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Welcome Message 

 

 

Following the first and the second conferences in 2016 and 2018 as the Japanese Modelica Conference, 

and the third conference as The Asian Modelica Conference 2020, The Asian Modelica Conference 2022 

takes place in Tokyo again.  

The local organizer and Modelica Association work closely to overcome various difficulties caused by 

continuing COVID-19 pandemic to make the conference available. We are now proud to present a 

conference with: 

 

 2 Keynote speeches  

 19 paper presentations 

 An exhibition area featuring 9 exhibitors 

 Hybrid event at the venue of Sophia University and virtual event platform on Whova 

 

According to Modelica Association standards, all papers are peer-reviewed and will be freely available 

for download. 

We want to acknowledge the support we received from the conference board and program committee. 

Special thanks to our colleagues at Modelon KK for taking care of all the practical matters. Support 

from the conference sponsors is gratefully acknowledged. Last but not least, thanks to all authors, 

keynote speakers, and presenters for their contributions to this conference. 

With the hybrid environment of the real venue and the virtual platform, the objective of creating the 

conference as an arena in Asia for sharing knowledge and learning about the latest scientific and 

industrial progress related to Modelica and FMI (Functional Mock-up Interface) is unchanged. We wish 

all participants an enjoyable and inspiring conference! 

 

Tokyo, November 24, 2022 

 

Tielong Shen,             Rui Gao         &       Yutaka Hirano 
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Keynotes Speakers 

 

 
 

Mazen Alamir 
Research Director, CNRS 

 

Plenary session I: Model Predictive Control: 

An attempt to tell an unfinished story! 
 

 

Abstract 

While it is true that any control design 

methodology is based on some modelling of the 

underlying dynamics, the most advanced of these 

techniques, namely Model Predictive Control 

(MPC) cannot be conceived in the absence of 

such a dynamic model. The predominant place of 

MPC in the control engineering landscape since 

the last two decades is justified by its ability to 

handle nonlinearities, constraints and optimality 

concerns on one hand and by the availability of 

dedicated efficient optimization solvers on the 

other hand. In this talk, the basics of MPC are 

introduced and the main related research topics 

are shortly and progressively discussed including 

among others: Stability issues, Real-time 

implementation, Handling uncertainties via 

stochastic MPC, GPU-based parallel 

implementation as well as appropriate use of 

Machine Learning based blocs. Industrial and 

real-life examples are used throughout the talk in 

order to illustrate the underlying tools and 

methods. 

 
 

Yudai Yamasaki 
Professor, The University of Tokyo 

 

Plenary session 2: Toward advanced 

powertrain control technologies based on 

models 
 

Abstract 

Powertrain control technologies of vehicles are 

important for carbon neutrality. The powertrain 

system is getting more complicated for its 

hybridization, and an internal combustion engine 

is also a complicated component itself in nature. 

The control system is also becoming complicated 

and the conventional control framework using 

look-up tables based on a huge number of 

experiments is difficult to continue. Furthermore, 

the framework of control is changing, as it is now 

possible to control the powertrain using and 

combining a variety of information, including 

connected data and driver’s data. Model-based 

control system is more useful and essential to 

combine different things, disciplines and 

researchers for advanced powertrain control. In 

this presentation, I will introduce our research 

activities on advanced control systems of 

automobiles based on models. 
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Dynamic Simulation of an Oxygen-Hydrogen Combustion Turbine 
System Using Modelica 

Yutaka Watanabe     Toru Takahashi     Kojun Suzuki 
Central Research Institute of Electric Power Industry, Japan, {yutaka,toru-tak,s-

kojun}@criepi.denken.or.jp 
 
 
 

Abstract 
Introducing hydrogen power generation in the power 
industry may contribute to achieve carbon neutrality by 
2050. Hydrogen mixed-fuel gas turbines are available, 
and pure hydrogen-fueled gas turbines are being 
developed. Meanwhile, power generation systems based 
on oxygen–hydrogen combustion turbines have been 
devised. Such system uses hydrogen as fuel and oxygen 
as oxidizer, yielding only water vapor as the byproduct 
of combustion. In addition, as the system performs a 
semi-closed cycle involving the Brayton and Rankine 
cycles, high efficient zero-emission power generation is 
expected with higher thermal efficiency than that of the 
combined cycle in conventional gas turbines. Basic 
technologies for oxygen-hydrogen combustion turbines 
in power generation systems are being developed in 
Japan as part of the research and development at NEDO 
for hydrogen utilization. In this study, a dynamic model 
of the entire system for a 1400 °C-class rationalization 
system was constructed using a Modelica-based tool 
developed by the Central Research Institute of Electric 
Power Industry, Japan. The dynamic behavior 
considering preliminary load following control was then 
characterized based on simulation results. 

Keywords: Closed cycle, Hydrogen, Dynamic 
simulation, Load following 

 

Nomenclature 
A  flow area [m2] 

K  heat transfer coefficient [kW/(m2⋅K)] 

cp  heat capacity [kW/(kg⋅K)] 

F  mass flow rate [kg/s] 

H  specific enthalpy [kJ/kg] 

LHV/HHV lower/higher heating value [kJ/kg] 

k  specific heat ratio [-] 

M  mass [kg] 

Q  heat transfer rate [kJ/s] 

P  pressure [MPa] 

v  specific volume [m3/kg] 

W  power [kW] 

η  adiabatic efficiency [-] 

 

 Subscripts 

ad  adiabatic change 

c  cold flow 

cb  combustion 

cp  compressor 

f  fuel 

h  hot flow 

i  inlet 

j  segment number 

m  metal 

o  outlet 

st  steam turbine 

  

1 Introduction 
To address climate change, actions toward 
decarbonization and net-zero CO2 emissions in the 
global energy sector must be implemented by 2050 (IEA, 
2021). A carbon-neutral society will widely use 
hydrogen. Thus, hydrogen supply infrastructures and 
power generation systems are being increasingly 
demanded. Fuel cells are a well-known power 
generation method using hydrogen, but gas turbines 
(GTs) are more suitable for large-scale power 
generation. The impact of CO2 reduction will be 
significant if hydrogen is used at large-scale electric 
power generation plants. Currently, hydrogen mixed-
fuel GTs are available, and pure hydrogen-fueled GTs 
are expected to be developed by 2030 (ETN, 2021). 
Meanwhile, a power generation system based on 
oxygen-hydrogen combustion turbines that perform 
direct combustion of these gases has been devised, 
seeming promising for high-efficiency hydrogen power 
generation. In this system, the sole byproduct of 
combustion at a very high temperature is water vapor if 
hydrogen and oxygen are combusted at the theoretically 
compatible ratio. As the conventional Rankine cycle is 
intended for external combustion engines, it is difficult 
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to achieve higher temperatures than those in GTs, which 
perform internal combustion, owing to limitations in the 
heat resistance of heat transfer tubes in the boiler. In 
addition, in a conventional GT, the amount of generated 
NOx increases with increasing temperature. In contrast, 
in oxygen-hydrogen combustion, NOx generation is 
prevented owing to the absence of nitrogen in the 
reaction gas. Therefore, oxygen-hydrogen combustion 
turbines may be suitable for both combustion at higher 
temperatures and highly efficient zero-emission power 
generation. Hence, they may achieve higher power 
generation efficiency than conventional GTs with a 
combined cycle. 

Oxygen-hydrogen closed cycles and their system 
parameter optimization have been widely studied, 
leading to systems such as those based on the Graz cycle 
(Sanz et al., 2018), a new Rankine cycle (Fukuda and 
Dozono, 2000; Soufi et al., 2004; Bannister et al., 1998; 
Schouten and Klein, 2020), and even topping with a fuel 
cell (Millewski, 2015). In Japan, the WE-NET project 
(Mitsugi et al., 1998) was conducted between 1993 and 
1998 to achieve an efficiency above 60% (HHV) 
(approximately 71% regarding LHV) at a turbine inlet 
temperature of 1700 °C. A topping regeneration cycle 
and new Rankine cycle were proposed, demonstrating 
that the target efficiency could be achieved through 
optimization (Sugisita et al., 1998).  

Since 2018, the development of basic technology for 
a power generation system based on oxygen-hydrogen 
combustion turbines is underway as part of a research 
and development project at the New Energy and 
Industrial Technology Development Organization 
(NEDO) for leading hydrogen utilization (NEDO, 2022). 
By 2020, the oxygen-hydrogen combustion power 
generation was reviewed considering the knowledge 
obtained from the WE-NET project, and a parameter 
study of the turbine inlet conditions (i.e., steam pressure 
and temperature) for achieving 75% (LHV) thermal 
efficiency was conducted using the Graz cycle. 
Simultaneously, a system that leverages the cycle by 
rationalizing the factors that increase costs while 
minimizing the decrease in thermal efficiency was 
investigated, leading to identify technical research 
problems to be addressed for obtaining a high-efficiency 
system. Technical studies on rationalization systems are 
being conducted based on results from the 
abovementioned pioneering studies.  

Despite the advancements, most studies on oxygen-
hydrogen combustion turbine cycles have been focused 
on the optimization of the cycle configuration and 
system performance. Such studies have demonstrated 
the possibility of achieving high efficiency, but few 
studies on operational characteristics such as start-up, 
shutdown, and load change are available, with an 
exception being a study on the start-up operation of the 
new Rankine cycle (Funatsu et al., 1998). When variable 
renewable energies are introduced into the power 

system in large quantities in the future, power 
generation systems are expected to have more 
opportunities to operate at partial load. Therefore, in 
addition to their rated performance, their operability 
should be evaluated. In fact, determining the 
dependence of the system performance on different load 
changes is important. For example, condensate 
generation, rapid temperature fluctuation, and excess 
temperature may occur during partial load operation. 
Hence, a system-level dynamic model should be 
established. Physical modeling is especially useful to 
predict both the dynamic behavior and off-design 
conditions for the entire operational range of a power 
generation system. In addition, the model is important 
for efficient development, prediction, and evaluation of 
operational characteristics of the entire system at the 
conceptual stage as well as understanding operational 
problems and specifications for components at an early 
stage. Although many analyses of thermal power 
generation systems have been performed using 
Modelica, few have been performed considering 
oxygen-hydrogen combustion turbines. 

To evaluate the dynamic performance under load 
changes and capture the general behavior of the target 
system, we constructed a dynamic model of an oxygen-
hydrogen combustion turbine system using a Modelica-
based tool developed by the Central Research Institute 
of Electric Power Industry, Japan. Then, simple load 
following control was implemented, and the dynamic 
behavior was evaluated based on the corresponding 
simulation results. 

2 Methods 

2.1 System Configuration  
Figure 1 shows a diagram of the system considered in 
this study, while Figure 2 shows the temperature–
entropy diagram, and Table 1 lists the main performance 
parameters of the system. Although the system was 
based on the Graz cycle, it was intended to leverage the 
benefits of the cycle by omitting the high-pressure 
turbine and streamlining equipment specifications that 
increase manufacturing costs by using a combustion 
temperature of 1400 °C. Therefore, the system mainly 
comprises a combustor, high-temperature turbine (HTT), 
compressor, waste heat recovery boiler (HRSG), 
constant pressure steam turbine (LPT), condenser, and 
feedwater pump. When hydrogen and oxygen 
completely react in compatible quantities in the 
combustor, the only working fluid and combustion 
product is steam, and the system is characterized by a 
combined cycle configuration involving the high-
temperature Brayton cycle and low-temperature 
Rankine cycle. The steam circulates in the system as the 
working fluid, and the water produced during 
combustion is discharged via a drain after passing 
through the condenser. 
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Figure 1. Schematic of target power generation system. 
 

 
Figure 2. Temperature-entropy diagram of target power 
generation system. 
 

Table 1. Main performance parameters of target power 
generation system. 

 

2.2 The Dynamic Model  
A dynamic model of the system was established using 
the Modelica-based tool developed by the Central 
Research Institute of Electric Power Industry (Watanabe 
et al., 2017). The system model was constructed by 
 

 
Figure 3. Overview of dynamic model. 
 
combining static and dynamic component models and 
controllers, as shown in Figure 3. The SimulationX 
software was used for simulations.  

We assume that hydrogen and oxygen are combusted 
in compatible proportions and that the working fluid 
contains no components other than water. In addition, 
the effects of residual oxygen and hydrogen are 
neglected. 

2.2.1 Combustor 

The equation of the combustion reaction is given by 
 

2𝐻ଶ ൅  𝑂ଶ →  2𝐻ଶ𝑂 ሺ1ሻ 
 
The combustion is assumed to be instantaneous, and the 
heat generated is calculated statically from the calorific 
value of the fuel (hydrogen) as follows:  

 
𝑄୤ ൌ 𝐻𝐻𝑉୤ ∙ 𝐹୤ ሺ2ሻ 

                 
The combustion components are also calculated 
statically. The hydrogen flow rate is set as an input 
condition, and the oxygen flow rate depends on the 
hydrogen flow rate to meet the conditions for 
combustion at an equivalent ratio of 1.0. The 
combustion products are water vapor, and the amount of 
production is given by  
 

𝐹ୌଶ଴,ୡୠ ൌ 𝐹ୌଶ ൅ 𝐹୓ଶ ሺ3ሻ 
 
The pressure and temperature are calculated for the 
dynamics of the volume model assuming that the fuel 
gas enters a vessel of constant volume. A diagram of the 
Modelica model is shown in Figure 4.   
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Figure 4. Diagram for calculations of combustor model. 
 
 

2.2.2 Steam Compressor 

The steam compressor is also modeled in the static mode. 
The specific enthalpy at the turbine outlet and power 
output are respectively given by 

 

𝐻୭ ൌ 𝐻୧ ൅
𝐻୭,ୟୢ െ 𝐻୧

𝜂ୡ୮
ሺ4ሻ 

𝑊ୡ୮ ൌ 𝐹ୡ୮ሺ𝐻୭ െ 𝐻 ୧ሻ ሺ5ሻ 
 
As the design of the steam compressor is not complete, 
a simple functional relation between the adiabatic 
efficiency and mass flow rate is assumed. The 
compressor flow is approximated based on the 
appropriate compressor map in terms of pressure ratio, 
rotation speed, and opening degree of the inlet guide 
vane. 

2.2.3 Steam Turbine 

HTTs and LPTs are described by static models. The 
enthalpy at the turbine outlet and power output are 
respectively given by 
 

𝐻୭ ൌ 𝐻୧ െ 𝜂ୱ୲൫𝐻୧ െ 𝐻୭,ୟୢ൯ ሺ6ሻ 
𝑊ୱ୲ ൌ 𝐹ୱ୲ሺ𝐻୭ െ 𝐻 ୧ሻ ሺ7ሻ 

 
As the steam turbine is not completely designed, a 
simple functional relation between the adiabatic 
efficiency and mass flow rate is assumed. The steam 
flow rate is calculated using the nozzle flow equation: 
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2.2.4 Heat Exchanger 

For the superheater and economizer, finite volume 
models divided along the vertical direction are used, as 
illustrated in Figure 5. The effects of mass and energy 
conservation laws are given by Eqs. (9)-(13), and the 
heat transfer equations are given by Eqs. (14) and (15).  
 

𝑑
𝑑𝑡
𝑀୦,௝ ൌ 𝐹୦,௝ିଵ െ 𝐹୦,௝ ሺ9ሻ 

             
𝑑
𝑑𝑡
𝑀ୡ,௝ ൌ 𝐹ୡ,௝ାଵ െ 𝐹ୡ,௝ ሺ10ሻ 

         
𝑑
𝑑𝑡
൫𝑀୦,௝𝐻୦,௝൯ ൌ 𝐹୦,௝ିଵ൫𝐻୦,௝ିଵ െ 𝐻୦,௝൯ െ 𝑄୦,௝ ሺ11ሻ 
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𝑑𝑡
൫𝑀ୡ,௝𝐻ୡ,௝൯ ൌ 𝐹ୡ,௝ାଵ൫𝐻ୡ,௝ାଵ െ 𝐻ୡ,௝൯ ൅ 𝑄ୡ,௝ ሺ12ሻ 
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𝑑
𝑑𝑡
𝑇୫,௝ ൌ 𝑄୦,௝ െ 𝑄௖,௝ ሺ13ሻ 

        
𝑄୦,௝ ൌ 𝐴𝐾୦,௝൫𝑇୦,௝ െ 𝑇୫,௝൯ ሺ14ሻ 
𝑄ୡ,௝ ൌ 𝐴𝐾ୡ,௝൫𝑇୫,௝ െ 𝑇ୡ,௝൯ ሺ15ሻ 

 
  

 
Figure 5. Schematic of finite element heat exchanger 
model. 
 
The evaporator is modeled as a finite volume model, 
while the drum is modeled as a pressure vessel element 
satisfying the two-phase condition. Level control is 
considered to maintain a constant water level in the 
drum by adjusting a water supply valve. The heat 
transfer coefficient is also considered along with the 
variations at partial load with respect to mass flows. 

2.2.5 Condenser 

The condenser is modeled as a pressure vessel, where 
water and steam are mixed in a separated state. Dry or 
wet vapor enters the inlet and is discharged into water at 
the outlet. Again, level control is introduced to maintain 
a constant water level in the condenser and adjust the 
amount of condensate water by adjusting a drain valve. 
 

To calculate the properties of water and steam in the 
model, we use the original function model created based 
on the IAPSW-IF97 formulation (Fernandez-Prini and 

1 j -1 j j +1 nHot side

Cold side
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Dooley, 1997). The equipment performance parameters 
are configured based on heat balance and computed 
results. The weights of the heat transfer metal surface of 
the heat exchanger and piping volume can also be 
configured.  

2.3 Load Change Strategy 
In this study, the fuel flow rate was controlled based on 
the difference between the desired and computed power 
outputs, as illustrated in Figure 6. Other possible 
operating variables included the compressor inlet guide 
vane and steam governor valves, which were assumed 
to operate at a constant point.  
 
 

 
 
Figure 6. Diagram of load change strategy. 
 

3 Results and Discussion 
The system characteristics were examined when the 
load dropped and increased between 100% and 50%. 
The simulation input was a load command, and the load 
change rate was set to 10% per minute. This scenario 
was set up according to the operational conditions 
referred to existing and future power generation systems 
using GTs with combined cycles. 

3.1 Load Reduction  
Figure 7 shows the simulation results for load reduction. 
The values for power in figure 7(a) are given relative to 
the rated power output, and the values in the other 
figures are given relative to the value of the rated power 
output. The HTT output followed the load command, 
while the LPT output changed with a delay attributable 
to the delayed response of the steam caused by the heat 
capacity of the heat exchanger. The CP power also 
changed with a delay for the above reason. The thermal 
efficiency was lower at partial load than at the rated 
output. In addition, the fuel flow rate to the GT followed 
the load command, thereby reducing the combustion 
temperature, while the turbine outlet temperature 
showed large fluctuations, and it took time for the 
system state in the cycle to stabilize. The compressor 

inlet temperature and pressure also fluctuated, but the 
compressor inlet state showed less overshooting and 
fluctuations than the HTT outlet state. This is 
attributable to both the heat capacity in the heat 
exchanger and suppression of the effect of short-time 
fluctuations. 

3.2  Load Increase 
As shown in Figure 8, the HTT output followed the load 
command quickly as the fuel flow rate to the GT 
increased during load increase. On the other hand, the 
LPT output and CP power changed with a delay, like in 
the case of load reduction. In addition, the system state 
at the turbine outlet and compressor inlet fluctuated, and 
the steam state in the cycle took time to stabilize. 
Countermeasures (e.g., installing sprays) should be 
considered to prevent overshooting in parameters such 
as the temperatures of the combustor inlet steam and 
HTT outlet steam. 

3.3 Problems and Countermeasures for 
Load Changes 

The load change results indicate some sites where the 
system state considerably fluctuates using this control 
strategy. Such fluctuations can destabilize plant 
conditions and increase the heat load on equipment. 
Therefore, they should be minimized for stable 
operation through countermeasures taken by changing 
component specifications and control methods. 
 To evaluate the effect of the HRSG heat capacity on 
the system response, simulation results of load 
following when the heat capacity was set to half of the 
original were obtained, as shown in Figure 9. The 
undershoot width of the HTT outlet temperature reduced 
by decreasing the HRSG heat capacity. This can be 
attributed to the ratio of the delay in the LPT output 
being compensated by the reduced GT output, thereby 
mitigating the change in the fuel flow rate supplied to 
the GT. Thus, the HRSG specifications are important for 
system stability under changing load. In addition, other 
control methods should be considered to reduce 
fluctuations in the compressor inlet and HTT outlet for 
stable operation. 

4 Conclusion 
We established a dynamic model for a power generation 
system based on oxygen–hydrogen combustion turbines 
to evaluate its performance and dynamic behavior based 
on load following control. This study was preliminary 
and included various assumptions. In future work, we 
will improve the accuracy of the analytical model by 
considering the detailed designs of the system 
components. In addition, we will evaluate other types of 
load changes. 
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(a) Power output and thermal efficiency

(b) Fuel flow rate

(c) HTT inlet and outlet temperature

(d) Compressor inlet temperature and pressure

Figure 7.  Simulation results during load reduction. 

(a) Power output and thermal efficiency

(b) Fuel flow rate

(c) HTT inlet and outlet temperature

(d) Compressor inlet temperature and pressure

Figure 8. Simulation results during load increase. 
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(a) Load reduction

(b) Load increase

Figure 9. Simulation results of HTT inlet and outlet 
condition 
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Abstract 
This paper describes the application of the system 

simulation platform Modelon Impact for techno-
economical assessment of energy projects towards 
carbon neutrality. The control co-design approach 
applied in the work allows for rapid assessment of 
various technology options without the need for 
deriving complex control laws for the considered assets. 
The approach is here applied on an industrial use case 
where the goal is to identify the technology options 
that minimize the total cost of ownership while 
achieving carbon neutrality.  
 

Keywords:     process design, controls, optimization, 
hybrid energy systems, renewables, hydrogen, energy 
storage systems 

 

 

1 Introduction 
   Organizations have made a goal of significantly 

reducing CO2 emissions to mitigate climate change. 
Not only governments and energy companies but also 
industries are now moving away from fossil fuels, 
investing in new technologies towards carbon 
neutrality. There are however many options, ranging 
from diverse renewable energy sources to carbon 
capture and utilization, hydrogen technologies and 
storage energy systems. The different alternatives vary 
significantly in terms of technical performance 
(efficiency, degradation, longevity) and in terms of 
economy (initial investment, operational cost, 
incentives). It is therefore not an easy task for the 
decision makers to efficiently explore the different 
paths and choose a cost-efficient implementation that 
meets the environmental targets (Venkatraman and 
Khaitan, 2015). 

  As shown in (Windahl et al, 2019) and (Fathima 
and Palanisamy, 2015), system simulation and 
optimization can efficiently help exploring and pruning 

the various options in a systematic way. The specificity 
of the approach proposed by the authors in (Velut et al, 
2020) is twofold. It relies on the open modeling 
language Modelica and makes it thereby possible to 
model and simulate potentially any hybrid energy 
system. Secondly, the models can be used to formulate 
and solved dynamic optimization problems avoiding 
the need to derive & implement complex controllers 
for all considered configurations. Instead, optimal 
control and design problems can be setup to quickly 
assess the limits of performance and the cost of various 
alternatives. 

The strategy has been applied in (Velut et al, 2020) 
for microgrid design and operation. In (Magnusson et 
al, 2021), the models have been further extended to 
include hydrogen components such as electrolyzer, fuel 
cell or hydrogen tanks. The current paper presents a 
major extension of the framework that is now able to 
assess the technical and economic feasibility of 
complex long term energy projects involving the 
production, conversion or supply of products like heat, 
electric power, hydrogen, synthetic methane or CO2. 
 
 

2 Framework 
 

2.1 Tools and methods 
Modelon Impact (Modelon, 2022) is used to model, 

simulate, and optimize the hybrid energy system in 
Modelica. Modelon Impact is a system modeling and 
simulation platform leveraging the benefits of web and 
open standard technologies. With openness at its core, 
Modelon Impact supports standards such as Modelica, 
FMI, Python and REST. The user-friendly browser 
interface provides modeling experts the tools they need 
to create, simulate, and experiment. The Modelon 
Impact API enables scripting of advanced analyses 
using Python through Jupyter notebooks. The 
optimization problem formulation has been written in 
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Optimica, a Modelica language extension (Åkesson, 
2008). The API of Modelon Impact gives access to the 
Optimica Compiler Toolkit and its dynamic 
optimization framework (Magnusson et al, 2015), 
which is used to solve the dynamic optimization 
problem using direct collocation. 

2.2 Physical modeling 
A sketch of the system to be modeled and optimized 

is shown in Figure 1. The sketch represents a Honda-
owned factory in the US that assembles cars. 

Figure 1 Overview of the system model 

The plant model has been built by connecting 
component models from the Microgrid package in 
Thermal Power Library (Modelon, 2022). The 
Modelica package contains optimization-friendly 
models targeting optimal design and control. The 
models are typically static, semi-empirical and 
described by efficiency curves. Dynamics is mainly 
present in the storage components.  

The plant consists of buildings, vehicle fleets, 
industrial equipment that can all be seen as some type 
of load: 

 Electric loads for buildings’ HVAC system,
lighting, EV fleet, etc.

 Hydrogen loads for fuel cell-based
transportation and logistics systems (forklifts,
trucks, railroad)

 Thermal energy loads for heating and cooling
in the buildings as well as industrial
equipment such as burners

The goal of this work has been to assess different 
carbon neutral and sustainable options to satisfy the 
various loads. The model shown in Figure 1 represents 
a possible configuration where hydrogen technologies 
have replaced fossil fuel ones: 

 Electrolyzer for onsite hydrogen production
 Hydrogen tank (for either gas or liquid

hydrogen)
 Liquefaction plant
 Stationary fuel cell for power back-up or peak

shaving
 Hydrogen dispenser

Compared with the work presented in (Magnusson et 
al, 2021), additional models have been derived: 

 Heat pump, converting electric power to heat
in buildings

 Burners to produce heat from the combustion
of methane

 Carbon capture technologies to achieve carbon
neutrality
o A CCS block to capture the CO2

produced in the combustion processes
o A CCUS block for methane production

from captured CO2 and hydrogen
o If CC(U)S is not applied, CO2 is released

to the ambient at a cost given by carbon
taxes

Electric power, hydrogen and other fuels can also be 
imported using 

 A power grid component acting as a voltage
source 

 A discrete delivery hydrogen market
component that implements a controllable
supply at a fixed frequency and the amount for
every delivery being a degree of freedom in
the optimization.

 A continuous fuel delivery, which can deliver
methane (or other fuels) on demand, in case of
pipeline delivery infrastructure.

Finally, energy can be stored either in batteries or as 
hydrogen to shave the power peaks and cope with the 
variations in renewable power. The goal is to assess the 
most economical alternative. 
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2.3 Economy modeling 

2.3.1 Fixed and variable costs 

The main goal of the work has been to perform a 
techno-economic analysis of the future plant. Economy 
information has therefore been added to every 
component to keep track of both the capital and 
operational cost of all equipment.  

The considered time horizon for the optimization is the 
project lifetime 𝑇௣௥௢௝ , close to the components’ 
lifespan. 

The total cost of ownership of a component i has been 
divided into 2 parts: 

 the fixed total cost 𝑇𝐶𝑂௙௜௫,௜ , the sum of the
capital cost and the fixed operational cost, i.e.,
due to maintenance

 the operational cost

If the fixed costs (capital cost and fixed operational 
cost) scale linearly with the assets size, the fixed cost 
can be computed using the following parameters:  

 Lifetime 𝐿௜

 The specific capital expenditure CapEx 𝐶௜, i.e.
normalized by the rated output or size 𝑠௢௣௧,௜

 The fixed yearly operational expenditure 𝑜௙௜௫,௜

(e.g. fixed maintenance cost) also normalized
by the rated output or size 𝑠௢௣௧,௜

The fixed total cost component for component i over 
the project lifetime is then 

𝑇𝐶𝑂௙௜௫,௜ = 𝑇௣௥௢௝ ∙ 𝑠௢௣௧,௜ ൬
𝐶௜

𝐿௜
+ 𝑜௙௜௫,௜൰

The variable OpEx based on the usage of a component 
is typically computed by integrating the resource cost 
(power, fuel cost…) 𝑜௩௔௥,௜over time. Since this system 
has centralized energy markets, the variable OpEx is 
typically calculated on the respective markets. The 
project total cost of ownership of the system can be 
finally computed as: 

𝑇𝐶𝑂௧௢௧ = ෍ ቈ𝑇௣௥௢௝𝑠௢௣௧,௜ ൬
𝐶௜

𝐿௜
+ 𝑜௙௜௫,௜൰

+ න 𝑜௩௔௥,௜𝑑𝑡
்೛ೝ೚ೕ

଴

቉ 

The summation over the components is automatically 
done by aggregating all the costs in a single “Economy 
Summary”, which makes it convenient and compact. 

Any system configuration change does not require any 
manual update in the overall cost computation. 

Although time-varying grid prices can be considered in 
the optimization, a fixed price was used to describe a 
virtual power purchase agreement.  

2.3.2 Long term aspects: degradation and money 
value 

  While the data profiles used in the optimization only 
cover one year, to account for seasonal variations, the 
project lifetime is several decades. When considering 
such long periods, degradation of components as well 
as changes to the value of money need to be considered 
as well. Since the computational cost of dynamic 
grows superlinearly with the time horizon, 
optimization over the entire time horizon is 
computationally tractable. Two simplifications have 
been considered to account for these factors: 

1. Year separation: By fixing the design and
disregarding the storage between years, the
TCO of each year can be calculated
independently. By sampling the entire design
space, the optimal design and control can be
found.

2. Mean year: Lump degradation and NPV
factors across all years to create a "Mean" year
that allows simultaneous optimal design and
control. This reduces the time horizon of the
project optimization to a single year.

While the first approach is more accurate, it is still 
computationally expensive. It has been used to verify 
that the second approach yields satisfactory accuracy. 

2.3.3 Demand charges and peak shaving 

The objective of this model incorporates many 
aspects from previous projects that have been 
introduced and described in detail in (Velut et al, 2020) 
and (Magnusson et al, 2021).  Similar to previous 
models, a form of peak shaving was being 
implemented. In this case, the utilities contract applied 
a demand charge on the maximum of the power 
demand from the grid during the summer months from 
June to September.  The grid model has therefore been 
adapted to optimize the peak only during these months, 
so that both size and operation of relevant components 
results in an economically optimal peak shaving 
behavior. 

The demand charge is a constant per-kW charge 
applied to the electricity grid and is being handled by 
use of a slack variable.  
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3 Optimization problem 
As previously mentioned, the goal is to assess the 

technical and economic feasibility of the project of 
making the Honda-owned facility carbon neutral. For 
this purpose, some clean replacement technologies 
listed in Section 2.2 have been considered to meet the 
various needs in heat and power. Optimization will 
now be used to find the best options and size the 
equipment appropriately. 

3.1 Objective function 
The objective function is the total cost of ownership 

computed over the project lifetime 𝑇௣௥௢௝ as described 
in Section 2.3.1. 

3.2 Discretization 
The optimization problem is solved over a full 

calendar year. The sampling rate of the collocation 
algorithm is one hour (equal to the boundary 
conditions’ sampling rate), which means that every 
control trajectory is described by 8760 degrees of 
freedom. 

As the dynamics of the plant is relatively simple 
(integrators of the storage components), implicit Euler 
has been chosen in the collocation. 

3.3 Co-design - simultaneous control and 
process design 

The plant consists of many assets that interact with 
each other and some need to be controlled such as 
battery, electrolyzer, fuel cell. Instead of developing 
controllers for all these components, a control co-
design approach has been chosen, where the optimizer 
operates the controllable assets at the same time as it 
sizes all equipment. If the design is solved for a 
specific control strategy, it leads to sub-optimal design, 
i.e. a higher total cost of ownership. By solving
simultaneously for the assets' operation and their size,
it is possible to minimize the asset’s size and the
overall cost. The strategy makes it also very convenient
as no time is spent on deriving empirical controllers for
all considered technologies and system configuration.

3.4 Degrees of freedom 
The degrees of freedom in the co-design 

optimization problem are:  
1. Parameters that define the size of the equipment

(design problem)
2. Time trajectories for all control inputs of the

controllable assets (control problem)

The list of degrees of freedom can be found in the 
tables below. Note that the discrete deliveries of 
hydrogen hydrogenMarket.deliveries[i] have been 
implemented as a vector of deliveries, the period being 
fixed to a week. All control signals have been 
normalized to operate between 0 (no output) to 1 (rated 
output). 

With the chosen discretization level, the optimization 
problem contains 78905 degrees of freedom, 65 for the 
parameters and 78840 for the input trajectories (9 
inputs and 8760 hourly values). 

3.5 Constraints 
Apart from the equality constraint of fulfilling the 

plant model equations, several inequality constraints 
have been considered in the formulation.  

The first set concerns all degrees of freedom that need 
to lie within given bounds as shown in the previous 
section. Another set concerns the storage components 
(battery and tank) whose state of charge, eventually in 
terms of pressure or level, must be kept within 
reasonable limits. Export to the power grid was also 
prevented using an inequality constraint. 

The last operational constraint that has been 
implemented ensures that power can be supplied in 
case of a full blackout. No black-out scenario is 
considered in our optimization and therefore we need 
to design and operate the system in a way energy is 
always available to handle that event. Since several 
backup solutions exist in the system, even a mix of 
technologies is conceivable. In this system, the backup 
power can be provided by either battery or fuel cell, i.e. 
the sum of rated output power 𝑃௕௔௖௞௨௣  should be 
greater than the minimum requirement for emergency 
power 𝑃௕௔௖௞௨௣

଴  

𝑃௕௔௖௞௨௣ ≥ 𝑃௕௔௖௞௨௣
଴  

𝑃௕௔௖௞௨௣ = 𝛴𝑃௕௔௖௞௨௣௉௥௢௩௜ௗ௘௥
௜ = 𝑃௕௔௧௧ + 𝑃௙௖ 

This power needs to be available for a certain time 
𝑡௕௔௖௞௨௣

଴ :  

𝑡௕௔௖௞௨௣(𝑡) ≥ 𝑡௕௔௖௞௨௣
଴  ∀𝑡 

The back-up time is expressed in terms of the total 
energy stored in the back-up providers and the power 
level it needs to be provided at: 

𝑡௕௔௖௞௨௣(𝑡) =
Σ൫r୧ ∗ 𝐸௦௧௢௥௘

௜ (𝑡)൯

Pୠୟୡ୩୳୮
଴ > tୠୟୡ୩୳୮

଴
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Where 𝑟௜ is a factor that accounts for the efficiency of 
the discharging process and the discharging power of 
the back-up assets. The constraint formulation has been 
generalized to allow for easy integration of alternative 
backup power solutions in case both battery and fuel 
cell turn out to be unfeasible. 
 

3.6 Initialization 
The solver for the nonlinear program needs 

reasonable initial guess of the solution for reliable 
convergence. This is typically generated by a dynamic 
simulation of the plant model where initial guesses for 
all degrees of freedom have been applied.  

 
While the initial component size was typically 
constrained by simple physical considerations 
(available area for photovoltaics, yearly total energy 
demand, etc), the control signals’ initial trajectories 
were derived using simple control laws. The battery 
charging and discharging rates were controlled by a PI 
controller driven by the renewable energy surplus. The 
electrolyzer was controlled using a PI controller to 
maintain a constant state of charge in the hydrogen 
tank. Concerning the other components, pre-defined 
trajectories were applied as initial guess. 

 
 

4 Results 
This optimization problem solves many tasks at the 

same time: 
 It selects technology options (discrete choices) 
 It sizes components (continuous choices) 
 It operates assets to achieve the minimal total 

cost of ownership (continuous choices) 
 It estimates the minimal total cost of ownership 

In this paper, we review the results of a single 
optimization run. It is required in the future to perform 
a sensitivity analysis to assess the robustness of the 

optimization results with respect to uncertainties in all 
forecasted data (prices, loads and weather).  
 

4.1 Technology selection 
In the plant configuration shown in Figure 1, all 

technology options to be assessed have been modeled. 
This means that there are redundancies in the way the 
loads can be met. If the optimization results in an asset 
of size zero, it means that the corresponding 
technology is neither technically nor economically 
viable. In some cases, the optimization finds it optimal 
to fulfill a need by investing in different technologies. 
Here are the technology options that have been 
investigated: 
 
1. Import versus on-site generation for hydrogen 

and power 
2. Fuel cell versus battery for backup-power and 

peak shaving 
3. CCS vs. CCUS vs. carbon tax to deal with the 

emissions from the combustion processes 
4. Conventional burner versus heat pump for paint 

drying 
 
In the following sections, the technologies selected for 
the first 2 items will be presented and discussed. 
 

4.1.1 Import versus onsite generation  

With the given price structure for energy and the 
given CapEx and OpEx for electrolyzer and 
photovoltaic power plant, both hydrogen and electricity 
can economically be produced on-site to a significant 
amount. However, due to the different pricing of 
electricity in winter and summer, both technologies 
have been selected by the optimization: 

1. While the CapEx cost for the electrolyzer and the 
required liquefier is rather high, and also the 
energy losses from well to wheel are considerable, 
electricity cost in this model is low enough to 
produce liquid hydrogen at a lower price than 

Table 1 Optimizable parameters of the system 

Parameter name Min 
Value  

Max 
Value 

Unit 

battery.capacity 0.01 2000 MWh 
CCS.m_flow_rat 1e-5 1e5 kg/s 
CCU.m_flow_rat 1e-5 1e5 kg/s 

electrolyzer.n_cell 0.01 350 MW 
fuelCell.n_cell 0.01 212 MW 

grid.P_peak 0  MW 
heatPump2.P_rat 1e-7 1e4 MW 

hydrogenMarket.deliveries[i] 1e-7 1e4 MW 
ngBurner2.P_rat 0.01 68.9 MW 

photovoltaics.scale 0.1 1e06 m3 
tank.V 40 3e5 MW 

transformer.P_max 0.01 2000 MWh 
 

Table 2 Optimizable control signals of the system 

Input name Lower 
bound 

Upper 
bound 

I_electrolyzer__opt 0 1 
I_fuelCell__opt 0 1 

P_battery_charge__opt 0 1 
P_battery_discharge__opt 0 1 

P_processHeat__opt 0 1 
m_flow_CCS__opt 0 1 
m_flow_CCU__opt 0 1 

ndot_H2_boiloff_vent 0  
pv_curtailment__opt 0 1 
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purchasing from an external supplier. In summer, 
the comparatively high peak demand charge 
means, that reducing the output of the electrolyzer 
is the most economical mode of operation. As a 
result, the optimizer determined that producing 
the hydrogen on-site and purchasing the hydrogen 
to almost equal parts is the most cost-effective 
option, see the Sankey diagram in Figure 2. 

2. Photovoltaics cannot provide electric energy at a 
lower cost than the utility company with the 
available pricing structure and the given 
insolation profile for the plant location. But 
during peak-hours in the summer, photovoltaics 
can significantly reduce the demand charge, and 
drives the electrolyzer for a longer time at its rated 
power, decreasing the overall cost for hydrogen. 

 

4.1.2 Fuel cell vs. battery 

In this model, the fuel cell and the battery can fulfill 
similar tasks: both can provide power and lower the 
demand charge during peak hours. Both options can 
also both provide emergency power in case of a 
blackout in the grid.  

 
The considered batteries are second-use and they come 
therefore with limited performance. Apart from a 
limitation on the usable SOC range, they cannot be 
fully discharged faster than 2 hours. 

 
The optimization results show that the fuel cell is the 
far better alternative for both use cases. We attribute 
this to two main root causes: 

1. While the price-per-kW of the battery is here 
lower than that of the fuel cell, the backup power 
time requirement 𝑡௕௔௖௞௨௣

଴  is much larger than 2h, 
meaning we will need to install several times as 
much power as 𝑃௕௔௖௞௨௣

଴  to achieve the required 
energy needs, which results in a battery that is 
more expensive than the fuel cell for this purpose. 

2. Furthermore, the constraint on 𝑡௕௔௖௞௨௣
଴  means, that 

the battery needs to have enough energy stored to 
provide 𝑃௕௔௖௞௨௣

଴  for 𝑡௕௔௖௞௨௣
଴  at all times. A battery 

that is just big enough to fulfill the requirements 
for backup power needs to be kept completely 
charged and cannot be used for other purposes 
like peak-shaving without violating the backup 
power requirement. 

 
While the fuel cell size is the significant parameter for 
the backup power, the time 𝑡௕௔௖௞௨௣(𝑡) this power can 
be provided is largely determined by the available 
hydrogen in the tank, meaning that the tank will need 
to always retain 𝑡௕௔௖௞௨௣

଴  worth of hydrogen in the tank. 
In our model, hydrogen is delivered at fixed time 
intervals and the delivered amount is variable and 
optimal. At each delivery, the tank is filled just enough 
to have a sufficient backup of hydrogen in the tank 
before a new delivery arrives. 
The investment cost (CapEx) for a fuel cell would be 
too high to justify its use as a peak-shaver. However, if 
the fuel cell doubles as emergency power provider, the 
operational cost make operation during peak hours 
economically viable. A detailed explanation of this 
behavior can be found in 4.3. 

Figure 2 Sankey diagram of the energy flows [GWh] in the optimized system 
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The resulting fuel cell is just sized big enough to be the 
single provider of backup power 𝑃௕௔௖௞௨௣

଴  Since the 
battery does not provide any backup power, the 
hydrogen tank’s level is directly proportional to the 
available emergency backup time 𝑡௕௔௖௞௨௣ (Figure 4) 
 

4.2 Components’ size 
In this system, a total of 11 parameters have been 

optimized, most of them are related to the rated output 
or physical size of these components. Additionally, 53 
weekly hydrogen deliveries have been computed 
(Figure 3). The results of the optimal sized components 
is shown in Table 3. 
The following is worth to be noted: 
 The resulting photovoltaics is not covering all the 

available area for the reasons previously exposed 
 The fuel cell is sized mainly to match the backup 

power requirements.  
 The battery capacity is minimal, reaching 

practical zero size 
 Carbon taxes are more economical than carbon 

capture technologies 
 

4.3 Optimal control 
Interesting findings can be done by visualizing the 

control trajectories.  
 
The state of charge of the tank is limited by the back-
up requirements and not by its bound parameter, see 
Figure 4. The back-up requirements have therefore a 
direct impact on the amount of the weekly hydrogen 
delivery and the tank size.  
 
The power from the photovoltaics is in principle never 
curtailed because the maximum output of the 

photovoltaic power plant is below the rated power 
input of the electrolyzer (Table 3), which means that 
the optimizer is always able to utilize the surplus 
energy either for the electricity load directly or for 
hydrogen production. 
 
Peak shaving in the summer was mainly expected to be 
performed by engaging storage. As shown in Figure 5, 
the optimizer found that it is more cost effective to act 
on the significant controllable load that is the 
electrolyzer. Hydrogen is imported to a higher degree 
in the summer month when this happens, see Figure 3.  
 

 

 

Figure 4 Backup reserve time  𝒕𝒃𝒂𝒄𝒌𝒖𝒑 and tank level 
(normalized)  

 
 

Table 3 Optimized parameters 

Parameter Name Optimal 
size 

Min Max Unit 

battery.capacity 0.01 0.01 2000 MWh 
cCS.m_flow_rat 1e-5 1e-5 1e5 kg/s 
cCU.m_flow_rat 1e-5 1e-5 1e5 kg/s 
electrolyzer.n_cell 22.6 0.01 350 MW 
fuelCell.n_cell 3.1 0.01 212 MW 
grid.P_peak 54.44 0  MW 
heatPump2.P_rat 10.87 1e-7 1e4 MW 
ngBurner2.P_rat 1e-7 1e-7 1e4 MW 
photovoltaics.scale 22.26 0.01 68.9 MW 
tank.V 1069 0.1 1e06 m3 

transformer.P_max 92.73 40 3e5 MW 
     

 

 
Figure 3 Optimal hydrogen deliveries over the course of a 
full year 
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The fuel cell is only used in 2 situations: 
1. It takes over from the electrolyzer in its peak 

shaving activity when the electrolyzer power is 
completely shut down, see Figure 6. As explained 
in 4.1.2, due to its high CapEx, the fuel cell is 
sized to fulfill the backup requirements. Making 
thus up only roughly 15% of the electrolyzer’s 
rated power demand, the impact on peak-shaving 
of the fuel cell is relatively small. 

2. Besides its operation as peak shaver, the fuel cell 
converts the otherwise unused boil-off hydrogen 
into electricity. When demand for hydrogen 
becomes lower, the fraction of boil-off gas (BOG) 
at the tank outlet increases. During the weekends, 
the hydrogen-load is provided entirely as BOG 
(Figure 6). At the same time, the electrolyzer 
generates additional hydrogen, which results in a 
steady increase in the amount off boil-off 
hydrogen until the demand recovers during 
working hours at the plant. 
Reliquefying the hydrogen (zero boil-off) may be 
a more cost-effective option in such cases but is 
currently not supported in this model. 

 

4.4 Performance 
The optimization problem considered in the paper is 

complex and large-scale. Modelon’s Thermal Power 
library, as well as the component models developed for 
this project, have been designed with dynamic 
optimization in mind. Thanks to a more efficient 
formulation and model improvements, it is now 
possible to solve the TCO optimization problem for a 
full year in a reasonable time. On an entry level PC (i3), 
initializing the problem takes about 5 minutes, with an 
additional 10 minutes to find a solution. Using 
parallelization, it is possible to run parameter sweeps in 
not more than 10 minutes.  
 

5 Conclusion 
In this paper, we have presented a framework that 

allows for the techno-economic assessment of complex 
hybrid energy projects. The benefit of the approach 
relies in the simultaneous design of the controls and the 
process, which lead to lower cost and a more 
systematic way of handling new configurations and 
technologies. The method has been applied on a car 
manufacturing plant to minimize the total cost of 
ownership of the transition towards carbon neutrality. 
The technique was able to estimate the overall cost and 
select the most viable technology options. Some results 
are unexpected and cannot be found by considering a 
part of the system in isolation, but rather require a 
holistic system model.  
 

 
Figure 5 Demand reduction during summer months 
and peak shaving over the course of one year 

 

 
Figure 6 Demand reduction and peak shaving (detail) 

 

 
Figure 7 Boil-off consumption and peak-shaving 
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Abbreviations 
 
  
EV Electric Vehicle 

HVAC Heating, Ventilation, Air-Conditioning 
TCO Total Cost of Ownership 

BOG Boil-off gas (hydrogen) 
CapEx Capital Expenditure 

OpEx Operational Expenditure 
FC Fuel cell 

PV Photovoltaic 
CCS Carbon Capture and Storage 
CCUS Carbon Capture, Utilization and Storage 

NPV Net Present Value 
FMI Functional Mock-up Interface 
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Abstract
Cyber-Physical Systems are ever-increasing in complex-
ity and new methods and tools for developing them are
needed. To support these highly dynamic systems, in-
creasing the flexibility of the modeling languages is de-
sirable. This paper proposes and examines a Modelica
language extension to support dynamic overconstrained
graphs with reconfiguration at runtime. Two applications
of this new feature are also discussed: synchronous AC
power systems and incompressible fluid networks. Re-
ported findings suggest that supporting dynamic overcon-
strained graphs might yield performance benefits and pro-
vide the possibility of simulating systems that can not cur-
rently be simulated in existing Modelica tools.
Keywords: dynamic overconstrained connection graph,
runtime reconfiguration

1 Introduction & Motivation
Overconstrained connector semantics was introduced in
2004 in version 2.1 of the Modelica Language Specifica-
tion (The Modelica Association, 2004). It allows to add
non-flow variables on connectors that are dependent on
each other, which can lead to overconstrained equation
systems when loops are formed in the connection graph. It
also makes topological information about the connection
graph available to the modeller, via the Connections.

*() operators.
Overconstrained connectors have found at least two no-

table applications so far. The first is in the MultiBody
package of the Modelica Standard Library (Martin Otter,
2003), were such a feature allowed to design of the li-
brary in a truly object-oriented way compared to previous
versions. The second one is in the PowerSystems library
(Rüdiger Franke, 2014), where overconstrained connector
variables are used to carry around a reference phase signal
for efficient numerical simulation.

As of the current Modelica Language Specification
(The Modelica Association, 2021), it is only possible to
define static connection graphs, which can be processed at
compile time. This makes the implementation of overcon-
strained connectors in a Modelica compiler rather straight-
forward. However, it introduces a significant limitation
when modelling AC power systems using phasors. In

these models, the phase (or frequency) reference is gen-
erated by one component of the synchronous system (an
infinite bus or a large synchronous generator for islanded
systems) and then distributed throughout the entire con-
nected synchronous system by the overconstrained con-
nector variables. In this context, it is possible to have mul-
tiple independent synchronous systems in the same Mod-
elica model that correspond to structurally disconnected
connections sub-graphs, e.g., two national grids such as
Germany and Denmark connected by an undersea DC
link; each statically connected synchronous network gets
its reference phase or frequency from the root node of its
connection graph. However, in this case, their topology is
fixed at compile time and cannot change at runtime.

When modeling AC transmission systems, particularly
large ones, it is possible that, in case of severe perturba-
tions, some key circuit breakers are switched open, effec-
tively splitting a single synchronous system into multiple
independent synchronous islands, which can permanently
rotate at different frequency. For example, when mod-
elling the European ENTSO-E synchronous system, the
Spanish grid can become isolated by opening a few line
breakers on the French border. Note that modelling this
scenario requires no structural changes in the grid equa-
tions; it just needs some numerical admittance values to
be set to zero.

When this happens, the two (or more) ensuing is-
lands can settle down into new steady states with differ-
ent steady-state frequencies. Hence, if a single, whole-
system-wide reference is still used, the phase angle of
currents and voltages of the islands that do not contain
the root node of the static connection graph will end up
rotating permanently, with a frequency that is the differ-
ence between the local island frequency and the root node
frequency. As a consequence, when the steady-state is
reached, the phasors of the new island will continue to
change sinusoidally. This is very inconvenient from a per-
formance point of view because it prevents variable step-
size solvers from increasing the step size, once the system
settles into the new steady state. It also triggers very fre-
quent recomputations of the system Jacobian if implicit
stiff solvers are used.

This problem could be avoided by allowing to dynami-
cally add or remove the unbreakable branches correspond-
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ing to Connections.branch() statements in the con-
nection graph (of Section 9.4.1 in the Modelica Speci-
fication1), based on the status of the corresponding cir-
cuit breaker components, and to add or remove the equa-
tions that show up in the same if-equation branches where
the Connections.branch() statements are declared. It
would then be possible to break up the original syn-
chronous connections established by transmission lines
when their admittance is brought to zero, thus modelling
the effects of circuit breakers on the synchronous sub-
system topology.

As a consequence, two or more disjoint connection
graphs would be formed at the time of the breaker open-
ings, each corresponding to a new synchronous island.
Therefore, the new graph topology should be analyzed at
this point, picking a new root node for each newly formed
island in the grid. Then, instead of having a single phase
reference for the entire system (which is no longer ad-
equate), one would now have two or more independent
phase references, one for each island, which would en-
sure that the phasor variables of each island reach a steady
state, thus avoiding the persistent sinusoidal oscillations
found in the case of a statically determined connection
topology.

In this paper, we investigate the effects of relaxing
the constraints imposed on If-Equations (in Section 8.3.4
of the Modelica Specification2) by allowing a special If-
equation construct where the Connectors.branch oper-
ator is allowed within these equations, thus making it pos-
sible to change the connection graph dynamically at run-
time.

The applicability and usefulness of this concept are
demonstrated in Section 2, using simple conceptual mod-
els in two different application domains: AC power sys-
tems and closed incompressible fluid networks. It is
shown that in these two cases, the structural variability of
the system of equations brought by the proposed exten-
sion is indeed very limited and can be handled by small
extensions of existing Modelica compilers. A prototype
implementation of this feature in the OpenModelica.jl Ju-
lia framework is presented in Section 3. Simulation re-
sults obtained with the prototype implementations are dis-
cussed in Section 4, while Section 5 concludes the paper
with final remarks and suggestions for future work.

2 Dynamic Overconstrained Connec-
tors in Modelica

A current limitation of Overconstrained Connectors in
Modelica is that they cannot be used in If-Equations3.

1https://specification.modelica.org/
maint/3.5/connectors-and-connections.html#
overconstrained-equation-operators-for-connection-graphs

2https://specification.modelica.org/maint/3.
5/equations.html#if-equations

3https://specification.modelica.org/
maint/3.5/connectors-and-connections.html#
restrictions-of-connections-and-connectors

In this paper we relax this condition by allowing the
Connections.branch() operator to occur within If-
Equations, hence allowing conditional Connection oper-
ators.

To showcase this feature we developed an experimen-
tal package called DynamicOverconstrainedConnectors4,
containing three sub-packages. The first contains concep-
tual models of AC grids, using Complex types to repre-
sent phasors. The second contains the very same models,
albeit with separate Real variables for the real and imagi-
nary part - this is meant for experimental compiler frame-
works that cannot handle operator records. Finally, the
third contains conceptual models of incompressible fluid
networks.

2.1 Use case: AC power systems
The main simplifying assumptions for this use case are:

• Purely inductive transmission lines.

• Idealized synchronous generators that impose a volt-
age at their port with fixed magnitude and a phase
equal to the rotor angle.

• Droop-based primary frequency control of the gen-
erators.

• The reference frame for the phasors is rigidly con-
nected to the rotor of the generator that is selected as
the root node in the connection graph.

Listing 1 contains the definition of the overconstrained
connectors; all quantity are in per-unit, to avoid any scal-
ing issues.

Listing 2 shows two alternative implementations for the
transmission line model with an embedded line breaker.
The first is made possible by the current static connection
graphs, whereby the unbreakable branches are always ac-
tive, and the frequency reference is always the same at
the two ports. The second uses the proposed extension,
whereby the unbreakable branch is only active when the
breakers are closed; so is the equality constraint between
the phase reference on the two ports.

Listing 3 shows the conceptual synchronous genera-
tor model, which sets the overconstrained reference fre-
quency variable to its own frequency if selected as the root
node of the connection graph.

Listing 1. AC overconstrained connector.

type ReferenceAngularSpeed
extends SI.PerUnit;
function equalityConstraint

input ReferenceAngularSpeed omega1;
input ReferenceAngularSpeed omega2;
output SI.PerUnit residue[0];

end equalityConstraint;
end ReferenceAngularSpeed;

4https://github.com/looms-polimi/
DynamicOverconstrainedConnectors
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connector ACPort
SI.ComplexPerUnit v(re(start = 1));
flow SI.ComplexPerUnit i;
ReferenceAngularSpeed omegaRef;

end ACPort;

Listing 2. AC Transmission line models.

partial model TransmissionLineBase
parameter SI.PerUnit B = -5.0;
discrete SI.PerUnit B_act;
Boolean closed;
Boolean open;
Boolean close;
ACPort port_a;
ACPort port_b;

equation
port_a.i = Complex(0,B_act)*

(port_a.v - port_b.v);
when open then
closed = false;
B_act = 0;

elsewhen close then
closed = true;
B_act = B;

end when;
...

end TransmissionLineBase;

model TransmissionLine
extends TransmissionLineBase;

equation
port_a.omegaRef = port_b.omegaRef;
Connections.branch(port_a.omegaRef,

port_b.omegaRef);
end TransmissionLine;

model TransmissionLineVariableBranch
extends TransmissionLineBase;

equation
if closed then

port_a.omegaRef = port_b.omegaRef;
Connections.branch(port_a.omegaRef,

port_b.omegaRef);
end if;

end TransmissionLineVariableBranch;

Listing 3. AC generator model.

model Generator
parameter SI.PerUnit V = 1;
parameter SI.Time Ta = 10;
parameter SI.PerUnit droop = 0.05;
parameter Integer p = 0;
ACPort port;
SI.PerUnit Ps = 1, Pc, Pe;
SI.Angle theta(start=0, fixed = true);
SI.PerUnit omega(start=1, fixed = true);

equation
der(theta) =
(omega - port.omegaRef)*omega_n;

Ta*omega*der(omega) = Ps + Pc - Pe;
port.v = CM.fromPolar(V, theta);
Pe = -CM.real(port.v*CM.conj(port.i));
Pc = -(omega-1)/droop;
Connections.potentialRoot(

Figure 1. System3 model diagram.

port.omegaRef, p);
if Connections.isRoot(port.omegaRef) then

port.omegaRef = omega;
end if;

end Generator;

These components are used to build several test cases in
the demonstration package; this paper focuses on the most
relevant ones.

