelica

3.3 Water-level Control
The water-level controller implemented in Modelica is
shown in Figure 6. The purpose of this controller is to
allow the hydro power plant to produce as much electrical
power as possible when there is enough water. This means
that if the water-level falls below a certain set-point, de-
fined in the controller, then the controller will decrease
the guide-vane opening of the turbine and thus the me-
chanical power. One of the requirements of this controller
is that the generator is already synchronised to the grid as
the frequency needs to be stabilised before the water-level
controller is active.

The characteristic of the guide vane opening with re-
spect to the water-level can be adjusted via the look-up
table WaterLevelLinearization. Depending on the
operator the strategy of how much power (i.e., guide vane
opening) should be produced can be different. One strat-
egy can be that one runs the turbine with full guide vane
opening as soon as the water-level is above the medium
set-point. Others might prefer a more linear dependency
as shown in Figure 7.

3.4 Excitation System Controller
The excitation system controller can consist of many func-
tions that will affect the voltage reference, such as (IEEE
2016):

• Power system stabilizer (PSS)

• Reactive compensation

• Active compensation

• Frequency droop

• Limiters

– OEL - Overexcitation Limiter

– UEL - Underexcitation Limiter

– SCL - Stator current limiter

• VAR regulator and PF regulator

The purpose of the excitation system controller is to
regulate the terminal voltage to different levels that will
satisfy various generator operations and system stability
conditions. The excitation system controller used in this
work is based on the standard static excitation system
model ST1A from IEEE 412.5 (IEEE 2016). The ST1A
is a potential-source controlled-rectifier excitation system.
The excitation system is getting its excitation power sup-
plied through a transformer that is connected to the gen-
erator terminals. It contains a PI voltage regulator that
compares the generator terminal voltage against the volt-
age reference, a forward path transient gain reduction, and
a feedback loop which acts a stabilising effect on the the
excitation.

Modelling the Synchronisation Control for a Hydro Power Controller

610 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181607

k=K_p_WLC

P_Gain

-

fb_1

-

fb_2

k=K_p_WLC

I_Gain

GVO_offset

k=0.05

-
fb_3

k=K_droop_WLC

Droop_Gain

Filter

b(s)
a(s)

Nominal_Height_Difference

k=2.55

-

fb_4

-
fb_5

PID_Sum

+1

+1

+1

+

GVO_limiter

uMax=1

Integrator

b(s)
a(s)

WaterLevelLinearization switch

const

k=0

H_is

H_sp

GVO_sp
a
c
tive

Figure 6. Final implementation of the water-level controller in Modelica

Figure 7. Non-linearity of water-level

As shown in Figure 8 the block diagram of the ST1A
model has several inputs like the generator terminal volt-
age VC, the voltage reference Vref, the overexcitation lim-
iter VOEL, the generator field current IFD, and alternative
input points for the Power system stabiliser VS and the un-
derexcitation limiter VUEL (IEEE 2016).

This paper is limited to only include power factor reg-
ulator function. Therefore the limiters and stabilisers are
disconnected.

.

Figure 8. Block diagram of excitation system ST1A from IEEE
421.5-2005 (IEEE 2016)

The ST1A excitation system controller is available in

the OpenIPSL (ALSETLab et al. 2018) as a PSS®E veri-
fied model. A block diagram of the developed excitation
system is shown in Figure 9.

VoltageReference

k=V_REF

DiffV

+
+1

-1

imDerivativeLag

DT1

k=K_F

imLimited

uMax=V_IMAX

HV
Gate

k
=

K
_

L
R

im
G

a
in

HV
Gate LV

Gate

Vref1

k=I_LR

imLeadLag

1+sT

1+sT
K

1

2

imLeadLag1

1+sT

1+sT
K

1

2

add3_1

-1

+1

+1

+

simpleLagLim

K

1 + Ts

a
d

d
2

+
-1 +
1

im
L
im

ite
d

1

u
M

a
x=

M
o

d
e
lic

a
.C

o
n

st
a

n
ts

.in
f

add3_2

+1

+1

-1

+

k=
V

_
R

M
IN

im
G

a
in

1

k=
V

_
R

M
A

X

im
G

a
in

2

a
d

d
3

+
-1+
1

k
=

K
_

C

im
G

a
in

3

variableLimiterTransducerDelay

K

1 + Ts

Limiters

+
+1

+1

V
U

E
L

V
O

E
L

EFD

EFD0

VOTHSG

ECOMP

X
A

D
IF

D

VOTHSG2

V
U

E
L

3

V
U

E
L

2

V
T

.

Figure 9. Final implementation of the excitation system ST1A
developed in OpenIPSL

3.4.1 Power Factor Regulator
The power factor regulator is modelled similar to a voltage
regulator, but the voltage input is replaced with a active
power P input and reactive power Q input. The power
factor regulator shown in Figure 10 is a simplified model
based on the standard power factor controller type 2 from
IEEE 421.5 (IEEE 2016).

The power factor regulator consists of a power factor
normalizer and a PI regulator. It controls the excitation
voltage based on whether the generator is operating with
a leading power factor or a lagging power factor, i.e., the
generator is operating in the overexcited or underexcited
region, respectively.

The relationship between variation of excitation field
and power factor are displayed in Figure 11 (a). In or-

Session 8A: Energy (2)

DOI
10.3384/ecp21181607

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

611

der for the power factor regulator to recognise whether the
generator is operating in overexcited- or underexcited re-
gion, and to deliver the proper control action, the power
factor curve needs to be modified to a normalised defini-
tion of the power factor. This can be achieved with the
following approach shown in Figure 11 (c). Also, this ap-
proach will ensure that the normalised power factor is a
continuous function as shown in Figure 11 (b).

S2

+
+1

+1

PF

u1 / u2S

sqrt
Q2

P2

PI

PI

normalizer

P

Q

V
_
R

E
F

_
N

o
rm

PF_EFD_Output

.

Figure 10. Model of pf controller type 2(IEEE 2016)

.

Figure 11. (a) power factor of a generator curve with varying
excitation field, (b) normalised power factor from -1 to +1, (c)
model logic scheme for normalised power factor from -1 to +1
(IEEE 2016)

4 Simulation Results
4.1 The Test-Bed model
The main test-bed model used in order to simulate and
verify the implemented model is shown in Figure 12.

It contains the generator model GENSAL from the
OpenIPSL, a small simplified grid with an infinite bus to
connect to, the hydro power controller as described in sec-
tion 3 and a model of a real waterway.

The waterway used is a model of a typical small hy-
dro power system in Norway and was created using
OpenHPL (TMCC 2019) and is shown in Figure 13. The
hydro power plant is run-of-the-river type, where no up-
stream impoundment is built for water storage. The usable
gross-head is about 60m water column. The plant consists

hydroPowerCtrl

waterWay
powerCoupler

busGen

1
0°

breaker

in
ve

rt

n
o
t

busInf

1
0°

System Base: 2.177 MVA

Frequency: 50 Hz

System Data

waterLevelSP

k=2.6

gENSAL.Vt

genVoltage

busInf.V

busVoltage

busInf.angle

busAngle

busGen.angle

genAngle

operationMode

startTime=65 s

synchStart

40 s

40 kW+j0 Mvar

genLoss
SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENSAL

gENSAL.P

genP
gENSAL.Q

genQ

PFNormalizedSP

k=0

const

k=1 a
d
d

+
+

1

+
1

1.9 MW

0.0 Mvar

infiniteBus

frequencySP

duration=10 s

Figure 12. Test-bed model in Modelica

of a 2MW Francis turbine connected to a 2.2MVA syn-
chronous generator.

The test-bed model is using real water-level time series
data stored in CSV format which then was read directly
using the ModelicaTableAdditions library (Beutlich
and Winkler 2021).

4.2 Synchronisation
The first action that the hydro power controller will take
is to bring the generator from standstill up to the nominal
speed. In order to simulate the gradual ramp-up that would
occur in the real power-plant, the frequency set-point is
changed using a ramp, which starts ramping up at 10 sec-
onds. The result is a nice and smooth acceleration up to
the nominal set-point, which can be seen in Figure 14.

The large step in the guide-vane opening comes from
the fact that the water-level control will take over after the
synchronisation in order to produce the maximum power
possible. The generator frequency is locked to the infi-
nite bus. Therefore an increase in guide-vane opening will
not affect the speed of the generator, but will result in an
increase in generator active power output.

During synchronisation the generator will try to reach
a slightly higher speed than the grid is operating at which
is the reason for the peak in active power at around 50
seconds. This is because when the grid and generator is
synchronised, the generator will decelerate and therefore
deliver a peak of power to the grid.

The turbine is accelerating up to the nominal speed, the
voltage controller will control the excitation voltage of the
generator and will adjust the terminal voltage of the gen-
erator to be close to equal the voltage of the grid as seen
in Figure 15. After the synchronisation process is com-
pleted and the circuit breaker is closed, the generator ter-
minal voltage will be locked to the grid, and the power
factor controller will become active, aiming to keep the

Modelling the Synchronisation Control for a Hydro Power Controller

612 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181607

Conduit

Turbine

TurbinePGVO

Headwater

TailwaterDraft_tube

T_R3Main_valve P_spiralT_R2T_R1

data

Measured_Water_Level

csv

limiter

uMax=1

Pm

WaterLevel

GuideVaneOpening

Figure 13. Model of the water way using OpenHPL (TMCC 2019)

Figure 14. Frequency controller during synchronisation

generated reactive power close to zero.

When the circuit breaker closes at around t = 52sec,
there is a slight reactive power peak that is being pushed to
the grid. This is because of the generator terminal voltage
being slightly higher, and not exactly equal to the grid.
The power factor controller reacts to this reactive power
peak with a dip in the excitation field (EFD) output.

When the active power production of the generator in-
creases, the generator will start to consume a small amount
of reactive power as a response. Therefore, we can see
in Figure 15 that the voltage controller due to the power
factor controller’s influence, will increase the excitation
output to compensate for the active power increase, and
thus regulate the reactive power to close to zero, making
the generator operate at power factor 1. Considering that
the terminal voltage is locked to the grid, and the active
power is fixed to mechanical power, an EFD increase will

only affect the reactive power.
As mentioned in section 3, there are three conditions

before synchronisation is allowed. These are:

• Voltage within limits

• Frequency within limits

• Angle within limits

Before the synchronisation is completed, the frequency
set-point is set a bit higher than that of the grid. This off-
set between the grid and the generator is set to 0.02 pu
which is close to 1Hz, and when the generator frequency
is within the chosen limits, a true signal is given, activat-
ing the block that compares the generator angle to the grid
angle. This frequency behaviour can be seen in Figure 16
and the angle behaviour in Figure 17.

Session 8A: Energy (2)

DOI
10.3384/ecp21181607

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

613

Figure 15. Voltage controller during synchronisation

During the synchronisation it is important that the volt-
age angle of the generator is leading the bus angle. Other-
wise the generator will start as a motor and start consum-
ing power.

Figure 16. Frequency with the chosen limits

The resulting Boolean sequence of the synchronisation
process is shown in Figure 18. Here a true signal is
presented on “initiate synchronisation” only when each of
the three variables are within the chosen limits (the angle
is not shown). During synchronisation when the genera-
tor is slowed from the slightly higher frequency down to
the nominal frequency of the grid, the frequency will dip
slightly below the limits and will thus be false for a frac-
tion of a second. This behaviour is what can be seen in the

Figure 17. Angle with the chosen limits

middle graph of Figure 18 but as soon as the last check
turns true, the circuit breaker is locked so that a sudden
frequency dip will not cause the system to fall out of syn-
chronism again.

5 Discussion
One of the assumptions made during the modelling of the
synchronisation sequence is that the phase sequence for
the generator is the same as for the grid. While this is not
necessarily true, it is an reasonable assumption. Because
of the simplicity of the InfiniteBus component used to
simulate the overarching grid, which provides no means
of measuring the phase sequence, adding the functionality

Modelling the Synchronisation Control for a Hydro Power Controller

614 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181607

Figure 18. Synchronisation sequence

to the controller would be pointless as there is no way to
verify it.

One of the bigger problems during the project was when
it comes to verification is that for a lot of these values
there was no real measurements available which means
that these could not be verified. However, because most
of these values still behaved realistically it was decided
that this was good enough but that one of the goal with
any future work is to attempt to get access to more mea-
surements and verify the simulated values.

While some documentation regarding the different
functions of the controllers was available som parameters
had to be estimated. This means that for some of the func-
tions, mainly voltage controller, a simulated version of the
real controller could not be achieved as not enough infor-
mation on the exact internal design was available.

6 Conclusions
Based on the documentation and parameter values re-
ceived from power system operators and manufacturers, a
model of the turbine controller was created using the Mod-
elica Standard Library, the OpenIPSL and the OpenHPL.

During modelling, the finalised controller was divided
up in to several sub-controllers. These were modelled in-
dividually and then fitted together into the finished model.
The main controllers developed are the controllers for the
water-level, frequency and power factor and these were
then compared to the theoretical behaviour of these types
of controller.

Overall the model functions and behaves as desired, but
still needs proper tuning and further development.

7 Further Work
Some of functions typically present in a hydro power con-
troller and outlined in section 2 are still missing. Fu-
ture projects will continue to improve the model and also
gather more data for verification. This also includes the
grid model that will be replaced with a more complex
model including station transformers and distribution grid
components.

A continuation of this project has already been success-
fully completed and the results can be found in the paper
“Developing Protective Limiters for a Hydro Power Con-
troller in Modelica” (Manoranjan and Winkler 2021).

References
ALSETLab et al. (2018). “OpenIPSL: Open-Instance Power

System Library – Update 1.5 to "iTesla Power Systems Li-
brary (iPSL): A Modelica Library for Phasor Time-Domain
Simulations"”. In: SoftwareX 7, pp. 34–36. ISSN: 23527110.
DOI: 10.1016/j.softx.2018.01.002.

Beutlich, Thomas and Dietmar Winkler (2021). “Efficient Pa-
rameterization of Modelica Models”. In: Proceedings of the
14th International Modelica Conference. 14th International
Modelica Conference. Linköping Electronic Conference Pro-
ceedings. Linköping , Sweden: Linköping University Elec-
tronic Press, Linköpings universitet. URL: https://github.com/
tbeu/ModelicaTableAdditions.

Session 8A: Energy (2)

DOI
10.3384/ecp21181607

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

615

Chapman, Stephen J. (2012). Electric Machinery Fundamentals.
5th ed. New York: McGraw-Hill Higher Education. ISBN:
978-0-07-132581-3.

IEEE (2016). 421.5-2016 - IEEE Recommended Practice for Ex-
citation System Models for Power System Stability Studies.
IEEE. DOI: 10.1109/IEEESTD.2016.7553421.

Manoranjan, Luxshan and Dietmar Winkler (2021). “Devel-
oping Protective Limiters for a Hydro Power Controller in
Modelica”. In: Proceedings of the 14th International Mod-
elica Conference. 14th International Modelica Conference.
Linköping Electronic Conference Proceedings. Linköping ,
Sweden: Linköping University Electronic Press, Linköpings
universitet.

Modelica Association (2013). Modelica – a Unified Object-
Oriented Language for Systems Modeling. Language Spec-
ification Version 3.2 Revision 2. Linköping: Modelica As-
sociation. URL: https : / / www . modelica . org / documents /
ModelicaSpec32Revision2.pdf.

Modelica Association (2019). Modelica Standard Library.
Version 3.2.3. URL: https : / / github . com / modelica /
ModelicaStandardLibrary.

OD Thapar (2008). Modern Hydroelectric Engineering Practice
in India: Electro-Mechanical Works. Vol. 1. Department of
Hydro and Renewable Energy. URL: https://www.iitr.ac.in/
departments/HRE/uploads/modern_hydroelectric_engg/vol_
1/Chapter-6_Hydro-Turbine_Governing_System.pdf.

Petroleum, Ministry of and Energy (2016). Renewable Energy
Production in Norway. URL: https : / /www. regjeringen .no /
en / topics / energy / renewable - energy / renewable - energy -
production-in-norway/id2343462/ (visited on 2020-08-31).

Pterra Consulting (2021). Approaches to Complying with NERC
Standard PRC-019-2 on the "Coordination of Generating
Unit or Plant Capabilities, Voltage Regulating Controls, and
Protection". URL: https : / / www . pterraph . com / nerc -
compliance/approaches-to-complying-with-nerc-standard-
prc-019-2-on-the-coordination-of-generating-unit-or-plant-
capabilities-voltage-regulating-controls-and-protection/ (vis-
ited on 2020-11-16).

Statkraft (2020). Hydropower. URL: https://www.statkraft.com/
what-we-do/hydropower/ (visited on 2020-08-31).

TMCC (2019). OpenHPL: Open Hydro Power Library. Ver-
sion 1.0.0. University of South-Eastern Norway. URL: https:
//openhpl.simulati.no.

Modelling the Synchronisation Control for a Hydro Power Controller

616 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181607

Developing Protective Limiters for a Hydro Power Controller in
Modelica

Luxshan Manoranjan1 Dietmar Winkler2

1University of South-Eastern Norway, luxshan@hotmail.no
2Department of Electrical Engineering, IT and Cybernetics, University of South-Eastern Norway, Porsgrunn, Norway,

dietmar.winkler@usn.no

Abstract
In recent years the operation of electrical power plants has
become more and more challenging due to a more dy-
namic operation pattern in order to keep the voltage qual-
ity within the limits of what the electrical network reg-
ulators allow. This is due to the ever increasing amount
of unregulated renewable energy (e.g., wind, solar, tidal
power). There is a need for better tools that allow for a
better and more accurate simulation of the operation of
a electrical power plant. This paper presents the devel-
opment of protective limiters as used in a typical hydro
power controller. The limiters have been implemented us-
ing the Modelica language (Modelica Association 2017)
and are according to the IEEE Std 421.5-201 (IEEE 2016).
Having the limiters available in Modelica makes it pos-
sible to integrate them with hydro power system models
build with the use of OpenHPL (TMCC 2019). The be-
haviour of the limiters have been tested against a veri-
fied generator model of the OpenIPSL (ALSETLab et al.
2018) comparing the theoretical behaviour.
Keywords: hydro power, Modelica, excitation system, pro-
tective controller, limiter

1 Introduction
The electrical power demand is still increasing, and it
leads to pushing the society to find a renewable source
to produce electricity. Therefore the development of ex-
isting and new hydropower stations is still increasing.
The development of hydropower plants focuses not only
on larger hydropower plants but also on small-scale hy-
dropower plants in order to utilise as much resource from
nature.

A hydropower plant consists of several components
such as a valve, turbine, generator, etc. And one of such
important components is the generator that converts me-
chanical energy to electrical energy. A generator needs an
excitation system to provide field current to the field wind-
ing in order to induce the voltage in the generator terminal.
An excitation system contains mainly an exciter that pro-
duces field current and an excitation control system that
consists of an Automatic Voltage Regulator (AVR), con-
trollers, and protective limiters to operate the generator
and exciter within their capability in order to prevent de-

struction.
An AVR mainly controls field voltage, thereby the field

current in order to obtain the desired output concerning the
reference. Whereas, the controllers influence the AVR’s
reference to obtain the desired output, such as terminal
voltage, power factor, or reactive power. The limiters in-
fluence the AVR to protect the generator by limiting the
field and stator current to prevent the overheating of the
field and stator winding, loss of synchronisms, and loss of
excitation relays.

There are different type of conventional and specialised
protective limiter has been used all over the world. This
paper focuses on developing the conventional limiters to
study their behaviour.

2 Theory
In order to understand the workings of the implemented
limiters some basic theory knowledge is required. The fol-
lowing background information is mainly based on (Kun-
dur, Balu, and Lauby 1994) and (IEEE 2016). A syn-
chronous generator must be operated within its limits for
active and reactive power output in order to not exceed the
thermal capability of different components. The limiters
ensure that exciters and synchronous generators are not
exceeding their capability limits during normal and abnor-
mal operating conditions. Therefore, the limiters comprise
several types of control and protective functions. Most
common limiters are determined using the generator ca-
pability curve (GCC) of a specific generator.

Figure 1 depicts the GCC of a synchronous generator,
where curve A is a Field Current Overexcitation Limiter
(FCOEL), also called Overexcitation Limiter (OEL), that
limits the field current during the overexcited (exporting
reactive power to the grid) operation. And curve B is a Sta-
tor Current Underexitation Limiter (SCUEL), also called
Underexcitation Limiter (UEL), that prevents the excita-
tion level from falling below the limit concerning active
and reactive power or current during the underexcited (im-
porting reactive power from the grid) operation. Curves C
represents stator winding limits that are protected by the
Stator Current Limiter (SCL). The Volts-per-hertz limiter
is another limiter being used to protect equipment in the
power plant.

DOI
10.3384/ecp21181617

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

617

 PT

 QT

A

Underexcited region
(-)

Overexcited region
(+)

B

CC
P

Deadband

X
Y

Figure 1. Synchronous generator capability curve with standard
limits A: Field current limits, B: Stator end region limit and, C:
Stator winding limit (between X and Y), and P: Turbine power
(IEEE 2016)

2.1 Field Current Overexcitation Limiter
(FCOEL)

The field current overexcitation limiter protects the gen-
erator from overheating due to prolonged field overcur-
rent. Simultaneously, it allows the maximum field forcing
for power system stability purposes. The generator field
winding is designed to operate continuously at rated load
conditions. But during voltage collapse or system island-
ing, the power system will be stressed and cause the gen-
erator to operate at high levels of excitation for a period.
This limiter measures the field current, field voltage, or
exciter field current or voltage to detects overexcitation.
When the overexcitation is detected, it allows continuing
the overexcitation for a certain period, defined as the time-
overload period, and then reduce the excitation level to a
safe level. If this function does not reduce the excitation to
a safe value, the FCOEL limiter will trip the exciter field
breaker.

The FCOELs have two types of time-overload periods
that allow overexcitation, inverse time or fixed time. The
inverse time limiters operate with the time delay match-
ing the generator’s field thermal capability, as shown in
Figure 2. While the fixed time limiters operate when the
field current exceeds the pickup value for a fixed set time,
irrespective of the degree of overexcitation. Currently, a
more common type of FCOEL is a combination of both
instantaneous and inverse-time pickup characteristics.

2.2 Stator Current Underexcitation Limiter
(SCUEL)

The Stator current underexcitation limiter prevents the re-
duction of the excitation level of the synchronous genera-
tor by increasing the excitation in the generator for one or
more following purposes:

• To prevent operating beyond the small-signal
(steady-state) stability limit of the synchronous gen-
erator, which could lead to loss of synchronism.

• To prevent loss-of-excitation relays from operating

Figure 2. Coordination of overexcitation limiting with field
thermal capability (Kundur, Balu, and Lauby 1994)

during underexcited operation.

• To prevent overheating in the stator end region of the
synchronous generator, typically defined by GCC.

The SCUEL typically uses a combination of either volt-
age and current or active and reactive power of the syn-
chronous generator to determine the control signal. Most
importantly, the limiter should be coordinated with the re-
quired protection purposes as mentioned above in order to
protect the generator properly. Figure 3 demonstrates a
coordination of the calculated small-signal stability limit
(I) and loss- of-excitation relay characteristic (II), where
the intention was to protect against small-signal stability
(I). If the UEL is supposed to protect against overheating
in the stator end region, the coordination will be the same,
but the small-signal stability limit is replaced by the over-
heating limit.

Figure 3. Coordination between UEL. I: Small-signal stability
limit, II: Loss-of-excitation relay, III: Underexcitation limit set
by the UEL, and P: Turbine power (IEEE 2016)

2.3 Stator Current Limiter (SCL)
A Stator current limiter is used to limit the high stator cur-
rents that cause overheating of the stator winding. High
stator currents may occur due to significant changes in

Developing Protective Limiters for a Hydro Power Controller in Modelica

618 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181617

system voltage or increase in turbine power without con-
sidering the capability of generator stator windings. Here
the SCL cannot directly limit the generator output current
(stator current); it can only modify the field excitation dur-
ing the operation with reactive stator current. As another
option, tab change of the main transformer or reduction of
turbine power can be considered to reduce the stator cur-
rent.

Common SCLs mainly vary the excitation level to limit
the stator current. The excitation level is varied based on
whether the synchronous generator is operating inside the
overexcited or underexcited region. When the generator is
overexcited, the SCL should reduce the excitation in order
to reduce the stator current, while when the generator is
underexcited, the SCL should increase the excitation to
reduce the stator current.

The SCL is responsible for limiting the stator current
between points X and Y on the GCC, as shown in Fig-
ure 1, where the SCL’s limit or set-point should be below
the OEL’s predefined limit and above the UEL’s prede-
fined limit. In addition, the SCL set-point is usually set
above the stator current corresponding to generator-rated
apparent power to ensure that the SCL does not reduce the
excitation during the normal operation. Most commonly,
the turbine capability limits the active power output of the
generator in such a way, the reactive power output re-
mains below the SCL characteristic. Thereby, the SCL
would never become active under normal voltage condi-
tions. But, if the turbine power increases, the generator
stator windings should be upgraded. Otherwise the SCL
might become active under normal operating conditions.

2.4 Volts-per-Hertz (V/Hz) Limiters
V/Hz limiters protect the generator’s core and step-up
transformers from significant overheating and damage due
to excessive magnetic flux. The excessive magnetic flux
typically results from low frequency and/or over-voltage.
This limiter calculates the ratio of per unit voltage and per
unit frequency and controls the field voltage to limit the
generator voltage when the V/Hz value exceeds a preset
value. The volts-per hertz limiters trip the generator by
shutdown the field voltage when the V/Hz value exceeds
the preset value for a certain period. V/Hz limiter usually
has two grades of settings, where one with a higher V/Hz
and shorter time settings, and another with a lower V/Hz
and longer time settings. This is due to terminal limita-
tions of the generators and step-up transformer.

3 Modelling of Limiters
This section gives an overview of the modelling of protec-
tive limiters based on (Kundur, Balu, and Lauby 1994) and
(IEEE 2016). In addition, it provides information about
implemented user interfaces in the models using Model-
ica. Indeed, most variables name and their descriptions in
each model originate in the IEEE Std 421.5-2016 (IEEE
2016). However, some variables names and descriptions
are modified for modelling purposes. Moreover, all the

model’s inputs are in the per-unit except the frequency
which is Hz.

3.1 Field Current Overexcitation Limiter
(FCOEL)

The FCOEL, modelled based on OEL2C in IEEE Std
421.5-2016 (IEEE 2016) shown in Figure 4, can interact
with the Automatic Voltage Regulator (AVR) either as an
addition to the summation point or at the takeover junc-
tion. If the FCOEL model is connected to the summation
point, the maximum output limit should be set to zero,
while the minimum output limit should be set to a negative
value corresponding to the maximum reduction. Unlike
when the FCOEL is connected to the takeover junction,
the maximum output limit of the FCOEL should be set to
larger values, whereas the minimum output limit should
be set to a positive value that maintains the minimum ex-
citation level. And the input to the limiter could be the
generator field current IFD, generator field voltage EFD, or
a signal proportional to exciter field current VFE .

Besides, the FCOEL’s output is limited by the PID
controller’s maximum and minimum limit if the lead-lag
function is turned off; otherwise, the output is limited by
VFCOELmax1 and VFCOELmin1 or VFCOELmax2 and VFCOELmin2.

K2[(Ipu/ITFpu)c2-1]

FCOEL

ITFpu VINVmax

VINVmin

IERRinv2

KSCALE

1+sTRfcoel

1
s

Tmax

Tmin

KFB

W

IERRinv1

-
+

-
+

TFCL

1
s

Iinst

Ilim

ZIref

KACT

Ipu

+
-

Iact

Ibias
+

Ierr

INL

SWFCOEL

input

FCOEL
timer
logic

(c)

FCOEL
ramp rate

logic
(b)

FCOEL
 activation

logic
(a)

K1[(Ipu/ITFpu)c1-1]

1
1+sTAfcoel

A

B

KPfcoel
KIfcoel sKDfcoel+ +

VFCOELmax

VFCOELmin

s 1+sTDfcoel

1+sTFCOEL1

VFCOELmin2

VFCOELmax2

1+sTFCOEL2

1+sTFCOEL3

VFCOELmin1

VFCOELmax1

1+sTFCOEL4

SW2

CB

A

B

+

+LeadLagfcoel

SW3

A

B

FCOELoff

SW4

VFCOEL

Tlim

Terr

Figure 4. Block diagram of the field current overexcitation lim-
iter (FCOEL)

The activation logic (a) in Figure 4 allows the user to
specify an activation delay time TenFCOEL, this time delay
will disable the instantaneous FCOEL responses for a cer-
tain time to allow very high transient forcing capability.
Also, it allows defining time delay to reset the limiter and
reset threshold value.

When the timer error signal Terr = TFCL - Tlim is less or
equal than zero, or if the actual feedback field current Iact
is greater equal than the reference Ire f for longer or equal
than the activation delay time TenFCOEL, or if the TenFCOEL
is equal to zero, then the output of the activation logic Ibias
becomes zero.

Thus, the error Ierr, the input to the PID controller is re-
duced, and consequently, the output of the FCOEL VFCOEL

Session 8A: Energy (2)

DOI
10.3384/ecp21181617

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

619

reduces towards the limiter minimum until the field cur-
rent reaches the preset limit. The preset limit could be in-
stantaneous field current limit Iinst , or thermal (long-term)
value Ilim or no-load limit INL level. While, when the Ire f
is less-equal than Iinst and the error (Ire f − Iact) is larger or
equal than the reset-threshold value ITHoffFCOEL for longer
or equal than the reset time delay ToffFCOEL, then the out-
put Ibias becomes the reset reference value IresetFCOEL. As
a consequence, the output VFCOEL will reach back to max-
imum limits set by the PID controller or double lead-lag
function.

This model comprises both instantaneous and timed
responses, where the timed response could follow fixed
ramp rates or inverse-time. The inverse-time characteris-
tic of the FCOEL is calculated using the actual field cur-
rent Ipu and parameters (K2, c2, and IT F pu), and then the
output signal IERRinv2 is applied to the timer logic (c) in
Figure 4. The inverse-time characteristic can be disabled
by either set the parameter K2 to zero or by setting the
limits VINVmax and VINVmin to zero. The timer logic deter-
mines the input signal to the timer integrator by using de-
fined fixed time ramp rates, Fixedru and Fixedrd together
with IERRinv2. Whereas the timer integrator output Tlim
and fixed-parameter TFCL determine the timed action of
FCOEL.

The ramp rate logic (b) in Figure 4 uses the Terr signal
to determine if the reference field current Ire f should be
ramped up to the Iinst value or ramped down to the Ilim or
INL. The ramp rate can be constant values as Kru (ramp-
up) and Krd (ramp-down) or can be given by IERRinv1.
Where the signal IERRinv1 is calculated similarly to IERRinv2
with parameters (K1,c1, and ITFpu). Switching from instan-
taneous limit Iinst to timed limit Il im or INL is constituted
by setting the SW1 to false and Kru and Krd to large val-
ues. But, if it is a desire to have a ramp down at a rate
calculated from overexcitation can be obtained by setting
the SW1 to “true” and select a proper parameter for K1
and c1. During the no-load condition (circuit breaker is in
the open position), the switch SW2 is changed to position
“B”, meaning the lower limit of the integral to the no-load
limit INL. Otherwise, during the normal operating condi-
tion (circuit breaker is in the closed position), the lower
limit is set to Ilim.

There are PID and double lead-lag at the output of
the FCOEL, which determine the FCOEL’s dynamic re-
sponse. If PID control is desired, the lead-lag functions
can be disabled by changing the position of the switch SW3
to “B”. Alternatively, if the double lead-lag compensation
is desire, the gain KIfcoel and KDfcoel should be set to zero,
simultaneously the position of the switch SW3 should be
set to “A”.

Finally, the switch SW4 at the output of the FCOEL is
used to switch off the limiter’s output by the user com-
mand. Then the output of the FCOEL will be the user-
defined parameter FCOELo f f . Figure 5 shows modelled
FCOEL in Modelica, where the radio buttons are imple-
mented to switch the SW1 to alternate from fixed time ramp

Ierr

Ibias

Iact

Iref

Terr

IERRinv1

Tlim

TFCL

IERRinv2

Ipu

InputFilter_simpleLag

K

1 + Ts

I_TFpu_const

k=I_TFpu

Ipu

IERRinv

fCOEL_EQ1

ITFpu

Ipu

IERRinv

fCOEL_EQ2

ITFpu

limiter_I_ERRinv2

uMax=V_INVmax

Ipu

W

fCOEL_TimerLogic

IERRinv2
TimerlimIntegrator

I

k=1

add

+
+1

-1

k=K_FB

K_FBgain

Terr

Z

fCOEL_RampRateLogic

IERRinv1

SW1

add1

+
+1

-1

T_FCLconst

k=T_FCL

limIntegrator2

I

k=1

simpleLag1

K

1 + Ts

k=
K

_a
ct

K
_a

ct
ga

in

add3_1

+1

-1

+1
+

Terr
Ibias

fCOEL_ActivationLogic

Iact
Iref

PID_add

+1

+1

+1
+

k=K_Pfcoel

PID_gain

PID_limIntegrator

I

k=K_Ifcoel
PID_derivative

DT1

k=K_Dfcoel

RampRateType

booleanExpression

PID_limiter

uMax=V_FCOELmax

leadLagLim

1+sT1

1+sT2
K

leadLagLim1

1+sT1

1+sT2
K

SW4

OELoff_const

k=FCOEL_off

SW2
I_lim

IlimrealExpression

I_NL

INLrealExpression

SW5

LeadLag_fcoel

booleanExpression1

SW3

const

k=0

variableLimiter
I_inst

realExpression1

FCOEL_in
V_FCOEL

C
B

S
W

_F
C

O
E

L

Figure 5. Implementation of Field current overexcitation limiter
(FCOEL) in Modelica

rate to the calculated ramp rate from overexcitation. There
is a checkbox named LeadLag_fcoel shall be checked
to change the position in SW3 to “A” in order to activate
the lead-lag function. Moreover, the lead-lag should be
enabled in order to parameterise the lead-lag function else
the parameters boxes are locked.

3.2 Stator Current Underexcitation Limiter
(SCUEL)

The block diagram of the SCUEL shown in Figure 6 is
based on the type UEL2C in IEEE Std 421.5-2016 (IEEE
2016). The limiter senses the active power PT and reactive
current IQ and increases the excitation when the genera-
tor runs at underexcitation below the defined characteris-
tic value. Since the limiter is a separate circuit, the output
signals of this limiter can interact either with the summing
point or the High-value (HV) gate input of the excitation
system. The interaction with the summing point leads to
normal voltage control, whereas interaction with the HV
gate (takeover junction) will overwrite the normal action
of the AVR. Be aware that the inputs could also be the ac-
tive current IP instead of active power PT , but it should be
a positive value and also reactive power QT can be used
instead of reactive current IQ.

If the SCUEL interacts with the summation point, the
minimum output limit should be set to zero, while the
maximum output limit should be set to a large positive
value. On the contrary, if the SCUEL is connected to
the takeover junction, the maximum output limit of the
SCUEL output should be set to 0, whereas the minimum
output limit should be set to a significant negative value.
Besides, the SCUEL’s maximum and minimum limit is
set by the PID controller’s limit if the lead-lag function is
turned off; otherwise, the output is limited by VSCUELmax1
and VSCUELmin1 or VSCUELmax2 and VSCUELmin2.

The voltage bias logic (a) in Figure 6 provides an ad-
equate voltage ratio to be used in equation blocks F1 and
F2. The logic can be bypassed by setting the parameter
VbiasSCUEL = 1. The equation blocks F1 and F2 in the

Developing Protective Limiters for a Hydro Power Controller in Modelica

620 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181617

VT 1
1+sTVscuel

1+sTSCUEL1

VSCUELmin2

VSCUELmax2

1+sTSCUEL2

1+sTSCUEL3

VSCUELmin1

VSCUELmax1

1+sTSCUEL4

A

B

+

+
LeadLagscuel

SW2

Voltage
bias
logic

(a)
VTF

F2 = (u)K2scuel

(u)K1scuel
1F1 =

K2scuel = 0, 1 or 2

K1scuel = 0, 1 or 2

u

PT

F1

1
1+sTPscuel

SCUEL
limit

look-up
tableP'

F2

IQ'

1
1+sTIQrefSCUEL

KFscuel
VF

-
VFscuel

1
1+sTIQscuel

IQ IQF

-

+

IQref

A

B

KfixSCUEL

1

1

0.1

1+sTadjscuelKadj
SW1

KPscuel
KIscuel sKDscuel+ +

VSCUELmax

VSCUELmin

s 1+sTDscuel

Verr

KFBscuel

1+sTFBscuel

VFB

+
+ VSCUEL

Figure 6. Block diagram of the Stator Current Underexcitation
Limiter (SCUEL) (IEEE 2016)

SCUEL block diagram provide appropriate adjustments
so that the effects of the terminal voltage VT on the lim-
iter are taken into account. The adjustments provided by
the F1 and F2 are based on the limiting characteristics of
the SCUEL and determined by the constants K1scuel and
K2scuel. If the SCUEL is configured to be influenced by
the active and reactive currents, the limiter characteristic
is set proportional to VT by using the K1scuel = K2scuel = 1.
While, if the limiter is influenced by the active and reactive
components of the apparent impedance looking from the
machine terminals, the characteristic can be set to propor-
tional to the V 2

T by using K1scuel = K2scuel = 2. However,
the latter limiting characteristic requires proper coordina-
tion with generator protection functions such as loss-of-
excitation relays. Also, this function can be disabled by
using K1scuel = K2scuel = 0.

