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PREFACE 

The Modelica Conference is the main event for users, library developers, tool vendors and language 

designers to share their knowledge and learn about the latest scientific and industrial progress 

related to Modelica, the Functional Mockup Interface (FMI), System Structure & Parametrization 

(SSP), the Distributed Co-Simulation protocol (DCP) and the Functional Mock-up Interface for 

embedded systems (eFMI).  

Since the start of the collaborative design work for Modelica in 1996, Modelica has matured from 

an idea among a small number of dedicated enthusiasts to a widely accepted standard language for 

the modeling and simulation of cyber-physical systems. The Modelica language was standardized by 

the non-profit organization Modelica Association which enabled Modelica models to be portable 

between a growing number of tools.  Modelica is the language of choice for model-based systems 

engineering and is now used in many industries including automotive, energy and process, 

aerospace, and industrial equipment. 

The Modelica Association has since grown to include several projects supporting modeling and 

simulation, creating a family of inter-related standards complementing each-other. FMI is an open 

standard that defines a container and an interface to exchange dynamic models using a single file 

(an FMU). SSP is a tool-independent standard to define complete systems consisting of one or more 

FMUs including its parameterization that can be transferred between simulation tools. DCP is a 

platform and standard for the integration of models or real-time systems into simulation 

environments. eFMI tooling enables the automatic transformation of higher-level acausal model 

representations (such as Modelica) to causal solutions suitable for integration in embedded systems. 

Highlights of the conference include: 

• 8 tutorials 

• 2 keynotes  

• 3 vendor presentation sessions with 9 presentations 

• FMI User Meeting with 5 presentations 

• Industrial User Presentation with 3 presentations 

• 22 paper sessions with 73 presentations 

• 1 poster session with 13 posters  

• 13 sponsors 

• 2 Best paper awards  
o HVAC and Control Templates for the Modelica Buildings Library (Antoine Gautier; 

Michael Wetter; Jianjun Hu) 
o Design proposal of a standardized Base Modelica language (Gerd Kurzbach; Oliver 

Lenord; Hans Olsson; Martin Sjölund; Henrik Tidefelt) 

• Best poster award 
o Automatic Optimization of Energy Supply Systems in Buildings and City Quarters 

based on Modelica Models (Torsten Schwan; David Feige; Leonhard Wenzel; 

Charlotte Voelckner; Martin Leuschke) 

• Best library award: ClaRa (Ales Vojacek; Johannes Brunnemann; Tim Hanke; Thomas Marx-

Schubach; Jörg Eiden) 
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WELCOME 

 

Welcome to the Modelica Conference 2023 in Aachen! 

For many years, Modelica has been an important tool at my institute for the calculation of interesting 

details in technical systems up to the analysis of complex energy systems. The equation-based 

approach, especially, allows the early integration of Modelica into the education of students. In this 

way, students can already develop their own models and combine them with existing models from 

libraries during their studies and in their final theses. This strengthens students’ simulation skills and 

makes an important contribution to ongoing research projects. 

Dynamic simulation has also established itself as a development tool in many companies. 

Simulation-based decisions can be made at a very early stage of product development, and initial 

optimizations can be implemented even before a first prototype is created. The object-oriented 

structure of Modelica makes it possible to develop increasingly detailed and more accurate models 

based on the initial approaches as the depth of development increases and by calibration using the 

first experimental data. And so, over the product development phases, a concept model becomes a 

digital twin that can be used in a variety of ways even after development. 

Together with my colleagues Antonello Monti and Andrea Benigni and I am pleased to welcome you 

as pioneers, developers and users of Modelica in Aachen. The variety of application topics at this 

conference once again demonstrates the flexibility of Modelica and I am excited to see what we will 

learn together during the conference. I would like to take this opportunity to especially thank all the 

sponsors, the Modelica Association and the organizing team, led by Dominik Hering! 

 

With best regards 

 

Prof. Dirk Müller                

Conference Chair  
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over 30 years and is actively involved in the 

development and integration of simulation tools 

into the overall construction process. From the 

lecturer’s many years of practice as research 

assistant and at ROM R&D, examples will be 

shown to illustrate the growing importance and 

acceptance of simulations in practice and to 

present the deeper anchoring in the digital 

construction process that is currently being 

strived for the future. 
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MARCO: An Experimental High-Performance Compiler for
Large-Scale Modelica Models

Giovanni Agosta1 Francesco Casella1 Daniele Cattaneo1 Stefano Cherubin2 Alberto Leva1

Michele Scuttari1 Federico Terraneo1

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
{name.surname}@polimi.it
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Abstract
This paper introduces MARCO, a research compiler
aimed at the efficient generation of efficient simulation
code from a large-scale Modelica model. MARCO’s
design goals, requirements, and specifications are dis-
cussed in the paper, as well as the software architec-
ture, the current development status, and a future develop-
ment roadmap. The results of two test cases demonstrate
MARCO’s capability to handle non-trivial Modelica mod-
els with over 10 million equations very efficiently.
Keywords: Modelica, compiler construction, large scale
models

1 Introduction
The Modelica Language, first introduced in 1997, has be-
come a widespread standard in the field of system-level
modelling and simulation, and is now supported by many
different tools, both commercial and open source. For
many years, the focus of Modelica tools was mainly to
support the modelling of individual systems, such as a
robot, a power plant, an air conditioning system, a heat
pump, an aircraft, and so on. Such models are built by
connecting heterogeneous sub-systems belonging to dif-
ferent physical domains (e.g., mechanical, thermal, elec-
trical) and often require the efficient and robust solution
of non-trivial systems of non-linear equations. However,
their scale usually is quite limited, from a few hundred
equations up to one or two hundred thousand equations.
According to how flattening is described in the language
specification (Modelica Association 2021), such models
are transformed into a system of scalar equations involv-
ing scalar variables.

This approach has served the Modelica community well
for about 25 years, but suffers from severe performance
limitations in two cases. One is the case of models con-
taining large array equations, e.g., stemming from the
2D or 3D discretisation of distributed-parameters systems.
The other is the case of systems-of-systems with many re-
peated instances of the same basic components. In both
cases, the typical workflow of today’s Modelica tools turns
out to be inefficient, particularly as regards the time re-
quired to generate the executable simulation code from the

original Modelica source code, and also as regards the size
of the generated code, which contains many repetitions of
essentially the same lines of code. This issue was high-
lighted eight years ago in (Casella 2015), Section 2.6, but
until now, no industrial-grade solutions have been devel-
oped to overcome this problem.

This issue hampers the use of Modelica for effectively
modelling systems-of-systems and large-scale, smart, dis-
tributed systems of all kinds (e.g., smart grids, smart
neighbourhoods, and IoT systems in general). The Model-
ica language perfectly suits the task, as it can conveniently
describe structured multi-domain cyber-physical systems.
Still, tools are not up to the task when the size and com-
plexity grow towards the one million equation threshold,
and beyond.

For example, the French Electrical Transmission Sys-
tem Operator RTE decided several years ago to use Mod-
elica to model and simulate national and continental-wide
power transmission systems. However, limitations in ex-
isting Modelica technology were such that they could use
Modelica to generate the code of individual components,
but then had to write their own simulation engine in the
Dynaωo software (Masoom et al. 2021) to build and sim-
ulate the systems of their interest at the required scale,
within the time frames allotted for real-time monitoring
and management of the French power grid.