The base system model System3 is built as shown in
Fig. 1, using standard TransmissionLine components
with static overconstrained connector semantics. Its con-
nection graph is shown in Fig. 2, and it contains three un-
breakable branches, seven connections, one broken con-
nection, and one root node.

The system is initially fully connected, and undergoes
an initial transient to get to its steady-state. At t = 10,
the break of line T2 is tripped open, so two synchronous
island are formed, one containing G1, L1, T1a, T1b, and
the left connector of T2, the other containing G2, L2, and
the right connector of T2. The two islands settle to differ-
ent steady-state frequency, but unfortunately there is only
one reference frequency (set by G1), so the phasors of the
right-hand-side island keep on rotating forever.

The next test model System4 uses dynamic over-
constrained TransmissionLineVariableBranch com-
ponents instead. In this case, the connection diagram is
initially the same as in Fig. 2, but after t = 10 it becomes
as shown in Fig. 3: the deactivation of the unbreakable
branch of T2 splits the graph into two disconnected graphs,
each with its own root node. From the point of view of the
equation count, the additional equation brought in by the
extra root node is balanced by the de-activated conditional
equality equation of T2. In this way, also the phasors of
the right-hand-side island eventually settle down to a con-
stant value, because they are now referred to their proper
reference, namely G2.port.omegaRef.

The test model System6 is the same as System4, except
that T1a is tripped open at t = 10, instead of T2. In this
case the system remains fully connected, and a single root
node can be used throughout the entire transient.

The model System7, shown in Fig. 4, demonstrates the
use of root node priority. Two synchronous islands are
formed when line T2 is tripped open. The right-hand-side
one contains two generators, G2 and G3, which both con-
tain potential root nodes. In this case, G3 is selected as root
node, since it has a higher priority than G2. This mecha-
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Figure 2. Static connection graph for System3.
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Figure 3. The connection graph for System4 after t = 10.
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Figure 4. System7 model diagram.

Figure 5. System9 model diagram.

nism can be used to ensure that the larger generators are
selected as reference nodes, by setting priorities correlated
to the generator size.

Finally, another interesting modelling feature can be
implemented with dynamic overconstrained connectors in
synchronous AC system models. Consider the system
shown in Fig. 5, with the three loads consuming 0.8, 0.1
and 0.1 p.u. power, respectively. Suppose that the total
consumption threatens to cause a network breakdown, be-
cause the generator G1 does not have enough power to sup-
ply it reliably. In such a case, the network operator can opt
for some load shedding, i.e., it can trip open the line T1,
preserving the service for the largest load L1, instead of
risking a complete system blackout.

When this happens, L2 and L3 remain connected to an
island without any power generation capability. Since load
models normally prescribe a certain active and reactive
consumption, the absence of any generation capacity in
the island means that the system equations have no fea-
sible solution, like in the equation x2 + 1 = 0. As a con-
sequence, the simulation aborts as soon as T1 is tripped
open, and it is not possible to continue the simulation of
the left-hand-side island, even though it is perfectly func-
tional and capable to carry on operating.

However, if the TransmissionLineVariableBranch

model is employed for line T1, and the load model of
Listing 4 is used, the simulation can be continued.

Listing 4. Extended load model.

model LoadVariableRoot
extends LoadBase;

equation
if port.omegaRef > 0 then
port.v*CM.conj(port.i) = Complex(P,Q);

elseif Connections.isRoot(port.omegaRef)
then

port.v = Complex(0);
else
port.i = Complex(0);

end if;
Connections.potentialRoot(port.omegaRef,

10000);

if Connections.isRoot(port.omegaRef) then
port.omegaRef = 0;

end if;
end LoadVariableRoot;

As long as the load is connected to a connection graph
that contains at least one generator, this will be selected
as root node, because of the much higher priority, and it
(greater than zero) frequency will show up as the overcon-
strained omegaRef variable; hence, the first branch of the
If-equation will be active, setting the active and reactive
power consumption to the given P, Q values.

However, if there are no generators in the dynamically
formed island after the line tripping, then one load in the
island will be selected as root node, and it will set both
omegaRef and the port voltage to zero, thus conceptually
connecting its port to ground. If the load finds itself in
a generator-less island, which is characterized by a zero
omegaRef value, but is not selected as root node, then its
equations will set the absorbed current to zero. As a result,
all voltages and all currents of the generator-less island
will be computed to zero, describing a switched-off sub-
network, while allowing the simulation of the other island
to continue undisturbed.

2.2 Use case: Closed incompressible fluid net-
works

Another use case for dynamic overconstrained connectors
is incompressible fluid networks. This is demonstrated by
the IncompressibleFluid sub-package. For the sake of
brevity, only some short code fragments are reported in
this paper; the reader is referred to the full Modelica code
on GitHub for more details.

Any closed incompressible fluid systems, that is not
connected to any pressure source of sink (e.g. the atmo-
sphere, or a fixed pressure representing the supply point of
a water supply system), needs to be connected to a com-
ponent known as expansion tank or vessel. In real life the
purpose of this component is to set the pressure level of
the circuit, which would otherwise be floating freely, and
also accommodate for the thermal expansion of the fluid
without blowing the circuit up.

When modelling incompressible fluid systems, the ther-
mal expansion effect is normally not explicitly included,
because it is very well compensated by the presence of
such expansion tanks and has a negligible effect on the
actual flow rates, so the density of the fluid is assumed
to be a constant. A very simple expansion tank model
can then just set the pressure at its port to a fixed value;
the entering flow will eventually turn out to be zero,
due to the overall mass conservation of the closed cir-
cuit. This is demonstrated by the System1 model in the
IncompressibleFluid sub-package.

Consider now the System2 fluid model, shown in Fig.
6. The system is closed and circulates a fluid in the left and
right meshes, as well as through the two valves in case the
pressure distribution is not fully symmetric.

As long as at least one of the two valves is open, the
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Figure 6. System2 fluid system model diagram.

closed system is fully connected, so a single expansion
vessel (e.g. Tank1) is required to make sure that all the
pressures around the circuit are well-defined. However,
when both valves are closed, i.e., their flow coefficients set
to zero, the system is effectively split into two independent
closed system. At that point, a second expansion tank is
needed in the right-hand-side half of the circuit, to make
sure that all the pressures there remain well defined.

Without that provision, the equations corresponding to
that part of the system will have a unique solution concern-
ing the mass flow rates, but infinitely many when looking
at the pressures. Although some tools allow to manage
such a situation by picking one of them and continuing
the simulation, it remains a fact that the model in those
conditions is not well-posed.

Note that, as in the case of AC networks, the splitting
into independent sub-systems only depends on numerical
values of some coefficients (line admittances there, flow
coefficients here), not on structural changes of the system
of equations such as, e.g. disabling some connections or
some models in the system.

Dynamic overconstrained connectors allow solving this
problem. The overdetermined connector can be defined as
shown in Listing 5

Listing 5. A overconstrained fluid connector.

type CircuitIdentifier
extends SI.PerUnit;
function equalityConstraint
input CircuitIdentifier id1;
input CircuitIdentifier id2;
output SI.PerUnit residue[0];

end equalityConstraint;
end CircuitIdentifier;

connector FluidPort
SI.Pressure p;
flow SI.MassFlowRate w;
CircuitIdentifier id;

end FluidPort;

In this case, there is no need to carry around any infor-
mation throughout connected components, as in the previ-
ous case; the only thing that is needed for the modelling
is the information about the dynamic connection graph
topology. However, since the connection graph is always
referred to some overconstrained connector variable, one
possible choice is to define it as an Integer connected cir-

cuit identifier.
The ValveDynamicBranch model is analogous to the

TransmissionLine model; in particular, it has a condi-
tional activated Connections.branch() statement and a
conditionally activated equation stating the equality of the
ID on both connectors; both are only active when the valve
is open, see Listing 6.

Listing 6. Valve model.

model ValveDynamicBranch
extends BaseValve;

equation
if closed then

Connections.branch(inlet.id,outlet.id);
inlet.id = outlet.id;

end if;
end ValveDynamicBranch;

The ExpansionTank model is shown in Listing 7. If
the tank is selected as root node, then it means the tank is
the only component having such a property in the effec-
tively connected circuit; in this case, it sets the port pres-
sure to a fixed parameter value, and the overconstrained
id connector variable to an ID parameter.

If instead, it is not selected as the root node, then it just
acts as a plug, i.e., it sets the port flow rate to zero. This
avoids getting inconsistent systems of equations, which
would arise if two or more expansion tank components
tried to set their port pressure in a connected circuit.

Listing 7. Valve model.

model ExpansionTank
parameter SI.Pressure p0;
parameter Integer id = 0;
parameter Integer priority = 0;

FluidPort inlet;
equation

Connections.potentialRoot(inlet.id,
priority);

if Connections.isRoot(inlet.id) then
inlet.p = p0;
inlet.id = id;

else
inlet.w = 0;

end if;
end ExpansionTank;

When this dynamic overconstrained component is used
for the tanks, the model is always well-posed. Initially,
when the valves are open, only one tank is selected as a
root node and sets the pressure at its port, while the other
tank behaves as a plug. As soon as both valves are closed,
the connection graph is split into two disconnected graphs,
each having its own root node tank. Therefore, each newly
formed sub-circuit ends up with a tank setting its pressure
level.

2.3 Outlook
The two presented modelling scenarios have two impor-
tant factors in common. One is the need to identify effec-
tively connected connection graphs, when some compo-
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nents that normally establish a branch in the graph actu-
ally do not do so in some cases, when parameters such as
admittance or flow coefficients are brought to zero. The
other is the need to set some value in the root node of
the effectively connected sub-graph and then propagate it
through the actually connected sub-network. Many other
models in different domains could have the same require-
ment and, therefore, a similar structure.

As will be discussed in the next section, this modelling
pattern, tackled with dynamic overconstrained connectors,
leads to a very restricted structural variability of the cor-
responding equations, where the overconstrained connec-
tor variables are set by conditional equations that are ac-
tivated when the variable is selected as a root node, and
then propagated throughout the actually connected sub-
network. However, this can be handled in terms of code
generation and runtime code, without requiring general-
purpose handling of structural variability, which is still an
open problem for Modelica tools.

3 Implementation
A typical Modelica Compiler first translates a textual rep-
resentation of a Modelica model into executable simula-
tion code through a series of phases, and the semantics
for overconstrained connectors in the Modelica language
is handled statically during the preprocessing of a model
before the generation of simulation code, see Figure 7.

We choose to implement our extension within Open-
Modelica.jl (Tinnerholm et al., 2022). OpenModelica.jl
is an experimental Modelica implementation implemented
in the Julia language and compiles Modelica code to Mod-
elingToolkit (MTK) (Ma et al., 2021) and is capable of
runtime reconfiguration of models.

To handle the proposed extension for dynamically over-
constrained connectors, we extended the flat Modelica
representation to also contain a self-reference before con-
nections are resolved. Furthermore, we reused the dynam-
ical capabilities of OpenModelica.jl described in (Tinner-
holm et al., 2022).

When the condition for a DOCC-If-Equation such as
the one for the dynamic transmission line in Listing 2 is
fulfilled at the time of the change t∆ the following steps
are taken:

• The simulation halts, and a Connection operator is
either inserted or removed, and the virtual connection
graph is updated.

• A new equation system is derived from the resulting
connections and the changed overconstrained con-
nection graph.

• The system is recompiled with the new equation sys-
tem

• The simulation restarts using the previous values be-
fore the event at t∆.

It should be noted that this could allow for a more gen-
eral treatment of other types of structural variability, e.g.,
conditional connect() statements, since the OpenMod-
elica.jl framework allows for dynamic reconfiguration of
Modelica models.

However, as discussed previously, in some cases, re-
compilation is not necessary. The examples included in
the DynamicOverconstrainedConnectors package all fall
in this category; they are static5, while the virtual over-
constrained connection graph, for System4 as depicted in
Figure 2 and Figure 3, changes its structure during the
simulation.

In the applications showcased by the exemplary library,
the overconstrained variables carry around a scalar value
that is relevant to the behavior of the connected subsys-
tems. For power systems, it is the AC phase or frequency.
For incompressible fluid networks, it is the network ID.
As noted in Section 2.3, this means that the selected root
node sets the value of the overconstrained connector vari-
able, which is then propagated through connection equa-
tions and the conditional equality equations when the cor-
responding Connections.branch() statement is either
activated or deactivated.

For System4 this variable is G1_port_omegaref be-
fore the changes in the virtual connection graph. After this
change, this value is provided by G1_port_omegaref and
G2_port_omegaref as depicted in Figure 3. This means
that some of the general steps of handling this solution de-
scribed earlier can be omitted. Instead of recompiling the
system at time t∆, the set of variables that are part of the
virtual connection graph can instead be reinitialized at that
time t∆ using the root value. Hence, recompilation of the
system is not needed.

In System4 these roots are G1_port_omegaRef and
G2_port_omegaRef after t = 10.0 as depicted in Figure 3.
Instead of recompiling, the second and third steps are as
follows:

• The required modification is derived from the re-
sulting connections and the changed overconstrained
connection graph.

• The causality is changed for the equations involving
the new roots

That is, the difference between the reinitialization ap-
proach and the recompilation approach is that instead of
recompiling the system and regenerating the equations, we
change the reference values of the roots based on the over-
constrained connection graph in the simulation runtime.
In this example this is done by identifying the new roots
and the corresponding root sources. For System4 this is
G2_port_omegaRef with the source being G2_omega. In
the case of System4 only one equation is modified, that of
G2_port_omegaRef.

5The causality changes, but the number of equations and variables
remains the same
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Figure 7. The translation process of a Modelica Compiler. The model is first translated to an internal intermediate representation
(IR) where typing and type checking is performed and where the declared connections are handled and expanded before the
simulation code is generated. The dashed box to the left shows where the new extension is handled in the compilation process.

4 Simulation Results
Handling overconstrained connector variables dynami-
cally at runtime allows for the successful simulation of
models that existing Modelica tools cannot currently han-
dle because of model singularities. It also allows stiff
solvers to increase the step size in some situations, which
leads to improved simulation performance.

In this section, we demonstrate these benefits on a se-
lection of the models presented in Section 2.1.

The systems were simulated using the RODAS5 solver
available from DifferentialEquations.jl (Rackauckas and
Nie, 2017).

4.1 Synchronous Power Grid models
The System3 and System4 models are equivalent with
respect to the generator frequency and power variables
G1.omega, G2.omega, G1.Pe, G1.Pc, G2.Pe, and G2.Pc

. Indeed, the transients of those variables turn out to be
identical in the simulations of the two models.

As explained in Section 2.1, this is not the case for the
voltage and current phasors. Figures 8 and 9 show the real
part of the voltage phasor of G2. During the first 10 sec-
onds (left-hand-side plots), the grid is fully connected in
one synchronous system using the frequency of G1.omega
as reference, so both phasors settle down to a steady state
after about 8 s.

However, when the breaker T2 is tripped open, the
right-hand-side island, to which G2 belongs, settles down
to a slightly different frequency than the left-hand-side
one. As anticipated, the voltage phasor of G2 continues to
oscillate forever in the model with static overconstrained
connectors, while it remains practically constant in the
model with dynamic overconstrained connectors, thanks
to the correct choice of reference frequency after the split-
ting into two islands.

This allows a stiff solver such as RODAS5 to take much
longer steps, completing the simulation with less steps and
less Jacobian calculations, as shown in Table 1.

The situation is similar when comparing the simula-

Figure 8. Plots of the G2.port.v_re variable in System3
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates forever because the system only
has one root node also after the network splitting.

tions of System7, which has a static connection graph, and
System8, which has a dynamic connection graph. When
the breaker of line T2 is opened, two synchronous islands
are formed, one including G1, and one including G2 and
G3.

Figures 10 and 11 show again the real part of the volt-
age phasor of G2 for the two models, before and after the
splitting. In this case, once the island containing G2 and
G3 is formed, these two generators oscillate against each
other for a while, but eventually end up rotating at the
same speed. When using dynamic overconstrained con-
nectors, the frequency of G3 is used as a reference, so the
voltage phasor of G2 eventually becomes constant, while
it does not in the static overconstrained connector case, for
which the frequency of G1 is still used as a reference.

As in the previous case, using dynamic overconstrained
connectors has beneficial effects in terms of less integra-
tion steps and less Jacobian computations, see Table 1.
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Figure 9. Plots of the G2.port.v_re variable in System4
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates remains practically constant after
the splitting thanks to the correct choice of reference after the
splitting.

Figure 10. Plots of the G2.port.v_re variable in System7
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates forever because the system only
has one root node also after the network splitting.

Figure 11. Plots of the G2.port.v_re variable in System8
before and after the susceptance of line T2 is brought to zero at
t = 10. The phasor oscillates for a while but then settles to a
constant value after the splitting, thanks to the correct choice of
reference after the splitting.

Table 1. Number of accepted steps and the total number of Ja-
cobians created for Systems 3, 4, 7 and 8. Systems 3 and 4 are
identical except for the use of dynamically overconstrained con-
nectors in System 4. Systems 7 and 8 have the same relationship.

System Accepted Steps Jacobians Created
System 3 565 605
System 4 125 132
System 7 374 389
System 8 169 175

4.2 Incompressible Fluid networks
When simulating System3, as described in Section 2.2,
the first valve is closed at t = 2, and then the second is
closed at t = 4. From that point in time, the algebraic
system of equations determining the circuit pressures and
flows is reported as singular when simulating the system
using the OpenModelica tool (Fritzson et al., 2020).

As anticipated, the reason is that the pressures in the
right-hand-side part of the system have infinitely many so-
lutions6. Model System4 instead uses the proposed exten-
sion and, as expected, the system shows no singularity for
t ≥ 4.

5 Conclusion and Future Work
In this paper, we have illustrated and discussed the benefits
if some of the current constraints of the Modelica language
are lifted, allowing for dynamic overconstrained connec-
tion graph, with application in synchronous AC system
models and closed incompressible fluid system models.
With reference to phasor-based models of synchronous
AC systems, one benefit is that solvers can take much
larger steps and subsequently need to create fewer Jaco-
bians if the system is split into multiple, independent syn-
chronous sub-systems by opening breakers on strategic
transmission lines, as was shown in Section 4. Another
benefit is handling the formation of islands without gener-
ation capacity, avoiding the termination of the simulation
because of unsolvable equations. With reference to the
models of closed hydraulic systems with an incompress-
ible fluid, the benefit is that it is possible to handle the
formation of independent closed sub-systems by closing
valves that separate two or more parts of the circuit with-
out leading to singular systems of equations.

Furthermore, the reconfiguration approach described in
Section 3 could be improved. Currently, runtime recon-
figuration in OpenModelica.jl requires the system to keep
the equation structure before and during simulation; hence
we have to omit important optimisation phases such as re-
moving trivial equality constraints. Consequently, there is
currently a trade-off between optimisation and the speed
of system reconfiguration. Still, if we consider the cost of

6It should be noted that existing Modelica tools can handle this sce-
nario by selecting one of the several solutions.
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recompilation, this approach should be more efficient for
small systems even though it currently only works without
some optimisation phases.

In general, it seems that the extension proposed in this
paper can be implemented with a reasonable effort in
mainstream Modelica compilers, as long as the structure
of the system using it is similar to that of the presented
use cases, which will indeed be the case for a significant
number of real-life use cases.

Although the current study is based on a small set of
examples from a conceptual library, the findings suggest
that dynamically overconstrained connectors could be em-
ployed to simulate real-life systems that is not possible
to simulate in existing Modelica tools and provide possi-
ble performance benefits. Therefore, a direction for fu-
ture work would involve implementing support for dy-
namically overconstrained connectors in the OpenModel-
ica Compiler to investigate the general applicability of this
construct on larger systems, for example using the Power-
Grids library (Bartolini et al., 2019).

The final goal is to get this extension into a future ver-
sion of the Modelica Language Specification, so that it
gets eventually supported by a growing number of Mod-
elica tools, allowing library developers to use it without
concerns about limited support.
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Abstract 
A flow balancing problem consists of sizing restrictions 

on flow branches of a fluid system to match desired flow 

rates on each branch. The problem is rarely trivial as 

parallel branches routinely contain many components 

with nonlinear pressure loss characteristics each. This 

paper introduces the Physics-based Solving capabilities 

implemented in Modelon Liquid Cooling library. This 

new capability enables conveniently solving such flow 

balancing problems with steady-state requirements. The 

benefits of this solution are discussed using an aircraft 

thermal management system as example. 

Keywords: Flow Balancing, Cooling System, Liquid 

Cooling, Thermal Management System, Aircraft, Sizing, 

Modelon Impact 

1 Introduction 

Recognizing the need for a sustainable future, the 

aerospace industry is heavily researching innovative 

technologies that could reduce its impact on the 

environment. While disruptive technologies such as 

hydrogen-powered aircraft are being investigated, more 

incremental ones such as hybrid-electric designs – 

combining a conventional propulsion system with an 

electric one – are expected to enter service before, 

providing substantial fuel efficiency and emissions 

improvement. 

However, adding the hybrid electric propulsion system 

has impact: it adds direct and indirect weight. The weight 

of electric propulsion components – batteries, inverters, 

electric motors, etc. – directly reduces the aircraft payload. 

In addition, these components need to be cooled, 

indirectly increasing the weight of the thermal 

management system. Therefore, achieving an optimized 

design, when it comes to hybrid-electric aircraft, involves 

a careful trade-off between the electric propulsion system 

and the thermal management system designs. 

One challenge to solve when designing both coupled 

systems is to size flow restrictions on the cooling 

branches. These restrictions, on each branch, define the 

nominal flow rate of cooling fluid and, therefore, the 

cooling capacity of a branch. These cooling requirements 

are directly derived from heat dissipated by each 

component – here, the electric propulsion components. If 

we decide to neglect storage effects of heat capacities in 

the design of the thermal management system, then the 

amount of heat to be extracted is thus constant over (a 

sufficiently long period of) time (in other words a steady-

state value). The most demanding of these (quasi) steady-

state conditions are identified by engineers as sizing 

conditions, and are, for instance, function of the 

components selected for the system to be cooled. 

Optimizing the hybrid-electric aircraft design is thus an 

iterative process which aims at maximizing the aircraft 

range for a given minimum payload. Each iteration 

involves assessing the electric propulsion component sizes 

and associated heat loads in order to solve the flow 

balancing problem – which is key for the thermal 

management system sizing. This paper focuses on a robust 

solution to the steady-state flow balancing problem. 

With the goal to give more technical background on the 

problem, section 2 introduces the flow balancing problem 

for the specific case of a thermal management architecture 

of a hybrid-electric aircraft. Section 3 discusses the tools 

we used to solve the flow balancing problem and 

introduces Physics-based Solving, a combined symbolic 

and numerical computation technique for the Modelica 

language. Section 4 shows how the flow balancing 

problem is solved. Section 5 concludes this publication 

and draws conclusions. 

2 A Thermal Management System 

for Hybrid-Electric Aircraft 

2.1 Architecture Selection 

The scope of this paper is not to propose a new hybrid-

electric aircraft architecture with an innovative thermal 

management system but rather to solve a recurrent 

problem in the currently suggested architectures. To 

support this argument, a typical architecture , presented by 

Gkoutzamanis (2022), is used in this paper. 

The selected hybrid-electric aircraft architecture is 

targeting regional commuter aircraft. It consists of two 

conventional turbo-propellers, from which mechanical 

power is also extracted to feed electric generators that, in 

turn, power an electric motor connected to an aft 

Boundary Layer Ingesting (BLI) fan. For electric power 

management reasons, the alternating current (AC) 

electricity generated is converted to direct current (DC), 

potentially stored into a battery, and inverted back to AC, 

prior to consumption by the electric motor. Figure 1 

illustrates this architecture. 
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Figure 1. Selected hybrid-electric aircraft architecture. 

A highlight of this architecture is that hybridization is 

added to the conventional propulsion. A typical 

engineering problem is to estimate differences with 

respect to the conventional propulsion architecture 

(“baseline”). How much weight does the hybridization 

add? One must consider the electrical power system, the 

thermal management system, and snowball effects on the 

aircraft structure. Beyond this, engineers face many more 

questions such as for installation constraints, safety 

aspects, availability, maintenance, etc. We focus on the 

thermal management system cooling the electric 

propulsion system – depicted in Figure 2. 

 
Figure 2. Added Thermal Management System. 

The thermal management system on such hybrid electric 

aircraft must cool both the conventional components and 

the thrust-generating electric power system. Based on the 

location of the components on the aircraft, two main 

routes are identified: 

1. Top two branches near the electric power generation 

and storage – near the turboprops, and thus wings. 

The dash line represents a branch that can potentially 

be by-passed, as the electrical components might not 

always be active, e.g., at take-off. 

2. One bottom branch for the electronics and electric 

motor (eMotor) powering the aft BLI fan – on the 

rear part of the aircraft. 

After capturing the heat loads, both routes merge before 

dissipating this heat via an air-cooled heat exchanger. 

2.2 Flow Balancing Problem Statement 

From the thermal management point of view, each 

component is treated as a heat load to dissipate. While 

each component can have several different characteristics, 

only the amount of heat it generates initially matters. In a 

later step of the design, the pressure loss characteristics 

and thermal resistance (between coolant bulk flow and 

heat load) of cooling elements, e.g., cold plates, are 

refined for each component to be cooled. Nevertheless, 

the overall need for coolant flow shall not be changed and 

is function of the heat loads. 

Table 1 – also extracted from Gkoutzamanis (2022) – 

summarizes the heat loads to evacuate for each component 

and the temperature limits these components should not 

reach. These temperatures are typically imposed by 

material constraints. For instance, Budinger (2020) states 

that the “main design criterion for the motor is the 

maximum winding temperature” . Every technology 

might have different criteria driving these temperature 

limits but the limit shall not be reached to ensure 

component integrity. While heat loads are computed in 

such a way that the temperature is not reached, it is still 

relevant to monitor the component temperature in the 

simulation outputs and ensure that these requirements are 

met. 

Table 1. Component heat loads. 

Component Temperature 

limit [°C] 

Heat loading 

[kW] 

eMotor 100 20 

Generator 100 20 

Inverter 65 10 

Converter 65 10 

Battery 40 10 

To define the flow balancing problem in the thermal 

management context, we introduce an engineering design 

rule relating the heat load to the mass flow rate. For its 

derivation, we start with the First Law of 

Thermodynamics for a constant volume 𝑉 , density 𝜌 , 

internal energy 𝑢, enthalpy flow rate at each interface �̇�𝑎 

and �̇�𝑏, and heat flow rate �̇�: 

𝑉
𝑑(𝜌𝑢)

𝑑𝑡
+ �̇�𝑎 − �̇�𝑏 = �̇� 

If we assume steady state, then the mass flow rates at each 

interface are identical, �̇�𝑎 = �̇�𝑏 = �̇� , and the time 

derivative vanishes. 

�̇�(ℎ𝑎 − ℎ𝑏) = �̇�Δh = �̇� 
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The engineering design rule for a typical coolant and 

cooling system technology, is to consider a design factor 

of, for instance, �̇� �̇�⁄ = Δh =30 kW/(kg/s) – a mass flow 

rate of 1 kg/s can evacuate a heat load of 30 kW. This 

design factor combined with the heat loads of each 

components gives a first estimate of the mass flow rate 

required on each branch of the thermal management 

system to cool the electric propulsion system. It is 

important to understand that this is first step in an 

engineering workflow and assumes that, independently of 

the specific mass flow rate, all heat is transferred as 

required from the device being cooled to the coolant. The 

detailed design of the cooling surface, e.g., cold plate, can 

be conceived at a later stage. Here, it is sufficient to 

assume that the cooling is feasible.  

Based on the thermodynamic properties of the coolant 

and the component inlet temperature, the design factor can 

be related to temperature change. With the simplifying 

approximation of constant specific heat capacity, we can 

deduce that the resulting temperature change can be 

roughly in the range of 8 K to 17 K for typical coolants 

propylene glycol water solution, polyalphaolefin, and 

turbine cooling oil MIL 23699. 

The flow balancing problem consists of computing 

dimensions of calibration restrictions on each branch in 

order to match the desired mass flow rates, while ensuring 

that the physics laws are satisfied – e.g. here, the pressure 

drop of the three parallel branches are identical. 

Obviously, each branch, in addition to these flow 

balancing restrictions, also includes a multitude of routing 

components – mainly bends and pipes – and aggregates 

their nonlinear characteristics. For the purposes of this 

paper, the pump and heat exchanger are substituted by 

ideal pressure boundaries so that only the branches and 

routings are considered for the problem solving – part of 

the system framed with a yellow dashed line. Several 

pipes and bends are added and parametrized to the system. 

It is worth noticing that the flow balancing problem is a 

steady-state problem which is part of an overall design 

optimization loop. While Modelon Impact – the platform 

used in this paper to solve the flow balancing problem – is 

well suited to solve optimization problems (Coïc 2022), 

other platforms such as OpenMDAO (Zhao, 2019) 

(Hecken, 2020) or FAST-OAD (Delbecq, 2021) also 

proved to support this need. As Modelon demonstrated the 

optimization capability, with all these platforms, this 

paper focuses solely on the flow balancing problem 

solving. 

3 Implementation of Physics-based 

Solving in Modelon Liquid Cooling 

Modelon Liquid Cooling library (LCL) is used within 

Modelon Impact to model the thermal management 

system. As solving a steady-state problem is not the initial 

strength of the Modelica Language, Physics-based 

Solving (PbS) is added to LCL to support this workflow. 

3.1 Modelon Impact 

Modelon Impact is a next generation system modeling and 

simulation platform, leveraging the benefits of web and 

open standard technologies. With openness at its core, 

Modelon Impact supports standards such as Modelica, 

FMI, Python and REST (Modelon, 2022-a). The user-

friendly browser interface provides modeling experts the 

tools they need to create, simulate, and experiment. 

Steady-state or dynamic solutions can be executed from 

the same model, reducing effort to get an answer (Coïc, 

2020-b). Finally, the Modelon Impact API enables user-

specific workflows through Python-based custom 

functions, and deployment of models to non-experts via 

targeted web applications or Jupyter Notebooks (Coïc, 

2020-a). 

3.2 Modelon Liquid Cooling Library 

The library is used for modeling and simulation of liquid 

cooling systems in virtual prototyping, component 

dimensioning and control design. 

The library includes more than 80 internal flow 

components such as pipes, bends and junctions with 

predictive geometry-based flow resistance correlations. It 

also includes generic components that can be calibrated 

from measurement data. More than twenty fluid models 

are provided in the library, with temperature-dependent 

properties to support cooling system modeling for water, 

customizable glycol-water and alcohol-water mixtures, 

every relevant water-salt mixture (e.g. potassium 

carbonate), calcium chloride, sodium chloride, potassium 

acetate, etc. The library also contains thermodynamic 

property models of aerospace-specific fluids such as 

turbine oil, polyalphaolefin, hydraulic oil and jet fuels. 

Pre-configured templates guide users in creating 

simplified, high-performance heat exchanger stack 

models with 3D visualizations for parameter verification 

and presentation of resulting temperatures. 

The Liquid Cooling Library (LCL) can be used 

effectively in conjunction with geometry-based models 

from the Heat Exchanger Library. 

3.3 Steady-State and Physics-based Solving 

When the answer expected from a model is the 

equilibrium point of the modeled system, steady-state 

simulation maximizes productivity; you obtain the result 

directly and faster, by orders of magnitude, and it 

simplifies post-processing of the results. You can 

extrapolate the gain on a design exploration, where you 

run hundreds or thousands of points (Modelon, 2022-b). 

Modelon Impact includes steady-state solvers, as well 

as our Physics-based Solving (PbS) technology, that 

enables adding engineering insights derived from 

fundamental physical principles in models so that the 

steady-state simulation solves faster and in a robust way. 
Reconfiguring the numerical problem (without 
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recompilation) also allows answering several questions 

with a single model. 

PbS consists of instructions embedded in component 

models guiding the compiler and solver on iteration 

variable and residual selection for the steady-state 

simulation. This language construct enables changing the 

iteration variables and residuals based on Boolean 

parameters, without the need for recompilation. The 

information is stored in an object-oriented fashion, such 

that modelers can assemble systems graphically, and the 

desired solving can be deduced from the model topology 

(model instances and connections). This has been 

introduced in some detail before in (Coïc, 2020-b). 

3.4 PbS Implementation in LCL 

Typical Liquid Cooling models have a well-established 

flow direction. The fluid is directed from the pump toward 

the parts to cool-down and later cooled down through a 

heat exchanger before getting back to the reservoir. 

As the flow direction is known, the authors 

implemented a serial approach of PbS in LCL. At the 

beginning of each branch of the cooling system, the mass 

flow rate is known or guessed. At the end of each branch, 

the type of component defines the residual equation of 

physics – either the user-defined value of a boundary 

condition, or the identical pressures for a junction. 

In addition, the authors simplified the equations where 

possible, based on the steady-state and unidirectional flow 

assumptions. Notably, the Modelica language allows 

switching between such assumptions and thus the same 

library supports both dynamic and steady-state simulation 

– only a top-level parameter is changed to switch between 

the two simulation modes. 

4 Solving the Flow Balancing Problem 

In this section, a component model is first presented, to 

give more insights on the orifice sizing. Then, the thermal 

management system modeling and flow balancing solving 

are discussed. 

4.1 Sizing Orifices 

The specific case of the orifice sizing is presented here. 

PbS is added to the orifice plate with circular opening (see 

Figure 3). The component model can be configured into 

two different modes: orifice sizing and flow simulation. 

The former case imposes a user-defined flow rate to 

compute the orifice size 𝐷𝑜𝑝𝑒𝑛𝑖𝑛𝑔, while the later enforces 

the orifice size to compute the pressure or flow unknown. 

 
Figure 3. Orifice plate with circular opening. 

A couple of statements are relevant to highlight: 

• The orifice diameter 𝐷𝑜𝑝𝑒𝑛𝑖𝑛𝑔  is of parameter 

variability. Solving the equations for it only makes 

sense at initialization or in a steady-state problem. To 

differentiate the user input parameter from the 

iteration variable for the sizing problem, 𝐷𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠𝑒𝑡
 

is used instead in PbS mode. 

• At system level, it was mentioned that typically the 

mass flow is iterated on to match boundary 

conditions. For the case of the orifice sizing, the 

diameter being an unknown, the mass flow at the 

sizing point 𝑚𝑓𝑙𝑜𝑤,0  shall be specified. Hence, the 

pressures are computed from the known mass flow 

rate and the pressure correlation in the branch. 

A unitary test of the orifice component could thus be 

similar to Figure 4, where pressure boundaries are set, and 

the sizing point mass flow rate is prescribed. The pipe 

diameter 𝐷𝑝𝑖𝑝𝑒 is a necessary parameter to compute the 

section change and would typically come from a pipe or 

previous component in a system level model. The greyed-

orange background on the values indicates that it displays 

the results and thus cannot be changed. The orifice 

diameter 𝐷𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠𝑒𝑡
 is the result of the simulation 

 
Figure 4. Orifice sizing – unitary test 1. 

The solver converged to an orifice diameter of about 

6.89 mm for a pipe diameter of 10 mm to satisfy the 1 Bar 

pressure difference and 1 kg/s mass flow rate. 

Conveniently, in editing mode, it is possible to turn off the 

sizing mode and specify the desired 𝐷𝑜𝑝𝑒𝑛𝑖𝑛𝑔  and 

simulate a standard flow simulation – without orifice 

sizing, hence mflow,0 is not used and disabled. 
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Figure 5. Orifice flow simulation – unitary test 2. 

The orifice sizing is key in solving the flow balancing. It 

is now possible to introduce the thermal management 

system model and solving it is analogous to this section, 

only at a larger scale and for larger non-linear systems. 

4.2 Modeling the System 

The thermal management system is modeled in Modelon 

Impact using the Liquid Cooling Library. The model 

topology is based on Figure 2 and shown in Figure 6. 

 
Figure 6. Thermal Management System model. 

The following modeling decisions were stated previously 

but are repeated below for convenience: 

• The pump and heat exchanger are substituted by 

ideal pressure boundaries so that only the branches 

and routings are considered for the problem solving 

– part of the system framed with a yellow dashed 

line. 

• Several pipes and bends are added and parametrized 

to the system. 

The components to be cooled are represented by heat 

sources. Their heat flow rates are set to the values 

specified in Table 1 and their cooling interfaces are here 

modeled by pipes. Typically, a later refinement would 

involve modeling the cooling interface with higher 

fidelity, e.g., using several cold plates in parallel. 

An orifice is added per branch to be sized as core aim 

of the flow balancing problem. These are named orifice 

followed by a number and postfix describing the total heat 

load that the branch needs to cool. 

4.3 Solving the System 

Once the system is modeled, the orifices are set in sizing 

mode and the mass flow rates at the sizing points are set 

to evacuate the heat loads with the considered design 

factor of 30 kW/(kg/s) – so 𝑚𝑓𝑙𝑜𝑤,0 for orifice1_30kW is 

set to 1 kg/s. 

The system is simulated with PbS in steady-state. The 

flow balancing solving happens without further user 

action. The compiler selects the iteration variables and 

residual equations – specified in the library at component 

level – and robustly solves the problem. Figure 7 shows 

the results and associated thermal coloring. 

 
Figure 7. Thermal management system flow balancing solving 

The sample value of the design factor results in 

Δhℎ𝑒𝑎𝑡𝑙𝑜𝑎𝑑 =30 J/kg and, assuming 25 °C pump outlet 

temperature and propylene glycol water mixture 60%, the 

component outlet temperatures given in Table 2.  

Table 2. Component temperatures. 

Component Temperature 

inlet [°C] 

Temperature 

outlet [°C] 

eMotor 28.0 33.9 

Generator 28.0 33.9 

Inverters 25.0 28.0 

Converter 25.0 28.0 

Battery 25 33.9 
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The computed orifices diameters can easily be applied to 

the system as Modelon Impact offers the option to start a 

simulation from the results of a previous one. Should you 

prefer entering a different value from a catalog, this is 

obviously also an option. A key result is to find the 

combined pressure loss characteristics of the branches for 

off-nominal pump head as shown in Figure 8. This then 

allows investigating further the design for additional 

requirement validations. 

 

Figure 8. Off-design mass flow vs. pressure loss 

characteristics. 

4.4 Further Requirement Verifications 

First, the sizing point may not be defined as a deterministic 

single point but via ranges of expected heat loads, or it is 

defined by a deterministic single point but the engineer is 

interested in studying the impact of increasing or reducing 

the margin for thermal component performance (i.e., 

extract the same heat load at lower mass flow rate and 

increased temperature difference between coolant outlet 

and inlet). It is thus possible to perform multiple 

executions of the sizing simulation, covering the 

appropriate domain, and extracting the resulting ranges of 

calibrations. Modelon Impact provides dedicated 

functionalities for design of experiments – from a simple 
choices and range operators that enable defining a set of 

values, to more involved functionalities such as Latin 

Hypercube Sampling. Designing the orifices might thus 

involve several simulations and the selection of the most 

constraining design. This is simplified with steady-state 

simulation as the results are single values that can be 

easily compared and post-processed. 

In the following, we assume that the orifice 2 design 

factor is swept between 37.5 kW/(kg/s) and 25 kW/(kg/s), 

i.e., 𝑚𝑓𝑙𝑜𝑤,0  for orifice2_30kW is set to 0.8 kg/s to 

1.2 kg/s. All other parameters are held constant. Orifice 

dimensions and resulting temperatures can be computed, 

and the latter are shown in Figure 9. The nominal design 

is highlighted. 

 

 
Figure 9. Temperature sensitivities over branch design factor. 

Obviously, the thermodynamic model must always be 

satisfied. Based on the pressure loss characteristics of the 

branch components, a maximum mass flow rate of each 

branch must not be exceeded. If this point was reached, it 

would not be possible anymore to reduce the restriction in 

the orifice for calibration as the orifice diameter had 

already reached the pipe diameter. In the given problem, 

this occurs for single digit design factors and 

correspondingly high mass flow rate through orifice2; see 

Figure 10. In another network with more restriction, this 

can occur more easily. 

  

Figure 10. Diameter sensitivities over branch design factor. 

Second, while there are heat load requirements on each 

component, there are also temperature limit constraints to 

satisfy. It is a good practice to simulate several points in 

the operational domain to ensure that the constraints are 

met – and that the requirements are correctly defined. For 

these simulations, the design of the orifices shall be set by 

a parameter and the focus would be on flow simulations. 

As illustrated for a single component in Figure 5, this does 

not require a new model to be developed but simply 

switching the sizing parameters to false and setting the 

diameter values. 

Finally, Modelon Impact comes with a Python client 

(Modelon, 2022-c) that can conveniently define 

experiments, simulate and return results. System 

simulation and analysis to verify requirements can thus 

easily be automated, in a fully integrated manner. 

Solving Flow Balancing Problem for Hybrid-Electric Aircraft Cooling Systems

50 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19345



5 Conclusion and Perspectives 

This publication shows how the design of hybrid electric 

aircraft can be simplified with an efficient workflow for 

solving the flow balancing problem of the thermal 

management system. Modelon Impact enables automated 

steady-state solving and requirement verifications. Its 

openness makes it easy to be integrated in a system-level 

design loop that also involves the electrical system sizing.  

The steady-state and flow balancing capabilities have 

been developed and tested on larger customer models 

including more than 300 individual components. The 

example discussed here has an order of magnitude fewer 

components and serves the purpose of illustrating the key 

workflow and modeling principles. 

The flow balancing workflow can also be used more 

widely outside the thermal management system context. 

Whenever the distribution of fluid is of interest, 

restrictions can be calibrated to yield the desired split. This 

methodology is equally applicable to aircraft air 

distribution ducting from mixer to riser ducts and cabin air 

outlets, building air supply networks and so on. 

While this proved the tool capability, the system model 

can be further refined to include the closed loop of the 

cooling system and design-specific cooling devices such 

as cold plates. A full workflow involving the Jet 

Propulsion and Thermal Management System – both 

running in steady-state, as embedded capabilities – would 

be a next step of this work. 
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Abstract 
Hydrogen Fuel Cells are potentially a viable zero 
emission propulsion technology for heavy commercial 
vehicles, like buses. This paper presents a detailed proof 
of concept Dymola model of an FCEV bus, built using 
the VeSyMA suite of libraries. Particular attention is 
paid to the use the high-fidelity Hydrogen Library from 
Dassault Systèmes for the fuel cell. Representative 
physical ancillary systems, coupled with detailed 
thermochemical modelling, enables detailed transient 
effects on fuel cell performance to be captured.  A 
multizonal cabin model with independent zonal thermal 
properties, combined with a multi-physics HVAC 
model provide a realistic current drain on the drive 
battery. Such detail is important in understanding 
accurately the conditions the Fuel Cell will experience 
during operation. A model such as this has many real-
world applications, such as component design and 
selection; concept evaluation; Fuel Cell degradation, 
maintenance, and durability analysis; accurate range 
estimation and controller development. 

Keywords:     Hydrogen, Fuel Cell, HVAC, heating, 
cooling, bus, coach, EV, FCEV 

1 Introduction 
Due to the impact of global warming and air quality 
standards, internal combustion engine (ICE) driven 
vehicles are being phased out of usage. Passenger 
Electric Vehicles (EVs) are becoming the norm. Many 
markets have established sunset dates for the sale of ICE 
vehicles, triggering the development of electrified 
vehicles en masse, as intended. 

The energy source for this electricity is still a cause 
for debate. Battery Electric Vehicles (BEVs) have 
emerged as the dominant technology for passenger 
vehicles. Such vehicles feature a solid-state 
electrochemical battery, usually of lithium-ion 
technology. As commercial vehicles are often in 
constant use during operational hours, the range 
limitations of BEVs and time it takes to recharge them, 
compromise their suitability for commercial 
applications (Andaloro et al, 2016). A comparatively 
low energy density of modern EV battery technology 
versus Hydrogen plays a role in this, with Fuel Cell 

Electric Vehicles (FCEVs) more suitable, capable of 
driving ranges greater than 300 miles (Gröger et al, 
2015). Procurement of the rare earth minerals needed for 
BEV batteries also presents its own set of ethical and 
environmental supply chain concerns (United Nations, 
2020).  

Transit and coach buses present an interesting use 
case. In continuous operation during the day, transit 
buses stop frequently, albeit for very short periods to 
allow passengers to embark and disembark. In contrast, 
coach buses stop infrequently, but often travel long 
distances in a single journey. Neither present a natural 
use case for the pure BEV concept. 

Hydrogen fuel cells (FCs), when powered with green 
hydrogen, present a potential solution to this 
predicament. FCEV buses offer a comparable range and 
can be considered a “one for one” replacement for 
existing diesel buses (Vock, 2019). Refueling times are 
and equivalent fuel efficiency are comparable with 
current diesel-powered vehicles (Eudy and Post, 2021); 
some manufacturers already claim comparable range 
and performance to conventional ICE buses (Luxfer, 
2022).    

 

1.1 Motivations for study 
Beyond reducing the carbon footprint of development 
by eliminating almost all prototypes, simulation tools 
feature heavily in vehicle electrification. The multi-
physics capability of modern simulation tools and 
languages such as Dymola and Modelica, are ideally 
suited to simulating the EV, an inherently complex 
multi-physics system. Motivations for this study can be 
broadly broken down into two concepts: theoretical and 
practical. 

Initially undertaken as a technical exercise, from a 
theoretical perspective this work follows common 
themes. Primarily, it serves as a proof of concept with 
regards to integrating the Vehicle Systems Modelling 
and Analysis (VeSyMA) suite of vehicle simulation 
libraries from Claytex and the Hydrogen library from 
Dassault Systèms (DS). Work stemming from the 
development of this model was directly responsible for 
the adaptation of the VeSyMA library to interface with 
the Hydrogen library. 

DOI
10.3384/ecp19353

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

53



  
 

  
 

On a practical level, there are several real-world 
benefits. Featuring high fidelity HVAC and FC models, 
it can be used to accurately size, design and select 
components for usage and evaluate their suitability in 
the digital twin. Cooling needs of the FC can be 
evaluated with regards to the loading cycles it 
undergoes; needs and benefits of preconditioning can 
also be determined with a model such as this. With a 
detailed HVAC and cabin model, the FC in the model 
operates in realistic, and sometimes compromised, 
loading conditions. As FCs are very sensitive to 
operating conditions, the bus model presented can be 
used as a plant model for controller development. 
Beyond this, the lifecycle and potential degradation and 
durability of the FC can be understood; important when 
optimizing control systems and strategies. Finally, such 
a model also gives an accurate picture of the potential 
range and performance of the vehicle, useful in 
validating a design’s effectiveness prior to prototyping.  

2 Modelling 
The bus model described in this paper was created as an 
example model for the Vehicle Demos library from 
Claytex. This library is a showcase, demonstrating how 
the VeSyMA suite can be interfaced with external third-
party libraries (Hammond-Scott and Dempsey, 2018). 
 In this case, the bus model was created from 
components and templates in the VeSyMA library, 
whilst integrating a cabin and HVAC model from the 
Thermal Systems library from TLK, along with fuel cell 
components and stack model from the Hydrogen library 
by Dassault Systèmes. Kormann and Krüger (2019) 
have elaborated on some of the principles underpinning 
the Hydrogen library. 

2.1 Bus Model 
In FCEV applications, the fuel cell itself is mounted in 
a series configuration; primarily used to replenish a 
drive battery, which ultimately delivers electricity to the 
drive motors. Applications of FC technology to buses 
seem to follow the same logic, with both Tata Motors 
(Yogesha et al, 2019) and Toyota (Ogawa et al, 2019) 
producing buses of this type for use in transit scenarios.  

Ogawa (2019) describes how originally in 2002, 
Toyota produced a FCEV bus using a single fuel cell 
coupled to a single battery, to drive a single motor unit. 
Sugiura (2016), describes a dual fuel cell bus, where a 
single battery per fuel cell was used. Later in 2019, a 
second-generation FCEV bus was presented by Toyota, 
this time featuring twin fuel cells allied to a pair of 
batteries in this case. Yogesha (2019) indicates that Tata 
Motors have taken another approach, coupling a single 
fuel cell to dual drive batteries and motors units.  

Deciding on the optimal layout requires balancing, 
component mass, size, packaging ability, thermal 
management, and performance. Twin stacks and 
batteries would be easier to package, although 
potentially less efficient. Dual batteries could be a 
solution to the packaging problem. Simulation is the 
perfect tool to evaluate this before committing resources 
and effort to prototyping. As ultimate performance was 
not the goal, a simple layout of a single fuel cell coupled 
to a single drive battery was chosen. 

Whilst the bus model chassis itself has full multibody 
capabilities; the purpose of this exercise was to 
investigate the longitudinal performance of the vehicle 
power train. Therefore, the principles established in the 
VeSyMA library simplifying the vehicle dynamic 
degrees of freedom (DOF) were followed.  This means 
the suspension utilized was rigid as the bus traversed a  

Figure 1 - FCEV Bus model by Claytex. Following the VeSyMA principles, a template system to promote model 
reuse and replaceability is used, allowing for scalable detail. Note the Fuel Cell components in the top left-hand 
corner, and the Cabin and HVAC models on the far left-hand side. 
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perfectly flat road model, with the total motion of the 
model constrained to 3DOF (translational x, rotational y 
and translational z) to improve simulation performance. 
Similarly, tyre modelling was limited to linear 
longitudinal slip, of a 26570/R19.5 size.  

Of note, the bus model featured 3 axles, as is 
commonly encountered with bus type vehicles, one at 
the front and two at the rear. Drive was supplied directly 
to the middle (first rear) axle through an ideal open 
differential model.  A 550Nm mapped motor model was 
used which included the mass and inertia of the stator 
and core. Finally, a 130kWh idealized battery model 
was deployed, with varying output voltage and a fixed 
internal resistance. It is important to note that review of 
literature suggests that this battery size is too large for a 
FCEV bus; it is equipped with this battery to enable 
comparison with the existing pure EV bus model found 
in the Vehicle Demos library, as presented in section 3 
of this paper. 

2.2 Fuel Cell Model 
The Fuel Cell model is broken down into 6 
subcomponents, mimicking the described layouts found 
in the aforementioned literature. They are: 

 Stack  

 Anode hydrogen supply system 

 Cathode air supply system 

 Cooling system 

 Boost Converter Circuit 

 Control system 
Each subsystem occupies a single model slot at the top 
level of the bus vehicle model. This continues the 
principle of component “plug and play” replaceability 
established in the VeSyMA library. All fluid modelling 
components used in these models are taken from the 
Hydrogen library; valve and pipe models are included, 
featuring representative pressure losses across them. 
Note, thermal rejection to surrounding components from 
transport elements are neglected in this study, but the 
model is equipped to include those effects if desired by 
the user. These effects were neglected in this study 
owing to the lack of a representative system to base the 
model upon.  

At the heart of the Fuel Cell model (Figure 2) is the 
stack model. Taken from the Hydrogen library, the stack 
used is a Proton-Electron Membrane (PEM) 
parameterised with a polarization curve from 125KW 
PowerCell S3 Fuel Cell stack. Defined in the Hydrogen 
Library as a stackWithCooling_DetailedMembrane, this 
stack model simulates the current generation of the 
stack, fully dependent upon the temperature and 
pressure of the reactants in the Anode and the Cathode. 
The effect of humidity on the stack performance is 
omitted in this model. A thermal model built into the 
stack enables the effect of fluid cooling to be 
incorporated into the performance of the stack. Moving 

onto the hydrogen supply system for the stack anode 
(Figure 3), hydrogen flow is modelled from a fuel tank 
through a recirculation loop with the anode. Supply 
pressure is maintained via a valve dependent upon a 
control signal from the controller model. Hydrogen 
passes through a humidifier before entering the 
recirculation loop. To recirculate the hydrogen, a 
ThomasGardner 907ZC18 pump performance map is 
used, upscaled 20x to meet the demand of a more 
powerful stack. Finally, a purge valve on the exit of the 
loop is controlled to maintain the mass fraction of 
oxygen in the anode fluid to be less than 0.1.  

 

Figure 2 - Fuel Cell stack model. The Electrochemical 
stack model is deployed with signal routing, 
connector interface and mass properties, enabling it 
to feature in the multibody bus model. Note: stack (1), 
anode (2) and cathode (3). 

Figure 3 - Hydrogen supply model with recirculation 
system. Note: hydrogen tank (1), fuel pressure valve 
(2), humidifier (3), recirculation pump (4) and purge 
valve (5). 
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For the air supply system to the stack cathode (Figure 
4), a similar modelling philosophy is employed. Here, a 
model of a Celeroton CT17 700 compressor with 
efficiency and pressure ratio map is used to compress 
ambient air; compressor speed is driven via a control 
signal from the controller. Upon exiting the compressor, 
the air moves through a heat-exchanger (effectiveness-
NTU method) intercooler, to reject heat generated from 
compression to a 1,2 Propylene Glycol 47% water mix 
coolant flow, controlled via a command signal. 
Compressed, cooled air passes through a humidifier 
before entering the cathode. After passing through the 
stack, the exhaust flows through a water extractor. This 
has been included to account for the pressure drop 
across it due to this commonly used component. Finally, 
the pressure across the stack is governed by an exhaust 
valve, once again driven via command signal from the 
controller. 

 

In comparison to other elements of the Fuel Cell model, 
the cooling and electrical components are simplified. A 
1,2 Propylene Glycol 47% water mix coolant flow is 
specified by the controller model. Flow is regulated to 
maintain the stack at a specific temperature level. No 
pumping dynamics or losses are included at this time. 
Voltage generated by the stack is scaled via a constant 
efficiency DC/DC boost converter to step up the voltage 
delivered to the drive battery. A demanded current is 
used to control the stack output using this component.  

The last element of the fuel cell model is the 
controller responsible for governing the system. This 
has been broken down into 5 subsystems; one each for 

the cooling, electrical, air and fuel subsystem models 
described above, and a state controller. A set of logic 
gates based on the stack temperature, fuel tank pressure, 
stack current, stack voltage and battery state of charge 
determine the stack’s state within a rudimentary state 
machine with 3 modes; “startup”, “normal running” and 
“shut down”. This has been designed to enable the stack 
to enter a “shut down” mode if it exceeds safe operating 
conditions, fuel supply is diminished, or the battery 
exceeds a maximum charge threshold to preserve fuel 
supply. At the time of writing the controller has only 
been tested in the normal running state. 

In terms of actual control signals, a PID approach is 
used. Cooling demand for intercooler is driven by PID 
with a target of 50C, with the stack system having a 
target of 45C. A 2D lookup table, dependent on driver 
torque demand and battery state of charge defines the 
stack current demand. Intake air compressor is driven by 
a scalable lambda value of the stack; lambda being the 
ratio of provided to used oxygen in the stack. Cathode 
exhaust valve opening is controlled relative to the 
pressure differential across the inlet/outlet from the 
stack, with a target difference of 0.5bar. Fuel supply 
pressure from the tank is maintained at 3.2bar during 
normal running conditions. The hydrogen purge valve is 
modulated to keep the mass fraction of oxygen in the 
anode side of the stack below 0.1. 

2.3 Cabin and HVAC Model 
The cabin model (Figure 5) is a multi-zone cabin model 
with partitions including glazing, solid partitions, and 
internal furniture. The cabin/compartment model is split 
into front, middle and rear zones and can have a variable 
number of passengers within it. The orientation or 
bearing of the compartment influences the angle at 
which the solar radiation hits the external partitions 
which affects the thermal loading on the partitions and 
interior of the compartment.  