The SCUEL shown in Figure 6 takes the active power
PT and multiplies it by F1, further filters it and the re-
sulting normalised value P′ is sent to the look-up table.
The limiting characteristic defined in a lookup table de-
termines the corresponding normalised reactive current
value I′Q related to P′. The reference IQref is determined
by multiplying the I′Q and F2 and then compared with
the filtered actual reactive current IQF . If the error sig-
nal Verr = IQref − IQF −VFscuel becomes negative under the
normal condition, the limiter’s output will be the mini-
mum PID or lead-lag limit, meaning no actions are taken.
When the error signal becomes positive, the output of the
SCUEL drives in the positive direction and boosts the
excitation to move the operating point back towards the
SCUEL limit.

The SCUEL reduction gain can be either automatically
adjusted (depending on VT , PT and IQ) or can have a fixed
constant gain value. To be able to enable the automatically
adjusted gain, the logic switch SW1 should be selected to
position “B”, where the automatic adjustable gain reduc-
tion Kad j is calculated using Equation 1, while the fixed
constant gain, given by the parameter KfixSCUEL value, is
enabled by switching the SW1 to position “A”. The gain
reduction can be disabled by setting KfixSCUEL = 1.

Kad j =

V 2
T

Xq
+ IQ√

(
V 2

T
Xq + IQ

)2 +P2
T

(1)

where

Kad j: Automatic adjustment gain [-]
VT : Generator terminal voltage [pu]
PT : Active power [pu]
IQ: Reactive current [pu]
Xq: q-axis synchronous reactance [pu]

The excitation stabiliser signal from the AVR shall be
provided to the input VF , and it helps to damp the oscilla-
tions. The input VFB can only be used in conjunction with
the excitation system ST7C model. As mentioned earlier,
the lead-lag blocks can be disabled by changing the posi-
tion of the switch SW2 to “B”, and PID control by set gain
KIscuel and KDscuel to 0. Besides, if the lead-lag function
is desired, change the SW2 to position “A”, and the time
constants should be appropriately adjusted to provide suf-
ficient damping. The limiting characteristic of the SCUEL
is depicted in Figure 7, where the limit is composed of
four straight line segments. All five endpoints should be
defined in terms of Pi and IQi values in order to determine
the limiter characteristic. For any values of P′, the cor-
responding value of I′Q between the segment endpoints is
determined using linear interpolation.

Figure 7. Normalised limiting characteristic for the SCUEL
(IEEE 2016)

Figure 8 displays the modelled SCUEL in Modelica.
There are two checkboxes implemented, one that changes
the position of SW2 from “B” to “A”, while the other one
alternates the switch from position “A” to “B” in order to
enable the adjustable gain reduction, by checking it. Addi-
tionally, by enabling the lead-lag function and adjustable
gain reduction, the parameter boxes will be enabled to al-
low the user to define corresponding parameters; other-
wise, the parameter boxes are locked. Besides, when the
automatically adjustable gain reduction is enabled, the pa-
rameter box for KfixSCUEL will be locked. Alternatively, by
unchecking the checkbox, the parameter box for the fixed

Session 8A: Energy (2)

DOI
10.3384/ecp21181617

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

621

V_Fscuel

V_TF

u

K_2 = 0,1 or 2

K_1 = 0,1 or 2

F_1

P' IQ'
IQ_ref

IQ_F

V_err

simpleLag

K

1 + Ts
V_TF u

voltageBiasLogic

u F_2

F2 = (u)^K_2
uEL_F2

u
F

_1

F
1 =

 1/(u)^K
_1

uE
L_F

1

product simpleLag1

K

1 + Ts

combiTable1D
product1 simpleLag2

K

1 + Ts

add3_1
-1
-1
+1

+

simpleLag3

K

1 + Ts

k=K_Fscuel

gain

product2

SW1

const

k=K_fixSCUEL

K_adjSCUEL
booleanExpression

product3

const1

k=X_q

division
u1 / u2

add

+
+1

+1

product4

product5

add1

+
+1

+1

sqrt1

sqrt

division1
u1 / u2

simpleLagLim

K

1 + Ts

k=K_Pscuel

PID_gain

PID_limiter

uMax=V_SCUELmax

PID_limIntegrator

I

k=K_Iscuel

add3

+
+1

+1

simpleLag4

K

1 + Ts

leadLagLim2

1+sT1

1+sT2
K

leadLagLim1

1+sT1

1+sT2
K

PID_derivative

DT1

k=K_Dscuel

PID_add
+1
+1
+1

+

SW2

const2

k=0

SW3

LeadLag_scuel
booleanExpression1

VT

PT

V_SCUEL
IQ

VF

VFB

Figure 8. Implementation of Stator current underexcitation lim-
iter (SCUEL) in Modelica

gain KfixSCUEL will be opened, and the switch is back to
the position “A”.

3.3 Stator Current limiter (SCL)
A stator current limiter modifies the excitation level to
reduce the reactive component of the stator current; as
a consequence, the stator current will be limited. Fig-
ure 9 shows a block diagram of the SCL based on the type
SCL1C in IEEE Std 421.5-2016 (IEEE 2016). This lim-
iter uses the stator current IT , reactive current IQ, and reac-
tive power QT at the generator terminal as inputs. Further,
the output signal VSCL from the SCL can only interact with
the summing point of the excitation system.

When the magnitude of the IT becomes greater than
the adjustable pick-up value ISCLlim, then the SCL starts
to influence the excitation after the time delay. The time
delay before limiting allows a short-term increase of sta-
tor current during a system disturbance or startup. There
are three types of time delay functions implemented in
this limiter. One of the time delay functions caused by
the transducer delay in the measurement of the stator cur-
rent is represented by the time constant TIT . The sec-
ond and third type time delay functions are enabled if the
switch SW1 on position “B”, and the time delays are de-
termined by an inverse time characteristic TINV or a fixed-
time TDSCL. The switch SW2 in the delayed reactive power
logic (c) in Figure 9 should be set to “true” to enable the
inverse time delay; else, the fixed-time delay will be ap-
plied.

A deadband is implemented at unity PF because the
SCL does not affect the active power, so modifying the
excitation level does not give any benefits at unity PF.
There are two options to provide the deadband to the lim-
iter; if the reactive current is used to modify the excitation,
the deadband zone can be defined by the parameter IQmin.
Whereas if the reactive power is used, then the deadband
can be defined by the parameter VSCLdb.

When the SW1 is in position “A”, the reactive current
is used to determine if the generator is operating in an
overexcited or underexcited condition. When the SW1 is
in position “B”, the reactive power is used to determine
the generator’s operating condition. During the underex-
cited condition, the excitation current is increased, unlike
during the overexcited condition, the excitation current is

1
1+sTQSCL

IQ y = (u)K

IQmin
-

-

+y

-

1

1+sTIT
y = (u)K

u

IT

u

y

-

LV
gate

de
la

ye
d

re
ac

tiv
e

po
w

er
 lo

gi
c

LV
gate

A

B

A

B

SW1

SW1

KPoex
KIoex sKDoex+ +

VSCLmax

VSCLmin

s 1+sTDoex

SW3

A

B

KPuex
KIuex sKDuex+ +

VSCLmax

VSCLmin

s 1+sTDuex

SW4

A

B

SWSCLoex

SWSCLuex

SCLoexoff

SCLuexoff

0

0

-

+

VSCL

Ioex1

Ioex2

Iuex2

Iuex1

1
1+sTINV

+

+

-
ISCLlim

de
la

ye
d

re
ac

tiv
e

po
w

er
 lo

gi
c

ISCLerr

ISCLinv

QT

Figure 9. Block diagram of the stator current limiter (SCL)
(IEEE 2016)

decreased.
There are two individual PID controllers for overex-

cited and underexcited control loops, which can be indi-
vidually adjusted for proper tuning of the PID controllers.
If IQ or QT within the deadband, the input to the PID con-
troller becomes zero, and the PID controller’s output will
be held constant. Also, during the normal operation condi-
tion (when the IT is lower than the ISCLlim), the outputs of
the overexcited and underexcited range will be zero; con-
sequently, the output of the output VSCL will be zero. When
the IT is higher than the ISCLlim, the output VSCL reduces
during the overexcited range, while VSCL increases during
the underexcited range. However, under both ranges, the
output decreases or increases until the reactive current or
power reaches the deadband zone or until the IT or QT be-
comes equal to the ISCLlim. And there are two switches
SW3 and SW4 at the output of the overexcited and under-
excited range used to switch off each range’s output, re-
spectively, where the user shall give the command. When
the outputs of the overexcited and underexcited range are
switched off, the user-defined parameters SCLoex_off
and SCLuex_off will be the output of each region, re-
spectively.

The modelled stator current limiter in Modelica is dis-
played in Figure 10, where the switches at the output SW3
and SW4 should have a Boolean signal to enable the lim-
iter’s output.

Furthermore, there are implemented radio buttons for
the switches, SW1 and SW2. If the radio button called
“Reactive current controller” is selected, then the SW1 is
changed to position “A”. Whereas, if the “Reactive power
controller” radio button is selected, then the SW1 is shifted
to position “B”, and the SCL uses the reactive power to de-
termine the operating condition of the generator. As well,
the switch SW2 can be set to “true” by selecting the radio

Developing Protective Limiters for a Hydro Power Controller in Modelica

622 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181617

u y

u y

I_SCLerr

I_SCLinv

I_oex1

I_oex2

I_uex2

I_uex1

IQsimpleLag

K
1 + Ts

u y

IQ_sCL_EQ
add

+
+1

-1

add1

+
-1

-1

IQminconst

k=IQ_min

ITsimpleLag

K
1 + Ts

u y

IT_sCL_EQ

ITsimpleLag_inv

K
1 + Ts

I_SCLinverradd

+
-1

+1

I_SCLerradd

+
+1

-1ISCLerrconst

k=I_SCLlim

LV
Gate

LV
Gate

QT
Ioex2

sCL_DelayedReactivePowerLogic

SW2

ISCLerr

ISCLinv
Iuex2

TimeDelayType

SW_2

SW1_oex

SW1_uex

PID_add_oex
+1

+1

+1
+

k=K_Poex

PID_gainoex

PID_limIntegratoroex

I

k=K_Ioex
PID_derivativeoex

DT1

k=K_Doex

PID_limiteroex

uMax=V_SCLmax

PID_add_uex
+1

+1

+1
+

k=K_Puex

PID_gainuex

PID_limIntegratoruex

I

k=K_Iuex
PID_derivativeuex

DT1

k=K_Duex

PID_limiteruex

uMax=V_SCLmax

limiteruex

uMax=V_SCLmax

limiteroex

uMax=V_SCLmax

ControllerType

SW_1

constoff_oex

k=SCLoex_off

SW_4

constoffuex

k=SCLuex_off

SW_3

add3

+
-1

+1

QT

IQ

IT

V_SCL

S
W

_S
C

Lo
ex

S
W

_S
C

Lu
ex

Figure 10. Implementation of stator current limiter (SCL) in
Modelica

button “Enable inverse time delay”, while it can be set to
“false” by selecting the “Enable fixed-time delay”.

3.4 Volts-per-Hertz (V/Hz) Limiter
V/Hz limiter is a voltage limiter that limits the voltage
function of frequency. This model is build based on (Kun-
dur, Balu, and Lauby 1994) and interacts with the AVR at
the summing point, and reduces the reference so that the
terminal voltage reduces with respect to the frequency re-
duction. A block diagram of the V/Hz limiter is shown
in Figure 11, where the limiter takes inputs as terminal
voltage VT and frequency f . The limiter calculates the ra-
tio between the terminal voltage and the frequency in per
unit, which then is compared with the limiting value VZLM
to determine the error Err.

If the Err is greater than zero, a timer will start to count,
and when the time is greater than Td , the Err signal will
be sent further to the PID controller. During the normal
operation (when the limiter us inactive), the Err is negative
and thus, the output is zero; while when limiter is active
and the Err becomes greater than the zero, the output starts
to increase until the voltage reduces and the Err becomes
less-equal than the zero. Additionally, this limiter can be
activated and deactivated by the Boolean signal, and when
the limiter is deactivated, the output will be zero.

KPVHz
KIVHz sKDVHz+ +

VVHzmax

VVHzmin

s 1+sTDVHz

÷VT

÷f

fsp

+

VZLM

-

A

B

0

if Err ≥ 0 and time ≥ Td

Err
SW1

A

B
0

VVHz

SW2

SWVHz

Figure 11. Block diagram of the volts-per-hertz (V/Hz) limiter
(Kundur, Balu, and Lauby 1994)

A V/Hz limiter modelled in Modelica is shown in Fig-
ure 12, where the dashed lines illustrate the conditional
connections that the user can activate either the con-
stant frequency set-point fsp or variable frequency set-
point fvsp.

Errdivision
u1 / u2

add

+
-1

+1

const

k=V_ZLM

di
vi

si
on

1
u1

 /
u2

ad
d3 +

+
1

+
1

Nonzeroconst

k=Modelica.Constants.eps

division3
u1 / u2

Percentconst

k=100

f_spconst

k=f_spt

SW2

constZero2

k=0

timer

0

greaterEqualThreshold

Td

greaterEqualThreshold1

SW1

constZero1

k=0

k=K_PVHz

PID_gain

PID_limiter

uMax=V_VHzmax

PID_limIntegrator

I

k=K_IVHz

PID_derivative

DT1

k=K_DVHz

PID_add

+1

+1

+1

+

VT

f

V_VHz

f_sp

S
W

_V
H

z

Figure 12. Implementation of V/Hz limiter in Modelica

There is a checkbox called Enable_fvsp imple-
mented. By checking the checkbox the real input fvsp is
enabled so the variable frequency input can be connected
to the limiter, and simultaneously the fsp will be disabled.
When the checkbox is unchecked, the fvsp real input dissi-
pates, and the fsp is enabled. Additionally, the switch SW2
at the output allows the user to activate and deactivate the
limiter by a Boolean signal. Besides, a constant epsilon
is added with the frequency to protect against division by
zero problems.

4 Simulations Results
This section presents simulation results of Field Cur-
rent Overexcitation Limiter (FCOEL), Stator Current
Underexcitation Limiter (SCUEL), Stator Current Lim-
iter (SCL), and the Volts-per-Hertz limiter (V/Hz).

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENSAL

PSS

k=0

gENSAL.XADIFD

IFD

fCOEL

EFD/
IFD/
VFE

V_FCOEL

CB SW_FCOEL

ST7C

VUEL1VOEL1

ECOMP

VOTHSG

EFD0

EFD

XADIFD VUEL2VOEL2VUEL3VOEL3

OEL

k=100

UEL

k=-100

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar

pwLine

INFGEN1

Vpu
Angle

LOAD

Vpu
Angle

GEN2

Vpu
Angle

breaker

invert

not

SW_FCOEL

1100 s

gENSAL.P

P

gENSAL.p.ii

IQ

constZero

k=0

PT
VT

IQ
VF

VFB

V_SCUEL

sCUEL

SW

const

k=-100

SW_SCUEL

1800 s

gENSAL.I

IT

IT

IQ

QT

V_SCL

SW_SCLoexSW_SCLuex

sCL

gENSAL.p.ii

IQ1

gENSAL.Q

QT

add3_1
+1
+1
+1

+

SW_UEX

1800 s

SW_OEX

800 s

Frequency

duration=300 s
SW_VHz

800 s

VT

f

V_VHz

vHz_Limiter

SW_V/Hz

CBtrigger

0 s

Figure 13. Test setup

The test setup is created using a GENSAL genera-
tor, transmission line, infinite grid, and excitation sys-
tem typeST7C from the OpenIPSL version 2.0.0 (ALSET-
Lab et al. 2018), as shown in Figure 13. The system
power base and frequency for all the components are set
to 10MVA and 50Hz, accordingly. The generator is ini-
tialised, as presented in Table 1, during the various simu-

Session 8A: Energy (2)

DOI
10.3384/ecp21181617

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

623

Table 1. Initialisation of GENSAL generator for simulation

Parame-
ters

Description Values Units

P0 Initial active power - MW
Q0 Initial reactive power - Mvar
v0 Initial voltage magnitude 1 pu
angle0 Initial active power 0 ◦
ω Initial active power 0 pu

lations. Since the initial active power P0 and the reactive
power Q0 will be varied for different simulation tests, the
values are not presented in the table.

4.1 Field Current Overexcitation Limiter
(FCOEL)

The test is performed by enabling the limiter output at
1100 s and open the circuit breaker at 2500 s.The initial
active power P0 and reactive power Q0 of the generator
are set to 8MW and 6Mvar, accordingly.

The test results of the field current overexcitation lim-
iter are presented in Figure 14. After the startup, the gen-
erator field current IFD is stabilised to 2.15 pu, but the out-
put of the FCOEL VFCOEL is continuously at 100. When
the limiter output is activated, the field current is limited
to Ilim = 1.95 pu, and consequently, the VFCOEL reduces.
Further, when the circuit breaker opens, the field current
is limited to INL = 1.07 pu, as desired.

0 400 800 1200 1600 2000 2400 2800 3200 3600

1

2

[p
u]

Time [s]

Generator field current [IFD]

0 400 800 1200 1600 2000 2400 2800 3200 3600

0

100

[-
]

Time [s]

FCOEL output [VFCOEL]

0 400 800 1200 1600 2000 2400 2800 3200 3600

false

true

false

true

Time [s]

SWFCOEL

CB

Figure 14. Field current overexcitation limiter (FCOEL) perfor-
mance

4.2 Stator Current Underexcitation Limiter
(SCUEL)

There is a switch manually added to the output of the
SCUEL to control the output of the limiter (see Figure 8).
The switch’s position is set to change at 1800s to enable
the output of the SCUEL. The initial active power P0 and
reactive power Q0 of the generator are set to 7.5MW and
−4Mvar, respectively, during the SCUEL simulation test.

Besides, the inputs VF and VFB, are set to zero due to a
lack of outputs from the ST7C model.

Initially, the limiter output is not connected to the
AVR and the reactive current IQ in a steady-state around
−0.36 pu, while the underexcitation IQ limit is set to
−0.25 pu at 0.75 pu active power PT . As a result, the
limiter tries to increase the field current by increasing the
output of the limiter towards the maximum limit (see Fig-
ure 15). When the limiter output is connected to the AVR
at 1800s, the limiter gradually decreases the output; hence
the reactive current increases, and it ends up at −0.25 pu,
as expected. The output of the limiter is decreased and
stabilised to a signal value of −99.98.

0 500 1000 1500 2000 2500 3000 3500

0.68

0.72

0.76

[p
u]

Time [s]

Generator active power output [PT]

0 500 1000 1500 2000 2500 3000 3500
-1.0

-0.5

0.0

0.5

1.0

[p
u]

Time [s]

Generator reactive current output [IQ]

0 500 1000 1500 2000 2500 3000 3500
-150

-100

-50

0

50

[-
]

Time [s]

SCUEL output [VSCUEL]

0 500 1000 1500 2000 2500 3000 3500

false

true

Time [s]

SWSCUEL

Figure 15. Performance of stator current underexcitation limiter
(SCUEL)

4.3 Stator Current limiter (SCL)
The simulation test for the SCL is performed in two opera-
tional regions, inside the overexcited and the underexcited
region. Both regions have separate PID controllers to op-
erate under each region. As mentioned in subsection 2.3,
SCL also consists of two types of controllers, reactive cur-
rent and reactive power controllers. And each controller is
also examined under each operational region. The output
of the overexcited and underexcited regions is controlled
by the Boolean input signals SWOEX and SWUEX , respec-
tively, and these are set to “true” at 800 and 1800s. In
order to obtain generator terminal current IT above the
pickup level ISCLlim during the overexcited region, the ini-
tial active power P0 and reactive power Q0 of the generator
are set to 8MW and 8Mvar, accordingly. Whereas during
the underexcited region test, only the initial reactive power
Q0 of the generator is changed to −8Mvar. In addition,
the reactance of the transmission line X is set to zero dur-
ing the simulations.

Figure 16 shows the performance of SCL during the
overexcited region, where the solid lines illustrate reac-
tive power controller performance while the dashed lines
illustrate reactive current controller performance. Both
controllers are simulated with similar parameters, except
that each controller’s proportional and integral gain are

Developing Protective Limiters for a Hydro Power Controller in Modelica

624 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181617

0 500 1000 1500 2000 2500 3000 3500
0.9

1.0

1.1

[p
u]

Time [s]

Generator terminal current [IT] Generator terminal current [IT]

0 500 1000 1500 2000 2500 3000 3500
-1.0

-0.5

0.0

0.5

1.0

[p
u]

Time [s]

Generator terminal reactive current [IQ] Generator terminal active current [IP] Generator terminal reactive current [IQ] Generator terminal active current [IP]

0 500 1000 1500 2000 2500 3000 3500
-0.3

-0.2

-0.1

0.0

0.1

Time [s]

SCL output [VSCL] SCL output [VSCL]

0 500 1000 1500 2000 2500 3000 3500

false

true

false

true

Time [s]

SWSCLoex

SWSCLuex

[-
]

Figure 16. Test setup for stator current limiter (SCL) model

tuned separately to secure proper limitations. Note that
the PID controller should be tuned separately for the re-
active power and current controller. The overexcited re-
gion’s output is enabled at 800 s, whereas the underexci-
tation region’s output is enabled at 1800s. The stator cur-
rent limiter output VSCL is reduced immediately after the
overexcitation output is enabled and causes the field cur-
rent to be reduced. As a consequence, the reactive power
or current output of the generator reduces, thereby the gen-
erator terminal current IT to reduced from 1.11 pu towards
the threshold value of 1.05 pu, as anticipated. However,
enabling the output of the underexcitation region does not
cause any reasonable changes. Furthermore, there is a no-
table difference between the performance of the reactive
power and the current controller. As the results show that
the reactive power controller reduces the terminal current
smoothly; thereby, the overshoot that occurs during the
reactive current control is eliminated.

0 500 1000 1500 2000 2500 3000 3500

1

2

[p
u]

Time [s]

Generator terminal current [IT]

0 500 1000 1500 2000 2500 3000 3500
-2

0

2

[p
u]

Time [s]

Generator terminal active current [IP] Generator terminal reactive power [QT]

0 500 1000 1500 2000 2500 3000 3500

0.0

0.4

Time [s]

SCL output [VSCL]

0 500 1000 1500 2000 2500 3000 3500

0.0

0.4

[-
]

Time [s]

SCL underexcitation region output SCL overexcitation region output

0 500 1000 1500 2000 2500 3000 3500

false

true

false

true

Time [s]

SWSCLoex

SWSCLoex

[-
]

Figure 17. Test setup for stator current limiter (SCL) model

The simulation results of the reactive power controller
in SCL during the underexcited condition are illustrated in
Figure 17. The test is performed similarly to the overex-
citation simulations when the Boolean signal SWUEX turns
“true” at 1800s, the output VSCL is increased, and causes

the reactive power to increase into the overexcitation re-
gion. Hence, the SCL overexcitation part takes control of
the reactive power and reduces until the terminal current
reaches within ISCLlim, as desire. There are some oscilla-
tions when the reactive power starts to increase into the
overexcitation region as well as when the reactive power
is reduced into the underexcitation region. The simulation
results of the reactive current controller of SCL during the
underexcited condition are not presented due to the ran-
dom oscillations.

4.4 Volts-per-Hertz (V/Hz) Limiter
There is a ramp logic that is connected to the V/Hz model
that represents actual frequency and a Boolean signal in-
put that controls the output of the limiter (see Figure 13).
At 800s, the Boolean signal turns “true”, so the output
of the V/Hz limiter gets enabled, and then at 1800 s, the
ramp logic reduces the frequency from nominal frequency
50Hz to 45Hz. The generator is initialised with parame-
ters P0 = 8 MW and Q0 = 5Mvar.

Figure 18 illustrates the performance of the V/Hz lim-
iter, where the terminal voltage in the steady-state at
1.086 pu before the set-point changes. When the fre-
quency reduces, the deviation between voltage and fre-
quency will increase above the defined limit; thus, the
limiter’s output signal starts to increase. As a conse-
quence, the voltage starts to decrease nicely and stabilised
at 0.99 pu as expected.

0 500 1000 1500 2000 2500 3000 3500

1.00

1.04

1.08

[p
u]

Time [s]

Generator terminal voltage [VT]

0 500 1000 1500 2000 2500 3000 3500

0.00

0.04

0.08

[-
]

Time [s]

V/Hz limiter output [VVHz]

0 500 1000 1500 2000 2500 3000 3500

false

true

Time [s]

SWVHz

0 500 1000 1500 2000 2500 3000 3500
44

46

48

50

52

Time [s]

Frequency [f]

[H
z]

Figure 18. Performance of volts-per-hertz limiter

5 Discussion
This paper aims to model protective limiters Field current
Overexcitation limiter (FCOEL), Stator current underexci-
tation limiter (SCUEL), Stator current limiter (SCL), and
Volts-per-hertz (V/Hz) limiter in the Modelica modelling
language. Fundamentally, the limiters are modelled based
on IEEE Std 421.5-2016 (IEEE 2016); however, the mod-
els have been modified a bit due to modelling purposes and
complexities. While the excitation system, type ST7C, is
obtained from the OpenIPSL library, and the V/hz limiter

Session 8A: Energy (2)

DOI
10.3384/ecp21181617

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

625

is modelled based on Kundur (Kundur, Balu, and Lauby
1994).

Since the primary focus of this paper is to model the
protective limiters, the test setup modelling is kept simple
as possible to analyse the modelled excitation control sys-
tem’s performance. However, it should be properly mod-
elled in the future for better examination of the model’s
performance.

According to IEEE Std 421.5-2016 (IEEE 2016), the
lead-lag function in FCOEL and SCUEL could be dis-
abled by setting their time constants to zero; however, it
causes errors during the simulations; thus, those time con-
stants are set to constant epsilon to be able to simulate.
Despite this, the simulations failed randomly; this prob-
lem is solved by adding the switches to bypass the control
signal from the PID controller to the output.

A PID controller is implemented in SCUEL and SCL,
even if it is not stated in IEEE Std 421.5-2016 (IEEE
2016), in order to provide the user access to tune the con-
troller’s output properly.

According to IEEE Std 421.5-2016 (IEEE 2016), one
of the FCOEL inputs could be generator field voltage EFD
as described in subsection 2.1, but during the simulations,
using the EFD as an input cause simulation error. The rea-
son could be that in the FCOEL model, the signal Iact ob-
tained from the input and connected to the output, causing
algebraic loop. But the simulation error may be eliminated
by adding a delay in the signal Iact or at the input.

The V/Hz limiter model is fundamentally modelled
based on Kundur (Kundur, Balu, and Lauby 1994) as de-
scribed in Section 2.4; however, simulation results showed
that the model’s behaviour was not desirable. Hence, the
lead-lag function of the limiter was replaced by the PID
controller, and the gains were removed to get a reasonable
behaviour.

The overall behaviour of all the models was reasonable;
be aware that the proportional and the integral gain of the
FCOEL is relatively high, and the reason is not apparent
yet; however, the model works as desire.

There are some oscillations when the reactive power
starts to increase into the overexcitation region as well as
when the reactive power is reduced into the underexcita-
tion region (see Figure 17); the reason could be that the
test grid is not adequately modelled in order to tackle the
high current underexcitation operation. The simulation re-
sults of the reactive current controller of SCL during the
underexcited condition are not presented in subsection 2.3
due to the random oscillations for the same reason as men-
tioned before. The SCL model should be further analysed
in the future with a proper grid model to avoid unwanted
oscillations. Further, by reflecting on the SCL’s simulation
results, the power controller may be the desired controller
since it has the advantage of time delay and deadband, also
work smoothly. However, better and smooth control of the
reactive current controller could be achieved by better tun-
ing of the PID controller.

The FCOEL, SCL, V/Hz limiters models have a switch

at the output to disable the control function. These
switches are used to enable the output during the simu-
lation, which results in a sudden change in the control sig-
nal. This sudden increase in the control signal also im-
pacted for example, field current, active power, or reac-
tive power output. The main reason might be explained
that the PID controller pushed the maximum control sig-
nal to the output, and the output signal does not make any
changes in the system; therefore, when the switches en-
able the outputs, the maximum control signal is applied
instantaneously. One possible way to fix this problem is
by adding a self-reset function for the PID controller to
reset when the output disables.

6 Conclusions
In this paper, the excitation control system’s limiters are
mainly object-oriented modelled in Modelica modelling
language using Dymola software. The models are fun-
damentally modelled with reference to IEEE Std 421.5-
2016 (IEEE 2016) and Kundur (Kundur, Balu, and Lauby
1994).

The limiters Field current overexcitation limiter
(FCOEL), Stator current underexcitation limiter
(SCUEL), Stator current limiter (SCL), and Volts-
per-hertz (V/Hz) limiter were modelled separately from
scratch, except the AVR, obtained from the external
library OpenIPSL. Later, the models mentioned above
were simulated separately and then compared to these
controller’s and limiter’s theoretical behaviour.

In conclusion, all the models performed as desired but
still need proper tuning and further development to en-
hance the performance. For the future it is planned to run
further tests with real power plant data in order to improve
and verify the behaviour of the limiter models.

References
ALSETLab et al. (2018-01). “OpenIPSL: Open-Instance Power

System Library - Update 1.5 to "iTesla Power Systems Li-
brary (iPSL): A Modelica Library for Phasor Time-Domain
Simulations"”. In: SoftwareX 7, pp. 34–36. ISSN: 23527110.
DOI: 10.1016/j.softx.2018.01.002.

IEEE (2016). IEEE Recommended Practice for Excitation Sys-
tem Models for Power System Stability Studies. New York:
IEEE. ISBN: 978-1-5044-0855-4. URL: http : / / ieeexplore .
ieee . org / servlet / opac ? punumber = 7553419 (visited on
2021-04-26).

Kundur, P., Neal J. Balu, and Mark G. Lauby (1994). Power
System Stability and Control. The EPRI Power System En-
gineering Series. New York: McGraw-Hill. 1176 pp. ISBN:
978-0-07-035958-1.

Modelica Association (2017-04-10). Modelica – a Unified
Object-Oriented Language for Systems Modeling. Language
Specification Version 3.4. Linköping: Modelica Associa-
tion. URL: https : / / www . modelica . org / documents /
ModelicaSpec34.pdf.

TMCC (2019). OpenHPL. Version 1.0.0. University of South-
Eastern Norway. URL: https://openhpl.simulati.no.

Developing Protective Limiters for a Hydro Power Controller in Modelica

626 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181617

An Approach for Reducing Gas Turbines Usage by Wind Power
and Energy Storage

Nejm Saadallah1 Yngve Heggelund2

1Norwegian Research Centre, {nsaa,ynhe}@norceresearch.no

Abstract
Offshore oil and gas platforms can accelerate their shift
towards lower greenhouse gases emissions by combining
wind power generation and energy storage systems. How-
ever, the variability of the wind resources and power de-
mand, and the limited storage capacity make the design
of the system particularly challenging. We present a mod-
elica library at its early stage of the development and yet
with promising results. The model will be used to simulate
the dynamics of the whole system for a long period of time
using simplified power components and balanced micro
grid. This paper shares some preliminary results by ap-
plying the model on a dataset of wind resources and power
demand from the North Sea. The results are the power sys-
tem dynamics and an approximation of the mass of green-
house gas emissions. On the long term the model will
be applied to determine the right control and optimiza-
tion strategy to control the energy system towards lower
greenhouse gas emissions without compromising the bal-
ance between the power supply and demand.
Keywords: power systems, modelica, oil platform electri-
fication

1 Introduction
Offshore wind resources in Norway were estimated to be
close to 12000 terawatt hours per year as per 2018 (Bosch,
Staffell, and Hawkes 2018). This great energy poten-
tial combined with the increasing offshore wind turbine’s
power generation offer good opportunities to reduce the
amount of greenhouse gases. Emissions are mainly due
to gas turbines power generation on offshore oil and gas
platforms. Most of today’s oil and gas platforms are pow-
ered using up to three gas turbines. This has shown to
be a reliable solution but comes at the cost of important
amounts of CO2 and NOx emissions (SSB 2020). In addi-
tion, introducing variable energy sources like wind power
without energy buffers, combined with the fact that gas
turbines take a significant time to get started means that
they have to be kept at their idle state (ready to generate
power) for long periods of time. Unfortunately, this leads
to release of greenhouse gas emissions without even pro-
viding power. In this paper we explore the possibility to
offload gas turbines by integrating wind turbines and en-
ergy storage systems. This paper builds on earlier work
on integrating offshore wind farms with nearby oil plat-

forms (He et al. 2010), by adding an energy storage capac-
ity, and dynamical model based on energy balance. The
objective is to provide a simple to configure and fast to
run modelica model (ELOGOW 2021) that can be used to
quantify the reduction of greenhouse gas emissions under
realistic operational conditions over a long period. The
case is given by a dataset for the power demand, and wind
resources (ERA5 2020). The variability of the wind re-
sources and the demand makes it challenging to keep the
system in balance. Part of our approach is to exploit possi-
ble imbalance (deficit, or losses) to qualify a design com-
posed of physical and control sub-systems. On the long
terms, the model can be used to provide decision support
based on the relation between wind resources, power gen-
erated, energy storage capacity, and control strategy to re-
duce greenhouse gas emissions. This model is intended to
be generic in the sense where it does not require detailed
component design.

2 Model

Trigger

ModelControl

Trigger

GTP2

WP

GTP1 GTSP1

GTSP2

Bo

Bi

Demand

Battery Level

Start/Stop GT

wind

CO2

NOx

Cumulative

GTSP1

Demand

Battery Level

CO2 NOx

GTP1

WTP

GTSP2
GTP2

Start/Stop

Bi

Bo

WS

Figure 1. Simulation Overview

2.1 Simualtion Overview
Figure 1 shows the three main blocks used in the simu-
lation. The “Model” block simulates the dynamic of the
micro grid and all the components that are connected to
it. This block will be further explained in the following
sections. The control system strategy relies on the battery
level provided by the “Model” block, and the setpoints to
control the power supply by the gas turbines and the bat-
tery as well as the power for charging and draining the bat-
tery. The “Trigger” block defines two limits: a low limit

DOI
10.3384/ecp21181627

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

627

and a high limit. When the low limit is reached (30 %
battery level in this paper), a signal is emitted to warmup
the gas turbines, and the gas turbines’ power setpoints are
chosen in a way to balance the power demand, plus a sup-
plementary power to recharge the battery. On the other
hand, when the high limit is reached (60 % in this paper),
the gas turbines are turned off, and the battery takes over
the required power supply. Note that we use this approach
for testing the model, and possible improvements will be
discussed later in this paper.

2.2 Physical Components Overview

Power setpoint

NOx CO2
Start/Stop

Pout
Power setpoint

NOxCO2
Start/Stop

Pout

wspeed power

Pout
Wind

SP InletEMPout SP OutletMPin

O
u
tle

t In
le

t

BS

BD

WTS

Demand

GTS1

GTS2

Figure 2. Physical Components Overview

The “Model” block from Figure 1 consists of the power
components shown in Figure 2. The model includes two
gas turbines, a wind power system configurable with zero
or several wind turbines (no wake simulation yet), an en-
ergy storage system analogous to a battery, and a mi-
cro grid for energy balance. The model requires a wind
source, a power demand, and set points to control the gas
turbines and the energy storage system. These compo-
nents are explained in the following sections.

2.3 Wind Source and Power

wspeed power

Pout
Wind

wind

Figure 3. Wind Turbine Model

The wind turbine model in Figure 3 is purely data
driven. It relates wind speed to generated power. This sub-
model also includes a configurable sensor model with the
possibility to introduce errors in both the measured wind
speed and the measured power. In this paper we rely on the

10 MW DTU wind turbine (Bak et al. 2013), and a wind
speed dataset from ERA5 (ERA5 2020). The dynamic of
the wind turbine system is shown in Figure 4 for a period
of 7 days.

Figure 4. Wind Turbine Dynamic

2.4 Storage System

SP Inlet E MPoutSP Outlet MPin

O
u
tl

e
tIn

le
t

Figure 5. Energy Storage Model (Battery)

The storage model acts as a chargeable battery as shown
in Figure 5. The model relates the charging power “SP In-
let” and the discharge power “SP Outlet” to the energy
stored in the battery given as a % of a maximum energy.
The outputs are in the physical domain (power) which will
be connected to a power grid. (see Section Grid). An il-
lustration of the dynamic of the storage system is shown
in Figure 6. The initial charge is set to 30 %. In this illus-
tration, the battery starts supplying power when its level
reaches 60 % (signal to turn off gas turbines) and starts
charging when its level is below 30 % and the gas turbines
have started (signal to turn on the gas turbines).

Figure 6. Illustration of the battery dynamic

An Approach for Reducing Gas Turbines Usage by Wind Power and Energy Storage

628 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181627

2.5 Gas Turbine

Power setpoint

CO2
Start/Stop

NOx

Pout

Figure 7. Gas Turbine Model

The model shown in Figure 7 simulates the dynamic
of a gas turbine in a very simple form compared to more
detailed models such as (Aguilera et al. 2019) and (Pires
et al. 2018) . The model receives two signals a start/stop
signal and a power set point. The generated power in the
physical domain is driven by a configurable startup du-
ration and a ramp up controller. The model also outputs
CO2 and NOx emission rates (kg/s) according to function
relating power to emission curves shown in Figure 8. The
plot shows the rates at which emission gases are released
for two gas turbines operating between 5 and 8 MW being
the operational range used in this paper.