To overcome these inefficiencies, four years ago some
of the authors of this paper started a research line with
three main goals:

1. Compile Modelica code into the simulation code
with a low runtime footprint in terms of both mem-
ory and execution time, running on a range of differ-
ent machines, from the workstations typically used
by engineers to run their simulations, to embedded
devices where Modelica models can be deployed as
part of control systems.

2. Exploit arrays of variables, equations, and models as
first-class citizens to drastically cut code generation
time and generated code size and improve simulation
run time. (Schuchart et al. 2015) (Otter and Elmqvist
2017)
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3. Skip the traditional C-code generation step in favour
of generating LLVM-IR code that could be directly
turned into highly optimised machine code.

A very preliminary experimental development was re-
ported in (Agosta et al. 2019), together with a first tenta-
tive roadmap.

Based on that first experience, which could be classified
as TRL-2 and whose results seemed promising, the de-
velopment of the MARCO (Modelica Advanced Research
COmpiler) compiler was started and has since then grown
into a full-fledged research project involving several mas-
ter’s and PhD students, as well as more senior faculty with
Computer Science and with Automation expertise.

The purpose of this paper is thus to present to the Mod-
elica community the current state of the art of this project,
which has now reached TRL-4, together with an updated
roadmap for future work. Some interesting results ob-
tained on non-trivial case studies will also be reported.

The paper is structured as follows: in Section 2, the
MARCO compiler’s objectives, requirements, and specifi-
cations are stated. Section 3 briefly describes the compiler
architecture and its current development status. Section
4.3 reports the results of two non-trivial case studies in-
spired by real-life applications. Section 6 concludes the
paper with some final remarks.

2 Goals, Requirements, Specifications
The main goal of MARCO is to experiment with method-
ologies and algorithms to generate the fastest possible ex-
ecutable code from large Modelica models, and to do it
quickly and efficiently. The medium-term objective is to
handle models with one million to ten million differential-
algebraic equations (DAEs), eventually reaching 100 mil-
lion in the long term, although this may require more fun-
damental breakthroughs.

At the time of writing, MARCO is not primarily meant
to be a production-grade compiler. As such, it does not
aim at covering the complete range of models that can be
written in Modelica. The idea is to demonstrate the ca-
pability of generating fast executable code fast on a sub-
set of large-scale system models that can be written in
the Modelica language, that are however relevant for in-
dustrial application domains. This sub-set could then be
progressively enlarged as time passes, possibly – but not
necessarily – covering the full range of models that can
be written using the Modelica language. At some point,
MARCO could turn into industrial-grade software, or al-
ternatively be used as a research prototype for implement-
ing such software; it is currently too early to say that.

This project is specifically interested in monitoring and
improving metrics related to the quality of the tool, on top
of the quality of the result. Thus, MARCO aims at opti-
mising the time-to-solution, which is to be intended as the
sum of the time required to generate an executable simula-
tion, plus the proper simulation time of a Modelica model.

Efficient handling of arrays of models and equations
is an essential feature to fulfil this goal. Arrays should
be handled as first-class citizens throughout the entire
toolchain, avoiding expanding them into their scalar con-
stituents, unless strictly required, thus shortening the
structural analysis time and the executable code genera-
tion time.

To generate efficient runtime simulation code, the math-
ematical structure of the problem should be preserved as
much as possible throughout the toolchain, and exploited
during its latest stages to allow the generation of more ef-
ficient machine code.

One important point when handling very large systems
with over a million variables and equations concerns han-
dling the simulation results. The default behaviour of
Modelica compilers is to save all the variable values at
each reporting time step, possibly skipping protected com-
ponents. However, for such large-sized models, this ap-
proach easily leads to massive, multi-GB-sized simula-
tion results files, which are unnecessarily cumbersome and
largely useless since most of those variables have little or
no specific interest for end-users that generally on a rela-
tively small subset of relevant output variables.

The idea is then not only to avoid wasting CPU time
and disk space to store all the simulation results but actu-
ally to structure efficient simulation code around the fact
that only some variables (which can be declared, e.g., as
top-level outputs or listed in a custom annotation) are in-
teresting for the end user. For example, if a certain vari-
able is only of interest as an intermediate computation step
towards the computation of the state derivatives, the gen-
erated code could only store it in some CPU registers so
that not only the time to save it to disk is saved, but also
the time to shuffle it back and forth from the CPU cache to
RAM. In some cases, the computation of certain variables
could even be skipped outright.

Along the same line, Modelica compilers usually gen-
erate code that allows changing parameter values at run-
time without re-building the simulation executable from
scratch. This is of course essential if the build time is com-
parable or even larger than the simulation run time, as it
often is with current Modelica tools. However, this has a
price in terms of less efficient simulation code because of
additional indirection and memory access, as well as leav-
ing less room for extreme machine-code optimisations.

Also, during typical simulation-based studies (includ-
ing parameter optimisation), only a relatively small num-
ber of parameters are subject to change; these are a tiny
fraction of the complete set of parameters for million-
equations models, which could count tens of thousands or
more parameters. Since the goal of MARCO is to generate
code which is as fast as possible and to do it as fast as pos-
sible, all parameters that are determined by binding equa-
tions should be constant-evaluated at compile time. Al-
though it should remain possible to make some exceptions
to support parameter-sweeping or parameter-optimisation
studies, the (few) parameters not to be constant-evaluated
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should be declared explicitly.

3 Current Status of MARCO
In this section, we provide an overview of the current sta-
tus of MARCO with respect to the objectives we are aim-
ing to achieve. First, we focus on the software architecture
chosen, which reflects the state-of-the-art in compiler de-
sign and construction. Then we follow with a discussion
of the features currently supported by the compiler, both
in terms of Modelica language features, and in terms of
the set of runtime solvers currently supported for the sim-
ulation code generation.

3.1 Software Architecture
MARCO is written using the C++ language, and it is
based on the technologies developed within the LLVM
project (Lattner and Adve 2004). The LLVM project is
a collection of modular and reusable compiler technolo-
gies. Its most important part are the LLVM core libraries
(often simply referred as LLVM), which provide a mod-
ern target-independent optimizer and code generator for
an increasing amount of processor architectures. LLVM is
a mature project heavily used both in the industry and in
compiler research, and in MARCO we rely on it to imple-
ment the back-end of the compiler, which therefore out-
puts machine code directly instead of C code. Is is worth
noting that using LLVM and its intermediate representa-
tion (LLVM-IR) enables the reuse of the backend optimi-
sations provided by LLVM itself and the possibility of tar-
geting different architectures – i.e. ARM-based embedded
systems and not just PCs based on Intel processors – with-
out the need to implement any additional transformations.