The HVAC model (Figure 6) uses an electrically driven 
compressor to pump the R134a refrigerant around the 
two-evaporator, one-condenser system. The electric 

Figure 4 - Air supply system. Note the heat exchanger 
used to cool the oxidant feed post compression. As the 
stack model incorporates thermal effects regarding 
reaction suitibility, then a temperature correct oxidant 
feed is required. Note: air compressor (1), heat 
exchanger (2), coolant supply (3), humidifier (4), 
water extractor (5), exhaust valve (6) 

Figure 5 - Multi-zone cabin model with unique 
elements, such as furniture and glazing properties. The 
front has a large frontal windshield and dashboard 
thermal mass, the middle zone has opening doors. 
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motor for the compressor uses electrical power from the 
traction battery via a voltage regulator. Each evaporator 
branch has its own thermal expansion valve which is 
independently controlled to achieve a desired superheat 
value of the refrigerant flowing out of each evaporator.  

3 Testing & Evaluation 
As this paper is concerned with the demonstration of the 
functioning of the Hydrogen library, Thermal Systems 
library and VeSyMA, control parameterisation has been 
geared towards exercising the model rather than 
replicating a realistic usage. The FCEV bus results are 
also compared to the EV only version of this bus model 
found in the Vehicle Demos library, identical as figure 
1 minus the FC; to make the comparison valid, the EV 
bus was also equipped with the same 130KW battery 
model as the FCEV. 

3.1 Drive Cycle Scenario 
The Standardized On Road Test (SORT) suburban drive 
cycle for bus applications is used, as per Figure 7. 

3.2 Results 

 

 
 
 
 

 
 
 
 

Figure 6 - HVAC model. Note the individual 
condenser models. Note: condenser (1), evaporators 
(2), expansion valves (3), voltage regulator (4) and 
motor (5). 

Figure 7 - SORT Suburban drive cycle used to test the 
bus model. 

Figure 8 - Current comparison between demand and 
result. The modulus of the demand current was used 
for comparisons sake. Blue is stack current, red stack 
demand. 

Figure 9 - Voltage produced by the stack. 

Figure 10 - Oxidant usage in the stack cathode. Red is 
Lambda, blue the current demand from the stack. 
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Figure 12 - Pressure comparison across the stack. 
Anode exhaust is red and the inlet blue; cathode 
exhaust is magenta and the inlet green. 

 
 

 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 11 - Temperature comparison across the stack. 
General stack temperature is blue, the cathode inlet 
green, cathode exhaust magenta, anode inlet orange 
and the exhaust black. 

Figure 13 - Control valve position. Large initial 
transients to steady state can be corrected with 
improvements to the stack initial conditions. Blue is 
the cathode exhaust valve, red the anode exhaust 
valve and green the anode supply valve. 

Figure 14 - Coolant flow into the stack (blue) and the 
intercooler (red). 

Figure 15 - Battery power input (red) and effect on 
state of charge (green). 

Figure 16 - Stack power output (red) relationship to 
drive torque (blue). 
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3.3 Discussion of results 
As the SORT drive cycle was specifically designed for 
evaluating bus driveline performance, it gives some 
interesting insights into the FCEV Bus model. 
Immediately from Figure 8, the fuel cell is responding 
well to the current demanded from it. There is little 
response lag, suggesting the ancillary and control 
systems are working well and keeping the fuel cell in a 
desired operational window. Fast response to current 
reduction indicates that the choice to control the fuel cell 
via current demand was valid, as there is no delay in 
current reduction from the fuel cell. Detail around the 
peaks of the current response mirroring the demand 
indicates the fidelity of the model being used, able to 
react swiftly. Such detail would be important when 
trying the evaluate the total range/fuel consumption of 
the cell. It must be noted however, that the fuel cell is 
exceeding the current demand; this can likely be 
remedied with improved controller parameterisation. 
Voltage time history in Figure 9 supports the 
conclusions drawn from Figure 8, also indicating there 
is a slight overshoot in fuel cell voltage as the current 
demand is removed. Fidelity is further demonstrated by 
Figure 10, with fluctuations in current demand evident 
in the oxygen concentration in the cathode. Lambda 
spikes to a higher value than the steady state after 
current demand is reduced suggesting a degree of 
actuator hysteresis, likely in the compressor control.  

Comparing the temperature of the stack itself and the 
gaseous mixtures in the inlet/exhaust of the stack anode 
and cathode in Figure 11 indicates a global level of 
settling of temperatures to a steady state, most likely 
because of unoptimized simulation start values. Once 
again, they fluctuate with demand.  

Generally, we see heat flows from the cathode to the 
anode side, with the cathode exhaust losing temperature 
and the anode exhaust gaining it relative to their 
respective intakes.  

Interestingly, the instantaneous temperature 
fluctuations found in the cathode exhaust relative to the 
inlet are lessened in the anode. One could deduce that 
this could be a result of the differing thermal inertias of 
the gaseous mixtures themselves, although a more likely 
explanation is that the cathode side features an exhaust 
valve to atmosphere; the anode system features a 
hydrogen recirculation system and a purge valve. As the 
cathode system is more sensitive to the volumetric 
change, comparatively the cathode side gas will be 
subject to a larger temperature increase due to 
compression as the valve closes.  

Cross referencing with Figure 13 supports this 
hypothesis, as both the anode purge and the cathode 
exhaust valves are overshooting the target somewhat, 
but it is only the cathode gases experiencing a 
momentary temperature spike. Essentially, the cathode 

Figure 17 - Cabin temperature in each of the 3 zones; 
front (blue), middle (red) and rear (green). 

Figure 18 - Temperature control of the cabin. Cabin 
temperature is blue, the setpoint in red. 

Figure 19 - Comparison between the SOC of the 
battery in comparable FCEV (blue) and BEV (red) 
bus models. 

Session B: Thermal and power system (2)

DOI
10.3384/ecp19353

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

59



  
 

  
 

exhaust valve closes too much and then opens a little as 
the system dynamics settle. Tuning of the controllers 
will remedy this. 

Owing to a greater thermal inertia of the stack itself, 
overall stack temperature fluctuations are more muted 
than the anode and cathode gases. This is entirely 
expected. 

 Figure 12 indicates that the 3 control valves, cathode 
exhaust, anode purge and hydrogen supply, are 
behaving broadly as they should to manage the pressure 
within the stack. Pressure fluctuations are minimal, but 
a cursory glance at Figure 13 does reveal some 
overshoot and further investigations reveals some 
interesting insights about the system dynamics. 
Hydrogen supply is increased due to demand; the purge 
valve also opens more during demand events, indicative 
of a greater oxygen concentration in the anode as more 
reaction takes place. The action of the cathode exhaust 
valve corroborates this, as it is closing slightly during 
demand events; this will be to maintain pressure across 
the cathode, indicating a pressure drop of some kind. 
Therefore, it appears that there is gaseous loss towards 
the anode. The temperature gradient identified 
previously from the cathode inlet to the anode exhaust 
supports a theory of gaseous loss towards the anode in 
this manner. 

Figure 14 indicates an opportunity to improve the air 
compressor control. The constant flow of coolant into 
the intercooler and the stability of the cathode inlet 
temperature (during steady state low current demand) 
belies a compressor which is running at a constant 
speed. This explains why the Lambda value spikes when 
there is little current demand; instead of reducing speed 
when there is little load, it continues at a constant speed. 
Stack coolant flow positively correlates with greater 
heat generation due to demand. 

Reviewing Figure 15 and 16, we can make some 
conclusions as to how the overall logic of the electrical 
controller, responsible for the current demand from the 
stack, is functioning. Current demand is rising and 
falling rapidly; this is due to the controller being 
parameterised to only demand current continuously 
when the battery SOC drops below a certain threshold. 
Therefore, as Figure 16 proves, the fuel cell is only 
engaging fully in heavy tractive events. This is an 
expected outcome, as the deployment strategy was 
inspired by Ogawa (2019), who proposed the use of a 
Fuel Cell demand override during strenuous tractive 
events, to reduce battery size. It should be noted that the 
maximum power produced by the stack does not reach 
the stated maximum rating. Improvements to the 
controller logic given the battery SOC are likely to 
remedy this, by improving the running conditions of the 
stack. 

Figures 17 and 18 indicate that the cabin thermal and 
HVAC models are performing as intended. The air inlet 
compromising the cabin doors is connected to the 

middle zone of the cabin, as described in Figure 5. With 
an outside air temperature of 30C, this means a volume 
of warm air is admitted to the cabin; the HVAC system, 
has a setpoint of 22C. We see that the middle zone 
temperature spikes when the cabin doors are opened, 
letting warmer air into the volume. Whilst this causes 
the middle section to increase in temperature alone 
versus the front and rear, Figure 18 demonstrates how it 
increases the average temperature. Action of the HVAC 
system then returns the temperature to the setpoint. 

Finally, Figure 19 demonstrates the positive effect of 
the fuel cell on the battery charge, versus a comparable 
EV bus with no fuel cell. Whilst it is true that the battery 
deployed in the FCEV is much larger in capacity relative 
to numbers disclosed in published literature by Toyota 
and Tata, it nevertheless serves as a reminder of the 
advantages of a FCEV versus a pure EV in such 
situations.  

4 Conclusions 
Overall, it can be concluded that the FCEV bus model 
presented in this paper is functioning in a valid way as a 
proof of concept. Useful observations regarding the 
interplay of the control system, which has 3 elements 
(hydrogen supply to the anode, air supply to the cathode 
and current demand) to manage can be made. We can 
see the model is sensitive to small control changes, in a 
logical way. Such sensitivity is important, as it 
encompasses all the systemic nonlinearities that a 
controller or physical system must manage. This gives 
confidence to using such a model in place of a real-life 
prototype. As discussed, there is scope to further 
improve the simulation with optimization of the control 
parameters. Nevertheless, it has been useful to exercise 
the system and observe the trends and dynamics. 

 

4.1 Further Work 
The most immediate improvement that could be made 
to the model would be to deploy the 
stack_MembraneDetailedHumidity stack model, to 
include the effect of humidity directly on the current 
produced by the fuel cell. One advantage of a detailed 
model such as the one presented in the paper is the 
ability to study the coupled thermodynamic effects; all 
the transport components such as pipes in this model 
have the capability to include thermal heat transfer to the 
boundary. Coupled phenomena regarding the design of 
the bus could be studied. Such a case would be the effect 
of the HVAC system running during hot weather, with 
the addendum potential for a greater current demand 
from fuel cell. Preconditioning studies could also be 
conducted, a feature which literature shows potential for 
improving the range of conditions a fuel cell can 
operate. Cold conditions specifically are of interest, as 
they traditionally impact BEV performance greatly. 
Further studies into fuel cell management and lifecycle 
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could be conducted, especially the case of dosing water 
management, if physical water capture, use and 
recycling is added to the model. Further insight into the 
specific infrastructural requirements needed to support 
Hydrogen buses could be understood by doing this.  
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Abstract
slPCMlib predicts the effective thermal properties of
solid/liquid phase change materials (PCM) showing a
non-isothermal phase transition behavior. The effective
properties are valid over the PCM functional temperature
range where latent heat is absorbed and released. Differ-
ent phenomenological phase transition models are imple-
mented to account for temperature shifts in latent transi-
tion changes, e.g. due to multi-step transitions and thermal
hysteresis. The library currently contains generic PCM
and specific commercial paraffin-based and hydrated salt-
based PCM (media). Its purpose is the analysis of partial
and complete melting and solidification processes relevant
for engineering applications, such as the design of PCM-
enhanced building components.
Keywords: solid/liquid phase transition, thermal hystere-
sis, phase change material (PCM)

1 Introduction
Solid/liquid phase change materials (PCM), such as salt
hydrates, paraffin waxes, fatty acids and eutectics of or-
ganic and non-organic compounds are used for storing
thermal energy (heat or cold) and/or to regulate temper-
atures, in a small temperature range with high efficiency.
Numerous applications are reported where PCM is incor-
porated in building envelopes (Al-Yasiri and Szabó, 2021;
Kuznik et al., 2011).

Ideal versus real phase change behavior: While ideal
PCM show an isothermal phase change behavior, many
real (commercial) PCM show a non-isothermal phase
change behavior: they melt and solidify over an extended
temperature range. Moreover, a large part of the PCM
available for building applications shows thermal hystere-
sis (including supercooling), which can be measured by a
(temperature) shift in the enthalpy curves for heating and
cooling. This phenomenon additionally extends the tem-
perature range where the latent heat is absorbed and re-
leased. Accordingly Kośny (2015) introduce the “PCM
functional temperature range”, which starts at the lowest
temperature limit of the solidification process and ends at
the highest temperature of the melting process. Figure
1 exemplifies different phase transition behavior of ideal

Figure 1. Enthalpy as a function of temperature for the case of
an isothermal transition, a non-isothermal transition, and a non-
isothermal transition with hysteresis.

and real PCM.
The thermo-physical and rheological properties of

PCM are usually characterized not only by the calorific
properties, but also by the thermal conductivity in the solid
and liquid phases, viscosity of liquid PCM and density as a
function of temperature (Kośny, 2015). Considering real
PCM these properties also change over the phase transi-
tion temperature range.

Phenomenological phase transition models: Al-
though it has been recognized by many research groups
that complex phase transition phenomena in real materials
can have a significant impact on PCM performance, only
few numerical models have been developed which are
able to represent specific effects such as hysteresis and
supercooling (Kośny, 2015).

Kośny (2015) review PCM modeling algorithms com-
monly used in building energy and hygrothermal software.
The phase transition behavior is mostly characterized by
a single enthalpy-temperature, or apparent heat capacity-
temperature curve which can be obtained e.g. from caloric
measurements. Corresponding models are purely data-
driven, phenomenological models, which can be easily ap-
plied for the analysis of PCM showing non-isothermal and
rate-independent phase transition phenomena (Barz et al.,
2019). However, in most software the parametrization of
the curve’s shape is usually restricted. Only few software
offer separate curves for melting and freezing (to account
for thermal hysteresis).

Recently, different phenomenological thermal hystere-
sis models have been proposed: The so-called “curve
track” model uses different curves for complete melting or
solidification processes, e.g. (Michel et al., 2017; Biswas

DOI
10.3384/ecp19363

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

63



et al., 2018; Moreles et al., 2018; Filonenko et al., 2020).
The so-called “curve switch” model is an extension allow-
ing minor loops relevant for incomplete (or interrupted)
phase transitions, e.g. (Bony and Citherlet, 2007; Rose
et al., 2009; Buonomano and Guarino, 2020; Goia et al.,
2018; Hu and Heiselberg, 2018). Another extension is the
so-called “curve scale” model, e.g. (Barz and Sommer,
2018; Barz et al., 2019; Barz, 2021; Lizana et al., 2021).

Modelling heat transfer in PCM: There exist different
numerical modeling approaches to deal with the moving
boundary between phases during melting and solidifica-
tion. Considering real PCM, it seems most reasonable to
adopt the so-called weak formulation, specifically the en-
thalpy method and apparent heat capacity method. Here,
the explicit treatment of a moving interface is avoided, and
instead, a mushy transition zone between the two phases
is considered where effective enthalpy- or apparent heat
capacity-temperature curves are applied, see Voller et al.
(1990) for details.

For a recent literature review on Modelica implemen-
tations of numerical models for heat transfer in ideal and
real PCM we refer to Helmns et al. (2021). As an ex-
ample, Helmns et al. (2021) uses the enthalpy method as
implemented in the Modelica Buildings Library (Wetter
et al., 2014) for the development of a component model
of a thermal energy storage with PCM. The heat conduc-
tion equation is formulated with the enthalpy (or internal
energy) as dependent variable. The temperature is mod-
eled as a piecewise linear function of enthalpy (inverse
enthalpy-temperature relation), which is represented (ap-
proximately) by a cubic hermite spline interpolation. The
enthalpy method allows for the solution of heat conduction
problems in real and ideal PCM. In the Modelica Build-
ings Library generic PCM with an (almost) isothermal be-
havior use small phase transition temperature ranges of
0.02K.

Leonhardt and Müller (2009); Halimov et al. (2019)
use the apparent heat capacity method and extend AixLib,
a Modelica model library for building performance sim-
ulations, by heat capacity-temperature relations for real
PCM. Different curve shapes were experimentally vali-
dated for a commercial paraffin-based PCM using alterna-
tive temperature-dependent continuous ansatz functions,
such as arctangent function (Halimov et al., 2019).

This contribution: A new library slPCMlib is presented
which predicts effective properties of real PCM. It con-
tains the above mentioned phenomenological phase tran-
sition (hysteresis) models as well as generic and specific
PCM (media) for which the phase transition behavior was
identified from caloric measurement data. Examples for
conduction dominated heat transfer in PCM are presented
adopting the apparent heat capacity method.

2 Effective material properties
The following assumptions are taken for modeling effec-
tive PCM properties:

• There are only two phases (two-phase model): a
solid and a liquid phase.

• Phase transitions are induced by temperature and are
independent of pressure.

• Phase transitions extend over a temperature range
(non-isothermal phase transitions) and are continu-
ous.

• Within the phase transition temperature range the
solid and liquid phases coexist as a homogenous mix-
ture (macroscopic view). The material is then in
a semi-solid or semi-liquid state which produces a
mushy zone in the PCM domain.

• Properties of the mushy state are local effective (also
apparent) mixture properties, which are defined by
a weighting of contributions from solid and liquid
phases. The weighting is based on the phase change
progress, i.e. the mass (or volume) phase fraction.

The effective enthalpy h(T ), density ρ(T ) and thermal
conductivity λ (T ) are calculated as1:

h(T ) = (1−ξ (T )) hs(T )+ξ (T )hl(T ) (1a)

ρ(T ) = (1−φ(T )) ρ
s(T )+φ(T )ρ

l(T ) (1b)

λ (T ) = (1−φ(T )) λ
s(T )+φ(T )λ

l(T ) (1c)

where ξ (T ) and φ(T ) are the liquid mass and liquid vol-
ume phase fraction, respectively2. Their relation is:

φ(T ) =
ξ (T )

ξ (T )+(1−ξ (T )) ρ l(T )
ρs(T )

(2)

The apparent specific heat capacity c̃(T ) = dh(T )/dT
reads:

c̃(T ) = (1−ξ (T )) cs
p(T )+ξ (T )cl

p(T )︸ ︷︷ ︸
baseline, cBL(T )

(3)

+
dξ

dT

(
hl(T )−hs(T )

)
︸ ︷︷ ︸

peak function

It is assumed that the properties of the single phases ρ l ,
ρs, λ l , λ s, and cl

p, cs
p are available. The difference in solid

and liquid enthalpies hl , hs defines the phase transition en-
thalpy. For non-isothermal transitions there exist differ-
ent approaches for the calculation. They are linked with
the method for determining the phase transition function
ξ (T ). The determination of ξ (T ) and hl(T ), hs(T ) are
discussed in the following.

1While viscosity is also an important property it is not considered
as effective variable here. The reason is that in numerical model-
ing viscosity in the solid is usually either neglected or artificially in-
creased to ensure zero velocity fields in the solid phase. However, liq-
uid viscosity might be considered by extending basic PCM properties in
slPCMlib.Media discussed in Section 4.1.

2For better readability the symbols ξ and φ have no superscript (l) to
indicate liquid phase fraction. Obviously, considering two components
the solid phase fractions read 1−ξ (T ) and 1−φ(T ).
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2.1 Phase transition functions for heating and
cooling

Phase transition functions describe the phase change
progress for complete transitions during heating (complete
melting with dT/dt > 0), and for complete transitions dur-
ing cooling (complete solidification with dT/dt < 0), re-
spectively. Note that, because the behavior might be dif-
ferent for melting and solidification (thermal hysteresis),
two different transition functions are considered:

ξ
H = ξ (T ) for heating (4)

ξ
C = ξ (T ) for cooling

It is assumed that: The transition functions:

• depend on temperature, are differentiable and mono-
tonically increase with rising temperature.

• realize a transition from ξ = 0 (solid) to ξ = 1 (liq-
uid).

• are shifted in temperature (thermal hysteresis) and do
not intersect: ξ H(T )≤ ξC(T ) ∀ T .

The limits of the phase transition temperature are defined
as:

Tmin = max{T |ξ (T ) = 0} (5)
Tmax = min{T |ξ (T ) = 1}

Because of the assumption above, in case of thermal hys-
teresis Tmin corresponds to ξC, and Tmax to ξ H . This
means that the phase transition temperature range (also
PCM functional temperature range) starts at Tmin of the
solidification process, and ends at Tmax of the melting pro-
cess. Examples for the transition functions are shown in
Figure 3 (bottom).

2.2 Determination of phase transition func-
tions and single phase enthalpies

The heat storage capacity of PCM is usually tabulated as
scalar values for the phase change enthalpy and melting
temperature. For some PCM also apparent heat capacity
curves are available, e.g. Figure 2. As pointed out e.g. by
Kośny (2015), a real PCM with a non-isothermal phase
change behavior should be represented by a temperature
dependent function, e.g. h(T ).

In Differential Scanning Calorimetry (DSC) analysis,
which is a standard technique for caloric measurements
of PCM, the (scalar) phase transition enthalpy ∆ht is usu-
ally determined as the area between two curves defined in
Equation (3): the apparent (effective) heat capacity c̃(T ),
and the baseline heat capacity cBL(T ) (Hemminger and
Sarge, 1991).

∆ht =
∫ Tmax

Tmin

(c̃(τ)− cBL(τ))dτ (6)

The baseline cBL(T ) connects solid and liquid heat capac-
ities in the phase transition temperature range and is deter-
mined by a suitable baseline construction method. After
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Figure 2. Determination of the phase transition function for
heating and the single phase enthalpies from heat capacity data
of RT62HC. Middle: The bars depict the data as provided by the
PCM manufacturer (Rubitherm Technologies GmbH). The data
(partial enthalpies for one Kelvin intervals) was collected using
a three-layer-calorimeter. The lines depict the fitted effective
heat capacity, see Barz et al. (2020) for details. Top: Derived
enthalpy data. Bottom: Derived phase transition function for
heating.

substraction of the baseline, the phase transition function
is obtained from the cumulative integral over the normal-
ized peak, taking Tmin and Tmax as integration limits.

For ideal PCM with an isothermal phase change be-
havior, the scalar ∆ht in Equation (6) is the transition en-
thalpy at a reference temperature, i.e. the melting temper-
ature. For real PCM (considered in this contribution), ∆ht
is temperature dependent. The dependence is given by the
so-called Kirchhoff equation (or Kirchhoff’s Law), which
relates the isobaric temperature variation of the phase tran-
sition enthalpy to the difference in specific heat capacities
at constant pressure (McDonald, 1953):

∂∆ht

∂T

∣∣∣∣
p
= cl

p − cs
p (7)

The Kirchhoff equation yields a temperature-dependent
phase transition enthalpy, which is used in Equation (3)
in the peak function:

∆ht(T ) = hl(T )−hs(T ) (8)
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Figure 3. Determination of phase transition functions for heating ξ H and cooling ξC from heat capacity data of Rubitherm
RT62HC (left) and RT64HC (right), see Barz et al. (2020) for details. Top: The bars depict heat capacity data provided by the PCM
manufacturer (Rubitherm Technologies GmbH). The data (partial enthalpies) were recorded using a three-layer-calorimeter. The
lines depict the fitted effective heat capacity. Bottom: Derived phase transition functions.

In slPCMlib the single phase solid and liquid enthalpies
are defined as:

hs(T ) = hs(Tref)+
∫ T

Tref

cs
p(τ)dτ (9a)

hl(T ) = hl(Tmax)+
∫ T

Tmax
cl

p(τ)dτ (9b)

with Tref ≤ Tmin and

hs(Tref) = href (10a)

hl(Tmax) = href +
∫ Tmax

Tref

cBL(τ)dτ +∆ht (10b)

To briefly sum up, the following definitions are used:

• ∆ht is the scalar phase transition enthalpy for melt-
ing of a real PCM with a non-isothermal phase
change behavior. It is defined for the melting tem-
perature range (not the melting temperature), and it
is determined from heat capacity data for heating us-
ing Equation (6) .

• ∆ht(T ) = hl(T )− hs(T ) is the temperature depen-
dent phase transition enthalpy. The single phase en-
thalpies hl and hs are computed via Equation (10) for
a given scalar ∆ht .

Enthalpy h(T ) and apparent heat capacity c̃(T ) are cal-
culated considering the temperature dependent transition
enthalpy in Equation (8) and Equations (1a) and (3).

Note that, if heat capacity data for melting and solid-
ification is different (thermal hysteresis), then the phase
transition functions for melting ξ H and solidification ξC

are determined for each data set independently, see Figure

3 for examples. However, the scalar phase transition en-
thalpy ∆ht is obtained from the data for melting. In some
cases it might by necessary to adapt the value of ∆ht in
order to generate a “best fit” for both data sets.

3 Phase transition models
In addition to the assumptions in Section 2, the follow-
ing assumption is used for modeling the phase transition
behavior for melting and solidification processes:

• Phase transitions are rate-independent (equilibrium
model).

It follows that, increased heating or cooling rates lead
to faster melting and solidification. However, the rate
has no effect on the systems behavior itself. The graphs
in the (ξ ,T )-plane and the (h,T )-plane are unchanged.
For the hysteresis models discussed in the following, this
means that also the magnitude of the hysteresis is rate-
independent.

3.1 The melting curve model
The simplest model (here referred to as melting curve
model) predicts the evolution of the phase fraction as re-
sponse to arbitrary changes in temperature using the phase
transition function for heating:

ξ = ξ
H (T ) (11)

The model does not account for hysteresis phenomena, see
Figure 4 for an example.

3.2 The curve track hysteresis model
The curve track hysteresis model predicts the evolution
of the phase fraction as response to positive or negative
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changes in temperature T , starting from T0 to the final
value Tf , using one of the following submodels:

ξ (T ) = ξ
H (T ) if T0 = Tmin (12a)

ξ (T ) = ξ
C (T ) if T0 = Tmax (12b)

where T0 is the discrete (piecewise constant) temperature
which changes only when T crosses the limits of the phase
transition temperature range. At this point the final vari-
able Tf is reached, the process is restarted setting T0 = Tf
and choosing the next submodel. This means that T0 holds
the information which transition (melting or solidifica-
tion) was completed last, e.g. T0 = Tmin means that the
PCM was in the complete solid state and the heating curve
ξ H(T ) is currently used.

The curve track model is completely defined by ξ H(T )
and ξC(T ), and the limits Tmin and Tmax. The model is use-
ful for the prediction of complete melting or complete so-
lidification processes. The model is not useful for incom-
plete phase transition processes. This is because switches
between heating and cooling, while the material is still
within the phase transition range, do not result in a change
(e.g. switch) of the phase transition function, see (Barz
et al., 2019). An example for complete and incomplete
melting and solidification processes is shown in Figure 4.

3.3 The curve switch hysteresis model
The curve switch model, first proposed by Bony and
Citherlet (2007), extends the curve track model for an im-
proved prediction of interrupted phase transitions, i.e. in-
complete transitions with switches between heating and
cooling. Incomplete transitions are modeled by a straight
line between the phase fraction-temperature curves (and
enthalpy–temperature curves) for heating and cooling.
Following this connecting line realizes the so-called curve
switch.

The evolution of the phase fraction as response to posi-
tive or negative changes in T , starting at T0 and ending at
Tf is described by three submodels for melting, soldifica-
tion and the curve switch:

ξ (T ) = ξ
H (T ) if T0 = Tmin (13a)

ξ (T ) = ξ
C (T ) if T0 = Tmax (13b)

ξ (T ) = constant if Tmin < T0 < Tmax (13c)

where, in the same way as in Equation (12), T0 is the dis-
crete (piecewise constant) temperature indicating which
submodel is used. The following conditions can trigger
an event (Tf is reached): When T crosses the limits of the
phase transition temperature range, then either Tf = Tmin
or Tf = Tmax; During melting or solidification with Tmin <
T < Tmax, when the temperature rate dT/dt changes the
sign, then Tf = T (initiation of curve switch); During the
curve switch, when ξ (T ) reaches either the curve for heat-
ing ξ (T ) = ξ H(T ) or cooling ξ (T ) = ξC(T ), then ei-
ther Tf = Tmin or Tf = Tmax (finalization of curve switch).

Figure 4. Evolution of the phase fraction as response to
sinusoidal temperature variations considering different rate-
independent phase transition models. The first subfigure shows
the temperature input and the limits of the phase transition tem-
perature range. The following subfigures show the correspond-
ing responses in the (T,ξ )-plane. Note that, since the hysteresis
models are static models, time is given in arbitrary unit.
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When Tf is reached the process is restarted setting T0 = Tf
and choosing the next submodel.

The curve switch model is completely defined by
ξ H(T ) and ξC(T ), and the limits Tmin and Tmax. For com-
plete melting and solidification the model produces the
same results as the curve track model. An example is
shown in Figure 4.

3.4 The curve scale hysteresis model
The curve scale model, originally introduced by Ivshin
and Pence (1994) for the modeling of temperature induced
phase transitions and first applied by Barz and Sommer
(2018) in the context of solid/liquid PCM, is another ex-
tension of the curve track model. The model accounts for
different hysteresis magnitudes for cycles within the phase
transition temperature range and makes use of the temper-
ature history. Major and minor hysteresis loops are con-
structed by scaling the functions for complete transitions
ξ H(T ) and ξC(T ).

The evolution of the phase fraction as response to a
monotonous change in T from a starting value T0 to the
final value Tf is described by two submodels:

ξ (T ) = 1− spos ·
(
1−ξ

H(T )
)

if dT/dt ≥ 0 (14a)

ξ (T ) = sneg ·ξC(T ) if dT/dt < 0 (14b)

with the scaling factors:

spos =
1−ξ0

1−ξ H(T0)
, sneg =

ξ0

ξC(T0)
(15)

where T0 and ξ0 := ξ (T0) denote the initial temperature
and phase fraction for time intervals with either increasing
or decreasing temperatures. Thus, during monotonically
increasing (or decreasing) temperatures all variables in
Equation (15) are constant. Their values are updated only
at time instants (events) when the sign of dT/dt changes.

An equivalent differential form of the curve scale hys-
teresis model is obtained by differentiation of Equations
(14), (15) with respect to time using the chain rule (Ivshin
and Pence, 1994):

dξ

dt
=

1−ξ (T )
1−ξ H(T )

· dξ H(T )
dT

· dT
dt

if
dT
dt

≥ 0 (16a)

dξ

dt
=

ξ (T )
ξC(T )

· dξC(T )
dT

· dT
dt

if
dT
dt

< 0 (16b)

With this modification the discrete (piecewise constant)
variables in Equation (15) are replaced by continuous vari-
ables. It turns out that the model can be implemented as
one differential equation with a discontinuous right hand
side.

The curve scale model is completely defined by ξ H(T )
and ξC(T ). For complete melting and solidification it
produces the same results as the curve track model. Re-
sults for incomplete melting and solidification are shown
in Figure 4.

4 Implementation in Modelica
An overview of the packages contained in slPCMlib is
given in Figure 5.

4.1 Definition of media
The package slPCMlib.Media (see Figure 5) contains
specific PCM data of commercial organic and inorganic
PCM for which solid and liquid properties are tabulated
and heat capacity curves are available in the technical data
sheets provided by manufacturers. In addition, the pack-
age also contains four examples with generic PCM data,
which can be adapted by the user to match a certain peak
shape.

Each medium (PCM) extends the partial package
slPCMlib.interfaces.partialPCM which contains
the basic definition of a medium. Functions for single
phase solid and liquid densities ρs(T ), ρ l(T ) and ther-
mal conductivities λ s(T ), λ l(T )) can be arbitrary func-
tions of temperature. They are defined by a replaceable
partial function. In contrast, functions for single
phase heat capacities cl

p, cs
p are assumed to be linear func-

tions of temperature: a + b · (T − Tref). Corresponding
coefficients a, b, reference temperature Tref, as well as
reference enthalpy href = h(Tref), scalar phase transition
enthalpy ∆ht , and the limits of the phase transition tem-
perature range are defined in a replaceable record called
propData.

4.1.1 Functions for heating and cooling

In the package slPCMlib.Media (see Figure 5) each
PCM extends (replaceable partial) phase transition func-
tions for heating and cooling, see Equation (4), contained
in slPCMlib.interfaces.partialPCM.

replaceable partial function
↪→phaseFrac_complMelting "Returns liquid

mass phase fraction for complete
melting processes"

extends Modelica.Icons.Function;
input Modelica.Units.SI.Temperature T;
output Modelica.Units.SI.MassFraction xi;
output Real dxi(unit="1/K");

end phaseFrac_complMelting;

The functions of the specific PCM are piecewise
interpolation splines, see Barz et al. (2020) for de-
tails and Figures 3 (bottom) for examples. They are
evaluated using e.g. slPCMlib.BasicUtilities.-
quartQuintSplineEval.

The four generic PCM use different ansatz functions.
These are the uniform cumulative distribution function
(CDF), the Gumbel Minimum (also Extreme value type I)
CDF, the Gaussian (also Normal) CDF, and the 7th-order
smoothstep function, shown in Figure 6 (top).

The uniform and Gaussian distribution are contained in
Modelica.Math.Distributions, the Gumbel distri-
bution extends this package and is implemented together
with the smoothstep in slPCMlib.BasicUtilities.
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Figure 5. Packages in slPCMlib.
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Figure 6. Ansatz functions used for the parametrization of
generic PCM. Top: Examples for phase transition functions (ei-
ther for heating or cooling). The following parameters have been
used: Tmin = 40.5, Tmax = 43.5 (uniform); µ = 42, β = 0.5
(Gumbel); µ = 42, σ = 0.6 (Gauss); Tmin = 40, Tmax = 44
(Smoothstep). The circle indicates the (approximate in case of
Gumbel and Gauss) start and end of the transition range. Bot-
tom: Derivative w.r.t. temperature.

The derivatives of these ansatz functions represent the
peak in the effective heat capacity, see also Equation (3)
and Figure 6 (bottom). The asymmetric Gumbel distribu-
tion can be especially useful for the fitting of heat capac-
ity data for cooling. The symmetric smoothstep function
can be parametrized intuitively as it’s so-called edge pa-
rameters coincide with Tmin and Tmax. Because the CDF
of Gumbel and Gauss distributions only asymptotically
reach 0 and 1, the limits of the transition range are ap-
proximately set for the probabilities P(Tmin) = 0.001 and
P(Tmax) = 0.999.

4.2 Computation of effective properties
Equations (1) - (3) are contained in the partial model
slPCMlib.Interfaces.basicPhTransModel. The
integral in Equation (10b) is computed by numeri-
cal integration using the function Modelica.Math.-
Nonlinear.quadratureLobatto within the initial
equation section of basicPhTransModel. Because
the single phase heat capacities are modeled as lin-
ear functions of temperature, the integrals in the for-
mulas for the corresponding enthalpies in Equation (9b)
can be solved analytically. The functions for the
heat capacities, baseline and enthalpies are contained in
slPCMlib.BasicUtilities.

4.3 Phase transition models
The phase transition models described in Section 3
are contained in slPCMlib.Interfaces, see Fig-
ure 5. They extend the slPCMlib.Interfaces.-
basicPhTransModel. The hysteresis models in Sec-
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tion 3.2 - 3.4 are implemented using when-statements and
discrete-time variables. As an example, the curve track
model in Equation (12) uses the discrete Boolean
heatingOn to hold the information which submodel is
used. Events are triggered and the value of heatingOn
is updated when T enters the phase transition temperature
range, either crossing Tmin with rising T , or when crossing
Tmax with falling T .

algorithm
when (indVar.T <

PCM.propData.rangeTmelting[2]) then
↪→heatingOn := false;

end when;
when (indVar.T >

PCM.propData.rangeTsolidification[1])
↪→then heatingOn := true;

end when;

In the same way, the curve switch model in Equation
(13) uses the discrete Integer modelInd which can
take the values +1 (Equation (13a)), -1 (Equation (13b)),
and 0 (Equation (13c)).

The algebraic version of the curve scale model in Equa-
tions (14), (15) use discrete Real variables which are
initialized and updated using the operator pre(). The fol-
lowing code fragment illustrates the updating of the scal-
ing factor for heating:

algorithm
when (indVar.der_T > 0) then
T0 := pre(indVar.T);
Xi0 := pre(xi_m);
(Xi_at_T0,) :=
↪→PCM.phaseFrac_complMelting(T0);
scaler := (1.0-Xi0)
↪→/max((1.0-Xi_at_T0),eps);
heatingOn := true;

end when;

In addition, several measures were taken to improve the
robustness, performance and accuracy of the models:

• The curve switch and curve scale model are differ-
entiated to avoid nonlinear algebraic equations. Note
that for the curve scale model there are two versions
available, one uses the algebraic formulation (Equa-
tion (14)) and the other uses the differential formula-
tion (Equation (16a)).

• The states of the differentiated models are reinitial-
ized at certain points where the exact solution is
known. E.g. when the temperature passes the limits
of the phase transition temperature range, the phase
fraction is reinitialized either with zero or one.

• Additional conditions are considered in when-
statements to reduce the number of events. E.g. in
the curve scale model events are not triggered upon
switches between heating and cooling outside the
phase transition temperature range.

The following code fragment gives an example for the sec-
ond point:

Figure 7. Diagram layer with the modified heat capacitor for the
generation of the simulated data in Figure 4.

when (indVar.T <= PCM.propData.
↪→rangeTsolidification[1]) then

reinit(xi, 0.0);
elsewhen (indVar.T >= PCM.propData.
↪→rangeTmelting[2]) then

reinit(xi, 1.0);
end when;

4.4 Linking transition models and Media
In the following, the selection and use of a transi-
tion model and a PCM (medium) is discussed for a
simple component model assuming homogenous tem-
peratures inside the PCM. The Modelica Standard
Library heatCapacitor contained in Modelica.-
Thermal.HeatTransfer has been modified to ac-
count for a temperature-dependent specific heat capac-
ity. The modified capacitor slPCMlib.Components.-
HeatCapacitorPCM is shown in Figure 7. A PCM and a
phase transition model are selected as:

replaceable package PCM=
slPCMlib.Media.generic_GumbelMinimum;

replaceable slPCMlib.Interfaces.
↪→phTransModCurveScaleHysteresis

phTrModel(PCM=PCM);

In the equation section the temperature of the heat port
of the capacitor T and it’s derivative der_T are con-
nected with the inducing port of the phase transition model
phTrModel.indVar. The heat flow rate over the port of
the capacitor port.Q_flow is calculated considering the
temperature-dependent heat capacity:

equation
T = port.T;
der_T = der(port.T);
phTrModel.indVar.T = T;
phTrModel.indVar.der_T = der_T;
phTrModel.cp*m*der(port.T) = port.Q_flow;

slPCMlib: A Modelica Library for the Prediction of Effective Thermal Material Properties of Solid/Liquid
Phase Change Materials (PCM)

70 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19363



5 Application examples
5.1 Partial phase transitions
Partial (or interrupted) phase transitions are common in
PCM applications. They are characterized by switches be-
tween heating and cooling within the phase transition tem-
perature range. Relevant scenarios are interrupted melting
and subsequent cooling, or interrupted solidification and
subsequent heating.

Figure 8 shows periodic temperature variations and re-
sponses in the enthalpy-temperature diagram for two dif-
ferent PCM. Results have been computed with the mod-
ified capacitor HeatCapacitorPCM choosing the “curve
scale” model. The temperature first sweeps the full phase
transition range, and subsequently the amplitude is re-
duced and the temperature oscillates within the transi-
tion range. It can be seen that the PCM undergo first a
complete melting and solidification cycle forming a ma-
jor loop. Subsequently, the enthalpy approaches the limit
cycle (minor loop with partial transitions) where the ab-
sorbed and released heat is reduced. Figure 9 shows the
corresponding density changes for both PCM.

5.2 Heat transfer in PCM
This example studies 1D heat conduction in a commer-
cial PCM impregnated gypsum board, namely the Smart-
Board®26 (SB26) manufactured by Knauf Gips KG, Ger-
many. The interior plasterboard product with around
30 % mass fraction of microencapsulated paraffinic PCM
is available for drywall construction applications in build-
ings (Kośny, 2015).

A package with the effective thermal properties of
SB26 is contained in Buildings.HeatTransfer.-
Data.SolidsPCM. The phase transition function is mod-
eled as piecewise linear function assuming a nearly
isothermal phase change behavior. The transition range
of this ideal SB26 is [25.99 ◦C, 26.01 ◦C].

Another package with effective properties of SB26 is
contained in slPCMlib.Media_Knauf_SmartBoard. It
uses the same single phase properties and phase transition
enthalpy. However, two different phase transition func-
tions for heating and cooling are considered (hysteresis).
The transition functions were determined from heat capac-
ity data published in Lerche et al. (2010) and are modeled
by piecewise interpolation splines. The extended transi-
tion range of this real SB26 is [20 ◦C, 30 ◦C].

The SB26 wall element is modeled using the
Buildings.HeatTransfer.Conduction.-
SingleLayer component of the Modelica Buildings
Library. A modified version (SingleLayerSlPCMlib)
is used with the transition models and media contained in
slPCMlib.

As an application example, the test case 600FF of the
Building Energy Simulation Test (BESTEST) validation
suite (Judkoff and Neymark, 1995) is considered, as im-
plemented in the Buildings library (Wetter et al., 2014).
Case 600FF is a light-weight building with a single room

Figure 8. Periodic temperature variations (first subfigure), and
the response in the enthalpy-temperature diagram computed
with the “curve scale” model: for a generic PCM (second sub-
figure), and a specific PCM (third subfigure).

Figure 9. Density changes as response to the temperature varia-
tions in Figure 8 (first subfigure). The response is modeled with
the “curve scale” model for the two PCM shown in the second
and third subfigure in Figure 8.
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Figure 10. Test case 600FF taken from Modelica Buildings Li-
brary (Wetter et al., 2014) with a modified model for a single
layer PCM wall element (lay).

of 8 m by 6 m and 2.7 m height. The room temperature
is free floating. Double SB26 wall elements of 2 · 15mm
thickness are attached to the interior wall of the room.
We take simplifying assumptions, define the total surface
area as 2 · (8m+ 6m) · 2.7m, and connect one heat port
of the SingleLayer as a heat port of surface connected
to the room air and connect the other port to the heat port
to air volume, see Figure 10. SB26 temperatures are ap-
proximated by two states inside the wall element. This
means that two differential heat balance equations need
to be solved, each using effective properties ρ , λ and
c̃. Because the PCM is microencapsulated, temperature-
dependence of ρ which can lead to volume changes, inter-
nal material velocities and convection is neglected.

Figure 11 shows results of yearly simulations for three
scenarios: without wall element, and with a SB26 wall el-
ement considering either an ideal or a real phase change
behavior. The simulation results indicate differences be-
tween all three scenarios. While the PCM wall element
leads to an increase in the number of hours with tem-
peratures between 20 and 30 ◦C, the ideal and real phase
change behaviors result in different temperature distribu-
tions.

The CPU-times for integration are given in Table 1. As
expected, the CPU-times of the test case including SB26
are increased compared with the original case (w/o SB26).
The case with the real SB26 needs less time compared
with the case with ideal SB26. This can be explained by
the differences in the phase transition temperature range,
i.e. narrow range of the ideal SB26 and wide range for the
real SB26, with corresponding sharp and smooth changes
in the apparent heat capacity (and enthalpy) curve, see
the third subfigure in Figure 11. Sharp changes in ther-
mal properties make the problem more nonlinear and thus,
more difficult to solve. The temperature and climate vari-
ability over a year triggers many events when solving the
hysteresis models. Interestingly enough, corresponding
stops and restarts of DASSL do not heavily affect the over-

Figure 11. Test case 600FF considering the installation of a
commercial PCM impregnated gypsum board SmartBoard®26
(SB26). The first and second subfigure show the temporal evolu-
tion and a histogram of the room temperature for three scenarios:
without SB26 wall element; with SB26 wall element considering
an ideal phase change behavior (as implemented in the Buildings
Library); and with SB26 wall element considering a realistic
phase change behavior identified from caloric measurements (as
implemented in slPCMlib). The third subfigure shows the evo-
lution of the SB26 specific enthalpy in the enthalpy-temperature
diagram.

Table 1. CPU-time for integration of the test case 600FF.
All computations were carried out on a laptop with Intel(R)
Core(TM) i5-8350U CPU @ 1.70 GHz 1.90 GHz and 16 GB
RAM. Parallelization of code was not used. The default solver
DASSL was selected with a tolerance of 1E-6 and interval length
of 60 s.

Scenario Model Computation time
absolute relative

w/o SB26 - 74 s 100 %
ideal SB26 melting curve 121 s 164 %
real SB26 melting curve 88 s 119 %
real SB26 curve track 101 s 136 %
real SB26 curve switch 129 s 174 %
real SB26 curve scale 106 s 143 %
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all computation times. It should however be noted that the
above results are not necessarily generalizable.

6 Discussion and conclusions
slPCMlib allows for a detailed analysis of the thermal per-
formance of PCM enhanced materials and components.
Compared with property models considering an isother-
mal phase change behavior the phase transition models in
slPCMlib may be more realistic and accurate. The second
application example indicates that this comes at the cost
of a quite acceptable increase in model complexity and
solution times.

The presented phenomenological hysteresis models are
rate-independent. From a practical perspective this is an
advantage: They can be easily parametrized by only two
curves, e.g. considering heat capacity data from melting
and solidification experiments. A comparable approach
is used for parametrization of the so-called Tellinen hys-
teresis model (Tellinen, 1998) which predicts properties
of ferromagnetic materials (Ziske and Bödrich, 2012). An
interesting extension for rate-dependent modeling could
be based on a model-free kinetic analysis of PCM heat ca-
pacity data, as recently proposed by Lizana et al. (2021).

In the current version of slPCMlib it is not possible to
use the hysteresis models with the enthalpy method for
modeling heat transfer in PCM. To do so, an inverse rela-
tion for the phase fraction-temperature (and/or enthalpy-
temperature) relation would be needed. Examples can be
found in literature, however, they are restricted to spe-
cific phase transition ansatz functions (and curve shapes):
Huang et al. (2022) derives an analytic form of the in-
verse curve scale model parametrized with piecewise lin-
ear phase transition functions (the generic uniform distri-
bution ansatz function in slPCMlib). Takacs et al. (2008)
derives an inverse magnetic hysteresis model considering
hyperbolic ansatz functions.

The performance (initialization and CPU-times) of the
curve switch and curve scale models is significantly im-
proved by differentiation with respect to time. However,
relaxed solver tolerances may lead to incorrect results.
With the current implementation the melting curve and
curve track models, as well as the curve scale model (with
reasonably strict tolerances) can be all recommended for
use. Results from the curve switch model might need a
critical validation. In any case, a plot in the enthalpy-
temperature diagram is recommendable to quickly iden-
tify possible errors.

slPCMlib and the examples discussed above can be
found at https://github.com/AIT-TES/slPCMlib.
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Abstract 
This paper showcases how Modelica technology can be 
leveraged for real-time applications using a cloud native 
simulation platform, Modelon Impact™. The platform 
allows for real-time, two-way communication of data, 
from the IoT connected plant to a physical model and, 
from the physical model to a dashboard for plant 
monitoring and control. The communication relies on 
open standards and REST-API, which makes it possible 
to implement digital twins for various applications, such 
as plant monitoring, predictive maintenance, fault 
isolation or controls. The paper describes a state 
estimation workflow where data is transmitted back and 
forth to the simulation platform via Message Queuing 
Telemetry Transport (MQTT) and where Node-Red is 
used for the end-user interface. 

Keywords:     Digital twin, State estimation, Cloud 
native Modelica platform, MQTT, Node-RED, REST-
API. 

1 Introduction 
A digital twin is a virtual representation of a real-world 
physical system or process (a physical twin) that serves 
for practical purposes, such as system simulation, 
integration, testing, monitoring, and maintenance. 
Modelica provides a clear separation between model 
and analysis definition which has proven successful in 
various applications over the years, also touching digital 
twins as illustrated in the following examples. 

In motorsports, digital twins of the car, the track, and 
sometimes even the human driver are used in software-
in-the-loop or hardware-in-the-loop configurations. The 
Modelon Vehicle Dynamics Library® (VDL, 2022) for 
instance has been used to define digital twins since well 
over a decade. Driven both by cost and regulations, a 
successful team in any of the higher leagues such as F1 
or NASCAR have virtual representations of each of the 
cars they put on the racetrack. There are various 
applications with the common purpose to predict or 
estimate vehicle behavior beyond what is feasible or 
even allowed to investigate while the race car is driven 
on the racetrack. 

Figure 1 shows a setup where a digital twin of the car 
is used to investigate the vehicle behavior on a certain 
part of the track in more detail. This model is used in 

offline as well as real-time applications. In the picture, 
the boundary conditions of the car are given from track 
and race data and includes for example track curvature, 
lateral acceleration, and throttle position. Since the 
model contains detailed representation of the race car’s 
mechanics the workload of critical components such as 
tires, springs, and dampers can be estimated. 

 

 

Figure 1. Digital twin of race car from the NASCAR 
series. Diagram view with race car and boundary 
conditions (top) and 3D visualization (bottom). The arrows 
show the estimated individual tire forces. 
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In other applications, such as predictive maintenance 
or fault detection, the physical model needs to be used 
in combination with an algorithm to extract valuable 
information from the process in operation. This can be 
achieved by exporting the physical model to a scripting 
environment such as Matlab or Python using the 
Functional Mock-up Interface (FMI) standard. 
(Ruggaber and Brembeck, 2021; Gonzalez, et al., 2017; 
Andrén, et al., 2015) demonstrate how various variants 
of Kalman filters can be implemented for state and 
parameter estimation, also exploiting the directional 
derivatives defined by the FMI 2.0 standard. The 
combined usage of Modelica, FMI and the scripting 
environment has been proven to be successful for 
optimal start-up of power plants in offline mode (Dietl 
et al., 2014).  For rapid testing and deployment of the 
state estimators without any need for scripting 
environment, the estimation algorithm can also be 
embedded according to the FMI standard as a Functional 
Mockup Unit (FMU), as shown in (Brembeck et al., 
2011), (Bonvini et al, 2014), (Laughman and Bortoff, 
2020). This however requires manual adaptation work 
for every considered plant model. 

Data exchange is also an essential component that 
sets requirements on the digital twin implementation in 
terms of connectivity and openness. This can be 
achieved by integrating a plant model as FMU into a 
connected data management or control system as it was 
done in (ENGIE, 2022). Modelon Impact™ was used 
there to derive a digital twin of a solar photovoltaic 
power plant in Chile and to train fault detection 
algorithms. The model was run online, and its predictive 
nature permitted to detect and isolate component 
failures. In (Dietl and Link, 2018) the communication 
between the control system and the simulation platform 
relied on OPC-UA. The authors implemented and 
deployed a Moving Horizon state model predictive 
controller based on Modelon’s optimization toolchain.  

 

The mentioned examples have in common that they 
showcase the industrial value and the feasibility of 
digital twin type analyses based on Modelica and FMI 
technologies. They also illustrate the need for a 
framework that allow for a more systematic way of 
implementing and deploying models for real-time 
applications. The objective is to achieve a modular and 
flexible implementation to keep the model and the 
analysis separated and thereby facilitate code reuse for 
multiple applications. 

This paper showcases how this can be achieved with 
Modelon Impact, a cloud-native Modelica-environment 
with public APIs. The paper is structured to first outline 
the relevant properties of Modelon Impact in Section 2, 
prediction, and correction in Section 3, followed by a set 
of select applications in Sections 4-5.  

2 Enabling cloud infrastructure 
Modelon Impact (Modelon Impact, 2022) is a cloud-
native systems modelling and simulation environment 
that enables connectivity through public APIs. Modelon 
Impact generates and runs FMUs on the cloud. It is also 
possible to upload third party Modelica packages and 
use them either as dependencies or editable models. 
Modelon supports connectivity to version control 
software like Git and SVN. Modelon Impact also 
features installation on private clouds to ensure data 
security. Figure 2 shows an overview of the connectivity 
options that are offered. In this paper we will focus on 
the APIs that allow for 3rd party tools to communicate 
with the compute engine in Modelon Impact. 

Modelon Impact communicates through a 
Representational State Transfer (REST) API, that 
enables remote controlling from other applications such 
as Microsoft Excel, Jupyter (Kluyver, et al., 2016), and 
custom web apps. The Modelon Help Center (Modelon 
Help Center, 2022) contains detailed information of the 
available REST API calls. 

Figure 2. Modelon Impact is prepared to work in an eco-system with well-defined communication through 
public APIs. 
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Modelon Impact has client libraries in Python and 
JavaScript wrapping around the low-level web-interface 
(REST API) which makes it easy to programmatically 
connect and interact with a Modelon Impact server. 

The client libraries help with:                                             
 Defining and executing simulations on the 

Impact server. 
 Compiling models on the server and 

downloading them as FMUs. 
 Fetching results and do post-processing. 
 Authenticate users against Modelon Impact. 
 Creating and automating custom workflows in 

your favorite programming language 
 

The client libraries enable the execution of 
workflows orchestrated on a client and executed on a 
Modelon Impact server, which may be running 
remotely. With sufficient login credentials and an API 
Key, Modelica models may be uploaded, compiled, and 
executed on a server. The results can be either processed 
on the server with a custom function or downloaded to 
the client for further analysis. 

An analysis could be set up and executed and relevant 
trajectories plotted using the Python client library in a 
few lines of code as shown in Figure 3. Further 
information about the usage of the API is given for each 
application below. 

 

                     

Figure 3. Sample code to remotely operate Modelon 
Impact using a Python client library. 

3 State Estimator implementation 
As mentioned in the introduction, state estimation is an 
important component in digital twin applications. It can 
be used to filter noisy measurements, estimate key 
variables that cannot be reliably measured or estimate 
unknown parameters in the plant model. All state 
estimators, from standard to advanced Kalman Filters or 
Moving Horizon Estimators (MHE), share a similar 
structure as shown in Figure 4. They are driven by the 
plant inputs and measurements and generate estimates 
of key performance indicators. The physical plant model 

is often extended by a disturbance model to cope with 
modelling errors or unknown parameters.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Schematics of an observer model that 
generates estimates of key variables from plant inputs, 
measurements, a plant model and eventually a disturbance 
model. 

Such estimation workflows can be conveniently 
implemented and deployed using Modelon Impact and 
standard technologies and communication protocols. A 
dashboard for plant monitoring is built on Node-RED 
(NR) (Node-RED, 2022) where the data flow between 
the nodes of plant, digital twin/observer, and the NR 
dashboard visualized as shown in Figure 5. 

 

Figure 5. Modelon Impact and Node-RED based data flow 
for plant monitoring. 

 A combination of the Modelon Impact JavaScript 
client library and MQTT (MQTT Protocol, 2022), a 
publish/subscribe messaging protocol in the backend 
facilitates the two-way data exchange, where the plant 
measurement data are published on a specific topic to a 
central MQTT message broker and Modelon Impact acts 
as subscriber and listens to this topic. The measurement 
values received are fed to a custom function 
implementing an Extended Kalman filter as state 
estimator. The Kalman filter consists of two parts: a 
combined plant and disturbance model in Modelica for 
the prediction step and a Python script that implements 
the correction step. The plant estimates are then further 
broadcasted to the plants NR dashboard though the 
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MQTT broker. The authenticated user would call 
Modelon Impact to simulate the digital twin using the 
JavaScript APIs to Modelon Impact. Key performance 
indicators along with state variables and estimates 
would be published in the plant dashboard as shown in 
Figure 6 for fault prevention and predictive 
maintenance. NR dashboard compares model predicted 
state variables and corrected estimates from Extended 
Kalman Filter (EKF) along with live measurements 
from the real plant. 

 

Figure 6. NR flow for plant dashboard. 

The workflow is independent of the estimator type. If 
needed, one could implement a customer function for 
each estimation approach: Kalman filter, EKF, 
Unscented Kalman Filter (UKF) or MHE. The whole 
digital twin implementation is modular and flexible: 
plant model, algorithm for estimation, integration 
algorithms, monitoring dashboard are all separate, can 
be maintained and developed independently. 