Figure 8. Gas Turbine Emission Curves

2.6 Micro Grid Balance

Demand

GTS2

BS

BD

GTS1WTS

Figure 9. Micro Grid Model

The micro grid model in Figure 9 aims to keep the de-
mand equal to the supply at any time during the simula-
tion. This is achieved by allocating all the power surplus
or deficit to a so-called “Losses” variable. An illustration
of the grid dynamic is shown in Figure 10, with some mi-
nor power deficit at some time intervals (near 83 hours for

example). Note that power deficits and losses are also in-
dicators of the quality of the control system, which in this
case suggests improvement. Nevertheless, the model re-
mains consistent as the energy is kept balanced at the grid
level. From a simulation perspective the power losses and
deficits can be used as indicators for the microgrid stabil-
ity. These could be further exploited to extent the simula-
tion capabilities towards the electrical domain by relating
power disbalance to frequency drop and gain as addressed
in (Zografos, Ghandhari, and Eriksson 2018).

Figure 10. Illustration of the grid dynamic

Session 8A: Energy (2)

DOI
10.3384/ecp21181627

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

629

3 Simulation Cases
We vary the number the of wind turbines between 0 and 4
and plot the power supplied or consumed by each compo-
nent, the oil platform power demand, and the amount of
gas emissions. The parameters used to run the simulations
are summarized in Table 1.

3.1 Parameters

Table 1. Sizes of compiler phases, lines of code.

Parameters Values

Trigger low limit 30 %
Trigger high limit 60 %
Battery max capacity 22 MW
Battery charging rate 1
Battery discharge rate 1
Battery Initial charge 30 %
Wind Turbines count [1...4]
Wind Turbine power File
Gas Turbine max 13 MW
Gas Turbine startup time 15 min
Time step 1s
Number of steps 604,800s (7 days)

Note. Assuming a floating structure of type semisub-
mersible such as the one defined in (Robertson et al. 2014)
and a lithium ion battery system with an energy density of
163 Wh/kg. By allocating 1 % of the semisubmersible
weight for the battery system, we roughly end up with a
maximum energy of 22 MWh.

3.2 Results and Interpretation
The simulation without wind turbine in Figure 11 defines
the base case, showing the situation as it is today. The
whole power generation is provided by two gas turbines
that are run synchronously. The simulation shows that
7 days of operations generate up to 1459 tonnes of CO2
mass, and 1.66 tonnes of NOx. In the scenario with only 1
wind turbine from Figure 12, we can notice that the battery
charges and discharges frequently, because 1 wind turbine
does not deliver sufficient power for the given demand,
ending with 1085.99 tonnes of CO2 and 0.54 tonnes of
NOx. With 2 wind turbines (Figure 13) on the other hand,
we can already see that the battery stays at full charge for a
relatively long periods, and even longer with 3 and 4 wind
turbines (Figure 14 and Figure 15), with even fewer CO2
and NOx releases. However, the energy losses become
important in the scenario with 4 wind turbines suggesting
that the design of the system is oversized. Figure 16 and
Figure 17 summarize the energy contribution from each
component and the emitted masses of CO2 and NOx.

Figure 11. Base case without wind turbines and battery

Figure 12. Simulation with 1 wind turbine

An Approach for Reducing Gas Turbines Usage by Wind Power and Energy Storage

630 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181627

Figure 13. Simulation with 2 wind turbine

Figure 14. Simulation with 3 wind turbine

Figure 15. Simulation with 4 wind turbine

Figure 16. Summary of greenhouse gases emissions for 7 days
simulation

Figure 17. Power contribution for each scenario

Session 8A: Energy (2)

DOI
10.3384/ecp21181627

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

631

4 Conclusions
In conclusion, this paper has presented a simple and yet
useful modelica model (ELOGOW 2021) for wind power
integration with gas turbines and energy storages to reduce
greenhouse emission gases for offshore oil and gas plat-
forms. The paper also presented a possible control strat-
egy to autonomously keep the micro grid in balance. Fur-
thermore, in this model we deliberately avoided detailed
component modeling as a design principle because these
can vary between installation making model reconfigura-
tion challenging and maybe even unpractical. However,
many aspects of the model can be improved on literally
every component presented. Here are some suggestions.

4.1 Gas turbine model
The amount of gas emissions depends on many parame-
ters often unknown or are particular to every installation.
Having good quality datasets on the gas emission would
make it possible to have data driven models with better
predictions. The same argument also holds for the startup
and operational phases of gas turbines.

4.2 Wind Turbines
When more than one wind turbine is involved, their place-
ment becomes important to avoid the wake effect, which
in often cases is inevitable. Improving the wind turbine
model with a wind speed weakening estimation would
provide better estimations of the generated power. A pos-
sible approach would be to apply a fast wind park simula-
tor such as (NREL 2021).

4.3 Energy Storage System
Energy storage systems have different characteristics. In
this paper we model them as energy stored, power re-
leased, and power consumed. Yet, the dynamic of such
systems is expected to be more complex and could eventu-
ally be derived from data (test cases) in combination with
more detailed models such as (Gerl et al. 2014). The opti-
mal size of the storage capacity will also be explored in fu-
ture studies. Limiting factors are the physical size, weight,
and cost of the components.

4.4 Micro Grid
The micro grid should be extended to the electrical do-
main and should be made more realistic for operations by
adding frequency drop and rise as a function of the imbal-
ance between the power supply and demand.

4.5 Demand
We have considered one dataset representing the power
demand of a typical oil platform in the North Sea. How-
ever, the demand can vary in many ways not considered
in this paper. Having different datasets or eventually de-
mand simulating models would improve the quality of the
estimations.

4.6 Optimization
The control strategy presented in this paper should be for-
malized as a multi objective optimization problem. These
objectives could be reduced greenhouse gas emissions,
improved battery life cycle, dynamic triggering limits, im-
proved gas turbines usage, etc.

Acknowledgements
The authors would like to acknowledge Equinor of provid-
ing the datasets and IFE for advice on energy storage sizes.
This work has been performed as part of the project Elec-
trification of Oil and Gas Installation by Offshore Wind
(308838 - KSPKOMPETANSE19) financed by The Re-
search Council of Norway.

References
Aguilera, Miguel et al. (2019-02). “Coalesced Gas Turbine and

Power System Modeling and Simulation using Modelica”. In:
DOI: 10.3384/ecp1815493.

Bak, Christian et al. (2013). The DTU 10-MW Reference Wind
Turbine. Danish Wind Power Research 2013 ; Conference
date: 27-05-2013 Through 28-05-2013.

Bosch, Jonathan, Iain Staffell, and Adam D Hawkes (2018).
“Temporally explicit and spatially resolved global offshore
wind energy potentials”. In: Energy 163, pp. 766–781. ISSN:
0360-5442. DOI: https://doi.org/10.1016/j.energy.2018.08.
153. URL: http://www.sciencedirect.com/science/article/pii/
S036054421831689X.

ELOGOW (2021). https://github.com/NORCE-
Energy/ELOGOW.

ERA5 (2020). www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5.

Gerl, Johannes et al. (2014-03). “A Modelica Based Lithium Ion
Battery Model”. In: DOI: 10.3384/ecp14096335.

He, Wei et al. (2010). “The Potential of Integrating Wind Power
with Offshore Oil and Gas Platforms”. In: Wind Engineering
34 (2), pp. 125–137. DOI: 10.1260/0309- 524X.34.2 .125.
URL: https://doi.org/10.1260/0309-524X.34.2.125.

NREL (2021). https://github.com/NREL/floris.
Pires, Thiago S. et al. (2018-04). “Application of nonlinear mul-

tivariable model predictive control to transient operation of a
gas turbine and NOX emissions reduction”. In: Energy 149.
ISSN: 03605442. DOI: 10.1016/j.energy.2018.02.042.

Robertson, A. et al. (2014-09). “Definition of the Semisub-
mersible Floating System for Phase II of OC4”. In: DOI: 10.
2172/1155123. URL: https://www.osti.gov/biblio/1155123.

SSB (2020-11). https://www.ssb.no/en/natur-og-
miljo/statistikker/klimagassn.

Zografos, Dimitrios, Mehrdad Ghandhari, and Robert Eriksson
(2018-08). “Power system inertia estimation: Utilization of
frequency and voltage response after a disturbance”. In: Elec-
tric Power Systems Research 161. ISSN: 03787796. DOI: 10.
1016/j.epsr.2018.04.008.

An Approach for Reducing Gas Turbines Usage by Wind Power and Energy Storage

632 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181627

Implementation and Validation of the Generic WECC
Photovoltaics and Wind Turbine Generator Models in Modelica

Maria Nuschke1 Sören Lohr1 Adrien Guironnet2 Marianne Saugier2

1Fraunhofer Institute for Energy Economics and Energy System Technology IEE, Power System Stability and
Converter Technology Division, Germany, {maria.nuschke,soeren.lohr}@iee.fraunhofer.de

2Réseau de Transport d’Electricité, France, {adrien.guironnet, marianne.saugier}@rte-france.com

Abstract
This paper presents the open-source implementation in
Modelica of the generic photovoltaics and wind turbine
generator models introduced by the Western Electricity
Coordinating Counsil (WECC) Renewable Energy Mod-
eling Task Force. These dynamic models have been de-
signed to be easily understandable and reusable by adopt-
ing the same decomposition as in the original WECC
reports. It uses as much as possible existing Model-
ica Standard Library blocks and extends common parts
whenever possible. The simulation results obtained with
OpenModelica1 and Dynaωo 2 - an hybrid C++/Modelica
open source suite of simulation tools for power systems
- have been successfully validated against different refer-
ence tools.
Keywords: Power System Modeling, Renewable Energy
Sources, PV Models, Wind Turbine Generator Models,
Open-Source

1 Introduction
Power system stability is challenged by increasing shares
of Inverter-Based Generation (IBG) and systems opera-
tors’ access to models representing the dynamic behav-
ior of IBG realistically is fundamental in order to ensure
a secure and safe network operation. On the other side,
the exact implementation of the actual plant and genera-
tor control is treated as confidential by inverter manufac-
turers. Therefore, several efforts have been conducted in
the past few years to propose generic or standard mod-
els for IBG. The large-scale Photovoltaics (PV) and Wind
Turbine Generator (WTG) models proposed by the West-
ern Electricity Coordinating Council (WECC) Renewable
Energy Modeling Task Force (REMTF) (Ellis and et.al.
2012) are modular open-source models that enable users
to perform stability studies while considering the dynamic
behavior of most large PV farms and WTG installations
realistically and independently from specific vendors.

Since the first definition of the generic WECC PV and
WTG models in 2012, several implementations in com-
mercial software environments have been presented, e.g.
(Gustav Lammert, Luis David Pabon Ospina, et al. 2016)

1https://www.openmodelica.org
2http://www.dynawo.org

and various stability studies have been demonstrating the
dynamic behaviour of these models under different con-
ditions realistically, e.g. (G. Lammert, L. D. Pabon Os-
pina, and al. 2017; Gustav Lammert, Premm, et al. 2017;
Luis David Pabon Ospina et al. 2018; Nuschke et al. 2019;
L. D. Pabon Ospina and T. V. Cutsem 2020; L. D. Pabon
Ospina and T. Cutsem 2020).

Further improvements to the models have also been
applied. For instance, a new voltage sourced interface
(Pourbeik 2018; Ramasubramanian et al. 2017) as an ex-
tension to the conventionally used current source interface
has been proposed to improve the numerical stability of
the simulation in situations with very high shares of IBG.

In the meantime, Modelica has gained a growing inter-
est in the power system community. In addition to already
existing efforts driven by first-hours Modelica enthusiasts
in the Modelica.Electrical.QuasiStationary or PowerSys-
tems libraries, the European projects Pegase and iTesla
have boosted the use of Modelica in the power system
community. They notably contribute to prove the lan-
guage usability for power system modeling (Chieh, Pan-
ciatici, and J.Picard 2011) and affirm its interest for un-
ambiguous models implementation (Vanfretti et al. 2013).
Since these projects end, more and more power sys-
tem stakeholders are using Modelica either for academic
works (Gonzalez-Torres et al. 2019; Mirz et al. 2019; Qin
et al. 2019; Masoom et al. 2020) or industrial use (Casella
et al. 2016; Guironnet, Saugier, et al. 2018; Guironnet,
Rosière, and Bureau 2021). They are attracted by the
flexibility, usability and robustness of the language cou-
pled with the progresses done in Modelica tools for large-
scale simulations (Braun, Casella, and Bachmann 2017;
Henningsson, Olsson, and Vanfretti 2019), and the cre-
ation and availability of generic and easy to adopt libraries
such as the PowerGrids (Bartolini, Casella, and Guironnet
2019) or Dynaωo (Guironnet, Saugier, et al. 2018) ones.

One key aspect favorizing the spread of the Modelica
language in the power system community is undoubtedly
its easiness for the modeling of non conventional com-
ponents and usefulness for stability and design studies of
such components. Indeed, the flexibility and freedom of-
fered in the models development - no constraint on the
interfaces, possibility to mix block and equation-based ap-
proaches, etc. - but also in the test case creation - possi-

DOI
10.3384/ecp21181633

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

633

Q Control

P Control

Current
Limit
Logic

IqcmdIqcmd’

IpcmdIpcmd’

Generator
Model

Network
Solution

Plant Level
V/Q Control

Plant Level
P Control

Vref
Vreg

Qref
Qbranch

Pref
Pbranch
Freq_ref

Freg

Qext

Pref

REPC_A

Pqflag

REEC_B REGC_AVt Vt

Iq

Ip

Drive train

WTGT_A

REEC_A or

Qgen

Figure 1. WECC block diagram PV (black), with additional blocks for WTG (blue), see Ellis and et.al. (2012)

bility to mix different kind of models for example - make
it a good candidate for advanced studies. It is in partic-
ular the case in the field of power-electronics dominated
systems as shown in (Cossart, Rosiere, et al. 2020). The
release of different open-source components, e.g. (Murad,
Gomez, and Vanfretti 2015; Cossart, Saugier, and Guiron-
net 2021), and use cases is one additional point to promote
the use of the Modelica language in this direction.

The contribution of this paper is thus to present an im-
plementation of the generic large-scale WECC PV and
WTG models in Modelica and their validation against ref-
erence tools. To the best of the authors’ knowdlege, it
is the first open-source implementation of these models.
Furthermore, their integration into the Dynaωo suite - the
models are available in the Modelica library of the project
3 - enables to offer a wide variety of test cases in which
these models can be integrated.

The rest of this paper is organized in the following way.
Section 2 is devoted to the WECC PV and WTG models
presentation while Section 3 describes their implementa-
tion. The design choices, the modeling approach and the
implementation of a few selected components are detailed
in this later section. Section 4 demonstrates the excel-
lent level of accuracy obtained with the models by a com-
parison with reference results from a validation tool pro-
vided by EPRI as well as from the standard library object
provided in DIgSILENT/PowerFactory. Finally Section 5
gives the conclusion.

2 Models Presentation
The WECC models and their updates are described in
specific modeling guidelines and publications, e.g. (El-
lis and et.al. 2012; Pourbeik 2018; Ramasubramanian et
al. 2017). For convenience, the description of the most
relevant blocks is given in the sequel.

3https://github.com/dynawo/dynawo/tree/
master/dynawo/sources/Models/Modelica/Dynawo

2.1 Overview
The WECC PV and WTG type 4 (Type 4 is considered as
fully rated converter WTG) models share a common high-
level organization, as depicted in Figure 1 and are divided
in three main control blocks:

• The plant control - called Renewable Energy Plant
Control (REPC) - sets the main control choice for
the whole plant. Voltage or reactive power control
at plant level and frequency-dependent active power
adjustment are part of the plant level. Identical in PV
and WTG models.

• The electrical control - called Renewable Energy
Electrical Control (REEC) - includes local inverter
functionalities such as Fault-Ride Through (FRT)
characteristic with fast reactive current injection, lo-
cal voltage and reactive power control and current
limitation with respect to the priority given to active
or reactive current, respectively. There are two mod-
ule versions available, whereas the REEC_B module
is recommended for the WECC PV models and the
REEC_A module is recommended for WECC WTG.
The REEC_B module is a slightly simplified version
from REEC_A module.

• The generator control - called Renewable Energy
Generator Control (REGC) - is the last part of the
control and interfaces with the grid. It enables to con-
vert the current set-points calculated by the REEC
part into the final currents (or voltages) delivered to
the network. Identical in PV and WTG models.

For the WTG model a drive-train model - called Wind
Turbine Generator Train (WTGT) - can be considered ad-
ditionally in order to represent rotor speed changes and
possibly resulting torsional oscillations after faults or sud-
den wind speed changes. By considering the drive-train
model, the WTG model is equivalent to the WECC WTG

Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in
Modelica

634 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181633

type 4A. By neglecting the drive-drain model, the rotor
speed is considered to be constant at nominal value 1 p.u.
and the WTG model is equivalent to the WECC WTG type
4B. The model types 4A and 4B are sub-types of the fully
rated converter model for wind turbine generators.

2.2 Plant level control (REPC)
The plant level control determines the local inverter set-
points for active power (Pre f) and reactive power (Qext)
as input to the REEC by considering measurements at
Point of Common Coupling (PCC) and user-defined set-
points at plant level.

The active power regulation is shown in Figure 2. Fre-
quency dependent active power adjustment can be acti-
vated by setting the FrqFlag to true and is done by a pro-
portional integer action on an addition of the frequency de-
viation and active power injection deviation. Note that if
the adjustment is deactivated, Pre f will be directly passed
to the REEC.

The reactive power regulation control is displayed in
Figure 3. Reactive power control can be realized with ref-
erence either to reactive power or to voltage amplitude but
is always done with a proportional integer action. The
choice is made with the parameter Re f Flag. Typically,
in voltage control mode, the regulated bus is the point of
common coupling and measurement values are available
from that bus. The regulated bus can also be chosen dif-
ferent from the PCC. Therefore, the parameter V cmpFlag
has to be set to true and the impedance Rc+ jXc specifies
the impedance between the PCC and the desired remotely
controlled bus.

2.3 Electrical control (REEC)
The electrical control is itself divided in two main func-
tions:

• The first part determines from the input set-points
Pre f and Qext the necessary currents to inject in the
network.

• The second part is the current limiter logic that will
potentially limit the current injections through a cer-
tain process, that differs between the PV and WTG
models.

In the P control, the currents direct component ipcmd is
calculated through a first-order structure with limits on P
and its derivative and then on the current value itself. Note
that the variation can be frozen by an external signal, in
case of a voltage dip.

In the Q control, the overall structure is more complex
and handles different kind of control modes. If a local
coordinated V/Q control is activated on top of the plant
control, there are different local proportional-integral ac-
tions applied on the input signal. Otherwise, the control is
similar to the P section with a first-order structure. Both
control loops (with or without local coordinated V/Q con-
trol) can be frozen by an external loop signal, in case of a

voltage dip. Finally, the last part of the control structure -
the upper part - corresponds to an additional current injec-
tion that is activated in FRT situations. All these loops are
visible in Figure 4.

Regarding the current limiter logic, the priority between
active and reactive support is defined through a flag. If the
flag prioritizes the active current injection, the limits are
defined in the following way:

ipmax = imax (1)
ipmin = 0 (2)

iqmax =
√

(imax2− ipcmd2) (3)

iqmin =−iqmax (4)

Vice versa, in case of priority given to reactive current in-
jection, the active current component will be reduced in
favor of reactive current.

The reactive current injection during faults (Fault ride
through capability, FRT) is implemented as a voltage de-
pendent current injection for the PV model. For the WTG
model, the FRT behavior is defined by three potential
states, as depicted in Figure 5, where either no injec-
tion, voltage dependent injection or a constant injection
is made. The parameter T hld decides what happens after
a voltage dip has ended.

2.4 Generator control (REGC)
The generator control REGC_A as per the initial imple-
mentation proposal from WECC (Ellis and et.al. 2012)
calculates the set-points for active and reactive current
considering ramp rate limiters for the currents or active
power. The enhancements introduced in (Pourbeik 2018)
including reference voltage calculation or even current
control and phase-locked-loop are represented in different
sub-modules REGC_B and REGC_c, respectively.Rotor

2.5 Control modes
As already shown in the previous parts, the models offer
several degrees of freedom and enable to activate or de-
activate different kinds of controls by changing the values
of the corresponding flags. Table 1 illustrates this with a
few examples that allow to model different strategies for
voltage or reactive power control.

3 Modelica Implementation
3.1 Design choices
In the context of the WECC models and considering the
models structure presented in the previous section, the im-
plementation in Modelica has been done in the following
way:

• The injector that connects the PV or WTG model to
the network, as well as the voltage drop between the
PCC and the voltage set-point or the current limita-
tions logics are described through equations as spe-
cific sub-components.

Session 8A: Energy (2)

DOI
10.3384/ecp21181633

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

635

femin

femax

Pbranch

Plant_pref

Ddn

Dup

0

0
Freq_ref

fdbd1, fdbd2

-
Kpg +Kig

s

Pmax

Pmin
Freq

1
1 +sTp

1
1 +sTlag

Pref

+

+

+

+

+

FrqFlag

-

0

1

Figure 2. REPC - Active power control according to Ellis and et.al. (2012)

1

Vreg

Vref

Freeze state
if Vreg < Vfrz

Kc

-

Qbranch
emax

emin

Qmax

Qmin

1 +sTft
1 +sTfv

QextRefFlag

dbd

VcmpFlag

|Vreg-(Rc+jXc)Ibranch|

1
1 +sTfltr

1

Qrefp

-

+
+

+

+

Ibranch

0

0

1
1 +sTfltr

Kp+Ki
s

Figure 3. REPC - Reactive power control according to Ellis and et.al. (2012)

Current Limit Logic

Q Priority (Pqflag = 0):
Ipmax = (Imax2-Iqcmd2)1/2, Ipmin = 0
Iqmax = Imax, Iqmin = -Iqmax

P Priority (Pqflag = 1) :
Ipmax = Imax, Ipmin = 0
Iqmax = (Imax2-Ipcmd2)1/2, Iqmin = -Iqmax

Ipcmd
1

1 +sTpord

Pmax & dPmax

Pmin & dPmin

Iqcmd

÷

Iqmax

Iqmin

Iqh1

Iql1

Kqv

dbd1, dbd2

Vref0

Vt -

iqinj

pfaref

×

tan Qmin

Qmax1
1 +sTpPe 1

PfFlag

Qext Qgen

-

Vmax

Vmin Vmin

Vflag Vmax
Iqmax

Kvp+Kvi
s

Iqmin

1
1 +sTrv

Vt_filt

if (Vt<Vdip) or (Vt>Vup)
Voltage_dip = 1

else
Voltage_dip = 0

Current
Limit
Logic

QFlag

-

Vt_filt 0.01

1
1 +sTiq

Vt_filt
0.01

Ipmax

Ipmin=0

Imax

Pqflag

∗Freeze state if Voltage_dip = 1

Pref

+

+

+ +
+

0
1

0

1

0

Kqp+Kqi
s

N

D

N

D

÷

∗
∗

∗

∗

Figure 4. REEC_B - Electrical control according to Ellis and et.al. (2012)

• The other parts of the control are split in a similar
way to the WECC original models, based on their
behavior, and are described through a diagram ap-
proach.

The major parts of the models are thus built by combining
individual and elementary blocks in a very similar way to
the original WECC documentation (Ellis and et.al. 2012).

In order to ease the long-term maintenance and to benefit
from the robustness of widely used components, the Mod-
elica Standard Library has been used as much as possible
in the models.

Complementary blocks have been developed to handle
specificities of the WECC models, such as the possibil-
ity to freeze the block actions with an external order sig-

Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in
Modelica

636 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181633

Table 1. Control functionalities with plant level control and electrical control in service Ellis and et.al. (2012)

No. Control mode PFFlag VFlag QFlag RefFlag

1 Plant level Q control 0 N/A 0 0
2 Plant level V control 0 N/A 0 1
3 Plant level Q control with local coordinated V/Q control 0 1 1 0
4 Plant level V control with local coordinated V/Q control 0 1 1 1

0

2 1

Iqinj = 0

Iqinj = Iqfrz

Iqinj = Iqv

If Voltage_dip = 1After ThId seconds, go to
State 0

If Voltage_dip = 0

If ThId > 0 & Voltage_dip = 0;
stay in State 1 for ThId

seconds
If ThId < 0 & Voltage_dip = 0;

go to State 2

Figure 5. FRT behavior for the WECC WTG model according
to Ellis and et.al. (2012)

nal. These additional blocks have been kept as generic as
possible to facilitate their reuse through the whole models
implementations.

3.2 Architecture
PV and WTG models have a very common structure, com-
posed of identical REPC and REGC controls. Only part
of the REEC control is different between the two generic
models, and WTG model also has one additional structure
to represent the drive-train behavior.

To minimize the number of models developed and reuse
as much as possible common parts, the REPC and REGC
controls have been developed only once. A common ba-
sis has also been defined for the REEC control, enabling
to extend it to build the two final REEC control blocks
REEC_B and REEC_A for PV and WTG models, respec-
tively. It is worth mentioning that a large part of the block
is implemented in the common basis. The same approach
has been used for two possible implementations of the
WTGT block.

Finally, the complete PV or WTG models are obtained
by combining the different parts of the control with an in-
jector providing the currents to the network. With such an
architecture, modifying one part of the model or adding a
new block is very easy and straightforward; it can be done
without any modifications on the other parts.

3.3 Illustration
Figure 6 depicts the overall composite model, the simi-
larity to Figure 1 is obvious. Further, detailed Modelica
implementations of some WECC model blocks are given.

termin…

PRefPu

QRefPu

OmegaRefPu

C
u
R
e
g
P
u

C
i
R
e
g
P
u
_
S
n
R
e
f

P
R
e
g
P
u
_
S
n
R
e
f

Q
R
e
g
P
u
_
S
n
R
e
f

Plant
Ctrl

CC

Elec
 Ctrl

Injector
Gen

 Ctrl

OmegaRef

k=1P
L
L

C

Figure 6. Block diagram of the WECC Large-scale PV model
in Modelica, see Figure 1 for comparison.

3.3.1 Plant level control (REPC)
Figure 7 shows the implementation in Modelica of the
REPC control: only the three blocks in blue have been
specifically implemented for this control and are not part
of the Modelica Standard Library. They represent the cal-
culation of the voltage drop for the voltage control at a
remote bus, the activation or deactivation of the freeze
feature in case of voltage dip or increase and a modified
implementation of a PID block to take into account the
integrator state freeze.

The voltage drop calculation for voltage control at a re-
mote busbar, is for example a short block containing the
following equations:

uLineDrop = uPu + iPu * Complex(Rc,Xc);
UPuLineDrop = ComplexMath.’abs’(uLineDrop);

3.3.2 Electrical control (REEC)
Figure 8 depicts the Modelica implementation for the
REEC of the WTG model. The parts surrounded in green
are the ones specific for the WTG model while the others
are inherited from the common control defined for both
the PV and WTG models. A large part of the control is
thus implemented only once in the base model.

The FRT logic shown in Figure 5 has been implemented
using an algorithm approach enabling to handle the differ-
ent transitions between states.
algorithm

when Voltage_dip == true then
Vdip_start := true;
Vdip_inj_endTime := -1;

end when;
// Vdip has ended, set timing and reset Vdip

detection variable
when Voltage_dip == false and Vdip_start ==

true then

Session 8A: Energy (2)

DOI
10.3384/ecp21181633

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

637

PRefPu_PC

QRefPu_PC

OmegaRefPu_PC

P
R
e
g
P
u

Q
R
e
g
P
uC

u
R
e
g
P
uC

i
R
e
g
P
u

O
m
e
g
a
P
u

PRefPu_EC

Q_VRefPu_EC

FreqFlagSwi…FreqFlag_co…

FreqFlag

Pref_lag

P…

T=Tlag s

Zero

k=0

Pref_Lim

uMax=feMax

PID_P

PI

PCtrlErr

+1

-1

+1

+Pbranch_Filt

P…

T=Tp s

QVErr_Lim

uMax=eMax

QVext_LeadL…

b(s)

a(s)

Zero1

k=0

RefFlag_con…

RefFlag

RefFlagSwit… QVext_dbd

uMax=dbd

Qbranch_Filt

P…

T=Tfltr s

QCtrlErr

+

-1

+1

UCtrlErr

+

+1

-1

Ubranch_Filt

P…

T=Tfltr s

V-Zi

C
VCompFlagSw…

VCompFlag_c…

VcompFlag
QVCtrlErr

+

+1

+1

k=Kc

GainKc

wCtrlErr

+

+1

-1

Frq_dbd

uMax=fdbd2

dPfreq

+

+1

+1

k=Ddn

dPfreq_down

k=Dup

dPfreq_up

dPfreq_down…

uMax=0

dPfreq_up_l…

uMax=999

const

k=P0Pu

Voltage
dip

uRefPu

k=URefPu

PID_Q

PI

Figure 7. REPC - Park level control in Modelica, see Figures 2 and 3 for comparison.

omegaG

UPu

Q_VRefPu_EC

PRefPu_EC

QInjPu

PInjPu

FRTon

idCmdPu

iqCmdPu

Qflag…

QFlag

Vflag…

VFlag

Pffla…

PfFlag

Vcmd_…

uMax=…

Iqcmd
u…

UPu_f…

…
T=Trv…

Vref0…

k=if …

Verr_…

+
+1

-1

Verr_…

uMax=… k=Kqv

Iq_FRT Iq_FR…

uMax=…

Iqcmd…

+
+1

+1

Vflag…

PextP…

…
T=Tp sPfaref

k=Mat…

Pext_…
Pffla… Q_lim

uMax=…
Qflag…

Idcmd
u…

PID_V

…

Vo…

PID_VQ

…

Iqcmd…

Idcmd…

Iqcmd…

…
T=Tiq…

Pflag…

PFlag

Vref…

k=Vr…

PRoto…

Pflag…

Vref1…

+
+1

+1 Cu…

R
e
…

I
…

Pcmd_…

Pcmd_…

…
T=Tpo…

PcmdF…

uMax=…

Ipmax…

Iqmax…

1

2

3

4

Figure 8. REEC - Electrical control in Modelica, green boxes highlight the specific blocks for the WECC WTG models: 1 -
consideration of variable generator speed, 2 - additional voltage reference, 3 - extended FRT logic, 4 - extended current limitation
logic, see Figure 4 for comparison.

Vdip_start := false;
Vdip_inj_endTime := time + abs(Thld);

end when;
// End time reached, reset.
when time >= Vdip_inj_endTime and

Vdip_inj_endTime >= 0 then
Vdip_inj_endTime := -1;

end when;

The current limit logic implementation for the WTG

REEC model, that takes into account the existence of a
voltage dip or not, is presented below. It is a mix between
an algorithm part to detect the voltage dip and an if clause
to choose the correct minimum and maximum values de-
pending on priority given to active or reactive power.

algorithm
when Voltage_dip == true then
Vdip_start := true;

Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in
Modelica

638 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181633

Vdip_frz_endTime := -1;
end when;
when Voltage_dip == false and Vdip_start ==

true then
Vdip_start := false;
Vdip_frz_endTime := time + abs(Thld2);
Ipmax_frz := Ipmax;

end when;
when time >= Vdip_frz_endTime and

Vdip_frz_endTime >= 0 then
Vdip_frz_endTime := -1;
Ipmax_frz := 0;

end when;
equation
if PqFlag then
// P priority
if time <= Vdip_frz_endTime and

Vdip_frz_endTime >= 0 then
Ipmax = Ipmax_frz;

else
Ipmax = min(Ip_vdl, Imax);

end if;
Ipmin = 0;
Iqmax = min(Iq_vdl, sqrt(Imax ^ 2 - min(

Ip_lim,Ip_vdl) ^ 2));
Iqmin = -Iqmax;

else
// Q priority
if time <= Vdip_frz_endTime and

Vdip_frz_endTime >= 0 then
Ipmax = Ipmax_frz;

else
Ipmax = min(Ip_vdl, sqrt(Imax ^ 2 - min(

Iq_lim,Iq_vdl) ^ 2));
end if;
Ipmin = 0;
Iqmax = min(Iq_vdl, Imax);
Iqmin = -Iqmax;

end if;

3.3.3 Wind generator turbine drive-train (WTGT)

The drive train model is a simplified model for the purpose
of emulating the behavior of torsional mode oscillations.
The shaft damping coefficient (Dsha f t) in the drive-train
model is fitted to capture the net damping of the torsional
mode seen in the post fault electrical power response. The
mechanical power Pm is initialized with the initial value of
the electrical power Pe. For this implementation proposal
in Modelica, the block diagram approach has been chosen
in order to follow the original WECC reference implemen-
tation. It is also possible to use either physical Modelica
components or go for an equation-based modeling.

3.3.4 Current injector

In the initial model proposed by the WECC, the inter-
face to the network is a current source, therefore a current
injector element has been implemented in Modelica. It
means that the REGC control calculates the d-axis and q-
axis currents that are then converted to the actual currents
injected to the network by a current injector using the Park
transformation:

terminal.i.re = -(cos(UPhase) * idPu - sin(
UPhase) * iqPu) * (SNom/SystemBase.SnRef);

terminal.i.im = -(sin(UPhase) * idPu + cos(
UPhase) * iqPu) * (SNom/SystemBase.SnRef);

Pe

omegaRefPu

omegaGenerator

omegaTurbine

OmegaGenerator

+

+1

+1

OmegaTurbine

+

+1

+1

TorqueE

u1 / u2

TorqueM

u1 / u2

dPhi

I

k=1 1

dOmegaTurbine

I

k=1 / (2 * Ht) 1

dOmegaGenerator

I

k=1 / (2 * Hg) 1

OmegaDiff

+

+1

-1

dTorqueE

+1

-1

+1

+

dTorqueM

-1

+1

-1

+

k=Dshaft

Damping

k=Kshaft

dTorque

P
m
e
c
h

P
T
1

T
=
T
p

s

Figure 9. WTGT - Drive train model in Modelica

3.3.5 Voltage injector

Another interface based on directly imposing the voltage
at the PCC has been introduced by the WECC, notably for
higher numerical stability with very high shares of IBG.
In this case, an additional block is added to convert the
d-axis and q-axis currents into inner real and imaginary
voltage set-points that are then imposed to the network by
a simple voltage injector, that sets the real and imaginary
terminal voltages directly, see Figure 10.

C
uPu

idPu

iqPu

urSource

uiSource

calc
Uref

ab2dq

C

dq2ab

UdCmd_Filt

PT1

T=Te s

UqCmd_Filt

PT1

T=Te s

PLL
C

OmegaRefPu

k=1

Figure 10. Voltage source reference in Modelica

The calculation of the reference voltage in the dq-
reference frame is implemented with the following equa-
tions using the inverter impedance R+ jX :

ud_ref = ud + id_ref * R - iq_ref * X;
uq_ref = uq + iq_ref * R + id_ref * X;

4 Validation
The models were validated by using the "Renewable En-
ergy Model Validation Tool" (REMVT), written by EPRI,
and additionally against a standard library implementation
in DIgSILENT PowerFactory 2019, SP3. Notice that the
REMVT itself was validated against real measurements.

The following sections briefly describe the test sys-
tem used and then present the validation results by com-
paring simulation results from OpenModelica Connection
Editor (OMEdit v1.13.2) with the results obtained from
REMVT (Version 2.1) and the from DIgSILENT Pow-
erFactory 2019 using the standard library object of the

Session 8A: Energy (2)

DOI
10.3384/ecp21181633

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

639

WECC PV model (DIgSILENT/PowerFactory 2019).

4.1 Test case
The following single line diagram shows the considered
test system consisting of the IBG model, a step-up trans-
former, equivalent park lines and the grid-connection
transformer (substation) connected to an infinite bus or ex-
ternal grid. The HV side of the substation (bus 4) is con-
sidered as PCC. The plant level control regulates active
power, reactive power/voltage at PCC. For unambiguous
voltage control at plant level, the PCC and the infinite bus
must be separate buses.

IBG
model

41 2 3

0,69 kV 20 kV 20 kV 110 kV

Figure 11. Single line diagram of the test system

Parameters for the equipment have been set according to
Table 2. The conversion ratio for the transformers is set to
one. Per unit base is SnRe f =100 MVA.

Table 2. Test system parameters for validation

Component Parameter Value in p.u.

R 0.000100
Step-up transformer, X 0.049999
20 kV pu Base B -0.004999

G 0.000110

R 0
Line X 0.000025
20 kV pu Base B 0

G 0

R 0.000550
Substation transformer, X 0.099999
20 kV pu Base B -0.004999

G 0.000020

The test scenario consists of a voltage dip of 50 % at
t =1..2 s and a frequency step up to 1.01 p.u. at t =6..9 s
at the infinite bus.

4.2 Validation results - PV model
This section exemplarily presents validation results from
the WECC PV model with the conventional current
sourced interface against the EPRI tool REMVT or the ref-
erence implementation in DIgSILENT/PowerFactory, re-
spectively.

Figure 13 displays the validation results for control
mode Nr. 1, (refering to table 1) plant level reactive power
control. Simulation begins in steady state condition ac-
cording to the given set-points. With the voltage dip at
t =1..2 s, reactive power increases due to fast reactive cur-
rent injection from FRT mode, at the same time the active

0 2 4 6 8 10 12
0.4

0.6

0.8

1

Vo
lta

ge
in

p.
u.

0 2 4 6 8 10 12
0.99

1

1.01

1.02

Fr
eq

ue
nc

y
in

p.
u.

Time in s

Figure 12. Test events: voltage magnitude and frequency at
infinite bus terminal.

power is reduced due to the current limitation and prior-
ity given to reactive current. After voltage recovery, ac-
tive and reactive power are controlled to reach the initially
given set-points again.

At t =6 s the active power is reduced due to the increase
in frequency with respect to the given droop Ddn=20 p.u.
(pu base SNom/fNom) per frequency deviation in perunit.
As the frequency at infinite bus changes back to the nom-
inal value, active power reaches the set-point as per the
initially given value.