The front-end of MARCO is based on MLIR, also part
of the LLVM project, which represents a novel approach
to building reusable and extensible compiler infrastruc-
tures (Lattner, Amini, et al. 2021). Before MLIR, com-
piler front-ends were often built from the ground up, be-
cause different language features call for different internal
data structures for the code – or, in other words, differ-
ent intermediate representations. However, while these
intermediate representations may differ from each other,
there is a set of common abstract tasks performed on such
representations that does not depend on the semantic of
each operation in the code. MLIR provides a construction
set, so-to-speak, where the compiler developer only has
to declaratively define the set of domain-specific interme-
diate representations they need – called dialects – based
on simple concepts like operations, types, and attributes.
Additionally, MLIR provides built-in dialects for seman-
tics that history has shown to be common amongst multi-
ple programming languages. The implementation of new
dialects and the combination of existing ones contribute
to the definition of Multiple Layers of Intermediate Rep-
resentations of the code, from which the MLIR acronym
stems. In summary, MLIR allows to build compilers with
less human effort, providing a library of primitives that
previously needed to be rewritten from scratch for each

different language.
From a high-level point of view, MARCO is com-

posed of multiple libraries organized as a pipeline. This
pipeline is overall similar to the familiar one known from
the literature (Cellier and Kofman 2006) and already em-
ployed in other state-of-the-art Modelica compilers like
the OpenModelica Compiler. In our compiler design,
however, all the steps required for the causalization of the
model are performed through successive transformations
of a new MLIR dialect explicitly devised for the Model-
ica language. In addition, at the end of the pipeline, the
causalized model in MLIR dialect form is translated into
LLVM-IR code, the intermediate representation (IR) used
by LLVM. Then, we exploit LLVM to translate such code
into an object file, which is then linked with the MARCO
runtime library to obtain the executable simulation. The
translation to LLVM-IR exploits the existing MLIR built-
in dialects and transformations to the maximum possible
extent, greatly reducing the workload required for its im-
plementation.

The MARCO runtime library is also written in C++,
and serves two purposes: the first is to provide the imple-
mentations for functions that are inconvenient to be repre-
sented directly using LLVM-IR; the second is to actually
drive the simulation process, by leveraging other functions
which are instead emitted during the compilation process,
which typically provide information about the compiled
model. It is worth noticing how, even if not strictly nec-
essary for the generation of the simulation, the MARCO
runtime library enables faster development and testing, to-
gether with the possibility of using more complex solu-
tions – like multithreading – that would otherwise be way
more difficult to handle.

3.2 Arrays & Flattening
The first step of the process that transforms a Modelica
model into executable simulation code (Fritzson 2014)
is the so-called flattening (Modelica Association 2021).
During flattening, the models with their variables, param-
eters, and equations are instantiated according to the rules
that govern name lookup, inheritance, and modular com-
position of Modelica models. This first step results in a
set of variable and parameter declarations, a set of record
type definitions, and a set of hybrid DAEs.

The fundamental requirement for preserving arrays as
first-class citizens is to carry out the flattening without ex-
panding array variables into their scalar constituents and
without unrolling array or for-loop equations into their
scalar requirements.

Given the complexity of the Modelica language, this
first step is rather involved and would require substantial
development effort. Luckily, recent advances in the devel-
opment of the OpenModelica Compiler (OMC), namely
the new OMC front-end (Pop et al. 2019) provide this
functionality out of the box. The new OMC front-end pro-
vides more than adequate performance also for very large
models, as long as they are built by instantiating large ar-
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rays of a comparably limited number of classes, which is
typically the case in many systems-of-systems and smart
grid applications. In this case, most of the flattening ef-
fort can be performed once for an array of components
that may count hundreds or thousands of elements, thus
slashing the flattening time dramatically.

Additionally, the new OMC front-end can also process
models that contain a large number of individual instances
of the same class with the same modifier structure, au-
tomatically collecting them in arrays before proceeding
with the rest of the flattening process. This allows to pro-
cess models of systems such as power grids (Bartolini,
Casella, and Guironnet 2019), gas networks (De Pascali et
al. 2022), or district heating networks (Long et al. 2021),
that can be built automatically by translating graph-based
system descriptions into Modelica system models, even-
tually transforming them into array-based models.

Recent advances in the definition of Base Modelica,
formerly known as Flat Modelica (MCP-0031: Base Mod-
elica and MLS modularization 2023), were used to inter-
face the OMC new frontend and the MARCO compiler,
with some extensions to support array-preserving model
descriptions. Specifically, declarations of arrays of models
are turned into the corresponding declarations of arrays of
variables, where the variables of the model array become
array variables; accordingly, the equations of the model
array become array equations, declared via for-loops cov-
ering the entire array index range, see (Casella 2023) for
some concrete examples.

MARCO thus accepts array-preserving Base Modelica
textual models as inputs. Using a textual interface may be
somewhat less efficient than directly accessing the OMC
frontend internal data structures. On the other hand, rely-
ing on a high-level, reasonably stable, human-readable in-
terface, which is presumably going to become a Modelica
Association standard eventually, seems to be the best op-
tion for long-term development, without running the risk
of relying on low-level on features that may change or be-
come obsolete in the future.

This decision allowed to focus the development of
MARCO on the current bottlenecks of the typical Mod-
elica simulation workflow for very large models, namely
the structural analysis, the code generation, and the run-
time execution.

3.3 Supported Modelica Features
Therefore, MARCO relies on the OMC’s new front-end
for flattening, which is a complete, efficient implementa-
tion of the Modelica Language Specification, fully sup-
porting the Modelica Standard Library. From this point
of view, MARCO can accept models built with the most
sophisticated features of Modelica, such as replaceable
classes, conditional components, overconstrained con-
nectors, stream variables, etc., which will be converted
into flat hybrid DAE systems, possibly involving multi-
dimensional arrays of variables.

Current limitations in the range of the models that

MARCO can turn into efficient simulation code thus only
regard the mathematical structure of the model rather than
its object-oriented structure.

MARCO only supports continuous-time variables and
equations at the time of this writing. Although we ac-
knowledge that this limitation is particularly severe for
practical applications, on the other hand, MARCO already
enables us to demonstrate the scaling capabilities of the
compiler with respect to the model’s size. Support of
discrete variables, event-handling, if-equations and when-
equations is planned for the near future.

Thanks to recently developed array-based extensions of
matching and sorting algorithms (Fioravanti et al. 2023),
MARCO can very efficiently handle the causalization of
array-based DAEs, including multi-dimensional arrays.
The output of this phase is the matching of continuous
slices of these arrays with corresponding for-loop equa-
tions and the ordering of their solution in Block Lower
Triangular (BLT) form.

In fact, one interesting result proven in (Fioravanti et
al. 2023) is that the optimal matching problem in the
case of arrays (where optimal means that the arrays slices
and corresponding array-equations should have the max-
imum possible size) is in general an NP-complete prob-
lem. Heuristics were then developed to efficiently handle
roto-translation of index – i.e., cases where the equations
in for-loop involve exchanging indexes and adding fixed
offsets, as shown in Listing 1.

Listing 1. Example of array equations with fixed offset

Real x[N, M];
Real y{N, M];

equation
for i in 2:N-1 loop

for j in 1:M loop
x[i,j] = y[j, i + 1] + x[i - 1, j];

end for;
end for;

MARCO supports arbitrary Modelica functions, possi-
bly with inlining, with the exception of external functions,
whose support is planned for the future. It can also differ-
entiate functions using AD techniques (Neidinger 2010)
whenever needed for Jacobian computations.