4 Digital Twin application 1: Heat 
exchanger fouling estimator 

In this section, the state estimator workflow presented 
earlier is tested on a specific example: fouling 
estimation in a heat exchanger. In real time applications, 
fouling is always a major concern with the use of heat 
exchangers, which gradually degrades system 
performance and component life, while increasing the 
operational costs over time. But fouling cannot be 
measured and often cannot be identified early without 
leveraging live plant data. Fouling will here be 
estimated using a generic custom function 
implementing an Extended Kalman Filter, a heat 
exchanger model from Modelon Thermal Power Library 
and the framework described in the previous section. 
Plant data is here emulated using another heat exchanger 
model that runs on Modelon Impact, exchanging data 
using MQTT protocol. 

Figure 7 shows a heat exchanger (HX) model from 
Modelon Thermal Power Library with open boundary 
conditions. The application in mind here is to estimate 
fouling on the gas side based on five noisy 
measurements, encircled in blue in Figure 7: all inlet and 
outlet temperatures as well as the liquid mass flow rate. 
It is assumed that the gas flow rate is not measurable, 
and it will also be estimated. The heat exchanger model 
is discretized in the flow direction according to a finite 
volume implementation. Each section has then three 

dynamic states, for liquid pressure, liquid temperature, 
and wall temperature. The plant model has been 
extended by a disturbance model to describe the 
unknown gas flowrate and the fouling factor (encircled 
in red in Figure 7). The disturbances are implemented in 
Modelica and assumed to be constant in time although 
they will be varied in the experiment. 

 

Figure 7. Physical plant model using the fouling estimator.  

The measurements from the emulated plant and 
predictions of those measurements from the observer 
model are compared to validate the estimations. In 
Figure 8 showing the estimates, the fouling estimate in 
grey and the gas flow rate estimates are able to follow 
the true value. The offsets are due to the fast dynamics 
of the emulated fouling and gas flow changes, but they 
could be reduced with a more detailed disturbance 
model. 

Figure 8. NR plant monitoring dashboard displaying 
measurements as well as estimates for fouling and gas 
flowrate.  

5 Digital Twin application 2: 
Windmill Fleet 

The previous section illustrates the application of 
Modelon Impact for performance monitoring of a single 
plant. There are a variety of cases where it is necessary 
to monitor a fleet of assets. For example, the growing 
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number of wind farms demand highly reliable integrated 
systems to curtail Operation & Maintenance cost. The 
workflow described in section 4 can be extended to 
implement Digital Twins for online monitoring of a fleet 
of assets that are geographically spread as shown in 
Figure 9. 

Figure 9. The overall digital twin workflow in the case of 
an asset fleet, here a Windmill Fleet. 

The Digital Twin Fleet was implemented similarly as 
the single asset example, using three modules (i) Digital 
Twin Fleet based on a set of Modelica models built in 
Modelon Impact (ii) Real Time wind and plant data at 
various locations (iii) Interactive plant monitoring 
dashboard. 

The plant monitoring dashboard needs to include an 
interactive map component that allows operators to 
select the windmill of interest in the windmill fleet. A 
proof-of-concept has been implemented using 
JavaScript. The map component in the dashboard is 
interactive and allows the user to select the location of 
the windmill of interest. It is a reaction based interactive 
map component containing map data through Google 
API. To the map, several different interface elements 
like overlays for point of interest, zoom in/out, highlight 
selection is added for best user interaction experience. 
Real time wind data for various windfarms in different 
locations were embedded into the map element through 
JavaScript. Real time data for the wind at any selected 
location was fetched from (Trafikeverket’s open API, 
2022). Additionally, the monitoring dashboard has been 
implemented to display the data of the windmill selected 
from the fleet. In this case study, no state estimation 
problem was solved. The goal of the demonstrator was 
instead to show the ability of the technology to deal with 
a fleet of digital twins with respect to plant selection, 
data visualization and bi-directional data exchange 
between the model and the plant data. 

6 Conclusion 
Digital twin applications based on Modelica models 

and FMI standard are not new. Different solutions have 
been suggested in literature and some tested in industrial 
applications. This clearly shows the feasibility and the 
potential of the approach. With Modelon Impact on the 

cloud and its public APIs, the path from systems 
modeling and simulation to digital twin in operation is 
significantly shortened. It also allows for a modular and 
flexible digital twin implementation where models and 
algorithms can be kept separate and be re-used for 
different applications. The NR dashboards powered by 
Modelon Impact Digital Twin are easy to setup and can 
present complex scenarios in easily understandable 
manner. They can also meet the connectivity 
requirements of simulation platform in digital twin 
applications by enabling bi-directional data exchange 
using standard communication protocols. 
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Abstract
Numerical calculations based on models are nowadays
standard tools in all engineering disciplines. The tools,
which faciliate the modeling, generally include all tasks in
an engineering workflow. These tasks range from simple
model descriptions to advanced visualization of results.

While the incorporation of all tasks in one tool fits
neatly into a single-person scheme, it makes teamwork
with shared tasks very hard. In particular, every mem-
ber of the team has to use the exact same software, and
every sub-task has to be available in the tool. This re-
quirement, in turn, makes a joint development of advanced
methods unnecessarily complicated. Especially the nu-
merical analysis of problem tailored methods requires a
detailed knowledge of all model ingredients.

The basis for joint workflows and teamwork are in-
terfaces and common data formats. In this publication,
we present a data format for geometrically and physically
coupled systems. The data formats structure bases on the
standardized format JSON, whereas the content is derived
from a mathematical model. Finally, for presentational
purposes, we present an instance of a simplified model.
Keywords: model language, software interfaces, partial
differential equations

1 Introduction
Over the recent decades, numerical simulations have
proven to be an indispensable tool for understanding sci-
entific and industrial processes.

Part of the success story of numerical methods are the
thorough numerical analysis and the increasing trust of the
users. The users of numerical software are a very hetero-
geneous group. On the one end of the spectrum we find
users who only concentrate on the results and runtime of
the method. The quality of a solution is then assessed by

∗This work was supported by the DFG grants 174223256 – TRR
96 and 460135501 - NFDI 29/1 “MaRDI – Mathematische Forschungs-
dateninitiative”.

comparison to experience, expectation and measurements.
Deviations from the expectations are usually attributed to
the model. On the opposite end we have those who have
a deeper understanding of the method, and select numer-
ical methods based on the properties of the model. This
subgroup also considers numerical errors in addition to
the model errors. In contrast to both, the numerical ana-
lysts consider the method itself as a research subject. They
know the details and properties of the methods, and relate
the efficiency of the method to the properties of the model.
To them, the model error is not of interest, but serves as
tolerance.

A development team for a new technical device, to-
gether with its digital twin, has to incorporate all the above
user types. We aim to provide a workflow that suites all
their needs and allows for maximum flexibility in the dis-
tribution of tasks among them, i. e. benefits teamwork in
the best possible way. As an example we investigate the
development of a thermo-elastic model of a machine.

The workflow was applied to a thermal model in
Sauerzapf et al., 2020 and Vettermann et al., 2021 and
a thermo-mechanical model in Naumann, Herzog, 2021
using the proposed data formats. Here, we concentrate
on the interface and the key ideas. In particular, we con-
sider the data format as an approach to extend Modelica R©

with functionality for coupled partial differential equa-
tions (PDEs).

The development of new machines requires, often prior
to construction, a deep understanding of the resulting ma-
chine’s behavior under load and other influences from the
environment. Particularly the interaction between the ma-
chine components, and their influence on quantities of in-
terests (QOI), require a thorough analysis. Nowadays, this
analysis is generally carried out numerically with the help
of a digital twin of the machine.

Computer aided design (CAD) representations of the
machine form the basis for the numerical analysis. These
CAD models represent the geometry of the machine. De-
pending on the specific question, the geometry can be cho-
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sen more or less detailed.
The physical model extends the geometric model with

the physical effects of interest. A physical model contains
a variety of sub-models, where each sub-model describes
a particular effect up to the required accuracy. For ex-
ample, (thermal) loads inside a machine describe the heat
input per volume, or the description of the interaction with
the environment are sub-models. These examples belong
to one physics, but different geometric parts. Nowadays
multi physics models, which link several physics, are stan-
dard. Our use case, the thermo-elastic model of a ma-
chine tool, comprises the evolution of the heat distribution
and the corresponding mechanical expansion. Therefore,
a data format for the description of the physical system
must be able to distinguish sub-models of the different
physics.

We describe the overall physics using coupled systems
of PDEs. The physical model, thus, consists of equations
of different types. Among these types, there are systems
of PDEs to describe the overall physics, like the evolu-
tion of the temperature field, algebraic equations for sim-
ple sources and ordinary differential equations (ODEs) to
describe more complex sources. For the heat equation,
these sources correspond to thermal loads inside and at
the boundary. In the mechanical model, the sources cor-
respond to forces acting inside a volume or at a boundary.
In the thermo-elastic model, each physical type can exist.

To the authors knowledge, there are not many data for-
mats to describe a system of geometrically and physically
coupled PDEs. The authors are aware of

• extensions to support PDEs in Modelica R©, see Li,
Zhang, Zheng, 2008; Saldamli et al., 2005. So far,
these extension to Modelica R© only support very sim-
ple geometries, and, as a consequence, very simple
(spatial) discretization methods.

• toolboxes in symbolic software Portela, Charafi,
2002. These toolboxes are tightly bound to the soft-
ware, which we want to avoid.

• two similar approaches to describe finite element
(FE) analysis using XML Michopoulos et al., 2001;
Pinheiro, Moita, 2004. Their goal is to exchange
a full set of FE analysis data, including results and
solver data. Our aim is to separate the solver and tool
specific configurations from the problem description.
Sadly, the website femml.sourceforge.net
had the last update in May 2002.

• a masters thesis Hvalstad-Nilsen, 2019, in which a
YAML-based file format was developed. Similar to
Michopoulos et al., 2001, the student describes a full
FE analysis.

Due to this lack of tool-agnostic data formats, or libraries,
for PDEs we developed a new format.

The numerical solution of the PDEs requires discretiza-
tion in space and time. We follow the method-of-lines ap-

proach, which first performs a spatial-semidiscretization,
leading to a system of ODEs.

For simplicity, we will present the structures and ex-
plain their relationships using the heat equation, and note
the extensions for the mechanical behavior, where appro-
priate.

The thermal loads induce the majority of the thermal
behaviour of the machine. Therefore, they must be con-
sidered properly in the thermal PDE model. At the same
time, these loads determine the overall time scales. Promi-
nent examples are rapidly varying loads and the coupling
heat fluxes for relatively moving machine components. In
particular the treatment of the temperature dependency of
the coupling fluxes are of special interest when discretiz-
ing the PDE.

We propose the separation into a problem description
and algorithm description. That way, only the algorithm
description requires tool specific entries whereas the prob-
lem part concentrates on the common entries. Thus, we
propose to use external software packages for the finite el-
ement (FE) discretization. Proprietary software solutions
often provide a seamless workflow starting from the CAD
model and proceeding all the way to the solution of the
discretized ODEs. Consequently, the mathematical details
and methods are completely hidden in the software.

This abstraction has the advantage that the construction
of large and complicated models becomes feasible. At
the same time, the specific numerical methods are harder,
and more frequently not at all, extendable or even known.
In contrast, the open-source packages are usually more
specialized in the single tasks. For example, the mesh
generation and the assembly (or, nowadays, the applica-
tion) of the FE operators are usually implemented in dif-
ferent libraries. Thus, the implementation of a model re-
quires a profound understanding of the underlying numer-
ical methods. From the scientific point of view, access to
the numerical methods and their implementation is key for
further improvements and for understanding the efficiency
of the simulation. At the same time, the open-source soft-
ware in many cases has free licenses, thus the costs for
the development can be reduced, when the license model
allows proprietary downstream use, and modelers have re-
ceived the appropriate training. See Sauerzapf et al., 2020
for an example where we show how to use open-source
tools for discretization and model order reduction from
within the proprietary FE package ANSYS R©.

To facilitate the cooperation between scientific disci-
plines we propose an interface between

(i) industry standard modeling tools, like ANSYS R© or
COMSOL R©,

(ii) open-source FE software packages, like DUNE or
FENICS,

(iii) ODE software packages.

In addition to the aforementioned tasks, the same interface
connects to model order reduction (MOR), sensor place-
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ment Naumann, Herzog, 2021 or even parameter estima-
tion. While the incorporation of the MOR toolbox relies
mainly on the structure of the mathematical model, higher-
level tasks such as sensor placement and parameter esti-
mation require further operations. We concentrate on the
extension of the FE discretization in space with the geo-
metric coupling approaches. The interface to MOR and
ODE packages will be discussed together.

For these purposes, the pointwise evaluation, as pro-
vided by a functional mockup unit (FMU), is not suffi-
cient. In particular the MOR methods require the sepa-
ration into inputs and corresponding coefficients. Thus,
the FMU export and import between ANSYS R© and
Modelica R© does not meet all our requirements.

We propose a tool-agnostic data format, which provides
all required information about the model in an object-
oriented layout. As a result, our proposed interface con-
tains only the relationships between physical entities, but
does not denote variables in the sense of a particular pro-
gramming language, or environment.

From an abstract point of view, our format has similar
goals as the SSP-standard Association, n.d. Both aim to
separate common properties and relationships from tool
specific ones. While the SSP-standard aims to bundle
(technical) systems, we consider a mathematical model.
In addition we made different technical decisions, like the
basic file format or notation of URIs.

The structures of the (mathematical) PDE model and
the ODE model are the basis for the interface. We briefly
explain these models in Section 2. The two interfaces, one
between the industry modeling tools and the open-source
software, and one between the generated ODE and the
simulation software packages, will be described in Sec-
tion 3. Finally, we demonstrate the interface format with
a simple model in Section 4 and give an outlook in Sec-
tion 5.

2 Mathematical background
This section provides the mathematical foundations of the
PDE and the ODE model at hand. Because the second
stems from the discretization of the first, they have some
parts in common.

The PDE model will use the heat equation for pur-
pose of presentation. As it is a scalar equation for a
scalar field, we can concentrate on the general structure.
Other physical PDE, like Eulers equation, Navier-Stokes
equations, equations of linear elasticity follow the same
scheme. They comprise differential operators in space and
time, which operate on a solution field. The tensor shape
of the solution field is determined by the physical quan-
tity. The boundary conditions close the system. Boundary
conditions for vector valued problems can also restrict the
vector to a sub-space and in general depend on the local
basis of the vector field. For example, in linear elasticity,
one fixes one coordinate direction, but leaves the others
free to prevent penetration of a wall, but allow friction-

less sliding along it.
In analogy, we present the ODE in Section 2.2 as first

order ODE. The order is determined by the order (of the
time derivative) of the PDE. Although one can transform
every higher order ODE into a system of first-order ODEs,
in a data format it is favorable to keep the second-order
structure.

2.1 The PDE model
Real world applications often feature complicated geome-
tries, where the FE discretization is the standard proce-
dure. For the mathematical theory of the discretization we
refer the reader to Grossmann, Roos, 1994; Zienkiewicz,
Zhu, 1987.

We consider the conservation of heat in a system of
solids with heat exchange between them. In the ith solid
with domain Ω(i) we describe the evolution of the temper-
ature T (i) using the heat equation, i. e.

∂t

(
ρ
(i)C(i)

p T (i)
)
−∇ ·

(
λ
(i)

∇T (i)
)
= Q(i) in Ω

(i) (2.1a)

∂nλ
(i)T (i) = g(i)N, j on Γ

(i)
N, j (2.1b)

T (i) = g(i)D, j on Γ
(i)
D, j . (2.1c)

Inside the domain Ω(i), the PDE (2.1a) holds, which de-
pends on the material parameters density ρ(i), capacity at
constant pressure C(i)

p and heat conduction λ (i), as well as
on the volumetric thermal sources Q(i). Since the machine
parts are often assembly groups consisting of several bod-
ies, in addition, we assume to have a partition of the do-
main Ω(i) into subdomains Ω

(i)
j . Each domain Ω(i), then,

is a part and the subdomains Ω
(i)
j are the single bodies in-

side that part.
When the assembly groups move relative to each other,

the domain Ω(i) is time-dependent. Thus, the domain Ω(i)

at time t can be defined as

Ω
(i)(t) :=

{
x(i)
∣∣x(i)(t) = g(i)M (t, x̂(i)) ∀x̂(i) ∈ Ω̃

(i)}, (2.2)

where Ω̃(i) is a fixed reference domain and g(i)M repre-
sents the movement. For simplicity, we restrict the move-
ments to expressions of the form g(i)M (t, x̂(i)) =O(i)(t)x̂(i)+
b(i)(t), where O(i) are orthogonal matrices. In case
of time-dependent non-orthogonal coordinate transfor-
mations, the space-discrete system gets additional time-
dependent terms.

Each boundary Γ(i) is also separated into sub-
boundaries Γ

(i)
N, j and Γ

(i)
D, j. At each sub-boundary we apply

either condition (2.1b), or (2.1c), whichever corresponds
to the sub-boundary type. Please note that the subset of
the boundaries is independent of the selection of the bod-
ies, although they might intersect. The subscripts N and D
represent Neumann and Dirichlet conditions, respectively.

In general, the material parameters and right-hand side
of the boundary conditions can be arbitrary expressions.
In particular, all expressions are allowed to depend on
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time, space and temperature, or a mixture thereof. The
dependencies of the material parameters, the sources and
the boundary conditions on the temperature determine the
classification of the PDE.

Despite the simplicity, temperature-independent ma-
terial parameters and at most linearly temperature-
dependent sources and boundary conditions, often de-
scribe the reality to sufficient accuracy. This special case
renders the PDE model linear, which carries over to the
ODE, after spatial semi-discretization. The solution of
PDEs with constant coefficients is well understood and a
wide range of numerical methods exists. The discretiza-
tion requires the dependency information for all expres-
sions.

We equip the system of heat equations with QOIs

y = C (T ) , (2.3)

where the operator C maps all temperature fields to one
vector. The following output operators are of special in-
terest:

(i) A linear, block-structured operator C , such that the
QOI yi depends on the temperature field T (i) in the
i-th body. This case includes the temperature in a
point, the average temperature in the whole domain,
in parts of the domain, or averages on surfaces. This
structure was used in Vettermann et al., 2021 to de-
scribe thermally coupled, relatively moving parts.

(ii) A linear, block structured operator C , such that
a QOI depends on the temperature fields in two
parts. These QOIs can describe the heat flux between
neighboring parts, in form of a scaled multiple of the
temperature difference.

(iii) An unstructured operator, which correspond to dis-
placements in certain important points. These dis-
placements describe the translation and rotation of a
tool. The operator is the application of the inverse of
the discrete linear elasticity on a temperature field.
Due to the mechanical coupling, the operator acts on
all temperature fields.

Thus, the complete PDE model describes a scalar PDE
in a moving domain with mixed boundary conditions and
user defined output operators. Please note, that the cou-
pling of different physics can be hidden in the output op-
erators.

2.2 The ODE model
The discretization in space transforms the system of PDEs
into a system of ODEs. This ODE is block structured,
where every block row represents the contribution of the
PDE for one solid. In the following, we will omit the su-
perscripts and describe the construction of a single block.

The basis for the FE discretization in space is the weak

Table 2.1. Expressions corresponding to the differential opera-
tors of Eq. (2.1a).

dependency ∂t(ρCpT ) −∇ · (λ ·∇T )
constant ρCpMV Ṫ λLV T

time ∂t(ρCp)MV T+(ρCp)(t)MV Ṫ λ (t)LV T

formulation of Eq. (2.1) on the reference domain Ω̃, i. e.∫
Ω̃

∂t(ρCpT )ψdx+
∫

Ω̃

(λ ·∇T ) ·∇ψdx =∫
Ω̃

Qψdx+
∫

Γ̃N

gNψdS,
(2.4)

with suitable test functions ψ . Finally, we represent the
solution T (t,x) in the form T (t,x) = ∑l Tl(t)ϕl(x). Thus,
the solution is decomposed into a time-dependent vector
and a set of space-dependent, but time-independent, func-
tions ϕl . The functions ϕl form a basis for the function
space, which includes the Dirichlet conditions. The test
functions ψ vanish on the Dirichlet boundary ΓD.

The dependencies of the material parameters, the
sources, and the boundary conditions on the temperature,
space or time can lead to more terms, or a higher complex-
ity. Note that a space parameter also has a representation
in the same form as the solution. Therefore, we can ne-
glect the space dependency in the following and concen-
trate on the time- and solution-dependence.

The Tables 2.1 and 2.2 represent the FE discretiza-
tion for the volume and surface expressions in Eq. (2.1).
Please note the linearity or independence of the solution
T . Therefore, the PDE is linear too, and the discretized
system will remain linear in the states.

The expressions MV , LV , bV , bS, j represent the space-
dependent part of the FE discretization. We use the sub-
scripts V , S and C to refer to the integrals over a volume,
surface and surface intersections, respectively. The sym-
bols M, A and b refer to the FE mass matrix, the discrete
Laplacian matrix and the integral vectors of the test func-
tions, i.e.

[MV ]kl =
∫

Ω̃

ϕlψk [bV ]k =
∫

Ω̃

ψk

[MS, j]kl =
∫

Γ̃ j

ϕlψk [bS]k =
∫

Γ̃

ψk

[LV ]kl =
∫

Ω̃

∇ϕl ·∇ψk [M(i, j)
C,m ]

kl
=
∫

Γ
(i)
N,m∩Γ

( j)
N,m

ϕ
(i)
l ψ

( j)
k .

All matrices depend only the discretization, but not on
material parameters. Thus for example the mass matrix
is neither the usual capacity matrix, nor the mass matrix
from mechanics.

The volume integrals on the left-hand side can be fur-
ther decomposed into bodies to account for piecewise ma-
terial parameters. Thus, for piecewise material, the ex-
pressions ρCpMV and λLV in Table 2.1 can be decom-
posed into sums over all bodies.

The Dirichlet boundary conditions (2.1c) describe the
value in all nodes on the surface ΓD. Thus, the test func-
tions ψ vanish on ΓD. In turn the entries [bV ]k and [bS]k
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Table 2.2. Expressions corresponding to the sources and the boundary conditions Eqs. (2.1a) and (2.1b).

Q gN, j gD, j
constant QbV gN, jbS, j gD, jbD, j

time Q(t)bV gN, j(t)bS, j gD, j(t)bD, j
α(t)T +β (t) α(t)MDT+β (t)bV α(t)MS, jT+β (t)bS, j —

α(t)
(

T ( j)−T (i)
)

— α(t)
(

M(i, j)
C,m T( j)−M(i,i)

C,mT(i)
)

—
nonlinear in T Q(y)bV gN, j(y)bS, j —

and kth rows of MS and MV vanish for xk ∈ ΓD. Instead
we insert the condition Tl = gD, j(xl) into LV and a cor-
responding vector bD, where the subscript D refers to the
Dirichlet conditions. We replace the row k of LV by the
unit row and set bD to the kth column of LV afterwards.We
refer the reader to Logg, Mardal, Wells, 2012, Section 6.3
for a local element approach. Please note that the Dirich-
let conditions cause algebraic equations and therefore lead
to a differential algebraic equation (DAE) system instead
an ODE system. For the sake of presentation, we consider
only systems of ODEs.

The Table 2.2 lists the expressions, which arise from
the discretization of the sources and the boundary condi-
tions. The rows are sorted with increasing dependency,
where the time-dependence has lower complexity than
temperature-dependence and a linear expression has also
a lower complexity than a nonlinear one.

The fourth row in Table 2.2 represents the coupling be-
tween the thermal fields through a heat flux. The heat flux
into part i is assumed to be linear in the temperature. Thus,
the surface integrals for MC,m are restricted to some com-
mon surface between the components. Due to the relative
movement, this surface is in general time-dependent, thus
the matrices M(i, j)

Cm
and M(i,i)

Cm
are in general time-dependent

too, even if the heat transfer coefficient α is constant. In
an efficient implementation, this part is interpreted as an
operator instead of a matrix.

The fifth row in Table 2.2 provides an additional ap-
proach to approximate the heat flux between different
parts and accounts for a simplified approximation of non-
linear sources and boundary conditions. The convergence
of an FE discretization requires an approximation of the
integrals in Eq. (2.4) up to the required order, with a suit-
able quadrature formula. Thus, the nonlinear boundary
condition gN has to be evaluated in the quadrature points
at the element level. Using piecewise constant tempera-
tures, where the pieces are subdivisions of the domain (or
surface), leads to a cheaper approximation at the costs of
the order of the approximation.

The piecewise constant temperature on each piece is
the average temperature, which can also serve as a QOI
of the model. The same idea can be used to approximate
the heat exchange. The coupling matrices M(i, j)

Cm
depend

on the meshes of both parts and the exchange between
the meshes can be quite demanding. Thus, approximation
uses the subdivision of the surface and replaces the point-

wise temperatures T (i) and T ( j) by their averages over the
pieces on their meshes. This makes the meshes indepen-
dent and the computations far cheaper. At the same time
we can also represent the heat exchange between moving
geometries without time dependent coefficients. The dis-
advantages of the piecewise constant approximation is the
lower accuracy and the dependency of inputs in one block
on outputs of another block.

Block ODE The full block system consists of all blocks
from the previous paragraph combined with a set of ex-
ternal systems without any particular structure. Thus, we
collect the terms by coefficients of ẋ, x, dependence on
time t and for nonlinear T and outputs y in this order to
obtain the first block in the ODE

Mẋ = (Ac +At(t))x+Bcuc +Btut(t)+Byuy(t,Y ) (2.5a)
y =Cx (2.5b)

ẋext = fext(t,xext,Y ) (2.5c)
yext = hext(xext). (2.5d)

The second block consists of all right-hand sides, which
are provided by external functions. A particular exam-
ple for the external functions are the FMUs in model ex-
change mode. By contrast, an FMU in Co-Simulation
mode contributes to the inputs uy, where the subscript y
denotes the dependency on outputs. Thus, the ODE con-
sists of all terms of the form in Tables 2.1 and 2.2, but
they are decomposed into the coefficients and the inputs.
The matrix M is composed of all coefficients of the time
derivatives, and is block diagonal. The matrices Ac and
At are the block matrices, composed of the coefficients
of T, which includes the (negative) discrete Laplacians
and the mass matrices MS and MC from the flux bound-
ary conditions gN . Please note the different origins of the
time-dependence of the coefficients. These can originate
from time-dependent heat transfer coefficients (HTCs), or
from relatively moving parts. While the time-dependent
HTCs lead to a time-dependent scalar coefficient with a
constant surface mass matrix, the coupled surfaces lead to
time-dependent operators, involving the integrals on the
common surface.

The matrices B originate from the vectors b and com-
monly correspond to the inputs u of the ODE. This in-
cludes all sources and boundary conditions, irrespective of
the type. The only differences, denoted by the subscripts
c, t and y, are the dependencies on time and outputs. Note
that the output dependencies uy introduce an indirect de-
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Figure 3.1. Relation between entities in the PDE model. Solid
edges denote an aggregation, where the heads of the edges deter-
mine the aggregation types. A diamond head represents a dictio-
nary, a circle head an array and an arrow corresponds to a single
value of the type. Heads without marker correspond to single
values of the referenced structur. Dashed lines represent indirect
relations using keys of dictionaries or indices into an array.

pendence on the states and can render the ODE a nonlinear
system, as well.

The QOIs C are represented by the operator C. We will
consider only linear output operators, therefore C can be
represented by a matrix.

3 Interfaces
The preceding section described the model equations for
the PDE and the DAE. Each equation provides a structure
and consists of several terms. Usually, the expressions in
the terms correspond to physical properties. Thus, a hier-
archical model description denotes the physical properties
as objects, whereas the equations link them together. This
section is devoted to the structure and content of the new
model descriptions.

3.1 PDE model
The Eqs. (2.1) and (2.2) show all components of the PDE
model:

• the reference domains Ω̃(i), which are approximated
by mesh files,

• the movements, which are vector valued expressions,
in contrast to the field valued sources and boundary
conditions,

• the material parameters ρ , Cp and λ , which are scalar
expressions,

• each boundary condition gN, j and gD, j, which is a
pair of a scalar expression and the reference to the
corresponding sub-boundary.

The components of the PDE model are depicted in
Fig. 3.1. The central node with the title “PDE” combines
all other entries. The entry materials is separated from the
remaining model, and only relates to the expressions.

The model joins all geometric properties and relations
using the class Geometry and the entry geometry of the
class PDE. As a consequence, the subgraph of the ge-
ometry contains the assemblies, which consist of parts
and bodies. Each part is attached to a coordinate system,
which is also part of the geometry subgraph.

The entry boundaryConditions, which is an instance
of the class BoundaryConditions, contains value and flux
conditions. Each condition references the corresponding
expression and is attached to the master. The rank of
these conditions must be the same, as the rank of the field.
Thus, for the heat equation, the expression must be scalar,
whereas for the equations of elasticity the expressions are
vector valued.

We distinguish coupling from non-coupling boundary
condition with the enum geotype. A value of Face rep-
resents loads, which are active on one surface, whereas
FaceFace represents the coupling of two neighboring sur-
faces. The corresponding facing / opposite surface is de-
termined by the entry slave. The boundary conditions and
their associated expressions must match to their physics,
respectively. Therefore, the description of mixed systems
of PDEs modeling different physical quantities require an
appropriate association. Please note the missing associa-
tion with the physics. As our models are the equations of
thermo-elasticity, we had no need to specify that explic-
itly.

All the assembly’s movements are part of the list move-
ments, where every entry is an instance of the class Move-
ment. Each assembly references the local movement,
which is relative to the kinematic parent. Thus, the global
movement of an assembly is given by the successive com-
position of the local movements of all predecessors.

The expressions are the common structure between the
PDE model and the ODE model. Due to their central na-
ture, we explain them in detail in Section 3.3.

3.2 ODE model
We depict the ODE model in Fig. 3.2. The model con-
sists of a blockIO, the expressions and associations. The
mathematical basis is a block structured ODE as given by
Eq. (2.5). Each matrix entry of the blockIO represents a
block matrix. While the output matrices C and the mass
matrices E are block diagonal, the coefficient matrices Ac
and At might be dense. Thus, the former are arrays of sub-
matrices, whereas the latter are arrays of arrays of sub-
matrices. The matrices E, Ac and At have coefficients,
which are stored in the arrays m, α and β , respectively. In
analogy the input matrices Bc, Bt and By correspond to the
inputs uc, ut and uy. The sub-scripts refer to the dependen-
cies of the expressions, i. e. constant, time-dependent and
output-dependent. The associations By link the outputs to
the expression. Please note the missing entry of the size
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Figure 3.2. The relationship of the ODE model. The line and arrow styles are the same as in Fig. 3.1.

of the blocks. This must be inferred from the size of the
sub-matrices.

This format proves to be very flexible and easy to ex-
tend, in a backward compatible way. Thus, it allows for
the incorporation of advanced mathematical methods for
the considered models. We highlight some aspects which
were included in the data format to meet the method’s
special requirements using the example of MOR for lin-
ear time-invariant as well as linear parameter-varying sys-
tems.

MOR is used to compute low-dimensional surrogate
models, which allow for accelerated simulations, see e.g.
Antoulas, 2005; Benner, Grivet-Talocia, et al., 2021.
System-theory based MOR methods require a model in
input-output form as given in Eq. (2.5). Especially, in
the case where a physical parameter is supposed to be
preserved in the reduced-order model, i. e. in the para-
metric MOR (PMOR), the splitting into time-dependent
coefficients β and constant matrices At coincides with
the parameter-affine format proposed, e. g., in Benner,
Gugercin, Willcox, 2015,. Then, the corresponding MOR
methods, based on interpolation in parameter direction,
come into consideration. Therefore, a possible parame-
ter p and corresponding coefficients β (p) were added to
the model description. Moreover, these methods require
a suitable parameter interval [a,b]. On this interval, lo-
cal reduced-order models (ROMs) are computed in some
parameter sample points. For a given parameter value
p ∈ [a,b] these sample ROMS are then interpolated in one
way or another. These PMOR methods can, thus, be di-
rectly applied to the models at hand.

Furthermore, the expected magnitude of the inputs u
is important for reliable ROMs, as the MOR error scales
with, both, the system approximation error, and u, see Vet-
termann et al., 2021 and the references therein for fur-
ther information. Thus, this magnitude is computed us-
ing the provided expressions uc,ut and uy and is then used
to transfer the scaling to the columns of the input matri-
ces Bc,Bt and By prior to the MOR step, such that it can
be taken into account in the system approximation and u
itself is normalized.

The addition of the geometric coupling approaches, as
stated in Section 2, allows for tailored MOR strategies
utilizing the special structure of these models, see Vetter-
mann et al., 2021. By including all necessary information
in the ODE model-description the MOR methods can be
applied in a user-friendly semi-automatic process.

3.3 Expressions
The expressions are the common structures, which are
shared between the PDE and ODE model.

We separate the expressions with respect to two classi-
fications

(i) The dependency on other expressions or solution
fields with the entry dependencyclass. These classes
are

• Constant are constant values, which do not de-
pend on anything else.

• Equationset represents compound expres-
sions, which involve further expressions. The
dependencies between expressions are denoted
by the map dependencies. These also include
characteristic maps, which are represented by
file names. FMUs are treated as a particu-
lar (complicated) expression. There, interac-
tion with the solution is determined by the
classification. The interaction between dif-
ferent FMUs is described by the dependency.
Thus the expressions here are comparable to
the transformations in the SSP-standard Asso-
ciation, n.d., p. 23.

• Sensor represents a linear functional of a so-
lution field on one part. The specific geome-
try entity is described in the dependency map
in analogy to the dependency on other expres-
sions. Examples for these are the temperature
average on a surface and the temperature value
at a point.

(ii) The function classification, given by classification
separates the expressions into time, time and one
field value and time and two field values, or a vec-
tor of outputs. Thus, this classification concretises
an expression of dependency class Equationset.

The first classification separates the expressions into sim-
ple, compound field-independent expressions and field-
dependent expressions. Please note that an expression
with dependency Sensor can exist only in a PDE model
and is the only expression which can reference a geomet-
ric object. Therefore, during the ODE generation, the gen-
erator must keep track of all Sensor-type expressions and
replace their occurrences by a reference to the correspond-
ing output.
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Figure 4.1. The cooling model with three flux outputs and three
temperature inputs.

The second classification provides the interface for the
function implementation, including the dependencies, to
other expressions. Please note that this classification cor-
responds to the inputs u in the ODE system (2.5). At the
same time, this classification implicitly serves as a nota-
tion for the dependency between the expressions and the
solutions. Thus, when generating an ODE, an expression
which depends on a solution value in the PDE model must
be either decomposed according to Table 2.2 or related to
an output.

Finally, an expression can have outcomes of different
sizes or even different units. Every outcome is an entry in
the list outputs, which is an instance of the class Quantity.
A Quantity denotes the physical unit, and the description
of the value. Each value consists of a vector dimension,
which encodes the shape. Constant expressions also have
a data-array, which contains the value, or a filename, if the
values are stored elsewhere.

A numerical solution of an ODE requires the evalua-
tion of the expressions. These implementations are en-
capsulated in an accompanying library, which represents
a database of functors. This database maps a string to a
functor with the signature according to the function clas-
sification (Item (ii)). The key of the corresponding functor
is the entry databasename in the expression. It is up to the
implementation of the database to provide further prop-
erties and operations, like linearity and derivatives with
respect to constant arguments.

4 Two body model
To illustrate the usage of the interface formats described in
Section 3, a simple model along with excerpts from json
files. These files are exchanged between the interdisci-
plinary groups in the CRC/TR96. In detail, the json file
Fig. 4.4 was generated using ANSYS R©by one author, and
used the code from a second author to generate Fig. 4.5.
This ODE model will be fed to the MOR toolbox, written
by the third author. Please note, that the ODE model could

also be generated using ANSYS R© directly.
The Fig. 4.2 shows the geometry of the example model.

It comprises two assemblies, where each one consists of
one part. Each part comprises two bodies, which are
highlighted by the colors. Both assemblies exchange heat
through a neighbouring surface with a linear temperature-
dependent flux of the form q = α(T (1)−T (2)).

The boundary conditions we applied are shown in
Fig. 4.3. In this particular case, the cooling system shown
in Fig. 4.1 is integrated as an FMU.

Collaborators in the authors research project con-
structed a complex cooling system in Shabi, Weber, We-
ber, 2017, which is part of the thermal model of a complex
machine tool. For the sake of presentation, we simplified
this model to a tank, an ideal pump and three pipes. The
heat exchange between fluid and body walls is realized
using convection subsystems in the Modelica R© model.

The connection to the machine is two-fold:. The FMU
inputs are the (averaged) temperatures at the correspond-
ing surfaces. Internally, the FMU computes the heat fluxes
for every pipe. These are the outputs of the FMU, and
serve as the heat fluxes at the aforementioned surfaces.

Figure 4.4 depicts the PDE model. This relates to
Figs. 4.2 and 4.3 using the same colors. We added the
FMU using a single expression and reference the corre-
sponding outputs in the boundary condition. As a conse-
quence, practically, the FMU is evaluated only once.

The ODE model in Fig. 4.5 shows the relation of the
coefficient matrix to the piecewise materials. In addition,
we also highlight the corresponding expressions for the
boundary conditions. As can be seen from the coefficient
alpha, we decompose the coupling heat flux and use only
the coefficient. Also note the change of the FMU expres-
sion. Instead of multiple outputs, we use a single vec-
tor valued output and classify the expression to depend on
time and outputs.

5 Summary and outlook
This contribution describes a PDE model and an ODE
model and introduces a data format to exchange each of
them. Each model type comprises all entities arising in
the mathematical model except the equations. Their rela-
tion is therefore only part of the documentation.

The simple two body model showed the basic thermal
properties and a thermal load given as a simplified cooling
system, which is provided as an FMU. Thus, the whole
complexity, and possible intellectual properties, remain
hidden in the FMU. This very simple example shows that
both descriptions are general enough to describe geometri-
cally coupled thermal problems with very complex loads,
developed by collaborators in the same research project.
Despite the simplicity, the example model also highlights
the successful simplification of the model exchange be-
tween mathematicians and engineers. The engineers got
access to state-of-the-art open source implementations of
FE discretizations and MOR techniques. In the other di-
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(0,0,0) (0,0,1) (1,0,0) (1,0,1)

globalBodyIndices

Figure 4.2. The geometry of the example model. Each color
represents one body, whereas the legend indices denote the log-
ical position as (assembly, part, body) in the description.

exchange coolingSystem2 coolingSystem3 coolingSystem4

fluxes

Figure 4.3. The boundary conditions in the example model. The
colors red and light to dark blue represent the heat exchange and
the cooling boundary conditions, respectively.

{
 "geometry": {
   "assemblies": [
     {
       "parts": [
         {
             "meshfile": "coupledflux_top.json",  
             "name": "top", 
             "bodies": [
               {"name": "left", "material": "steel" },
               {"name": "right", "material": "alu" }
             ],
             "coordinatesystem": 0
          }
       ],
       "name": "assembly"
     }, 
     {...}
     }
   ], 
   "coordinatesystems": [...]
   }, 
 },
 "materials": {...}, 

                          :

  

:
"boundaryConditions": {

"flux" :[
{

"master": [0, 0, 0],
"expression": "alphaEx",
"name": "alphaEx_0_1",
"slave": [1, 0, 0],
"geotype": "FaceFace"

},
{

"master": [1, 0, 1],
"expression": "coolingSystem",
"name": "coolingSystem2",
"output" : 0
"geotype": "Face"

},
{

"master": [1, 0, 2],
"expression": "coolingSystem",
"name": "coolingSystem4",
"output" : 1
"geotype": "Face"

},
{...}

]
}, :

 
                           :
 "expressions": {
    "steel_capacity": {...},
    "alphaEx": { 
      "dependencyclass": "Equationset",
      "classification": "timeTempTemp", 
      "databasename": "chiAlphaToMT", 
      "outputs": [{
          "value": {"tensenum": "Scalar"}, 
          "unit": {"unitstring": "kg s^-3"}
      }],  
      "arguments": ["alphaIkb"]
    }, 
    "coolingSystem" : {
      "dependencyclass" : "Equationset",
      "classification" : "timeTemp",
      "databasename": "fmuWithTemp",
      "dependencies" : [...],
      "outputs": [{
          "value": {"tensenum": "Scalar"}, 
          "unit": {"unitstring": "kg s^-3"}
      }, {...}, {...}]
    },
      ...
  },
  "sources": [] 
  "movements": [] }

Figure 4.4. Excerpt from json-file used to exchange models in the PDE-Interface format. The colors mark the corresponding
entities in Fig. 4.2 and Fig. 4.3.
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{
 "blockIO": {
   "m": [
     ["BG_0_mass_factor_1", "BG_0_mass_factor_2"],
     ["BG_1_mass_factor_1", "BG_1_mass_factor_2"]
   ],
   "alpha": [
     [["BG_0_lapl_factor_1", "BG_0_lapl_factor_2", "alphaIkb"], ["alphaIkb"]]
     [["alphaIkb"], ["BG_1_lapl_factor_1", "BG_1_lapl_factor_2", "alphaIkb"]]
   ],
   "uy": [
     [],
     ["coolingSystem"]
   ],
   "Ac": [...],
   :
   },
   "externals": [],
   "associations": {
     "By": [
       [],
       [[[1, 0], [1, 1], [1, 2]]]
     ],
     :
   },                   
                           :                  

:
"expressions": {

"alphaIkb": {...},
"alphaEx": {

"dependencyclass": "Equationset",
"classification": "timeTempTemp",
"databasename": "chiAlphaToMT",
"outputs": [{

"value": {"tensenum": "Scalar"},
"unit": {"unitstring": "kg s^-3"}

}],
"arguments": ["alphaIkb"]

},
"coolingSystem" : {

"dependencyclass" : "Equationset",
"classification" : "timeOutputs",
"databasename": "fmuHandler",
"outputs": [{

"value": {"tensenum": "Vector", "dimension": [3]},
"unit": {"unitstring": "m^2 kg s^-3"}

}]
},
:

}
}

Figure 4.5. Excerpt from json-file used to exchange models in the ODE-Interface format. The colors mark the corresponding
entities in Fig. 4.2 and Fig. 4.3

rection, the mathematicians optimized sensor placements
for the same models.

The main advantage is the simplicity of the underly-
ing data format. This simplicity renders the (ODE) de-
scription easily extendable with further entries for more
sophisticated methods, like parametric MOR approaches.

Nevertheless models with systems of PDEs describing
various physics require extensions of the PDE model.

We concentrated on the equations for thermo-elasticity,
where the elasticity is assumed to be linear and stationary.
In that particular case, boundary conditions apply either
to the heat equation or the equations of linear elasticity.
Thus, they can be distinguished by the dimension and unit
of the associated expression. In a complicated model, an
additional property would be less error prone and might
be used for consistency checks.

In particular physically coupled models, like thermo-
elastic models, require the addition of another kind of
physics. These require the extension of the boundary
conditions to assign them to the particular physics. The
thermo-elastic models with stationary equations of elas-
ticity can already be described using the output operators
in the ODE model. At the same time the space-discrete dy-
namic equations of linear elasticity are second-order sys-
tems. Thus, the ODE model requires additional coeffi-
cients to represent these.
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Abstract
The complicated thermodynamic system includes nonlin-
ear characteristics and is expressed by high order differen-
tial algebraic equations. Therefore, it is difficult to carry
out numerical analysis such as optimization. To deal with
this problem, we verify an integrated design support en-
vironment incorporating OpenModelica for a centrifugal
chiller as an example. In this paper, it is shown that
the parameters of the model and the control logic can be
adjusted by the coupled simulation of the chiller model
written in the Modelica language and the control logic
on MATLAB/Simulink. We also simplify the centrifugal
chiller model by approximating the nonlinear character-
istics with a smooth polynomial, and by reducing the or-
der of the differential algebraic equation by the Pantelides
method. Then, a case study of a startup profile optimiza-
tion is shown.
Keywords: thermodynamic system, optimization, design
tool, FMI

1 Introduction
There is an increasing demand for efficient operation of
energy equipment for the transition to a carbon-free soci-
ety. In order to develop and commercialize a device com-
posed of a wide variety of equipment in a short time, it is
important to use dynamic simulation in the early stage of
development, and determine the feasibility including oper-
ation characteristics. In general, this dynamic simulation
uses a precise model close to the actual machine. How-
ever, in performing a mathematical optimization in order
to adjust model parameters based on actual machine data
or to generate an operation profile, a smooth approximate
model suitable for optimization is required. These approx-
imation models were developed manually and took time.

In this study, an integrated design support environment
incorporating OpenModelica is verified using a centrifu-
gal chiller as an example. Figure 1 shows the environ-
ment’s work flows and main 3 features, (1) Profile opti-
mization, (2) Logic verification and (3) Software-In-the-
Loop-Simulation (SILS) verification.

First, a detailed dynamic model of the chiller is
developed in the Modelica language (Fritzson, 2004).
This model and a control logic are coupled with MAT-
LAB/Simulink. With this coupling calculation, (1) Vali-

dation of control logic, (2) Fitting model parameters by
mathematical optimization, and (3) Optimization of con-
trol parameters are possible. Either the control logic de-
fined by MATLAB/Simulink or the execution file of con-
trol logic for real machine (regardless of programming
language) can be used. The latter is SILS verification. In
the optimization of the control parameters, optimization
may be performed to match the optimal profile (described
later) and the state variables of coupling simulation. This
paper shows a parameter optimization without using an
optimal profile.

Next, in performing profile optimization, simplified
models, in which the nonlinear characteristics are ap-
proximated by a smooth polynomial, are prepared. Fur-
ther, since the combined whole system model becomes a
high-order differential algebraic equation (DAE) having
two or more differential exponents, a mathematical pro-
cessing of reducing the order is applied. Then, simpli-
fied model is exported as XML format by OpenModel-
ica (Shitahun et al., 2013). The profile optimization prob-
lem for chiller startup is formulated from this XML file
by using collocation method (Sabbagh and Gómez, 2018).
Next, this problem is converted into Python script, which
can be treated by optimization modeling tool CasADi
(Andersson et al., 2012). Finally, optimized profile is cal-
culated by CasADi and nonlinear programming (NLP)
solver IPOPT (Wächter and Biegler, 2006)

The remainder of this paper is structured as follows:
The configuration and model of the turbo chiller, and the
simulation by Modelica are shown in Section 2. In Section
3, we present the tuning of equipment parameters and con-
trol parameters by using the coupled calculations on MAT-
LAB/Simulink. Section 4 describes profile optimization
using an approximate model. Section 5 shows a summary
and future perspective.

2 Centrifugal chiller dynamic model
2.1 Process
As shown in Figure 2, the centrifugal chiller has two heat
exchangers (evaporator, condenser) and a gas-water sep-
arator (economizer), and a two-stage centrifugal com-
pressor and three valves (high-stage expansion valve,
low-stage expansion valve, and hot gas bypass valve)
(Okazaki et al., 2022). The non-CFC (Chlorofluorocar-
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Figure 1. Work flows and features of the integrated design support environment

bon) type refrigerant circulating in the centrifugal chiller
evaporates by heat exchange with chilled water in the
evaporator and is sucked into the 1st stage compressor.
The refrigerant adiabatically compressed by the two-stage
compressor maintains the gas phase state and flows into
the condenser. In the condenser, the refrigerant condenses
by removing heat with cooling water. The refrigerant in
the liquid phase state is depressurized by the high stage
expansion valve, and a part of the refrigerant is vapor-
ized. The vaporized refrigerant is separated from the liq-
uid phase by the economizer and sucked into the middle
stage of the compressor, and the liquid phase is further
depressurized by the low stage expansion valve and flows
into the evaporator. Chilled water that has been cooled
to 7◦C by being deprived of heat by the refrigerant in the
evaporator is supplied to the HVAC (Heating Ventilation
and Air Conditioning) system. By cooling the air con-
ditioning air, the chilled water raises itself 12◦C and re-
turns to the evaporator. The cooling water rises to 37◦C
after it is used to cool the refrigerant in the condenser. In
the cooling tower, the temperature is lowered to 32◦C by
a heat exchanger with air and returned to the condenser.
The control of the centrifugal chiller is to maintain the
chilled water outlet temperature at the set value temper-
ature of 7◦C against fluctuations in the cooling load, and
the rotation speed of the compressor is manipulated. Fur-
thermore, in order to operate the centrifugal chiller at a
higher efficiency point, the vane opening of the two-stage
compressor and the opening of the high stage expansion
valve and the low stage expansion valve are manipulated
to adjust the refrigerant circulation flow rate. The hot gas
bypass valve is used to avoid a surge in the compressor by
opening it at a low flow rate such as when starting up or
when the load is low.

Figure 2. Configuration of centrifugal chiller

2.2 Physical models

Among the equipment constituting the centrifugal chiller,
the evaporator, the condenser, and the economizer have
a liquid level, and the refrigerant is in a two-phase state.
In this study, it is assumed that the refrigerants in these
devices are saturated, and the mass balance and energy
balance are considered by the following Equation 1 and 2.
Here, ρ (kg/m3) is the average density of the liquid phase
and the gas phase in the device, and E (kJ/m3) is the av-
erage energy density. V (m3) is a volume of equipment,
G (kg/sec) is a mass flow rate, and h (kJ/kg) indicates
specific enthalpy. Subscript letters in and out indicate in-
flow and outflow to the equipment. Q (kJ/sec) indicates
the amount of heat for cold water, cooling water and re-
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frigerant in the evaporator or condenser (Bendapudi et al.,
2002).

V · dρ
dt

= (Gin −Gout) (1)

V · dE
dt

= (Gin ·hin −Gout ·hout +Q) (2)

ρ and E are expressed according to Equation 3 and 4
using void fraction β , the density and the enthalpy of the
liquid phase and the gas phase in the saturation state. Sub-
script letters l and g indicate liquid and gas phase.

ρ = β ·ρg +(1−β ) ·ρl (3)
E = β ·ρg ·hg +(1−β ) ·ρl ·hl (4)

When β is erased from these two equations, ρ and E are
represented by the following Equation 5. Since ρg, ρl, hg,
and hl can be approximated by a polynomial of pressure
P (MPa), it is possible to obtain P and β from ρ and E,
which are independent variables.

E =
(ρg ·hg −ρl ·hl)

(ρg −ρl)
·ρ +

(ρg ·ρl ·hl −ρl ·ρg ·hg)

(ρg −ρl)
(5)

The chilled water outlet temperature Tweo (◦C) and the
cooling water outlet temperature Twco can be calculated
from the following energy balance Equation 6 and 7 using
the amount of heat exchange in the evaporator Qe (kJ/sec)
and condenser Qc , respectively. Here, He and Hc indicate
the heat capacity of the metal of the heat transfer tube and
chilled and cooling water in the tube. Gwe (kg/sec) and
Gwc are the chilled water flow rate and the cooling water
flow rate, and cpwe (kJ/kg/◦C) and cpwc are the specific
heat respectively.

He ·
dTweo

dt
= Gwe · cpwe · (Twei −Tweo)+Qe (6)

Hc ·
dTwco

dt
= Gwc · cpwc · (Twci −Twco)−Qc (7)

Qe and Qc are calculated by the following Equation 8
and 9 from the chilled water input Twei, output temper-
ature, the cooling water input Twci, output temperature,
evaporation temperature Te, condensation temperature Tc,
and heat transfer performance UAe (kJ/sec/◦C) and UAc.
fe and fc are functions for calculating the temperature dif-
ference between the refrigerant, chilled water, and cooling
water.

Qe =UAe · fe(Twei,Tweo,Te) (8)
Qc =UAc · fc(Twci,Twco,Tc) (9)

The mass flow rate Gcpj passing through each stage of
the compressor is calculated from the differential pressure

∆Pcpj (MPa) at the inlet and outlet, the specific volume
υcpj (m3/kg), the rotation speed Ncp (%), the vane opening
degree Vcpj (%), and the flow rate characteristic map fcpfj
of the compressor by Equation 10.

Gcpj = fcpfj(∆Pcpj,υcpj,Ncp,Vcpj) (10)

The mass flow rate Gev through the expansion valve is
calculated from the differential pressure ∆Pev at the inlet
and outlet, the elevation difference ∆Lev (MPa), the spe-
cific volume υev, the expansion valve opening Vev , and
the CV value determined from the CV characteristics fev
by Equation 11.

Gev =
fev(Vev)

υev

√
∆Pev +∆Lev (11)

The mass flow rate Gby through the bypass valve is
calculated from the condensation pressure Pc, evaporation
pressure Pe, the specific volume υc, the bypass valve open-
ing Vby , and the CV characteristics fby by Equation 12.

Gby =
fby(Vby)

υc

√
P2

c −P2
e (12)

The outlet enthalpy of the compressor hcpoj is cal-
culated by the following Equation 13 and 14 from the
inlet enthalpy hcpij , the value assuming the isentropic
change hid

cpoj, and the efficiency determined ηcpj from the
compressor characteristics fcpη j (Bendapudi and Braun,
2002).

hcpoj = hcpoj +
(hid

cpoj −hcpoj)

ηcpj
(13)

ηcpj = fcpη j(∆Pcpj,Ncp,Vcpj) (14)

2.3 Approximation of non-linear characteris-
tics

In general, since the pressure loss is proportional to the
square of the flow rate, the relationship between the dif-
ferential pressure ∆P and the flow rate G is expressed as
bellow (Okazaki et al., 2022).

G ∝ sign(∆P)
√

|∆P| (15)

It is hard to optimize with Equation 15 since the slope
of the right-hand side of the expression is ∞ when ∆P is
0. So, we represent Equation 15 to as bellow, firstly. The
square root calculation is replaced by ReLU function. The
ReLU function returns 0 when a negative value is an ar-
gument, or returns the input value if a positive value is an
argument (Glorot et al., 2011).
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sign(∆P)
√

|∆P|=
√

ReLU(∆P)−
√

ReLU(−∆P) (16)

The entire square root function is represented as a
smooth curve, Equation 18, by replacing the ReLU func-
tion with the Softplus function of Equation 17.

So f t plus(x) =
log(1+ ekx)

k
(17)

sign(∆P)
√
|∆P| ≈

√
So f t plus(∆P)−

√
So f t plus(−∆P)

=

√
log(1+ ek∆P)−

√
log(1+ e−k∆P)√

k
(18)

k is a value greater than 0 and is a parameter which has
trade-off between the approximation accuracy of the func-
tion and the smoothness of the approximation function.
Secondly, an approximation method for upper and lower
limit processing of values such as state variables is de-
scribed below. At the boundary where the upper and lower
limit processing is performed, the gradient becomes dis-
continuous and the second order differentiation becomes
impossible. The function that limits x to the upper and
lower bounds in the [Lx,Ux] interval can be written as fol-
lows.

min(max(x,Lx),Ux) =−max(−max(x,Lx),Ux) (19)

By replacing max in Equation 19 with LSE (Log-Sum-
Exp) of Equation 20, it can be expressed in Equation 21
(Nielsen and Sun, 2016).

LSEk(x1, · · · ,xn) =
1
k

log(ekx1 + · · ·+ ekxn) (20)

min(max(x,Lx),Ux) =−max(−max(x,Lx),−Ux)

=−LSE(−LSE(x,Lx),−Ux)

=−1
k

log
(

1
ekx + ekLx

+ e−kUx

)
(21)

Finally, we will describe that a model representing the
backward enthalpy of this centrifugal chiller system can
be expressed using a sigmoid function. This system may
allow refrigerant to flow back, in which case the enthalpy
flow must also be considered. It is necessary to switch the
characteristics according to the direction in which the flow
of the refrigerant. However, and the slope is discontinuous
at the boundary of the switch. Thus, the representing char-
acteristic switching model is expressed with Equation 22.

sigmoid(x) =
1

1+ e−kx (22)

(a) Centrifugal chiller

(b) Evaporator

Figure 3. Models on OpenModelica

2.4 Validation
We implement the model of the centrifugal chiller in the
previous section in Modelica language, and verify the
model accuracy. The centrifugal chiller model on Open-
Modelica is shown in Figure 3(a). Considering deploy-
ment to chillers with different configurations, we imple-
ment each component. Figure 3(b) shows the evaporator
component, which has the inlet and outlet to be connected
to other components. Next, the components were com-
bined in OpenModelica’s GUI editor (OMEdit) to build a
model of the entire chiller. The entire model takes as input
the number of revolutions of the compressor, the opening
of the bypass valve, the coolant inlet temperature, etc. The
numbers of differential equations and algebraic equations
are 9 and 100, respectively.