The results from REMVT and Modelica fit very well.

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

A
ct

iv
e

po
w

er
in

p.
u. Modelica

REMVT

0 2 4 6 8 10 12
- 0.5

0

0.5

1

Time in s

R
ea

ct
iv

e
po

w
er

in
p.

u. Modelica
REMVT

Figure 13. Simulation results PV model: active and reactive
power in response to test events with control mode Nr. 1

Figure 14 displays the validation results for control mode
Nr. 4, plant level voltage control with local coordinated
V/Q control. The active power behavior is not affected
by changing the control mode from Nr. 1 to Nr. 4 and the
results from REMVT and Modelica are a good fit.

Reactive power behaves similar during the voltage dip
because of the still active fast reactive current injection.

Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in
Modelica

640 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181633

After voltage recovery, the reactive power settles slowly
at a new steady state value according to the output of
the plant level reactive power/voltage controller. The new
steady state value is higher than the initial one because of
the voltage dip: in order to support voltage, reactive power
injection was increased by the plant level controller. Re-
sults from Modelica and REMVT are very well matching.

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

A
ct

iv
e

po
w

er
in

p.
u. Modelica

REMVT

0 2 4 6 8 10 12
0

0.5

1

1.5

Time in s

R
ea

ct
iv

e
po

w
er

in
p.

u. Modelica
REMVT

Figure 14. Simulation results PV model: active and reactive
power in response to test events with control mode Nr. 4

As also the voltage source interface introduced in
(Pourbeik 2018) has been implemented in Modelica, sim-
ulation results obtained from OpenModelica have been
compared to the reference simulation tools as well.

Currently, the REMVT version does not contain a volt-
age source network interface. Therefore, if comparing
the simulation results of the voltage source interfaced PV
model obtained from OpenModelica against the results
from REMVT with standard current source interface, the
transient results are deviating, but steady state results fit
very well. For validation against the reference implemen-
tation in PowerFactory, the voltage source interface was
available and has therefore been used for validation.

Figure 15 shows exemplarily the validation results from
OpenModelica against the reference implementation in
PowerFactory for control mode Nr. 1, while the models
in both simulation environments make use of the voltage
source network interface. The results from both simula-
tions environments match perfectly.

4.3 Validation results - WTG 4A model
Since the PV and WTG models share large portions of the
control structure, the general behaviour of the WTG model
without consideration of torsional oscillations (WTG 4B
model) and the PV model is similar, therefore only vali-
dation results for the WTG 4A model including the drive
train representation are presented. Figure 16 shows the
validation results for control mode Nr. 4. The results from
the Modelica implementation and the validation tool are
exactly matching. Also the torsional oscillations in active

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

A
ct

iv
e

po
w

er
in

p.
u.

PowerFactory
Modelica

0 2 4 6 8 10 12
- 2

- 1

0

1

2

R
ea

ct
iv

e
po

w
er

in
p.

u.

Time in s

Figure 15. Simulation results PV model: active and reactive
power in response to test events with control mode Nr. 1, Voltage
source interface

power can be observed.

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

A
ct

iv
e

po
w

er
in

p.
u. Modelica

REMVT

0 2 4 6 8 10 12
0

0.5

1

1.5

Time in s

R
ea

ct
iv

e
po

w
er

in
p.

u. Modelica
REMVT

Figure 16. Simulation results WTG 4A model: Active and re-
active power response with control mode Nr. 4.

5 Conclusion
This paper has presented an open-source implementation
of the generic WECC PV and WTG models and their val-
idation against both a validation tool provided by EPRI
and an standard library implementation in DIgSILEN-
T/PowerFactory. It demonstrates that the implementation
in Modelica of such models is straightforward, easy to un-
derstand and to modify thanks to the native properties of
the language (declarative and high-level language) and en-
ables to achieve similar accuracy compared to traditional
power system simulation tools. It also confirms that Mod-
elica is an appropriate candidate for power system model-
ing and that its flexibility is a key feature for easy model-
ing of power-electronics dominated grids.

Session 8A: Energy (2)

DOI
10.3384/ecp21181633

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

641

In the future, the authors plan to continue their work to
both develop open-source Modelica models for standard
and advanced power system components and make avail-
able standard test cases in order to encourage Modelica
use in the power system community. Such an evolution
will definitely facilitate technical discussions between all
the power system stakeholders, from academics to indus-
trials, and paves the way for a better and more coordinated
handling of the numerous challenges arising in power sys-
tem.

References
Bartolini, A., F. Casella, and A. Guironnet (2019-02). “Towards

Pan-European Power Grid Modelling in Modelica: Design
Principles and a Prototype for a Reference Power System
Library”. In: Proceedings of the 13th International Mod-
elica Conference, Regensburg, Germany, March 4–6, 2019.
Linköing University Electronic Press.

Braun, W., F. Casella, and B. Bachmann (2017-05). “Solv-
ing large-scale Modelica models: new approaches and ex-
perimental results using OpenModelica”. In: Proc. 12th In-
ternational Modelica Conference. Prague, Czech Republic,
pp. 557–563.

Casella, F. et al. (2016-10). “Object-Oriented Modelling and
Simulation of Large-Scale Electrical Power Systems using
Modelica: a First Feasibility Study”. In: Proceedings of the
42nd Annual Conference of the IEEE Industrial Electronics
Society IECON 2016. IEEE. Firenze, Italy: IEEE.

Chieh, A., P. Panciatici, and J.Picard (2011-06). “Power system
modeling in Modelica for time-domain simulation”. In: Proc.
PowerTech. IEEE.

Cossart, Q., F. Rosiere, et al. (2020-10). “An Open-Source Im-
plementation of Grid-Forming Converters Using Modelica”.
In: 2020 IEEE PES Innovative Smart Grid Technologies Eu-
rope (ISGT-Europe). IEEE.

Cossart, Q., M. Saugier, and A. Guironnet (2021). An Open-
Source Average HVDC Model for Stability Studies. Paper ac-
cepted for the 2021 IEEE PowerTech conference.

DIgSILENT/PowerFactory (2019). Template Documentation
WECC PV Power Plant Models (PV Models), Revision 1.
Tech. rep. DIgSILENT GmbH.

Ellis, E. and P. Pourbeik et.al. (2012). Generic Solar Pho-
tovoltaic System Dynamic Simulation Model Specification.
Tech. rep. Western Electricity Coordinating Council (WECC)
Renewable Energy Modeling Task Force.

Gonzalez-Torres, J.C. et al. (2019). “Power system stability en-
hancement via VSC-HVDC control using remote signals: ap-
plication on the Nordic 44-bus test system”. In: 15th IET In-
ternational Conference on AC and DC Power Transmission
(ACDC 2019). Institution of Engineering and Technology.

Guironnet, A., F. Rosière, and G. Bureau (2021). Dynaωo : A
Suite of Power System Simulation Tools using Modelica and
the OpenModelica Compiler. Presentation done at the 2021
OpenModelica virtual Workshop. URL: https://openmodelica.
org/events/openmodelica-workshop/openmodelica-program-
2021.

Guironnet, A., M. Saugier, et al. (2018-10). “Towards an Open-
Source Solution using Modelica for Time-Domain Simula-
tion of Power Systems”. In: 2018 IEEE PES Innovative Smart
Grid Technologies Conference Europe (ISGT-Europe). IEEE.

Henningsson, E., H. Olsson, and L. Vanfretti (2019-02). “DAE
Solvers for Large-Scale Hybrid Models”. In: Proceedings
of the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019. Linköing University Electronic
Press.

Lammert, G., L. D. Pabon Ospina, and et al. (2017). “Impact
of fault ride-through and dynamic reactive power support
of photovoltaic systems on short-term voltage stability”. In:
IEEE Manchester PowerTech, Manchester. IEEE.

Lammert, Gustav, Luis David Pabon Ospina, et al. (2016-07).
“Implementation and validation of WECC generic photo-
voltaic system models in DIgSILENT PowerFactory”. In:
2016 IEEE Power and Energy Society General Meeting
(PESGM), Boston, MA, USA. IEEE. DOI: 10.1109/PESGM.
2016.7741608.

Lammert, Gustav, Daniel Premm, et al. (2017-03). “Control of
Photovoltaic Systems for Enhanced Short-Term Voltage Sta-
bility and Recovery”. In: IEEE Transactions on Energy Con-
version 34, pp. 243–254. DOI: 10.1109/TEC.2018.2875303.

Masoom, A. et al. (2020-12). “Simulation of electromagnetic
transients with Modelica, accuracy and performance assess-
ment for transmission line models”. In: Electric Power Sys-
tems Research 189, p. 106799.

Mirz, M. et al. (2019-07). “DPsim—A dynamic phasor real-time
simulator for power systems”. In: SoftwareX 10, p. 100253.

Murad, M.A.A., F. J. Gomez, and L. Vanfretti (2015-06).
“Equation-based modeling of FACTS using Modelica”. In:
2015 IEEE Eindhoven PowerTech. IEEE.

Nuschke, M. et al. (2019-09). “Power system stability analysis
for system-split situations with increasing shares of inverter
based generation”. In: NEIS conference Hamburg. IEEE.

Pabon Ospina, L. D. and T. Van Cutsem (2020). “Emergency
support of transmission voltages by active distribution net-
works: a non-intrusive scheme”. In: IEEE Transactions on
Power Systems. DOI: 10.1109/TPWRS.2020.3027949.

Pabon Ospina, L. D. and T.Van Cutsem (2020). “Power factor
improvement by active distribution networks during voltage
emergency situations”. In: Elsevier Electric Power Systems
Research Journal 189.

Pabon Ospina, Luis David et al. (2018). “Impact of Plant-Level
Voltage Control of Large-Scale Inverter Based Generators on
Long-Term Voltage Stability”. In: Power Systems Compu-
tation Conference (PSCC), Dublin. IEEE. DOI: 10 . 23919 /
PSCC.2018.8442740.

Pourbeik, P. (2018). Proposal for new features for the renewable
energy system generic models, 07/23/18, latest revised 3/5/19.
Tech. rep.

Qin, Y. et al. (2019-08). “A JModelica.org Library for Power
Grid Dynamic Simulation with Wind Turbine Control”.
In: 2019 IEEE Power & Energy Society General Meeting
(PESGM). IEEE.

Ramasubramanian, D. et al. (2017). “Converter Model for Rep-
resenting Converter Interfaced Generation in Large Scale
Grid Simulations”. In: IEEE Transactions on Power Systems
32.

Vanfretti, L. et al. (2013). “Unambiguous power system dy-
namic modeling and simulation using modelica tools”. In:
2013 IEEE Power & Energy Society General Meeting. IEEE.

Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in
Modelica

642 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181633

Modeling of Recompression Brayton Cycle And CSP Plant

Architectures for Estimation of Performance & Efficiency

Ashok Kumar Ravi1 Stéphane Velut2 Raja Vignesh Srinivasan3
1Modelon Engineering Private Limited, India, ashokkumar.ravi@modelon.com

2Modelon AB, Sweden, stephane.velut@modelon.com
3Modelon Engineering Private Limited, India, rajavignesh.srinivasan@modelon.com

Abstract
As the world is moving towards renewable energy

sources for sustainable energy, concentrated solar

power (CSP) systems with thermal energy storage

present significant opportunities for generating

electricity. This paper describes an effort to develop an

analytic platform for Brayton cycle and connect it to

central receiver CSP system to form a complete

system. Already analytical model for central receiver

CSP system with Rankine cycle was already developed

and available with Modelon (Edman, 2015; Windahl,

2015). This paper describes the development of a

supercritical CO2 recompression Brayton cycle based

on the information available in the literature (Dennis,

2017). The effect of change in turbine inlet temperature

on the performance and efficiency of Brayton cycle are

shown. Integration of Brayton cycle with CSP system

is done and the solar power requirement based on

turbine inlet temperatures is studied.

Keywords: CSP, molten salt, Brayton cycle

1 Introduction

Due to the climate challenges arising because of heavy

consumption of fossil fuels, lot of research is

continuously being done on improving the efficiency

of obtaining power through various renewable energy

sources.

Concentrated solar power systems use mirrors to

concentrate the solar energy. This concentrated solar

power is transferred to the Molten salt and with this

thermal energy storage through molten salt provides

opportunity to utilize the energy during day or night as

per power demand. This energy can be used in a steam

generator or for Brayton cycle to generate electricity.

Brayton cycle represents the operation of gas turbine

engine. There is no phase change for the working fluid

and fluid always remains in gaseous phase which is the

reason for choosing supercritical CO2 as the working

fluid. Brayton cycle provides economic advantages

such as smaller system size, increased efficiency, and

environmental advantages such as greenhouse gas

reduction, reduced water consumption etc.

Recompression Brayton cycle which requires

additional compressor and heat exchanger (HX) is

better than normal Brayton cycle due to its increased

efficiency. Advanced control strategies can also lead to

additional benefits by optimizing the heat flow from

external fluid to supercritical CO2, optimal operation of

turbine and compressors under varying operating

conditions. While careful design of the system is

required to fully realize the benefits of Brayton cycle,

there is clearly motivation to pursue given its economic

and environmental benefits.

System modeling with Modelica language has been

widely used for thermal power cycles modeling. With

a powerful and flexible modeling framework and

proven commercial libraries, Modelica language

provides an ideal platform for architectural studies and

controls prototyping for different power cycles. This

paper describes an effort to develop an analytic

platform for Brayton cycle and evaluate its

performance under different operating conditions.

 A baseline model of the system is developed with

Vapor Cycle Library (Modelon AB, 2020). Results

from the simulations are compared with data available

in literature (Dennis, 2017). CSP system with thermal

storage available in Thermal Power Library (Modelon

AB, 2020) is modified such that Rankine cycle or

Brayton cycle can be interchanged as the working

cycle. Simulations are done in similar conditions using

Rankine cycle and Brayton cycle to show the

advantages of modular structure. Eventually this will

help the user in evaluating the CSP system with

Rankine and Brayton cycles and decision making.

2 Brayton Cycle System Model

This section provides an overview of the Brayton cycle

model. The model is based on the prototype of

recompression Brayton cycle developed by National

Energy Technology Laboratory (NETL) (Dennis,

2017). The following sections provide an overview of

the full system model and relevant component

modeling details.

DOI
10.3384/ecp21181643

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

643

2.1 System and Model Overview

Brayton cycle system can be divided into low pressure

and high-pressure sides as that of the Vapor cycle

systems. From turbine outlet to the compressor inlet

can be considered as low-pressure side, and from

compressors outlet to the turbine inlet can be

considered as high-pressure side. Following are the

main components of the system:

• Turbine

• Main compressor

• Bypass compressor

• High temperature recuperator

• Low temperature recuperator

• Primary heater

• Cooler

Two variants of primary heaters are used based on the

study. When integrated with CSP thermal storage

system, counterflow heat exchanger is used with super

critical CO2 and Molten salt (60% NaNO3 40% KNO3)

as the fluids (two phase liquid heat exchanger). During

individual system studies of Brayton cycle heat is

directly provided to supercritical CO2. Two variants of

the system are shown in Figure 3 and Figure 4

respectively. Conditional routing which is possible

with Modelica language is used to pass the fluid

through heat exchanger or volume with heat source

based on requirement. In the first variant, volume with

heat source is switched off and flow is happening

through the heat exchanger (primary heater) only

which is shown in red box in Figure 3. When the heat

exchanger sizing and performance details are available

this variant can be used. In the second variant, heat

exchanger component is switched off and flow is

passing through volume with heat source shown in red

box in Figure 4. When the user has not sized the heat

exchanger and want to calculate the amount of heat

transfer required for the fluid to reach different target

turbine inlet temperatures, this variant is very useful.

High temperature recuperator (HTR) and low

temperature recuperator (LTR) are used for recovering

the heat of the fluid coming out of the turbine. This

increases the thermal efficiency of the system. In HTR,

turbine outlet fluid interacts with the high-pressure

fluid mixture coming out of bypass compressor and the

secondary side of LTR. In LTR, fluid coming out of

the HTR interacts with the fluid coming out of the

main compressor. Fluid coming out of the LTR

primary side is divided and sent through main and

bypass compressors.

Flow through the bypass compressor is set such that

more efficient heat recuperation happens, thereby

higher cycle efficiency is achieved. Before sending the

flow through the first compressor, fluid is cooled down
to 35 0C. In the current model heat is removed directly

using controller such that the inlet temperature at the

main compressor inlet is 35 0C. Fluid inlet conditions

to the bypass compressor are same as that of the exit

conditions of the LTR.

After passing through the compressors and then the

recuperators, high pressure fluid is provided with more

heat such that the required electric power is generated.

2.2 System Characterization

One of the main challenges in building the model of

the Brayton cycle system is the lack of data to

parameterize the components and characterize the

system outside of publicly available data in literature.

This data along with knowledge of similar systems was

used to get a reasonable, first cut system model though

is admittedly imperfect and not desirable for model

accuracy.

 Compressors, turbine, and recuperators are the key

components in the system. Dynamic compressor model

based on look-up tables for isentropic efficiency and

corrected mass flow rate is used for modeling the

compressor. As we have one set of operating condition

for the entire system based on literature (Dennis,

2017), that point is considered as the design point.

Considering this as design point isentropic efficiency

and mass flow rate maps (Figure 1, Figure 2, Figure 5,

Figure 6) are generated which are shown below:

Figure 1. Main compressor mass flow map

Figure 2. Main compressor isentropic eff map

Modeling of Recompression Brayton Cycle And CSP Plant Architectures for Estimation of Performance &
Efficiency

644 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181643

Figure 3. Brayton cycle with Heat exchanger as primary heater

Figure 4. Brayton cycle with direct heat transfer to supercritical CO2

Session 8A: Energy (2)

DOI
10.3384/ecp21181643

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

645

Figure 5. Bypass compressor mass flow map

Figure 6. Bypass compressor isentropic eff map

Turbine model with flow according to Stodola’s law

is used with constant isentropic efficiency of 85 %.

Generic counterflow two phase– two phase heat

exchanger is used for modeling HTR and LTR. This

heat exchanger can handle both single and two-phase

refrigerant. Test benches are created for both the HX’s

and calibrated for the design point available in

literature (Dennis, 2017). HTR test bench is shown

below (Figure 7):

Figure 7. HTC test bench

2.3 Brayton Cycle Control

Sensor signals from relevant components are placed

onto the control bus. A controller component is then

connected to the primary heater and cooler heat

sources. As shown in Figure 8 two PID controllers are

used, one to provide heat to control turbine inlet
temperature and other to control the temperature at the

inlet of main compressor (to cool the fluid before

entering compressor).

Figure 8. Brayton cycle controller

3 Simulation Results

Following the characterization of the system, a series

of simulations were run by varying the turbine inlet

temperature (TIT) in the range of 250 to 750 0C. Cycle

efficiency variation with respect to change in turbine

inlet temperature can be seen in Figure 9.

For turbine inlet temperature of 750 0C, power

consumption of compressors and power generation by

turbine are shown in Figure 10. Also heat transfer

power of HTR, LTR, primary heater and cooler are

shown in the same plot.

Figure 9. Turbine inlet temperature vs Cycle efficiency

Figure 10. Different component powers

Modeling of Recompression Brayton Cycle And CSP Plant Architectures for Estimation of Performance &
Efficiency

646 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181643

Pressure enthalpy diagram for the cycle at 750 0C

turbine inlet temperature is shown in Figure 11. Pink

line indicates the flow through bypass compressor and

mixing with the main compressor outlet flow.

Figure 11. RCB PH diagram

Schematic of the cycle simulation with different

visualizers is shown in Figure 12.

Figure 12. Cycle schematic with results

4 CSP system

As mentioned in the introduction, CSP thermal

storage system model with Rankine cycle is already

available. This model is modified such that working

cycle can be interchanged between Rankine and

Brayton cycles as shown in Figure 13.

Figure 13. CSP system with flexible working cycle

 CSP thermal storage system with Rankine cycle

and Brayton cycle are shown in Figure 14 and Figure 15

respectively. In the CSP system with Brayton cycle,

heat exchanger is used as primary heater for

interchanging heat between Molten salt and

supercritical CO2. As this option to change the routing

through heat exchanger is already available, there is no

requirement of modifying the original cycle.

Figure 14. CSP system with Rankine cycle

Session 8A: Energy (2)

DOI
10.3384/ecp21181643

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

647

Figure 15. CSP system with Brayton cycle

As can be seen from the visualizers, models are run

under similar conditions on the solar plant side. And

we can observe the cycle efficiencies for the Rankine

and Brayton cycles. As the components are not

characterized by the actual maps, the results cannot be

used for comparison. But the idea is to show how

different cycles can be used along with CSP system to

evaluate the performance and efficiency of the system.

5 Summary

This paper describes an effort to develop an analytic

platform for recompression Brayton cycle to evaluate

the performance and efficiency under different

operating conditions. This analytic platform allows

rapid virtual prototyping to evaluate the potential of

recompression Brayton cycle under different operating

conditions and for different system sizing. As expected

with increase in turbine inlet temperature, cycle

efficiency is increasing. It is also shown how the

Brayton cycle can be easily connected to CSP thermal

storage system for evaluating the electric power

generation through solar power. Also modular structure

of Modelica language is taken advantage of to choose

between connecting CSP thermal storage system to

either Rankine or Brayton cycles. This helps in doing

several studies side by side and for comparing the

performances.

Future work on this model includes opportunities for

better system characterization if data on the actual

system can be obtained. In particular, actual

characterization of the compressors, turbine and heat

exchangers would greatly improve model accuracy. In

this work results are shown for steady state

simulations, future work includes dynamic response of

the system under varying boundary conditions. Further

study can also include comparison between the

Ranking cycle and Brayton cycle in case actual system

data is available for both the cycles.

References
Richard Dennis (2017). Overview of Supercritical Carbon

Dioxide Based Power Cycles for Stationary Power

Generation. International Seminar on Organic Rankine

Cycle Power Systems; Politecnico di Milano; Milano Italy

Johan Edman, Johan Windahl (2015). Dynamic Modeling of

a Central Receiver CSP system in Modelica. Proceedings

of the 11th International Modelica Conference, pp. 586-

594

Jim Pasch, Tom Conboy, Darryn Fleming, and Gary Rocahu

(2012). Supercritical CO2 Recompression Brayton Cycle:

Complete Assembly Description. Sandia National

Laboratories Report

Modelon AB, Lund, Sweden. (2020). Vapor Cycle Library

Vapor Cycle Library | Modelica Library Built by Modelon

Modelon AB, Lund, Sweden. (2020). Thermal Power

Library Thermal Power Library | Modelica Library Built

by Modelon

Modeling of Recompression Brayton Cycle And CSP Plant Architectures for Estimation of Performance &
Efficiency

648 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181643

Parallel Fast: An Efficient Coupling Approach for Co-Simulation
with Different Coupling Step Sizes

Franz Holzinger1,2 Klaus Schuch2 Martin Benedikt1 Daniel Watzenig1,3

1VIRTUAL VEHICLE Research GmbH, Austria,
{franz.holzinger,martin.benedikt,daniel.watzenig}@v2c2.at

2AVL List GmbH, Austria, {franz.holzinger,klaus.schuch}@avl.com
3Institute of Automation and Control, Graz University of Technology, Austria, daniel.watzenig@tugraz.at

Abstract
The primary task of co-simulation is the synchroniza-
tion and exchange of data between the subsystems, e.g.,
FMUs, at certain coupling points. If the FMUs have dif-
ferent step sizes, the synchronization of the FMUs is of-
ten at the expense of the simulation duration of the co-
simulation. The presented parallel fast scheduling algo-
rithm is an effective approach to couple FMUs with differ-
ent coupling step sizes. Therefore, synchronization inter-
vals are introduced in which FMUs that finish their cou-
pling step are synchronized. This allows a high perfor-
mance of the coupling in terms of simulation duration.
The higher performance compared to other scheduling al-
gorithms is particularly evident in real-time applications,
i.e., HiL simulations. However, the synchronization in-
tervals are defined via a synchronization step size, which
can be set independently to the coupling step sizes of the
FMUs. This additional step size has a significant impact
on the simulation accuracy. An extrapolation measure is
introduced, which approximates the impact of the syn-
chronization step size on the extrapolation error and thus
on the simulation accuracy. Based on this, an optimization
approach is presented, which derives the optimal synchro-
nization step size to minimize the extrapolation measure.
parallel scheduling, synchronization step size, optimal
step size

1 Introduction
In order to reduce development costs and development
time, the focus in the industry has increasingly been
placed on simulation in the recent decades. This led to
a multitude of simulation environments to solve the en-
gineering tasks in the different domains and applications.
However, the different simulation tools often cover a spe-
cific area. In order to consider interactions across do-
mains, it is necessary to integrate the specific models and
tools into a combined simulation. In contrary to remod-
elling of the several specific models, which is cost or at
least time intensive, co-simulation enables the direct inte-
gration of the individual subsystems and models, whereby
coupling variables are exchanged at certain time steps to
synchronize the subsystems as introduced in Kübler and

Schiehlen (2000). Standardisations in the interface have
reduced the technical effort to integrate subsystems as
FMUs from different simulation environments, for more
details see Blochwitz et al. (2012).

However, besides the technical implementation of the
FMU1 integration and data exchange, there are challenges
in coupling and synchronization of the FMUs. Especially
with non-iterative co-simulation, where coupling steps
cannot be repeated, scheduling approaches, step-sizes and
extrapolation techniques have a major impact on the sim-
ulation accuracy and the simulation duration.

In order to solve the causality problem between inter-
acting FMUs extrapolation of coupling signals is needed.
The most common representative is the ZOH (zero-order-
hold) extrapolation, where the last known value of the
coupling signals is used to determine the upcoming cou-
pling step. The coupling imperfection resulting from the
extrapolation can be handled with particular extrapola-
tion and compensation techniques. For instance, a signal
based extrapolation technique to compensate the energy
losses caused by the coupling is discussed in Benedikt and
Drenth (2019). In Haid et al. (2018) a model-based pre-
dictor corrector approach is introduced and a model-based
pre-step stabilization technique is shown in Genser and
Benedikt (2018).

In addition to the extrapolation techniques, the coupling
step sizes, i.e., the defined time steps of the data exchange
between the FMUs, contribute significantly to the simula-
tion accuracy and the simulation duration. Evaluation and
definition of the coupling step size based on the instan-
taneous frequency of the coupling signals is discussed in
Benedikt, Watzenig, et al. (2013). Coupling error based
adaptive step size approaches are analysed in Busch and
Schweizer (2011) and Sadjina et al. (2016).

Beside them the scheduling influences the simulation
accuracy and the simulation duration of the co-simulation.
The scheduling can be categorized into two major groups:
parallel and sequential coupling. Sequential coupling
means that the FMUs are executed one after the other,
which allows subsequent FMUs to access the results of

1For reasons of better understanding, the term FMU will be used for
models and subsystems from now on. This is not a general restriction,
all considerations are also valid for other model integrations.

DOI
10.3384/ecp21181649

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

649

FMUs that have already been executed. This reduces the
extrapolations of the entire co-simulation and increases
the simulation accuracy, but at the expense of the simu-
lation duration. The simulation results strongly depend on
the execution order of the FMUs. Approaches to identify-
ing suitable execution sequences are discussed in Glumac
and Kovacic (2018), F. Holzinger and Benedikt (2019),
and Oakes et al. (2020).

With parallel coupling, the FMUs are executed simul-
taneously, which typically leads to shorter simulation du-
rations than sequential co-simulation. However, the sim-
ulation accuracy typically decreases due to an increasing
need of extrapolation. Nevertheless, for a performant sim-
ulation in terms of simulation time, e.g., for real-time ap-
plications, parallel coupling approaches are typically pre-
ferred.

However, not only the timing behaviour of the FMUs
themselves defines the overall simulation duration. Es-
pecially if different coupling step sizes are used for the
FMUs, dedicated scheduling algorithms are needed for
the synchronization between the FMUs. These scheduling
algorithms and their underlying synchronization strategy
have an additional effect on the simulation duration and
the simulation accuracy. For instance, Matlab Simulink
uses a superior step size (solver step size) to synchronize
the FMUs. This has the restriction, that the step sizes of
the individual FMUs have to be a multiple of the superior
step size, for more details see Matlab Simulink (2021).
Especially with large differences in the step sizes of the
FMUs, this can lead to unnecessarily increased synchro-
nization efforts in terms of data exchange.

The presented parallel fast coupling approach also uses
a superior step size, the so-called synchronization step
size. However, the synchronization step size can be
defined independently of the coupling step sizes of the
FMUs, which enables a suitable data exchange between
the FMUs. The parallel fast scheduling with the synchro-
nization step size shows a performant simulation despite
to different coupling step sizes. The selection of the syn-
chronization step size has an effect on the data exchange
and thus on the simulation accuracy. In order to achieve an
suitable configuration, an optimization approach to define
the synchronization step size based on an extrapolation as-
sessment of the coupling signals is discussed.

This work is structured as follows: The next chapter in-
troduces the parallel fast scheduling and discusses its ex-
ecution behaviour. In the third chapter the extrapolation
measure is introduced, which approximates the extrapola-
tion error based on the topology and configuration of the
co-simulation. Based on the extrapolation measure an op-
timization approach to identify the optimal synchroniza-
tion step size for the parallel fast scheduling is derived in
chapter four. A co-simulation example with four FMUs
SA, SB, SC, SD is used to illustrate the properties of the
parallel scheduling and the optimization approach. The
topology of the co-simulation example is shown in Fig-
ure 1. The FMUs of the example are based on an ex-

Figure 1. Co-Simulation topology of an example with four
FMUs.

ample in Benedikt and Drenth (2019) and F. Holzinger
and Benedikt (2019). All FMUs refer to FMU for co-
simulation according to the FMI version 2.0. The paral-
lel fast approach is available as a scheduling procedure
in the AVL Co-Simulation platform Model.CONNECTTM

for more information see Model.CONNECT™ (2020).

2 Parallel Fast Scheduling
Parallel scheduling algorithms execute the FMUs simulta-
neously. Due to the parallel execution, these approaches
basically have a high performance in terms of simulation
duration. Which makes them suitable for real-time ap-
plications, where the entire co-simulation must calculate
faster than real-time. If the FMUs have the same coupling
step sizes hi, they have the identical simulation progress
nhi, i.e., simulation time ts,i, after each coupling step n.
With respect to the data exchange, the FMUs have to wait
for each other after a coupling step. Neglecting the time
for data exchange, the simulation duration and thus the
real-time factor of the entire co-simulation is dominated
by the slowest FMU and can be estimated as follows:

D̂ = max{di}, (1)

where di are the real-time factors of the individual
FMUs Si and D̂ is the estimated real-time factor of the
entire co-simulation. A real-time factor D̂ = 1 indicates
that the co-simulation is running in real-time, i.e. the sim-
ulation time ts is equal to the wall clock time tw. If D̂ < 1,
the co-simulation is faster than real time (ts < tw) and if
D̂ > 1, the co-simulation is slower than real time (ts > tw).
However, if different coupling step sizes of the FMUs are
used, the simulation progress and thus the simulation time
ts,i will differ for the individual FMUs Si.

Depending on the coupling strategy the FMUs are syn-
chronized at different time steps. Approaches, like the
latest-first scheduling approach, where the several FMUs
are synchronized after each coupling step, show a signifi-
cant increasing of the simulation duration due to different
coupling step sizes.

However, the presented parallel fast approach avoids
such behaviour by introducing a global step size for syn-
chronization, the so-called synchronization step size H.

Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes

650 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181649

0 1H 2H 3H 4H 5H 6H 7H 8H

SA ts,a1ha 2ha 3ha 4ha 5ha

SB ts,b1hb 2hb 3hb

SC ts,c1hc 2hc 3hc 4hc 5hc 6hc 7hc 8hc 9hc 10hc 11hc

SD ts,d1hd 2hd 3hd 4hd 5hd

Figure 2. Execution sequence of the parallel fast scheduling.

The step size H defines synchronization intervals. If two
or more FMUs end their coupling step within a synchro-
nization interval [ζ H,(ζ + 1)H), data is exchanged be-
tween these systems. In general, this synchronizations
condition for two FMUs Si and S j can be written as fol-
lows:

(n−1)hi < ζ H ≤ nhi < (ζ +1)H (2a)
(m−1)h j < ζ H ≤ mh j < (ζ +1)H, (2b)

where hi and h j represent the coupling step sizes of the
FMUs Si and S j. A synchronization between two FMUs
Si and S j takes place, if both FMUs end their coupling
step nhi and mh j within the same synchronization interval
[ζ H,(ζ + 1)H). In addition to that, it is mandatory, that
the previous coupling step (n−1)hi and (m−1)h j is out-
side of the synchronization interval. This avoids multiple
data exchange within a synchronization interval. How-
ever, the condition in (2) can lead to fewer synchronisa-
tions between the subsystems for small synchronisation
step sizes, if the individual subsystems end their coupling
steps at different synchronisation intervals.

Figure 2 shows the FMU execution and synchroniza-
tion of a co-simulation example with four FMUs SA, SB,
SC and SD. The FMUs have different coupling step sizes
which are assumed with ha = 2s, hb = 3s, hc = 1s and
hd = 2s. The synchronization step size is set to H = 1.4s.
The axes show the simulation progress of the individual
FMUs with their coupling steps illustrated as cycles. The
vertical dashed lines depict the synchronization step sizes.
The synchronization and thus the data exchange between
the FMUs is illustrated with dark grey solid lines. The first
synchronization is in the synchronization interval [H,2H)
at ts = 2s. FMUs SA, SC and SD end at the same time and
exchange their data. The data exchange is done indepen-
dently from the simulation progress of FMU SB. The first
synchronization (and data exchange between) all FMUs
(including FMU SB) occurs in the interval [2H,3H). In
the following interval [3H,4H) only FMU SC finishes its
step. Since no other FMU ends the simulation step in this
interval, there is no synchronization and FMU SC contin-
ues the calculation without data exchange. This strategy
will be continued for the further intervals. Depending on

the coupling step of the FMU, synchronize all FMUs or
only parts of the FMUs with each other.

2.1 Synchronization Interval
The synchronization step size H has a direct impact on
the synchronization and data exchange of the individual
FMUs and thus on their execution behaviour. Figure 3
shows the execution behaviour in terms of the simulation
time ts over the wall-clock time tw of the co-simulation ex-
ample in Figure 1 with the FMUs SA, SB, SC and SD. The
solid lines show the execution of the FMUs with a marker
at the beginning and the end of the coupling step. The

0 2 4 6 8 10 12
0

2

4

6

(a) Equal coupling step sizes

0 2 4 6 8 10 12
0

2

4

6

(b) Different coupling step sizes

Figure 3. Simulation time of the FMUs depending on the wall
clock time with parallel fast scheduling: (a) Equal coupling step
sizes; (b) Different coupling step sizes.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181649

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

651

horizontal (dashed) lines between the markers indicate the
waiting of the FMU due to the synchronization condition
in 2. The synchronization step size is defined as H = 1.5s.
The real-time factor of the FMUs is assumed with da = 2,
db = 0.333, dc = 1 and dd = 0.5, i.e., for instance FMU
SA with a real-time factor da = 2 needs 4s to execute a
coupling step of ha = 2s. In Figure 3 a all FMUs have the
same coupling step sizes ha = hb = hc = hd = 2s. Conse-
quently, all FMUs are synchronized at the same time. The
FMUs start their execution simultaneously. Due to the dif-
ferent real-time factors, the FMUs end their coupling step
at different wall-clock times tw. For instance, FMU SC has
finished the first coupling step at tw = 2s, while FMU SA
ends the first step at tw = 4s. After all FMUs have com-
pleted their coupling step, data is exchanged. Due to the
equal step sizes and thus the equal simulation progress, all
FMUs start their next coupling step again simultaneously.

The simulation time ts over the wall-clock time tw for
different coupling step sizes is shown in Figure 3 b for as-
sumed coupling step sizes ha = 2s, hb = 3s, hc = 1s and
hd = 2s. In the first coupling step all FMUs are executed
in parallel. FMU SC is the only FMU that finishes its first
step in the synchronization interval [0s,1.5s). This means
that no synchronisation is necessary and the FMU imme-
diately executes the next coupling step. The first data ex-
change takes place between the FMUs SA, SC and SD in the
synchronization interval [1.5s,3s). The three FMUs wait
for each other before starting the next coupling step after
the data exchange. Synchronization with FMU SB first oc-
curs in interval [3s,4.5s). All FMUs complete their cou-
pling step within this interval. Data is exchanged between
all FMUs, despite the different simulation progresses. In
the following interval [4.5s,6s), only FMU SC fulfils the
synchronization condition, which leads to no synchroniza-
tion. As a result, FMU SC executes three coupling steps
in a row without exchanging data with the other FMUs.
However, at ts = 6s, i.e., within interval [6s,7.5s), all
FMUs end their coupling step and synchronization is per-
formed.

In both diagrams in Figure 3, the simulation duration or
the wall-clock time tw = 12s for a simulation time ts = 6s.
That means that the slowest FMU, i.e., FMU SA, domi-
nates the simulation duration in both cases. Hence, the
synchronization between the FMUs has no effect on the
simulation duration in the shown example.

However, the synchronization step size H has an im-
pact on the data exchange between the FMUs and thus on
the simulation extrapolation behaviour. Figure 4 shows
the extrapolation error E and the real-time factor D of the
co-simulation example over the synchronization step size
H. Thereby, the extrapolation error E and the real-time
factor D of the entire co-simulation were determined from
several simulation runs with different synchronization step
sizes. The extrapolation error E results from the mean lo-
cal extrapolation error of all inputs of the FMUs, i.e., it is
a measure of the actual extrapolation errors of the entire
co-simulation. To identify the impact of the synchroniza-

tion step size H on the simulation duration and real-time
factor D, it is assumed, that all FMUs have the identical
real-time factor da = db = dc = dd = 1.