The support for records is currently being implemented,
including the support of operator records, which is neces-
sary for power system models using Complex numbers, a
potentially very interesting application, in the near future.

At the time of writing, index reduction, dummy deriva-
tives and state variable changes are not yet supported. Al-
though this lack also represents a severe limitation for a
Modelica compiler, there are some interesting application
fields – e.g., modelling the thermal dynamics of buildings
and district heating systems, as well as electro-mechanical
modelling of power transmission and distribution systems
– where these features are not needed.
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3.4 Runtime Solvers
Regarding the runtime solvers, the initial goal of MARCO
is to demonstrate its potential in two categories of appli-
cation scenarios.

The first one involves non-stiff models that may be
simulated with explicit ODE integration methods. This
is also useful for co-simulation or real-time simulation,
possibly running on embedded hardware using FMI or e-
FMI. In this case, fixed-time-step explicit Euler’s method
is used. More sophisticated higher-order explicit integra-
tion methods such as Runge-Kutta could be implemented,
but they do not represent a priority as long as MARCO re-
mains a technology demonstrator rather than a full-fledged
production-level tool.

In this context, it may be necessary to solve algebraic
loops at each time step corresponding to strong compo-
nents in the BLT. Currently, MARCO is restricted to small
linear systems that can be solved efficiently in closed-form
by symbolic manipulation. The integration of sparse lin-
ear (KLU) and nonlinear (Kinsol) solvers with symbolic
Jacobian code generation is planned for the near future.

The second scenario instead involves systems which are
stiff or involve large algebraic systems of equations. In
this case, the design choice was to rely on the open-source
DAE solver IDA from the Sundials tool suite (Gardner et
al. 2022), which provides the efficient solution of large,
sparse DAE models using BDF algorithms, with adaptive
step size and error control.

IDA optionally requires the (sparse) Jacobians of the
DAE formulation of the system with respect to all the vari-
ables and to the state derivatives to solve the implicit BDF
formula, and it goes without saying that an overall effi-
cient implementation requires computing such Jacobians
analytically, to reduce the time spent computing Jacobians
and also to avoid unnecessary iterations of the BDF solver
caused by poor Jacobians. MARCO is thus endowed with
automatic differentiation algorithms and generates effi-
cient code to compute the Jacobians required by IDA.

To reduce the size of the implicit system that IDA needs
to solve at each iteration of the solution of the BDF for-
mula, the results of the causalization algorithm are ex-
ploited: instead of passing to the IDA solver the complete
DAE system F(x, ẋ,v, t) = 0), where x is the vector of state
variables, v the vector of all algebraic variables, and t the
time variable, a reduced system of equations Fr(x, ẋ,w, t)
is passed instead, where w is the vector of the algebraic
variables that are unknowns of implicit systems; the other
algebraic variables are computed by sequences of assign-
ments that correspond to the explicit solutions of equa-
tions that have 1×1 blocks on the BLT diagonal (Scuttari
et al. 2023). In other words, IDA is directly used to solve
the linear and nonlinear implicit algebraic equations and
the (stiff) differential equations, while the results of the
causalization steps are used to compute all the other vari-
ables explicitly in the generated code.

While a single thread currently carries out the sequen-

tial part of the residual computation, the subsequent com-
putation of the residuals matched to ẋ and w and of the
Jacobian element is carried out by parallel threads, since
they can be computed independently. In the future, also
the sequential part could be parallelised.

Initial equations are also solved using IDA, which acts
as an interface to the underlying sparse Kinsol solver. Cur-
rently, MARCO can only handle square non-singular ini-
tialisation problems, where the number of initial equations
matches the number of differentiated variables plus the
number of fixed = false parameters. The solution of
under and over-determined initialisation problems, which
is closely related to index reduction and dummy deriva-
tives, is currently not yet supported.

Last but not least, MARCO only outputs to the CSV
result file the top-level output variables of the model. An
extension of the array-aware matching and sorting algo-
rithm along the lines of (Manzoni and Casella 2011) could
identify the system equations and variables that are strictly
needed to compute the state derivatives and the top-level
system outputs, allowing to skip the computation of all
other algebraic variables defined in the model. This fea-
ture, which is planned for the near future, will further op-
timise the simulation time.

4 Case Studies
In this section, the results of two case studies are reported
to demonstrate the current capabilities of the MARCO
compiler. These case studies are motivated by real-life
applications; they are simple enough to be contained in a
few dozen lines of code (see the Appendix) but are nev-
ertheless definitely non-trivial to handle, in particular as
regards the need for matching slices of the arrays to sub-
sets of for-loop equations involving them. Also, both case
studies are easily scalable via parameters to test the tool’s
performance with the increasing model size.

4.1 3D Thermal Model of a Microchip
Modern microprocessors feature higher and higher power
density, requiring more and more advanced fluid-based
cooling systems. These models combine 0D and 1D cool-
ing system models, which are conveniently represented in
Modelica, with 3D thermal models of the microchip body
and heat sink body, which need high spatial definition to
identify potentially harmful hot spots.

This is currently achieved by co-simulation set-ups
(Terraneo et al. 2022), where the microchip thermal dy-
namics are simulated by a separate dedicated simulation
tool. However, it would be quite convenient to embed
a detailed 3D thermal model of the microchip directly
within the Modelica model, avoiding the complication and
inconvenience of the co-simulation setup.

This first case study thus demonstrates the capability
of MARCO to handle high spatial resolution 3D thermal
models of solid bodies. The 3D thermal model is built in a
fully object-oriented way, by first defining an elementary
0D Volume model, with a lumped thermal capacitance in
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the middle and 6 thermal conductances and 6 thermal ports
in the directions east, west, north, south, up, and down.
The microchip thermal model is assembled by instantiat-
ing a 3D N×M×P array of such 0D models and connect-
ing them via for loops.

This approach leads to a very compact Modelica source
code with just three for loops, one for each orthogonal
spatial direction. The alternative would be to write the
discretised 3D heat equations directly in the body of the
model, but that requires handling the inner volumes, the
face volumes, the edge volumes, and the corner volumes
differently, leading to a much longer and error-prone code
with many more for loops, and a much higher likelihood of
making some mistakes with the loop indices when writing
the equations for the various cases.

Furthermore, with the full object-oriented approach,
one can connect heat sources or other thermal objects of
arbitrary shape to portions of the outer faces of the 3D mi-
crochip model, e.g. representing specific active semicon-
ductor areas on the microchip surface; unconnected outer
faces are automatically considered as thermally insulated,
thanks to the default connection equations Q_flow = 0

generated by the compiler for unconnected thermal ports.
Handling the non-trivial geometry of such active areas
without using connection equations becomes extremely
complicated and counter-intuitive, as one would also need
to write specific for-loop equations for each rectangular
thermally insulated region.

In the present case study, for simplicity, half of the
lower face of the chip (corresponding to the active semi-
conductor area) was connected to a uniformly distributed
2D heat source, while the other half was left unconnected,
and thus insulated. More elaborate setups could be con-
ceived, e.g. representing active cores on the chip surface.

The upper face of the microchip is instead connected to
a 2D fixed temperature source, corresponding to the sur-
face of the heat sink block. A more realistic model could
include a full thermal model of the heat sink and its cool-
ing system.