Next, we execute the startup simulation, giving the
same conditions of the actual machine, such as the in-
let temperature and flow rate of chilled water and cool-
ing water, and the command value from the control logic,
as boundary conditions. The simulation results and the
measurement results of the actual machine are shown in
Figure 4. The normalized time on the horizontal axis of
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(a) Temperature of chilled water

(b) Temperature of cooling water

Figure 4. Validation results of centrifugal chiller model

the graphs represent the operation start point as 1. (In
all the of following figures, the scaling factor is equal to
that of Figure 4.) Both errors in the outlet temperature of
chilled water and cooling water are within ± 2.5%. When
the simulation period is 1800 seconds, the calculation time
is 13.6 seconds (compilation: 12.0 seconds, and simula-
tion: 1.6 seconds) with Intel Core i7-8700 CPU with 16
GB RAM machine.

3 Parameter tuning by coupled calcu-
lation

In this section, we describe how to perform coupled cal-
culation of the model in Modelica language and the con-
trol logic on MATLAB/Simulink. Next, we present an ex-
ample in which the parameters of the model are tuned to
match the behavior of model to that of the actual machine.
Finally, an example of optimizing the parameters of the
control logic is shown.

3.1 Coupling of chiller dynamic model and
control logic

The construction of coupled calculation using MAT-
LAB/Simulink is shown. The model of centrifugal chiller
is exported in FMU format by OpenModelica. We use
a executable file of the control logic. Next, the FMU
file of the centrifugal chiller is imported in the FMU
block of Simulink of the MATLAB R2019b. The control
logic communicates with S-function block of Simulink.
The simulation is performed while the centrifugal chiller

model and the control logic synchronize the time.

3.2 Tuning of equipment parameters
The procedure for adjusting the equipment parameters is
as follows: (1) Startup simulation is performed, while the
same inputs from control logic as the actual machine test is
given to the centrifugal chiller model. (2) The equipment
parameters are optimized to minimize the error between
the simulation results and the results of real machine tests.

We tried the adjustment of each heat transmission coef-
ficient of condenser and evaporator. The evaluation func-
tion is as follows:

minimize
∫
(|Pc − P̂c|+ |Pe − P̂e|)dt (23)

Here, Pc and Pe are the pressure of condenser and the
pressure of evaporator in the real machine test, respec-
tively. Also, P̂c and P̂e are the pressure of condenser and
the pressure of evaporator in the simulation, respectively.
That is, heat transmission coefficients are optimized to
minimize the pressure errors. The Bayesian optimization
algorithm is used.

We use the Bayesian optimization algorithm
(Shahriari et al., 2016) because it is difficult to cal-
culate the gradient of the evaluation function. In this
algorithm, a response surface is generated by Gaussian
process regression from the sampled data. The response
surface represents the predictive uncertainty, and then the
next sampling point is determined while considering the
balance between the exploration of the high uncertainty
region and the exploitation of already obtained optimal
solution.

After 800 optimization iterations, we obtain the heat
transmission coefficients that reduce the evaluation func-
tion from 4.16 to 0.64. Figure 5(a) compares condenser
pressures of actual machine and these of before and af-
ter tuning. Figure 5(b) also compares these of evaporator
pressure. The pressure errors of these 2 equipments are
reduced after optimization. The optimization time is 1280
seconds.

3.3 Tuning of control parameters
We optimize the parameters of the control logic by using
the coupled simulation to reduce the startup time of the
centrifugal chiller. We choose 12 parameters, which have
a large effect on the startup time. The evaluation function
is the difference between the chilled water outlet tempera-
ture Twco and the target temperature Twco,re f as follows:

minimize
∫

|Twco −Twco,re f |dt (24)

Here, Twco,re f was set at 7 ◦C. The Bayesian optimiza-
tion algorithm is used.

After 40 optimization iterations, the parameters to re-
duce startup time were obtained. The simulation results
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(a) Pressure of condenser

(b) Pressure of evaporator

Figure 5. Simulation results by tuned equipment parameters

using the parameters before and after the optimization are
shown in Figure 6. After the optimization, the outlet tem-
perature of chilled water decreases faster to target value.

4 Dynamic optimization by approxi-
mation model

4.1 Approximation of non-linear characteris-
tics

To improve convergence and reduce calculation time of
complex dynamic system optimization, it is effective to
approximate nonlinear characteristics with smooth poly-
nomials. Therefore, we create approximate models, for
example, property tables, pressure losses in valve and pipe
(calculation of square root), operation ranges in valve and
compressor (upper and lower limit), and evaluation of con-
traflow (if statement).

A model composed of multiple dynamic equipment
generally has high-order DAE, whose order is 2 or more.
On such complex models is difficult to perform numer-
ical analysis such as simulation and optimization. In
this study, we use the Pantelides method implemented in
OpenModelica to reduce order of the model.

4.2 Formulation
We formulated the dynamic optimization as follows,
where ui ∈Rnu are the manipulated variables at time phase

(a) Temperature of chilled water

(b) Temperature of cooling water

Figure 6. Simulation results by tuned controller parameters

i: The rotation speed of the compressor, the vane open-
ing of the two-stage compressors, the opening of the high
stage expansion valve, and the low stage expansion valve
at the boundary of each phase. nu is the number of oper-
ation variables (nu = 5). xi, j ∈ Rnx indicate the state vari-
ables: The outlet temperature of the chilled water (Tweo)
or the cooling water (Twco), the density of the liquid phase
or the gas phase of the evaporator (ρe), the condenser (ρc)
or economizer (ρm). The enthalpy of the liquid phase or
the gas phase of the evaporator (Ee) , the condenser (Ec) or
economizer (Em) and pressure of the middle stage of the
suction are also state variables. nx is the number of state
variables (nx = 9). zi, j ∈ Rnz are the algebraic variables:
The pressure (Pc, Pe, Pm), temperature ( Tc, Te, Tm), liquid
levels, and the mass flow rates of the condenser, evapo-
rator and economizer. The flow rates of gas in the two-
stage centrifugal compressor ( Gcp1, Gcp2) and the flow
rate of liquid in the valves (high-stage expansion valve
(Gh), low-stage expansion valve (Gl), and hot gas bypass
valve (Gm)), the flow rates of and the hot gas bypass valve
(Gby) are also algebraic variables. nz is the number of al-
gebraic variables (nz = 18). r0 and rn indicate the con-
straints in the initial condition and the termination condi-
tion. F is the functions related to differential equations,
G is the functions related to algebraic equations, H is the
inequality constraint. n is the number of divisions in the
time direction about manipulated variables, and m is the
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number of state variables and algebraic variables. i = 0
means initial phase and i = n indicates terminal phase.
In this report with direct collocation method, the number
of optimization variables are 137,508 (u:2500, x:45008,
z:90000), equality constraints are 135,508, and inequality
constraints are 2,500.

minimize
U,X,Z

J(X,U)

subject to r0,0(x0,0,u0,z0,0) = 0
rn,m(xn,m,un,zn,m) = 0

xi, j+1 = F(xi, j,ui,zi, j) ·∆t

zi, j = G(xi, j,ui)

H(xi, j,ui,zi, j)≥ 0

xi, j
min ≤ xi, j ≤ xi, j

max

ui
min ≤ ui ≤ ui

max

U = [u0T
, · · · ,unT ]T

X = [x0,0T
, · · · ,xn,mT ]T

Z = [z0,0T
, · · · ,zn,mT ]T

∀i = 0, · · · ,n
∀ j = 0, · · · ,m

(25)

The objective function J consists of state variables and
manipulated variables: The integration of the temperature
difference between chilled water temperature (state vari-
able) and the target temperature of 7◦C in this centrifugal
chiller. The refrigerant circulation flow rate, liquid levels
are also considered. In addition, the penalty for the control
variables affects the objective function.

4.3 Optimized profile
We demonstrate the profile optimization of startup of
centrifugal chiller by using OpenModelica and CasADi
OpenModelica can export a Modelica model as XML for-
mat. CasADi is an optimization modeling tool, which has
Python, C++ and Octave/MATLAB interfaces.

Profile optimization was performed as follows: (1) Re-
duce the order of centrifugal chiller model by OpenMod-
elica and export as XML file. (2) Convert the XML file
into a Python script executable by CasADi. (3) Perform
profile optimization with CasADi and NLP solver IPOPT.

The optimization algorithm is a quasi-Newton method
implemented in IPOPT. CasADi automatically generate
the derivatives, which is required for the quasi-Newton
method. The Bayesian optimization used in the previ-
ous section is not suitable for the profile optimization be-
cause the calculation cost increases in the large optimiza-
tion problem.

The chilled water temperatures of optimization results
are shown in Figure 7. The black line is inlet temperature,
which is boundary condition. The 3 orange lines are out-
let temperature. The solid and dotted orange lines are the
simulation results where the conventional and optimized

Figure 7. Temperature of chilled water by profile optimization

parameters of controller is used respectively. The dotted
line, the optimized profile, shows the fastest decrease of
outlet temperature, i.e., the fastest startup of the centrifu-
gal chiller.

5 Conclusion
This paper presents a design support environment for ther-
modynamic systems. We conduct the coupled simulation
on MATLAB/Simulink by using the chiller model in Mod-
elica language and the control logic, and see that the pa-
rameters of the model and the control logic could be tuned.
In addition, the startup profile optimization was carried
out by the chiller model, which is simplified by smooth
polynomial approximation and order reduction of DAE.
Future work will focus on applying this design support
environment to other cold products and chemical plants.

References
Joel Andersson, Johan Åkesson, and Moritz Diehl. Casadi: A

symbolic package for automatic differentiation and optimal
control. In Lecture Notes in Computational Science and En-
gineering, volume 87, 2012.

Satyam Bendapudi and James E. Braun. A review of literature
on dynamic models of vapor compression equipment. Report,
ASHRAE Research project 1043-RP, 2002.

Satyam Bendapudi, James E. Braun, and Eckhard A. Groll. A
dynamic model of a vapor compression liquid chiller. In In-
ternational Refrigeration and Air Conditioning Conference.
Paper 568, 2002.

Peter Fritzson. Principles of Object Oriented Modeling and Sim-
ulation with Modelica 2.1. Wiley-IEEE Press, 2004.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 315–323. PMLR, 2011.

Session C: Thermal and power system (3), Mechanics system

DOI
10.3384/ecp19393

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

99



Frank Nielsen and Ke Sun. Guaranteed bounds on information-
theoretic measures of univariate mixtures using piecewise
log-sum-exp inequalities. Entropy, 18(12), 2016.

Hirotaka Okazaki, Hitoi Ono, and Noritaka Yanai. Optimiza-
tion of start-up operation for centrifugal chiller. In 18th IFAC
Workshop "Control Applications of Optimization", 2022.

Alejandro A. Sabbagh and Jorge M. Gómez. Optimal control of
single stage libr/water absorption chiller. International Jour-
nal of Refrigeration, 92:1–9, 2018.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams,
and Nando de Freitas. Taking the human out of the loop: A
review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

Alachew Shitahun, Vitalij Ruge, Mahder Gebremedhin, Bern-
hard Bachmann, Lars Eriksson, Joel Andersson, Moritz
Diehl, and Peter Fritzson. Model-based dynamic optimiza-
tion with openmodelica and casadi. In 7th IFAC Symposium
on Advances in Automotive Control, pages 446–451, 2013.

Andreas Wächter and Lorenz Biegler. On the implementation
of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical programming, 106:
25–57, 2006.

Optimal Design for Thermodynamic System with OpenModelica and MATLAB/Simulink

100 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp19393



Study on BEV concept design based on data driven 

approach 

Juhyeong Park1    Jinkyu Moon2    Junbeom Lee3    Daeoh Kang1     
1Institute of Vehicle Engineering, Korea, jhp@ivh.co.kr 

2Institute of Vehicle Engineering, Korea, jkmoon @ivh.co.kr 
2Institute of Vehicle Engineering, Korea, jblee@ivh.co.kr 

3Institute of Vehicle Engineering, Korea, bigfive@ivh.co.kr 

 

 

 

Abstract 
This paper researched the Battery EV 

concept design based on the data driven 

model. To determine the performance of 

BEV in the concept stage, a database was 

established through market research, and a 

data driven model was created to derive 

the target performance and specifications 

based on the database. To verify the results 

of the data driven model, the BEV model 

was generated, and the derived 

specifications were set. After that, the 

target performance was confirmed through 

simulation and detailed specifications 

were derived. 

Keywords : BEV, e-Powertrain 

 

 

1. Introduction 
In the EV development process, there are 

difficulties in setting and designing 

system-level performance targets due to 

the multi-physics characteristics of EVs 

from a system-level perspective. In 

addition, the absence of a method for 

defining module/part target performance 

to meet system performance and 

requirements from a module/part level 

point of view is pointed out as a limitation 

of the prior art. Against this background, 

the need to establish a module/parts 

development strategy and concept 

considering the xEV system performance 

was required. In this paper, research was 

conducted with the goal of developing an 

xEV system based on system engineering 

technology. As a research method, based 

on the results of literature/market research, 

development concept establishment, 

model-based architecture, and concept 

specification design are carried out in the 

following order. In addition, as the 

performance of the developed vehicle, the 

vehicle performance that can be realized 

with the current e-Powertrain technology 

was set as a target, and an architecture 

using only mass-produced parts was 

implemented. 

 

2. BEV Market Research 
In this paper, a BEV database was 

established through market research. The 

surveyed vehicles were 37 sedans and 114 

SUVs, and the survey items were battery 

capacity, motor output and torque, mileage, 

GVW, and wheelbase. 

 

Figure 1. Batter Capacity vs Mileage 
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Figure 2. Mileage vs Vehicle Mass 

As a result of database analysis, recently 

mass-produced BEVs tend to be larger and 

higher in performance. Also, a high 

correlation between GVW, wheelbase, 

and battery capacity was confirmed. 

 

3. Data Driven Modeling 
To derive the target performance and 

specifications for the concept stage BEV 

design, a multi-linear regression model 

was constructed with the mileage, 

wheelbase, and vehicle weight as 

independent variables, battery capacity, 

motor torque, and motor power as 

dependent variables. Cross validation 

technique was used to improve accuracy. 

 

 

Figure 3. Cross Validation 

 
Through the above process, the following 

multi-linear regression equations can be 

found. 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the motor power, motor 

torque and battery capacity, and obtained 

the shown in Table 1. 

 
𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 

𝛼1 ∗ 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒 + 𝛼2 ∗ 𝑅𝑎𝑛𝑔𝑒 + 𝛼3 ∗ 𝐺𝑉𝑊 + 𝛽 

 
Ypredict 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷 R2 

Pmotor -9.9e-4 3.6e-1 1.2-e+1 -204.9 0.72 

Tmotor 8.7e-3 1.2e-1 4.0e-2 -99.3 0.97 

Cbattery 5.9e-1 1.3e-1 1.5e-1 -1607 0.85 

 

Due to the distribution of data in the database, 

different results are obtained each time the 

process is performed. To obtain more reliable 

results, the above process was repeated 10,000 

times to collect data, and the average value was 

set as the final target performance and 

specifications by confirming the distribution of 

the collected data. Figure 4 summarizes the 

entire process for deriving target performance 

and specifications. 

 

 

Figure 4. Process to derive target 

performance and specifications based on 

database 

The design target vehicle is an SUV, with 

a target mileage of 400 km, wheelbase of 

2.9 m, and weight of 3,000 kg. To derive 

the specifications suitable for the set 

vehicle, the above-mentioned process was 

performed, and the data distributions a 

shown in Figure 5 was obtained.  

 

 

Figure 5. Process progress result data 

distribution 

 

From the above results, it was found 

that the motor power required 300kW, 

a torque of 620Nm, and a battery 

capacity of 92kWh for the vehicle we 

intended. 
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4. Design Validation 
To verify the results of obtained from 

Chapter 3, BEV was modeled and 

simulated. 

 
4.1. Detail Modeling 
BEV modeling was carried out to confirm 

the target specifications and performance 

of the BEV concept vehicle derived earlier. 

The BEV model consists of the Chassis 

model and the E-Powertrain architecture. 

The E-Powertrain architecture consists of 

a battery model and a motor model, and 

the motor model transmits driving force to 

the chassis model through Driveline. 

Chassis model consists of body model, 

suspension model, and wheel model. For 

the body, 3,000 kg of GVW was applied 

as a lumped mass model. For the front/rear 

suspension, a simple model consisting of 

force elements such as spring and damper 

and suspension mass was used, and the 

Pacejka model was used for the tire model. 

 

 

Figure 6. Chassis Model 

 
The e-Powertrain architecture consists of a 

battery model and a motor model, and 

three architectures are configured for each 

drive type. The AWD type of the 

skateboard platform type using two 

motors and the FWD/RWD type 

composed of one motor and driveline were 

modeled. 

 

Figure 7. e-Powertrain Model(AWD) 
 

 
Figure 8. e-Powertrain Model(FWD) 

 

4.2. BEV Simulation 
A total of two verification evaluation 

scenarios for the development concept 

model were selected. Acceleration 

performance was confirmed by checking 

the time to reach the driving speed of 100 

kph through the acceleration test, and the 

total mileage was predicted through the 

drive cycle driving test, and the final 

architecture was selected through the e-

Powertrain architecture evaluation. 

 

 
Figure 9. Estimation Scenario 

 

4.2.1. Acceleration Test 
The acceleration test was conducted by 

setting the same motor output and torque 

for each drive type. As a result of the test, 

the AWD drive type, which showed the 

shortest time to reach 100 kph, showed the 

best acceleration performance. However, 

the difference in the maximum speed 

according to the driving method was not 

significant, and as the maximum speed 

indicates a high maximum speed of 200 

kph or more, there is a need to set and limit 

an appropriate maximum speed. 

 

4.2.2. Driving Test 
For the development concept vehicle 

model, the total drivable distance was 

confirmed through the method of driving 

the WLTP Drive Cycle. The total mileage 

can be calculated using the formula below. 

 

E.M = (
𝑏

𝑎
) ∗ 1 𝐶𝑦𝑐𝑙𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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E.M = Estimated Mileage 

a = SOC Reduction 

b = Battery Operation Range SOC 

 

 
Figure 10. Driving Test Result (WLTP) 

 

5. Conclusion 
Various databases were created through 

market research related to EV 

development. The target performance for 

the development concept vehicle model 

was derived using the created database, 

and the vehicle performance was predicted 

through the EV System Architecture 

model configuration and virtual test 

environment. As a representative result of 

the driving performance results, a total 

mileage of 408 km could be predicted. 

Based on the performance prediction 

results, an optimal EV System 

Architecture model was established, and 

through this, the main specifications of the 

vehicle to be developed were derived. 

 

 
Figure 11. Development Vehicle 

Specification 
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Abstract 
The combined heating and power (CHP) system and the 

combined cooling, heating and power (CCHP) system 

have attracted great attention during the last decade. 

However, many CHP systems don’t perform well in the 

actual operation. This paper presents a complete 

hierarchical modeling tool of the gas engine CHP/CCHP 

system which is built on the software Dymola. 

Meanwhile, a gas-engine CHP hybrid energy system 

serving a hospital in Shanghai is studied as a case. To 

validate the accuracy of newly-built models, the 

operating data of the CHP part of the system in 2017 is 

compared with the simulation results, it is found that the 

minimum error is 2.1%, and the maximum error is 7.0%. 

Then, the original gas engine CHP hybrid energy system 

is reconstructed to a gas engine CCHP system. To 

analyze the feasibility of the optimal design, the 

conventional energy supply system which was used in 

the hospital before 2013, the original gas engine CHP 

hybrid energy system and the optimized gas engine 

CCHP system are modeled and simulated. From the 

simulation results, it is found that the primary energy 

ratio is increased from 72.55% to 133.37%, the payback 

period of investment is decreased from nearly 11.8 years 

to 3.9 years, and the CO2 emissions reduction rate is 

increased from 4.83% to 93.72%. Therefore, the 

optimization scheme is feasible. 

Keywords: Gas engine, Combined cooling heating and 

power, System model, Dynamic simulation, Optimal 

design 

1 Introduction 

Nowadays, the energy crisis and the environmental 

impact of fossil fuels have been increasingly serious 

globally (Moussawi et al, 2016; Wei et al, 2016; Ameri 

et al, 2016; Yousefiet et al, 2017; Zheng et al, 2018; 

Jiang et al, 2018). Efficient technology for energy 

conservation is urgently needed to ensure energy 

supplies and reduce environmental emissions (Jiang et 

al, 2018). Combined heating and power (CHP) system 

and combined cooling, heating and power (CCHP) 

system have received widespread attention due to the 
advantage of substantial reliability, energy-saving, 

environmental friendliness and cost-saving (Wei et al, 

2016; Zheng et al, 2018; Jiang et al, 2018; Das et al, 

2018; Afzali et al, 2018; Zhang et al, 2018). CCHP 

system is defined as an effective energy system that 

generates cooling, heating and power simultaneously, 

while CHP system removes cooling from the list , 

mainly through the cascade utilization of energy (Wei et 

al, 2016; Kavvadias et al, 2018). In recent years, CHP 

and CCHP have been introduced to small-medium scale 

places, such as hospitals, hotels, domestic houses and 

office buildings (Wei et al, 2016; Zhang et al, 2018; 

Santo, 2012; Kavvadias et al, 2010).  

CHP has developed rapidly since the first CHP 

energy supply technology was introduced in the 1990s. 

However, it is worth noting that many CHP systems 

suffer from the uncertainty of the actual economic 

results. Because these CHP systems only provide a 

fraction of energy for buildings, such as hot water and a 

part of power, while excess energy is still fed by the 

conventional energy system. A possible solution is 

optimizing the CHP hybrid energy system to a CCHP 

system.  

During the last decade, many researchers used system 

modeling and simulation to optimize the performance 

and the design procedure of CHP and CCHP systems. 

Wei et al. proposed a multi-objective optimization 

model to provide a guiding principle for CCHP system 

optimization (Wei et al, 2016). They adopted software 

MATLAB and TRNSYS to identify a series of 

compromised optimal operation strategies with different 

operational parameters using Non-dominated Sorting 

Genetic Algorithm-II (NSGA- II). Ameri et al. 

described a mixed integer linear programming (MILP) 

model to determine the optimal capacity and operation 

of seven CCHP systems in eastern Tehran (Iran) (Ameri 

et al, 2016). Results showed that compared with 

generating heat by boilers and purchasing electricity 

from the local grid, the optimal CCHP system was able 

to save costs and reduce CO2 emissions. A mixed integer 

non-linear programming (MINLP) model was 

developed by Zheng et al. to achieve multi-objective 

optimization of a smart micro-grid using the modeling 

environment GAMS (Zheng et al, 2018). Results 

described by four scenarios showed that net present 

value, primary energy saving and CO2 emissions were 

reduced significantly by installing roof-top PV, ground 

source heat pump, natural gas-based CCHP and storage 

systems. Espirito Santo proposed a computational 
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hourly profile simulation methodology (Santo, 2012) 

and performed an integrated thermal system simulation 

(Santo, 2014) using software COGMCI. An effective 

method for the design optimization of CCHP coupled 

multi-energy system was developed by Lu et al. (Lu et 

al, 2018). They established a correlation model for 

configuration and operation optimization based on a bi-

level model construction method, proposed a solution 

method, and developed an optimization tool using 

MATLAB. Mago et al. optimized CCHP systems for an 

office building in Columbus (USA) following the 

thermal load (FEL), the electrical load（FTL）and a 

hybrid electrical-thermal load (HETS) strategies (Mago 

et al, 2009). Results showed that HETS was better than 

FEL and FTL. Pagliarini et al. studied the feasibility of 

integrating an existing natural gas-fired-boiler central 

plant in Parma (Italy) into the CCHP system (Pagliarini 

et al, 2012). The space heating and cooling loads were 

calculated by TRNSYS. The national policies 

supporting CHP were found to have a strong influence 

on the results. TRNSYS was also used by Rosato et al. 

to simulate the performance of a micro-CHP system and 

a conventional system (Rosato et al, 2013). Results 

showed that the micro-CHP system could significantly 

reduce primary energy consumption, carbon dioxide 

emissions and operating costs. Hu et al. proposed a 

stochastic multi-objective optimization model to 

optimize the CCHP operation strategy for different 

climate conditions based on operational cost, primary 

energy consumption (PEC) and carbon dioxide 

emissions (CDE) and added a higher reliability level of 

the probability constraint to it (Hu et al, 2014). 

Moreover, an incentive model was developed to support 

the multi-objective decision analysis. The feasibility of 

integrating air-conditioning system and heat storage 

tank into the CCHP system was studied by Li et al. (Li 

et al, 2014). They formulated the optimal problem as a 

nonlinear programming problem using genetic 

algorithm (GA). Furthermore, a sensitivity analysis was 

conducted to explore the impact of natural gas prices on 

system economics. Jannelli et al. developed a 0-1-

dimensional model of a small-size CCHP based on the 

integration of a 20 kW diesel engine and a double-effect 

water-LiBr absorption chiller on platform AVLBOOST 

(Jannelli et al, 2014). The manufacturer's sample data 

was used to validate the performance parameters of the 

gas engine under different operating conditions and the 

average error was found to be less than 5%. Particle 

Swarm Optimization (PSO) was used by Hajabdollahi 

et al. to optimize the gas engine CCHP system for the 

purpose of comparing a new operational strategy named 

variable electric cooling ratio (VER) with constant 

electric cooling ratio (CER) for different climates 

(Hajabdollahi et al, 2015). Piacentino et al. used a 

decision tool to optimize the layout, design and strategy 
of a CCHP plant simultaneously in the hotel sector 

(Piacentino et al, 2015). In addition, two sensitivity 

analyses were performed on tax exemption for the fuel 

consumed in “high-efficiency cogeneration mode” and 

on the dynamic behavior of the system. Moussawi et al. 

conducted a simulation study using TRNSYS software 

for diesel engine-driven CCHP systems used to provide 

electricity, space heating, space cooling and sanitary hot 

water (SHW) to a typical residential family house in 

Beirut (Moussawi et al, 2015). Wang et al. simulated 

and evaluated four different gas-engine CCHP systems 

applied for a remote island using TRNSYS, and the 

results showed that the one adopting the double-effect 

absorption chiller and the gas-fired boiler was the best 

option (Wang et al, 2016). Based on the environment, 

economy and energy criteria simultaneously, Zeng et al. 

optimized the CCHP–GSHP coupling system model by 

GA and demonstrated the practicality of the 

optimization model by case analysis (Zeng et al, 2016). 

Mat Isa et al. developed a CHP system consisting of 

grid-connected photovoltaic (PV), fuel cell and battery, 

and performed the techno-economic analysis of the 

proposed system using hybrid optimization model for 

electric renewable simulation (HOMER) software in 

order to assess the feasibility of applying the system for 

a hospital building in Malaysia (Isa et al, 2016). Calise 

et al. developed a detailed dynamic simulation model of 

the CCHP system using TRNSYS and evaluated three 

different system operating strategies, namely: Thermal 

Load Tracking mode (TLT), Maximum Power Thermal 

Load Tracking mode (MPTLT) and Electricity Load 

Tracking mode (ELT) (Calise et al, 2017). Yang et al. 

proposed a gas turbine-driven CCHP system combining 

solar thermal energy and compressed air energy storage 

(S-CAES) and developed system off-design models. In 

comparison with the corresponding optimized CCHP 

system without S-CAES, the system with S-CAES 

performed better (Yang et al, 2017). 

However, few models are built with hierarchical architecture, 

so models and sub-models lack reusability and are difficult 

to debug separately. In this study, the gas engine 

CHP/CCHP system is modeled and dynamically simulated 

in Dymola software (“DYMOLA Systems Engineering, 

Multi-Engineering Modeling and Simulation based on 

Modelica and FMI.”) using Modelica language. Based on 

the results of dynamic simulation, the feasibility of 

optimization from the gas engine CHP hybrid energy 

system to the gas engine CCHP system will be discussed. 

The main contributions in this research are summarized as 

follows: (1) Simulation models of important equipment and 

the whole system of CHP hybrid energy system and CCHP 

system are built and validated. (2) The original gas engine 

CHP hybrid energy system is optimized to a gas engine 

CCHP system for a case study. (3) The feasibility of 

optimization is analyzed by comparing the performance of 

two systems.  

This paper is organized as follows: Section 2 

describes the case for optimization, presents the 

modeling approach and validation results for simulation 

models of the important equipment in CHP and CCHP 

systems. Section 3 gives the load calculation results and 
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system optimal design for the case building. Section 4 

presents the performance evaluation method used in this 

study. Section 5 analyzes and compares the performance 

of the original gas engine CHP hybrid energy system 

and the gas engine CCHP system. The conclusions are 

drawn in the last section. 

2 Methodology 

2.1 Case study 

The case building, Ruijin Hospital North, is located 

in Jiading District, Shanghai, China, with a floor area of 

72000 m2. A conventional energy supply system was 

applied to this hospital before 2013. By replacing the hot 

water boilers with a 334kW gas engine and two heat 

exchangers, the conventional system was optimized to a 

gas engine CHP system in October 2013. The energy 

supply layouts of the conventional system and the gas 

engine CHP system are shown in Figure 1 and Figure 2, 

respectively, and the main parameters of system 

components are shown in Table 1.  

Ruijin Hospital North has stable electrical load and 

hot-water heating load, and the former is much higher 

than the latter. Due to the current policy that power 

generated by self-provided units can only be grid-

connected but not exported to the grid, the gas engine 

CHP system applied to this hospital operates in the 

"power determined by heat" energy supply mode, i.e. 

only the demand for sanitary hot water is considered to 

be necessarily met by the CHP unit, based on which the 

corresponding generated power output is connected to 

the hospital power supply system. 

To ensure the stability of power generation and waste 

heat output, and to prolong the service life of the 

equipment, there are only two states of the gas engine 

generator set in actual operation: rated state (100% load) 

and shutdown (0% load). In consideration of the 

resulting mismatch between the stable sanitary hot water 

input on the supply side and the ever-changing hot-water 

heating load on the demand side, a heat storage tank was 

installed to control the start and stop of the gas engine 

according to its water level. The gas engine will be 

started when the water level drops to 0.2 meters and shut 

down when the water level rises to 4.8 meters. 
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Figure 1. Energy supply layout of conventional system 
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Figure 2. Energy supply layout of gas engine CHP system 
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Table 1 Main parameters of system components 

Affiliated 
System 

Component Parameter Value 

Both 

Heating 

boiler 1&2 

Rated heat 

supply/kW 
2000 

Efficiency/% 90 

Hot water 

tank 
Volume/m3 50 

Electric 

chiller 1&2 

Rated cooling 

capacity/kW 
4515 

Rated COP 6.22 

Convent-

ional 

system 

Hot water 

boiler 1&2 

Rated heat 

supply/kW 
200 

Efficiency/% 90 

Gas 

engine 

CHP 

system 

334kW gas 

engine 

Model 
Schmitt 

334 

Rated 

electrical 

power 

generation/kW 

334 

Rated jacket 

water waste 

heat/kW 

485 

Heat 

exchanger 1 

Flow form 
Counter 

flow 

Quantity 2 

Nominal heat 

transfer 

coefficient/ 

W/(m2*K) 

5.476 

Heat transfer 

area/m2 
15 

2.2 Simulation model 

Simulation models of individual devices and overall 

systems are established in Dymola software by 

employing Modelica language. Dymola software 

supports hierarchical model composition, libraries of 

truly reusable components, connectors and composite 

acausal connections. The modeling method of this study 

is to build the complete hierarchical simulation model of 

systems based on the connection of equipment models 

(gas engine generator set model, LiBr absorption chiller 

set model, plate type heat exchanger model, electric 

chiller set model, hot water tank model and gas boiler 

model) and system control models used to control on-

off conditions, operating hours and operating strategies. 

Since Modelica Standard Library includes most of the 

required equipment models, it is only necessary to build 

the additional gas engine model and LiBr absorption 

chiller model. 

2.2.1 Gas engine 

This study mainly focuses on the system's overall 

performance. Since the gas engine is just one component 

of the whole system, its performance parameters, such 

as electrical power, total heat recovery, exhaust gas heat, 

coolant heat, mixture heat, fuel input, natural gas 

consumption, electrical efficiency, thermal efficiency 

and total efficiency, rather than internal structural 

parameters, should be mainly concerned. The 

performance documentation provided by manufacturers 

contains specific performance parameters for different 

gas engine models at 50% load, 75% load and 100% 

load, based on which the performance parameters of gas 

engines operating in the range of 50% load to 100% load 

can be calculated by interpolation method. Therefore, 

the gas engine performance parameter model consists of 

two parts: a performance parameter sheet model used to 

store the datasheet of different samples and an 

interpolation model used to read the datasheet and 

output the corresponding performance parameters 

according to the input parameter (electricity demand). 

Up to now, this performance parameter sheet model 

library has stored datasheets of more than 20 samples of 

different brands such as Mannheim, Caterpillar and 

Schmitt.  

2.2.2 LiBr absorption chiller 

There are many types of LiBr absorption chiller, among 

which single-effect hot water type and double-effect 

flue gas type are used in the present study. The internal 

structure of the whole LiBr absorption chiller model is 

shown in Figure 3. The LiBr absorption chiller model 

also consists of a performance parameter sheet model 

and an interpolation model. 

 

Figure 3. Internal structure of the LiBr absorption chiller 

model 

1. Performance parameter sheet model 

The performance parameter sheet model stores the 

datasheet of main rated parameters of LiBr absorption 

chiller samples, such as cooling capacity, heat 

consumption, heat source temperature, inlet and outlet 

temperature of cooling water, inlet and outlet 
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temperature of chilled water, COP, etc. Unlike the stable 

performance parameters of gas engines at rated 

operating conditions, the most important performance 

parameter of LiBr absorption chiller, coefficient of 

performance (COP), is influenced by several factors and 

is therefore given as the COP curve by manufacturers. 

For ease of reading, the COP curve is converted into 4 

data tables: chilled water temperature correction table, 

cooling water temperature correction table, heat source 

temperature correction table and cooling capacity 

correction table. Each table contains two columns, 

where the first column is the independent parameter 

(chilled water temperature, cooling water temperature, 

heat source temperature, cooling capacity) and the 

second column is the corresponding COP. 

2. Interpolation model 

The input parameter of the interpolation model is the 

cooling load, and the output parameters are the actual 

cooling capacity, the heat exchange capacity of the 

generator and the heat removed by the cooling water. 

The specific calculation process is as follows. 

The actual COP of LiBr absorption chiller can be 

calculated by the following formula, which is provided 

in the LiBr absorption chiller technical manual. 

 (1) 

Since the cooling capacity datasheet needs to be read 

on the basis of partial load rate, it’s necessary to convert 

the cooling load into partial load rate.  

The cooling load ( ) can be calculated as follows: 

  (2) 

where,  is the flow rate of chilling water, kg/s; is 

the specific heat of chilled water, kJ/(kg·°C);  and 

 respectively represent the inlet temperature and set 

temperature of chilling water, °C. 

The maximum load rate and the minimum 

temperature limit of the heat source must be taken into 

consideration when calculating the partial load rate 

(PLR) of LiBr absorption chiller. PLR is between the 

minimum and maximum load rate, and is 0 when the 

heat source temperature is lower than its minimum.  

Then, the actual heat consumption ( ) of LiBr 

absorption chiller can be calculated as follows: 

  (3) 

where,  represents the actual cooling capacity 

read by the performance parameter sheet model, kW. 

The heat removed by the cooling water includes the 

heat released by the absorber and the condenser, and the 

heat absorbed by the LiBr absorption chiller includes the 

heat absorbed by the evaporator and the generator. 

Neglecting the heat dissipation of pump, the energy 

balance equation can be expressed as: 

  (4) 

where,  represents the heat removed by the 

cooling water, kW. 

2.3 Validation 

2.3.1 Actual operation data 

Monthly operation data of the case CHP unit in 2017 is 

investigated, as shown in Table 2, to validate the 

accuracy of models. 

Table 2. Operation data of the case CHP unit in 2017 

Month 

Boot 

hour 

(h) 

Waste 

heat 

recovery 

(kWh) 

Power 

generation 

(kWh) 

Natural gas 

consumption 

(Nm3) 

Thermo-

electric 

ratio 

1 402 159,760 134,165 35,303 1.19 

2 357 123,790 119,135 35,937 1.04 

3 336 132,550 112,212 33,010 1.18 

4 249 102,780 83,103 25,112 1.24 

5 181 72,170 60,318 17,456 1.20 

6 163 52,000 54,572 15,717 1.02 

7 96 44,940 32,129 9,319 1.40 

8 121 57,460 40,397 11,716 1.42 

9 126 52,960 42,159 12,253 1.26 

10 156 59,440 52,028 15,071 1.14 

11 174 65,470 57,975 16,851 1.13 

12 221 88,340 73,692 20,925 1.20 

Total 2,580 941,660 861,885 248,670 1.09 

2.3.2 Model validation 

As shown in Figure 4 and Figure 5, discrepancies 

between the simulation results and operation data are 

less than 10% for both system power generation and 

natural gas consumption, and thus, the model accuracy 

is validated. Therefore, the subsequent results of system 

operation characteristics and optimization are expected 

to be of sufficient accuracy. An error or robust design 

analysis would be required to predict expected accuracy 

of additional model predictions.  
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Figure 4. Model validation of system power generation 

 

 

Figure 5. Model validation of natural gas consumption 

3 System optimization 

3.1 Load calculation of the case building 

To optimize the design of system and further simulate it, 

it’s necessary to calculate the hourly cooling load, 

heating load and hot water load of the case building. 

The specific flow direction and flow distribution of 

the hot water are of no importance in modeling, hence 

only the hot water load is considered. During the 

simulation, the monthly hot water load is distributed to 

the hourly load according to the load factor method 

(Shan, 1989). The hourly hot water load is shown in 

Figure 6. 

 

Figure 6. Hourly hot water load of the case building 

The cooling load and heating load are calculated by 

the software HDY-SMAD (“HDY-SMAD, HVAC 

Load Calculation and Analysis Software.”). The hourly 

cooling and heating load are shown in Figure 7. 

According to the calculation results, the maximum 

hourly cooling load and heating load are 9102.63 kW 

and 3723.11 kW, respectively. 

 

Figure 7. Hourly cooling and heating load of the building 

3.2 Optimal design 

To improve the comprehensive performance and 

economy of CHP unit, the original gas engine CHP 

system is optimized to a gas engine CCHP system. The 

CCHP part of optimized CCHP system will provide all 

the heating load and hot water load of the hospital, along 

with most of the cooling load and electric load. The 

remaining part of the cooling load is provided by the 
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electric chiller and excess electric load is fed with power 

purchased from the local grid.  
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Figure 8. Energy supply layout of gas engine CCHP 

system 

 

Figure 9. Model schematic of gas engine CCHP system 

The energy supply layout and model schematic of 

optimized CCHP system is shown in Figure 8 and 

Figure 9, respectively. A 4300kW gas engine and four 

heat exchangers are used to replace heating water boilers, 

while two absorption chillers are used to replace an 

electric chiller. Main parameters of new system 

components are shown in the Table 3. The system 

process is as follows. The 334kW gas engine supplies 

all the sanitary hot water. In summer, two absorption 

chillers are preferred to meet the cooling load of the 

hospital, and the shortage is met by the electric 

refrigeration unit. The flue gas generated by the 

operation of the 4300kW gas engine is passed into the 

double-effect flue gas type absorption chiller for cooling, 

and the jacket water (rated at 98 °C) generated by it and 

the remaining jacket water of the 334kW gas engine are 

accessed to the single-effect hot water type absorption 

chiller. In winter, the flue gas of the 4300kW gas engine 

is introduced into the flue gas-hot water plate heat 

exchanger for heating. The jacket water (rated at 98 °C) 

generated by it and the remaining jacket water of the 

334kW gas engine are also used for heating. 

The system follows the hybrid operating mode. The 

334kW gas engine is operated at full load in winter and 

summer. It is started and stopped according to the water 

level in the transition season. The 4300kW gas engine is 

only operated in winter and summer and it is controlled 

by return water temperature. 

Table 3. Main parameters of gas engine and heat 

exchanger 

Component Parameter Value 

4300kW gas 

engine 

Model Mannheim 4300 

Rated electrical power 

generation 
4300 kW 

Flue gas waste heat 2304 kW 

Rated jacket water 

waste heat 
1379 kW 

Heat 

exchanger 2 

Flow form Counter flow 

Quantity 4 

Nominal heat transfer 

coefficient 

2.728 

W/(m2•K) 

Heat transfer area 25 m2 

Absorption 

chiller 1 

Model BROAD BE300 

Type 
Double-effect 

smoke type 

Rated cooling capacity 3489 kW 

Absorption 

chiller 2 

Model BROAD BDH200 

Type 
Single-effect hot 

water type 

Rated cooling capacity 2046 kW 

4 Economy, energy efficiency, 

environment (3E) 

In order to evaluate the comprehensive performance of 

gas engine system and gas engine CCHP system, the 3E 

analysis (Gao et al, 2022) is conducted in this section. 

4.1 Energy efficiency analysis 

Primary energy ratio ( ) is adopted to evaluate the 

energy efficiency of system. Primary energy ratio is 

defined as the ratio between the output energy and the 
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input primary energy of the system, and can be 

expressed as follows: 

  (5) 

where, and respectively represent the system 

electrical power generation and electrical power use 

from local grid, kJ.  and  respectively represent 

the system heat supply and cooling capacity, kJ.  

represents the system fuel consumption, Nm3.  

represents the low calorific value of fuel, kJ.  

represents the product of electrical power generation 

efficiency and transmission efficiency of local grid, %. 

4.2 Economy analysis 

Economic analysis is based on two indicators: annual 

operating cost and payback period of investment. 

System annual operating cost ( ) is the sum of 

annual fuel cost ( ), annual electrical power cost ( ) 

and system maintenance cost ( ), and can be 

expressed as follows: 

  (6) 

For reconstruction, system payback period of 

investment ( ) is the recovery period of system's 

incremental investment ( ), and can be expressed as 

follows: 

  (7) 

where,  and  respectively represent the 

annual operating cost of conventional system and 

reconstructed system. 

4.3 Environment analysis 

CO2 emissions per unit capacity ( ) and CO2 

emissions reduction rate ( ) are important indicators 

for environment analysis, which can be calculated as 

follows: 

  (8) 

  (9) 

  (10) 

Where,  represents the system CO2 emissions, Nm3/s. 

 and  respectively represent the CO2 emission 

coefficient of local grid and natural gas. and  

respectively represent the CO2 emissions per unit 

capacity of conventional system and reconstructed 

system, Nm3/kJ. (In engineering calculation and trade 

settlement, China stipulates that the volume at a pressure 

of 101.325 KPa and a temperature of 293.15 K is 

defined as a standard cubic meter, expressed in Nm3. For 

the convenience of analysis and calculation, this unit is 

used uniformly in the following.) 

5 Results and discussion 

5.1 Simulation results 

The simulation results of system electricity generation, 

natural gas consumption and electricity consumption are 

obtained by dynamic simulation with Dymola software, 

as shown in Table 4. 

Table 4. Simulation results 

 

Conventional 

energy supply 

system 

Original gas 

engine CHP 

hybrid energy 

system 

Optimized gas 

engine CCHP 

system 

Cooling load 

(kWh) 
14,001,281.7 

Heating load 

(kWh) 
5,566,748.1 

Hot water 

load (kWh) 
818,322.0 

Power 

generation 

(kWh) 

0 865,709.6 15,358,726.5 

Natural gas 

consumption  

(Nm3) 

169.0 184.4 846.1 

Power 

consumption 

(kWh) 

17,958,094.1 17,092,384.5 1,113,431.5 

5.2 Analysis results of 3E 

5.2.1 Energy efficiency analysis 

According to the test of the hospital’s energy station, the 

average low calorific value of natural gas is 34.308 

MJ/Nm3. Moreover, product of electrical power 

generation efficiency and transmission efficiency of 

local grid is assumed to be 40% in this study. Then, the 

primary energy ratios can be obtained by Eq. (5), and 

the results are shown in Figure 10. 
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Figure 10. Primary energy ratio 

5.2.2 Economy analysis 

In Shanghai, the price of natural gas is 2.45 yuan/m³ for 

distributed energy systems and is 3.82 yuan/m³ for gas 

boilers. Besides, the electricity price is 0.641 yuan/kWh 

for non-resident users. For conventional energy supply 

system, original gas engine CHP hybrid energy system 

and optimized gas engine CCHP system, the average 

system maintenance cost is 0.024 yuan/kWh, 0.12 

yuan/kWh, 0.15yuan/kWh, respectively. 

Through investigation and calculation, the 

incremental investment of original gas engine CHP 

hybrid energy system and optimized gas engine CCHP 

system is 4 million yuan and 27.58 million yuan 

respectively. Based on Eq. (6)-(7), the payback period 

of investment of three systems are shown in Table 5. 

Table 5. Payback period of investment calculation 

 

Conventional 

energy supply 

system 

Original gas 

engine CHP 

hybrid energy 

system 

Optimized 

gas engine 

CCHP 

system 

Incremental 

investment 

(yuan) 

- 4,000,000 27,580,000 

Annual net 

operating cost 

(yuan) 

16,567,599  16,227,434  9,581,721  

Payback period 

of investment 

(year) 

- 11.8  3.9  

5.2.3 Environment analysis 

According to the survey, the CO2 emission coefficient 

of natural gas source in Shanghai is 1.04Nm3/Nm3 

natural gas and the national average CO2 emission 

coefficient of electrical power generation is 0.412 

Nm3/(kWh). Based on these, Eq. (8)-(10) are used to 

calculate total CO2 emission, CO2 emissions per unit 

capacity and CO2 emissions reduction rate of these 

systems. Calculation results are shown in Figure 11 and 
Figure 12. 

 

Figure 11. Total CO2 emission 

 

Figure 12. CO2 emissions per unit capacity and CO2 

emissions reduction rate 

5.3 Feasibility analysis 

Through the above evaluation calculation, it is easy to 

find that, compared with the original gas engine CHP 

hybrid energy system, the optimized gas engine CCHP 

system is improved a lot. Firstly, the optimized system 

solves the economic problem efficiently. The payback 

period of investment is decreased from 11.8 years to 3.9 

years. Meanwhile, the energetic and environmental 

performance of the system are also optimized. Primary 

energy ratio is increased by 83.83% and CO2 emissions 

reduction rate is increased by 93.40%. Therefore, it can 

be concluded that reconstructing a CHP hybrid energy 

system to a CCHP system has a high feasibility. 

6 Conclusions 

In this paper, a complete hierarchical modeling method 

of the gas engine CHP/CCHP system was presented. 

And the models of gas engine generator set, heat 

exchanger and LiBr absorption chiller were then built 

based on theoretical analysis, mathematical equation 

and the performance curve of equipment. Then we 

validated the accuracy of the presented model by taking 

the gas engine CHP system of a hospital in Shanghai as 
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an example. By modeling and simulating the system, we 

found that the minimum error between the calculated 

results of the model and the operational data of this 

system in 2017 is 2.1% and the maximum error is 7.0%. 

The results meet the requirement that the simulation 

deviation is less than 10%, which validates the accuracy 

of the model. 

Furthermore, we reconstructed the original gas engine 

CHP hybrid energy system to a gas engine CCHP 

system in our model. Then the conventional energy 

supply system used in the hospital before 2013, the 

original gas-engine CHP hybrid energy system and the 

optimized gas engine CCHP system were modeled and 

simulated to analyze the feasibility of this optimization. 

The simulation results show that the gas engine CCHP 

system can increase the primary energy ratio from 72.55% 

to 133.37%, shorten the payback period from nearly 

11.8 years to 3.9 years and increase the CO2 reduction 

rate from 4.83% to 93.72%, which validates the 

feasibility of this optimization. 
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Abstract 
Due to the rapid shift towards vehicles partially or fully 
powered by electricity (eMobility), Dassault Systèmes 
has developed an Industry Solution Experience to 
address new challenges of electrification and energy 
management. 
Our goal is to demonstrate how to apply the precepts of 
Model-Based Systems Engineering (MBSE) and to 
converge towards a virtual twin in a zero-prototype 
approach. 
Keywords: eMobility, virtual twin, Modelica, MBSE, 
battery, EV, simulation 

1 Introduction 
In the race towards sustainable mobility (reduction of 
CO2 footprint, design for recycling …), the massive shift 
towards eMobility has already begun. Acknowledging 
the fact that personal vehicles are one of the major 
sources of CO2 emissions, and consumers are 
encouraged to adopt electric vehicles due to their 
significantly lower CO2 output, more and more 
countries are coming up with a roadmap to ban ICE 
vehicles. 
 
Along with that push from policy and regulations, the 
OEMs are now providing a more mature offering and 
are ready to ramp up for mass production. 
 
By 2026, we expect EVs to oversell ICE on the 
European market, and by 2030 we are looking at around 
85 million EVs for Europe only. 

2 Towards Sustainable Mobility 
We cannot complete such an ambitious paradigm 
change by only focusing on vehicles. A holistic 
approach combining Energy, Vehicle and Mobility 

Service, is required to reach our goals of sustainable 
mobility. 

 
- Energy: consider the complete energy stream, 

including production, transportation, storage and 
distribution 

- Vehicle: increase vehicle energy efficiency (less 
loss); and improve vehicle performance (range, 
charging time, …) 

- Mobility Service: take into account all services 
contributing to the reduction of CO2 in usage: smart 
charging and Vehicle to Grid, optimization of route 
planning taken into account location, speed and 
availability to charging points 

 

 
 
It is no more enough to optimize battery, propulsion and 
thermal systems separately. 
It is now admitted that a significant gain will come from 
the optimization of the whole energy chain integration 
and control command. 
 

 
 
To do so, we must combine all relevant disciplines 
(fluidics, mechanical, electrical & electronics and 
software) from the initial stages to talk a common 
language across departments with traceable continuity 
from architecture level to hardware and software 
designs. 
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3 Efficient Multi-Energy Platform 
The 3DEXPERIENCE Platform can help to tackle those 
challenges. Not only are we providing some of the best-
in-class tools for 1D and 3D simulation, they are also 
integrated in one single platform, along with complete 
PLM, powerful data analytics, all this to help you make 
the right decisions, backed by science and data evidence. 
 
A more concrete manifestation of this thought process is 
a Dassault Systèmes Industry Solution Experience (ISE) 
developed specifically for this use case, named Efficient 
Multi-Energy Platform. By leveraging all Dassault 
Systèmes has to offer in its solution portfolio, we wish 
to offer and end-to-end integrated solution that brings 
value to our customers in all relevant stages of the 
development. 
 

 
 
Efficient Multi-Energy Platform has of course a very 
strong modeling and simulation focus, since eventually 
complex 1D and 3D will be key elements  within the 
design process (from battery system to powertrain, 
including chassis, thermal systems, …).  
One of key industrial challenges being to find the best 
compromise for all performance metrics. 
 

 
 
Nevertheless, this should not lessen the importance of 
the other key functionalities covered by this Industry 
Solution Experience:  
 

 
 
- Data intelligence: analysis of EV operational data 

from an Energy Management standpoint, 
simulation result analytics (decision making) 

- Environmental footprint and Life Cycle Assessment 
 
Smart electricity grid management with Vehicle-to-Grid 
is also an important lever toward decarbonization. 

4 Simulation framework 
As written above, several key parts of this ISE involve 
complex simulations. Some of them like chassis system 
study for instance, rely heavily on 3D structural analysis, 
in order to investigate the impact on complex geometries 
of nonlinear plastic deformations. However, most of the 
simulation activity is instead leveraging the Modelica 
language. Because those tasks require investigating at 
the same time multiple physical domains with tight 
interactions (electrical, mechanical, thermal, control…) 
to provide relevant results, Modelica, as an equation-
based and multi-discipline oriented language, is a 
natural fit for those. 
 
Dassault Systèmes is already known for developing 
Dymola, one of the main Modelica tools on the market. 
In addition to this stand-alone version, Dassault 
Systèmes also decided to enrich its 3DEXPERIENCE 
Platform by integrating the Dymola kernel and 
positioning Modelica as a simulation backbone, in order 
to enable simulation in as many areas as possible. Not 
only can we take advantage of the Dymola technology 
for its own merits, but we can also benefit from the new 
synergies made possible by the 3DEXPERIENCE 
Platform. 
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In the move towards the Digital Twin, many models and 
diagrams that were just static until now came to life 
thanks to the Modelica language. We make use of 
another open standard as well, the Functional Mock-up 
Interface (FMI), when the need to integrate external 
models or complex 3D simulations in our workflow 
occurs. 

5 Take-away 
With this solution, we aim at accelerating the energy 
transition by designing, simulating and optimizing the 
Digital Twin of the eMobility, from battery to platform 
and vehicle. The ultimate target being to reach Zero 
Prototype, through virtual vehicle development. 
 
This is possible by: 
- combining software, electrical and mechanical 

architectures in a unique collaborative environment 
with digital traceability and continuity 

- managing assets in a consistent way for all vehicle 
engineering and study in evolution and 
configuration 

- assessing product performance combining ADAS 
and energy management 

- managing legacy data and solution in an Opened 
platform 

- handling vehicle complexity by embracing Systems 
Engineering concepts and methods, thanks to an 
integrated business and science platform 
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Abstract 
Modelica is very useful to make physical models in 

various engineering fields such as mechanical, electrical, 

thermal, fluid systems, etc. This capability of Modelica 

is also useful to educate students and engineers about 

many physical areas using simulation. The authors are 

posting serialized articles in a technical magazine about 

physical modeling of daily electric appliances by 

Modelica to educate readers about both physics and 

Modelica language in Japan. This paper introduces 

some examples of physical modeling of various 

appliances such as electric minicar, dryer and speaker 

by Modelica. 

Keywords:     physical modeling, control, Modelica 

1 Introduction 

Modelica is an equation based, object-oriented language 

for efficient modeling of complex, multi domain cyber 

physical systems described by ordinary differential, 

difference and algebraic equations. This feature of 

Modelica language is very useful for not only various 

industrial applications but also for education about 

physics and simulation for students and engineers. The 

authors are posting serialized articles in a technical 

magazine about physical modeling of daily electric 

appliances by Modelica to educate readers about both 

physics and Modelica language in Japan. This paper 

introduces some examples of physical modeling of 

various appliances. 

In section 2, modeling and simulation of a 4x4 electric 

minicar is described. In section 3, dryer is modeled and 

simulated. In section 4, modeling about a speaker is 

introduced.  

2 Modeling of 4x4 electric minicar 

4x4 electric minicars are a very popular toy in Japan. It 

consists of body, batteries, motor, gears, drive shafts and 

tires as shown in Figure 1. The physical model of the 

electric minicar is assumed as shown in Figure 2.  

The modeling was done to solve the following questions. 

1) What is the maximum speed of the car? 

2) How long can this car keep running? 

Thus, the battery model should consider the effect of 

voltage drop by the SOC (State Of Charge) change. In 

the body model running resistances should be 

considered. 

 

Figure 1. Structure of electric minicar 

 

Figure 2. Physical model structure of electric minicar 
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2.1 Structure of the physical model 

Battery model is built by OCV (Open Circuit Voltage) 

generator and inner resistance. OCV is a function of 

SOC. Motor model consists of a DC motor electric 

machine, a motor inertia and electric circuit including 

armature coil’s resistance and inductance. Gear and tire 

model are assumed as just a simple model of lossy 

constant ratio reducer. As for the running resistances, 

aerodynamic resistance, rotating resistance and gravity 

resistance by road slope are considered.  Consequently, 

the system of equations of this model become as follows. 