0 1 2 3 4 5 6
6

8

10

12

14

1

1.1

1.2

1.3

Figure 4. Real-time factor D and extrapolation error Ê of the
actual co-simulation depending on the synchronization step size
H of the parallel fast scheduling.

For small synchronization step sizes H, the real-time
factor of the entire co-simulation is about D = 1. Af-
ter that, the real-time factor increases to about D = 1.2,
because of the larger synchronization interval, there may
be waiting time between FMUs due to different simula-
tion progress, which increases the simulation time of the
whole co-simulation. With a synchronization step size of
H = 6s, the real-time factor drops again to D = 1 in this
example. The synchronization step size H = 6s corre-
sponds to the common multiple of all coupling step sizes,
i.e., all FMUs end at the same simulation time ts, which
minimize the synchronization time between the FMUs.

The extrapolation error E is almost constant for small
synchronization step sizes H in this example. From a syn-
chronization step size of H = 1s, the extrapolation error
E decreases and afterwards increases almost linearly from
H = 2s. Larger synchronization intervals lead to less data
exchange between FMUs. This typically means larger ex-
trapolation errors and thus a decrease in simulation accu-
racy. The lowest extrapolation error and thus the highest
accuracy is at H = 2s. Due to the synchronization con-
dition in (2) smaller synchronization step sizes H do not
necessarily lead to better results. For small step sizes, the
coupling steps of the FMUs must be finished close to each
other in order to be synchronized.

3 Coupling Assessment
The extrapolation error E and the real-time factor D in
Figure 4 result from the execution behaviour of the paral-
lel fast scheduling. In addition to the synchronization step
size H this depends on the topology of the co-simulation,
the coupling step sizes hi of the individual FMUs and their
timing behaviour di. Based on these parameters, an ex-
trapolation measure Ê is introduced, which is called ex-
trapolation error estimation. In addition to that the real-
time factor D̂ of the parallel fast scheduling for the entire
co-simulation is estimated.

Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes

652 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181649

3.1 Extrapolation Assessment
The scheduling defines the synchronization depending on
the connections between the FMUs, their coupling step
step sizes and the synchronization step size. The synchro-
nization results in the extrapolation behaviour of the cou-
pling signals. In order to derive the extrapolation in the
form of an extrapolation error estimation Ê, synchroniza-
tion of the FMUs must be considered. In this context, the
interactions between the FMUs are essential. These inter-
actions are defined by the coupling signals, i.e., the con-
nection from an output yi of FMU Si to an input u j of
FMU S j. For the entire co-simulation the connections can
be described with the linking matrix:

u = L ·y, (3)

with the vector of all concatenated outputs y =
[y1,y2, . . . ,yN]

T and the vector of all concatenated inputs
u = [u1,u2, . . . ,uN]. Without loss of generality, we assume
that both vectors have the length N, where N represents the
number of connections, i.e., an output can only be con-
nected to one input2. Consequently, the linking matrix L
is an orthogonal matrix with the dimension N ×N. The
connections of the example in Figure 1 can be written us-
ing a linking matrix:

uad
uba
ucb
ucd
udc
uda

=

0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

 ·

yab
yad
ybc
ycd
yda
ydc

 (4)

However, the linking matrix does not contain any infor-
mation regarding the dependencies between the FMUs. In
order to derive the dependency of the FMUs from the link-
ing matrix, which describes the mapping of the inputs to
the outputs, two further matrices S and T are introduced.
The matrix S describes the relation of the outputs yi with
the corresponding FMUs Si and the matrix T describes re-
lation of the inputs u j with the corresponding FMUs S j.
Based on the example, the matrices are as follows:

S =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 and T =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

 . (5)

The two matrices S and T have the dimension N×M,
where M is the number of involved FMUs. In combination
with the linking matrix, the dependency matrix A, i.e., the
dependencies between the FMUs, is

2In case of multiple connected outputs, the outputs can be dupli-
cated.

A =
(
TT ·L ·S

)T
. (6)

The dependency matrix A has the dimension M×M.
For the example in Figure 1, the dependency matrix can
be written as follows:

A =

0 1 0 1
0 0 1 0
0 0 0 1
1 0 1 0

 , (7)

where the individual columns and rows are assigned to
the FMUs SA, SB, SC and SD. The entries in the columns
indicates the inputs to the FMUs and the rows the outputs.
For instance, the first column, i.e., FMU SA, represents
the inputs of FMU SA, which is connected to FMU SD.
The first row describes the two outputs of FMU SA to the
FMU SB and SD.

The dependency matrix A serves as the basis to deter-
mine the extrapolation error estimation Ê. In a parallel
coupling, where all FMUs Si have the same coupling step
sizes hi, all inputs ui are always extrapolated. With respect
to the dependency matrix, the extrapolation error estima-
tion can be stated as

Ê =
M

∑
i=1

M

∑
j=1

Ai j. (8)

With the definition of the dependency matrix in (6) the
extrapolation error estimation Ê corresponds to the num-
ber of extrapolated inputs, which implies the assumption
that all coupling signals have the same influence on the
coupling error and thus on simulation results. Typically,
there are coupling signals that have more influence on sim-
ulation results than others. This can be considered by ex-
tending the dependency matrix A in (6) with a weighting
matrix C as follows:

A =
(
TT ·C ·L ·S

)T
, (9)

where the diagonal matrix C = diag(c1,c2, ...,cn) has
the dimension N ×N. The coefficient ci represents the
weighting of the coupling signals. A high weighting
factor ci shows a big impact of the coupling signal on the
simulation results and a small weighting factor ci indi-
cates a little impact on the simulation results. Different
methods to weight the coupling signals and their impact
on the dependency matrix were discussed by the authors
in F. Holzinger and Benedikt (2019) and F. R. Holzinger,
Benedikt, and Watzenig (2021).

However, if different coupling step sizes are used, the
extrapolation between FMUs and thus the extrapolation
error E changes. Consequently, the extrapolation error es-
timation Ê in (8) is no longer valid, due to the fact that
neither the coupling step sizes nor the scheduling is con-
sidered. The synchronization and thus the extrapolation

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181649

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

653

of the FMUs depends on the simulation progress nhi of
the individual FMUs Si according to the synchronization
condition in (2).

In the case of a synchronization between two FMUs Si

and S j, the synchronization step ∆τ
(syn)
i j of FMU Si is given

by the actual simulation progress nhi and previous simu-
lation progress of the last synchronization ñhi:

∆τ
(syn)
i j = nhi− ñhi, (10)

where ñ indicates the last synchronization between the
FMUs Si and S j. Due to the different coupling step sizes,
synchronization between the FMUs does not take place at
every coupling step nhi. Furthermore, it is not mandatory
that the FMUs have the same simulation progress during
synchronization, they simply have to be in the same syn-
chronization interval. The different simulation progresses
during synchronization have an effect on the extrapola-
tion. If a FMU is more progressed, its results can be used
directly and do not have to be extrapolated by the other
FMUs, i.e., the inputs can be interpolated. The interpo-
lated part results from the simulation progress of the two
coupled FMUs:

∆τ
(int)
i j = mh j−nhi for mh j > nhi. (11)

Considering FMU Si, interpolation applies if the sim-
ulation progress mh j of the coupled system S j is greater
than the simulation progress nhi during the synchroniza-
tion, otherwise the entire synchronization step for FMU Si
must be extrapolated. Therefore, the interpolated part can
be generally written as follows:

∆τ
(int)
i j = max(0,mh j−nhi) (12)

the extrapolated part ∆τ
(ext)
i j of the synchronization re-

sults from the synchronization step in (10) minus the inter-
polated part in (12). The interpolated part cannot be larger
than the synchronization step, which leads to the follow-
ing:

∆τ
(ext)
i j = ∆τ

(syn)
i j −∆τ

(int)
i j

= nhi− ñhi−max(0,mh j−nhi)
(13)

The extrapolated part ∆τ
(ext)
i j in (13) is the time hori-

zon, which is extrapolated within a synchronization step
∆τ

(syn)
i j . However, multiple coupling steps can be executed

within one synchronization step and the number may vary
from synchronization step to synchronization step. For
instance, in the first synchronization step of FMU SC in
Figure 2, two coupling steps are executed, whereby in the
next synchronization step only one coupling step is exe-
cuted. The interpretation of the extrapolation error with
the dependency matrix A in (9) is referred to a single cou-
pling step. Due to lack of additional information about
the coupling behaviour, it is assumed that the extrapola-
tion impact increases linearly with the number of coupling

steps within a synchronization step. That means, if there
are multiple coupling steps within a synchronization step,
the extrapolated part must be scaled by the impact of mul-
tiple coupling steps. For example, three coupling steps are
executed within one synchronization step, i.e., n− ñ = 3.
The first coupling step starts directly after the last synchro-
nization, i.e., the input data has to be extrapolated only
one coupling step size, so there is no scaling for the first
coupling step needed. The second coupling step uses the
same data for the extrapolation. The extrapolation horizon
is two coupling steps in this case. Therefore, the second
input value is scaled with the factor 2. In the third cou-
pling step, the extrapolation horizon is already three cou-
pling steps, i.e., scaling with a factor of three. The scaling
factor fi of the synchronization step can be written for the
number of n− ñ coupling steps as follows:

fi =
1

n− ñ

n−ñi

∑
j=1

j =
n− ñ+1

2
(14)

However, the synchronization time between two FMUs
and so the number of coupling steps can change from one
synchronization step to the other. Therefore, the extrap-
olation must be reassessed for each synchronization. In
order to derive an overall assessment of the extrapolation
behaviour of the coupling signals between two FMUs, it
is not sufficient to consider only one synchronization step.
The synchronization behaviour and thus the extrapolation
behaviour repeats after a certain time. This time corre-
sponds to the least common step size H̄ of the coupling
step sizes hi and h j of the two FMUs and the synchro-
nization step size H. For this time horizon H̄, the mean
extrapolation error estimation Ê can be calculated for a
single coupling signal from FMU Si to FMU S j. This nor-
malised extrapolation error estimation or extrapolation ra-
tio Q(hi,h j,H) describes the impact of the extrapolation
of a coupling signal due to the synchronization step size
H and the coupling step sizes hi and h j and can be written
as:

Q(hi,h j,H) =
1
H̄

H̄/H

∑
ζ=1

H̄/hi

∑
n=1

H̄/h j

∑
m=1

se,ise, j fi∆τ
(exp)
i j , (15)

where fi is the scaling factor regarding the synchro-
nization step in (14), se,i is the synchronization coefficient
for FMU Si and se, j is the synchronization coefficient for
FMU S j given as:

se,i =

{
1 if (n−1)hi < ζ H ≤ nhi < (ζ +1)H
0 otherwise and

(16a)

se, j =

{
1 if (m−1)h j < ζ H ≤ mh j < (ζ +1)H
0 otherwise.

(16b)

Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes

654 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181649

The coefficient se,i = 1 if the condition in (2a) for FMU
Si is fulfilled. Analogously, the coefficient se, j = 1 if the
synchronization condition in (2b) for FMU S j is fulfilled.

The extrapolation ratio Q(hi,h j,H) describes the effect
of the parallel fast scheduling on the dependency matrix
A and thus on the extrapolation error estimation Ê. The
weights of the extrapolation ratio Q(hi,h j,H) for the indi-
vidual step sizes [h1,h2, ..hM] of the individual FMUs can
be put together in weighting matrix as follows:

W =

 Q(h1,h1,H) · · · Q(h1,hM,H)
...

. . .
...

Q(hM,h1,H) · · · Q(hM,hM,H)

 (17)

The weighting matrix W can be element-wise multi-
plied with the dependency matrix A to scale it accord-
ing to the influence of the synchronization of the paral-
lel fast algorithm. Whereby the extrapolation error esti-
mation Ê, i.e., the assessment of the extrapolation to the
co-simulation, can be determined as follows:

Ê =
M

∑
i=1

M

∑
j=1

Āi j =
M

∑
i=1

M

∑
j=1

Wi jAi j. (18)

3.2 Simulation Duration Assessment
The time of synchronization is defined by the synchroniza-
tion step size H and the coupling step sizes hi of the FMUs
Si. The actual duration (relative to wall-clock time) of the
synchronization step depends on the duration of the exe-
cution of a coupling step nhi, i.e., of the real-time factor di
of the FMUs Si, and the time the FMUs have to wait for
each other during synchronization. Therefore, a coupling
step implies mainly two parts: the execution of the FMU,
dominated by the real-time factor di of the FMUs Si and
the synchronization between the FMUs, i.e., the waiting
time. During this time, the synchronizing FMUs wait un-
til all have completed their coupling step. The wall-clock
time tw,i of the individual FMUs, i.e., the time that is actu-
ally needed to execute a coupling step, can be formulated
depending on their simulation progress ts as follows:

tw,i(ts) = max(tw,i(ts), tw, j(ts)se,ise, j) ∀i, j ∈ S (19)

The actual wall-clock time tw,i of a FMU Si is deter-
mined as the maximum wall-clock time tw, j of all syn-
chronized FMUs S j. The synchronized FMUs are spec-
ified with the coefficients se,i and se, j regarding to the syn-
chronization condition in (16). The simulation time can
be expressed as ts = kh̄, where k ∈ N and h̄ is the great-
common-divisor step size of the coupling step sizes hi and
the synchronization step size H and consequently the de-
termination of the wall-clock-time in (19) can be rewritten
as follows:

tw,i(kh̄) = max
(
tw,i(kh̄), tw, j(kh̄)se,ise, j

)
∀i, j ∈ S.

(20)

Depending on the definition of the simulation time ts =
kh̄, the index n of the actual coupling step of a FMU Si can
be determined as n =

⌈
ts
hi

⌉
=
⌈

kh̄
hi

⌉
. Similarly, the index of

the synchronization step is ζ =
⌊ ts

H

⌋
=
⌊

kh̄
H

⌋
. Applied to

(2a) the synchronization condition results in

(⌈
kh̄
hi

⌉
−1
)

hi <

⌊
kh̄
H

⌋
H ≤

⌈
kh̄
hi

⌉
hi <

(⌊
kh̄
H

⌋
+1
)

H.

The wall-clock time tw,i of a FMUs Si is individually up-
dated with each execution by its real-time factor di. This
can be generally written as follows:

tw,i((k+1)h̄) = tw,i(kh̄)+dihisd,i ∀i ∈ S, (21)

where sd,i indicates the end of a coupling step and can
be stated as:

sd,i =

{
1 if mod (kh̄,hi) = 0
0 otherwise. (22)

If a coupling step is completed, i.e., the simulation time
ts or kh̄ is a multiple of the coupling step size hi, the coef-
ficient sd,i = 1 and its required computation effort dihi is
added to the current wall-clock time tw,i of FMU Si.

In order to approximate the real-time factor of the en-
tire co-simulation it is not sufficient to consider only one
synchronization step. As shown in Figure 2, the synchro-
nization between FMUs and so the computational effort
changes depending on the simulation progress. However,
the synchronization pattern and so the timing repeats af-
ter a certain time. This time depends on the coupling step
sizes hi and the synchronization step size H and can be de-
termined by the least-common-multiple step size H̄ of all
step sizes. That means, to approximate the real-time factor
D̂ of the entire co-simulation, at least the simulation time
interval ts = [0, H̄] has to be considered.

Finally the estimated real-time factor D̂ for the parallel
fast scheduling can be determined as

D̂ =
1
H̄

max
i∈S

(tw,i). (23)

Using the extrapolation error estimation Ê in (18) and
the real-time factor estimation D̂ in (23), the impact of the
synchronization step size H on the extrapolation error and
the simulation duration can be estimated without costly
simulations. The comparison of the extrapolation error
estimation Ê and the real-time factor estimation D̂ with
the actual extrapolation error E and the real-time factor
D depending on the synchronization step size H is shown
in Figure 5. Both, the extrapolation error estimation Ê
and the estimation of the real time factor D̂ of the entire
co-simulation, show a similar behaviour than the actual
extrapolation error E and the actual real-time factor D de-
pending on the synchronization step size H.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181649

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

655

0 1 2 3 4 5 6
6

8

10

12

14

1

1.1

1.2

1.3
estimated
simulated

Figure 5. Real-time factor estimation D̂ and extrapolation error
estimation Ê compared to the actual real-time factor D and ex-
trapolation error E depending on the synchronization step size
H of the parallel fast scheduling.

4 Optimal Synchronization Step Size
The extrapolation error E changes strongly depending on
the synchronization step size H, see Figure 5. Beyond a
certain synchronization step size H, the extrapolation er-
ror increases almost linearly with the synchronization step
size. This can be mainly explained by the large synchro-
nization intervals that lead to less synchronizations, i.e.,
less data exchanges between the FMUs, and thus to higher
coupling errors. However, the real-time factor D of the en-
tire co-simulation changes only slightly with the synchro-
nization step size H. The effect on the real-time factor and
thus on the simulation duration becomes even smaller as
soon as the FMUs have different real-time factors di. Fig-
ure 6 shows the impact of the synchronization step size H
on the estimated real-time factor D̂ for different real-time
factors da of FMU SA, whereby the other FMUs remain
with a real-time factor db = dc = dd = 1.

With an increasing real-time factor da, the impact of the
synchronization step size on the overall real-time factor D̂
decreases. At a difference of around 60% of the real-time
factor, i.e., da = 1.6, there is no significant impact of the
synchronization time on the overall real-time factor D of
the co-simulation. The slowest FMU, i.e., SA, dominates

0 1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

Figure 6. Real-time factor estimation depending on the syn-
chronization step size for different real-time factors of FMU SA.

the entire timing behaviour, independent on the synchro-
nization step size H.

Due to the small effect of the synchronization step size
on the timing behaviour and thus on the overall real-time
factor D̂, the simulation duration is negligible for the de-
termination of the synchronization step size. This means
only the extrapolation error estimation Ê is used to find an
appropriate synchronization step size. Thus, an optimiza-
tion problem based on the extrapolation error estimation
Ê in (18) can be written as follows:

min
H

{
Ê
}
. (24)

A synchronisation step size H is desired that minimizes
the extrapolation error estimation Ê in (18) for the con-
sidered co-simulation example. In the following, the opti-
mization approach in (24) is applied to the co-simulation
example in Figure 1. The coupling step sizes of the FMUs
are given with ha = 0.2ms, hb = 0.3ms, hc = 0.1ms and
hd = 0.2ms. A detailed description of the FMUs can be
found in Benedikt and Drenth (2019) and F. Holzinger and
Benedikt (2019). To identify the optimal synchronization
step size H, the minimum of the extrapolation error esti-
mation has to be determined. Therefore 20 synchroniza-
tion steps sizes were evaluated between H = 0.05ms and

0.02 0.04 0.06 0.08 0.1 0.12 0.14
9

10

11

12

(a) Simulation result SA,yab

0.02 0.04 0.06 0.08 0.1 0.12 0.14
-200

-100

0

100

200

300

(b) Simulation result SB,ybc

Figure 7. Simulation results for varied synchronization step
sizes H, monolithic simulation and optimal synchronization step
size H∗: (a) SA,yab; (b) SB,ybc.

Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes

656 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181649

H = 6ms. The optimal synchronization step size based on
the extrapolation error estimation Ê is H∗ = 2ms.

Figure 7 shows the simulation results of the coupling
signals yab and ybc depending on the different synchro-
nization step sizes. The black solid line depicts the simu-
lation result of the optimal synchronization step size H∗.
The grey lines show the results of the other evaluated syn-
chronization step sizes. The monolithic simulation, i.e.,
all subsystems are solved within one model with one sin-
gle solver without extrapolation, is shown as black dashed
line and serves as reference signal. The results with the
optimal synchronization step size H∗ show the smallest
deviation from the reference solution for the coupling sig-
nal yab of FMU SA and coupling signal ybc for FMU SB.

0 1 2 3 4 5 6

10-4

6

8

10

12

14

0.1

0.12

0.14

0.16

0.18

0.2

Figure 8. Extrapolation error estimation Ê compared to the
mean coupling error w.r.t. the monolithic simulation over syn-
chronization step size H.

The comparison of the determined extrapolation error
estimation Ê with the mean coupling error is shown in Fig-
ure 8. The mean coupling error corresponds the root mean
square error of the simulation results to the reference so-
lution (monolithic simulation) of all coupling signals. The
behaviour of the extrapolation error estimation Ê shows
similar behaviour to the actual coupling error with respect
to the monolithic simulation that occurs. This means that
a determination of the optimal synchronization step size
H∗ using the extrapolation error estimation Ê leads to the
optimal solution in terms of the synchronization step size.

5 Conclusion
The co-simulation of FMUs with different coupling step
sizes requires suitable synchronization methods to ensure
appropriate data exchange of the coupling signals between
the FMUs. The presented parallel fast scheduling shows
an effective way to synchronize the individual FMUs with-
out unnecessarily extending the simulation duration. The
usage of synchronization intervals, where FMUs exchange
their data, enables continuous timing behaviour through-
out the simulation and is therefore particularly suitable for
real-time applications. However, the definition of the syn-
chronization interval has a direct impact on the extrapola-
tion behaviour of the FMUs and thus on the simulation
accuracy. Contrary to the expectations, small synchro-

nization intervals do not generally lead to accurate sim-
ulation results. Therefore, an optimisation approach was
proposed to determine the optimal step size for the syn-
chronization intervals based on an introduced extrapola-
tion measure (extrapolation error estimation). This allows
to derive the optimal synchronization step size for the par-
allel fast scheduling.

The presented determination of the optimal synchro-
nization step size for the parallel fast scheduling based on
the estimated extrapolation error shows good results for
the example used in this work. However, in future work
this approach will be analysed and validated on further
examples. The extrapolation assessment depending on the
synchronization step size of the co-simulation assumes a
ZOH extrapolation for the estimation. The estimation of
the extrapolation error for other coupling approaches, e.g.,
FOH, will be considered in future works.

Acknowledgements
The publication was partly written in cooperation with the
VIRTUAL VEHICLE Research GmbH in Graz and partly
funded by the COMET K2 – Competence Centers for
Excellent Technologies Programme of the Federal Min-
istry for Transport, Innovation and Technology (bmvit),
the Federal Ministry for Digital and Economic Affairs
(bmdw), the Austrian Research Promotion Agency (FFG),
the Province of Styria and the Styrian Business Promotion
Agency (SFG).

The work presented in this document is co-funded by
the EU research and innovation programme Horizon2020
(VISION-xEV: GA No. 824314). The content does not
reflect the official opinion of the European Union. Re-
sponsibility for the information and views expressed in the
report lies entirely with the author(s).

References
Benedikt, Martin and Edo Drenth (2019). “Relaxing Stiff Sys-

tem Integration by Smoothing Techniques for Non-iterative
Co-simulation”. In: IUTAM Symposium on Solver-Coupling
and Co-Simulation. Ed. by Bernhard Schweizer. Cham:
Springer International Publishing, pp. 1–25. ISBN: 978-3-
030-14883-6.

Benedikt, Martin, Daniel Watzenig, et al. (2013). “Macro-step-
size selection and monitoring of the coupling errof for weak
coupled subsystems in the frequency-domain”. In: Proceed-
ings of International Conference on Computational Methods
for Coupled Problems in Science and Engineering, pp. 1–12.
ISBN: 978-84-941407-6-1.

Blochwitz, T. et al. (2012). “Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation
Models”. In: Proceedings of the 9th International Modelica
Conference. Munich, Germany: The Modelica Association,
pp. 173–184. ISBN: 978-91-7519-826-2. URL: http://dx.doi.
org/10.3384/ecp12076173.

Busch, Martin and Bernhard Schweizer (2011). “An explicit ap-
proach for controlling the macro-step size of co-simulation
methods”. In: Proceedings of the 7th European Nonlinear
Dynamics Conference (ENOC 2011): July 24 - 29, 2011,

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181649

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

657

Rome, Italy. Ed. by D. Bernadini, pp. 1–6. ISBN: 978-88-
906234-2-4. URL: http://tubiblio.ulb.tu-darmstadt.de/77923/.

Genser, Simon and Martin Benedikt (2018). “A Pre-Step Stabi-
lization Method for Non-Iterative Co-Simulation and Effects
of Interface-Jacobians Identification”. In: Advances in Intel-
ligent Systems and Computing. ISSN: 2194-5357.

Glumac, Slaven and Zdenko Kovacic (2018). “Calling Sequence
Calculation for Sequential Co-simulation Master”. In: Pro-
ceedings of the 2018 ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. SIGSIM-PADS ’18.
Rome, Italy: ACM, pp. 157–160. ISBN: 978-1-4503-5092-1.
DOI: 10.1145/3200921.3200924. URL: http://doi.acm.org/10.
1145/3200921.3200924.

Haid, Timo et al. (2018). “A model-based corrector approach
for explicit co-simulation using subspace identification”. In:
The 5th Joint International Conference on Multibody System
Dynamics.

Holzinger, Franz and Martin Benedikt (2019). “Optimal Trigger
Sequence for Non-Iterative Co-Simulation:” in: Proceedings
of the 9th International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications. 9th In-
ternational Conference on Simulation and Modeling Method-
ologies, Technologies and Applications. Prague, Czech Re-
public: SCITEPRESS - Science and Technology Publica-
tions, pp. 80–87. ISBN: 978-989-758-381-0. DOI: 10 .5220/
0007833800800087.

Holzinger, Franz Rudolf, Martin Benedikt, and Daniel Watzenig
(2021). “Optimal Trigger Sequence for Non-iterative Co-
simulation with Different Coupling Step Sizes”. In: Simula-
tion and Modeling Methodologies, Technologies and Applica-
tions. Ed. by Mohammad S. Obaidat, Tuncer Ören, and He-
lena Szczerbicka. Cham: Springer International Publishing,
pp. 83–103. ISBN: 978-3-030-55867-3.

Kübler, R. and W Schiehlen (2000). “Modular Simulation in
Multibody System Dynamics”. In: Multibody System Dynam-
ics 4.

Matlab Simulink, R2021a (2021). Co-Simulation Execution and
Numerical Compensation. (https : / / www. mathworks . com /
help/simulink/ug/co-simulation-execution-and-numerical-
compensation.html). Accessed: 2021-04-11.

Model.CONNECT™, R2020a (2020). AVL’s open model inte-
gration and co-simulation platform. (https://www.avl.com/-
/model-connect). Accessed: 2020-02-04.

Oakes, Bentley et al. (2020). “Hint-Based Configuration of
Co-simulations with Algebraic Loops”. In: Simulation and
Modeling Methodologies, Technologies and Applications.
Springer International Publishing, pp. 1–28. ISBN: 978-3-
030-55866-6. DOI: 10.1007/978-3-030-55867-3_1.

Sadjina, Severin et al. (2016-11). “Energy conservation and
power bonds in co-simulations: non-iterative adaptive step
size control and error estimation”. In: Engineering with Com-
puters 33.3, pp. 607–620. ISSN: 1435-5663. DOI: 10.1007/
s00366-016-0492-8. URL: http://dx.doi.org/10.1007/s00366-
016-0492-8.

Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes

658 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181649

Towards an automated generator of urban building energy loads
from 3D building models

Alessandro Maccarini1 Michael Mans2 Christian G. Sørensen1 Alireza Afshari1

1Department of the Built Environment, Aalborg University, Denmark, amac@build.aau.dk
2Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany

Abstract
Buildings in cities are one of the major contributors of car-
bon emissions worldwide. Thus, improving building en-
ergy efficiency is one of the key strategies towards sus-
tainable urbanization. Urban building energy modeling
(UBEM) is a valuable methodology to tackle these chal-
lenges, as it provides users with the energy demand of
the building stock, scenarios evaluation, peak loads and
other useful analyses. This paper presents an open-source
tool to automatically convert 3D building models into
ready-to-run Modelica models for urban energy simula-
tions. The software enables users to create 3D building
geometries, perform data enrichment and execute model
generation of reduced order Modelica models. The soft-
ware is written in Python and it has been developed as an
add-on for the 3D creation application Blender. The first
part of the paper describes the general approach and the
architecture of the tool. In the second part, a demonstra-
tion of the tool’s capabilities is illustrated.
Keywords: urban energy modeling, workflow automation,
3D visual editing, Modelica code generation

1 Introduction
Building energy modeling (BEM) tools are a key asset in
the design of energy efficient buildings. Based on a math-
ematical model that describes the interaction between a
building and its energy system, these tools perform sim-
ulations and calculate outputs in terms of energy use and
thermal comfort (Hensen and Lamberts 2019).

Recently, the open-source, object-oriented and
equation-based modeling language Modelica has be-
come increasingly used in the field of BEM. The use
of Modelica has not only grown in the field of BEM,
but also in the field of urban building energy modeling
(UBEM), where the focus is on the analysis of building
stocks and district energy systems. One of the reasons of
the increased used of Modelica in BEM and UBEM is
that future building and district energy systems integrate
multi-domain interconnected subsystems (thermal, hy-
draulic, electric and control) based on renewable energy
generation, for which Modelica provides an appropriate
single platform for modeling and simulation. Another
reason is that Modelica simulation environments provide
a 2D graphical modeling approach that fits well the design

of buildings and district energy system topologies. On the
other hand, such a 2D graphical approach is inconvenient
for modeling the 3D shapes of buildings.

When working on the modeling of a building, Model-
ica users typically need to abstract the 3D geometry of a
building thermal zone into a string of code, which contains
area and orientation of the building surfaces. This manual
configuration of a thermal building zone is an error-prone
process and does not line up with the design workflow of
architects and engineers, who are using BIM-based CAD
tools such as ArchiCAD or Revit for their 3D building
designs. For these reasons, in the last years, different re-
search activities have been focused on the automatic gen-
eration of Modelica building energy models from Interna-
tional Foundation Class (IFC) files, which are output of
BIM softwares.

Thorade et al. (2015) proposed a toolchain using the
commercial simulation tool Simergy. In the first step, the
user imports the IFC file as input, adds relevant data with
the Simergy graphical user interface (GUI), and then ex-
ports the data set as SimModel, which is a data domain
model which is able to store information for building en-
ergy simulation. In the next step, a mapping tool takes the
SimModel file and a Python script generates the Model-
ica model through a template approach. Reynders et al.
(2017) described a tool based on a Python framework. It
can read IFC-files, determine the building topology for
multi-zone building models, and generate Modelica build-
ing models for the Modelica IDEAS library. Nytsch-
Geusen et al. (2019) developed an open-source toolchain
which can transfer BIM models of 3D building construc-
tions into executable thermal multi-zone Modelica build-
ings energy models. For this purpose, different open-
source libraries and tools were integrated into a Python-
based software architecture of the toolchain.

In the above mentioned studies, the focus was on the
automatic generation of Modelica models for single build-
ings energy analyses. In terms of urban energy analy-
ses, Remmen et al. (2018) developed TEASER, a Python-
based automated framework that includes data enrich-
ment, data processing and Modelica model generation for
urban context. The tool can produce ready-to-run Mod-
elica building models based on a low order thermal zone
model using the IBPSA core library and their larger user
libraries Buildings (Wetter et al. 2014), BuildingSystems

DOI
10.3384/ecp21181659

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

659

(Nytsch-Geusen et al. 2012), IDEAS (Jorissen et al. 2018)
and AixLib (Müller et al. 2016). TEASER can be used
with an archetype building approach, which needs only
basic input data about a building, but can also use detailed
building information for the modeling process. Neverthe-
less there is no GUI provided for the user, not for parame-
ter settings (e.g. material properties, ventilation rates, etc.)
nor for 3D building modeling.

To address the challenges posed by manual translation
of 3D building models to Modelica models at urban scale,
this paper presents a "Blender-based Automatic Gener-
ator of Energy Loads" (BAGEL). BAGEL is an open-
source Python-based tool that uses the 3D creation plat-
form Blender as a host application to provide 3D mod-
eling, intuitive GUI and parametrization capabilities for
automatic generation of Modelica-based building energy
models. The target audience of the tool are scientists
and engineers who aim at predicting heating and cool-
ing energy loads of new and existing urban neighborhoods
and communities. The paper begins with a description
of BAGEL architecture and functionalities, and then pro-
ceeds by giving a demonstration of the tool’s capabilities
with a use case.

2 Methodology
This chapter introduces Blender as a host application and
then presents the architecture of BAGEL for the conver-
sion of 3D building geometries into Modelica models for
urban energy simulations.

2.1 Blender
Blender (Blender Online Community 2021) is a free
and open-source 3D creation platform. Its functional-
ity includes mesh-based 3D modeling, advanced materi-
als and texture specification, physically based rendering
and a Python Application Programming Interface (API)
amongst other features. The Python API is deeply inte-
grated allowing, for example, specification of data, control
over mesh elements and manipulation of the Blender inter-
face. This enables the development of third-party software
(called add-ons in Blender) which function inside Blender
and expand its functionality. Some of these features have
made Blender an increasingly popular host application for
a range of scientific visualisation and analysis tools (Pyka
et al. 2010; Scianna 2013; Kent 2013). In the field of
building energy simulation, the VI-Suite add-on supports
the conversion of geometry and construction materials to
the EnergyPlus input format (Southall and Biljecki 2017).

2.2 BAGEL architecture
The architecture of BAGEL is shown in Figure 1. Once
installed, BAGEL appears as a visual panel directly ac-
cessible in the 3D environment of Blender. It consists of
three modules:

1. 3D building shaping

2. Data enrichment

3. Modelica model generation

2.2.1 3D building shaping

In Blender, the geometry of a scene is constructed from
one or more objects. These objects can range from basic
3D shapes and lights to illuminate the scene to cameras
to take pictures or make video. The relevant object type
in the context of BAGEL is the so-called mesh. A mesh
is a collection of vertices, edges and faces that describe a
3D shape. The BAGEL module 3D building shaping al-
lows users to automatically create a new building, which
is represented by a 3D mesh whose geometrical and spa-
tial properties can be freely modified using the dedicated
visual commands. Such properties are:

• Dimensions along the three axes

• Rotation around the z-axis (i.e. orientation)

• Location in the scene

BAGEL is currently able to handle only simple building
geometries with a low Level of Detail (LoD). The LoD
concept is defined in the CityGML standard and defines
building models at different levels of complexity and gran-
ularity of the geometric representation (Open Geospatial
Consortium 2012). In particular, in BAGEL, buildings can
only be represented by rectangular prisms, which corre-
spond to LoD1.

2.2.2 Data enrichment

At this point, buildings are described in terms of geomet-
rical and spatial design. However, to perform dynamic
energy simulations it is necessary to enrich the models
with additional properties such as building mass and ther-
mal characteristics of the building envelope. The BAGEL
module Data enrichment enables users to define a set of
nine properties for each building. This set of properties re-
sembles the input parameters that are needed to solve the
resistance-capacitance model described in the ISO 13790
standard (International Standard Organization 2008). This
model describes the thermo-physical behavior of buildings
by means of an equivalent electric circuit consisting of five
resistances and one capacity (5R1C). Such a model has
been developed in Modelica language and it will be used
as target Modelica model in the next step of the process,
where the enriched Blender model will be translated into
Modelica code. More details about the 5R1C Modelica
model are provided in section 2.2.3

The parameters required to solve the 5R1C model can
be assigned visually to each building in the 3D Blender
scene through the BAGEL interface, which stores such
parameters within the data structure of the respective
building as custom properties. In Blender, custom
properties are a way to store metadata in data-blocks

Towards an automated generator of urban building energy loads from 3D building models

660 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181659

Blender (3D modelling environment)

BAGEL (add-on)

3D building shaping

Data enrichment

Modelica model
generation

.mo file

Blender
Python API

Figure 1. Software architecture of BAGEL.

(e.g. mesh) which can be used by Python scripts to de-
fine new settings not available in Blender. The complete
list of properties that users need to add and edit through
the BAGEL interface is shown in Table 1. In terms of
building usage, four different types are available for se-
lection: residential, office, school and hospital. For each
building type, BAGEL includes a deterministic schedule
defining the amount of internal heat gains and their tem-
poral distribution over a week period. To consider storage
effects of the building mass, the thermal heaviness of the
building is defined by one of the following options: light,
medium and heavy. Each option corresponds to a certain
value of the thermal capacitance of the building structure
according to the ISO 13790. Regarding thermal charac-
teristics of the building envelope, U-values of walls, floor,
roof and windows can be assigned to each building in the
Blender scene. In addition, windows have to be defined
by a window-to-wall ratio, which represents the ratio of
window areas to opaque wall areas, and a solar energy
transmission coefficient, which is the ratio of transmitted
solar radiation to incident solar radiation. Lastly, users
need to provide a value for the air change per hour, which
is the measure of how often the air volume is completely
changed with outdoor air in one hour.

2.2.3 Modelica model generation

Once all the properties have been assigned, BAGEL is able
to export Modelica models. Modelica models are stored in
simple text files written in the Modelica language. These
text files are constructed using a template-based approach
(https://www.makotemplates.org/), where place-
holders for the necessary simulation parameters are em-
bedded in the file. These necessary parameters are made
available by BAGEL and are then mapped to the template
automatically. After mapping the parameters defined as
placeholders in the Mako template, the last step performed
by BAGEL is the rendering of the templates to generate

Table 1. Properties to be assigned to building objects.