This object-oriented model contains a huge number
Nc = O(NMP) of connection equations; each face-to-
face connection of two adjacent 0D blocks generates a
small system of linear equations, corresponding to the se-
ries connection of the two half-conductances of the ad-
jacent 0D blocks in that direction. However, these sys-
tems can be easily solved in closed form, corresponding
to the well-known formula for the conductance of series-
connected conductors, allowing to explicitly compute the
heat flow between the capacitances of adjacent 0D blocks
in each spatial direction without even computing the tem-
perature at the block boundaries. Additionally, thanks to
the array-preserving nature of MARCO, this symbolic so-
lution needs to be carried out only once during code gen-
eration, so it takes a negligible amount of time.

For the sake of this simple case study, only eight output
temperatures were computed and saved, namely the tem-
peratures at the four corners of the upper and lower faces

of the microchip. This enabled the comparison of the sim-
ulation results with those obtained with OpenModelica.

The thermal microchip model was simulated both by
explicit Euler’s algorithm and by IDA, in a test case of
increasing size, up to M = N = 96, P = 32, which leads
to a model with over 4 million DAEs and about 250,000
state variables. The simulation starts at thermal equilib-
rium with zero thermal power input and simulates the re-
sponse of the system to a step increase of the thermal flux
applied to half of the bottom face of the microchip.

4.2 Heat Exchanger Network with Methanol
Another interesting field of application that can easily lead
to large-scale models is thermo-fluid systems, as found in
large industrial plants, district heating systems, and smart
distributed energy systems in general. When modelling
such systems, non-trivial fluid property models are often
needed and computed using functions.

The second test case tries to capture the main features of
these applications in a simple and scalable test model. The
model contains a 2D Nu ×Nh array of heat exchangers,
which are arranged in Nu sequential rows, each containing
Nh parallel heat exchangers, whose outlet flows are then
mixed before being distributed to the next row. Each heat
exchanger is then modelled with Nv finite volumes. The
mass flow rates and heat flows of each heat exchanger are
time-varying, and set up in a way that guarantees that no
two heat exchangers ever operate at the same temperature.
Overall, the number of variables and DAEs of the system
model is O(NuNhNv).

The compressibility of the fluid inside the heat ex-
changers is neglected for simplicity, leading to trivial mass
balance equations. On the other hand, an accurate model
of the relationship between the temperature and the spe-
cific energy and enthalpy was developed using Modelica
functions, using results from (Craven and de Reuck 1986).

4.3 Experimental Results
The results of the simulations of medium-size models
were successfully compared with the simulation results
obtained with the OpenModelica tool, using the same so-
lution algorithm, and were found to agree with the results
produced by MARCO with high accuracy. Then, MARCO
was used to simulate the much larger instances of the test
cases mentioned in the previous two sub-sections, which
are beyond the current capabilities of the OpenModelica
compiler.

All tests were conducted on a server with an i9-
12900KF Intel processor and 96 GB of RAM, running
Linux Ubuntu 20.04 LTS. At the time of this writing, the
results obtained with IDA, although correct, are still not
efficient as expected, so the results summarised in Table 1
and shown in Figures 1 and 2 only refer to explicit Euler’s
method. Results with IDA are expected to be available for
the final revision of this paper.

A direct comparison of the performance of MARCO
against other Modelica tools is beyond the scope of this
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Table 1. Compilation and simulation times for largest simulated models.

Equations Steps Compilation time [s] Simulation time [s]

Heat exchangers network 14776202 40000 10.13 33574.76
3D thermal chip 4465160 60000 86.24 605.47

paper. It is worth mentioning, though, that the authors are
not aware of any other Modelica tool which is currently
able to handle models with 15 million equations or at least
to do so with compile times of a few tens of seconds on
low-cost hardware (a 1,500 C gaming machine).

5 Roadmap
The results presented in the previous section demonstrate
that the MARCO compiler can handle non-trivial, array-
based, very large models with very short compile times
and good runtime performance, on a scale of model sizes
currently inaccessible to mainstream Modelica tools.

On the other hand, the class of models that can be cur-
rently handled is minimal. Future development work is
thus planned in different directions.

Record and operator record handling is currently be-
ing addressed and could be completed in time for the fi-
nal version of this paper. Combined with the support of
hybrid systems, this could make MARCO capable of han-
dling large-scale power system models (Bartolini, Casella,
and Guironnet 2019), potentially allowing it to replace the
parts of Dynaωo (Masoom et al. 2021) that currently take
care of assembling the whole system model starting from
the generated C code of individual components.

The addition of external function handling could also
allow tackling models of advanced microchip cooling sys-
tems, including detailed 3D thermal dynamics end us-
ing refrigerant models from the ExternalMedia library
(Casella and Richter 2008).

FMI export and embedded code generation are other
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Figure 1. Heat exchangers network model

promising areas of development.
Finally, handling index reduction, dummy derivatives,

and under/overconstrained initialisation problems could
prove to be very hard. One option for index reduction, as
already planned in (Agosta et al. 2019), is to solve these
problems on a fully scalarised set of equations, adding the
extra differentiated scalar equations to the system that are
needed to make it index-1. All other equations would still
be handled in an array-preserving way, still leading to a
substantial performance advantage compared to the tradi-
tional flat-scalar equation tools.

In the long term, we plan to leverage support from both
the Modelica and LLVM communities. To this end, we
plan to release MARCO as an open-source project once
record handling and hybrid system support are available,
providing the capability to address a sufficiently large
number of real-world large-scale problems.

6 Conclusions
This paper introduced the MARCO compiler, which is
currently developed at the Dipartimento di Elettronica, In-
formazione e Bioingegneria of Politecnico di Milano in
collaboration with Edinburgh Napier University. MARCO
aims at demonstrating algorithms and methodologies to
compile large-scale Modelica models efficiently, produc-
ing fast binary code. It accepts flat, array-preserving Base
Modelica code as input, produced by the new front-end of
the OpenModelica compiler, and causalizes it using novel
array-preserving matching and sorting algorithms. Exe-
cutable code is generated using the LLVM framework:
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Figure 2. 3D thermal chip model
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an LLVM-IR is first produced by the compiler and then
directly turned into efficient, architecture-optimised exe-
cutable code.

Thanks to the complete support of the Modelica lan-
guage provided by the OpenModelica front-end, MARCO
is capable of handling Modelica code using all the ad-
vanced object-oriented features of the language. Its cur-
rent limitations regard the mathematical structure of the
flat system, which currently needs to be an index-1, purely
continuous-time dynamical system, possibly involving
Modelica functions.

The generated code can simulate dynamical systems us-
ing explicit Euler’s algorithm or by using the IDA DAE
solver, in which case the code to compute symbolic Jaco-
bians is also generated.

The current capabilities of the MARCO compiler were
demonstrated on two large-scale test cases: 3D object-
oriented thermal models of a microchip with up to 4 mil-
lion equations, and equation-based models of networks
of heat exchangers with a detailed function-based fluid
model, with up to 15 million equations. In both cases,
the compilation time is at most a few tens of seconds and
is one or more orders of magnitude less than the run time.
To the authors’ knowledge, no other Modelica tool can
handle Modelica models at this scale.