(Battery) 

Battery voltage: 𝑉𝐵 = 𝑉𝑂𝐶𝑉(𝑆𝑂𝐶) −  𝑅𝐵𝐼 (1) 

State Of Charge:   SOC = 1 − 
𝑉𝑏0 ∫ 𝐼𝑑𝑡

𝑊𝑡𝑜𝑡𝑎𝑙
 

(2) 

Open circuit voltage: 𝑉𝑂𝐶𝑉(𝑆𝑂𝐶) = 𝑉𝑏0 × 𝑆𝑂𝐶 (3) 

For the simplicity, 𝑉𝑂𝐶𝑉  is assumed to be 

proportional to the SOC. It will be more precise if the 

actual table of SOC vs OCV based on measurement will 

be used. 

(Motor) 

Motor voltage: 𝑉𝑀 = 𝑉𝑒𝑚𝑓 + 𝑅𝑀𝐼 + 𝐿
𝑑𝐼

𝑑𝑡
 

(4) 

Back electromotive force voltage: 

𝑉𝑒𝑚𝑓 = 𝐾𝐸𝜔𝑀    (𝐾𝐸 ∶ coefficient)  (5) 

Motor torque: 𝜏𝑀 = 𝐾𝑇𝐼  (𝐾𝑇 ∶ coefficient) (6) 

Motor inertia: 𝐽𝑀
𝑑𝜔𝑀

𝑑𝑡
=  𝜏𝑀  (7) 

(𝐽𝑀 ∶ Innertia moment, 𝜔𝑀 ∶ Angular velocity) 

(Circuit) 

 𝑉𝐵 =  𝑉𝑀  (8) 

(Gear) 

Gear torque: 𝜏𝑡 = 𝜀𝐾𝑔𝜏𝑀  (9) 

(𝐾𝑔 ∶ Gear ratio, ε ∶ Gear efficency） 

Gear rotation speed: 𝜔𝑀 =  𝐾𝑔𝜔𝑡  (10) 

(Tire and Body) 

Tire inertia torque: 𝐽𝑡
𝑑𝜔𝑡

𝑑𝑡
=  𝜏𝑡 − r𝑓𝑡     

(11) 

 ( 𝐽𝑡 ∶ Tire innertia, 𝜔𝑡: Tire rotation speed)  

Car velocity: 𝑉 = r𝜔𝑟 (r : Tire radius)  (12) 

Tire rotating resistance force:  

𝑓𝑡 = 𝑚𝛼 +  𝜇𝑚𝑔 + 𝑚𝑔 sin 𝜃 +  𝜌𝐴𝐶𝐷𝑉2/2 (13) 

( μ ∶ Rotating resistance coefficient, 𝜃 ∶ Road slope, 
   𝜌 ∶ Air dencity,   A ∶ Frontal area, 

𝐶𝐷: Aero resistance coefficient) 

Vehicle speed:  𝑉 =   
𝑑𝑥

𝑑𝑡
  (14) 

Vehicle acceleration: α =  
𝑑𝑉

𝑑𝑡
 

(15) 

2.2 Modelica code of text-based model 

By using the system of equations shown in the section 

2.1, Modelica code of the text-based model becomes as 

below. 
model miniCarText_SOC 

   import SI = Modelica.Units.SI; 
  import Modelica.Constants.g_n; 

  parameter SI.Resistance Rb = 0.8 

 "Battery inner resistance"; 
 parameter SI.Resistance Rm = 1 

 "Motor inner resistance"; 
 parameter SI.Inductance Lm = 1e-6 

 "Motor inner inductance"; 
 parameter SI.MomentOfInertia Jm = 1.8e-3 

* 0.005 * 0.005 "Motor innertia"; 
 parameter SI.MomentOfInertia Jt = 5e-3 * 

0.01 * 0.01 "Tire innertia"; 
 parameter Real Kt = 1.2e-3 

"Motor torque coefficient"; 
 parameter Real Ke = 1.2e-3 

 "Motor rotational voltage coefficient"; 
 parameter Real Kg = 5 "Gear ratio"; 
 parameter SI.Efficiency Eg = 1 

 "Gear efficiency"; 
 parameter SI.Mass m = 0.1 

 "Vehicle mass"; 
 parameter SI.Radius r = 0.015 

 "Tyre radius"; 
 parameter SI.CoefficientOfFriction myu = 

0.1 "Tyre rotating friction coefficient"; 
 parameter Real Cd = 0.3 

 "Air drag coefficiency"; 
 parameter SI.Area area = 0.004 

 "Vehicle frontal area"; 
 parameter SI.Density rho = 1.205 

 "Air density"; 
 parameter Real batteryPowerCapacity = 1 

 "Battery power capacity [Wh]" ; 
 parameter SI.Voltage Vb0 = 3 

 "Battery initial voltage" ; 
// Variables; 
 SI.Current i(start = 0) "Motor current"; 
 SI.Voltage Vocv 

 "Battery open circuit voltage"; 
 SI.Voltage Vb "Battery voltage"; 
 SI.Voltage Vm "Motor voltage"; 
 SI.Voltage Vemf 

 "Motor rotational voltage"; 
 SI.Torque taum "Motor torque"; 
 SI.Torque taut "Tire torque"; 
 SI.AngularVelocity omgm 

 "Motor angular velocity"; 
 SI.AngularVelocity omgt 

"Tire angular velocity"; 
 SI.Force f "Vehicle total force"; 
 SI.Force fa "Vehicle acceleration force"; 
 SI.Force fr 

 "Vehicle rolling resistance force"; 
 SI.Force fair 

 "Vehicle air resistance force"; 
 SI.Distance x(start = 0) 

"Vehicle running distance"; 
 SI.Velocity v(start = 0) 

 "Vehicle velocity"; 
 SI.Acceleration a "Vehicle acceleration"; 
 Real soc "Battery SOC" ; 
 Real usedWh "Used power capacity" ; 
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equation 
  der(usedWh) = Vb0 * i  / 3600; 
  soc = if (1-usedWh/batteryPowerCapacity 

>=0) then (1-usedWh/batteryPowerCapacity) 

else 0; 
  Vocv = Vb0 * soc; 
  Vb = Vocv - Rb * i; 
  Vm = Vemf + Rm * i + Lm * der(i); 
  Vemf = Ke * omgm; 
  Vb = Vm; 
  taum = Kt * i; 
//Jm*der(omgm) = taum; 
  taut = Eg * Kg * taum; 
  Kg * omgt = omgm; 
//Jt*der(omgt) = taut - r*f; 
  0 = taut - r * f; 
  r * omgt = v; 
  f = fa + fr + fair; 
  fa = m * a; 
  fr = myu * m * g_n; 
  fair = rho * area * Cd * v * v / 2; 
  a = der(v); 
  v = der(x); 
end miniCarText_SOC; 

Please note that the equations (7) and (11) were 

ignored and the equation 
  0 = taut - r * f; 

is used instead. This is because the variables omgm and 

omgt are dependent on the variable v by the constraint 

of constant gear ratio. Additionally, to cope with the 

calculation chattering when the vehicle speed crosses 

zero, it is effective to use the base class of friction 

elements prepared in the Modelica Standard Library 

(MSL), but in this case it is omitted.  

2.3 MSL-based model 

Modelica model of this minicar can be built by using 

MSL as shown in Figure 3. Here a new class ‘calcOCV’ 

was created to model the SOC dependent OCV 

calculation as shown in the equations (2) and (3). 

Thanks to the Modelica feature of ‘StateSelect’ the 

rigidly coupled inertias of the motor, tire and the vehicle 

mass can be modeled separately. 
StateSelect stateSelect = 

StateSelect.default; 

2.4 Simulation results 

To make the students understand both physics and 

Modelica features, both of the text code model and the 

MSL model were made and simulated. Figure 4 shows 

the results for short time range (upper figure) and for 

long time range (lower figure). In the upper figure, the 

results of vehicle speed for both the text code model (v) 

and the MSL model (vehicle.v) are compared. The effect 

of inertial elements can be seen. Also, as for the answers 

for the questions above, the results became as follows. 

(1) The maximum speed of the car is about 6.1 m/s. 

(2) The car can keep running for about 3840 sec. 

 

Figure 3. Minicar model using MSL 

 

Figure 4. Simulation results of the minicar model 

3 Modeling of a dryer 

3.1 Structure of the dryer model 

The structure of the target dryer is shown in Figure 5. 

For each part of the structure, the system of the 

equations and the model structure were considered as 

below. 

Session C: Thermal and power system (3), Mechanics system

DOI
10.3384/ecp193121

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

123



About the motor and the circuit, the system of the 

equations is same as the equations (4) to (6). As for 

mechanical loss, a damping loss and friction loss are 

considered as below. 

𝐽𝑀

𝑑𝜔𝑀

𝑑𝑡
+ 𝑐 ∙ 𝜔𝑀 + 𝑇𝑓  =  𝜏𝑀 

 
(16) 

 The physical model of the motor and circuit using 

MSL becomes as shown in Figure 6. The part 

surrounded by a red dashed line is used as the 

component model of the motor assembly mentioned 

below. 

The model of the fan and heater is shown in Figure 7. 

The fan is modeled as an ideal air pump. 

𝑝 =  − (
𝑏

𝑎
) ∗ 𝑞 ∗ 𝑛 + 𝑏 ∗ 𝑛2 

 
(17) 

(p: pressure, q: air flow rate, n:normarized speed) 

Air flow resistance in the pipe is modeled as below. 

𝑝 =  𝑅 ∗ 𝑞 ∗ |𝑞| (18) 

(R: Coefficient of air flow resistance) 

The operating point of the pump is calculated from 

the crossing point of the equation (17) and (18) as shown 

in Figure 8. 

The necessary heat flow to increase the temperature 

of the air is calculated by the following equation. 

ℎ =  𝑞 ∗ 𝜌 ∗ 𝐶𝑝 ∗ Δ𝑇 (19) 

(h: necessary heat flow, 𝜌: air density, 𝐶𝑝: air specific 

heat, Δ𝑇: target temperature increase) 

By solving the simultaneous equations of the 

equations (17), (18) and (19), we can obtain the 

necessary design parameters of the dryer as n=1, h=60 

and r=10 by solving the following Modelica model. 
model DryerDesign 
  Real n(start = 2); 
  Real h; 
  Real r; 
  parameter Real Ro = 1; 

  parameter Real Cp = 1; 
  parameter Real q = 1; 
  parameter Real a = 1.5; 
  parameter Real b = 30; 
  parameter Real Dt = 60; 
  parameter Real p = 10; 
equation 
  h = q*Ro*Cp*Dt; 
  p = -(b/a)*q*n + b*n^2; 
  p = r*q*abs(q);   
 end DryerDesign; 

The electric circuit of the power supply using the full-

wave rectifier circuit can be modeled as shown in Figure 

9. Here switches are ignored. 

Finally the whole model of the dryer becomes as shown 

in  Figure 10 by combining the component models of the 

each assembly parts (shown as red dashed rectangular in 

Figure 6, Figure 7 and Figure 9). 

 

Figure 6. Model of the motor and circuit 

 

Figure 5. Structure of the dryer 
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Figure 7. Model of the fan and heater 

 

Figure 8. Characteristics of air fan and pipe resistance 

 

Figure 9. Model of the electric power supply and heater 

 

Figure 10. Model of the whole dryer 

3.2 Simulation results 

Figure 11 shows one result of the dryer model shown in 

Figure 10. It is confirmed that the motor voltage is full-

wave rectified from the sinusoidal input voltage and the 

pump speed is controlled according to the motor voltage. 

Finally, the pipe air flow temperature is raised from 20 

degC to about 65 degC. 
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Figure 11. Simulation results of the dryer model 

4 Modeling of a speaker 

4.1 Structure of the speaker model 

 

Figure 12. Structure of a speaker 

The structure of a speaker is shown in Figure 12. 

Electric input of voltage u and current i are given to the 

solenoid coil. The coil generates magnetic flux density 

𝐵0  and transfer the electromotive force generated 

between the magnet to the cone. Finally, the cone is 

oscillated by the electromotive force and generates the 

oscillation of the air resulting in the acoustic sound. The 

system of equations become as follows. 

(Voltage source) 

Voltage:  𝑢 = 𝑘0 sin(𝜔𝑡) (20) 

(Electric circuit with solenoid coil) 

𝑢 = 𝑅 ∙ 𝑖 +  𝐿
𝑑𝑖

𝑑𝑡
 + 𝑢𝑒𝑚𝑓 

 

(21) 

(Solenoid coil) 

Electromotive voltage:  𝑢𝑒𝑚𝑓 =  𝐵0𝑙𝑣 (22) 

Electromotive force:      𝐹𝑤 =  𝐵0𝑙𝑖 (23) 

 (l : coil length) 

(Mechanical part) 

Mechanical mass:  

𝑚𝑤

𝑑𝑣

𝑑𝑡
=  𝐹𝑚 + 𝐹𝑤 − 𝐹𝑝 

 

(24) 

Spring damper force:   

𝐹𝑚 =  −
𝑣

𝑟𝑤
 − 

𝑥

𝑛𝑤
 

 

(25) 

Here, 𝑚𝑤 : Mass of the movable part,  𝑟𝑤 : Friction 

admittance (= inverse of damping coefficient),  𝑛𝑤 : 

Compliance (= inverse of spring constant), 𝐹𝑝:  Reaction 

force of acoustic vibration. 

(Acoustic characteristics of the cone) 

To model the acoustic characteristics by an analogy of 

mechanical and electrical system, the equivalent 

elements shown in  Figure 13 are considered [Lenk, 

2011]. For the speaker shown in Figure 12, the acoustic 

resistance and the acoustic mass of the air oscillated by 

the cone become as below [Lenk, 1995]. 

Acoustic resistance:   

𝑍𝑎𝐿 =  
1

2

𝜌𝐿𝑐𝐿

𝜋𝑎2
 (

𝜔

𝑐𝐿
𝑎)

2

 

 

(26) 

Acoustic mass:   

𝑀𝑎𝐿 =  
8

3

𝜌𝐿

𝜋𝑎2
  

 

(27) 

(𝑐𝐿: sound speed of air,  𝜌𝐿: density of air, 𝑎: cone 

radius)   

Above equations are valid when the following 

condition is met. 

𝜔 <  𝜔𝑔 = √2
𝑐𝐿

𝑎
 

Between the mechanical characteristics and the acoustic 

characteristics of the cone, the following equations hold. 

𝑣 =  
1

𝐴
𝑞 

(28) 

𝐹𝑝 = 𝐴 ∙ 𝑝 (29) 

𝑝 =  𝑝𝑚 + 𝑝𝑧 (30) 

𝑝𝑚 =  𝑀𝑎𝐿

𝑑𝑞

𝑑𝑡
=  𝑀𝑎𝐿𝐴

𝑑𝑣

𝑑𝑡
 

(31) 
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𝑝𝑧 =  𝑍𝑎𝐿𝑞 =  𝑍𝑎𝐿𝐴𝑣 (32) (𝐴 = 𝜋𝑎2: Cross sectional area of the cone) 

 

Figure 13. Analogy of elements in electrical, mechanical and acoustic system 

 

4.2 Text code model of the speaker 

Considering the equations (20) to (32), the text code 

model of the speaker becomes as follow. 
model ModelByText 
 import SI = Modelica.Units.SI; 
import Modelica.Constants.pi; 

parameter SI.MagneticFluxDensity B0 = 0.8; 
parameter SI.Length l = 8 "Coil lenght"; 
parameter SI.Resistance R = 6 "Electric 

register"; 
parameter SI.Mass mw = 0.03 "Mechanical 

movable mass"; 
parameter SI.Inductance nw = 2.1e-3 

"Mechanical inductance of spring"; 
parameter SI.Admittance rw = 1e-3 

"Mechanical admittance of damper"; 
parameter SI.Mass ml = 3.2e-3 "Mechanical 

movable mass of air"; 
parameter SI.Admittance rl = 8e-3 

"Mechanical admittance of air damper"; 
parameter SI.Admittance rel =6.82 

"Mechanical admittance of electric 

register"; 
parameter SI.Area A=pi*0.1^2 "Area of 

speaker cone"; 

 parameter SI.Frequency freq = 5 

"Oscillation frequency" ; 
SI.ElectricCurrent i; 
SI.Voltage u0; 
SI.Length s; 
SI.Velocity v; 
SI.Acceleration a; 
SI.Force fw; 
SI.Force fm; 
SI.Force fp; 
SI.Force f; 
SI.Pressure p(start=0, fixed=true); 
SI.MassFlowRate q; 

equation 
v = der(s); 

a = der(v); 
u0 = 1*sin(2*pi*freq*time); 
u0 = i*R + B0*l*v; 
fw = B0*l*i; 
fm =  -v/rw - s/nw; 
mw*a = fm + fw - fp; 
f = fm - fp;  

p = ml*A*a + rl*A*v; 
q = A*v; 
fp = A*p; 

end ModelByText; 

4.3 Speaker model using MSL 

To make the MSL based model of the speaker, the 

system is translated to the integrated mechanical model. 

From the equations (29) to (32), we obtain the following 

equation. 

𝐹𝑝 = 𝐴 ∙ 𝑝 =  𝑀𝑎𝐿𝐴2
𝑑𝑣

𝑑𝑡
+ 𝑍𝑎𝐿𝐴2𝑣 

(33) 

By using the equations (24), (25) and (33), the 

integrated equation as the mechanical region is obtained. 

𝑚𝑤

𝑑𝑣

𝑑𝑡
=  𝐹𝑤 −

1

𝑟𝑤
𝑣 − 

1

𝑛𝑤
𝑠 − 𝑀𝑎𝐿𝐴2

𝑑𝑣

𝑑𝑡
 

− 𝑍𝑎𝐿𝐴2𝑣 

 

(34) 

From the equations (21) to (23), we also obtain an 

equation about electrical system converted to the 

mechanical model. Here, the inductance of the coil L is 

ignored for the simplicity. 

𝐹𝑤 =  𝐵0𝑙𝑖 =  𝐵0𝑙 (
𝑢

𝑅
− 

𝐵0𝑙𝑣

𝑅
) 

(35) 

Finally, from the equations (34) and (35), an 

integrated equation of the total system as a mechanical 

expression is obtained as below. 
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𝐵0𝑙

𝑅
𝑢 =  

(𝐵0𝑙)2

𝑅
𝑣 + 𝑚𝑤

𝑑𝑣

𝑑𝑡
+

1

𝑟𝑤
𝑣 + 

1

𝑛𝑤
𝑠

+ 𝑀𝑎𝐿𝐴2
𝑑𝑣

𝑑𝑡
+ 𝑍𝑎𝐿𝐴2𝑣 

 

(36) 

To make a model of the equation (36) based on MSL, 

the following classes of the mechanical inductance, 

mechanical mass and mechanical admittance shown in 

the Figure 13 were made as follows. 

 
model MechanicalInductance 

 "Sliding inductancde" 
  parameter Real n(min = 0, start = 1) 

 "Mechanical Compliance"; 
  extends 

Modelica.Mechanics.Translational.Interface

s.PartialCompliantWithRelativeStates; 
equation 
  n * der(f) = v_rel; 
end MechanicalInductance; 
 

model MechanicalMass 

 "Sliding mass with inertia" 
  parameter SI.Mass m(min = 0, start = 1) 

 "Mass of the sliding mass"; 
  parameter StateSelect stateSelect = 

StateSelect.default 

 "Priority to use s and v as states" ; 
  SI.Velocity v(start = 0, stateSelect = 

stateSelect) 

 "Absolute velocity of component"; 
  SI.Acceleration a(start = 0) 

 "Absolute acceleration of component"; 
equation 
  v = der(s); 
  a = der(v); 
  m * a = flange_a.f + flange_b.f; 
 end MechanicalMass; 
 

model MechanicalAdmittance 

 "Linear 1D translational damper" 
  extends 

Modelica.Mechanics.Translational.Interface

s.PartialCompliantWithRelativeStates; 
  extends 

Modelica.Thermal.HeatTransfer.Interfaces.P

artialElementaryConditionalHeatPortWithout

T; 
  parameter Modelica.Units.SI.Admittance h 
(final min = 0, start = 0) 

 "Damping conductance"; 
equation 
  h * f = v_rel; 
  lossPower = f * v_rel; 
end MechanicalAdmittance; 

 

The icons of each class are shown in Figure 14. 

 

Figure 14. Icons of the mechanical elements 

 

Figure 15. The speaker model based on MSL 

Finally, the model of the speaker based on MSL 

becomes as Figure 15. Here the class “mechanicalFlow” 

converts a scalar input to force output. 

4.4 Simulation results 

Figure 16 shows sample results of both the text code 

model and MSL based model of the speaker model. The 

results of the both models seem almost identical. 

 

Figure 16. Simulation results of the speaker model 

 

5 Conclusion 

Many physical models of daily appliances by Modelica 

were presented. Once the physical equations were 
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determined, it was very easy and efficient to make the 

simulation models by Modelica. Both of text code 

model and MSL based model were developed and 

simulated. To learn about those physics and also 

Modelica modeling was very efficient for the education 

of students and engineers. For some examples such as 

fluid system of dryer, Modelica was also useful to solve 

the simultaneous equations for obtaining the design 

parameters.  
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Abstract
Compared to FMI-2.0, FMI-3.0 provides support for
events and clocks. The behavior of the FMU in the pres-
ence of events and clocks introduces new challenges for
importing FMUs in block diagram environments such as
Altair Activate and Scicos. This paper discusses some of
these challenges and proposes implementation strategies
for supporting the import of FMI-3.0 in Activate.
Keywords: FMI-3.0, Synchronous clock, Signal based
tool, Modelica tool

1 Introduction
The Functional Mock-up Interface (FMI) (Modelica As-
sociation, 2022) has become a de-facto tool independent
standard for the exchange of dynamic models and for co-
simulation. FMI-3.0 (Specification, 2022) version of the
standard introduces many new features that allow for more
advanced modeling and support for co-simulation algo-
rithms. Clocks allow the synchronization of events be-
tween Functional Mock-up Units (FMUs) and the sim-
ulator (importer). Several new data-types and multi-
dimensional arrays are also supported (Junghanns et al.,
2021).

Activate is a modeling and simulation tool developed
by Altair Engineering based on the open-source academic
simulation software Scicos (INRIA). Activate environ-
ment can be used to create models of dynamical systems
as signal-based block-diagrams. The basic blocks, such
as FMUs can be interconnected to build complex model.
This is very similar to the way diagrams are built in the
SSP 1 (System Structure and Parametrization) standard.

Activate can also be used to create Modelica diagrams
(Nikoukhah and Furic, 2009). The integration of the Mod-
elica part of the model is done first by the aggregation
of the Modelica components and creation of a Modelica
program which is then processed by the Modelica com-
piler.2 In Activate, the Modelica compiler provides an
FMU block replacing the Modelica components in the
original model.

Because of this FMI based integration of Modelica in
Activate, Activate has been providing FMU import sup-
port through an Activate FMU block. More generally this
block is also used for importing FMUs from other sources.

1https://ssp-standard.org/
2The Modelicac compiler is used to to compile and generate code

for the modelica program in Scicos; the MapleSim compiler is used to
generate an FMU in Activate.

The support of FMI-2.0 in the Activate environment had
already been challenging and specific solutions had to be
developed; the main problem being the way input-output
dependencies are defined and treated in Activate and in
FMU. See (Nikoukhah et al., 2017).

With FMI-3.0 and the introduction of the notions of
clock, activation and synchronization, the FMU import in
Activate presents new challenges. Even though the ac-
tivation signals and synchronism have been part of the
Activate semantics from the beginning, the small seman-
tic differences between FMI-3.0 and Activate formalism
makes it so that an FMU cannot be imported as a basic
block in Activate. This was already not the case in some
situations with FMI-2.0, as was presented in (Nikoukhah
et al., 2017). With FMI-3.0, the problem becomes more
involved.

This paper presents the difficulties and the solutions en-
visaged to provide maximum support for FMI-3.0 import
in Activate. First a short overview of the way Activate
handles activations (clocks) is provided and the differ-
ences with the FMI-3.0 treatment of clocks are discussed.

In Section 4, the solutions for importing FMI-3.0 in
Activate are presented by considering different types of
clocks. Each section provides an FMU example to illus-
trate the process.

2 Activate environment and activation
signals

2.1 Double layer implementation
In the Activate environment, a model is constructed using
blocks. The compiler however does not operate on these
blocks; it interacts with Atomic Units3 (AU). In many
cases a block is associated with a single AU, but not al-
ways: a block may produce a diagram containing multi-
ple connected AUs. This diagram produced programmati-
cally by the block may depend on the values of the block
parameters. Specifically, the choice of the AU(s), their
parameters, and the topology of the diagram is specified
by an OML4 function associated with the block, which
constructs the diagram based on the values of the block
parameters.

The ability to programmatically instantiate an AU or a
diagram of AU(s) is a powerful mechanism which is used

3Also called basic blocks.
4A matrix based interpreted matrix-based language similar to Scilab,

Octave, Matlab.
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to present to the user as a block, for example through a li-
brary, a complex construction based on a diagram of AUs.
The FMU block is an example of such a construction.

In general, an AU provides computational function
APIs to be used by the simulator. The APIs are C func-
tions that are called by the simulator at different stages of
the simulation: computations of the outputs, of the state
derivatives, of the next discrete state, etc. Activate com-
piler uses AU properties to construct the compiled struc-
ture of the model to be used by the simulator. These prop-
erties include for example the feedthrough properties of
the AUs used by the compiler for proper scheduling of
the activation order of the AUs. The computations done
by the corresponding APIs however are transparent to the
compiler.

Two very special AUs IfThenElse and SwithCase ba-
sic blocks play a fundamental role in defining conditional
operations, used for example for subsampling. They are
actually language constructs similar to if and switch state-
ments in most programming languages, and are treated
in a special way by the compiler. Other “special” AUs
include activation sources such as the InitialActive, Al-
waysActive and SampleClock blocks. The latter produces
an activation signal containing a series of periodic events.
Multiple SampleClock blocks can be used within a model
with identical or different periods. The compiler treats
them as synchronous clocks even if they don’t have iden-
tical periods.

2.2 AU interactions
AUs have input and output ports. These ports are con-
nected by links which represent the sharing of data be-
tween the ports. The value of an input port is provided
by the output port linked to it. The AU of the output port
computes the signal to be read by the AU of the input port,
which in turn computes its outputs, when activated.

In the simple case where all the AUs are “always ac-
tive” (continuous-time dynamics), the Activate compiler
determines the order in which the AUs should be activated
(their APIs called) to guarantee the signals flow properly
in the network. This order is stored in the compiled struc-
ture of the model and used during simulation. It is also
used for code generation.

In many cases however all the AUs in a model are not
“always active”. Consider for example the model of a
physical plant controlled by a discrete-time controller. In
such a model, some of the AUs are continuously activated
(so always active) and others only at the ticks of the con-
troller clock.

In the presence of multiple sources of activations, the
compiler determines the order of block executions for all
possible activation scenarios and stores them in the com-
piled structure to be used by the simulator5 and the code
generator.

5 No online scheduling is ever performed by the simulator.

2.3 Activation signals and AU activation
AUs in Activate are activated by activation signals. The
“always active” signal is an example of such a signal. An
AU activated by such a signal is continuously active. Dis-
crete activation signals define one or more isolated time
instants of activation (called events). An AU activated by
such a signal is activated at these discrete time instants.6

At the graphical level, by default the regular input and
output ports are placed on the sides of the blocks and the
activation input and output ports, respectively, on the top
and at the bottom of the block. The activation ports and
links are red colored.

The block on the left is a general AU with multiple in-
put, output, regular and activation ports. The other two
blocks are special AUs IfThenElse and SwithCase used to
redirect their input activations to one of their output acti-
vation ports depending on the value of their regular inputs.
These two AUs produce output activations which are syn-
chronous with their input activations; something which is
not possible with any other AU.

To simplify the construction of models at the graphical
level, two mechanisms are used in Activate to reduce the
number of activation ports and links:

• Always active AU property: Instead of explic-
itly creating a link from an always active activation
source to the AU, the AU can be declared as having
“always active” property.

• Activation inheritance: if an AU is not declared
always active and does not have any activation in-
put ports, then it can inherit its activations from its
regular input signals. Specifically, it is activated by
the activation signals which have activated the block
which have produced its input signals.

These mechanisms are mere syntactic sugars: the corre-
sponding activation signals are added to the model at a
pre-compilation phase.

An AU may be activated by one or more activation sig-
nals, through one or more activation input ports. See Fig. 1
where the EventDelay block is activated by the union of
two activation signals. The resulting activation signal con-
tains then an initial event and events produced by the block
itself, which are the delayed version of previous events.
This model produces an activation signal consisting of a
series of events evenly spaced in time (like an event clock).

For an AU having more than one activation input port,
the AU is activated if any of the input ports receives an ac-
tivation. In that case, the computational function API can
know what activation(s) has caused the activation of the

6More generally an activation signal may define a union of isolated
points and time intervals as activation times. But this level of generality
is not pertinent to the FMI import issue considered here.
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Figure 1. A new activation signal can be constructed from two
or more activation signals where the activation times of the new
signal is the union of the activation times of the other signals.
This operation is realized by the EventUnion block as shown in
this diagram.

AU. For example if the AU has two activation input ports,
then it can be activated either because an activation signal
has been received on its first input, on its second input or
on both synchronously.7 The way by which the activation
has occurred is coded as an integer (the binary coding of
the integer represents the input ports at the origin of the
AU activation, so function call). In the case of AU with
two activation input ports, the integer can take values 1,
2 and 3. The API can perform different computations for
each value of the integer.

Even though the AU can be activated through differ-
ent combinations of activation signals, there are no indi-
vidual activation signals associated with each output port
of the AU. The outputs are updated at times correspond-
ing to the union of all the activations activating the AU.
So, the activation signals associated with the outputs are
all identical; the AU cannot associate individual activation
signals to the AU outputs. Even if an output of the AU is
not computed by the AU computational function API for
a particular activation, it is considered to be up to date and
is treated as if it had been recomputed (signals in Activate
are persistent). This property is in contrast to the FMU-3
way of associating outputs to different clocks, making it
impossible to represent an imported FMU as a single AU
in the general case.

An AU can have activation output ports. An AU can-
not generate an event which is synchronous with the event
which has activated it. The generated event is delayed
with respect to the activation of the block. The time delay
can be set to zero, making the two events having the same
time, but not synchronous. Synchronous events can only
be generated by two special AUs IfThenElse and Swith-
Case. For details see (Campbell et al., 2010; Ext, 2022).
This is another reason why a single AU cannot always rep-
resent an imported FMU-3.

The explicit treatment of Activation signals in Activate
makes the import of FMU-3’s amenable but not necessar-
ily as single AUs (basic blocks). This was the case al-
ready for FMU-2, as we will recall in the next section.
We will then show how FMU-3’s can be imported as Ac-
tivate blocks including multiple AUs. From the user point
of view, this process is completely transparent. They will

7Here we assume that the block is not continuously active.

place the FMU block from the palette in the diagram and
edit its parameter to point to the FMU to import. The
block will then read the content of the FMU and program-
matically create the content of the block.

3 Activate FMU block for importing
FMI-2.0 FMUs

This section recalls the way FMU-2’s are imported in Ac-
tivate. The process was in part presented in (Nikoukhah
et al., 2017). The import of FMU-2 was a simpler task
because there were no clocks and clock activations to
consider; the system was always active. The main diffi-
culty had to do with the way output/input dependencies
are specified in FMI. In an AU, output/input dependen-
cies are expressed as a vector of dependencies specifying
which inputs affect any of the outputs. So, the dependency
is solely a property of an input port. The reason is that an
AU computes all of its outputs during a single activation,
i.e., in the same API call, so all of its dependent inputs
must be up to date when the call is made. An FMU on the
other hand specifies output/input dependencies as a matrix
specifying which output depends on which known vari-
ables including individual inputs. The FMU provides rou-
tines that allow the computation of output ports separately
and take advantage of variable caching.

One way to deal with this discrepancy is to simply
project the matrix of dependencies provided by the FMU
into a vector of dependencies as required by Activate.
This conservative approach properly assigns dependencies
in Activate but "loses" information along the way. When
one or more FMUs are imported in an Activate model, this
may lead to the detection of algebraic loops by the Acti-
vate compiler that are not true algebraic loops (artificial
algebraic loops). The result is that valid algebraic-loop-
free models may end up not compilable by Activate.

There is no solution to this problem as long as the FMU
block is to be implemented as a single AU. But as it was
stated previously, Activate blocks can implement a dia-
gram of AUs, the topology of which can depend on block
parameters. It turns out, (Nikoukhah et al., 2017), that the
matrix output/input dependency information provided by
the FMUs can be implemented by a properly constructed
diagram of AUs. The diagram would include a distinct AU
associated with each output port, in charge of computing
the output, and the diagram constructed so that its topol-
ogy reflects the output input dependencies. Consider for
example an FMU with 2 inputs and 2 outputs where the
only output input dependency is that the first output de-
pends on the first input. Then the FMU block could create
the diagram shown in Fig. 2.

The dependency information is provided in the FMU
XML file, which is available as a block parameter of the
Activate FMU block. By reading and parsing the XML
inside the FMU, the block generates a diagram of AUs.
The diagram contains a central AU, always present, and an
AU associated with each FMU output. The input ports of
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Figure 2. In this example, the first output depends directly on
the first input. The second output does not depend directly on
any input.

these AUs and their connections are tailored to the depen-
dency information read from the XML file. In particular
the AU associated with an output will have an input corre-
sponding to an input of the FMU only if the corresponding
output input dependency property is true.

Figure 3. A central AU, always present, handles the state up-
date tasks of the FMU and provides the FMU structure to the
AUs in charge of computing the outputs. The output AUs are
only connected directly to the inputs of the block if there is a
corresponding output input dependency as specified in the FMU
XML file.

The central AU includes the simulation APIs for state
derivative computation and discrete state updates, etc., and
does not have any input dependency. All the AUs in the
network use the same internal structure, which is instanti-
ated by the central AU. The central AU provides this struc-
ture to the other AUs through its output port.

The central AU is also endowed with an activation input
and an activation output port. These ports are connected
together with an activation links. The delayed events reac-
tivating the central AU are used to implement time-events
in FMI-2.0.

Fig. 3 shows a typical diagram resulting from the import
of an FMU with 2 inputs and 4 outputs.

4 FMI-3.0 support
FMI-3.0 provides a number of new features for both
Model-Exchange and Co-Simulation (Gomes et al., 2021).
Some of the new features of FMI-3.0 are intrinsically sup-
ported in Activate. For example AU input output ports
are not limited to scalars; they can be of type matrix and

of different data types. But even though AUs have acti-
vation (clock) input and outputs, the semantic differences
between FMI-3.0 clocks and Activate activations does not
allow a simple mapping of FMI clocks into Activate acti-
vation signals.

Different types of FMI clocks require different treat-
ments during the import process, as shown in the follow-
ing sections. For each clock type in FMI-3.0, an FMU has
been considered and the way it is imported in Activate is
explained. Note that the way the clock is handled is FMI-
3.0 is independent of the FMU type, i.e., the FMU can
be either Model-Exchange or Co-Simulation8. The FMU
examples work identically for both FMU types.

4.1 Triggered input clocks
It may seem natural to map an FMU-3 with multiple input
triggered clocks into an AU with multiple activation input
ports. This however is not semantically correct because
different outputs of the FMI may be associated with dif-
ferent clocks, i.e., outputs may be differently clocked. But
in an AU, all the outputs of the AU are computed on the
union of all the activations activating the AU. So, a sin-
gle AU can capture this aspect of the FMU behavior only
if all the outputs of the FMU are associated with all of
its clocks. Any other clock association requires a specific
treatment.

Figure 4. The diagram resulting from the import of an FMU-3
with 2 triggered clocks.

Consider the imported diagram in Fig. 3 and assume ad-
ditionally that the imported FMU is an FMU-3 with two
triggered input clocks where the first output is a clocked
variable associated with the first clock, the second out-
put is a clocked variable associated with the second clock
and the last output associated with both. The third out-
put is continuous-time (its variability attribute is
continuous). The FMU block importing this FMU will
instantiate9 in the Activate model as shown below

8The Scheduled Execution FMU type has not been considered in this
paper

9The block ports are automatically adjusted to the FMU specification

Importing FMU-3.0: challenges in proper handling of clocks

134 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193131



Its underlying diagram is shown in Fig. 4. The
gen_out3 block is declared always active.

The generalization to the case where more input trig-
gered clocks are present is straightforward.

4.1.1 Example: Clock tick counter with reset FMU

This FMU increments its output on each input clock
tick.10 The counter is reset to zero on the tick of the sec-
ond input clock. The FMU has two triggered input clocks
and one regular output port. The FMU model description
for these ports are as follows:

<Clock name="input clock" valueReference="4"
causality="input" variability="discrete"
intervalVariability="triggered"
description="counter increments on ticks"/>

<Clock name="Reset clock" valueReference="5"
causality="input" variability="discrete"
intervalVariability="triggered"
description="Resets to zero on ticks"/>

<Int32 name="pre(counter)" valueReference="6"
initial="exact" variability="discrete"
causality="local" description="pre(counter)"
start="0" clocks="4 5"/>

<Int32 name="counter" valueReference="7"
previous="6" initial="calculated"
variability="discrete" causality="local"
description="counter internal value"
clocks="4 5"/>

<Int32 name="output" valueReference="8"
variability="discrete" causality="output"
description="counter value" clocks="4 5"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 5. Note that
since there is no information in the model description of
the FMU about using the time-events by the FMU, the
central AU has always its first output activation port con-
nected to its first input activation port (clock feedback).

4.2 Periodic clocks
In FMI-3.0, a time-based input clock can be defined as
being periodic. The period and the offset of the clock can
be constant or user-defined.

when the block parameters, in particular the FMU name and location,
are provided as block parameters.

10The snippets of the C source code of the FMU are provided in the
Appendix. FMU’s presented in this paper are available upon request.

Figure 5. Importing the clock tick counter with reset FMU in
Activate.

In the corresponding Activate block, such an input
clock is not represented by an activation input port. In-
stead, the periodic clock is explicitly placed inside the di-
agram. Consider again the example with 2 inputs and 4
outputs and two clock inputs but now suppose the second
clock is periodic with period P. The imported diagram can
then be constructed as shown in Fig. 6.

Figure 6. The second FMU clock is periodic. It does not lead
to an input activation port, instead it is realized using a Sample-
Clock block.

Note that the Activate FMU block in this case has only
one activation input port. The periodic clock is placed in-
side the diagram and realized by a SampleClock.11 In or-
der to connect this triggered input-clock to other FMUs,
an output clock port is added to the imported FMU block.
This output activation port looks as follows in the Activate
model

The generalization to more mixed triggered-periodic
clock inputs is straightforward to imagine.

11All the SampleClock s in the model are synchronized by the com-
piler, even if they are in different diagrams.
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4.2.1 Example: Periodic clock FMU
This FMU creates periodic clock ticks. The period and
shift time (initial offset time) can be set by the user. The
FMU does not have any regular output ports.

<Clock name="Fixed Periodic clock"
valueReference="4" variability= "discrete"
causality="input" intervalVariability="fixed"
intervalDecimal="1.0" shiftDecimal="0.2"
description="Fixed periodic clock "/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 7.

Figure 7. Importing the clock tick counter with reset FMU in
Activate.

Although the periodic clocks of an FMU have
causality=input attribute, these input clocks can be
connected to other FMUs. For example, input periodic
clock can be connected to triggered input clocks of other
FMUs. In a signal based environement such as Acti-
vate, two input ports cannot normally be connected, due
to causality incompatibility. However, with the way these
FMUs are imported in Activate, this type of connection
becomes natural.

The connection of the counter FMU and the periodic
clock FMU is straightforward now and can be done in Ac-
tivate as shown in Fig. 8.

Figure 8. Connection of the periodic clock FMU to the counter
FMU in the Activate model.

4.3 Aperiodic clocks
In FMI-3.0, a time-based input clock can also be de-
fined as being aperiodic, i.e., changing clock and
countdown clock. At each clock tick (or any event
time for countdown clock), the time instant of the
next clock tick is retrieved by the simulator (if any). This
is similar to the way time events are handled in FMI-2.0,
with the difference that the synchronism is ensured by the
fact that the simulator (the importer) clearly activates the
clock tick. Another difference between the ordinary time-
event and aperiodic clocks is that unlike the time-events,
clock ("input") ports can be connected to the triggered in-
put clocks of other FMUs.

When imported, in the corresponding Activate block,
such an input clock is not represented by an activation in-
put port. Instead, an aperiodic clock (changing clock
or countdown clock) is represented internally by an
input clock and output clock in the central AU block. The
output block is activated by the input clock. This is iden-
tical to the way time-events are handled in Activate. For
example, importing an FMU with an input clock of type
aperiodic results in

The content of this block is shown in Fig. 9.

Figure 9. Importing an FMU with an aperiodic clock in Acti-
vate.

4.3.1 Example: PWM signal generator FMU

This FMU receives a continuous-time signal as input and
creates a PWM (Pulse-Width Modulation) signal. The rate
or the frequency of switching of the PWM is created by a
periodic clock with intervalVariability attribute
set to fixed. The duty cycle of the PWM varies as a
function of the input signal, i.e., at input equal to 0.0, the
duty cycle is 0% and at input equal to 1.0, the duty cycle is
100%. The period and the first tick instant of the switching
(defined by intervalDecimal and shiftDecimal
respectively) are set by the user. In order to create the duty
cycle switchings, a countdown clock is used. At every tick
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of the periodic clock, the next tick of the countdown clock
is scheduled as a function of the input signal value. For the
sake of clarity, the snippet of the C source code is given in
the appendix.
<Clock name="Base PWM Clock" valueReference="1"
causality="input" variability= "discrete"
intervalVariability="fixed"
intervalDecimal="0.1" shiftDecimal="0.0"
description="PWM Clock" />

<Clock name="DutyCycle clock" valueReference="2"
causality="input" variability="discrete"
intervalVariability="countdown"
description="Duty cycle tick clock" />

<Float64 name="Signal" valueReference="3"
causality="input" variability="continuous"
description="input signal" start="0.1"
clocks="1"/>

<Float64 name="PWM output" valueReference="4"
causality="output" variability="discrete"
description="PWM output" clocks="1 2"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 10.

Figure 10. The content of the PWM FMU when imported in
Activate.

4.4 Triggered output clocks
The FMI triggered output clocks correspond to output ac-
tivation ports of the Activate FMU block. For exam-
ple, if the FMI considered previously additionally has a
triggered output clock, the corresponding Activate FMU
block looks as follows in the Activate model

If the output clock is not synchronous with any of the
input clocks, then the corresponding Activate event can
be generated directly by the central AU. See Fig. 11.

Figure 11. The diagram resulting from the import of an FMU-3
having a periodic clock and an asynchronous output clock, for
example a clock triggered by an internal zero-crossing event.

On the other hand, if an output clock is dependent on (is
synchronous with in the Activate terminology) an input
clock, then it cannot be created as the output of the cen-
tral AU. Only two special “blocks” IfThenElse and Switch-
Case output activations are synchronous with their input
activations.

Consider the same FMU again but now assume the out-
put clock is dependent on the first input clock. The dia-
gram can now be realized as shown in Fig. 12. In this case

Figure 12. The diagram resulting from the import of an FMU-3
having a periodic clock and a synchronous output clock.

the activation of the synchronous clock is “signaled” via
an additional output of the central AU. This Boolean sig-
nal has value true if the clock is to be fired. By feeding
this value to an IfThenElse to generate (or not) the corre-
sponding event, the event becomes synchronous with the
corresponding input event (FMU clock).

Session D: Tools, FMI related

DOI
10.3384/ecp193131

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

137



4.4.1 Example: Conditional sampling FMU
This FMU has a triggered input clock, a triggered out-
put clock, and a regular input port. The triggered output
clock is activated synchronously with the input clock, only
if the regular input of the FMU has a positive value. In
this FMU, there is a direct dependency between the output
clock and the input clock and should be handled correctly.

<Float64 name="Condition" valueReference="1"
causality="input" variability="discrete"
description="condition for clock" start="0" />

<Clock name="Input clock" valueReference="2"
causality="input" variability="discrete"
intervalVariability="triggered"
description="Input clock from any source"/>

<Clock name="output clock" valueReference="3"
causality="output" variability="discrete"
intervalVariability="triggered" clocks="2"
description="Clock triggers if Condition>0"/>

This FMU is imported as follows

The content of this FMU is shown in Fig. 13.

Figure 13. The content of the conditional output clock FMU
when imported in Activate to keep the input/output synchronic-
ity.

4.5 Clocked inputs
The FMU-3 input ports can be clocked, i.e., inputs can
be associated with clocks (both input or output clocks).

When the FMU is imported, this information is used in
the central AU to read inputs only when it can be accessed
and is needed. But this information can also be used in the
construction of the imported diagram so that the clock de-
pendency is exposed to the Activate compiler, thus avoid-
ing possible artificial algebraic loops.

Consider, for example, the FMU imported in the di-
agram in Fig. 4 and assume the corresponding Activate
FMU block is used in the Activate model as follows:

If the second input is associated only with the first
clock, there shouldn’t be any algebraic loops in the model
because there is no dependence of the forth output on the
second input when the second activation input is active.
There is no direct dependence in case of the first activation
either. However the compiler does not see the absence of
dependence of the forth output on the second input. This
information is not coded in the topology of the diagram.

To include the dependence of inputs on clocks, the di-
agram can be modified by conditionally blocking the in-
puts based on corresponding clocks. In the above case,
the model can be modified as shown in Fig. 14. The Sam-
pleHold AU is used here to block the second input except
when the block is activated via the first activation port.
Since it is not activated by the second activation, the model
contains no algebraic loop and can be compiled.

Figure 14. The SampleHold is used to provide the information
that the second input is associated only with the first activation.

The dependence of every input on a clock can be coded
in this way in the diagram.

General FMI-3.0s including multiple input and output
clocks of different types can be imported by the system-
atic application of procedures presented above. This is
done by an OML script which reads to content of the FMU
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model-description file (XML) and programmatically cre-
ates the required diagram.

5 Conclusion
In this paper, we showed that in general the import of a
single FMU-3.0 cannot be realized by a single basic block
in signal based block diagram environments such as Sci-
cos and Activate. We examined different FMI clock types
and discussed their properties and in particular their dif-
ferences and similarities with the notions of activation,
events and triggering in block diagram environments. We
showed that there is no systematic one to one mapping of
FMI clocks to block activations but the FMI clock behav-
iors can still be realized. The imported FMU is realized
by a diagram containing multiple basic blocks depending
on the type of clocks.

We presented a systematic process for creating this di-
agram in Activate. This process, which incrementally
builds the imported diagram, may result in a diagram with
a large number of blocks if the FMU has multiple clocks,
and inputs and outputs. But the process is completely
transparent to the user who sees the result as a single Ac-
tivate block.

The import process for the user simply requires placing
an FMU block, available in Activate palettes, inside the
diagram and defining the path to the imported FMU as its
parameter. The FMU block is then automatically instanti-
ated with corresponding number of regular and activation
input, output ports. It can then be used similarly to other
Activate blocks in the construction of the Activate model.
The corresponding internal diagram is created when the
model is compiled. The diagram is not exposed to the user.
It is only used internally for the compilation of the model
and the construction of the compiled structure, which is
used for simulation and code generation. By providing
this FMU import feature, Activate can be used as an envi-
ronment for connecting multiple FMUs (both ME and CS)
to create simulation models, while respecting FMI clock
semantics.
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A Snippet of the C source code of the
FMU in 4.1.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
/* some code here */
if (comp->clki) {

comp->counter = comp->counter+1;
comp->clki = 0;

}
return fmi3OK;

}

fmi3Status fmi3SetClock(fmi3Instance comp,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {
/* some code here */
if (vr[nvr-1] == 4) {

comp->clki = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

B Snippet of the C source code of the
FMU in 4.2.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
if (comp->clki) {

comp->clki = 0;
}
return OK;

}

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {
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/* some code here */
if (vr[nvr-1] == 4) {

comp->clki = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

fmi3Status fmi3GetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
fmi3Float64 intervals[],
fmi3IntervalQualifier qualifiers[])
/* some code here */
if (vr[nvr-1] == 4) {

value[nvr-1] = comp->intervalDecimal;
return fmi3OK;

}
return fmi3Error;

}

fmi3Status fmi3SetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Float64 intervals[]) {
/* some code here */
if (vr[nvr-1] == 4) {

comp->intervalDecimal = value[nvr-1];
return fmi3OK;

}
return fmi3Error;

}

C Snippet of the C source code of the
FMU in 4.3.1

fmi3Status fmi3UpdateDiscreteStates(
fmi3Instance* comp,
/* other function arguments */

) {
if (comp->clkBase) {

comp->output = 1;
comp->clkBase = 0;
{

double uu;
uu= (comp->signal >= 1.0) ?
1.0 : comp->signal;
uu = (comp->signal <= 0.0) ?
0.0 : comp->signal;
comp->duty=comp->period * uu;

}
}

if (comp->clkCoundown) {
comp->output = 0;
comp->clkCoundown = 0;

}
return fmi3OK;

}

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference vr[], size_t nvr,
const fmi3Clock value[]) {
/* some code here */
switch (vr[i]) {
case 1: comp->clkBase = value[i];

break;

case 2: comp->clkCoundown = value[i];
break;

default:
return fmi3Error;

}
return fmi3OK;

}

fmi3Status fmi3GetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
fmi3Float64 intervals[],
fmi3IntervalQualifier qualifiers[])
/* some code here */
if (vr[i] == 1) {

value[ii] = comp->period;
}else{

if (vr[i] == 2) {
qualifiers[ii]=fmi3IntervalNotYetKnown;
if (comp->duty >= 0) {
value[ii]=comp->duty;
if (comp->duty==comp->PreDuty)
qualifiers[ii]=fmi3IntervalUnchanged

else
qualifiers[ii]=fmi3IntervalChanged;

comp->PreDuty=comp->duty;
comp->duty=-1.0;

}
}else{

return fmi3Error;
}

return fmi3OK;
}

fmi3Status fmi3SetIntervalDecimal(
fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Float64 intervals[]) {
/* some code here */

if (vr == 1) {
comp->period = value;
return fmi3OK;

}
return fmi3Error;

}
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Abstract 
This paper describes the implementation of the scenario-

based testing, a test method for autonomous driving 

software, by coupling a plant model described using 

MATLAB/Simulink with another plant model provided 

as functional mock-up unit (FMU) on a cloud platform. 

During the implementation of plant models into the 

cloud environment using the functional mock-up 

interface (FMI), there are problems and countermeasure 

challenges were identified. In addition, the impacts of 

integrating multiple models on simulation time by 

parallelizing test cases are measured. 

 

Keywords:     Model-based Development, Cloud 

computing, Scenario- Based Testing  

1 Introduction 

In recent years, the automotive industry has been at a 

turning point that is characterized by two trends. One is 

the trend toward electrification, and the other is 

intellectualization (Yamada, 2020; dSPACE Japan, 

2013). The trend for intellectualization is a shift of 

technical development from advanced driving 

assistance systems (ADAS), such as automatic 

emergency brake (AEB) systems, to autonomous 

driving (AD) systems.  

As vehicles become more electrified and intelligent, 

an in-vehicle system for controlling components in the 

vehicle gets more complicated. Developing components 

across multiple domains, including electrical, 

mechanical, fluid, and control systems, becomes 

essential, and there was an issue with interfacing 

components from multiple domains on a simulation 

platform. FMI, a standard proposed by the Modelica 

Association, solves this problem.  

There is a solid demand for applying model-based 

development (MBD) to AD system development for 

efficient development and validation. The PEGASUS 

project, a public-private project funded by the German 

federal government, discussed what validation 

environment and methods for AD systems should be. As 

a result, a testing method using MBD tools was 

proposed in the project, what was called “scenario-

based testing” (PEGASUS project, 2019). 

Scenario-based testing is a test method 

characterized by automatic new test case generation 

based on past test results. It is helpful to efficiently 

perform AD system validation with a limited number of 

test workloads by automatically finding test parameters 

that should be intensively tested.  Scenario-based testing 

was also proposed in ISO21448:2022 Road vehicle 

Safety of the intended functionality (SOTIF) for AD 

software safety functionality, which was published in 

June 2022 (ISO, 2022). 

Compared to validating a conventional real-time 

control system such as an internal combustion engine 

control system, the number of test cases for AD system 

validation is still large, even when the scenario-based 

testing method is applied. An AD system validation 

environment needs to manage such a large number of 

tests. 

People expect the adaption of a cloud computing 

environment to be one of the solutions to this challenge. 

In cloud computing, users access computation resources 

via the Internet. On a cloud computing platform, tests 

can be performed in parallel while flexibly increasing or 

decreasing required computing resources depending on 

the number / scale of the tests. 

However, there are few examples using cloud 

computing for system validation using MBD tools, 

although Yamada, Araki, and Tsuzuki reported some 

cases at JSAE 2022 Spring and Autumn Congress 

(Yamada et al., 2022; Araki et al., 2022). 

Based on this background, this paper summarizes 

the challenges faced in integrating multiple plant models 

using a FMU to realize a prototype system for AD 

system verification by scenario-based testing in a cloud 

environment. In addition, we carry out several scenario-

based tests in the environment, and the simulation times 

are measured to compare execution time with and 

without the FMU. Furthermore, we parallelize the 

execution of several test cases, compare the impact of 

parallelization on the simulation time and discuss how 

FMU affects execution time when test cases are 

parallelized. 
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This paper is organized as follows. Section 2 

describes the experimental test system and the models 

to be simulated. Section 3 and Section 4 describes the 

experiment results of the test system execution 

described in Section 2, and the results obtained from the 

experiments, respectively. Section 5 lists challenges 

identified during the experiments performed in Section 

3 and discusses how we can solve challenges. Section 6 

concludes the paper with limitations and future works. 

2 Experimental Environment 

An experimental environment for validating automated 

driving algorithms using FMU in a cloud environment 

was built and tested in the following three steps.   

Our goal in this section is to integrate the plant 

model with a FMU to a cloud environment, which is 

suitable for scenario-based testing.  Section 2.1 

describes a plant model used in simulation and how it is 

integrated to an on-premise simulation environment on 

Microsoft Windows, which was commonly used to 

validate a conventional system so far.  In section 2.2 we 

explain how the plant model, designed to be used on 

Windows, is ported to a Linux environment, which is an 

operating system commonly used in a cloud platform.  

Finally, in section 2.3 we describe how we integrate the 

ported plant model into a cloud simulation environment. 

 

2.1 Plant Model on a Windows PC 

The plant model used for the experiments was 

prepared in an on-premise Windows PC environment, 

which is commonly used today. The simulation model 

was prepared based on ASM Traffic, one of the 

packages in the dSPACE Automotive Simulation 

Models (ASM). ASM Traffic is a model designed to 

simulate roads, traffic, buildings, and in-vehicle sensors 

around vehicles, and is used for validation of AD and 

ADAS electric control units (ECUs).  

This time, ASM in dSPACE Release 2021-A was 

modified in MATLAB / Simulink R2020a to remove 

blocks related to aerodynamics. Functionality 

corresponding to the removed aerodynamic block was 

implemented in OpenModelica 1.19.2 and output as an 

FMU. The output FMU conforms to FMI 2.0 co-

simulation. 

The ASM-modified model and the model created 

in OpenModelica 1.19.2 were integrated using dSPACE 

VEOS, a simulation platform that enables software-in-

the-loop (SIL) simulation on a Windows PC.   

As a controller model, which is a model that should 

be validated in the SIL simulation system, we used Soft 

ECU in this experiment, a simple controller model that 

comes with ASM.  

Figure 1 shows a schematic of the plant model built 

on a Windows PC. Figure 2 shows a screenshot of 

dSPACE VEOS Player when the test environment is 

being built. It can be seen that the I/O from the controller 

model and the plant model are inter-connected. 