Property Visual editing method

Usage Multiple choice menu
Thermal mass Multiple choice menu
U-value walls float number
U-value roof float number
U-value floor float number
U-value windows float number
Window-to-wall ratio float number [0:1]
G-factor float number [0:1]
Air change rate float number

the Modelica .mo files.
The code generator was designed for a predefined Mod-

elica model class representing the 5R1C model previously
mentioned. This is a lumped-capacitance model where the
thermal behavior of the building is described by means of
an equivalent resistive-capacitive electrical network con-
sisting of five resistances and one capacitance. Figure 2
shows the scheme of the 5R1C thermal network and its
Modelica translation. Depending on the purposes and as-
sumptions, many thermal networks have been proposed in
literature, however, the ISO 13790 model is still used for
its simplicity, replicability, and few requirements of in-
put parameters. A detailed evaluation of the ISO 13790
model accuracy and limitations can be found in Vivian et
al. (2017).

The thermal zone is modeled with three temperature
nodes, the indoor air temperature (Tair), the envelope inter-
nal surface temperature (Ts) and the building mass temper-
ature (Tm) and two boundary condition nodes, supply air
temperature (Tsup) and the external air temperature (Te).
The five resistances are related to heat transfer by venti-
lation (Hve), windows (Htr,w), opaque components (split

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181659

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

661

Figure 2. ISO13790 model.

between Htr,em and Htr,ms) and heat transfer between the
internal surfaces of walls and the air temperature (Htr,is).
The thermal capacitance Cm is connected with the temper-
ature node Tm and includes the thermal capacity of the en-
tire building. The heating and/or cooling demand is found
by calculating the heating and/or cooling power φHC that
needs to be supplied to, or extracted from, the internal
air node to maintain a certain minimum or maximum set-
point temperature.

The following code listing demonstrates the principle
upon which the Modelica model class is parameterized
during the code generation process based on a Mako tem-
plate.

Listing 1. Text file as Mako template

model ${name}
ISO13790.ThermalZone room(

Aroof=${Aroof},
Uroof=${Uroof},
...)

end ${name}

The syntax for the variable substitution is the ${} con-
struct. BAGEL reads the values assigned by the user to
the properties of each building in the scene, and then re-
places the construct with the correspondent value. As an
example, assume that the user created a 3D building model
named office1 with a roof that has an area of 50 m2 and a
U-value of 0.3 W/m2K. BAGEL will generate the follow-
ing Modelica model, which can be simulated using simu-
lation environments such as Dymola and OpenModelica.

Listing 2. Modelica code generated by BAGEL

model office1
ISO13790.ThermalZone room(

Aroof=50,
Uroof=0.3,
...)

end office1

3 Use case
To show the capabilities of BAGEL, this chapter presents
a use case taken from an ongoing research project. The
aim of the project is to carry out a feasibility study of a 5th

generation district heating and cooling (5GDHC) system
in a new urban area located in the municipality of Køge
(Denmark).

5GDHC is a recent technology that combines district
heating and cooling supply into a single water network
consisting of two pipes (Buffa et al. 2019). Typically,
the warm pipe has temperatures of 12-20◦C, while the
cold pipe operates in the range 8-16◦C. A particularity of
5GDHC systems is that they feature a bidirectional dis-
tribution, in which the water in each pipe segment can
flow in alternating directions, depending on the net ther-
mal fluxes in the system. Bidirectional distribution en-
ables buildings to not only draw, but also feed heat to the
network to cover heating demands of other buildings.

The efficiency and profitability of bidirectional 5GDHC
systems strongly depends on the heating and cooling de-
mand profiles of the connected buildings and their simul-
taneity. In particular, the efficiency of 5GDHC systems
can be calculated using a metric called Demand Over-
lap Coefficient (DOC) (Wirtz et al. 2020). For discrete,
equally spaced time intervals t ∈ T , the DOC of all build-
ings b ∈ B in a district is defined by Equation 1:

DOC =
2∑t∈T min{∑b∈B Q̇h,dem,b,t ,∑b∈B Q̇c,dem,b,t}

∑t∈T ∑b∈B(Q̇h,dem,b,t + Q̇c,dem,b,t)
(1)

where Q̇h,demis the thermal power demand for heating and
Q̇c,dem is the thermal power demand for cooling. The DOC
ranges between 0 and 1. A DOC of 0 means that heating
and cooling demand profiles do not overlap at all, a DOC
of 1 means they match exactly. It can be noted that the
District DOC is calculated solely on the basis of building
energy demands.

In this context, the tool BAGEL was used to create a

Towards an automated generator of urban building energy loads from 3D building models

662 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181659

BAGEL (add‐on)

 Blender
(3D environment)

Figure 3. Blender interface with BAGEL add-on

3D model of the new urban area in Køge, visually enrich
the building models with relevant properties, and export
ready-to-run Modelica models. Figure 3 shows the 3D
model in the Blender interface with the BAGEL add-on.

The portion of urban area considered in this use case
is planned to be constructed during the next years and it
includes a mix of residential and commercial buildings, as
illustrated in Table 2. The required geometrical and ther-
mal properties were assigned to the 3D building models
using the BAGEL visual panel. Since this is a new urban
area, and not all building information are available yet,
properties were estimated according to architectural mas-
ter plan, Danish building regulations and authors’ assump-
tions. Once all properties had been assigned, Modelica
files were exported by pressing the button "Export Model-
ica code". Then, hourly simulations were performed using
Dymola. Exporting time was about 0.01 s per building,
while simulation time was about 2 s per building for an
one-year period. Simulations were carried out on a laptop
PC with a 1.6 GHz CPU. Note that the actual location of
the buildings in the scene does not affect simulation re-
sults, as buildings are completely independent from each
other. Factors such as heat island effect and shading be-
tween buildings are not considered.

Table 2. Buildings details.

Typology No. buildings Total floor area

Single-family house 48 4320 m2

Block apartment 32 25600 m2

Office 4 36000 m2

Figure 4 shows the total heating and cooling demand
profiles of the urban area over an one-year period. Heating
demand for domestic hot water and cooling demand for
server rooms in offices were added in post-processing as
constant profiles. Hourly values of total heating and cool-
ing demand were used to calculate the DOC of the urban

Figure 4. Heating and cooling demand profiles (daily average).

area by applying Equation 1. The calculation resulted in a
DOC equals to 0.38. According to Wirtz et al. (2020), for
DOCs larger than 0.3, a heating and cooling supply with a
5GDHC system has a higher exergy efficiency compared
to a reference system. Since the calculation of the DOC
is based only on heating and cooling building demand, no
models related to the district energy network were needed
in this case study. The actual modeling and simulation of
the district energy network is planned as a next step during
the project.

4 Conclusion and outlook
This paper presented the development of BAGEL, an
open-source tool that provides automatic conversion of 3D
building models into Modelica models for urban energy
simulations. The software is written in Python program-
ming language and it is developed as an add-on for the 3D
creation suite Blender. BAGEL enables users to create 3D
building geometries, perform data enrichment and execute
generation of ready-to-run low order Modelica building
models. All these actions can be performed graphically

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181659

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

663

through the BAGEL interface, which is embedded in the
Blender 3D environment as a visual panel. The possibil-
ity to rapidly create 3D building geometries from scratch
can be particularly useful in early design stages of new ur-
ban districts and neighborhoods, when CityGML and BIM
files are not usually available.

To demonstrate the capabilities of BAGEL, a use case
was introduced. A 3D enriched model of a new urban area
in Denmark was developed in order to calculate heating
and cooling demand. This allowed to estimate the effi-
ciency and profitability of a 5GDHC system by simulating
the generated Modelica models in Dymola.

Future developments of BAGEL will focus on the inte-
gration of archetype building models through the software
TEASER. In addition, possibilities to account for mutual
shading between buildings will be investigated. More-
over, visualization of simulation results within the Blender
scene will be explored. The source code of BAGEL, to-
gether with the Modelica ISO 13790 model, will be re-
leased on GitHub by the end of October 2021.

Acknowledgements
This work was financially supported by the Danish Energy
Agency, under the Energy Technology Development and
Demonstration Program (EUDP).

We gratefully acknowledge the financial support by
Federal Ministry for Economic Affairs and Energy
(BMWi), promotional reference 03EWR020E (Reallabor
der Energiewende: TransUrban.NRW).

This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associa-
tion (IBPSA). Project 1 will develop and demonstrate a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation.

References
Blender Online Community (2021). Blender - a 3D modelling

and rendering package. Blender Foundation. Blender Insti-
tute, Amsterdam. URL: http://www.blender.org.

Buffa, Simone et al. (2019). “5th generation district heating and
cooling systems: A review of existing cases in Europe”. In:
Renewable and Sustainable Energy Reviews 104, pp. 504–
522. DOI: 10.1016/j.rser.2018.12.059.

Hensen, Jan and Roberto Lamberts (2019). Building Perfor-
mance Simulation for Design and Operation. Routledge.
ISBN: 9781138392199.

International Standard Organization (2008). ISO 13790:2008
Energy performance of buildings — Calculation of energy use
for space heating and cooling.

Jorissen, Filip et al. (2018). “Implementation and Verification of
the IDEAS Building Energy Simulation Library”. In: Jour-
nal of Building Performance Simulation 11 (6), pp. 669–688.
DOI: 10.1080/19401493.2018.1428361.

Kent, Brian R. (2013). “Visualizing Astronomical Data with
Blender”. In: Publications of the Astronomical Society of the
Pacific 125.928, pp. 731–748. DOI: 10.1086/671412.

Müller, Dirk et al. (2016-09). “AixLib - An Open-Source Mod-
elica Library within the IEA-EBC Annex 60 Framework”. In:
BauSIM2016 Conference.

Nytsch-Geusen, Christoph et al. (2012-09). “Modelica
BuildingSystems - Eine Modellbibliothek zur Simula-
tion komplexer energietechnischer Gebäudesysteme”. In:
BauSIM2012 Conference.

Nytsch-Geusen, Christoph et al. (2019-03). “BIM2Modelica –
An open source toolchain for generating and simulating ther-
mal multi-zone building models by using structured data from
BIM models”. In: 13th International Modelica Conference,
pp. 33–39. DOI: 10.3384/ecp1915733.

Open Geospatial Consortium (2012). OGC city geography
markup language (CityGML) encoding standard 2.0.0. Tech.
rep.

Pyka, Martin et al. (2010). “fMRI data visualization with Brain-
Blend and Blender”. In: Neuroinformatics 8.1, pp. 21–23.
DOI: 10.1007/s12021-009-9060-3.

Remmen, Peter et al. (2018). “TEASER: an open tool for urban
energy modelling of building stocks”. In: Journal of Build-
ing Performance Simulation 11.1, pp. 84–98. DOI: 10.1080/
19401493.2017.1283539.

Reynders, Glenn et al. (2017-08). “Towards an IFC-Modelica
tool facilitating model complexity selection for building en-
ergy simulation”. In: 15th IBPSA Conference, pp. 2257–
2266.

Scianna, Andrea (2013). “Building 3D GIS data models using
open source software”. In: Applied Geomatics 5.2, pp. 119–
132. DOI: 10.1007/s12518-013-0099-3.

Southall, Ryan and Filip Biljecki (2017). “The VI-Suite: a set
of environmental analysis tools with geospatial data applica-
tions”. In: Open Geospatial Data, Software and Standards
2.23, pp. 1–13. DOI: 10.1186/s40965-017-0036-1.

Thorade, Matthis et al. (2015-09). “An open toolchain for gener-
ating Modelica code from Building Information Models”. In:
11th International Modelica Conference, pp. 383–391. DOI:
10.3384/ecp15118383.

Vivian, Jacopo et al. (2017). “An evaluation of the suitability of
lumped-capacitance models in calculating energy needs and
thermal behaviour of buildings”. In: Energy and Buildings
150, pp. 447–465. ISSN: 0378-7788. DOI: https : / / doi . org /
10.1016/j.enbuild.2017.06.021.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Wirtz, Marco et al. (2020). “Quantifying demand balancing
in bidirectional low temperature networks”. In: Energy and
Buildings 224. DOI: 10.1016/j.enbuild.2020.110245.

Towards an automated generator of urban building energy loads from 3D building models

664 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181659

Examination of Reduced Order Building Models with Different
Zoning Strategies to Simulate Larger Non-Residential Buildings

Based on BIM as Single Source of Truth

David Jansen1 Veronika Richter2 Diego Cordoba Lopez1 Philipp Mehrfeld1 Jérôme Frisch2

Dirk Müller1 Christoph van Treeck2

1Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, {david.jansen, diego.cordoba, pmehrfeld,

dmueller}@eonerc.rwth-aachen.de
2Institute of Energy Efficiency and Sustainable Building E3D, RWTH Aachen University, Germany,

{richter, frisch, treeck}@e3d.rwth-aachen.de

Abstract
Non-residential buildings are accountable for 11 % of
global energy-related CO2 emissions (United Nations En-
vironment Programme 2018). To increase the perfor-
mance in this sector, Building Energy Performance Simu-
lation (BEPS) is one feasible approach. Therefore, there is
need for reliable and fast simulation models. One feasible
approach are so called Reduced Order Models (ROMs).
Thus in this paper, a comparison between the results of the
established BEPS tool EnergyPlus and a ROM in Model-
ica with a reduced number of resistances and capacities is
applied at the use case of a non-residential building. A
self-developed toolchain was used to create equal mod-
els for ROM and EnergyPlus based on the same Build-
ing Information Modeling (BIM) model. The comparison
shows that the reduced model deviates by ±10% in annual
heating and cooling. To increase accuracy and decrease
computational effort the zoning strategy of non-residential
buildings is investigated. The investigation shows that us-
ing a suitable zoning approach can reduce the computa-
tional effort by up to 97 %.
Keywords: BEPS, BIM, zoning, reduced order, ROM

1 Introduction
The simulation of larger non-residential buildings is an
important aspect in the field of building simulations but
comes with additional challenges, compared to the simula-
tion of smaller buildings like single-family houses. Three
major challenges are:

(i) Higher effort for creation and parametrization of the
simulation model

(ii) Higher computational effort to solve the resulting
system of equations

(iii) Necessity of zoning the simulation model due to
higher influences of different room usages compared
to residential buildings

Challenges (i) and (ii) can be addressed by using sim-
plified ROMs combined with statistical data enrichment.
One tool that offers these features is TEASER (Remmen
et al. 2018) which provides the capability to create Mod-
elica models based on Python code and the open-source
Modelica library AixLib (Müller et al. 2016). By using
Modelica, the resulting simulation models provide a huge
amount of flexibility to integrate new functions and cou-
pling the resulting BEPS models with Heating, Ventilation
and Air Conditioning (HVAC) models. Challenge (iii) can
be addressed by abiding existing rules of thumb but this
often leads to more effort due to time consuming manual
operations. The general problem that comes with zoning
in BEPS is that falsely zoned models can have localized
unrealistic peaks in heating and/or cooling demand. This
happens due to over-discretization of zones, where e.g. the
irradiated heat of high solar gains is not correctly passed
to nearby zones. (Dogan, Reinhart, and Michalatos 2016;
Smith, Bernhardt, and Jezyk 2011)
This paper focuses on two questions: first, in which cases
using the ROM approach is suitable for simulating larger
non-residential buildings, and second, how different zon-
ing strategies affect the accuracy and computational effort.
To investigate the first question, two simulation models of
the same building are created by using BIM as a Single
Source of Truth (SSOC) to guarantee the similarity of the
models. One model is a ROM model based on the Ger-
man guideline VDI 6007 -1 (2015) created with TEASER,
the other is an EnergyPlus simulation model. The results
of these models are compared and put into the context
of previous research results. The second question is an-
swered by applying different levels of zone reduction on
the TEASER model based on existing research and inves-
tigating the results. Thereby, the special case of the used
multi-zone model which uses adiabatic inner walls is also
taken into account.

DOI
10.3384/ecp21181665

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

665

2 Related Work
2.1 Model Comparison
Initial verification of the ROM was already done by
Lauster, Constantin, and Remmen (2017) based on the
ASHRAE 140 (ASHRAE 2017) test cases. The same test
cases were also simulated with EnergyPlus (Henninger,
Robert H. and Witte, Michael J. 2015). These two stud-
ies showed that both the EnergyPlus model and the ROM
are delivering results that are inside the boundaries for
most of the test cases. In comparison to the other sim-
ulation tools, EnergyPlus tends to predict comparatively
low annual heating demands. The ROM tends to predict
too high fluctuations in the indoor temperatures and an
underestimation of thermal mass for low mass buildings
and vice versa an overestimation and too damped behavior
for heavy mass buildings (Lauster, Constantin, and Rem-
men 2017). Kuniyoshi, Kramer, and Lindauer (2018) per-
formed a comparison of EnergyPlus and a 6 resistance and
4 capacities model which uses different capacities for zone
air, inner walls, outer components, and floors for a single-
family house. They found that the default VDI 6007-1
model performs well for representing the conductive and
convective heat transfer but has problems with the correct
representation of solar irradiation. This challenge was met
by the usage of a curve fitting approach instead of an area-
weighted approach for the determination of the distribu-
tion factors for internal solar gains. All the listed works
deal with test cases for buildings in the size of one room
up to single-family houses. Therefore in this paper, an
investigation of a four-storey non-resident building with
mainly office usage is performed.

2.2 Zoning in BEPS
The German standard DIN V 18599-1 (2018) provides
guideline values for the zoning of buildings divided into
three aspects. (i) The usage type of the respective zone,
(ii) the type of conditioning, and (iii) the glazing ratio,
where a distinction is made between 25 % and 75 % glaz-
ing ratio. The impact of different zoning strategies was
investigated by Brès et al. (2017) by applying different
zoning strategies on multiple floor plans but not whole
buildings. They covered perimeter and core distinctions,
usage type distinctions, orientations of the zones, and
finally combined these strategies. They conclude that
the zoning affects the simulation results in a wide range
based on used strategy and building. Especially simple
approaches like perimeter core distinctions resulted in
deviations up to 30 %, whereas the combination of differ-
ent zoning strategies led to < 10 % of deviations in total
heating load. Additional to research regarding how to
zone buildings and how this affects the simulation results,
multiple studies were performed regarding automatic
zoning. E.g. Dogan, Reinhart, and Michalatos (2016)
as well as Smith, Bernhardt, and Jezyk (2011) presented
automatic approaches for zoning for complex building
shapes based on algorithms with in-depth analysis. How-

Figure 1. IFC of KIT Office Building fig. 1

ever, both approaches are valid only for the early concept
phase of the building, where interior space divisions are
still undefined. Another approach was developed by
Georgescu, Eisenhower, and Mezic (2012). They used the
Koopman operator to analyze the temperature behavior in
different rooms during building simulation to carry out
optimal zoning strategies. The approach shows promising
results but a prior simulation of the detailed and not zoned
model is mandatory. The performed test cases in the work
carried out some guidelines which confirm the already
mentioned rules and add the additional rule that small
volume and surface areas can be merged to much larger
adjacent zones with little loss of accuracy.
Both, the comparison of ROMs and established simula-
tion tools, as well as general investigation of zoning on
simulations models, were already discussed in existing
research. The special cases addressed by this paper are
large non-residential buildings and the zoning of reduced
ROMs using BIM models as a source.

3 Methodology
3.1 Defining the Model Setup
TEASER and EnergyPlus both in their core are based
on a resistance-capacity-based approach to represent the
underlying physical concepts (U.S. Department of En-
ergy 2020; Remmen et al. 2018). However, EnergyPlus
uses a much more detailed approach, while TEASER uses
a reduced order approach. As EnergyPlus is an estab-
lished simulation tool, the underlying assumptions will not
be discussed in detail and the reader is referred to U.S.
Department of Energy (2020) for further details. While
TEASER is capable of exporting different types of mod-
els in this paper the two capacity model based on VDI
6007 -1 (2015) is used. Compared to the original guide-
line model it extended by an additional resistance for win-
dows. Lauster, Müller, and Nytsch-Geusen (2018) already
showed that this configuration is predicting the thermal
behavior well for residential buildings. The periodic pen-
etration depth that defines which part of the wall will be

Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger
Non-Residential Buildings Based on BIM as Single Source of Truth

666 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181665

used as capacity and resistance and which part will be used
only as resistance is set to five days according to Lauster,
Müller, and Nytsch-Geusen (2018). All simulations were
performed in Dymola using the DASSL solver with a toler-
ance of 10E−4. Both models use the test reference year of
2012 for Aachen, Germany (Lawrie and Crawley 2019).

3.2 Use Case
The investigations in this paper are applied to the Industry
Foundation Classes (IFC) file KIT Office Building (Hae-
fele, Karl-Heinz 2021) shown in Figure 1. This model
is chosen because it represents a non-residential build-
ing with more complex geometry and different types of
rooms, such as conference rooms, single and group of-
fices, and laboratories. The model was created by Archi-
CAD 20 and offers good quality regarding semantic data
and especially regarding 2nd level Space Boundaries (SB).
Even if the used IFC file provides a comparatively good
quality regarding semantics and SB, the thermal prop-
erties, layer structure of the building elements and the
occupancy-related information is not completely present.
To overcome this and to guarantee that both models, En-
ergyPlus and the ROM, rely on the same data, the build-
ing information is enriched by existing data. This data
is based on the templates stored in the current release of
TEASER1.
For building physics related data, the physics for a typical
building with a construction year between 1995 and 2015
and a light building structure is assumed. For occupancy-
related information, the room names in the IFC are used
to identify the occupancy type. Based on these types and
the mentioned templates, the required information for the
simulation is set. Additionally, the conditions displayed
in Table 1 are applied. A constant infiltration rate (nin f)
and the same solar absorption coefficient (αsolar,abs) for
the materials are used.
For the comparison between EnergyPlus and the ROM,
no internal gains are applied to reduce the influences of
simulation software-related interpretation of the internal
loads and thereby focus on the comparison of the simu-
lated building physics.

Table 1. Additional conditions.

Tset,cooling[°C] Tset,heating[°C] nin f [1/h] αsolar,abs

25 20 0.2 0.7

3.3 Comparing TEASER and EnergyPlus
Using BIM as SSOC allows using different tools and ap-
proaches to create simulation models that reflect the same
building.

In a suitable modeled BIM model for BEPS, all build-
ing physics and almost all simulation relevant informa-
tion including profiles for internal gains can be included

1https://github.com/RWTH-EBC/TEASER/tree/development
commit 95243d4

Table 2. Four criteria for zoning.

Perimeter/Core (PC) Internal zone
External zone

Orientation (O) North/East
South/West

Glazing Ratio (GR) [%]

< 30
30 < GR < 50
50 < GR < 70
> 70

Usage (U) *

Table 3. Zoning Setups.

Approach nZones Zoning

PC 2

PC + O 3

U 6

PC + O + U 9

PC + O + U + GR 12

by using the non-proprietary IFC format (buildingSmart
2021). As the conversion of the BIM model to simula-
tion model in terms of BEPS is still a subject of research,
the self-developed toolchain BIM2SIM (Jansen, David et
al. 2021) for creating simulation models of different do-
mains is used in this paper. Besides the creation of Com-
putational Fluid Dynamics (CFD) and HVAC simulation
models, it allows also BEPS simulations with the tool
TEASER (Remmen et al. 2018) and EnergyPlus (Ener-
gyPlus 2020). As even BIM-Models created in the re-

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181665

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

667

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

10

20

30

H
ea

tin
g

D
em

an
d

[k
W

]

ROM: (68.07 MWh)
EP: (61 MWh)

(a) Annual heating demand

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−20

−10

0

C
oo

lin
g

D
em

an
d

[k
W

]

ROM: (-37.08 MWh)
EP: (-41 MWh)

(b) Annual cooling demand

Figure 2. Annual heating (a) and cooling (b) demands.

search context are still lacking some of the information
needed for BEPS, enrichment methods of BIM2SIM are
used to create enriched simulation models. Using the com-
bination of the BIM model as a SSOC and the modular
toolchain, BIM2SIM allows creating twin models with the
same parametrization and same boundary conditions in
TEASER and EnergyPlus. As TEASER exports a Mod-
elica multi-zone model in which all thermal zones have
adiabatic inner walls, no inter-zonal heat transfer is taken
into account. To provide a valid comparison, the Energy-
Plus model is configured with adiabatic inner walls and
without infiltration between the zones as well. In both
models, every room is represented by a single zone which
leads to 82 zones in total.

3.4 Zoning

After the comparison of TEASER with EnergyPlus, in the
next step different zoning strategies are applied to inves-
tigate the influence on computational effort and accuracy.
The reference is the not zoned model where each of the 82
rooms is represented by one separate zone. Based on the
related work, the reference case will be zoned by using
different combinations of the four criteria shown in Ta-
ble 2. The glazing ratio is divided into 4 groups, deviating
from the recommendation of DIN 18599-1.
This results in 5 separate options to zone the building,
which are displayed in Table 3 in order of increasing num-
ber of criteria and thus zones. The most detailed one is a
nZones = 12 setup where all criteria are taken into account.
To merge zones of different usage, the corresponding ge-
ometries and conditioning attributes have to be averaged.
In general, this information can be divided into exten-
sive attributes likes wall areas and air volumes, intensive
attributes like temperature set points, boolean attributes,
and lists, like occupancy profiles. The needed functions
are implemented into the algorithms to automate the pro-
cess and minimize errors. The resulting methodologies are
transferred into algorithms and included in the BIM2SIM
toolchain. This offers the advantage that the zoning has
no more to be done manually, but can be completely auto-
mated based on the information in the corresponding BIM
model and thereby integrated into the workflow.

4 Results and Discussion
4.1 Comparing TEASER and EnergyPlus
The resulting models and their simulation results are com-
pared loosely based on the methodology of the ASHRAE
140 specifications (ASHRAE 2017).
The yearly time series data for heating and cooling, in-
cluding the annual heating and cooling demands, are com-
pared in Figure 2. Comparing the results shows that both,
heating and cooling dynamics on the building level are
quite similar. However, the ROM tends to slightly higher
peak demands for heating and lower peak demands for
cooling. Also, the annual consumption for heating of the
ROM is 10 % higher and the annual consumption for cool-
ing 10 % lower compared to EnergyPlus. Comparing these
results with the existing ASHRAE 140 verifications for
Energyplus indicates that EnergyPlus is on the lower end
of the allowed bandwidth regarding heating (Henninger,
Robert H. and Witte, Michael J. 2015). The behavior that
the ROM predicts higher heating and lower cooling loads
can also be found in the verification made by Lauster,
Constantin, and Remmen (2017).

Figure 3. Selected rooms for in depth analysis.

For the following investigations, two rooms are selected
to be examined more closely. The rooms are highlighted
in Figure 3, whereas the red one is orientated towards the
south and the blue one towards the north. Both rooms have
a glazing ratio 60% < GR < 70%. In Figure 4 the inner
temperatures of the two rooms are shown on a daily ba-
sis for a winter and a summer day, while the building is

Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger
Non-Residential Buildings Based on BIM as Single Source of Truth

668 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181665

0 4 8 12 16 20 0
Daytime [h]

20

30

40

50

Te
m

pe
ra

tu
re

s
[°

C
]

ROM: 20 Jan
ROM: 27 Jul

EP: 20 Jan
EP: 27 Jul

(a) south-orientated room

0 4 8 12 16 20 0
Daytime [h]

10

20

30

Te
m

pe
ra

tu
re

s
[°

C
]

ROM: 20 Jan
ROM: 27 Jul

EP: 20 Jan
EP: 27 Jul

(b) north-orientated room

Figure 4. Free floating temperature for two days for a south- (a) and north- (b) orientated room.

0 4 8 12 16 20 0

0

2000

So
la

rI
rr

ad
ia

tio
n

[W
] ROM: 20 Jan

ROM: 27 Jul
EP: 20 Jan
EP: 27 Jul

(a) south-orientated room

0 4 8 12 16 20 0

0

250

500

750

So
la

rI
rr

ad
ia

tio
n

[W
] ROM: 20 Jan

ROM: 27 Jul
EP: 20 Jan
EP: 27 Jul

(b) north-orientated room

Figure 5. Solar irradiation through windows for both rooms and different days.

free-floating without heating or cooling provided. In both
cases, the ROM results in lower temperatures. This be-
havior is more intense for the south-orientated room. The
qualitative timeseries is anyhow described in the same way
by EnergyPlus and ROM. The high temperatures even in
winter for the south-orientated room show the effect of
over-discretization for the special case of adiabatic inner
walls. Due to the high glazing ratio, the temperatures in
the room rise up to 48 °C in the reference case of Energy-
Plus while the north-orientated room stays below 10 °C.
In Figure 5 the solar irradiation through windows for both
rooms is compared for the two different days. The ROM
reacts slower to the changes in irradiation as the Energy-
Plus simulation does. Apart from that the solar irradation
is calculated similar for both models.
In Figure 6 the heating and cooling powers for the two
rooms and the same winter and summer days are shown.
The time series of the ROM and EnergyPlus have the same
qualitative behavior, whereby the ROM shows again the
higher peak demands and reacts a bit slower. The effect of
over-discretization is again visible as the south-orientated
room needs to be cooled even in winter.
It was shown that the ROM predicts the annual heating
and cooling in the range of ± 10 % and also the dynamic
results for the whole building are deviating only slightly
from the EnergyPlus predictions. Comparing these val-
ues with the literature indicates that there are large varia-
tions in simulation results even while simulating the same
building. (Choi 2017) However, on a daily basis and when

investigating the detailed behavior of single rooms, the
ROM shows bigger deviations. Due to the assumption
that both models have adiabatic inner walls, unrealistic
temperatures occur in south-orientated rooms with a high
glazing ratio. It can be concluded, that, especially for in-
vestigations on a daily basis or room level, the assumption
of adiabatic inner walls has to be evaluated carefully.

4.2 Comparing zoning strategies
The results must be evaluated concerning two questions:

(i) How to improve the computational effort without
losing accuracy compared to the reference case?

(ii) How can zoning be used to reduce the influences of
assuming adiabatic interior walls?

The comparison of the reference setup with nZones = 82
and the 5 different zoning setups introduced in Table 3 are
displayed in Figure 7. The total consumption for heat-
ing and cooling is shown in total as well as the relative
deviation from the reference case. Additionally, the used
CPU-time for calculation is shown on a logarithmic basis.
It is recognizable that especially the zoning strategies with
a low number of zones have a high impact on the result-
ing consumption. However, the two most detailed strate-
gies with nZones = 9 and nZones = 12 have only a deviation
of around 1 % from the reference case while having a re-
markable advantage in computation time. This suggests
that for the use case of the here considered office building

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181665

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

669

0 4 8 12 16 20 0
Daytime [h]

−2000

−1000

0

Po
w

er
[W

]

ROM: -9.27 kWh
EP: -11.14 kWh

(a) south-orientated room (20. Jan.)

0 4 8 12 16 20 0
Daytime [h]

−2000

−1000

0

Po
w

er
[W

]

ROM: -14.02 kWh
EP: -14.75 kWh

(b) south-orientated room (27. Jul.)

0 4 8 12 16 20 0
Daytime [h]

0

200

400

600

Po
w

er
[W

]

ROM: 6.45 kWh
EP: 5.46 kWh

(c) north-orientated room (20. Jan.)

0 4 8 12 16 20 0
Daytime [h]

−800

−600

−400

−200

0

Po
w

er
[W

]
ROM: -4.64 kWh
EP: -4.93 kWh

(d) north-orientated room (27. Jul.)

Figure 6. Time series for heating and cooling for both rooms and different days.

the consideration of the glazing ratio does not make a de-
cisive difference. The computational effort can be reduced
by up to 97 %. It can be concluded that regarding question
(i) using the nZones = 9 or nZones = 12 approach leads to
a drastic reduction in computational effort while the re-
sults remain quite similar. To prove that also the dynamics
are not changing, in Figure 8 the comparison between the
nZones = 9 and nZones = 12 approach is shown on an annual
basis.
To investigate question (ii) as a first step, EnergyPlus was

used again to simulate the building but without the as-
sumption of adiabatic inner walls. The results show that
the simulated heating consumption decreases by 7.5 %
and the cooling consumption by 22 % compared to the val-
ues shown in Figure 2 when the inter zonal heat transfer
is taken into account. Comparing these results with the
results in Figure 7 makes it clear that a smaller number of
zones with a combination of south-orientated and north-
orientated rooms like for the nZones = 6 variant, which uses
only the usage for aggregation, leads to a more realistic re-

−50

−25

0

25

50

75

100

C
on

su
m

pt
io

n
[M

W
h] -14.13 % -12.35 % -6.5 % -0.93 % -0.2 % 0.0 %

-35.4 % -30.61 % -15.06 % 1.24 % 0.35 % -0.0 %

Heating Cooling

2 Zones 3 Zones 6 Zones 9 Zones 12 Zones 82 Zones (Ref.)
10−1

100

101

102

C
PU

-T
im

e
[m

in
]

0.59 min 1.05 min 2.1 min 3.11 min 4.89 min 43.72 min

Figure 7. Consumption for the 5 zoning strategies and the reference case including relative deviation to reference case.

Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger
Non-Residential Buildings Based on BIM as Single Source of Truth

670 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181665

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

10

20

30

H
ea

tin
g

D
em

an
d

[k
W

]

n=12: (67.93 MWh)
n=82: (68.07 MWh)

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−15

−10

−5

0

C
oo

lin
g

D
em

an
d

[k
W

]

n=12: (-37.21 MWh)
n=82: (-37.08 MWh)

(b)

Figure 8. Annual heating (a) and cooling (b) demands for not zoned and zoned building with 12 zones.

sult. Therefore, it can be concluded that for ROMs, where
the assumption of adiabatic inner walls is made, the most
detailed approaches, where the orientation is taken into ac-
count, leads again to an over-discretization. In these cases,
zoning strategies with a lower number of zones should be
preferred.

5 Conclusion
The provided research performs a first investigation on
comparing the simulation of complex buildings with a
ROM approach against an established simulation pro-
gram. By using EnergyPlus it was shown that even re-
duced order approaches deliver good qualitative and quan-
titative results and are capable to represent the overall ther-
mal behavior of the building. Nevertheless, it was also
shown that not all dynamics can be covered by the ROM.
The reduced model tends to have lower temperatures and
therefore higher heating and lower cooling loads, both
in annual as peak demand. It can be concluded that for
the investigated case of a light constructed non-residential
building with a total glazing ratio of 25 % the ROM is pre-
dicting the annual heating and cooling loads, as well as
the peak demands similar to the reference model in Ener-
gyPlus within a range of 10 %. If a detailed analysis of the
thermal behavior on shorter periods is wanted, one should
consider using a detailed approach instead of a reduced
approach. For the analysis on a yearly basis the reduced
model predicts the behavior in reasonable ranges.
Furthermore, it was shown that by reducing the number of
zones the computational effort can be drastically reduced
compared to the not zoned building. Moreover, the re-
duction of the building on a really small number of zones
can lead to slight to medium differences in the calculated
heating loads and massive differences regarding cooling
loads. For the special assumption of adiabatic inner walls
used by the investigated ROM, a suiting zoning strategy
can reduce the unintentional effect of too high heating and
cooling demands. The investigated zoning strategies were
implemented into the BIM2SIM toolchain so that they
can be easily applied to new buildings in future. In fu-
ture work, the comparison between TEASER and Ener-
gyPlus should be done with internal gains and dynamic
infiltration rates to cover more fluctuating changes. These

changes can have different excitation frequencies which
could pose an additional challenge for the reduced ap-
proach as the number of excitation frequencies that can
be covered is determined by the number of capacities and
resistances (lauster_verication_2017). Furthermore, the
comparison should be extended to multiple buildings with
different geometry and mass classes. Thereby, the insights
of this paper can be verified. Additionally, a deeper inves-
tigation of the reasons for the over proportional increasing
computational effort by the number of zones should be
performed.

6 Acknowledgements
The authors gratefully acknowledge the financial support
of the German Federal Ministry for Economic Affairs
and Energy in the project “BIM2SIM” (project number
03ET1562A). The authors also want to thank for the sup-
port and discussions inside the IBPSA Project 1.

References
ASHRAE (2017). ANSI/ASHRAE Standard 140:2017, Standard

method of test for the evaluation of building energy analy-
sis computer programs. Tech. rep. Atlanta, USA: American
Society of Heating, Refrigerating and Air-Conditioning En-
gineers.

Brès, Aurélien et al. (2017). “Impact of zoning strategies for
building performance simulation”. In: Proceedings of a meet-
ing held 10-12 July 2017, Nottingham, UK. Nottingham, UK.

buildingSmart (2021). IFC4 Documentation. https: // standards.
buildingsmart.org/ ifc/ dev/ ifc4_2/ final/ html/ . (Visited on
2021-05-10).

Choi, Joon-Ho (2017). “Investigation of the correlation of build-
ing energy use intensity estimated by six building perfor-
mance simulation tools”. In: Energy and Buildings 147,
pp. 14–26. ISSN: 03787788. DOI: 10.1016/j .enbuild.2017.
04.078.

DIN V 18599-1 (2018). Energetische Bewertung von Gebäu-
den - Teil 1: Allgemeine Bilanzierungsverfahren, Begriffe,
Zonierung und Bewertung der Energieträger.

Dogan, Timur, Christoph Reinhart, and Panagiotis Michalatos
(2016). “Autozoner: an algorithm for automatic thermal zon-
ing of buildings with unknown interior space definitions”. en.
In: Journal of Building Performance Simulation 9.2. Number:
2, pp. 176–189. ISSN: 1940-1493, 1940-1507. DOI: 10.1080/
19401493.2015.1006527.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181665

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

671

EnergyPlus (2020). www.energyplus.net .
Georgescu, Michael, Bryan Eisenhower, and Igor Mezic (2012).

“Creating zoning approximations to building energy models
using the Koopman operator”. In: IBPSA USA Sim Build.

Haefele, Karl-Heinz (2021). KIT IFC Examples - IfcWiki. https:
/ / www. ifcwiki . org / index . php ? title = kit _ ifc _ examples .
(Visited on 2021-05-07).