Future developments of MARCO in the short term re-
gard the implementation of operator records and event
handling, at which point the release of MARCO as open-
source software is planned. These two additional features
will enable the compilation and simulation of national-
and continental-scale power system models such as those
of the ScalableTestGrids library (Bartolini, Casella, and
Guironnet 2019).

Medium- and long-term developments include support-
ing external functions, code generation for embedded
hardware, FMI export, index reduction, and under/over-
constrained initialisation problems.
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Appendix: Source code of the test cases
The code of the two test cases is reported in this Appendix
for the reader’s convenience. The code has been edited for
conciseness, the full packages can be downloaded from
(TestCases 2023).

Listing 2. Source code of the 3D thermal model of a microchip
package ThermalChipOO
package Interfaces
connector HeatPort
Real T;
flow Real Q;
end HeatPort;
end Interfaces;

package Models
model Volume
parameter Real lambda = 148;
parameter Real rho = 2329;
parameter Real c = 700;
parameter Real Tstart = 273.15 + 40;
parameter Real C, Gx, Gy, Gz;
Interfaces.HeatPort upper, lower;
Interfaces.HeatPort left, right;
Interfaces.HeatPort top, bottom;
Interfaces.HeatPort center;
Real T(start = Tstart, fixed = true);
equation
C*der(T) = upper.Q + lower.Q +

left.Q + right.Q +
top.Q + bottom.Q + center.Q;

upper.Q = Gx*(upper.T - T);
lower.Q = Gx*(lower.T - T);
left.Q = Gy*(left.T - T);
right.Q = Gy*(right.T - T);
top.Q = Gz*(top.T - T);
bottom.Q = Gz*(bottom.T - T);
center.T = T;
end Volume;

model TemperatureSource
Interfaces.HeatPort port;
Real T = 298.15;
equation
port.T = T;
end TemperatureSource;

model PowerSource
Interfaces.HeatPort port;
input Real Q;
equation
port.Q = -Q;
end PowerSource;

partial model BaseThermalChip
parameter Integer N;
parameter Integer M;
parameter Integer P;
parameter Real L = 12e-3;
parameter Real W = 12e-3;
parameter Real H = 4e-3;
parameter Real lambda = 148;
parameter Real rho = 2329;
parameter Real c = 700;
parameter Real Ttart = 273.15 + 40;
parameter Real l = L/N;
parameter Real w = W/M;
parameter Real h = H/P;
parameter Real Tt = 273.15 + 40;
parameter Real C = rho*c*l*w*h;
parameter Real Gx = lambda*w*h/l;
parameter Real Gy = lambda*l*h/w;
parameter Real Gz = lambda*l*w/h;

Volume vol[N,M,P](
each T(start = Tstart, fixed = true),
each C = C, each Gx = 2*Gx,
each Gy = 2*Gy, each Gz = 2*Gz);

TemperatureSource Tsource[N,M]
(each T = Tt);

output Real Tct1 = vol[1,1,1].T;
output Real Tct2 = vol[1,N,1].T;
output Real Tct3 = vol[N,N,1].T;
output Real Tct4 = vol[N,1,1].T;
output Real Tcb1 = vol[1,1,P].T;
output Real Tcb2 = vol[1,N,P].T;
output Real Tcb3 = vol[N,N,P].T;
output Real Tcb4 = vol[N,1,P].T;
equation
for i in 1:N loop
for j in 1:M loop
connect(vol[i,j,1].top,

Tsource[i,j].port);
for k in 1:P-1 loop
connect(vol[i,j,k].bottom,

vol[i,j,k+1].top);
end for;
end for;
end for;
for i in 1:N loop
for k in 1:P loop
for j in 1:M-1 loop
connect(vol[i,j,k].right,

vol[i,j+1,k].left);
end for;
end for;
end for;
for j in 1:M loop
for k in 1:P loop
for i in 1:N-1 loop
connect(vol[i,j,k].lower,

vol[i+1,j,k].upper);
end for;
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end for;
end for;
end BaseThermalChip;

model ThermalChipSimpleBoundary
extends BaseThermalChip;
parameter Real Ptot = 100;
parameter Real Pv = Ptot/(N*M/2);
PowerSource Qsource[N,div(M,2)]
(each Q = Pv);

equation
connect(Qsource.port,

vol[:,1:div(M,2),P].center);
end ThermalChipSimpleBoundary;
end Models;
end ThermalChipOO;

Listing 3. Source code of the heat exchanger network
package MethanolHeatExchangersDAE
package Models
model MethanolHeatExchangers
parameter Integer Nu = 3;
parameter Integer Nh = 4;
parameter Integer Nv = 6;
parameter Real w_nom = 1;
parameter Real Q_nom = 500e3;
parameter Real f_w = 1/30;
parameter Real f_Q = 1/100;
parameter Real T0 = 493.15;
parameter Real V = 1;
parameter Real beta = 0.01;
parameter Real UA_nom = 10000;
parameter Real alpha = 0.8;
parameter Real Cw = 10000;
parameter Real p_nom = 20e5;
parameter Real V_v =
V*(1-beta)/(Nu*Nh*Nv);
parameter Real V_m = V*beta/Nu;
parameter Real C_wv = Cw/(Nu*Nh*Nv);
constant Real pi = 3.14159265359;
Real w, w_h;
Real Q[Nh], Q_c[Nu,Nh,Nv];
Real T[Nu,Nh,Nv+1];
Real h[Nu,Nh,Nv+1], h_m[Nu];
Real T_tilde[Nu,Nh,Nv]
(each start = T0, each fixed = true);
Real T_w[Nu,Nh,Nv]
(each start = T0, each fixed = true);
output Real T_m[Nu]
(each start = T0, each fixed = true);
Real rho[Nu,Nh,Nv], rho_m[Nu];
Real cv[Nu,Nh,Nv], cv_m[Nu];
equation
w = w_nom*(1 + 0.2*sin(2*pi*f_w*time));
w_h = w / Nh;
for j in 1:Nh loop
Q[j] = Q_nom/(Nu*Nh)*

(1 + sin(2*pi*f_Q*time + 2*pi*j/Nh));
end for;
for j in 1:Nh loop
T[1,j,1] = T0;
end for;
for i in 2:Nu loop
for j in 1:Nh loop
T[i,j,1] = T_m[i-1];

end for;
end for;
T_tilde = T[:,:,2:Nv + 1];
for i in 1:Nu loop
V_m*rho_m[i]*cv_m[i]*der(T_m[i]) =

w_h*sum(h[i,j,Nv+1] for j in 1:Nh) -
w*h_m[i];

for j in 1:Nh loop
for k in 1:Nv loop
(V_v*rho[i,j,k]*cv[i,j,k])*

der(T_tilde[i,j,k]) =
w_h*(h[i,j,k] - h[i,j,k+1]) +
Q_c[i,j,k];

C_wv*der(T_w[i, j, k]) =
Q[j]/Nv - Q_c[i,j,k];