 

 

 
 

Figure 1 An overview of Windows simulation 

environment. 

 

 

 
 

Figure 2 An example of simulation configuration in an 

on-premise environment with dSPACE VEOS Player. 

 

2.2 Cross Compiling Models for Linux 

Environment 

Linux is the most common operating system for cloud 

computing environments. In order to integrate the plant 

model in a cloud environment, it was necessary to cross-

compile the model to a Linux environment.  

Simulink, ASM, and VEOS support execution on 

Linux, and a FMU generated from OpenModelica also 

claims to support Linux.  Cross-compilation of the plant 

model to a Linux environment was performed without 

major problems. However, since operating system is 

different, it was necessary to check whether there is any 

difference in simulation results between the Windows 

environment and the Linux environment. 

In this paper, Ubuntu 18.04LTS was used as Linux. 

Figure 3 shows the plant model that was built on a Linux 

environment. 

 

 

Simulation Platform (VEOS)

OS (Windows)

ModelSoft

ECU

Automotive

Simulation

Model
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Figure 3 An overview of Linux simulation 

environment. 

 

2.3 Plant Model Integration in Cloud 

Environment 

In the cloud environment, we used dSPACE 

SIMPHERA version 22.4, which is an environment for 

SIL simulations running on various cloud platforms 

such as Microsoft Azure. Taking advantage of the 

features of cloud computing, which can secure 

computing resources in a scalable and flexible manner, 

the tests are distributed and executed in parallel on 

multiple computation nodes, enabling the execution of a 

huge number of tests, such as those for autonomous 

driving applications. Figure 4 illustrates an overview of 

simulation environment on a cloud. 

 

 

 
 

Figure 4 An overview of the simulation environment in 

the cloud. 

 

SIMPHERA is developed as a Kubernetes cluster 

in a cloud environment. Kubernetes is an open source 

container orchestration software that is widely used. 

Container orchestration is automation of container 

deployment, management, scaling, and networking.  

The SIMPHERA system is composed of open 

source software (OSS) built on a Kubernetes cluster and 

software from dSPACE. As OSS, MinIO, an object 

storage server compatible with Amazon S3 cloud 

storage service, is used for storage management, 

PosgreSQL, a relational database management system, 

is used as a database for input and result data, and 

Keycloak, personal authentication and access 

management software,  is used for WebUI login 

management. 

On the other hand, dSPACE software includes 

SIMPHERA execution agent, which is equivalent to an 

application execution unit that executes jobs for each 

parameter to compute scenario-based tests in parallel.  

dSPACE VEOS runs as simulation software for 

scenario-based testing in SIMPHERA execution agent. 

The SIMPHERA system configuration diagram is 

shown in Figure 5. 

 

 

 
 

 Figure 5 System overview of dSPACE SIMPHERA 

 

In this study, the private cloud environment shown 

in Table 1 was prepared and SIMPHERA was built on 

this private cloud environment. 

 

 
 

3 Scenario Definition 

Using the experimental environment in which the plant 

model was implemented in SIMPERA on the cloud 

environment as described in Section 2.3, simulations in 

the scenario-based test were performed with different 

parallelism levels for models with and without FMU, 

and the relationship between parallelism and execution 

time was measured.  

The scenario used in the scenario-based test was 

the United Nations Economic Commission for Europe 

(UNECE) Automatic Lane Keeping System (ALKS) 

Cut-In Driver. This is a validation scenario for the 

Simulation Platform (VEOS)

OS (Linux)

ModelSoft

ECU

Automotive

Simulation

Model

Simulation Platform (SIMPHERA)

Model

FMI

A Cloud Platform

Remote

Storage

Soft

ECU

Automotive

Simulation

Model

Table 1 Specifications of Private Cloud. 

 

 loud Specification 

CPU 28 logical cores 

Memory 48GB 

Storage 512GB 

OS Ubuntu 20.04LTS 
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ALKS when another vehicle, traveling in adjacent lane, 

changes to the own lane. 

In Figure 6, an illustration of the UNECE ALKS 

Cut-In Driver scenario and the definition of each 

parameter are shown. 

 

 

In this experiment, the speed of the ego vehicle 

(Ve0) was varied from 50 km/h to 51 km/h for all two 

cases of testing. The scenario parameters used in the 

experiment are shown in Table 2. 

 

In SIMPHERA, the WebGUI shown in Figure 7 was 

used to implement visually easy-to-understand settings 

for the above parameters. 

 

 

 

 

Figure 7 An example of simulation configuration in a 

cloud environment with dSPACE SIMPHERA. 

 

4 Experimental Results 

Simulations were performed on SIMPHERA for a 

model linking ASM and FMU and a model of ASM 

alone, changing the parallelism from one to two parallel 

jobs for all two cases of scenario-based testing, 

respectively, and the execution times were measured. 

Parallelism is the maximum number of jobs that can be 

executed simultaneously on SIMPHERA and is one of 

the parameters that can be given to the execution 

environment by the user. 

When the parallelism level was set to 1, the 

execution time of the ASM stand-alone model was 68.7 

[sec], while the execution time of the model linking the 

ASM and FMU was 70 [sec]. When the parallelism was 

set to 2, the execution times were 35.7[sec] and 

36.3[sec], respectively. Figure 8 shows the experimental 

results. 

The results show that the execution times of the ASM 

stand-alone model and the model linking the ASM and 

FMU were almost the same. 

In addition, when the parallelism level was 

changed from 1 to 2, the computation time was inversely 

proportional to the parallelism level and almost halved. 

Experimental results are shown in Figure 8. 

 

 
 

Figure 8 Duration time depending on the degree of 

parallelism 

 

In the case of the model in which ASM and FMU 

are linked, the computation time may increase compared 

to the ASM stand-alone model due to overhead caused 

by communication between cores and overhead caused 

by communication between ASM and FMU, etc.  

However, since the computation time for the 

overhead has not increased even if the parallelism level 

is increased  The overhead due to the parallelism and 

communication between the ASM and the FMU are 

 
 

Figure 6 UNECE ALKS Cut-In Driver Scenario and 

Parameters. 

Table 2 Scenario, parameters. 

 

Scenario UNECE ALKS Cut-In 
Driver 

Parameter 

variation type 

Cross Variation 

dx0 11 m (Fix) 
Ve0 50 ~ 51 km/h (Δ = 1 

km/h) 
Vy 3 m/s (Fix) 
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confirmed as not increased as the overhead due to the 

communication between the ASM and the FMU. 

The reasons for the almost no difference in 

computation time between the model linking ASM and 

FMU and ASM can be attributed to the fact that the 

FMU model created and used for this study is stand-

alone and lightweight, and that the overhead in linking 

the ASM and FMU models on dSPACE VEOS used for 

the simulation was small. The reasons for the difference 

are considered to be the following. 

5 Challenges Identified during the 

Experiment 

During the experimental environments and its execution, 

we identified some challenges.  In this section we 

attempt to list up the challenges faced to the trial. 

5.1 Challenges on Operating System 

Migration 

Prior to the plant model construction on a Windows PC 

described in section 2.1, we had created an FMU using 

OpenModelica 1.18.1. However, when the FMU output 

from OpenModelica 1.18.1 was to be run in a Linux 

environment, additional software libraries specific to the 

Linux environment had to be installed.  

The software libraries that needed to be installed 

additionally are, for example, liblapack.so. Other 

software libraries that were additionally required are 

shown in Talbe3. 

 

 
 

However, this issue has been resolved in 

OpenModelica 1.19.2, and additional libraries are pre-

installed in the FMU. In this experimental environment, 

there was no need to install additional software libraries. 

In an on-premise environment, the installation of 

libraries may not be so much of a problem because the 

person who performs the simulation often has 

administrative privileges, but in a cloud environment, 

where many users are supposed to use the system, it is 

rare for the user to have administrative privileges, and it 

is difficult to install additional software libraries. 

Additional installation of software libraries is difficult 

and should be done with caution. 

 In addition, non-compatibility of measurement and 

calibration software with Linux may also be an issue. 

Software for measurement and on-line calibration of 

simulation results after the simulation environment has 

been built also requires attention. Although many 

companies provide measurement and calibration 

software that can be used on-premise, most of them are 

Windows versions, and the same software may not be 

available for Linux and cloud environments. On the 

other hand, some software, such as dSPACE 

ControlDesk, is designed to work with simulation 

environments in the cloud. 

 

5.2 Challenges arising from the use of FMUs 

In this study environment construction, we faced some 

issues specific to the use of FMI/FMU that are likely to 

occur regardless of whether the system is used in the 

cloud or not. Many of these are described in the FMI 

guidelines published by the Society of Automotive 

Engineers of Japan (JSAE), but are listed again in this 

section. The main issues faced were that "the FMU end 

time setting is contained within the FMU" and "a bus 

cannot be specified as the interface of the FMU. 

First, the FMU end time settings are contained in 

the FMU, and any attempt to modify them requires 

direct editing of the files contained in the FMU. 

Otherwise, the operation of the FMU may be stopped 

unintentionally by the user, independent of the operation 

on the simulation platform. 

Next, it is noted that buses cannot be specified for 

FMU interfaces; only arrays defined by a scalar value or 

a set of scalar values of the same type can be used to 

describe interfaces between FMUs and their externals. 

The interface between the FMU and the external model 

can use variables of various types, preferably in the form 

of structures in high-level programming languages or 

buses in Simulink. 

However, the FMI2.0 specification used in this 

study does not support the connection between FMU 

and external models using these types and buses, and it 

is necessary to separate signal lines that are grouped into 

buses and connect them one by one. This leads to an 

increase in man-hours required to connect models, 

especially when connecting huge models. Regarding 

this issue, it is highly likely that FMI3.0 solves this 

problem; future research on experiments using FMI3.0 

is expected. 

6 Concluding Remarks 

In this study, we performed scenario-based test jobs for 

validating autonomous driving algorithms using FMU 

in a cloud environment with different degrees of 

parallelism, evaluated the performance of parallel 

computation, and compared the computation time with 

and without model linkage between ASM and FMU. 

Table 3 External libraries referenced by FMU. 

 

External Libraries 

liblapack.so.3 

libblas.so.3 

libgfortran.so.5  

libquadmath.so.0  
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The results show that the calculation speed 

increases with the degree of parallelism even when the 

model linking ASM and FMU is used. In addition, we 

examined the point where there is no significant 

difference in computation time between ASM and 

FMU-linked models and ASM and the reasons for this 

difference. 

 

6.1 Future Works 

In this study, we evaluated the performance of scenario-

based tests for validating automated driving algorithms 

in a private cloud environment by varying the 

parallelism of the jobs. Since we have not yet conducted 

parallel computation in a public cloud environment, 

where computing resources can be flexibly changed, it 

remains to be seen whether the trend of results differs 

between the two environments and whether the 

bottleneck changes. 

Also, we evaluated the performance of the 

scenario-based test for validating the automatic driving 

algorithm using FMUs when the test was run in parallel.  

We compared the computation time with and 

without FMU collaboration. In this study we used a 

single FMU and a small-scale model.  What will happen 

when multiple or large-scale FMUs are used, and how 

we dealing with them will be the subject of future 

research. 

 

References 
K. Araki, K. Tsuzuki, and T. Yamada (2022): Simulation 

Performance for Scenario-based Testing in a Cloud 

Environment, 2022 JSAE Annual Congress Autumn 

(written in Japanese). 

dSPACE Japan (2013): Model-based Development, Nikkei 

BP (written in Japanese). 

ISO (2022): ISO21448:2022 Road vehicles -Safety of the 

intended functionality, available at 

https://www.iso.org/standard/77490.html, accessed on 19 

Sept 2022. 

PEGASUS Project (2019): PEGASUS Method – an Overview, 

available at https://www.pegasusprojekt.de/en/home, 

accessed on 19 Sept 2022. 

T. Yamada (2020): Model-based Development, Technology 

Roadmap 2021-2030 Automotive and Energy, Nikkei BP, 

p. p. 236 – 239 (written in Japanese). 

T. Yamada, K. Araki, and K. Tsuzuki (2022): Challenges and 

Countermeasures in Using FMUs to Perform Scenario-

based Testing, 2022 JSAE Annual Congress Spring 

(written in Japanese). 

 

 

[Industrial Paper] Performance Measurement and Finding Challenges in Using FMUs to Perform
Scenario-Based Testing in a Cloud Environment

146 Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

DOI
10.3384/ecp193141



Simulation Scheduling of Variable-Structure Systems in
OpenModelica

Rahul Paknikar1 Nikhil Sharma2 Priyam Nayak2 Kannan Moudgalya2 Bhaskaran Raman1

1Department of Computer Science and Engineering
2Department of Chemical Engineering

Indian Institute of Technology Bombay, Mumbai, India
e-mail: kannan@iitb.ac.in

Abstract
We propose and implement a generic scheduling frame-
work for OpenModelica to eliminate the simulation code
corresponding to inactive components in a system-level
model. This framework allows the model developer to
auto-generate models corresponding to the discrete be-
havior of the underlying system, and then schedule their
simulations. It also provides a Scheduler library in
the Modelica language to help the model developer eas-
ily generate the schedule. The benefit of this approach
is demonstrated with and without real-time simulations of
a batch distillation system. The proposed approach also
helps implement a sequential modular simulation to arrive
at initial guesses for flowsheets, whose equations can then
be solved simultaneously using the standard, equation-
oriented, approach of Modelica.
Keywords: Schedule, OPC UA, OpenModelica, Batch dis-
tillation, Steady-state, Variable-structure modeling, Se-
quential modular simulation

1 Introduction
The ability to model discrete behavior is an important re-
quirement in industrial systems, even in continuous plants,
such as refineries. The reason is that these plants also need
to be cold started and shut down in case of emergencies.
Unless startup and shutdown procedures are clearly un-
derstood, one cannot even take the lab-scale discoveries
to the plant level for manufacturing. Hence, the ability to
correctly model discrete behavior is an important require-
ment.

System-level modeling of a huge and complex system
has become a common methodology for system engineer-
ing design (Pop et al. 2019). Such modeling can include
several hierarchies of subsystems and a large number of
components. Most general-purpose simulators broadly
fall into one of the following three categories based on
the way they process the information in the system under
simulation: discrete event, continuous, and hybrid, i.e., a
combination of the continuous and discrete-event simula-
tion.

The simulators treat the system-level modeling as a
single unit for efficient compilation to generate the sim-

ulation code and run the simulation itself. That is, the
system-level modeling design is no longer preserved, and
all its hierarchy and components are compiled and simu-
lated entirely. A similar software framework is observed
as a part of the typical process of translation and execu-
tion of a system-level model in most of the Modelica tools
(Fritzson 2014), including the open-source OpenModelica
compiler (Pop et al. 2019). Such frameworks can lead to
the compilation and simulation of inactive subsystems and
components, leading to some difficulties.

In order to address the main issue of constantly run-
ning simulation code that is not required, we propose a
generic scheduling framework. It describes the discrete
behavior of the system to be modeled in terms of a sched-
ule. This framework also helps schedule their simulations
(Section 2). Section 3 discusses the related work within
and outside the Modelica context. In Section 4, we present
a prototype developed for this framework that lever-
ages the OpenModelica Simulation Environment (Fritz-
son et al. 2020) along with a Modelica library called
Scheduler. Sections 5 and 6 demonstrate the bene-
fits of the proposed approach in a batch distillation col-
umn and process flowsheeting, respectively. The last sec-
tion is devoted to the conclusion and future work. In
our work, the system-level modeling primarily involves
variable-structure systems.

2 Scheduling Framework
To understand the motivation behind this work, let us con-
sider the following example. Consider the cold startup of
an overflow tank connected to a pumped flow tank, as
shown in Figure 1. Initially, there is no liquid in both
tanks. Until the liquid level rises in the first tank to the
level of the outflow line, there can be no liquid in the sec-
ond tank. Without the liquid, starting the pump will dam-
age it. In addition, suppose that we have to calculate the
liquid density in the second tank. Unless suitable precau-
tions are taken, there could be difficulties in the calcula-
tion because of the zero volume of the liquid. There are
three different ways to handle this situation:

1. Noticing zero volume in the tank, do not calculate the
density nor implement any calculation that requires
density.

DOI
10.3384/ecp193147

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

147



Figure 1. System-level model of two interacting tanks

2. Assume that there is always a small amount of liquid
present in the second tank and calculate the density.

3. Do not even attempt to simulate the second tank until
the liquid starts coming from the first tank.

The first approach increases the load on the model de-
veloper. They must anticipate all the different ways the
modeling assumptions can be violated and take corrective
actions. The second approach results in erroneous calcu-
lations, however small they may be.

The above two approaches necessitate solving all sub-
systems, including the inactive ones. This approach is
not acceptable if the objective is to do minimal model-
ing, such as arriving at the initial guess of a large num-
ber of model equations by solving a few equations at a
time, as explained in Section 5. The advantage of the min-
imal modeling approach is that it does not require setting
up initial guesses for inactive models. The third approach
does not have the difficulties mentioned above, provided
we have the capability to simulate at the correct time. In
this work, we attempt to create this capability to simulate
only the required models.

2.1 Schedule for System-Level Modeling
The active components or subsystems of a system can be
effectively determined through its discrete behavior. The
same can be modeled through discrete events in terms of a
schedule. Thus, the model developer constructs a schedule
of dependent tasks and events for system-level modeling.
An event indicates a condition based only on the currently
scheduled task. It specifies the next task to be scheduled
when the event triggers. I.e., the condition is satisfied.
Note that the condition can involve just the simulation
time so that it does not constrain the variable-structure
model to generate events from its state. A task can include
a set of components, subsystems, or several systems. It
will be simulated only when activated based on the target
of the event associated with the currently scheduled task.
From the above description, the following are the observed
properties of any schedule for system-level modeling:

• An event is associated with only one task and spec-
ifies only one task to be scheduled next. A task
can have several events associated with it, which can
schedule only one of the several next tasks depending
on the order of the events being triggered.

Figure 2. Generic Workflow for Simulation Scheduling

• The schedule turns out to be a directed and connected
graph with an alternate sequence of tasks and events.
Each node in such a graph represents the pair of a
task and its associated events. The worst-case sched-
ule can be a complete graph.

• The graph can have backward and forward edges
with respect to a node. However, there is no self-
loop back to a node as it has no practical significance
and can be handled within the node itself.

• This graph is compliant with control workflow pat-
terns (Russell, Van Der Aalst, and Ter Hofstede
2016) such that only one node gets activated at any
point of simulation time, and the directionality be-
tween the nodes is preserved. As analyzed from the
first property, the possible control patterns include
unstructured loop, sequence, exclusive choice, and
simple merge. These patterns are considered for im-
plementation in Section 3.

2.2 Simulation Scheduling
Figure 2 shows the generic simulation scheduling once
the model developer provides the system-level model and
its schedule. The scheduling engine is an intermediate
layer between the system-level modeling and the under-
lying simulation tool. The engine parses the model and
simulates only the first task based on the schedule pro-
vided. The events associated with the task are monitored
to evaluate their conditions. If any of them is satisfied,
then the corresponding event gets triggered. The engine
then simulates the next task in the schedule from the point
in simulation time where the previous task left. The pro-
cess repeats until the end of the entire simulation time.

The above framework descriptions and schedule prop-
erties divide the system-level modeling into discrete parts
of the components or subsystems. Thus, it also divides
the single continuous simulation into multiple but efficient
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smaller and faster simulations of tasks. The efficiency
is achieved in terms of smaller executable code size and
lesser memory requirements for each task when compared
to the entire simulation done with existing frameworks.
The same is noticeable from the demonstration discussed
in Section 6. Otherwise, it can waste CPU cycles as the
data can keep on shuffling between the CPU cache and
the RAM (Pop et al. 2019). As only one task will be sim-
ulated at any given point of the simulation time, the goal
is thus achieved by not simulating the rest of the inactive
tasks. Therefore, the unnecessary running of the simu-
lations for the inactive tasks is prevented, which anyway
will not impact the simulation of the current task.

The framework is independent of the underlying sim-
ulation tool and the modeling language it uses. As a re-
sult, it also permits real-time and interactive simulations
and does not require any rework of the existing simulation
tools. Note that the interactive simulation here indicates
that one can interact with the model during its simulation
by monitoring and optionally modifying the state of the
model as per the requirement.

3 Related Work
There is no native support, nor is there any Modelica
tool that provides a generalized extension or framework of
the type described here, suitable for all domains (Casella
2019; Jack 2020). Nevertheless, there are attempts at
variable-structure modeling similar to the proposed simu-
lation scheduling workflow (Briese 2018; Mehlhase et al.
2014; Stüber 2017). Stüber (2017) further discusses sev-
eral implementations and their drawbacks. They use spe-
cialized forms of the proposed generic simulation schedul-
ing workflow suitable for their applications. One ap-
proach common to all of them involves either the re-
implementation of their existing models or manual work
for generating models with different structures and ex-
ploiting the functionalities of proprietary tools. Also,
none of these related works exhibits real-time and interac-
tive simulation capability. Apart from these application-
specific implementations, there is a need for sequential
modular simulation in OpenModelica (Casella 2021). It
also indicates that no such related generalized work has
been done for OpenModelica.

Outside the Modelica context, the following are the
prior work that attempts to have similar modeling capabil-
ities that we have proposed but simulate as per the existing
framework.

The special-purpose and open-source Ngspice circuit
simulator (Vogt et al. 2021) partially avoids running simu-
lation code that is not required. The components in the cir-
cuit are mapped to a C function through its XSPICE exten-
sion. As a result, the C function gets invoked only when
the signal reaches the corresponding component. How-
ever, this behavior is applicable only for the digital com-
ponents, while the analog simulation of all components is
still running even though they may not be required.

A proprietary and general-purpose simulator, GoldSim,
has conditional containers similar to the conditional task
scheduling in our engine. However, it still keeps on con-
stantly running the code in idle mode for those compo-
nents that are not required (GoldSim Technology Group
2022). Similar functionality is observed with the general-
purpose AnyLogic simulation software (The AnyLogic
Company 2022) and gPROMS (Process Systems Enter-
prise Ltd. 2004), a special-purpose simulator focused on
chemical processes. Another proprietary but discrete-
event simulator, FlexSim, has conditional task functional-
ity. However, again, the components still keep running and
remain idle as described in their tutorial (FlexSim Soft-
ware Products, Inc. 2022).

Another application of variable-structure modeling,
which has received great attention, is the simulation of the
reconfigurable manufacturing system (RMS) that implies
a change in the factory structure. K et al. (2019) and Herps
et al. (2022) demonstrate the simulation of their proposed
manufacturing processes using FlexSim and AnyLogic re-
spectively. However, as mentioned earlier, both software
keeps executing the conditional elements even if they are
redundant. Kahloul, Bourekkache, and Djouani (2016)
use reconfigurable object Petri nets to model and simulate
RMS. It has system-level nets that involve fire and trans-
form transitions and a set of morphisms. It allows chang-
ing between the object net markings and structures corre-
sponding to each configuration. Although this modeling is
similar to the work described here, their entire RMS rep-
resentation is simulated as a single model. It thus loses
the benefit of an already discretized model and the scope
to avoid running redundant simulation code.

The FMI standard in terms of System Structure and Pa-
rameterization (Modelica Association Project SSP 2019)
and Distributed Co-Simulation Protocol (Modelica Asso-
ciation Project DCP 2019) may possibly be exploited to
achieve the goal of our work. These co-simulation stan-
dards, which are out of the scope of this work, shift ef-
forts from simulation run-time (scheduling framework) to
simulation configuration time. However, as the discrete
behavior of the system can be known at run-time, one has
to additionally anticipate different scenarios with variable
structures and generate them only at configuration time.

4 Implementation of Scheduling
Framework for OpenModelica

The primary goal of our work is to run only the simula-
tion code that is required. In the simulation context and
to the model developer, it indicates that the subsystems or
components are to be simulated only when activated, i.e.,
lazily simulated. As mentioned earlier, our implementa-
tion is based on the Modelica language. The systems are
modeled using equations in this language and require all
equations to be solved simultaneously during the entire
simulation. The goal, hence, boils down to preventing un-
necessary solving of the equations governing the behavior
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Figure 3. Structure of the Scheduler library shown in
OMEdit - OpenModelica Connection Editor

(a) Task Interface

(b) Event Interface

Figure 4. User interfaces for Scheduler library’s important
blocks as shown in OMEdit - OpenModelica Connection Editor

of inactive components or subsystems.
The overall prototype implementation has two parts.

The first one is only the creation of the schedule for the
variable-structure model using the Scheduler library
without any need to re-implement the model. The sec-
ond one is the simulation scheduling using an engine that
leverages the OpenModelica Simulation Environment.

4.1 Scheduler - Modelica Library
For the model developer to construct the schedule con-
sisting of tasks and events, we have developed a library,
called Scheduler, in the Modelica language itself. Fig-
ure 3 shows its structure in OMEdit, the OpenModelica’s
connection editor. The Task and Event classes corre-
spond to the schedule’s task and event discussed in Sec-
tion 2, and their user interfaces are shown in Figure 4.
The InitialTask class is the same as the Task class,
except that it indicates the start of the schedule. The
ScheduleRoot class requires the model developer to
specify the top-level model in the hierarchy of system-
level modeling and the general simulation parameters ap-
plicable to all the tasks in the schedule. The schedule
must have an instance of this class. The Interfaces

sub-package provides the desired abstraction to the above-
mentioned classes and is not meant to be used directly.

The classes in the Scheduler library themselves are
available as components, which the model developer can
drag and drop in OMEdit, and also write the Modelica
code to connect the tasks and events. As shown in Fig-
ure 4, the model developer has to provide a list of compo-
nents or subsystems for each task along with the package
name to find these components. There is also a provision
to specify compilation and simulation flags in addition
to those mentioned in the instance of ScheduleRoot
class. These flags will be applicable only to that task. The
event condition needs to be specified for all the events in
the schedule. The schedule can be created within the top-
level model, i.e., in the same file as the top-level model or
outside it as a separate file having the name as Schedule
within the same package.

4.2 Scheduling Engine
As discussed earlier, there is no native support in Modelica
for scheduling. So, the implementation of the scheduling
engine needs to be outside the Modelica context, which
we have done in Python language. The scheduling en-
gine requires only the system-level model and the sched-
ule to be provided by the model developer. It is an ad-
ditional layer between the user’s system-level model and
OpenModelica. That is, it runs on top of the OpenModel-
ica compiler (OMC) in an interactive mode and is loosely
coupled to OMC. It leverages OMC’s ZeroMQ communi-
cation interface through OMPython to take over the typ-
ical compilation and simulation process in OpenModel-
ica. OMPython is a part of the OpenModelica Simulation
Environment and acts as a Python interface to communi-
cate with OMC. The provided schedule is parsed indepen-
dently of OpenModelica per the scheduling framework. It
then distributes the system-level model into several sets of
active subsystems or components preserving the connec-
tions between them, where each set corresponds to a task
in the schedule. As a result, it automatically generates all
the models corresponding to each task on behalf of the
model developer.

The scheduling technique used by the engine is sim-
ilar to the next-event scheduling used commonly in the
discrete-event simulation. That is, when each event is
set up, it creates (schedules) the next procedure (task and
event). Following this scheme, only the initial task to be
run first is compiled and then simulated. The events as-
sociated with the initial task are monitored to evaluate the
corresponding conditions. The next task in the schedule
is activated when one of these events gets triggered. If the
event condition gets satisfied immediately upon the start of
task simulation, then the task simulation is terminated im-
mediately without consuming any further simulation steps
and the next task gets scheduled. The next task is com-
piled and then simulated by transferring the end results of
the previous task to the next. This transfer of end results
ensures the continuity of the state from where the previous
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task left. It acts as initialization conditions for the next
task, by overriding the default ones provided by the model
developer within the model itself. If any other additional
information is not present in the previous or the next task,
then the model developer can still provide it using suitable
OpenModelica simulation flags applicable to that task. An
example of specifying additional information to initialize
the tank height with 5 units is shown in Figure 4 (a). The
above entire process is repeated until the end of the entire
simulation time.

The monitoring of events and evaluation of the associ-
ated conditions is achieved through the OPC UA server
implementation in OpenModelica (henceforth referred to
as the server). OPC UA is an interoperability standard
in industrial applications. The server is suitable for in-
teractive simulation in real-time as well (Kumar et al.
2021). The next section also illustrates the same using
the scheduling framework. Note that the interactive sim-
ulation through OPC UA does not involve any kind of
visual interface or animation, and is out of the scope of
the work described here. The scheduling engine acts as
the OPC UA client and simulates each task with an em-
bedded server. The event monitoring process leverages
the publish-subscribe model of the server. The process
variables (PV) and the manipulated variables (MV) in the
event conditions are subscribed for notifications by the
scheduling engine. As a result, simulation time is saved
by not polling continuously for the changes in PV and MV
over the OPC UA client-server configuration.

As observed from the above engine implementation, the
compilation and simulation of each task are done just in
time. That is, the tasks are compiled and simulated only
when they are required. Note that there are no repeated
compilations of the same tasks. The very first compiled
tasks are reused again with a different context whenever
required. It is possible to manually create the model corre-
sponding to each task, compile them and then use them for
manual scheduling. However, it is not feasible and error-
prone when the complexity of the system and schedule
scales up. Thus, the automatic distribution of the system-
level model and simulation scheduling is more efficient
than the manual work for the model developer. The impor-
tance of the problem attempted in this work and the usage
of the proposed framework through the above implemen-
tation is illustrated through two engineering examples, to
be presented next.

5 Batch Distillation System
In this section, we explain how the proposed framework
helps reduce the computations in the operation of the
batch distillation column (Figure 5) studied by Kumar et
al. (2021) using an OpenModelica OPC UA client-server
configuration. In this example, a feed stream contain-
ing three chemicals is separated into pure components.
Sharma, Moudgalya, and Shah (2021) operate the opening
and closing of the valves through the StateGraph library

Figure 5. Batch distillation system for ternary mixture with
product and slop cuts

Figure 6. Schedule of the batch distillation system using
Scheduler library

(a) InitialTask: Batch dis-
tillation column with no distil-
late withdrawal

(b) Task1: Batch distillation
system with Product-1 collected
in Tank-1

(c) Task2: Batch distillation
system with Slop-1 collected in
Tank-2

(d) Task3: Batch distillation
system with Product-2 collected
in Tank-3

Figure 7. Task-wise sequence of active components of batch
distillation system simulated through the scheduling framework

in OpenModelica, which obviates the need for event con-
structs such as if-else and when statements. All com-
ponents of the batch distillation system are simulated si-
multaneously in both approaches, irrespective of whether
they are active or not.

The batch distillation system with the product and
slop scheduling in different tanks is modeled through the
Scheduler library. The inlet valves of the product and
slop tanks are controlled according to the purity levels ob-
tained in the distillate. This depends on the mole frac-
tion of components in the distillate and reboiler, respec-
tively. Figure 6 shows the sequence of events and tasks
to be simulated on the occurrence of a particular time or
state event or both. This schedule is created in OMEdit
by drag and drop of five instances of Task class, four in-
stances of Event class, and one mandatory instance of
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ScheduleRoot class. It is defined outside the top-level
model of the batch distillation system (Figure 5) in a sep-
arate file but within the same package. Figure 7 shows the
sequence of subsystems corresponding to the simulated
tasks as per the schedule shown in Figure 6.

Listing 1. Illustrative Modelica code for top-level model of
batch distillation system

model BatchDistillation
DistillationColumn Column;
Valve Valve1, Valve2, Valve3, Valve4;
Tank Tank1, Tank2, Tank3, Tank4;

equation
connect(Column.outflowProduct1, Valve1.

inflow);
connect(Valve1.outflow, Tank1.inflow);
connect(Column.outflowSlop1, Valve2.

inflow);
connect(Valve2.outflow, Tank2.inflow);
connect(Column.outflowProduct2, Valve3.

inflow);
connect(Valve3.outflow, Tank3.inflow);
connect(Column.outflowSlop2, Valve4.

inflow);
connect(Valve4.outflow, Tank4.inflow);

end BatchDistillation;

Listing 2. Illustrative Modelica code for InitialTask

model BatchDistillation
DistillationColumn Column;

end BatchDistillation;

Initially, the batch distillation system is operated at to-
tal reflux with no distillate taken out of the system. In this
condition, the valves and tanks connected to the batch dis-
tillation column are idle. So, the initial task is operated
only with the batch distillation column present, and all
other components are excluded as shown in Figure 7 (a).
This corresponds to the InitialTask of the schedule
in row 1 of Table 1. The scheduling engine parses this
task by removing all of the components and their con-
nect equations, except the batch distillation column, from
the Modelica code shown in Listing 1. It communicates
with OMC interactively through OMPython to achieve the
same. Listing 2 shows the illustrative Modelica code for
the resultant model after parsing InitialTask.

The communication involves sending commands, that
invoke the appropriate scripting API available in Open-
Modelica, and receiving the status of the command. As
mentioned earlier, the communication is done in the form
of client-server configuration over the ZeroMQ interface,
where the scheduling engine acts as the client and OMC
as the server. In this way, the scheduling engine automati-
cally generates the model for InitialTaskwithout any
manual intervention of the model developer. This model
is kept in memory until it is compiled, but it can also be
dumped into a separate file for the model developer’s ref-
erence.

Once the model corresponding to InitialTask is
generated, it is compiled and its simulation is started by
embedding an OPC UA server with its executable. The

same is already demonstrated by Kumar et al. (2021). This
embedded OPC UA server allows the scheduling engine
to monitor the first event (event1). As soon as the event
condition being satisfied is detected, the scheduling engine
sends another command to gracefully terminate the simu-
lation. It, in turn, saves InitialTask’s current state in
the form of a result file. It can be visualized in OMEdit
by selecting the desired variables in its interface. The end
results from this result file act as the initialization condi-
tion for Task1. The model generation, compilation, and
simulation for the rest of the tasks are done in a similar
manner as InitialTask.

When the desired purity of the lighter component is
achieved in the distillate, Valve-1 is opened, and the prod-
uct is collected in Tank-1. Accordingly, the next task
is scheduled with the corresponding event condition that
activates the Valve-1 and Tank-1 and is shown in Fig-
ure 7 (b). This corresponds to Task1 in Table 1. The
initialization of this task is done with the transfer of end
results (state) from InitialTask. Note that the initial-
ization condition for the distillation column gets overrid-
den here as only its state information is present in the sim-
ulation of InitialTask. Thus, the initialization condi-
tion for Tank-1 and Valve-1 falls back to the default one
already described within the model itself.

In the next task of the schedule, as the purity of the first
component decreases below the desired level in the distil-
late, Valve-1 is closed. So, both Valve-1 and Tank-1 no
longer need to be solved in the simulation and hence are
removed. Simultaneously, Valve-2 is opened, and distil-
late goes to Tank-2 as slop cut, an undesirable product,
and is shown in Figure 7 (c). This corresponds to Task2
in Table 1. Similar to the previous case, the initialization
for this task is done only for the distillation column with
the state from Task1.

When the desired purity of the second component is
achieved in the distillate, it is collected in Tank-3. Cor-
respondingly, Valve-3 is opened, and Valve-2 and Tank-2
are removed from the simulation as shown in Figure 7 (c).
This corresponds to Task3 in Table 1. Similar to the pre-
vious cases, the initialization for this task is done only for
the distillation column with state from Task2.

When the purity level of the second component de-
creases below the desired level in the distillate, the next
step is collecting the slop in Tank-4 until the third com-
ponent reaches the desired purity in the reboiler. As seen
in Figure 9 the purity of the third component reaches de-
sired level well before the distillate is collected in Tank-4.
Hence, Valve-4 is never opened, and so Task4 is never
compiled and simulated.

Figure 8 shows the moles of product and slops in the
batch distillation system. Figure 9 shows the mole frac-
tions of component-1 and component-2 in distillate, and
component-3 in reboiler. These results obtained using
the scheduling framework are the same when performed
with and without real-time simulations. The setup for the
real-time simulation and the above results are identical to
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Table 1. Task-wise distribution of units for the batch distillation
system simulated through the scheduling framework

Task (as
per the
schedule)

Active
Units
(simulated)

Inactive
Units (not
simulated)

Corres-
ponding
Figure

Initial
Task

Distillation
column

All valves
and tanks

Figure 7 (a)

Task1 Distillation
column,
Valve-1 and
Tank-1

Valve-
2,3,4 and
Tank-2,3,4

Figure 7 (b)

Task2 Distillation
column,
Valve-2 and
Tank-2

Valve-
1,3,4 and
Tank-1,3,4

Figure 7 (c)

Task3 Distillation
column,
Valve-3 and
Tank-3

Valve-
1,2,4 and
Tank-1,2,4

Figure 7 (d)

Figure 8. Moles of distillate collected in tanks

those described by Kumar et al. (2021) using Raspberry
Pi performing real-time simulation in OpenModelica. The
only difference in the setup is that the controller here is
within the batch distillation model instead of Raspberry
Pi. Furthermore, the results here are in agreement with
the simulation results done using the StateGraph library
by Sharma, Moudgalya, and Shah (2021).

Table 2 compares the number of equations solved by
the previous methods with the current scheduling frame-
work for each task. Instead of solving the entire flowsheet
containing the distillation column, four valves, and four

Figure 9. Mole fractions of desired components in distillate

Table 2. Number of equations solved per task (as given by
OpenModelica) compared with previous methods

Variable-Structure

Models

Number of Equations Solved

OPC UA StateGraph library Scheduling framework

InitialTask 440 440 260

Task1 440 440 268

Task2 440 440 268

Task3 440 440 268

Entire Batch
Distillation System 440 440 440

tanks resulting in 440 equations, the scheduling frame-
work solves the active units at a particular event and re-
moves the inactive units from the simulation of the batch
distillation system. All the modeling equations are solved
using DASSL (Brenan, Campbell, and Petzold 1996) in
OpenModelica.

6 Steady-state solution of a flowsheet
through a sequence of calculations

This application is concerned with finding the steady-state
solution to chemical engineering flowsheets described by
a large number of equations. OpenModelica has the ca-
pability to collect the equations from different parts of a
flowsheet and solve them simultaneously. It is an impor-
tant capability, as design problems can be solved easily
in this framework. It is also suitable for dynamic simu-
lations. Unfortunately, having to solve a large number of
equations gives rise to some difficulties. As these are gen-
erally nonlinear equations, initial guesses are required to
solve them. Setting up the initial guess itself is difficult
for a large number of equations, let alone converging to
the steady-state solution.

Let us consider the Methanation flowsheet (Reklaitis
1983) given in Figure 10. In this system, the synthesis
gas, which is a mixture of CO, H2, and a small amount
of CH4, is converted to a higher content of Methane. The
reaction taking place is:

CO+3H2 →CH4 +H2O

The feed stream at 93.3◦C and the recycle stream are
fed to the mixer, followed by an adiabatic reactor with an

Figure 10. Recyle process for the Methanation flowsheet
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Figure 11. Schedule of the Methanation flowsheet using the
Scheduler library

outlet temperature of 537.7◦C. The effluent is then cooled
to 260◦C in a heat exchanger. The effluent is split into
Methane rich stream containing 50% Methane at 93.3◦C,
and the other stream is fed to a separator to remove water.

Methanation flowsheet is modeled and simulated se-
quentially using the scheduling framework. The sched-
ule is shown in Figure 11 and created in a similar manner
as that for the batch distillation system. Again, similar
to the batch distillation system, the initialization of only
those components of subsequent tasks is done for which
the state information is present in the respective previous
task. The initialization of the rest of the components falls
back to the default one described within the model itself.
The following describes the tasks and their scheduling:

• In the first task, a pure feed stream (S1) and the re-
cycle stream (S2) are mixed in the mixer (B1). The
B1 output is sent to another stream, S7. So, the sub-
systems (units) S1, S2, B1, and S7 are active during
InitialTask, and all other units do not partici-
pate in the simulation.

• In the second task, the mixed stream (S7), which was
the output of the InitialTask, acts as an input for
this task. It is taken to a reactor (B2) for the Metha-
nation reaction. Hence the units S7, B2, S4, and E1
are active during Task1.

• In the third task, the product stream from the reactor
acts as input for the heat exchanger. The units S4,
B3, S6, and E2 are active when Task2 is scheduled.

• During Task3, the cooled stream (S6) from the heat
exchanger is taken to a splitter (B4) to split the stream
into two material streams. During this task, the units
S6, B4, S9, and S10 are active, and other units do not
participate in the simulation.

• In the fifth task, the S10 output from the previous
task is taken to the separator unit (B5) and separated
to give two output material streams. The units S19,
B5, S12, S13, and E3 are active during Task4.

• In the final task, i.e., Task5, one of the output
streams from the separator unit (S13) is further
cooled using the cooler unit (B6). In this task, the
units S13, B6, S12, and E4 are active, and other units
do not participate in the simulation.

The results obtained using the scheduling framework are
identical to those shown by Reklaitis (1983). The number

Table 3. Number of equations solved and simulation efficiency
per task (as given by OpenModelica) compared to the entire
Methanation flowsheet

Variable-Structure
Models

Number of
Equations

Solved

Executable
Code Size
(in KB)

Memory Re-
quirement

(in MB)
InitialTask 648 1126 17.6

Task1 442 842 14.9
Task2 434 833 14.4
Task3 646 1126 16.9
Task4 675 1228 14.3
Task5 434 828 17.1

Entire Methanation
Flowsheet 2339 3600 48.4

Average reduction per
task compared to entire
Methanation flowsheet

76.63 % 72.30 % 67.22 %

of equations solved and the simulation efficiency in terms
of executable code size and memory requirements for each
task are provided in Table 3. Since multiple models are
now compiled through the tasks, one may perceive that the
sum total of code size and the memory requirements in-
crease as compared to the entire flowsheet. However, only
one of the tasks is simulated at any given point in time.
Thus, one has to consider only the resources correspond-
ing to a single task’s code size and memory requirements.
Hence, as mentioned earlier in Section 2, the efficiency
here is determined with respect to a given task only. It is
nearly a three-fourth average reduction in the number of
equations solved and code size, and a two-third average
reduction in memory requirement compared to the simu-
lation of the entire flowsheet. Here also, all the modeling
equations are solved using DASSL in OpenModelica.

7 Conclusion and Future Work
An attempt has been made to tackle the problem of ex-
cluding the simulation code corresponding to the inac-
tive components or subsystems while simulating a system.
This approach generally leads to more correct results. In
some cases, this may be the only way to achieve the end
goals of a simulation. It is achieved by allowing the model
developer to model the discrete behavior of their system
through a schedule.

Construction of a schedule is made possible through a
Modelica library Scheduler, developed in this work.
The scheduling engine is implemented as a layer between
the user model and the OpenModelica simulation environ-
ment. This approach is validated by applying it to the
operation of a batch distillation column that separates a
mixture, along with its real-time and interactive simula-
tion. An example involving the steady-state solution to a
chemical engineering flowsheet through a sequential mod-
ular simulation is also presented. In both cases, the results
are identical to those reported in the literature, obtained
through other approaches.

The future work would involve the performance and op-
timization aspects of the framework and its prototype. As
there is a dependency between any two given tasks, their
simulations cannot be done in parallel. But, their compi-
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lations can definitely be done in parallel, a feature avail-
able even in standard multi-core laptops. OPC UA, being
a protocol on the network, can be a significant bottleneck
(in terms of time and resources) for some models, and can
lead to accuracy issues due to the inherent nature of the
network. So, another method of simulation scheduling
without OPC UA is desired. The usage of either of the
two methods can be left to the model developer to decide
as per their simulation requirements. Another direction to
explore would be to extend the schedule’s workflow pat-
tern to include parallel routing. It would enable indepen-
dent tasks to be simulated simultaneously and possibly in
a distributed manner.
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Abstract 
This paper presents an approach on how to train a Neural 

Network model based on a detailed physical Modelica 

model. The necessary steps to generate training data 

from simulation will be explained as well as the 

generation process of a surrogate model. It will be 

shown, how the surrogate will be re-integrated into the 

Modelica system model. A benchmark based on 

accuracy and simulation performance will be 

performed. The tools used are Modelon Impact, an 

online modeling and simulation platform, the 

TensorFlow/Keras toolbox in a Jupyter Notebook which 

provides a Python-based interface for generating Neural 

Networks, and the Modelica Neural Network Library 

that provides functions for constructing Neural 

Networks within Modelica. The approach is 

demonstrated on an automotive fuel cell model which is 

part of an overall vehicle system model. One possible 

application is to train the neural network via repeated 

simulations and then to reuse it as an embedded software 

component for efficiently estimating fuel use and range 

for various driving cycles and ambient conditions.  

Keywords: Machine Learning, Neural Networks, 

Hybrid Models, Hydrogen, Fuel Cell.  

1 Introduction 

Model-based system design and engineering plays a 

major role, not only in the development of new technical 

systems but also in supporting efficient usage or 

operation. On the one hand, Modelica as an open-

standard multi-domain programming language can be 

used to describe complex technical systems on a 

fundamental basis. Text-book equations are often 

implemented on a component level, which can then be 

used to allow a graphical composition of system models 

using connection ports at the model interfaces to provide 

boundary conditions locally and close the equation 

system. Applying good modeling practices, replaceable 

models for different components can be implemented, 

allowing fidelity adaptation of the system by choosing 

different component models for different applications. 
Some applications require complex mathematical 

formulations that are necessary to describe a physical 

problem accurately and thereby sacrificing on 

computational performance during simulation of the 

model. Machine learning on the other hand allows 

creating models based on data without necessarily 

understanding the correlations between the inputs and 

the outputs on a fundamental basis. Neural Networks are 

a common approach to create models that can accurately 

predict the outputs based on different input 

combinations after the model has been trained 

sufficiently well. Neural Networks consists of node 

layers that are structurally inspired by the biological 

brains that can transmit signals to other neurons based.  

Due to their similarity with the biological counterpart, 

Neural Networks are categorized as a method of 

artificial intelligence (AI).  

A hybrid physical-AI based model can consist of both 

components: models derived from first principal physics 

as well as data-based models such as Neural Networks. 

Especially the availability of physical component 

models providing an extensive data base for training, 

allows creation of hybrid models which can achieve 

better simulation performance while not sacrificing 

accuracy for a given question. Known physical relations 

in specific components can be used to train surrogate 

models in physics-guided machine learning processes 

[1]. That way, computationally expensive components 

can be replaced, and simulation performance can be 

increased if the specific component is not of interest for 

a specific set of internal calculations but needed to 

provide boundary conditions for other components in a 

system. In comparison to other regression techniques, 

like map or polynomial fitting, the Neural Network 

based approach allows for representation of strong non-

linearities superior to polynomial fitting while allowing 

a higher degree of freedom and less data need compared 

to a 1:1 data mapping. Especially when more than two 

independent inputs need to be mapped, standard map-

based approaches quickly run into limitations of limited 

matrix dimensions in various tools which is less critical 

for Neural Networks. In this paper, an approach will be 

presented that uses a detailed physical fuel cell model of 

a fuel cell vehicle to generate a reduced order model of 

the fuel cell itself to study fuel consumption for different 

driving cycles. Section 2 will introduce the problem and 
the underlying physical sub-models in detail. In section 

3, the workflow to create the hybrid model will be 
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described. Section 4 will show a benchmark of accuracy 

and performance of the hybrid model against the 

detailed physical model and section 5 will show the 

result for a long-term driving cycle simulation.  

2 Problem Statement 

Following the trends to reduce greenhouse gas 

emissions and save resources, one proposed approach 

for the mobility sector is hydrogen-powered fuel cells to 

generate electricity on demand and allowing a sufficient 

range while reducing the battery size drastically. A 

comprehensive model of such a fuel-cell vehicle has 

been developed in Modelica, a comprehensive summary 

on the underlying sub models has been published [2], 

[3].  

The use-case of this paper is to calculate the range of the 

vehicle for a long route as quickly as possible and 

thereby demonstrate the performance improvement of a 

hybrid-model consisting of physical components and 

trained Neural Network models. Other potential 

improvements such as model solvability and robustness 

will not be discussed here.   

A high-level schematic of the model in the Modelica 

modeling and simulation platform Modelon Impact is 

shown in Figure 1.  

 

 

Figure 1: Top level Schematic of the vehicle system 

model, showing the replaceable drive cycle component 

(top left), the ambient condition component (top right) 

as well as the coupled vehicle model with driver, 

controls, drive train, fuel cell and hydrogen tank.  

The model includes a driving cycle input defining the 

desired velocity trajectory for the vehicle. The WLTC2 

Class 2 cycle [4], shown in Figure 2 is used here as a 

reference.   

 

 

Figure 2: WLT2 driving cycle, velocity vs. time used as 

input for the reference scenario (top) and mechanical 

power at the drive-train shaft (bottom)  

 

The vehicle model includes chassis, tires, breaks, and 

interacts with the driver and controls model. Thereby, it 

will define the propulsion power (torque and angular 

velocity) of the motor, considering the aerodynamic 

losses, rolling friction, and braking losses. The hybrid 

drivetrain includes a small battery, battery converter, 

fuel cell converter, and a DC motor. The electric power 

is provided by a proton exchange membrane (PEM) fuel 

cell stack fueled from a hydrogen storage tank.   

3 Hybrid Model Generation 

Workflow  

Generation of Proper Hybrid Models for Smarter 

Vehicles is the core topic of a research project funded 

by the German Federal Ministry for Economic Affairs 

and Climate Action. Different options to generate and 

integrate data-based models with physical Modelica 

models and tools are investigated. [5] have presented an 

approach to replace numerically inefficient and fragile 

non-linear equation blocks with surrogates during 

compilation. Another related workflow will be 

presented here that instead of interacting on the compiler 

level, utilizes the existing Modelica structure of 

replaceable sub-models for each component. This 

concept will be used to not only allow selection of 

different fidelity, first-principle physical models but 

also to integrate Neural Network surrogate models. 

Bringing the model back as part of the original Modelica 

system model will result in a hybrid model that can have 

superior performance and acceptable accuracy, so that it 

can be used for more applications such as those 

requiring real-time capabilities or even deployed as 

conventional FMU or eFMU on embedded hardware 

eventually.  
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3.1 Physical Model (Modelica) 

The detailed Modelica model of the system is illustrated 

in Figure 3. The model includes the following 

components: a PEM fuel stack cell with empirical model 

for polarization, and dynamic mass and energy balance 

for anode, cathode and cooling channels; an ejector 

model to recirculate excessive hydrogen; a humidifier 

model to control the humidity of incoming air and 

recover some of the waste heat in the cooling loop; a 

cooling loop with heat exchange, pump and tank. The 

medium is represented as an ideal gas mixture with 

moisture using the NASA 7-coefficient model including 

the following components: H2, CO, CO2, H20, N2, O2. 

In addition, a simple heating and cooling system has 

been added, considering heat transfer to ambient and 

maintaining a convenient cabin temperature at 293K.   

 

The following figures are giving an indication on the 

complexity of the model:  

• Continuous states:   82 

• Variables:           2572  

• Linear equation blocks:   13  

• Non-linear equation blocks:  4  

 

To calculate fuel consumption for a given route, three 

independent inputs have been identified:  

• Fuel cell power as a resulting output of the 

vehicle model for a given drive cycle (speed 

vs. time). 

• Ambient temperature, primarily affecting the 

vehicles heating/cooling system but also the 

temperature and losses of the fuel cell.  

• Ambient pressure affecting the air compressor 

 

3.2 Modelica Simulation Tool 

Modelon Impact is a cloud native Modelica modeling 

and simulation platform that has been used here. It can 

interact with Python through Rest API, e.g. using 

Jupyter Notebooks [6] or integrating Python scripts 

directly into the user interface using so called Custom 

Functions. Thus, allowing an easy integration of 

physical Modelica models with many AI-based models 

from Python environment.   

3.3 Neural Network model generation 

Classical machine learning can be categorized into 

supervised and unsupervised methods. The goal of the 

generated surrogate for fuel cell component that can be 

used to predict fuel consumption from requested 

electrical power here is to predict data from defined 

inputs, so to perform a regression task and falls into 

supervised methods. Generating Neural Networks 

became a very popular method for Machine Learning, 

yielding a range of tools. Commonly used tools in the 

Python environment includes TensorFlow/Keras 

(developed by Google) and PyTorch (developed by 

Meta). Also, the Julia language provides an efficient 

Figure 3: Overview of the physical system model including a detailed fuel cell stack and a simplified heating and 

cooling system of the car as well as control blocks. The independent inputs used for this study are the fuel cell load, 

the ambient pressure and the ambient temperature indicated by the connection ports on the right 
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environment for generating neural networks and 

combining with FMUs, Modelica [7] or Modia [8].  

The approach presented here relies on using the 

TensorFlow/Keras toolbox in a Jupyter Notebook 

environment to generate a neural network from the 

detailed Modelica model.  

For the main question addressed in the presented use-

case, identifying the fuel consumption for different 

operating inputs, it is assumed that the fuel cell 

dynamics play a minor role and therefore, a quasi-static 

surrogate based on classical Neural Networks can be 

used. This assumption will be verified for a specific 

driving cycle in Section 4. 

To train the model, samples of the three independent 

inputs are prepared, in this case, Saltelli [9] samples are 

used. Saltelli sampling is an efficient way to reduce the 

number of necessary data sets while keeping 

representative behavior over the considered data ranges.  

The number of Saltelli samples will be  

 

#𝑆𝑎 = 𝑁 (2 ∗ 𝐷 + 2) 

 

Where ̀ D` is the number of free parameters, three in this 

study and `N` is the requested number of samples each, 

10 here. Saltelli’s extension of the popular quasi-

random low-discrepancy Sobol sequence is used to 

generate coniform samples of the parameters space. To 

derive the training data set, a range for the inputs was 

specified as follows:  

 

Power:     40kW to 140kW 

Ambient Temperature:   253K to 333K 

Ambient Pressure:  90kPa to 105kPa  

 

As 10 samples in each range where created, the overall 

number of data sets or required simulation points of the 

detailed model is 80.  Important outputs such as fuel 

flow, heating power and fuel cell current for the 

generated datasets are presented in Figure 4. 

 

 

 

Figure 4: Physical model outputs used as training data. 

Showing current (bottom), heating power (middle) and 

fuel consumption (top) for different power (left), 

ambient temperature (middle) and ambient pressure 

(right).    

Using the TensorFlow/Keras package, a structure for the 

Feed Forward Neural Network with an input layer, three 

hidden layers with 5 neurons each and an output layer is 

defined. Hyperbolic tangent Thanh is used as the 

activation function for all the neurons. The structure has 

been defined iteratively, increasing the number of layers 

and neurons until quantitative agreement of the output 

could be achieved without setting a specific criterion.       

After defining the Neural Network model structure, 

the training of the weights and biases for all layers is 

performed using 40 sets of the physical models 

normalized simulation results while the other 40 

normalized output sets are used as test data. During the 

training epochs, the accuracy (mean of squares of errors 

against the reference data) of the prediction improves as 

shown in Figure 5. Normalization of the values is 

required since working with physical SI units, values 

will differ several orders of magnitude.   

 

Figure 5: Accuracy of the Neural Network against the 

reference data from the physical model during training 

and test.   
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3.4 Hybrid Model  

In the next step, the generated neural network model 

needs to be transferred back into the Modelon Impact 

platform. This permits users to benefit from a graphical 

model representation and convenient parameterization, 

structural adaptations, and post-processing. The transfer 

could be implemented in different ways, e.g.: 

• FMU: As most system simulation tools, 

Modelon Impact allows direct import of 

Functional-Mockup units. This basically 

provides a wrapped-C-code with a 

standardized interface. However, FMU export 

from Python environments is currently under 

development and turned out to be not reliably 

working here.    

• Using external C-code directly: a similar 

approach consists in converting the surrogate 

model into C-code. This approach is similar to 

the previous FMU approach with a less strict 

requirement on compliant FMU wrappers, 

however, since the graphical representation 

would first need to be created, this approach 

was not followed here.   