Henninger, Robert H. and Witte, Michael J. (2015). EnergyPlus
8.3.0-b45b06b780 Testing with Building Thermal Envelope
and Fabric Load Tests from ANSI/ASHRAE Standard 140-
2011. Tech. rep.

Jansen, David et al. (2021). “BIM2SIM - Development of semi-
automated methods for the generation”. In: Building Simu-
lations 2021 - to be published, accepted for presentation.
Bruges, Belgien.

Kuniyoshi, Ryuta, Michael Kramer, and Manuel Lindauer
(2018). “Validation of RC Building Models for Applications
in Energy and Demand Side Management”. en. In: eSIM 2018
Conference Proceedings. Montréal, Canada, p. 10.

Lauster, Moritz, Ana Constantin, and Peter Remmen (2017).
“Verification and Comparison of High and Low Order
Building Models from the Modelica Library AixLib using
ASHRAE Standard 140”. In: Proceedings of Building Sim-
ulation 2017. San Francisco, USA: E.ON Energy Research
Center, RWTH Aachen University.

Lauster, Moritz, Dirk Müller, and Christoph Nytsch-Geusen
(2018). “Parametrierbare Gebäudemodelle für dynamische
Energiebedarfsrechnungen von Stadtquartieren”. PhD thesis.
Aachen. ISBN: 978-3-942789-59-2.

Lawrie, Linda K. and Drury B. Crawley (2019). Development of
Global Typical Meteorological Years (TMYx). http:// climate.
onebuilding.org .

Müller, Dirk et al. (2016). “Aixlib – An Open-Source Model-
ica Library Within the Iea-Ebc Annex 60 Framework”. In:
Conference Proceedings of Central European Symposium on
Building Physics. Dresden, Germany.

Remmen, Peter et al. (2018). “TEASER: an open tool for urban
energy modelling of building stocks”. In: Journal of Building
Performance Simulation 11. DOI: 10.1080/19401493.2017.
1283539.

Smith, Lillian, Kyle Bernhardt, and Matthew Jezyk (2011). “Au-
tomated energy model creation for conceptual design”. In:
Proceedings of the 2011 Symposium on Simulation for Ar-
chitecture and Urban Design. SimAUD ’11. Boston, Mas-
sachusetts: Society for Computer Simulation International,
pp. 13–20.

U.S. Department of Energy (2020). EnergyPlus: Engineering
Reference Version 9.4.0. Tech. rep.

United Nations Environment Programme (2018). Global Status
Report 2018 - Towards a zero-emission, efficient and resilient
buildings and construction sector. Tech. rep. ISBN: 978-
92-807-3729-5. Paris, France: International Energy Agency
(IEA).

VDI 6007 -1 (2015). Calculation of transient thermal response
of rooms and buildings - Modelling of rooms.

Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger
Non-Residential Buildings Based on BIM as Single Source of Truth

672 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181665

Accurate Robot Simulation for Industrial Manufacturing Processes
using FMI and DCP Standards

Nihar Hasmukhbhai Shah1 Perig Le Henaff2 Clemens Schiffer3 Martin Krammer3

Martin Benedikt3

1AIRBUS Operations GmbH, Germany, nihar.shah@airbus.com
2AIRBUS Operations S.A.S., France perig.lehenaff@airbus.com

3Virtual Vehicle Research GmbH, Austria,
{clemens.schiffer,martin.krammer,martin.benedikt}@v2c2.at

Abstract
Increased demand for customized products and reduced
manufacturing times are key drivers towards modern, au-
tomated manufacturing systems. Manufacturing compa-
nies increasingly rely on simulation models of their man-
ufacturing systems, with the goal to optimize critical pro-
duction parameters and programming of their industrial
assets. Simulation driven optimization concepts like dig-
ital twin and virtual commissioning are gaining popular-
ity among manufacturing units to drive production rates
higher. Manufacturing systems in the aerospace domain
are highly complex, due to component size, tight tol-
erance requirements, and multi-tier manufacturing pro-
cesses. Accurate simulations of robots and other pro-
grammable assets are needed, in order to lower the risk of
collisions and manufacturing down times. In practice, this
leads to inhomogeneous and even proprietary simulation
environments, with different software interfaces. In this
paper we introduce an accurate robotic arm simulation for
industrial manufacturing robots that is based on open stan-
dards. This simulation environment is based on two open
access standards, namely the Functional Mock-up Inter-
face (FMI) and the Distributed Co-Simulation Protocol
(DCP). In a virtualized manufacturing process the number
of involved stakeholders is significantly higher. Typically,
it includes software and simulation tool vendors, next to
the robotic system providers. Therefore a modular soft-
ware architecture based on open access standards is con-
sidered beneficial. Due to the fact that passenger aircraft
are highly customized, frequent reprogramming of robotic
systems is needed. During these component manufactur-
ing processes the challenge is to maintain a high level of
accuracy and reliability.
Keywords: manufacturing, robotics, co-simulation, virtu-
alization, standards

1 Introduction
1.1 Motivation
The digitization of manufacturing progresses towards the
paradigm of Industry 4.0 (Lasi et al. 2014). We can

observe a strong shift from manufacturing products in a
repetitive way to a significantly more smart and intelligent
way of manufacturing. Especially in airplane industry,
where orders are highly customized, including lots of in-
dividual adaptations, following high numbers of variants.
Manufacturer Airbus produces parts across seven Euro-
pean countries (Mas et al. 2013) and finally assembles
them to complete airplanes. The production of airplanes is
massively distributed, and so is the entire supply chain be-
hind manufacturing. Production processes are optimized
for concurrency and collaboration. The goal is to enable
short time-to-market and reduced cost. At the same time,
quality levels should be maintained or even increased.

Today industrial robots are increasingly used in many
airplane manufacturing steps. Manual offline program-
ming of manufacturing robots for large aircraft compo-
nents is a difficult task. There are several reasons for that.
First of all, offline programming refers to the process of
defining robotic movements when the robot is not in ser-
vice. The manufacturing line has to be stopped for the
programming process. Second, offline programming is
constrained by numerous frame conditions. For example,
space for robot movement is often limited, due to robot
or machinery placement and complexity of parts. Third,
inadvertent contact and collisions between the robot and
airplane parts must strictly be avoided. Airplane materi-
als and parts are expensive, and even partly manufactured
composite parts are valuable. Damaged parts must be re-
placed, this adds up additional cost, generates waste, and
slows down production. The further manufacturing pro-
cesses are progressed, the more important it is to avoid
damage to parts. For these reasons collision free path plan-
ning is important. In practice, even small changes to the
manufacturing process may have severe impact to robot
movement, and therefore programming. Therefore maxi-
mum flexibility of configuration and reconfiguration is key
to speed up manufacturing and increase facility output. Fi-
nally and fourth, manual robot programming is time con-
suming and subject to improvement.

Due to advancements in simulation technology, virtual
validation has been identified as a key method to over-

DOI
10.3384/ecp21181673

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

673

come aforementioned problems. Virtual validation refers
to the solution, where a software programmed robot can be
tested and evaluated in a simulated space, before the mov-
ing on to the real robot. This work focuses on the infras-
tructure required for virtual validation. As airplane parts
are provided by a large base of suppliers and go through
many different process steps, the used software tools are
diverse. As a consequence, virtual validation needs to be
able to deal with numerous different interfaces. Support-
ing many interfaces turns out to be costly.

1.2 Approach
In this work we are investigating the capabilities of FMI
and DCP standards, to cope with virtual validation of the
behaviour of robotic systems. FMI stands for Functional
Mock-up Interface (Blochwitz et al. 2011). It represents
a software standard for co-simulation in several industry
sectors. It was proposed to solve the need for interoper-
ability between models, solvers and tools. FMI was devel-
oped in the MODELISAR project, starting in 2008. The
FMI specification is standardized as a Modelica Associa-
tion Project (MAP). Its most recent specification version is
2.0.2 which was released in 2020. The FMI specification
document defines an interface for model exchange and co-
simulation. Today more than 100 software tools support
the FMI1. The Distributed Co-Simulation Protocol (DCP)
is an application-level communication protocol. It was de-
signed to integrate models or real-time systems into sim-
ulation environments. It was developed in the ACOSAR
project (Krammer, Marko, and Martin Benedikt 2016). It
enables exchange of simulation related configuration in-
formation and data by use of an underlying transport pro-
tocol (such as UDP, TCP, or CAN). At the same time, the
DCP supports the integration of tools and real-time sys-
tems from different vendors. The DCP is intended to make
simulation-based workflows more efficient and reduce the
overall system integration effort. It was designed with
FMI compatibility in mind, i.e., it follows a master-slave
communication principle, uses an aligned state machine
implementing an initialization mechanism, and defines an
overall integration process which is driven by standard-
ized XML file formats. Version 1.0 of the DCP specifica-
tion document was released as an open-access Modelica
standard in early 2019 (Krammer, Martin Benedikt, et al.
2018; Krammer, Schuch, et al. 2019).

We aim at an accurate simulation of a universal robot
(UR10) robotic arm. The UR10 is not compatible with,
e.g., the RRS2 (realistic robot simulation) protocol. To
overcome this issue, simulation environment provided by
the robot vendor shall be used. For that purpose, a DCP
master and slave pair shall be embedded into a FMU. The
FMU can then be consumed by any FMI compatible robot
programming software tool. The UR10 provides a virtual
robot controller (VRC) through a virtual machine. Addi-

1http://fmi-standard.org/tools/

tionally, UR drivers are openly available and adopted by
ROS (Robot Operating System). Its interfaces are speci-
fied in an open manner, but vendor specific. Due to the
open nature of FMI and DCP, the necessary interfaces and
configurations can be adapted effectively.

This paper is structured as follows. Section 2 provides
an overview of related work from the fields of robotics and
distributed co-simulation. In Section 3 our main contribu-
tion is stated. Section 4 highlights main results. Section 5
summarizes and concludes this paper.

2 Related Work
Realistic Robot Simulation (RRS) (Bernhardt, Schreck,
and Willnow 1994; Bernhard, Schreck, and Willnow
2001; Bernhardt, Schreck, and Willnow 2001; Bernhardt,
Schreck, Willnow, and Baumgartner 2002) is an initiative
of automotive companies, robot manufacturers, simula-
tor manufacturers, line builders, and measurement system
manufacturers. It aims at enhancement of robot simulation
accuracy and methodologies for robot off-line program-
ming. RRS-2 defines a Virtual Robot Controller (VRC)
interface. Its specification is maintained by Fraunhofer
IPK and is not openly available. Only few robot manufac-
turers are offering VRCs compatible to the RRS-II proto-
col for simulation purpose. Most manufacturers have their
own software solutions for realistic simulation. Unfortu-
nately those are often not compatible to their product life
cycle management (PLM) solutions.

A framework based on OPC-UA for distributed indus-
trial robot control is shown in (Vick and Krüger 2018).
It aims at virtualization on cloud systems and virtual ma-
chines, and uses the UR10 robot. The integration of simu-
lation systems into OPC-UA networks is shown in (Reitz
and Rosmann 2020). It focuses on data mapping from a
simulation meta data model to an OPC-UA information
model. The architecture allows for concurrent message
passing between an OPC-UA server and the simulation.
This allows for simulation of entire scenarios of an auto-
motive production line.

This publication focuses on co-simulation techniques.
A survey regarding the wide field of co-simulation is pre-
sented in (Gomes et al. 2018). A real-time co-simulation
platform for virtual commissioning of production systems
is presented in (Scheifele, Verl, and Riedel 2019). In a
similar way, virtual commissioning using co-simulation
for virtual plants is shown in (Süß, Strahilov, and Diedrich
2015). A co-simulation platform for design of networked
control systems is shown in (W. Li, Zhang, and H. Li
2014).

In the field of co-simulation, the coupling between
variables represents one of the largest challenges (Mar-
tin Benedikt and Hofer 2015). A solution to overcome
the coupling challenge is presented in (Benedikt et al.
2013). In (Stettinger et al. 2014) co-simulation is ex-
tended to the real-time domain by using a model-based

Accurate Robot Simulation for Industrial Manufacturing Processes using FMI and DCP Standards

674 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181673

Application

software

(virtual

environment)

FMI
Co-simulation

platform

DCP

(UDP)

Robot controller

simulation

(virtual machine,

robot vendor)

FMU

(Slave)

FMI

Master

DCP

Master

DCP

Slave

Robotics controller

(real hardware)

Robotic arm

(real hardware)

Program download (2)

Robotic arm control (3)

Assumption: Accurate

behaviour of simulated

robotic arm

Scope: Robotic arm simulation based on open standards

Virtual validation of robotic arm system

VM

UR

sim

DCP

slave sw

Advantages:

* Connect arbitrary robotic systems to

virtual environment

* based on open standards:

Well-established standards, good

community knowledge

FMI in virtual env,

good documentation avail.

* Robot behaviour abstracted from

interface:

DCP slave software available, reduces

complexity to management of signals

(create, read/write)

* easy inclusion of other systems, e.g.

conveyor belts, etc. or other simulations,

e.g. material characteristics, multibody

systems

* no vendor lock in

* Virtual env and robotics simulation can

focus on their core competencies, without

need to think about data exchange

* What would happen if we’d have 3

robots? Where to split? Multiple FMUs?

Multiple DCP slaves?

PLC

Movement data

Movement control (1)

Virtual robotic arm

URSim

ROS-based driver

DCPLib (open source) Slave A

DCP Slave B

DCP Master

UDP

FMU Connector Mapping

FMU 23DExperience

(Dassault)

FMU

Connector

ControlBuild (Dassault)

UR PolyScope virtual machine

(Universal Robots)

configuration &

control

configuration &

control

data exchange

FMU 1

Shared

memory

interface

Co-simulation platform

(Model.CONNECT, AVL)

Figure 1. Accurate simulation of a robotic arm system, including simulation based on open standards.

extrapolation scheme, to compensate round-trip time and
noise-handling. A mixed real-virtual prototype from the
automotive domain based on utilization of the DCP is
shown in (Baumann et al. 2019). A distributed demon-
strator consisting of a small scale test bed connected to a
co-simulation environment is used for performance evalu-
ation. Another example for a real-time co-simulation ap-
plication can be found in (Rehtanz and Guillaud 2016).

3 Co-Simulation Architecture for
Robotic Arm Control

3.1 Concept
The main concept of the proposed solution is shown in
Figure 1. The application software on the upper left side
provides a virtual environment for the robot and the ob-
jects it interacts with. This application software is able to
integrate functional mock-up units (FMUs), hence it acts
as an FMI master.

The robotics simulation on the top right hand side shall
be provided by the robot vendor. This ensures the best
possible simulation, having compatibility, consistency,
and accuracy in mind. For the intended target robot UR10
a virtual machine is available. This virtual machine is ac-
cessible and provides an entry point for adaptations. It is
intended to act as a DCP slave.

The center part of the concept is a co-simulation plat-
form. It must be able to control one or more robot simula-
tions, thus act as a DCP master. On the other hand, it must
abstract robot connectivity behind the FMI, and act like an
FMU for co-simulation.

The goal is to build an accurate and real-time capable
robotic arm simulation, with a simulation infrastructure

that is fully based on open standards. In a broader sense
of virtual validation, the robotic arm simulation shall be
used as a central component for safe and reliable robot
programming. Finally, the simulation shall imitate the
movement and behavior of the real hardware robotic arm,
so that manufacturing processes can be planned and ana-
lyzed with the best possible predictive capabilities.

3.2 Implementation
The aforementioned concept was implemented as shown
in Figure 2. The application software (3DExperience) is
capable of running FMUs. To establish communication
between the virtual environment and the virtual robot con-
troller a co-simulation platform is used. There are three
main characteristics of the co-simulation platform.

1. It can be accessed as an FMU from the outside.

2. It is capable of acting as a DCP master.

3. It is able to provide DCP slave functionality.

The DCP master is capable of configuring and operating
a DCP simulation scenario. Technically, it will establish
a configuration for two slaves. It distributes configuration
information, such as variable input and output configura-
tions. Typical parameters include step size and time res-
olution, as well as the network configuration information
for each variable. In our architecture one slave (slave A)
represents the robotic simulation. It is implemented using
DCPLib. The other slave (slave B) ensures DCP access to
the co-simulation platform. This summarizes the logical
view on our architecture.

However, in reality the DCP master and slave B are re-
alized in a monolithic fashion. It is able to send and re-
ceive simulation data as defined in the DCP specification.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181673

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

675

Application

software

(virtual

environment)

FMI
Co-simulation

platform

DCP

(UDP)

Robot controller

simulation

(virtual machine,

robot vendor)

FMU

(Slave)

FMI

Master

DCP

Master

DCP

Slave

Robotics controller

(real hardware)

Robotic arm

(real hardware)

Program download (2)

Robotic arm control (3)

Assumption: Accurate

behaviour of simulated

robotic arm

Scope: Robotic arm simulation based on open standards

Virtual validation of robotic arm system

VM

UR

sim

DCP

slave sw

Advantages:

* Connect arbitrary robotic systems to

virtual environment

* based on open standards:

Well-established standards, good

community knowledge

FMI in virtual env,

good documentation avail.

* Robot behaviour abstracted from

interface:

DCP slave software available, reduces

complexity to management of signals

(create, read/write)

* easy inclusion of other systems, e.g.

conveyor belts, etc. or other simulations,

e.g. material characteristics, multibody

systems

* no vendor lock in

* Virtual env and robotics simulation can

focus on their core competencies, without

need to think about data exchange

* What would happen if we’d have 3

robots? Where to split? Multiple FMUs?

Multiple DCP slaves?

PLC

Movement data

Movement control (1)

Virtual robotic arm

URSim

ROS-based driver

DCPLib (open source) Slave A

DCP Slave B

DCP Master

UDP

FMU Connector Mapping

FMU 23DExperience

(Dassault)

FMU

Connector

ControlBuild (Dassault)

UR PolyScope virtual machine

(Universal Robots)

configuration &

control

configuration &

control

data exchange

FMU 1

Shared

memory

interface

Co-simulation platform

(Model.CONNECT, AVL)

Figure 2. Realized tool couplings and interfaces to use URSim with 3DExperience

This simplifies the architecture as it is the only DCP com-
ponent in the co-simulation platform FMU. If the used
DCP master would not be capable of data exchange, a
separate, encapsulated DCP slave (representing slave B)
is needed within the FMU for this purpose.

When the FMU is instantiated by the FMI master the
DCP scenario is configured and started. This results in
data exchange via the DCP protocol between FMU 1 and
the robotic controller simulation. This data is then relayed
via FMU 2 to the application software (3DExperience)
and vice versa.

3.3 Configuration Management
One of the main advantages of this approach is its impact
on configuration management. Both FMI and DCP stan-
dards rely on static description files. So for each FMU
a modelDescription.xml contains the necessary in-
formation for structural integration. In a similar way the
DCP slaves, in particular Slave A, can be structurally inte-
grated by use of a standardized DCP slave description file.
The co-simulation platform consumes this DCP slave de-
scription file. After that, the co-simulation platform needs
a mapping, to associate all variables from DCP to vari-
ables of FMI, and vice versa. The only code that needs to
be compiled in a build process from source is the DCPLib
code for Slave A.

3.4 Scalability
In many industrial manufacturing tasks multiple robots
have to cooperate or interact with other manufacturing
appliances. Typical examples are multiple robotic arms

performing work on the same part, transportation vehi-
cles, conveyor belts, and similar. Following the introduced
simulation architecture, a larger number of DCP slaves
is required to incorporate these appliances. This can be
achieved in two different ways.

Assuming that one instance of a co-simulation platform
is used to control one DCP slave, the application software
must be capable of integrating multiple FMUs. By us-
ing this solution, the complexity of DCP communication
remains at a low level. But at the same time, multiple
instances of the co-simulation platform are required. This
poses increased requirements to resources (memory, CPU,
etc.) of the host system(s).

In contrast to this solution, the application software may
continue to use one single FMU, but increase the num-
ber of exchanged variables to control more devices. This
can be achieved by using array data types or multiple vari-
ables. In this case, the co-simulation platform has to reg-
ister and control multiple DCP slaves. Technically, there
are two options for this as well. Instantiation of one mas-
ter per DCP slave, or instantiation of one single master
controlling multiple slaves.

Combinations of these two possibilities are feasible. In
any way, the proposed architecture is considered to be
scalable, which also depends strongly on the underlying
hardware resources and their configuration.

3.5 Time Regime
The virtual robot controller has an operating frequency
of 125Hz. Therefore, the operating mode of the DCP
scenario was set to SRT (soft real-time) (Krammer, Mar-

Accurate Robot Simulation for Industrial Manufacturing Processes using FMI and DCP Standards

676 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181673

tin Benedikt, et al. 2018). This means that the absolute
time should be synchronized with the simulated time. The
DCP output step size of the virtual robot controller is con-
figured with 0.008ms. The DCP step size is handled in-
dependently of the FMI step size. It is guaranteed that
a FMI do-step call yields the most recent DCP variable
value. 3DExperience acts as FMI importer. For real-time
execution of the entire simulation scenario, the FMI im-
porter must periodically call the do-step function with the
same frequency and step size as used by the DCP master.

3.6 Software Tools
DCPLib is an open-source software library maintained
by Modelica Association Project (MAP) DCP. Its initial
version was created as a deliverable during the ITEA 3
ACOSAR project. It consists of several packages. The
core library contains common classes, like constants and
PDU definitions. Furthermore, master and slave packages
are available, to rapidly create DCP slaves and a master to
control them. DCPLib supports UDP and TCP over IPv4
transport protocols. Furthermore, it includes packages for
generation and processing of ZIP- and XML-based de-
scription files. DCPLib was used for the robotics simu-
lation part of this work.

Model.CONNECT™ is an open model integration and
co-simulation platform from AVL GmbH. Typically, it im-
proves development efficiency by interlinking simulation
models into a consistent virtual prototype. The origin
of simulation models is arbitrary, as the architecture of
Model.CONNECT™supports the integration of up to 40
different modeling tools. Next to these well-known mod-
eling and simulation tools, Model.CONNECT™supports
a number of open standards, including Modelica Associa-
tion’s FMI, DCP, and SSP specifications. This allows for
pure virtual and also mixed real-virtual prototypes, based
on open standards. Model.CONNECT™was used as a co-
simulation platform because it already supports all nec-
essary interfaces (like acting as a DCP-master for DCP-
slaves) and a Model.CONNECT™model can be exported
as an FMU to allow the interaction with any tool that can
import Co-Simulation FMUs.

ControlBuild is a software platform by Dassault Sys-
temes. ControlBuild is an open automation software plat-
form that allows seamless progress through all phases of
the application development cycle – from definition and
validation of specification to implementation and deploy-
ment (Systemes n.d.). ControlBuild Validation allows vir-
tualization of physical industrial installations. A large
part of the tests is traditionally carried out on-site. In
the following integration phase tests are simulated on a
test platform in a near-real-life environment. Control-
Build is part of the 3DExperience portfolio and provides
seamless interfaces with the 3DExperience platform for
simulation and validation purposes. Based on a model-
driven approach and supported by a structured set of li-

braries, ControlBuild is used to efficiently model, simu-
late, test, validate and deploy control applications accord-
ing to IEC61131-3 (Programmable controllers - Part 3:
Programming languages). Furthermore, ControlBuild al-
lows co-simulation of virtualized models of different in-
dustrial assets. It is able to link their behaviour to corre-
sponding digital representations in 3DExperience through
standardized interfaces, such as FMI.

3DExperience 3DExperience is a cloud-based collabo-
rative Product Lifecycle Management platform by Das-
sault Systemes. It contains software solutions for all
phases of the product life cycle supporting the digital de-
sign and development of products that are subsequently
manufactured. As a platform, it houses multiple capa-
bilities (applications or apps) in a single seamless piece
of software. DELMIA (Digital Enterprise Lean Manu-
facturing Interactive Application) is part of the 3DExperi-
ence platform that provides specialized solutions for digi-
tal manufacturing and simulations. 3DExperince supports
standardized simulation interfaces, such as FMI.

4 Results
The introduced concept was implemented, including the
described tool couplings and interfaces. Figure 3 shows a
screen capture of the running robot simulation. On the up-
per side of the image the debugging output of DCPLib can
be seen. DAT_input_output PDUs are sent, they con-
tain a payload carrying float64 data type values. In the
rolled out DCP configuration one data_id per variable
was used. On the lower side of the image the graphical
programming environment of UR10 can be seen. It shows
robotic arm controls next to the status of all joints of the
robotic arm.

Figure 4 shows a visualization of a sequence of move-
ments of the robotic arm in a three-dimensional space.
The trajectories were plotted by the robot’s tool tip. The
dashed line represents the movement trajectory as calcu-
lated by 3DExperience (3DX). It shows clear and ideal-
ized characteristics. In contrast to that, the continuous
line represents the movement trajectory as calculated by
the virtual robot controller (VRC). This trajectory shows
some deviations compared to the trajectory of 3DExperi-
ence.

The difference between both trajectories was calculated
by using a minimum-distance algorithm. For one trajec-
tory point, the minimum distance to a line defined by the
two closest points of the other trajectory was calculated.
As a result the maximum deviation of the virtual robot
controller’s path from the 3DExperience’s path was 2.793
millimeters. The standard deviation across the entire se-
quence of movements amounts to 0.421 millimeters, the
mean value was determined to be 0.691 millimeters. UR-
Sim considers additional robotic parameters, as physical
structures and materials, as well as mechanic joints and

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181673

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

677

Figure 3. Universal Robot UR10 Simulation as DCP Slave A

hinges. It is expected that this leads to a more accurate
simulation result, which is considered being closer to re-
ality as the reference trajectory by 3DExperience.

5 Conclusion
In this paper we highlight a flexible concept for accurate
simulation of a robotic arm. Its simulation architecture is
based on open-access standards. Furthermore, it relies on
open-access interface specifications and partly on open-
source software.

We have successfully demonstrated the feasibility of
our approach. The proposed simulation architecture is
highly modular, mainly due to the use of FMI and DCP.
These open-access interface and protocol specifications
provide the most flexibility. This is not only true for large
original equipment manufacturers, but the entire approach
has the potential to (re-)align the entire supply chain of
industrial robotics and manufacturing. The proposed ap-
proach poses a strong shift from custom software tools
to configurable, modular, special purpose software tools
for robotics and manufacturing. The added value origi-
nates from the capability to configure the involved soft-
ware tools and their interfaces. The efforts spent for cod-
ing were reduced to a minimum. In our case, DCPLib was
the only software package that required a build process.

Future work includes the process of scaling up the in-
troduced solutions to full manufacturing processes or parts
thereof. For example, multiple robots operating in paral-
lel require respective collaborative solutions for simula-
tion. This can be achieved by modification of interfaces,
and parallelization of communication to distributed com-
ponents. Finally, a set of virtual robots could be effectively
created by multiple instantiation mechanisms.

References
Baumann, Peter et al. (2019). “Using the Distributed Co-

Simulation Protocol for a Mixed Real-Virtual Proto-
type”. In: Proceedings - 2019 IEEE International Con-
ference on Mechatronics, ICM 2019. Ilmenau, Germany:
IEEE Industrial Electronics Society, pp. 440–445. ISBN:
9781538669594. DOI: 10.1109/ICMECH.2019.8722844.

Benedikt, M et al. (2013). “NEPCE-A nearly energy-preserving
coupling element for weak-coupled problems and co-
simulations”. In: Computational Methods for Coupled Prob-
lems in Science and Engineering V - A Conference Celebrat-
ing the 60th Birthday of Eugenio Onate, COUPLED PROB-
LEMS 2013, pp. 1021–1032. ISBN: 9788494140761.

Benedikt, Martin and Anton Hofer (2015). “Guidelines for
the application of a coupling method for non-iterative co-
simulation”. In: Proceedings - 8th EUROSIM Congress on
Modelling and Simulation, EUROSIM 2013, pp. 244–249.
ISBN: 9780769550732. DOI: 10.1109/EUROSIM.2013.52.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7004951.

Bernhard, Rolf, Gerhard Schreck, and Cornelius Willnow
(2001). “DEVELOPMENT OF VIRTUAL ROBOT CON-
TROLLERS AND FUTURE TRENDS”. In: 6th IFAC Sym-
posium on “Cost oriented Automation”.

Bernhardt, Rolf, Gerhard Schreck, and Cornelius Willnow
(1994). “The Realistic Robot Simulation (RRS) Interface”.
In: IFAC Proceedings Volumes 27.4, pp. 321–324. ISSN:
14746670. DOI: 10 . 1016 / s1474 - 6670(17) 46044 - 7. URL:
http://dx.doi.org/10.1016/S1474-6670(17)46044-7.

Bernhardt, Rolf, Gerhard Schreck, and Cornelius Willnow
(2001). “Virtual Robot Controllers as Simulation Agents”. In:
Workshop on Agent-Based Simulation, SCS - The Society for
Modeling and Simulation International in cooperation with
ASIM - Arbeitsgemeinschaft Simulation, pp. 1–6.

Bernhardt, Rolf, Gerhard Schreck, Cornelius Willnow, and
Alan Baumgartner (2002). “Realistic Robot Simulation in
Concurrent Engineering of Manufacturing Lines in Au-
tomotive Industries”. In: Eighth ISPE INTERNATIONAL
CONFERENCE ON CONCURRENT ENGINEERING : RE-
SEARCH AND APPLICATIONS.

Blochwitz, Torsten et al. (2011-03). “The Functional Mockup
Interface for Tool independent Exchange of Simulation Mod-
els”. In: In Proceedings of the 8th International Modelica
Conference, pp. 105–114. ISBN: 978-91-7393-096-3. DOI:
10.3384/ecp11063105.

Gomes, Cláudio et al. (2018). “Co-Simulation: A Survey”. In:
ACM Computing Surveys 51.3, pp. 1–33. ISSN: 0360-0300.
DOI: 10.1145/3179993.

Krammer, Martin, Martin Benedikt, et al. (2018). “The dis-
tributed co-simulation protocol for the integration of real-
time systems and simulation environments”. In: Simulation
Series. Vol. 50. 10, pp. 1–14. ISBN: 9781510860230. DOI:
10.22360/summersim.2018.scsc.001. URL: https://dl.acm.
org/citation.cfm?id=3275383.

Krammer, Martin, Nadja Marko, and Martin Benedikt
(2016). “Interfacing Real-Time Systems for Advanced
Co-Simulation - The ACOSAR Approach”. In: STAF
2016 Doctoral Symposium and Projects Showcase. Ed. by
Catherine Dubois et al. Vienna, Austria, pp. 32–39.

Accurate Robot Simulation for Industrial Manufacturing Processes using FMI and DCP Standards

678 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181673

 600
 610

 620
 630

 640
 650

 660
 670

 400

 600

 800

 1000

 1200

-500

-400

-300

-200

3DX
VRC

X

Z

Y

Figure 4. Visual comparison of robotic arm movement trajectories, as recorded with 3DExperience and Virtual Robot Controller

Krammer, Martin, Klaus Schuch, et al. (2019-02). “Standard-
ized Integration of Real-Time and Non-Real-Time Systems:
The Distributed Co-Simulation Protocol”. In: Proceedings
of the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019. Vol. 157. Linköping University
Electronic Press, Linköpings universitet, pp. 87–96. DOI: 10.
3384/ecp1915787. URL: http://www.ep.liu.se/ecp/article.
asp?issue=157%7B%5C%%7D26article=9.

Lasi, Heiner et al. (2014). “Industry 4.0”. In: Business and
Information Systems Engineering 6.4, pp. 239–242. ISSN:
18670202. DOI: 10.1007/s12599-014-0334-4.

Li, Weilin, Xiaobin Zhang, and Huimin Li (2014). “Co-
simulation platforms for co-design of networked control sys-
tems: An overview”. In: Control Engineering Practice 23.1,
pp. 44–56. ISSN: 09670661. DOI: 10 . 1016 / j . conengprac .
2013.10.010. URL: http://dx.doi.org/10.1016/j.conengprac.
2013.10.010.

Mas, F. et al. (2013). “Collaborative engineering: An airbus
case study”. In: Procedia Engineering 63, pp. 336–345. ISSN:
18777058. DOI: 10.1016/j.proeng.2013.08.180.

Rehtanz, Christian and Xavier Guillaud (2016). “Real-Time and
Co-Simulations for the Development of Power System Mon-
itoring , Control and Protection”. In: Power Systems Compu-
tation Conference (PSCC) 2016. DOI: 10.1109/PSCC.2016.
7541030.

Reitz, Jan and Jurgen Rosmann (2020). “Automatic Integration
of Simulated Systems into OPC UA Networks”. In: IEEE
International Conference on Automation Science and Engi-

neering 2020-August, pp. 697–702. ISSN: 21618089. DOI:
10.1109/CASE48305.2020.9216827.

Scheifele, Christian, Alexander Verl, and Oliver Riedel (2019).
“Real-time co-simulation for the virtual commissioning of
production systems”. In: Procedia CIRP 79, pp. 397–402.
ISSN: 22128271. DOI: 10.1016/j.procir.2019.02.104. URL:
https://doi.org/10.1016/j.procir.2019.02.104.

Stettinger, Georg et al. (2014). “Model-based coupling approach
for non-iterative real-time co-simulation”. In: 2014 Euro-
pean Control Conference, ECC 2014, pp. 2084–2089. ISBN:
9783952426913. DOI: 10.1109/ECC.2014.6862242.

Süß, Sebastian, Anton Strahilov, and Christian Diedrich (2015).
“Behaviour simulation for Virtual Commissioning using co-
simulation”. In: IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2015-October.
ISSN: 19460759. DOI: 10.1109/ETFA.2015.7301427.

Systemes, Dassault (n.d.). ControlBuild: Designing Automation
and Embedded Control Systems. online, www.3ds.com. ac-
cessed on 25 April 2021.

Vick, Axel and Jörg Krüger (2018). “Using OPC UA for dis-
tributed industrial robot control”. In: 50th International Sym-
posium on Robotics, ISR 2018, p. 501.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181673

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

679

680 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181

Optimizing life-cycle costs for pumps and powertrains using FMI
co-simulation

Miro Eklund1,2 Jouni Savolainen2 Antti Lukkari3 Tommi Karhela2

1Dept. of Information Technology, Åbo Akademi, Finland, miro.eklund@abo.fi
2Semantum Ltd, Finland, {miro.eklund,jouni.savolainen,tommi.karhela}@semantum.fi

3ABB Oy, Finland, antti.lukkari@fi.abb.com

Abstract
This paper describes a collaborative digital twin ap-
proach for equipment dimensioning and selection in
industrial process plants. Dynamic process simulator
(Apros) was used to model the process and its automa-
tion, including pumps, while a product specific dy-
namic simulator (Virtual Drive) was used to model the
motor and frequency converter. This approach allows
all stakeholders to design and dimension the process
equipment together in a holistic and energy optimal
way. Simulation can be used to reach an optimal equip-
ment solution that prevents overdimensioning, leading
to up-front and total life-cycle cost savings.

Co-simulation was made possible by implementing
a prototype Functional Mock-up Interface (FMI) for
both Apros 6 and Virtual Drive, allowing Apros to
import Virtual Drive as a Functional Mock-up Unit
(FMU). This paper shows how the FMI solution can be
used for finding energy optimal selections for pumps
and related powertrain products.
Keywords: co-simulation, functional mock-up interface,
apros, virtual drive, optimization

1 Introduction
Over 40% of the world’s electricity is currently consumed
by electric motors in buildings and industrial applications,
and approximately 75% of these industrial motors run
pumps, fans and compressors. This is a machinery cat-
egory that is highly potential for major energy efficiency
improvements. Considering the huge number of indus-
trial electric motor-frequency converter systems in opera-
tion (roughly 300 million), global electricity consumption
could be reduced up to 10% if these process applications
were properly optimized. Thus, significant savings can be
achieved in processes when using system-level optimiza-
tion and right-sized components. (Waide and Brunner
2011; Motor-driven Equipment Research Package 2021).

Processes, systems and industrial plants are tradition-
ally designed and dimensioned by several stakeholders.
Usually an EPC (engineering, procurement and construc-
tion company) has the main responsibility of a project by
handling the design, procurement and construction work.
Subcontractors, such as system integrators and OEMs

(original equipment manufacturers), are used to deliver the
required technical systems and equipment for an indus-
trial plant. Processes are usually divided into sub-systems,
which are designed and dimensioned separately by dif-
ferent stakeholders. Different process equipment such as
motors, frequency converters, pumps and fans are dimen-
sioned by OEMs based on the overall specification of the
system. This traditional way of designing a process is
called the waterfall model, see Figure 1 for an example
of such a design process. Process design challenges and
approaches has been investigated in chemical engineering
and process systems engineering for decades and a lot has
been written about it. We will not delve deep into the
available literature on the topic, but Vega et al. (2014),
Nishida, Liu, and Ichikawa (1976) and Westerberg (2004)
are great starting points.

Figure 1. A traditional way of designing a process (Vega et al.
2014).

Due to separate design steps, waterfall model lacks
system-level optimization of the process. In the absence
of overall coordination of the process design, each stake-
holder adds their own risk margins to the sizing of the de-
sign to ensure that each and every component fulfills the
critical process requirements. This leads to overdimen-
sioning of the system components. When all these sepa-
rate pieces of equipment are combined into a functional
process system, such as a pumping line, the whole system
runs inefficiently, using too much energy with too high
costs.

Our collaborative digital twin approach combines

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

681

decision-making by including all stakeholder’s equipment
selections in one model. A digital twin is a virtual rep-
resentation of a physical phenomenon, e.g. an industrial
plant. Digital twins have been investigated as a method
for improving process designs and collaboration between
stakeholders, e.g. by introducing modular designs (Jia-
peng et al. 2019) or by using big-data (Fei et al. 2018).