Q_c[i,j,k] = UA_nom/(Nu*Nh*Nv)*
(w/w_nom)^alpha*(T_w[i,j,k] - T_tilde[i,

j,k]);
end for;

end for;

end for;
for i in 1:Nu loop
rho_m[i] = p_nom/Methanol.R*T_m[i];
h_m[i] = Methanol.h_T(T_m[i]);
cv_m[i] = Methanol.cv_T(T_m[i]);
for j in 1:Nh loop
for k in 1:Nv loop
rho[i,j,k] = p_nom /
(Methanol.R*T_tilde[i,j,k]);

cv[i,j,k] =
Methanol.cv_T(T_tilde[i,j,k]);

end for;
for k in 1:Nv+1 loop
h[i,j,k] = Methanol.h_T(T[i,j,k]);
end for;
end for;
end for;
end MethanolHeatExchangers;

package Methanol
constant Real R = 8.314462/32.04e-3;
constant Real Tc = 512.64;
constant Real f[8] =
{3.90086, 10.9929, 18.3371, -16.3663,
-6.22334, 2.80358, 1.07783, 0.96967};

constant Real g[8] =
{0.0, 4.12575, 3.26973, 3.77492,
2.93574, 8.23747, 10.3312, 0.53326};

function cp_T
input Types.Temperature T;
output Types.SpecificHeatCapacity cp;
protected
Types.PerUnit tau;
Types.PerUnit u[8];
Types.PerUnit x;
algorithm
tau := Tc / T;
u := g * tau;
x := f[1];
for i in 2:8 loop
x := x + f[i]*u[i]^2*exp(u[i])/

(exp(u[i]) - 1)^2;
end for;
cp := x*R;
end cp_T;

function cv_T
input Types.Temperature T;
output Types.SpecificHeatCapacity cv;
algorithm
cv := cp_T(T) - R;
end cv_T;

function h_T
input Types.Temperature T;
output Types.SpecificEnthalpy h;
protected
Types.PerUnit tau;
Types.PerUnit u[8];
Types.PerUnit x;
algorithm
tau := Tc / T;
u := g * tau;
x := f[1]/tau;
for i in 2:8 loop
x := x + f[i]*g[i]/(exp(u[i]) - 1);
end for;
h := R*T*tau*x - 1361.810*tau/Tc;
end h_T;
end Methanol;
end Models;

end MethanolHeatExchangersDAE;
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Control development and sizing analysis for a 5th generation
district heating and cooling network using Modelica

Ettore Zanetti David Blum Michael Wetter

Building Technology & Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract
5th generation district heating and cooling system
(5GDHC) are a relatively new concept. They use a single
district loop near ambient temperature to provide heating
and cooling. This paper improves on the modelling and
control of a 5GDHC system called the reservoir network.
The study updates the sewage heat exchanger plant model
to more realistically represent seasonal changes, uses re-
fined pump models with variable efficiency, introduces a
ground coupled district pipe model to consider the inertia
of the district network and implements a new control strat-
egy for geothermal storage and sewage heat exchanger.
The new approach reduced operating costs, mainly due
to pumping cost for storage, sewage heat exchanger plant
and distribution pump, while increasing the overall robust-
ness of the approach in different sizing conditions. Thanks
to the new controller, the pumping consumption was re-
duced by 21% with respect to the original baseline. Fur-
thermore, the new control makes the system take better ad-
vantage of design changes, when reducing borehole field
size and increasing the sewage heat exchanger size, the
pumping energy savings become 29% with respect to the
original baseline. Lastly, borehole field temperature sta-
bility was analyzed through 40 years of simulation.
Keywords: 5th generation district heating and cooling,
geothermal borehole field, supervisory controller,sewage
waste heat,Modelica

1 Introduction
The rapid pace of urbanization has transformed the
world’s population distribution, with an increasing num-
ber of people residing in urban areas. Currently, 55%
of the global population lives in cities, and this figure is
projected to rise to 68% by the year 2050 Nations et al.
(2012). This urbanization presents both challenges and
opportunities. Regarding energy consumption and sus-
tainability, one advantage of urbanization is the poten-
tial for implementing centralized heating systems, which
offer numerous benefits such as increased overall effi-
ciency and reduced emissions Lake, Rezaie, and Beyerlein
(2017). Historically, separate centralized plants were built
for heating and cooling purposes. For heating, four gen-
erations of district plants have been developed over the
last century, each aiming to improve efficiency and inte-
grate more sustainable heat sources, especially renewable

Lund et al. (2014). The first generation involved steam
plants, while the fourth generation operates at tempera-
tures between 60 and 70 ◦C, with a focus on incorporat-
ing renewable and waste heat sources like solar energy
while reducing the primary energy consumption and op-
erating costs of the district Averfalk and Werner (2020).
On the other hand, cooling districts traditionally relied on
large chillers with evaporative towers, operating at tem-
peratures ranging from 7 to 18 oC. In recent years, the
growing need for cooling, driven by global warming and
rising temperatures, as well as opportunities for heat re-
covery, have given rise to a new concept: the simultaneous
provision of heating and cooling referred to as 5th gen-
eration combined district heating and cooling networks
(5GDHC). Various approaches were proposed in the lit-
erature to achieve this goal, including cold district heat-
ing Pellegrini and Bianchini (2018), bi-directional low-
temperature networks Bünning et al. (2018), anergy net-
works Sulzer (2011), natural temperature district heating,
and the ambient network Calixto, Cozzini, and Manzolini
(2021). Among these different concepts, this paper will
focus on a type of ambient network, called the reservoir
network as presented by Sommer et al. (2020), which
works by distributing water in a single loop at ambient
temperature maintaining the temperature between a prede-
fined interval (i.e. 6 - 17 oC). The single loop improves hy-
dronic balancing among network participants and ambient
temperature facilitates integration of waste heat sources.
One crucial aspect highlighted by Sommer et al. (2020)
is the significant impact of pumping energy in a network
with a lower temperature range. Their research demon-
strates that a variable flow approach, which keeps the tem-
perature within a specific interval, can drastically reduce
pump consumption.

This paper improves on the reservoir network concept
by focusing on the flow rate control in specific compo-
nents of the system, namely a borehole field storage and
a sewage water heat exchanger plant. Although the tem-
perature range in this type of network may be relatively
small, it has a considerable impact on pumping energy
Maccarini et al. (2023) and is closely correlated with the
current demand of the district. Therefore, to improve the
performance of the reservoir network and further reduce
pump energy consumption, a better rule-based controller
was designed. The control output is the mass flow rate of
each agent and it is calculated accounting for current de-
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mand and temperature level of the agent and district loop.
Furthermore, a sensitivity analysis was carried out for the
borehole field and sewage water plant sizes on the perfor-
mance of the system. The idea is to show the potential
of reducing the number of boreholes, which lead to lower
capital costs, and increasing the waste heat plant capac-
ity, which lead to greater waste heat utilization, with the
new control. The analysis and new control implementa-
tion is carried out using the Modelica Buildings Library
Wetter et al. (2014), which enables modeling of network
mass flows, temperatures, and control logic important for
analyzing this type of system. Our model extends from
the original model used in Sommer et al. (2020).

2 Methodology
This section presents the case study, the modeling assump-
tions and the changes to the overall Modelica model used
with respect to Sommer et al. (2020). Component level
models come from the Modelica Buildings Library Wetter
et al. (2014). Dymola 2023x was used to run the simu-
lations on Linux with a Radau solver and tolerance set at
1E-6.