• Implementing in Modelica: Introduced and 

published as “Neural Network Library” by  

[10], the structure of the Neural Network can 

be stored as Modelica code directly. Individual 

Layers can be represented by models, a set of 

pre-defined activation functions are available, 

the coefficients for weights and biases for each 

layer can be stored in the Modelica code or as 

external data file.   

 

The approach presented in this paper will rely on the 

Neural Network Modelica library. The main advantage 

is the absence of compatibility issues and the availability 

of a graphical network representation. A potential 

disadvantage might be the adaption towards larger and 

more complex networks and regular structural updates 

during iterative surrogate generation processes. Figure 6 

Shows the Neural Network structure as a Modelica 

model. It contains three generic inputs (u1, u2, u3), the 

input layer as well as the three hidden layers as 

introduced in the previous section. Connections between 

the layers and to the output (y) are vectorized.  

 

Figure 6: Neural Network Modelica model structure  

4 Benchmark               

To benchmark and validate the Neural Network 

surrogate, a comparison on accuracy, model complexity 

metrics and performance data against the original 

Modelica model is done. Figure 7 shows normalized 

fuel consumptions for the original model vs. the 

TensorFlow prediction and the Modelica surrogate. 

While both predictions usually match well as expected, 

some deviations from the original model can be 

observed due to the simple Neural Network structure 

used here. Also, minor deviations between the surrogate 

from TensorFlow against the surrogate based on 

Modelica can be observed.  

 

Figure 7: comparing steady-state result points for 

varying power (top), varying ambient temperature 

(center) and varying ambient pressure (bottom)   

In addition to the steady-state analysis, a transient 

scenario has been considered for comparison, involving 

a scheduled load change of the fuel cell power setpoint 

as shown in Figure 8 while keeping the ambient 

temperature and pressure constant. 
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Figure 8: Fuel Cell load setpoint for both the physcial 

model (orange) and the surrogate (blue) model (top) 

and consumed hydrogen fuel flow for the load change 

scenario comparing the results of the original model 

with the surrogate (bottom)  

 
The presented comparison of the fuel consumption 

showing well matching steady-state points with 

maximum differences of 2.7% in full load and 3.6% in 

low load. On the transients, deviations of physical model 

from the Neural Network surrogate model can clearly be 

seen. Effects, such as a control oscillation around 720s 

caused by the internal cooling flow supply of the fuel 

cell stack can not be reproduced by the steady-state 

surrogate.     

 

Key metrics for complexity and performance are 

presented in Table 1, showing the superior performance 

of the Neural Network which is around 500 times faster 

compared to the physical model for this scenario.  

Table 1: Complexity statistics and CPU time of 

surrogate model vs. physical model  

 Surrogate Physical 
Model 

CPU Time 0.12s 49s 

Continuous states 0 82 

Variables 202 2572 

Linear-Equations 
Blocks 

0 13 

 

Based on the performed analysis, it can be concluded 

that for prediction of the fuel consumption for a certain 

load variation within the trained data range, the Neural 

Network model can give reasonable results while being 

significantly better performing due to the removal of 

unused complexity. For the overall fuel consumption 

calculation in this artificial scenario, the accuracy is 

considered sufficiently well comparing with state-of-the 

art range predictions in modern fuel-cell vehicles that 

usually don’t consider as many input parameters.  

5 Simulation Scenario  

A use-case scenario for the Neural Network model of 

the fuel-cell car could be a fuel consumption calculation 

of the vehicle for a given route the driver selects in the 

cars navigation system at different ambient conditions. 

While the physical model is validated and would be able 

to predict accurately from first principles, the model 

execution would take too long for this use-case. This 

fact becomes even more important considering the 

usage of lower-performance hardware used in 

automotive applications due to cost and weight 

advantages. Therefore, the usage of the surrogate model 

is proposed for predicting the fuel consumption of the 

car in a driving cycle, specifically the WLT2P-C2 

introduced in section 2. The resulting fuel consumption 

for this scenario including the possible variation with 

changing boundary conditions is illustrated in Figure 9. 

Plausible outcome can be assumed based on the 

benchmark tests carried out in the previous sections.  

The overall CPU time answering the specific question 

on “how much hydrogen will the vehicle consume for 

the given route under the different environmental 

conditions?” was about 2 seconds for a varying load 

including 5 sets of ambient temperature and 5 sets of 

ambient pressures, resulting in a total of 25 simulation 

scenarios.  

 

 

Figure 9: Resulting hydrogen consumption of the fuel 

cell for the WLTP2 driving cycle scenario with varying 

ambient temperatures and pressures (top) and 

aggregated hydrogen consumption of the fuel cell 

(bottom)  

6 Summary and Outlook 

The presented hybrid approach provides a powerful 

complementary feature to first principle based physical 

modeling which is typically used in Modelica models. 

The potential performance improvement has been 

demonstrated on an automotive fuel-cell use case, 

showing that simulation speed can easily be improved 

by a factor of 500 when only few outputs of a detailed 

model are relevant. The integrated Python interface in 

Modelon Impact allowed a convenient, scripting 
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interface to TensorFlow/Keras and an easy data usage of 

physical model results for Neural Network training. The 

Modelica Neural Network library [10] enabled the usage 

of the generated Neural Network within the Modelica 

environment. The developed workflow can therefore be 

easily used for a variety of applications, including the 

speedup process of complex physical models or their 

sub-models for faster model-based design or 

improvement processes. In addition, application specific 

proper models can be generated and exported, e.g. as an 

FMU allowing the utilization for a subset of relevant 

questions while benefiting from tremendous 

performance improvements. One commonly known 

limitation of Neural Network models not addressed here 

is the usage outside the training data range. Unlike 

physical models, Neural Network models cannot be 

expected to predict behavior that has not been 

sufficiently covered by training data. This can result in 

very wrong predictions. In addition, further work is 

needed on capturing transient effects, as Feed-Forward 

Neural Network approaches only allow a steady state 

representation. However, the tight integration into the 

Modelica environment presented here allows the 

coupling with transient state representations at various 

points of a system model thus providing a promising 

solution for this challenge.     
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Abstract
The introduction of cyber-physical systems has been a re-
cent development in energy systems. Cyber-physical sys-
tems contain digital components for applications such as
monitoring or control. In many cases, modeling multiple
aspects of such cyber-physical systems poses a challenge
to conventional simulation tools. In addition, recent mod-
eling approaches, such as data-driven modeling, are be-
ing applied. The combination of such data-driven models,
which may consist of a different architecture than tradi-
tional models, with traditional models can be implemented
through co-simulation methods. In co-simulation, compo-
nents created from different simulation tools can be com-
bined and coupled through standardized interfaces. This
work presents a framework for data-driven model genera-
tion and co-simulation. The framework is implemented
in Python and Dymola and is based on the Functional
Mock-up Interface (FMI) standard. The framework im-
plements the creation of data-driven models in Python, the
generation of Functional Mock-up Units (FMUs) through
the frameworks uniFMU and pythonFMU, as well the
creation of a testbench model in Dymola and the co-
simulation of this model. The framework is demonstrated
on the application of a solar collector from a single family
house heating system.
Keywords: Energy Systems, Modeling and Simulation,
Data-driven Modeling, Co-Simulation

1 Introduction
The area of energy systems covers a wide range of ap-
plications, such as heating, cooling or electrical power
systems. All these systems have in common that their
demand for energy must be met by the energy providers
while their energy demands are constantly growing. To
respond to the increasing demand, energy providers have
recently been focusing on embedding cyber-technologies
into their systems in order to monitor and optimize sys-
tem operation. This means that state-of-the-art energy
systems are being extended into complex cyber-physical
systems (Lund et al., 2017). The analysis of such cyber-
physical energy systems poses new challenges in the area
of simulation and modeling due to these systems’ com-
plexity (Palensky, 2014). Cyber-physical systems com-
bine computational systems with other physical systems,

meaning that their analysis requires combined modeling
techniques for different system types. While the modeling
of certain components can be implemented in specialized
simulation tools, the full modeling of a combined system
is a more difficult task. To model cyber-physical energy
systems, different approaches exist, which can be clas-
sified into three groups: white-box, gray-box and black-
box modeling (Arendt et al., 2018). White-box methods
include traditional physical modeling methods based on
system dynamics. Gray-box models may also be based on
system dynamics, but may contain assumptions or approx-
imations. Black-box models may consist of a completely
different architecture than the underlying system. Tradi-
tionally, energy systems are modeled in simulation tools
based on the physical relations of their components. Phys-
ical models are created by analysing the physical prop-
erties of the system, and these models are implemented
mostly as white-box or gray-box models and based on the
knowledge of the system dynamics and parameters. In or-
der to model and simulate these systems, often numerical
solvers are used to solve the underlying differential equa-
tions, as described by (Gomes et al., 2018). The numerical
simulation methods are then implemented by simulation
tools such as, for instance, Dassault Systemes Dymola®,
MathWorks® Matlab/Simulink or EnergyPlus™. In con-
trast to traditional modeling, the data-driven modeling ap-
proach has recently been gaining popularity. Data-driven
models are mainly based on modeling the underlying sys-
tem as a black box. This means that the architecture and
the parameters of the system are arbitrary, any structure
can be used as a model. Data-driven models are mainly
implemented by machine learning (ML) methods, such as
linear regression models, decision-tree based models or
neural networks. In the data-driven approach, the models
are trained on existing measurement data by using opti-
mization methods. This approach was applied for instance
in (Ghofrani et al., 2020) and (Xu et al., 2019). The ad-
vantage of the data-driven modeling approach is that the
ML models are trained based on measurement data and
do not require exact system knowledge and parameters.
While domain knowledge is helpful in creating the mod-
els, it is not necessary to know all features of the under-
lying system beforehand. A recent approach in cyber-
physical systems modeling is the combination of physical
and data-driven models in a co-simulation (CS) environ-
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ment. The term co-simulation describes the combination
of different simulation tools or environments. This may
include a combination of continuous-time and discrete-
time models, as well as simulation tools like Dymola or
Matlab/Simulink. In co-simulation, different systems are
integrated into a global environment. The co-simulation
approach is used in applications such as building con-
trol systems, especially in model-predictive control (Wang
et al., 2019). Applications in energy systems modeling or
control often contain feedback loops containing compo-
nents implemented in different simulation tools. These
components must be coupled with each other through a
defined interface. For this purpose, organizations such
as the Modelica Association or the Institute of Electrical
and Electronics Engineers (IEEE) have developed stan-
dards for co-simulation interfaces, such as the High-Level
Architecture (HLA) (IEEE, 2010) or FMI (Modelica As-
sociation, 2020) standard. These standardized interfaces
can be implemented by various tools without having to
adapt the models for each simulation environment and
are supported by different simulation tools. Additionally,
these interfaces can be implemented by data-driven mod-
els, which may be created in programming languages such
as Python. For our work, the FMI standard was selected.
The FMI standard is developed by the Modelica Associ-
ation, with current version FMI 2.0 (Modelica Associa-
tion, 2020). The standard defines an interface for cou-
pling models of different types and architectures. The
FMI standard defines the format of models that are com-
patible to the standard as FMU. Simulation tools such
as Dassault Systemes Dymola® (Dymola) or Simulink of-
fer the option to generate FMUs from an existing model.
For data-driven models, there are open-source tools avail-
able to export these models into the FMU format, such as
the pythonFMU framework (Hatledal et al., 2020) and the
uniFMU framework (Legaard et al., 2021).

1.1 Related Work
In energy systems modeling, different co-simulation
frameworks have been created for the purpose of com-
bining models created different simulation tools. For
instance, several frameworks based on the FMI stan-
dard have been developed.The Maestro framework (Thule
et al., 2019) implements a co-simulation orchestration en-
gine for discrete-time and continuous-time co-simulation.
The framework is implemented in Java, Scala and C and
is based on the FMI standard. This framework sup-
ports Hardware-in-Loop (HiL) co-simulation. The Cy-
DER (Nouidui et al., 2019) framework focuses on sim-
ulation for smart power grids. The framework is imple-
mented in Python and suports HiL simulation. The Cy-
DER framework offers the tool Simulator2FMU, which
makes the interfaces of different power grid simulators
compatible to the FMI standard. The main simulation
is executed through the Python library PyFMI . In addi-
tion, smaller frameworks that focus on certain simulation
tools have been developed. For the communication be-

tween Python and Dymola, several Python libraries have
been developed. The Python library buildingspy (Wetter
and USDOE, 2019) supports communication from Python
to Dymola as well as to the Modelon Inc. OPTIMICA
Compiler Toolkit. The Python package dymat (Rädler,
2013) supports reading and writing of Dymola output
files. Based on existing Python libraries, different co-
simulation frameworks have been developed. A Python-
Modelica framework specialized for wind turbines called
MoWIT was created in (Leimeister, 2019). This frame-
work is based on the buildingspy library. Another frame-
work called PyMo was created by (Febres et al., 2014).

1.2 Main Contribution
This work presents a workflow called HybridCosim that
combines the creation of data-driven models with co-
simulation. In this workflow, data-driven models are auto-
matically created and then combined with physical mod-
els inside a co-simulation environment. The workflow is
based on the FMI standard 2.0. The data-driven models
are created in Python, converted into FMUs, and then sim-
ulated in Dymola as a part of an automatically generated
testbench. The framework supports the creation of ML
models of different architectures, as well as simulation in
Dymola. The framework is demonstrated on a case study
of a solar collector.

2 Methodology
The presented framework consists of four steps. Firstly,
a data-driven model of an existing system is trained in
Python. This model is then converted into an FMU. For
the FMU, a Modelica testbench model is generated. Fi-
nally, the testbench is simulated in Dymola. An overview
of the created workflow is given in Figure 2.

Figure 1. Co-Simulation Workflow
The first three steps of the workflow are executed purely

in Python, the last step is executed through Python and
Dymola. While the simulation itself is executed in Dy-
mola, the orchestration and the result post-processing are
done in Python. This framework is based on the research
in (Falay et al., 2021) and (Wilfling et al.).
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2.1 Model Training
To create data-driven models, we implemented a basic
framework in Python to train models of different archi-
tectures, such as linear regression models, decision tree-
based models or Support Vector Machine (SVM) mod-
els. These models could be created based on different
datasets and feature configurations. The models are based
on the research in (Schranz et al.) and the Python pack-
ages scikit-learn (Pedregosa et al., 2011) and statsmodels
(Seabold and Perktold, 2010).

2.2 Interfacing - FMI
In our work, the FMI standard was used as an interface
between models of different types. Therefore, the mod-
els had to be converted into the FMU format, for which
the uniFMU framework (Legaard et al., 2021) and the
pythonFMU framework (Hatledal et al., 2020) were eval-
uated. The uniFMU framework allows to export models
from different programming languages such as Python,
C#, Matlab or Java into an FMU. uniFMU supports the
FMI standard 2.0 and contains a graphical user interface
to generate and validate FMUs. The pythonFMU frame-
work supports FMU generation from Python files.

FMU Creation

In our work, machine learning models implemented
in Python can be translated into FMU format through
the pythonFMU or uniFMU framework. While the
pythonFMU framework supports the generation of a full
FMU from a Python model, the uniFMU framework re-
quires additional steps for creating the FMU. The FMU
format contains a model description in Extensible Markup
Language (XML), in which the model interface, consist-
ing of the model inputs, outputs and parameters, and the
basic model structure, which may include dependencies,
is defined. To create an FMU through uniFMU, the model
description must be adapted to the interface of the model.

For the FMU creation through uniFMU, a method to
adapt the FMU model description automatically depend-
ing on the required inputs and outputs for the model was
created. When using the framework, either of the two
frameworks can be selected.

2.3 Automatic Testbench Creation
In our framework, Dymola was selected as the main sim-
ulation master, therefore our top-level model had to be
implemented in Dymola. To automatically create a sim-
ple testbench for the FMU, a Python module was created.
This module could generate a Modelica model based on
input data, a specification of input and output features, and
the FMU file. In addition, components created in Model-
ica could be imported and added to the model. The data-
driven model was imported into Dymola and connected to
Dymola-native modules or other FMUs. With this struc-
ture, it was possible to create fully-coupled systems, such
as feedback control loops, or simpler systems with fewer
components.

2.4 Simulation
For the generated top-level model including the FMU, a
co-simulation was executed in the Dymola environment.
This simulation was implmented using parts of the pro-
cess created in (Wilfling et al.). In our implementation, the
main control for the simulation is implemented in Python.
The Python controller then sends commands to Dymola,
which executes the simulation. The simulation commands
are based on Modelica .mos scripts, which are automati-
cally generated in Python. Figure 2 gives an overview of
the implemented simulation method.

Result Evaluation

Simulation Setup

Simulation Start

Open Testbench 

Import FMU

Execute Simulation
Result File

Modelica Script

Modelica Script

Figure 2. Python-Dymola Communication, c.f. (Wilfling et al.)

Alternatively, the testbench could be simulated directly
through Dymola.

2.5 Framework Implementation
The framework was implemented mainly in Python. The
framework is structured into four Python packages, each
of which contains a step of the workflow. For each pack-
age, an example testscript is available to execute the op-
erations of the step. In addition, all steps can be executed
in combination as a full workflow run. In this case, the
four steps are executed sequentially. During the execution
of each workflow step, different files are created, which
are then used by the next steps. The combined workflow
requires two components as inputs: a dataset, and a con-
figuration file containing definitions of the model inputs
and outputs. Figure 3 depicts the full workflow structure
with input and output files.

ML Training:

main.py

main.py

Export Model 

Description

Create FMU

main.py

Create Modelica Testbench 

Create Input Data TXT

Python Scripts

model.py

Simulation_FMUTest.py

Run Simulation

Plot results

Figure 3. Workflow structure. Input files to the workflow are
marked in red, automatically created output files are marked in
yellow.

File Structure

The results of an experiment using the combined frame-
work are stored inside a directory structure containing all
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automatically generated files including the models and the
simulation results. An overview of this structure is given
in Figure 4.

Plots

Testbench Package

Input Data

Training Plots

MAT Files

CSV FilesPickle File

JSON Parameter File

FMU Interface

Pickle Files

JSON Parameter Files

Main script – model.py

Backend Scripts

Runscripts

Additional Packages

Figure 4. Directory Structure.

The structure is separated into three directories: one for
the model training results, one for the FMU files, and one
for the Dymola testbench and simulation results.

3 Case Study
To demonstrate the proposed framework, a case study on
a use case from the energy domain was performed. For
this purpose, a solar collector from a single-family house
heating system was selected (Wilfling et al.). In a single-
family house, the main heating demand is generated from
the central heating for the rooms and the warm water con-
sumption. In order to give options to optimize the heating
energy consumption of such a house, the heating system
should be modeled as accurately as possible. For this pur-
pose, two different architectures for the data-driven model
were evaluated.

3.1 Application - Solar Collector
The application of the case study was the supply temper-
ature prediction for a flat-plate solar collector. This col-
lector, which was already available as a physical model
(Falay et al., 2021), should be modeled through a data-
driven model. For the collector, the supply temperature
TS should be predicted based on the return temperature
TR, the mass flow through the collector Vd , the ambient
temperature TA and the solar radiation SGlobal .

Underlying System

According to (Mahanta, 2020), the behavior of a flat-plate
solar collector can be modeled through linear relations.
The main factors affecting the solar collector supply tem-
perature are the heat gain through the solar radiation and
the heat loss to the ambient. While in the active state
of the collector, the heat gain is affected by the mass
flow through the collector. A simplified version of these
relations can define the active behavior of the collector
through Equation 1:

TS = TR +
C1SGlobal

Vd
+

C2(TS −TA)

Vd
(1)

3.2 Data-driven Model
For the solar collector, a data-driven model was created
through the model training part of the framework. To com-
pare different model architectures, two models were cre-
ated, one consisting of a linear regression model and one
using Random Forest (RF) regression. The models were
trained based on measurement data in a duration from
02/2019 to 10/2019, which was sampled with a timestep
of 15 min. For the training, a train-test split of 0.8 was
selected. The trained models were stored in the Pickle
format.

3.3 FMU Creation and Testbench Generation
From the trained models, an FMU was created. After-
wards, a Dymola model to test the FMU was generated.
This Dymola model was generated using the input mea-
surement data and the description of the FMU inputs and
outputs. Figure 5 depicts the generated Dymola model.

Figure 5. Graphical depiction of the generated Dymola model.
The component placement was adapted manually for visualiza-
tion.

The Dymola model contains the FMU and a Modelica
CombiTimeTable containing the measurement data. For
the CombiTimeTable, a text file was automatically gener-
ated from the input data to act as datasource.

3.4 Experimental Results
Finally, a simulation was executed for the generated Dy-
mola model. The simulation duration was set to a time
window of 30 days, with a timestep of 15 min. The results
were post-processed in Python.

Performance Metrics

To evaluate the performance of the model, the metrics
Coefficient of Determination (R2), Coefficient of Variation
of the Root Mean Square Error (CV-RMSE) and Mean
Absolute Percentage Error (MAPE)(Falay et al., 2021)
were selected. The performance metrics for the model are
described in Table 1.

Table 1. Performance Metrics

Model R2 CV-RMSE MAPE

Linear Regression 0.94 0.06 4.58%
Random Forest 0.98 0.04 2.21%
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The performance metrics show the higher accuracy of
the RF model. However, the linear regression model per-
forms only slightly worse than the RF model despite its
simple structure.

Timeseries Analysis

Figure 6 shows the timeseries analysis for the solar col-
lector for a selected period of five days from the simula-
tion duration. The timeseries analysis shows more accu-
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Figure 6. Timeseries Analysis for selected period from simula-
tion.

rate predictions of the data-driven model during daytime
than during nighttime. This behavior was accredited to
the characteristics of the solar collector, which is inactive
during nighttime.

The prediction error plots for the solar collector case
study during the full simulation duration are depicted in
Figure 7.
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Figure 7. Predicted Values for TS

From the prediction error plots, the higher accuracy of
the RF regression model can be observed. The distribution
of the residual error does not show significant anomalies.

4 Conclusion
We present a framework for data-driven model creation
and co-simulation that allows the combination of differ-
ent models. The framework is implemented in Python
and Dymola and is based on the FMI standard. This
framework allows automatic creation of data-driven mod-
els, translation into the FMU format, creation of a Dy-
mola testbench model and simulation in Dymola. A case
study performed on an application from the energy do-
main showed the performance of the created data-driven
models.

4.1 Future Work
The current version of the framework gives many options
for extensions. For instance, it is possible to extend the
model training part of the framework to support additonal
model types. The FMU creation part of the framework
could be extended to support FMI 3.0, as well as include
further extensions from FMI 2.0. Finally, the Dymola sim-
ulation part could be extended to support different simula-
tion masters such as OpenModelica.
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Abstract 
With the growing demand for virtual-informed 

decision-making in the development process of many 

engineering domains, the evidence in simulation results 

and thus simulation credibility becomes a critical aspect, 

in particular for releasing safety-relevant systems. 

However, simulation credibility is often interpreted to 

be of subjective nature. This paper summarizes basic 

assumptions for enabling the expression of credibility 

for building evidence in a more objective way. Based on 

these considerations, a concept is proposed that allows 

for an approximation of the credibility of simulations 

according to a discrete scale. The work is concluded by 

providing an implementation concept for a continuous 

simulation credibility assessment using a layered 

standard on top of the System Structure & 

Parameterization specification. 

Keywords:     credibility, credibility assessment, 
verification, validation, traceability 

1 Introduction 

With ever growing complexity of modern products 

across different industries and domains, the simulation 

of cyber-physical systems takes on an increasingly 

important role in the decision-making process. This can 

become critical for safety-relevant applications, like the 

simulation of automated driving systems (Knauss, 2017; 

Koopman, 2017), or simulation of medical devices 

(Rogers, 2019; FDA, 2021), where wrong decisions 

may have fatal consequences. 

To mitigate the risk of making unreliable decisions 

based on insufficiently valid simulations, an added 

effort of verification and validation must be applied to 

models and simulations, to assure credibility in the 

simulation of complex systems. 

1.1 Problem Statement and related work 

Taking up complexity in state-of-the-art cyber-physical 

systems, it does not exclusively manifest through the 

technical complexity of the product itself, but also 

through the complexity of the product’s underlying 

 
1https://fmi-standard.org 
2https://setlevel.de/projekt 

development process. More particularly, the product 

development in industries like the automotive industry 

typically has a strong distributed character, represented 

by complex supply chains, where simulation models are 

shared across organizational borders. This does not only 

go along with losing direct access to model sources, if 

models are provided as Black-Box models like 

Functional Mock-Up Units1 (FMU), but also with a lack 

of knowledge about modeling assumptions, internal 

requirements, model design justification, or applied 

verification and validation techniques. 

To keep this traceability information throughout the 

whole engineering process, the SET Level 2  project 

proposed a process framework for the execution of 

simulation-based engineering tasks (Heinkel and 

Steinkirchner, 2022) that supports for so called credible 
development of models and simulation, based on a 

detailed guideline focused on traceability, 

comprehensibility, and completeness of the 

documentation for modeling and simulation tasks. 

However, to keep the framework generic and 

applicable to a wide range of engineering and simulation 

domains, this process framework is deliberately neither 

specifying the quality assurance any further nor does it 

define for distinguished methods to apply, dependent on 

the criticality of the simulation task. 

The ITEA 3 project UPSIM 3  builds up its 

developments  based on the SET Level result and 

smoothly extends this concept by introducing a formal 

quality assurance approach, targeting its integration into 

a collaborative, Continuous Integration (CI) 

environment for simulations and finally Digital Twins. 

In (Gall et al., 2021) the state-of-the-art and best 

practices in the development and management of 

credible Modelica models have already been identified 

within the UPSIM project, to be used as a basis for 

future improvements to work towards a well-

documented, traceable development process for 

Modelica-based credible models. 

The goal of the presented work is to introduce a 

concept for the continuous assessment of the credibility 

of simulations, using (among others) standards 

published by the Modelica Association and layered 

3https://upsim-project.eu 
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standards on top of them. Furthermore, it will be shown 

that this concept can be applied domain-neutral and is 

extendable by design. 

The remainder of this paper is organized as follows: 

First, an overview of the SET Level process framework 

for the realization of credible simulation tasks is given 

in Section 2, including its traceability concept. It is 

followed by a description of a credibility-based concept 

for quality assurance in Section 3, which will be applied 

to the recently proposed process framework that builds 

the foundation for distinguishing the applied degree of 

credibility. In Section 4, the generic implementation 

concept for credibility-based quality metrics will be 

sketched. These implementations will be finally used in 

a CI pipeline for the continuous assessment of the 

simulation’s credibility. 

2 Modeling and Simulation Process 

The reliability and traceability of a decision-making 

process in engineering can be supported using reliable 

processes. If a simulation is involved in the decision-

making process, an important requirement of a 

simulation process is to be embeddable into the overall 

development process frameworks. The SET Level 

Credible Simulation Process was – among other 

important assumptions, like taking into account the 

distributed character of the development and the 

necessity for traceability – built to fulfil this 

requirement. It therefore represents a lightweight and 

generic framework to be tailored to company specific 

handling of simulation. 

2.1 Credible Simulation Process Framework 

In (Heinkel and Steinkirchner, 2022) a complete 

framework is proposed to integrate a credible realization 

of simulation tasks into the overall product development 

process. 

 

Figure 1. Credible Simulation Process Framework 

 
4https://pmsfit.github.io/SSPTraceability 

Figure 1 illustrates the relationship between the product 

development and its underlying processes. While there 

are several decisions to be made during the product 

development process, some decisions will incorporate 

simulation in the decision-making process, i.e., 

representing simulation-informed decisions.  

2.1.1 Simulation-based Decision Process 

These decisions will be made within so-called 

Simulation-based Decision Processes  (SbDP) and are 

characterized by the fact that they contain simulation 

tasks, but may contain other tasks which do not use 

simulations. Each SbDP is assigned a decision 

consequence that shall be used as an input for 

approximating the criticality of an underlying 

simulation task that will be governing the actions for 

quality assurance. 

For each of the underlying simulation tasks a 

Simulation Request is submitted. 

2.1.2 Credible Simulation Process 

The Simulation Request can be considered as an 

interface between the SbDP and the Credible Simulation 

Process (CSP). A Simulation Request transfers 

information from the SbDP to the CSP. Furthermore, 

requirements, specifications, and even implementations, 

if available, can be specified in advance. 

The CSP has different phases needed to be executed, 

where the process is illustrated in form of a linear 

approach, but is typically applied and executed in an 

inherently iterative way, where steps are repeated 

several times. When it comes to model implementation, 

a Modeling Request is issued for the credible 

development of the models to be used for simulation. 

2.1.3 Credible Modeling Process 

Equivalent to a Simulation Request, a Modeling 

Request represents the interface from the CSP to the 

Credible Modeling Process (CMP). A Modeling 

Request contains all necessary information from the 

simulation process that is required to create a model for 

the dedicated simulation task, where distinctive 

requirements, specifications, and even implementations 

can be specified in advance. 

The CMP will be processed equivalently to the CSP 

and is to be considered as an iterative process, as well. 

2.2 Traceability 

To allow for collecting relevant information to 

reconstruct how simulation results have been generated  

by execution of the CSP and CMP, this relevant 

information must be made available by means of 

metadata. For this purpose, a metadata specification – 

the SSP Traceability Specification4 – has been drafted 

within the SET Level project as a layered standard in the 
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SSP standard (Modelica Association, 2019) that can be 

used alongside the CSP and CMP. This specification 

defines the  Simulation Task Meta Data (STMD) in form 

of an XML schema to store relevant meta data of process 

steps throughout the CSP and CMP. The specification 

provides for adding meta data regarding the processing 

scheme of each step in the CSP and CMP, namely for 

inputs, procedure, outputs, rationales, etc. Moreover, 

there is the possibility to add lifecycle information and 

linkage between certain resources of steps. 

As the STMD will be used for the arrangement of the 

Continuous Integration pipeline in Section 4, the 

detailed application of this specification will be given 

within this further section.  

3 Credibility Assessment 

In order to be able to give an approximation about the 

simulation’s credibility, it must be determined first how 

credibility can be specified and how to distinguish it 

from ordinary quality definitions. Further, a procedure 

must be derived on how to rank different degrees of 

credibility. 

3.1 Distinguishing Credibility from Quality  

For the term quality, there are existing many definitions 

that are widely accepted. From a generic point of view, 

quality can be defined as “the extent to which something 

has features which are good or bad, etc, 

especially features which are good” (Cambridge, 2022). 

From a technical point of view, quality is widely 

accepted to have two meanings (Vivek, 2005): 

1. A characteristic of a product or service that bears 

on its ability to satisfy stated or implied needs. 

2. A product or service free of deficiencies. 

Following the above definitions, quality in simulation 

manifests itself through meeting its specified and 

unspecified requirements and being free from defects. 

To identify these target states, quality metrics and 

criterions are required. According to (Schütt,  2022), 

quality metrics are used to calculate metric results, 

based on data generated during test case execution, 

whereas a quality criterion is used to evaluate a metric 

result in relation to a threshold or evaluation scale. 

 

The term credibility is interpreted more broadly, 

especially in the simulation domain. (Beisbart, 2019) 

notes that credibility may appear as something 

subjective since it can be reduced to being a property of 

a claim which deserves belief. He argues that however, 

the worthiness of belief is at least arguable that the 

degree to which a claim is credible in a certain context 

can be determined in an objective way. 

Beisbart sharpens the term credibility by setting it in 

relation to the terms truth and accuracy: What users of 

simulation are interested in is simply the truth or, at 

least, that the outputs from their simulation come closest 

to the true values of the characteristics of interest. 

Nevertheless, the credibility of claims can only be 

established realistically based on the accuracy of the 

outputs. Therefore, credibility should be a function of 

the available evidence of a claim, in other words: The 

stronger the evidence of a claim, the more credible the 

claim. 

 

(Oberkampf, 2019) supports the relation to truth and 

accuracy, as he states that simulation credibility deals 

with the assessment of the accuracy of certain system 

response quantities (SRQ) with respect to some true 

value or referent. He identifies three key issues on how 

to make credibility measurable: 

1. How are the SRQ compared to the true values? 

2. What is regarded as the true value? 

3. What is the requirement for the simulation to be 

considered credible by the user or customer? 

Whereas he carries out further that the first two issues 

are closely related to verification, validation, and 

uncertainty quantification, the third issue is rarely 

addressed in most simulation communities. He 

concludes that the requirement must be judged in 

relation to the accuracy of the simulation compared to 

the true value, even if the true value is also unknown or 

uncertain. He stresses further that the adequacy 

requirement should be set by the customer of the 

simulation. 

 

Figure 2. Phases and steps of the CSP (Heinkel and Steinkirchner, 2022) 
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(Gelfert, 2019) adds to this view that the assessment 

of model credibility needs always to be tentative and 

context-dependent – even for the rare case that a model 

may turn out to be successful and credible across a wide 

range of questions and applications. 

3.2 Credibility Assessment concept 

Based on the above statements, some basic assumptions 

for a credibility assessment can be formulated: 

1. Adequacy for purpose: Credibility can only be 

formulated for a specific purpose of a simulation or 

a model and is never universally valid for a 

simulation or a model. 

2. Customer demand: The required degree of 

credibility must be formulated in advance by the 

(external or internal) customer. 

3. Holistic approach: Verification and Validation are 

crucial parts of a credibility assessment, but 

credibility should not be reduced to it, as a weak 

definition of requirements for example may be 

critical, if reference data is not available or limited. 

4. Collect Evidence: To support credibility, evidence 

about the statement that is planned to be expressed 

with simulation must be collected. This evidence 

can be articulated with quality metrics and 

criterions. 

 

We will follow a holistic approach, which means that for 

each relevant step of a process phase of the CSP or CMP 

(cf. Figure 2) evidence in form of evaluating quality 

metrics with quality criterions will be collected for 

assessing the credibility of the given objective of a 

simulation or model. The quality metrics will give 

supporting evidence about: 

• How well founded and justified each development 

action is, for phases that will be carried out on the left 

side of the V-Model (VDI, 2021), namely the 

requirement definition and design specification 

phase; and 

• how thoroughly the development actions are verified 

and validated (right side of the V-Model), namely for 

the implementation/integration and evaluation phase. 

Another factor to be considered within the credibility 

assessment concept of this work is based on an insight 

from (Murray, 2015), gathered from the evaluation of 

several simulation case studies: For assessing the 

credibility of physically-based simulation models, a 

comprehensive view with respect to testing and 

validation procedures must be taken, as it is not enough 

to apply only few tests and validation methods, which 

leads to another principle of our concept, to distinguish 

the degree of credibility, based on: 

 
5The amount of three levels has been chosen in accordance with a 

process assessment that evaluates the degree to which a company has 

incorporated the CSP, similar to an A-SPICE assessment 

• The collected amount of evidence; and 

• the degree of formalization of the evidence. 

This results in a discrete scale for the credibility 

assessment, consisting of three5 credibility levels (CLs), 

where the lowest level provides for applying informal 

methods, usually based on expert opinion, whereas the 

highest level provides for applying metrics based on 

formal methods. The discrete scale is organized in a 

cumulative fashion: To reach the higher credibility 

level, the next lower credibility level needs to be 

accomplished before. This approach supports that the 

amount of evidence and the heterogeneity of applied 

methods rises with increasing credibility level. 

 
Figure 3. Discrete Credibility Level concept 

 

The required credibility level for a specific simulation 

task will be determined by the customer in advance 

using a Criticality Indicator. This indicator is calculated 

in the course of a Criticality Assessment by evaluating:  

1. The possible consequences in case of a wrong 

decision during the product development process; 

2. the probability that a failure event happens at least 

once during the product lifetime that would lead to 

the described consequence; and 

3. the influence of the simulation task on the decision 

of the associated engineering task. 

This procedure is closely related to the M&S Criticality 

Assessment of the NASA Standard for Models and 

Simulations (NASA, 2016) and the criticality analysis 

of the Failure Mode and Effects Analysis (IEC, 2006). 

 

For the formulation and application of quality 

metrics, many different quality metrics may exist that 

could be considered, depending on the applied 

simulation and model type and on the engineering 

domain. For this reason, the systematics are extended by 

a formulation concept for quality metrics (see Figure 4). 

On the first dimension, the applicability of the metrics 

will be differentiated. While there are metrics that can 

be applied to a wide range of simulation types (e.g., 

quality metrics that will give evidence about model 
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convergency), others will be very specific and will 

remain subject to a certain engineering domain. 

On another dimension, we will distinguish between 

abstract and concrete quality metrics. Abstract quality 

metrics will represent an implementation guideline and 

will be valid for a specific phase within the CSP. 

 
Figure 4. Systematics for formulating Quality Metrics to 

assess simulation credibility 

 

For example, an abstract metric for the specification of 

requirements, like the ISO 29148 standard (ISO, 2011) 

will be valid for the complete requirements phase of the 

CSP, whereas for the specific steps within the 

requirements phase the concrete metrics may adapt 

specifics with respect to the formulation of model 

requirements or test case requirements. 

An abstract metric from a technical point of view can 

never be used for direct evaluation, as comparatively an 

abstract class in object-oriented programming can never 

be instantiated. 

3.3 Abstract, Generic Quality Metrics 

In the following, we will give a short description of 

abstract generic quality metrics for the phases that 

require quality assurance in the CSP (see Figure 2), 

following the concept given in Subsection 3.2. All 

following abstract metrics are equivalently 

representative for the CMP in the same way as for the 

CSP.  

3.3.1 Requirements Phase 

During the requirements phase of the CSP (Define 

requirements for simulation setup, see Figure 2) the 

requirements of the simulation task are broken down 

into the individual requirements for the simulation 

integration, models, parameters, test cases, and 

simulation environment. Essential within this phase is 

the clarification of general conditions, relevant 

assumptions, and requirements that the simulation must 

fulfil. 

 
6A detailed description of how to interpret the criteria can be found in 

the mentioned references   

For the credibility of the simulation, it is important 

that requirements are formulated clearly and 

unambiguously in order to narrow down the 

interpretational space. Moreover, requirements shall be 

well founded to allow for traceability and should ideally 

be communicated using a standardized format to 

mitigate losing information due to incompatibility of 

requirement management tools. 

This results in the following guideline for the 

different credibility levels, mainly derived from 

ISO/IEC/IEEE 29148 (ISO, 2011) and the INCOSE 

Systems Engineering Handbook (Walden, 2015): 

1. Semantic check: All single requirements must be 

formulated according to semantic 6  criteria: A 

requirement must be necessary, unambiguous, 

complete, singular, achievable, and verifiable. 

Further, the collection of all requirements must be 

complete, consistent, affordable, and bounded. 

2. Check of traceability attributes: All single 

requirements must contain traceability information 

to their source of the task analysis, to parent 

requirements (if child requirement), to peer 

requirements and to verification/validation results. 

3. Formal check: Requirements must be provided 

using a standardized implementation like ReqIf 

(OMG, 2016) and must contain an agreed set of 

attributes. 

3.3.2 Design Phase 

In this phase of the CSP (Define design specification for 

simulation setup), consistent, coordinated specifications 

for all artifacts, models, tools, and parameters are 

elaborated. 

The documentation of justifications for the selection 

of a specific design is essential for the credibility of the 

outcomes of this phase. This can be done on different 

levels of abstraction and detail, which should be aligned 

beforehand between customer and supplier. 

The following guideline must be implemented for the 

credibility assessment of the design phase for the 

following credibility levels: 

1. Basic justification checks: Basic justification of 

design specifications (e.g., the decision for a 

specific approach when modeling an effect, the 

source of parameter values, why specific test cases 

are used, etc.) must be documented, to check if the 

simulation has been built according to its given 

purpose and if the requirements have been 

respected. Must contain design assumptions and 

constraints, where necessary. 

2. Traceability check: Check if the design 

specifications are supported formally, using 

linkage to other process phases. Especially, a 

decision must be justified with requirements and 
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results of the task analysis. Moreover, links to 

verification results must be given to support proof 

of evidence. The traceability check may use results 

from meta-models of the simulation task, like a 

Goal Structuring Notation (GSN) (Spriggs, 2012). 

3. Constraints and Assumptions check: Check if 

design constraints and assumptions are supported 

using linkage within the process phase to 

specifications of other steps (e.g., between test 

cases and parameters or models and environment, 

etc.). The traceability check may use results from 

meta-models of the simulation task, like a GSN. 

3.3.3 Implementation Phase 

In the implementation phase, the different elements of 

the simulation setup (models, parameters, test cases, 

simulation environment) will be implemented and 

integrated according to the information from the design 

specification phase. The verification of the functionality 

of the elements individually and in their interaction in 

the simulation setup will be carried out within this 

phase. 

Verification is one of the most discussed topics in the 

simulation community. However, a comparable 

methodology on how to approach verification in 

modeling and simulation can be observed: Conducting 

code verification first, embracing software quality 

assurance and numerical algorithm verification, 

followed by solution verification, focusing on the 

estimation of the numerical accuracy of discrete 

solutions compared to their mathematical model; cf. 

(Roy 2005; Rider 2019). 

In this phase, the transition from collecting evidence 

by means of foundation and justification to collecting 

evidence by thorough verification and validation is 

made. Therefore, the abstract metrics will focus on 

verification: 

1. Informal verification: Basic code verification, 

beginning with Software Quality Assurance 

focusing on reliability and robustness from the 

perspective of software engineering, as for example 

described in (IEEE, 2014). Must be followed by 

static code checks and basic dynamic code checks. 

2. Formal, qualitative verification: Verification 

must be carried out according to formal methods, 

and results will be evaluated according to 

qualitative acceptance criteria. 

3. Formal, quantitative verification: Verification 

must be carried out according to formal methods 

and results will be evaluated according to 

quantitative acceptance criteria, using benchmarks 

as quality criterions that have been agreed on 

between customer and supplier. 

3.3.4 Evaluation Phase 

The final process phase of the CSP that requires for 

collecting evidence is the evaluation phase (Evaluate 

simulation results & assure quality). In this phase, 

simulation results are processed and evaluated. On the 

one hand, the simulation results are evaluated to make 

an assertion about the question the simulation task is 

trying to answer (e.g., “is the torque of the electrical 

motor sufficient to start the combustion engine?") and 

on the other hand, a confidence range of the given 

assertion must be approximated. 

We propose the credibility-level-guideline for 

validation and uncertainty quantification as following: 

1. Informal validation: Using informal validation 

techniques, as described in the taxonomy of (Balci, 

1997), to assess if the simulation is a sufficient 

representation of the system. Evidence about the 

confidence of the given assertion must be given by 

approximating and propagating the worst-case 

configuration (in terms of uncertainties). 

2. Formal validation: Formal techniques must be 

carried out for quantitative assessment of the 

validity of the simulation, using a validation 

benchmark as quality criterion that has been 

predefined and agreed upon. The validation domain 

must be predefined by a subject-matter expert 

(SME) to identify critical validation points. 

Evidence about the confidence of the assertion 

must be given by propagation of the upper and 

lower boundaries of the uncertainty range, that 

have been approximated by an SME. 

3. Uncertainty quantification: The assertion must be 

supported by performing an uncertainty 

quantification, following the guideline proposed in 

(Roy and Oberkampf, 2010) for specific inputs that 

have been agreed upon. 

 

These guidelines can be implemented specifically, on 

the one hand by different domains (e.g., the automotive, 

aerospace, or medical domain) and from another 

perspective with respect to different model types (i.e., 

for continuous models: Surrogate models, models based 

on algebraic equations, models based on ordinary 

differential equations, models based on partial 

differential equations, etc.). 

Furthermore, the guidelines can also be implemented 

for system simulations, which will result in 

implementations that are widely based on evaluations 

using simulation and modeling standards. 

3.4 Examples for Concrete, Generic Quality 

Metrics using Modelica Standards 

The usage of standards can help to ease the 

implementation of the above proposed guidelines. In the 

following, some basic examples are provided on how to 

use standards of the Modelica Association to collect 

evidence. The following should be understood as 

examples on how to implement the abstract guidelines 

and do not have any claim to completeness of 
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implementing all possible quality metrics, based on 

standards of the Modelica Association. 

 

The System Structure Definition (SSD) is defined as 

part of the SSP specification and describes a nested 

hierarchy of interconnected (sub-)systems and atomic 

components (Modelica, 2019), which can be used for the 

implementation of system models. 

To verify the implementation of the system structure, 

based on an SSD file, the following steps need to be 

carried out that can be considered as very basic CL1 

quality metrics of the implementation phase for models 

(static code checks): 

• Syntax check: Check if the SSD file implements 

the corresponding XSD 7 , defined in the SSP 

specification. 

• Logic check: Even if an SSD file implements the 

XSD correctly, it is not ensured that the proposed 

structure can be implemented. Therefore, logical 

checks need to be done: Check if all inputs are 

connected (if so required); check if connectors 

specified in the connections exist; check if the data 

types of wired connectors are consistent; check if 

connections are kept within their relevant subsystem. 

 

To perform analogous static code checks for FMU 

model descriptions, the procedure for CL1 quality 

checks is similar: 

• Syntax check: Check if the model description of the 

FMU implements the corresponding FMI (Functional 

Mock-up Interface) description schema. 

• Logic check: Besides checking for a valid 

implementation of the XSD, the FMI specification 

defines some requirements and boundaries for the 

implementation (e.g., for definition of units or the 

allowed combination of attributes for specific 

variables). Therefore, some basic logic checks will be 

performed: Check if all units, used in the variable 

definitions are well defined with SI units; check if all 

types, used in the variable definitions are well 

defined; check if attribute combinations for variable 

definitions are valid. 

 

When it comes to integration, it must be further ensured 

that the system structure and the underlying elements are 

compliant. Therefore, a basic integration check, based 

on static code analysis can be carried out. 

• Integration check: Check if connectors, defined in 

the SSD, are consistent with variables/ports of the 

underlying component implementation (in the case of 

referenced FMUs this must match the name of the 

relevant variable in the referenced FMU). 

 
7XML Schema Definition, https://www.w3.org/TR/xmlschema11-1 
8https://github.com/virtual-vehicle/Credibility-Assessment-

Framework/tree/main/Credibility-Development-Kit 

The above-described quality metrics are basic examples 

of how to use implementation checks of Modelica 

Association standards within a credibility assessment, 

even if these checks can be considered state-of-the-art 

of many tools that implement these standards. For 

further examples, implementations and applications of 

concrete quality metrics, we refer to the repository of the 

so-called Credibility Development Kit that is outlined in 

Section 4. 

4 Implementation Concept 

The implementation of the concept for a credibility 

assessment proposed in Section 3 will intentionally be 

kept agnostic towards specific software applications and 

systems to enable broad usability. Within the UPSIM 

project, we are initiating implementations of the 

proposed concept that will result in a software 

development kit that provides quality metrics for each 

credibility level and each process phase of the CSP with 

the goal to provide reusable quality metrics for a 

credibility assessment in a transparent manner. It will be 

denoted as Credibility Development Kit8 (CDK) in the 

following. 

4.1 Credibility Development Kit 

The core component of the CDK is a collection of 

Concrete Quality Metrics, mapped to process 

phases/steps and credibility levels that can be used to 

collect evidence for a credible statement of a simulation. 

 

Figure 5. Components of the CDK 

To support for the correct and unambiguous usage of 

Quality Metrics, further components are part of the 

CDK: 

• Descriptions, Documentation: Descriptions of what 

Quality Metrics aim to measure and additional code 

documentation, using JSDoc9. 

9https://jsdoc.app 
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• Utilities: A collection of reusable helper functions 

that are used across different Quality Metrics with the 

purpose to have reproducible, traceable procedures, 

e.g., on how data is pre/post-processed. 

• Adapters: A collection of functions that transform 

individual input data structures (may be standardized 

data structures like SSD or proprietary formats) into 

the data structures expected by the Quality Metrics 

implementations as an input (see Subsection 4.2). 

• API: Facades as entry points to control pre-defined 

workflows, automatically using the correct adapters 

for individual Quality Metrics (cf. Figure 6). 

• Application examples: Collection of best practices 

of proposed and former usage of Quality Metrics. 

 
Figure 6. Basic data flow using Quality Metrics for 

credibility assessment. Notation: (DeMarco, 1979) 

4.2 High-Level-Design 

Taking into account the general considerations to enable 

broad applicability of Quality Metrics for a credibility 

assessment, the implementation of the CDK is carried 

out as a collection of Node.js10 packages.  

To support the applicability, especially to avoid 

insisting on too specific file formats, further 

considerations have been taken into account: A 

network-friendly data interchange format like JSON11 is 

used and generic input data structures are defined that 

will be used as input to Quality Metrics. To allow for 

 
10https://nodejs.org/en/about 
11https://www.ecma-international.org/publications-and-

standards/standards/ecma-404 

usage of different (standardized and proprietary) file 

formats, adapters can be provided that translate specific 

input data into the expected input data structure.  

 
Figure 7. Simple example of a system model 

As an example, for the simple system model in Figure 

7, both the system and model connections are 

represented by the SSD standard and the proprietary 

format of the tool Model.CONNECT12 will result in the 

same generic data structure (see Figure 8) that can be 

used as an input for a Quality Metric, once serialized. 

 

As stressed in Subsection 3.2, some tests may require 

expert judgements. In this case the quality criterion will 

not directly be evaluated in the software function, but 

instead by an expert beforehand. To integrate this 

implicit evaluation, the statement of an expert (given for 

example as another serialized JSON structure) must be 

digitally signed by the expert, indicating the hash 

algorithm and signature encoding used (see Listing 1). 

This way the customer can verify if the judgement 

originates from an authorized expert, by checking 

against the individual public keys from expert’s 

certificates that have been agreed upon before being 

accepted to carry out expert judgements. 

12https://www.avl.com/-/model-connect- 

Figure 8. Adapter application example for a standard and proprietary format 
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Equivalently, an adapter is provided for signing 

expert judgements and transforming the judgement to 

the expected structure, as presented in Listing 1. 

{ 

 "expert_judgement": "The func is fine", 

 "signature": "9f066d7654fnk8hgc59f…", 

 "hash_algorithm": "SHA256", 

 "signature_encoding": "hex" 

}  
Listing 1. Example for a digitally signed expert 

judgement (shortened for better readability) 

 

Similar to the unification of the input data that is 

passed to Quality Metric functions, outputs of Quality 

Metrics are (serialized) JSON structures and will always 

keep the following specific schema: The result, that 

indicates if the criterion of the Quality Metric has been 

matched or not, as well as logging information that adds 

valuable information to be used as feedback. 

The outputs can be used for continuous assessment of 

the simulation’s credibility (see Subsection 4.3). 

4.3 Continuous Credibility Assessment 

In the following, a proposal for the application of the 

outlined concept of this work for the continuous 

assessment of a system simulation will be sketched. In 

this application example, a multi-supplier scenario is 

presented that is using a Continuous Integration/ 

Deployment (CI/CD) pipeline for a continuous 

credibility assessment. 

 
Figure 9. Example scenario 

In the example application, we consider a distributed 

development of a system simulation, where a customer 

will integrate models from different parties – these 

parties will typically be suppliers that will provide 

black-box models (to keep the complexity of our 

example low, we consider only two sub-models).  

The customer must have performed a criticality 

assessment (cf. Subsection 3.2) that will provide the 

required credibility level for the simulation task the 

customer plans to execute. In agreement with each 

supplier, the customer will select Quality Metrics (and 

quality criterions) from the CDK, according to the 

required credibility level that the corresponding sub-

model needs to fulfill. This way, the customer and the 

supplier will have a bilateral, unified agreement on the 

 
13https://www.w3.org/TR/uri-clarification  

interpretation of the credibility of this specific sub-

model. 

4.3.1 STMD for unique Artifact Identification 

During the development of the sub-models, the 

suppliers must – in addition to the bare provision of the 

model – provide additional credibility documentation 

that can be used as inputs for the selected Quality 

Metrics of the CDK, especially for those process phases 

where data cannot be produced directly within the 

continuous integration pipeline (like for example 

simulation results, generated for verification and 

validation). To ensure the correct mapping of these 

credibility documentation artifacts to corresponding 

Quality Metrics, we propose to provide an STMD file 

(see Section 2) for unique identification.  

For each step of the Credible Simulation and Credible 

Modeling Process the STMD schema enables for 

providing credibility documentation via the Rationale 

element. We propose to add the sources of all additional 

artifacts required for the credibility assessment within a 

Rationale element as Resource element and specify the 

mapping as a MetaData element of the Resource. The 

following elements and arguments shall be used with the 

subsequent conventions:  

• Resource element: The argument kind must be 

specified as “credibility-documentation”; the 

argument type must indicate the MIME-Type of the 

resource, as required in the STMD specification; the 

argument source must indicate the URI 13  of the 

credibility documentation resource 

• Metadata element: The argument kind must be 

specified as “metric-mapping”; the argument type 

must be specified as “text/xml” 

• Content element: This element is allowed to contain 

user-defined elements. We propose to use an element 

called cdk:Task 

• cdk:Task element: The argument level must be 

provided to indicate the corresponding credibility 

level 

• cdk:ValidationFunction element: The argument 

function must be provided to indicate the target 

Quality Evaluation function. The argument adapter 
must be specified if the resource must be transformed 

to the expected file format and data structure; it must 

indicate the name of the function of the adapter to use 

Figure 10 is presenting an excerpt of the proposed 

unique resource identification for a Quality Metric of the 

Design Specification phase that requires the provision 

of an expert judgement for CL1 and a graph for CL2. 

4.3.2 Continuous Assessment and Deployment 

In this manner, the credibility assessment must be 

performed for each phase and step of the process. The 
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concrete Quality Metrics that have been agreed upon 

between customer and suppliers will be evaluated to 

aggregate the results for being able to derive a 

condensed credibility level for the individual sub-

models. 

By providing the logging information, next to the 

results of the Quality Metric evaluation (see Subsection 

4.2), developers are able to get feedback and can iterate 

on developing towards the required credibility level. For 

each iteration the credibility level will be determined, 

based on the changes done; thereby the credibility is 

assessed continuously. 

It is important to point out that the interpretation of 

the overall credibility of a simulation or a model 

depending on the achieved atomic credibility levels of 

each process step is the responsibility of the applying 

parties. As we see the risk of error propagation in a 

simulation process, we propose to use a minimum rule, 

which means that the overall credibility level is equal to 

the lowest credibility level of a single process step. This 

does not apply only for the sub-models by execution of 

the CMP on the supplier side, but for the overall 

simulation by execution of the CSP on the customer 

side, as well. 

The final step of the CI/CD pipeline is the automatic 

deployment of an SSP package. This package is having 

a unique identifier with the purpose to enable an 

unambiguous mapping of the deployed SSP package to 

the assessed credibility level. Again, it must be 

emphasized that the credibility level connected to this 

package is only valid for the given purpose of the 

simulation and does not represent a globally valid 

certification for the simulation model. 

5 Conclusions and Outlook 

In this paper, a proposal is presented on how to 

continuously assess the credibility of models and 

simulations. As the term credibility is interpreted 

differently in the community, we clarified some basic 

assumptions that our concept for credibility assessment 

is built on.  

A central aspect of these assumptions is that 

credibility increases with the amount of evidence given 

about the statement that is planned to be expressed with 

simulation. However, even if we recommend 

distinguishing the degree of credibility by using a 

discrete level scale that is separated according to the 

formal degree of the applied methods and aims at 

increasing the amount of collected evidence with 

increasing credibility level, it must be stressed that this 

classification can only represent an approximation of the 

credibility. Simulation tasks will differ in their modeling 

approach, complexity, and prior knowledge. Therefore, 

we emphasize taking these conditions into account when 

applying the presented concept, especially when it 

comes to selection of Quality Metrics. 

From implementational point of view we presented 

an approach on how to document and reference to 

additional information that will be required for assessing 

the credibility. In our concept, we adapted to the concept 

of STMD that references additional traceability and 

credibility documentation by adding it as a layered 

standard on top of the specification of Modelica 

standards. Still, there’s a trend to add credibility 

information directly to models (cf. Gall et al., 2021), 

which is also subject of investigation within the UPSIM 

Figure 10. Example of using the Rationale element within a STMD file to ensure unique identification of Quality 

Metric inputs  
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project. These developments can be considered to be 

used in further developments of the continuous 

credibility assessment in this work. 
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