In a collaborative digital twin approach, all stakehold-
ers design and dimension the process equipment together.
With the virtual model, the behaviour and performance of
the whole process can be simulated before any physical
implementations. Dynamic simulation and system-level
optimization allows processes to be optimized and high
risk margins and overdimensioning to be avoided, while
still finding suitable equipment that fulfill the critical pro-
cess requirements.

In our case, system-level dynamic simulation was run
using Apros 6 (2021)® process simulator and Virtual
Drive (2021) simulator together in co-simulation. The his-
tory of Apros goes back to the commissioning of the Lovi-
isa nuclear power plant in Finland in the 1970s. A suitable
starting point for a scientific description of Apros is Lap-
palainen (2019) and the references therein.

Virtual Drive is ABB’s commercial software product,
which can be used to model the electrical behavior of ac-
tual motor and frequency converter products in a simu-
lation environment. Functional Mock-up Interface (FMI)
was used to integrate these two simulators together and
co-simulation provided reliably data about how different
products would run the process. Based on the simulation
results, the most optimal equipment could be selected.

This new way of working was first tested in a demo
simulation in the spring of 2020. In collaboration with a
pump OEM, an optimal pump-motor-frequency converter
combination was dimensioned based on digital twin dy-
namic simulation. In the demo process model, water was
pumped to a water tank which was located 20 meters
above, see Figure 4. The water surface level inside the
tank was attempted to be maintained the same at all times,
and water outflow from the tank was constantly changed.
Dynamic simulation of the system revealed that too small
pump could not deliver enough water to the tank, but too
big pump consumed too much energy. It was also noticed
that the check valve fluttered during the simulation when
using an optimal pump. After adding a feed forward struc-
ture to the process to measure the outflow rate and select-
ing smaller motor and frequency converter with an optimal
pump, it was possible to maintain the water level in the set-
point level, and the energy consumption of the system was
significantly decreased, compared to the oversized config-
uration. This demo confirmed the huge potential in the
new way of working.

2 Methods
Implementing interoperability between two systems can
be done by directly implementing the custom interface of

one of the systems in the other. This means new code must
be written whenever a new system needs to be added. An
alternative approach is mentioned by Nouidui, Wetter, and
Zuo (2014), which is to use existing standards such as the
Functional Mock-up Interface. Implementing the interop-
eratiblity with a standardized interface like FMI gives ad-
ditional compatibility with many other tools in the FMI
ecosystem. In this study, a prototype FMI importer plugin
was developed for Apros, allowing it to be the coordina-
tor and import FMU models. A prototype FMI Wrapper
implementation was developed for Virtual Drive, allow-
ing Virtual Drive to be imported as an FMU model that
internally uses a proxy connection to control an existing
Virtual Drive instance.

2.1 Co-simulation approaches

Meer et al. (2020) describe co-simulation as typically
meaning a scenario where two or more models simulate
simultaneously and periodically require inputs from each-
other. Time-dependent simulations also require the mod-
els to have the same concept of time, i.e. they should
advance an equal amount of time between each data ex-
change point. The models in co-simulation can be created
with different simulators, e.g. because the simulators spe-
cialize in different fields or simply because of familiarity
to the modellers. Co-simulation can be implemented with
local connection, see Nouidui, Wetter, and Zuo (2014) or
distributed connections, see Sadjina et al. (2018). It can be
implemented with custom interfaces or standardized inter-
faces, such as OPC Unified Architecture, e.g. Hensel et al.
(2016) or the FMI standard (2021).

Co-simulation between Apros 6 and Virtual Drive could
feasibly have been implemented in three different ways
in this study. Firstly with a custom approach specific for
Virtual Drive and Apros 6, secondly using OPC Unified
Architecture and thirdly using FMI.

The first approach with a custom solution was ruled
out immediately, as the efforts would not allow interop-
erability with any other systems. The second approach
was more feasible, since Apros 6 already supports OPC
UA, see Miettinen (2012). Further, Virtual Drive imple-
ments OPC Data Access for reading and writing some
variables. Crucially though, not all variables are avail-
able in the OPC DA interface and the simulation control
is implemented only with a custom interface. Thus, im-
plementing co-simulation would require changes directly
to Virtual Drive’s implementation, as well as an OPC UA-
to-DA conversion, such as OPC UA Proxy (2021).

The third approach, FMI, would enhance Apros 6 with
the capability to import FMU models. For Virtual Drive,
an FMI implementation would allow similar interoperabil-
ity with tools in the FMI ecosystem. Further, a client-side
library implementing the entirety of the Virtual Drive’s
custom simulation control interface existed and using that
allowed rapid implementation of the FMI interface in the
form of a prototype FMI Wrapper.

Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation

682 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181681

2.2 Functional Mock-up Interface standard
FMI is a standard that defines a set of functions, in native
C, that a coordinator and a model must implement. It is
supported by many tools, see fmi-standard tools (2021),
and allows linking different simulation software and ex-
change of data. One software component must take the
role of a coordinator that imports other software com-
ponents in the form of Functional Mock-up Units (FMU
models). An FMU model is essentially an archive (i.e.
a .zip file), containing a modelDescription.xml file in the
root, and either binary or source files. On Windows, the
binaries are Dynamic Link Libraries (.dll), while on Linux
they are Shared Objects (.so). The modelDescription.xml
contains a list of variables, metadata about the model, FMI
versions supported by the model and more. (Blochwitz et
al. 2012), (Chen, Huhn, and Fritzson 2011)

Hauf et al. (2017) describe the history of the FMI stan-
dard, as well as the differences between model exchange
and co-simulation sub-standards within FMI. For the pur-
pose of this study, co-simulation was the only approach
that made sense, since Virtual Drive is a complete pack-
age that contains its own mathematical calculations, es-
sentially a black box from the point-of-view of other sys-
tems.

Functional Mock-up Interface can suffer from some
weaknesses, e.g. its floating-point representation of time
(Fabio et al. 2017). However, in our study this was never
a problem, as the step-sizes were larger than 0.1 seconds.
For such large step sizes, floating-point representation of
time was accurate.

2.3 Apros 6 FMI importer
Apros 6 (2021) contains two main parts, a solver written
in Fortran and a desktop application written in Java. No
version of Apros 6 that has been released to date (Apros
versions 6.10.x and older) comes with built-in support for
importing and simulating FMU models. However, Apros
6 can be extended using Eclipse (2021) based plugins. In
this study, a plugin was created that allows Apros 6.9 and
newer versions to import and simulate FMU models that
support FMI 1.0 and FMI 2.0 co-simulation.

Representing an FMU model in a simulation tool like
Apros was straight forward with user components (UC).
User components in Apros 6 are re-usable blocks that sup-
port scripting using the SCL (2021) language. Input and
output signals on a UC allows data-flow between the FMU
model and other components in the Apros model, while
FMU parameters can be represented using UC properties.
The FMI importer plugin uses Simantics FMIL (2021) as a
Java implementation of the FMILibrary and the user com-
ponent’s SCL scripts import these Java functions. Due to
the technical implementation of the Simantics FMIL, only
x64-bit FMU models are supported in Apros. The compo-
nent call flow and data flow of the plugin’s auto-generated
user components can be seen in Figure 2. Figure 3 shows
an auto-generated Apros 6 user component from an import

FMU model, as it appears in the Apros 6 model browser
and diagram.

Figure 2. Component call- and dataflow for the Apros 6 FMI
importer plugin. Apros 6 triggers user component’s SCL scripts
each step. These scripts internally use the Simantics FMIL im-
plementation, included in the plugin. Apros signals are written
to FMU models as inputs and FMU model outputs are written to
Apros signals

2.4 Virtual Drive’s FMI Wrapper
ABB’s Virtual Drive is a Windows x86 executable that
can be configured using Drive Composer Pro (2021) desk-
top application. Drive Composer Pro requires the add-on
"ABB Virtual Drive" to allow creation, configuration and
simulation of Virtual Drives. DriveSize (2021) is a prod-
uct catalogue look-up tool that shows the size and speci-
fications of ABB’s drive products. These physical prod-
ucts can then be manually created as virtual simulation
models using Drive Composer Pro and Virtual Drive. In
this study, Virtual Drives were created with the specifica-
tions of a pump OEM, using DriveSize tool to find suitable
equipment sizes to represent underdimensioned, overdi-
mensioned and optimal equipment.

Virtual Drive uses the same software as physical drive
equipment. By using Virtual Drive in simulation, rather
than a simple modelica model of a drive and motor, the
models can achieve results that reflect the real-world be-
haviour of drives more accurately.

FMI was possible to implement with two approaches,
either directly or as a proxy. A direct approach would’ve

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

683

Figure 3. An auto-generated user component when importing
an FMU model file using the Apros 6 FMI importer

meant packaging Virtual Drive itself as an FMU model,
while a proxy approach would use an FMU model that
internally uses a remote interface for communication with
the Virtual Drive. The proxy approach was further divided
into two sub-approaches: Tool-coupling or standalone. In
a tool-coupling approach, Virtual Drives would be config-
ured and started outside of the FMU models context and
the FMU model would only connect to existing drives. A
standalone approach would’ve meant packaging the vir-
tual drive executable inside the FMU model and having it
automatically started by the main FMU model.

The approach that was chosen was a tool-coupling
proxy approach. Virtual Drive could only be compiled to
x86 architecture, due to limitations in its dependencies.
Thus, the direct approach would also only support x86 ar-
chitecture and thus be incompatible with the Apros FMI
importer plugin. A proxy approach would allow the cre-
ation of an FMU model that supports x64 and x86 archi-
tectures. Additionally, a proxy approach made sense be-
cause Virtual Drive already implemented a custom remote
interface for simulation control, supported by e.g. Drive
Composer Pro. A .NET client-side library implementing
all of these remote function calls had been developed by
ABB prior to this study, written in C#. A tool-coupling ap-
proach was chosen, as this would allow Drive Composer
Pro to still be used in the configuration and monitoring of
Virtual Drives. Version management would also be sepa-
rated from the FMI Wrapper, allowing it to stay up-to-date
with future releases of Virtual Drive and Drive Composer

Pro, as long as the custom remote interface for controlling
Virtual Drive does not changed.

2.5 Apros model
The process under study was modelled using the Apros
simulator as it is intended for system-wide fluid process
modelling. The modelled process is show schematically
in Figure 4.

Figure 4. Schematic of the process under study, showing main
process components and the liquid level control loop.

In the process we pump water to a tank, whose outlet
flow varies. The goal of the level control loop (LIC) is
to keep the liquid level within an allowable range of its
setpoint. In the basic setting the level controller’s output
is the pump rotation speed setpoint. This is given to the
drive+motor (INV) model who in turn returns the pump
shaft torque. The process simulator then uses this value to
determine the pump rotation speed and from that its head.
This head value then goes to the pressure-flow solver of
the simulator. In this case the fluid pressure-flow be-
haviour was modelled as 1D homogenous two-phase flow
using dynamic conservation equations for mass, energy
and momentum. The modelling was done with a graphical
user interface, with no need to explicitly write the govern-
ing equations. In addition to the fluid flow components,
i.e. pipes, valves, pumps and tanks, the model also in-
cluded automation component. Namely, in the model we
implemented a liquid level control loop. In later stages of
the investigation we extended the control loop to include
a feedforward term from the tank outflow measurement.
To test the different drivetrain dimensionings and control
structures, a simulation test sequence was used, see Fig-
ure 5.

3 Results
3.1 FMI Wrapper related results
The prototype FMI Wrapper created during this study im-
plements the FMI 2.0 co-simulation interface. The ex-
isting client-side library, with remote function calls for
Virtual Drive, had been implemented in C#, thus it was
deemed the simplest solution to also write the FMI Wrap-
per in C# and use the existing library directly. A .NET
C# project that compiles into both x86 and x64 Dynamic
Link Libraries (.dll) was created, utilizing FMI c-headers

Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation

684 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181681

Figure 5. Simulation test sequence: Part 1: outflow variables 40
kg/s→ 80 kg/s→ 35 kg/s→ 40 kg/s (light blue curve, primary
y-axis), Part 2: tank level setpoint ramped from 2m to 5m (dark
blue curve, secondary y-axis).

and the existing client-side library. Functions needed to
be explicitly configured using DllExport (2021) for .NET
like Listing 1, in order to make them compatible with na-
tive C, i.e. the FMI specifications.

Listing 1. A generic .NET DllExport usage example. All .NET
projects that need to be compiled as .dll and need compatibility
with native C can use this approach.

[DllExport("fmi2DoStep",
CallingConvention =

CallingConvention.Cdecl)]
public static fmi2Status fmi2DoStep(

IntPtr c,
double currentCommunicationPoint,
double communicationStepSize,
[MarshalAs(UnmanagedType.Bool) bool

noSetFMUStatePriorToCurrentPoint])
{

ModelInstance m = ((GCHandle.c).Target
as ModelInstance);

}

Virtual Drives are given a unique local identifier when
created using Drive Composer Pro. This identifier rep-
resents the local channel used to communicate with that
drive instance. When importing the FMU model of the
FMI Wrapper, this identifier must be set using the FMI
integer-type parameter VirtualDriveLocalNodeID and it
must match the identifier of an existing Virtual Drive in-
stance that is running on the same machine.

The FMI Wrapper was tested in various simulators to
confirm its implementation of the FMI 2.0 co-simulation
interface was correct. The Apros 6 FMI importer plu-
gin created during this study, FMU compliance checker,
FMI Toolbox import (2021) and Simulink FMI import
(2021) were successfully able to import and simulate Vir-
tual Drive through the FMI Wrapper.

With the FMI Wrapper, Virtual Drive gained interoper-
ability with multiple simulation tools, including Apros 6.
It comes in a format that is familiar to those who already
use Virtual Drives, since Drive Composer Pro is still used
for configuring Virtual Drives.

3.2 Apros FMI importer related results
The Apros FMI importer went through two phases of

development: In the first phase, a user component was
manually created to represent the Virtual Drive’s FMI
Wrapper and its parameters, inputs and outputs. This was
created only for the FMI Wrapper and would not have
worked for any other FMU model. In the second phase,
the importer was generalized to allow importing of any
x64-bit FMU models implementing either the FMI 1.0 or
2.0 co-simulation interface.

A copy of the imported FMU file is stored in the auto-
generated user component, which will be copied to a well-
known location within the plugin’s filesystem before an
FMU instance is started. Exporting an Apros model that
contains an auto-generated FMU user component is possi-
ble and a copy of the FMU model will be stored in the ex-
ported Apros model. Importing such a model to an Apros
version without the FMI importer plugin will succeed, but
simulation will fail, as the user components’ SCL scripts
no longer find the required Java implementation.

With the new plugin, modellers can easily import FMU
models to Apros and use them as familiar user compo-
nents, saving modellers’ time and bringing new interoper-
ability options to Apros.
3.3 Process engineering related results
As was describe earlier, the study consisted of simulating
three pumps, each with two drivetrains. In Figure 6 we
present the liquid level behaviour of three pump-motor-
drive combinations.

In the figure we show three drivetrains: the green line is
the so called optimal dimensioning, the yellow line is an
intentionally undersized dimensioning and the brown line
is an oversized case. In the chart we can also see the liquid
level setpoint (blue dotted line) as well as the acceptable
range for the liquid level around it (dotted yellow line and
dotted grey line). The thick lines depicts the liquid level
behaviour during the simulation.

The optimally dimensioned drivetrain keeps the liquid
level in its range, except for a short while during the set-
point change. The underdimensioned drivetrain fails im-
mediately and the liquid level falls to nearly zero. Finally,
the overdimensioned drivetrain keeps the level closer to
the setpoint than the others. This is achieved with a larger
energy consumption. More specifically, the specific en-
ergy consumptions were, respectively: 0.101 kWh/t, 0.278
kWh/t and 0.13 kWh/t. These numbers reflect the utter
failure of the underdimensioned drivetrain: while it is un-
able to achive its target, it also uses a lot of energy in doing
so.

In addition, we experimented with two alternative con-
trol structures. The alternative was to add a feedforward
term from the tank outlet flow measurement. This was in-
vestigated only with the optimally dimensioned case, see
Figure 7.

We see that, as expected, the feedforward control nearly
perfectly compensates the outflow changes. In combina-

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

685

Figure 6. Liquid level behaviour with "optimal" (green line),
"undersized" (yellow line) and "oversized" (brown line) drive-
trains.

Figure 7. Liquid level behaviour with "optimal" drivetrain, us-
ing the two control structures. Green line = before changes, Yel-
low line = after changes.

tion with a smaller motor and frequency converter, it is
able to reduce energy consumption from 0.101 kWh/t to
0.095 kWh/t, a 6% reduction. This is a significant cost and
energy consumption reduction when applied to all drive-
trains in a large process.

4 Analysis
4.1 FMI simulation speed
Speed was not critical during the creation of the Apros
FMI importer nor for the prototype FMI Wrapper for Vir-
tual Drive. However, Apros FMI importer plugin’s speed
has been compared to Simulink 2020b (2021) and FMU
compliance checker (2021). The simulation speeds were
tested with an example ControlledTemperature.fmu (2021)
model, as well as the created FMI Wrapper with and with-
out a connection to Virtual Drive. Without a connection,
each FMI 2.0 function in the wrapper will simply return
immediately, thus allowing us to analyse the speed loss
caused purely by the Apros FMI importer. We simulated
the FMU models in Apros multiple times in one-minute
tests, with a step size of 0.1 and calculated the average
real-time factor (RTF) for the models, with various num-
bers of simultaneous FMU models present in the model.
In Simulink and FMU Compliance Checker, we specified
100 000.0 seconds as the target simulation time for the
fastest cases, and 100.0 seconds for the slowest cases, with
fixed step-size set to 0.1 seconds, and measured how long
it took to simulate. The average of five executions per case
was used.

The results for different simulator programs and differ-
ent number of FMU instances can be seen in Table 1. The
time spent loading and initializing the FMU models was
not taken into account when calculating the total time, but
was observed to be less than 1 second even when using
8 ControlTemperature.fmu models. This should affect the
RTF factor seen in the tables positively by at most 1.7%,
since 1/60 ≈ 1.7, and even then only for cases with 8 si-
multaneous models.

Clearly, the Apros FMI importer plugin is much slower
that the other simulators, when using the ControlledTem-
perature.fmu. However, it should still be much faster with
the unconnected FMI Wrapper than ControlledTempera-
ture.fmu. Instead, it is much slower. The root cause for the
slow speeds was not identified in this study and requires
further investigation. An initial analysis of the speed is-
sue would suggest that the problem is not in the Apros
user component’s themselves, i.e. the speed is not lost due
to Apros simulation pre-step hooks triggering SCL scripts
in the user components and updating signal values, but
rather in the SCL functions and the underlying Java and
C implementation of Simantics FMIL. Similar simulation
speed issue could be seen by executing SCL scripts inde-
pendently, without Apros.

As expected, connecting the Virtual Drive lead to
slower simulation speeds for all simulators. In fact, the
overhead introduced by the custom interface between FMI

Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation

686 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181681

Wrapper and Virtual Drive was so large that all simulators
had at best RTF of around 3.0 for a single Virtual Drive
instance, with step-size 0.1.

Table 1. Average simulation speed, as a real-time-factor (RTF),
with varying number of simultaneous FMU model instances,
step-size 0.1 seconds. RTF of 1.0 correspond to as fast as real-
time, 2.0 means twice as fast as real-time, etc. Simulink 2020b
FMU import, Apros FMI importer plugin and FMU Compliance
Checker were tested. CT = ControlledTemperature.fmu, FW =
FMI Wrapper without a connected Virtual Drive. FW+VD =
FMI Wrapper with a connected Virtual Drive.

Simulator Instances CT FW FW+VD
Simulink 1 333 35000 3.0

-||- 2 298 25000 2.9
-||- 4 230 16000 2.5
-||- 8 136 12000 1.4

Apros 1 132 17.4 3.0
-||- 2 92.3 15.1 1.7
-||- 4 53.9 11.3 0.88
-||- 8 27.8 7.5 0.44

Checker 1 384 46000 3.2

The demonstration Apros model in this study had a dif-
ferent step-size than we used in the simulation speed tests.
Additionally, variable step-sizes are taken, depending on
what the model is currently calculating. This variable
step-size is matched by the FMU instances in the model,
which in turn directly affects the simulation speed. E.g.
small step-sizes were taken by the Apros model when the
check valve fluttered, while larger step-sizes were taken
in steadier states. In the simulation speed tests, we forced
the step-size to always be 0.1 seconds and the model con-
tained only the FMU models.

4.2 Apros FMI importer limitations
Due to the usage of Simantics FMIL as the base im-

plementation for the FMI, x86 FMU models could not
be imported in x64 desktop environments, e.g. in Apros
6 desktop. Further limitations inherited from this base
implementation were a lack of model exchange support.
However, both FMI 1.0 and 2.0 co-simulation standards
were implemented.

Unimplemented functions for FMI 2.0 were all model
exchange functions, as well as:

• fmi2SetRealInputDerivatives

• fmi2GetRealOutputDerivatives

• fmi2CancelStep

• fmi2GetDirectionalDerivative

• fmi2DeSerializeFMUstate

• fmi2SerializeFMUstate

• fmi2SerializedFMUstateSize

• fmi2FreeFMUstate

• fmi2SetFMUstate

• fmi2GetFMUstate

• fmi2Reset

4.3 FMI Wrapper limitations
The prototype FMI Wrapper for Virtual Drive was im-

plemented for both x86 and x64 architectures. The wrap-
per’s FMU model is only available for Windows operating
systems, just like Virtual Drive. The Virtual Drive and the
FMI Wrapper must also physically be located on the same
machine, as the remote interface requires local visibility.
It is a remote interface only in the sense that the Virtual
Drive executable can be started by another program than
the program that imports the FMI Wrapper’s FMU model.

Most configuration of Virtual Drives must still be per-
formed using Drive Composer Pro’s user interface, e.g.
selection of motor and parametrization of the drive’s size.
Most output variables can also only be monitored using
Drive Composer Pro. The prototype FMI Wrapper only
exposes a small sub-selection of variables, such as torque
as output, and motor speed as input. Thus, the FMI wrap-
per in its current state is far from standalone, since users
are unable to define new Virtual Drive instances exclu-
sively using the FMU model and the variables exposed by
it.

Maximum simulation speed continues to be a chal-
lenge, due to time spent by functions in Virtual Drive and
time spent by the custom remote interface between FMI
Wrapper and Virtual Drive. FMI Wrapper was only im-
plemented for the FMI 2.0 co-simulation interface, but not
all functions were implemented. Virtual Drive did not sup-
port saving or loading the internal state, thus state-related
functions could not be implemented.

Unimplemented functions for FMI 2.0 were all model
exchange functions, as well as:

• fmi2SetRealInputDerivatives

• fmi2GetRealOutputDerivatives

• fmi2CancelStep

• fmi2GetDirectionalDerivative

• fmi2DeSerializeFMUstate

• fmi2SerializeFMUstate

• fmi2SerializedFMUstateSize

• fmi2FreeFMUstate

• fmi2SetFMUstate

• fmi2GetFMUstate

5 Discussion
Implementing the prototype FMI Wrapper was remark-
ably simple for Virtual Drive, since there already existed
a complete client-side implementation of Virtual Drive’s
custom simulation interface in a C# library. An initial

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

687

challenge had to be overcome, namely the C#-to-native-
C function exports, but mechanisms for dealing with that
were found.

The FMI Wrapper inherited the limitations of the exist-
ing Virtual Drive remote control interface, e.g. a lack of
storing the internal state of Virtual Drive in a serializable
blob and only having visibility to a small sub-selection of
variables. The prototype FMI Wrapper developed requires
Drive Composer Pro to be used for the creation and con-
figuration of Virtual Drives.

5.1 Future Work
Apros FMI importer and the base Simantics FMIL will
need a thorough investigation to reduce the overhead from
using the Java FMI implementation. Additionally, parallel
execution of FMU models within an Apros model, rather
than serial, will reduce simulation speed losses caused by
simulating multiple simultaneous FMU models.

The interoperability of Apros 6 and Virtual Drive was
only tested with a simple demonstration model during this
study. Future work should include validation of this ap-
proach using a real customer case. A collaborative dig-
ital twin, using Apros 6 dynamic process simulation in
co-simulation with Virtual Drive, should be created to
find the optimal equipment selection of a real-life pro-
cess. Other ABB software and pump OEMs equipment
can be used for a more detailed collaborative digital twin,
assuming their simulation software is compatible with the
Functional Mock-up Interface. Implementing FMI com-
patibility from scratch to these equipment simulators will
be needed as part of future real customer cases, if they do
not already implement it.

5.2 Conclusion
Traditional process design uses a waterfall model for
equipment selection, where multiple sub-contractors add
too high risk margins to the sizing of their equipment in
order to ensure components fulfill critical requirements.
In this paper we presented the first steps towards a collab-
orative digital twin approach as an alternative way of de-
signing a process. This approach aims to remove overdi-
mensioning, leading to up-front cost savings and total life-
cycle cost savings for the whole process.

The approach was demonstrated with a Virtual Drive
instance connected to a simple Apros model that had a
few equipment selection options. However, the approach
should be possible to utilize when optimizing the equip-
ment selection in an entire industrial process plant. The
approach was made possible with interoperability between
simulators and we have presented Functional Mock-up In-
terface as a candidate for achieving this interoperability.

Acknowledgements
This activity has received funding from the European In-
stitute of Innovation and Technology (EIT). This body
of the European Union receives support from the Euro-

pean Union’s Horizon 2020 research and innovation pro-
gramme.

The authors would like to thank Reino Ruusu for their
support implementing the prototype Apros FMI importer.
The authors would also like to thank Daniel Rogoz and
Roman Okolovich for their support implementing the pro-
totype Virtual Drive FMI Wrapper.

References
Apros 6 (2021). URL: https://www.apros.fi/ (visited on 2021-04-

23).
Blochwitz, T. et al. (2012-09). “Functional Mockup Interface

2.0: The Standard for Tool independent Exchange of Simu-
lation Models”. In: DOI: 10.3384/ecp12076173.

Chen, Wuzhu, Michaela Huhn, and Peter Fritzson (2011). “A
Generic FMU Interface for Modelica”. In:

ControlledTemperature.fmu (2021). URL: https : / / github. com /
modelica / fmi - cross - check / blob / master / fmus / 2 .
0 / cs / win64 / Dymola / 2017 / ControlledTemperature /
ControlledTemperature.fmu (visited on 2021-04-28).

DllExport (2021). URL: https://github.com/3F/DllExport (vis-
ited on 2021-04-23).

Drive Composer Pro (2021). URL: https://new.abb.com/drives/
software-tools/drive-composer (visited on 2021-04-23).

DriveSize (2021). URL: https://new.abb.com/drives/software-
tools/drivesize (visited on 2021-04-23).

Eclipse (2021). URL: https://www.eclipse.org/ide/ (visited on
2021-04-23).

Fabio, Cremona et al. (2017). “Hybrid co-simulation: it’s about
time”. In: Software and Systems Modeling 18, pp. 1655–1679.
DOI: https://doi.org/10.1007/s10270-017-0633-6.

Fei, Tao et al. (2018). “Digital twin-driven product design,
manufacturing and service with big data”. In: The Interna-
tional Journal of Advanced Manufacturing Technology 94,
pp. 3563–3576. DOI: https://doi.org/10.1007/s00170-017-
0233-1.

FMI standard (2021). URL: https://fmi-standard.org/ (visited on
2021-04-27).

FMI Toolbox import (2021). URL: https://www.modelon.com/
products- services/modelon-deployment- suite/fmi- toolbox/
(visited on 2021-04-29).

fmi-standard tools (2021). URL: https://fmi-standard.org/tools/
(visited on 2021-04-27).

FMU compliance checker (2021). URL: https : / / github . com /
modelica- tools /FMUComplianceChecker (visited on 2021-
04-26).

Hauf, Dominik et al. (2017). “Multifunctional use of functional
mock-up units for application in production engineering”. In:
2017 IEEE 15th International Conference on Industrial In-
formatics (INDIN), pp. 1090–1095. DOI: 10 . 1109 / INDIN .
2017.8104925.

Hensel, Stephan et al. (2016). “Co-simulation with OPC UA”.
In: 2016 IEEE 14th International Conference on Industrial
Informatics (INDIN), pp. 20–25. DOI: 10.1109/INDIN.2016.
7819127.

Jiapeng, Guo et al. (2019). “Modular based flexible digital twin
for factory design”. In: Ambient Intelligence and Humanized
Computing 10, pp. 1189–1200. DOI: https://doi.org/10.1007/
s12652-018-0953-6.

Lappalainen, Jari (2019). “Extending mechanistic thermal-
hydraulic modellling and dynamic simulation for new indus-
trial applications”. Doctoral dissertation. Aalto University,

Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation

688 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181681

Department of Chemical Engineering. DOI: http : / / urn . fi /
URN:ISBN:978-952-60-8759-7.

Meer, A. A. van der et al. (2020). “Simulation-Based Assess-
ment Methods”. In: European Guide to Power System Test-
ing: The ERIGrid Holistic Approach for Evaluating Complex
Smart Grid Configurations. Ed. by Thomas I. Strasser, Erik
C. W. de Jong, and Maria Sosnina. Cham: Springer Interna-
tional Publishing, pp. 35–50. ISBN: 978-3-030-42274-5. DOI:
10.1007/978- 3- 030- 42274- 5_3. URL: https://doi.org/10.
1007/978-3-030-42274-5_3.

Miettinen, T. (2012). “Synchronized Cooperative Simulation:
OPC UA Based Approach”. Master’s thesis. Aalto Univer-
sity School of Electrical Engineering. URL: http://lib.tkk.fi/
Dipl/2012/urn100571.pdf.

Motor-driven Equipment Research Package (2021). URL: https:
//omdia.tech.informa.com/- /media/tech/omdia/brochures/
electric-motor-systems/fans-blowers-database---2020.aspx
(visited on 2021-05-04).

Nishida, N., Y. A. Liu, and A. Ichikawa (1976). “Studies in
chemical process design and synthesis II. Optimal synthe-
sis of dynamic process systems with uncertainty”. In: AIChE
Journal 22.3, pp. 539–549. DOI: https://doi.org/10.1002/aic.
690220318.

Nouidui, Thierry, Michael Wetter, and Wangda Zuo (2014).
“Functional mock-up unit for co-simulation import in Ener-
gyPlus”. In: Journal of Building Performance Simulation 7.3,
pp. 192–202. DOI: 10.1080/19401493.2013.808265. eprint:
https://doi.org/10.1080/19401493.2013.808265. URL: https:
//doi.org/10.1080/19401493.2013.808265.

OPC UA Proxy (2021). URL: https : / / opcfoundation . org /
products/view/opc-ua-proxy-1 (visited on 2021-04-23).

Sadjina, Severin et al. (2018-09). “Distributed Co-Simulation
of Maritime Systems and Operations”. In: DOI: 10.1115/1.
4040473.

SCL (2021). URL: https:/ /dev.simantics.org/index.php?title=
SCL_Tutorial (visited on 2021-04-23).

Simantics FMIL (2021). URL: https : / / gitlab . simantics . org /
simantics/fmil (visited on 2021-04-23).

Simulink 2020b (2021). URL: https : / / se . mathworks . com /
downloads/ (visited on 2021-04-28).

Simulink FMI import (2021). URL: https://se.mathworks.com/
help/simulink/ug/work-with- fmi- in-simulink.html (visited
on 2021-04-29).

Vega, P. et al. (2014). “Integrated design and control of chemical
processes – Part I: Revision and classification”. In: Comput-
ers and Chemical Engineering 71, pp. 602–617. DOI: doi :
10.1016/j.compchemeng.2014.05.010.

Virtual Drive (2021). URL: https://new.abb.com/drives/software-
tools/drive-composer (visited on 2021-04-23).

Waide, Paul and Conrad Brunner (2011-01). “Energy-Efficiency
Policy Opportunities for Electric Motor-Driven Systems”. In:
URL: https://www.iea.org/reports/energy-efficiency-policy-
opportunities-for-electric-motor-driven-systems.

Westerberg, Arthur (2004). “A retrospective on design and pro-
cess synthesis”. In: Computers and Chemical Engineering 28,
pp. 447–458. DOI: http://dx.doi.org/10.1016/j.compchemeng.
2003.09.029.

Session 8B: Applications (4) FMI

DOI
10.3384/ecp21181681

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

689

	Session 1A: Open standards (1) FMI/SSP
	The Functional Mock-up Interface 3.0 - New Features Enabling New Applications
	The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations
	Engineering Domain Interoperability Using the System Structure and Parameterization (SSP) Standard
	Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback
	eFMI: An open standard for physical models in embedded software

	Session 1B: Julia
	Modia - Equation Based Modeling and Domain Specific Algorithms
	Modia and Julia for Grey Box Modeling
	Composing Modeling and Simulation with Machine Learning in Julia
	OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

	Session 2A: Initialization & parametrization
	Investigating Steady State Initialization for Modelica models
	New Equation-based Method for Parameter and State Estimation
	Efficient Parameterization of Modelica Models
	Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

	Session 2B: Applications (1)
	Aircraft Mission Simulation with the updated FlightDynamics Library
	Modelica-Based Modeling on LEO Satellite Constellation
	Guidance, Navigation, and Control enabling Retrograde Landing of a First Stage Rocket
	An Ice Storage Tank Modelica Model: Implementation and Validation

	Session 3A: Libraries
	Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems
	DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning
	Towards a Modelica OPC UA Library for Industrial Automation
	A Modelica library for Thermal-Runaway Propagation in Lithium-Ion Batteries
	The DLR ThermoFluidStream Library

	Session 3B: Digital twins
	The Potential of FMI for the Development of Digital Twins for Large Modular Multi-Domain Systems
	Object-Oriented Models of Parallel Manipulators
	A Modelica Library for Modelling of Electrified Powertrain Digital Twins
	Development of a real-time test bed for indoor climate simulation in a VR environment using a digital twin
	A first principles thermal losses model of the TCP-100 parabolic trough collector based on the Modelica Standard Library

	Session 4A: Applications (2)
	Electromagnetic Transient Simulation of Large Power Networks with Modelica
	Seismic Hybrid Testing using FMI-based Co-Simulation
	NeuralFMU: Towards Structural Integration of FMUs into Neural Networks
	Sensitivity Analysis of a Car Shock Absorber Through a Functional Mock-up Units-Based Modelling Strategy

	Session 4B: Buildings
	Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control
	Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus
	Coupling physical and machine learning models: case study of a single-family house
	Underfloor heating system model for building performance simulations

	Session 5A: Testing
	ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on Large-Scale Power System Test Cases
	Continuous Development and Management of Credible Modelica Models
	Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica
	Modelica Models as Integral Part of the Building Design Process

	Session 5B: Open standards (2) FMI/DCP
	A Cloud-native Implementation of the Simulation as a Service-Concept Based on FMI
	Python Framework for Wind Turbines Enabling Test Automation of MoWiT
	A Graph-Based Meta-Data Model for DevOps in Simulation-Driven Development and Generation of DCP Configurations
	Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

	Session 6A: Interoperability
	General Purpose Lua Interpreter for Modelica
	Object Manipulation and Assembly in Modelica
	A Portable and Secure Package Format for Executable Simulation Modules based on WebAssembly
	New Method to Perform Data Reconciliation with OpenModelica and ThermoSysPro

	Session 6B: Applications (3)
	Use of Modelica to predict risk of Covid-19 infection in indoor environments
	Model-Based Development of the RespiraWorks Ventilator with Modelon Impact
	In-silico virtual prototyping multilevel modeling system for Cyborgs (CybSim) as a novel approach for current challenges in biosciencies
	Decarbonization of Industrial Energy Systems: A Case Study of Printed Circuit Board manufacturing

	Session 7A: Modelica Language
	Handling Multimode Models and Mode Changes in Modelica
	A Reduced Index Mode-Independent Structure Model Transformation for Multimode Modelica Models
	Evaluating a Tree Diff Algorithm for Use in Modelica Tools
	Numerically Robust Six-Equation Two-Phase Flow Model for Stationary and Moving Systems in Modelica
	Compile-Time Impulse Analysis in Modelica

	Session 7B: Energy (1)
	A Modular Model of Reversible Heat Pumps and Chillers for System Applications
	Modelica Modeling and Simulation for a Micro Gas-Cooled Reactor
	Energy-based Method to Simplify Complex Multi-Energy Modelica Models
	A Case Study on Condenser Water Supply Temperature Optimization with a District Cooling Plant
	Long Term Technical and Economic Evaluation of Hydrogen Storage Technologies for Energy Autarkic Residential Complexes

	Session 8A: Energy (2)
	Modelling the Synchronisation Control for a Hydro Power Controller
	Developing Protective Limiters for a Hydro Power Controller in Modelica
	An Approach for Reducing Gas Turbines Usage by Wind Power and Energy Storage
	Implementation and Validation of the Generic WECC Photovoltaics and Wind Turbine Generator Models in Modelica
	Modeling of Recompression Brayton Cycle And CSP Plant Architectures for Estimation of Performance & Efficiency

	Session 8B: Applications (4) FMI
	Parallel Fast: An Efficient Coupling Approach for Co-Simulation with Different Coupling Step Sizes
	Towards an automated generator of urban building energy loads from 3D building models
	Examination of Reduced Order Building Models with Different Zoning Strategies to Simulate Larger Non-Residential Buildings Based on BIM as Single Source of Truth
	Accurate Robot Simulation for Industrial Manufacturing Processes using FMI and DCP Standards
	Optimizing life-cycle costs for pumps and powertrains using FMI co-simulation