2.1 Case Study Description
The case study expands the Modelica model presented in
Sommer et al. (2020). The network consists of a single hy-
dronic loop, where the various agents, consisting of pro-
sumers, storage and plants, take water from the reservoir
loop and inject it back into the same loop. This ensures de-
coupling of the differential pressure fluctuations between
agent pumps and the main reservoir loop. The reservoir
loop includes a borehole field and sewage heat-exchanger,
which can be considered the storage and plant of the dis-
trict able to compensate for the load. Three representative
buildings, a residential, an office and a hospital represent
the prosumers. The term prosumer is used because the
building Energy Transfer Stations (ETS) include a heat
pump that can draw thermal energy from the network and
a heat exchanger for direct cooling that provides thermal
energy back to the network. A schematic view of the net-
work topology and associated controls are shown in Figure
1.

2.1.1 Load Profiles

The loads are pre-calculated as hourly profiles and based
on Swiss archetypes Murray, Niffeler, et al. (2019),
Kristina Orehounig,Matthias Sulzer (2019), and Murray,
Marquant, et al. (2020) and scaled up to provide demand
profiles for a typical Swiss district. The ETS in each build-
ing will instantaneously compensate for the load while
keeping a ∆T of 4 K between district water supply and
return. The space heating demand in the residential build-
ing is 2.40 GWh/year, corresponding to around 60,000
m2 considering average Swiss space occupation and con-
sumption SIA et al. (2015), Staub, Rütter, et al. (2014),
and Wohnfläche (2017). The heating demand of the of-
fice building is 0.19 GWh/y or 8 % of the heating demand

of the residential building. This consumption ratio corre-
sponds to typical values in Switzerland. For the residential
building and the office building, the ratio of annual heat-
ing to cooling demand is 7.8 and 2.1, respectively. This
ratio is in line with the expected increase in cooling de-
mand scenario for Switzerland Settembrini et al. (2017).
The hospital has a heating demand of 0.97 GWh/year and
a cooling demand of 0.23 GWh/year, with a ratio of heat-
ing to cooling of 4.3. In comparison to the residential or
office demand profiles, the main difference of the hospital
is the large share of domestic hot water. In total for all
prosumers, the heating demand is 3.55 GWh/year and the
cooling demand is 0.62 GWh/year. The overall ratio of
heating to cooling demand for all prosumers is 5.7. Fig-
ure 2 presents a summary of the yearly loads for cooling,
heating and domestic hot water of the three buildings.

2.1.2 Heat Pumps and Cooling Heat Exchanger
Each prosumer utilizes two heat pumps: one for space
heating and another for domestic hot water. Regarding
space heating, the condenser outlet temperature is set at
38 oC when demand is at its design value, and it is reset
linearly to 28 oC when there is no demand. For domes-
tic hot water, the set point temperature is 63 oC. The heat
pumps are based on the Fluid.HeatPumps.Carnot_TCon
model, which includes an ideal internal control system
that enables the heat pump to track the setpoint temper-
ature leaving the condenser. The heat pump coefficient of
performance (COP) is calculated using a Carnot effective-
ness of ηcarnot,re f = 0.5. For space cooling, direct cooling
is provided by a heat exchanger that instantly provides the
scheduled cooling demand.

2.1.3 Mass Flow Rates and Pressure Drops
The mass flow rates on the network side of the heat pumps
and heat exchangers are controlled to keep the nominal
temperature difference of ∆T = 4K. The pressure drops
at nominal mass flow rate for the distribution network be-
tween prosumers and plants are assumed to be 50 kPa or
250 Pa/m, with a nominal flow rate of 97.3 kg/s and a
pipe diameter of 18 cm. The pressure drops for the sewage
heat exchanger (HX) plant are 50 kPa at design flow rate
11.46 kg/s as for the baseline case study in Sommer et
al. (2020), while in this study we consider also a scenario
where we consider three heat exchangers in parallel in-
stead of one, leading 34 kg/s. For the borehole fields the
nominal pressure drop for each bore is 30 kPa and the
nominal flow rate depends on the number of boreholes
used in the simulation. In Sommer et al. (2020) a total
of 350 boreholes were considered, in this study we also
added two simulations that consider 250 boreholes and
the flow rate is also adjusted considering 0.3 kg/s in each
probe for a total of 105 kg/s in one case and 75 kg/s in
the other.

2.1.4 Plant and Storage Models
The sewage heat exchanger plant model is based on
the Fluid.HeatExchangers.ConstantEffectiveness model.
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Figure 1. Network scheme represented in Modelica. Each box is a main component of the district model. Solid lines represent
physical and digital connections, while dashed lines represent control inputs and outputs
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Figure 2. Demand profiles of the residential area (1), office area (2), hospital (3) and total cumulated sum (4). The legend indicates
demand for space heating (SH), domestic hot water (DHW) and space cooling (SC).

This is a constant effectiveness model with ε = 0.91.
The storage is a borehole field with U-tube probes
of 250 m depth. The starting ground temperature is
assumed to be 9.4 oC in the top 10 m and increases
by 0.02 oC/m up to 14.2 oC at the bottom of the
borehole. The boreholes are modelled using the model
Experimental.DHC.Plants.Reservoir.BoreField. This
model is based on the following key assumptions: The
soil’s thermal properties, such as conductivity and dif-
fusivity, remain constant, homogeneous, and isotropic.
Similarly, the ground and pipe material exhibit constant,
homogeneous, and isotropic values for conductivity,
capacitance, and density. Before the simulation begins,
there is no heat extraction or injection. All boreholes in
the field have uniform dimensions, including the pipe
dimensions. Inside the boreholes, heat transfer occurs
solely in the radial direction with no advection.

2.1.5 Circulation Pumps

The circulation pumps provide enough head to over-
come the pressure losses occurring in the network.
To estimate the electricity consumption, the model
Fluid.Movers.FlowControlled_m_flow model was used.
The motor and hydraulic efficiency nominal values are
ηm = 0.8 and ηh = 0.6. Furthermore, the motor effi-
ciency ηm changes according to U.S. Department of En-
ergy (2014), while the hydraulic efficiency ηh changes ac-
cording to Fu, Blum, and Wetter (2022).

2.1.6 Ground Coupling

Thermal ground coupling of the distribution pipes adds
heat capacity to distribution network and ground heat
exchange that were not present in the previous study.
This allows to have a more accurate estimation of thermal
losses and of the inertia of the distribution network, which
were absent in the previous work. The new controller
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introduced in this study for the borehole field storage,
described in Section 2.1.7, can turn off the borehole field
pump. When the pump is off, the heat capacity of the
borefield is decoupled from the district network. As a con-
sequence, if the district network has no storage capacity
modelled, its temperature changes instantaneously, e.g.,
the rate of change in temperature is fast and non-physical.
Therefore, we modelled the heat transfer between the
pipes and the ground, as shown in Figure 4. The model
represents a radial 1D discretization of the conduction
heat transfer between the pipe wall and the undisturbed
ground. The pipe is assumed to be made of uninsulated
plastic with a thickness of 1 cm and a heat conductivity
of u = 0.2W/mK. Omitting the pipe thickness in the
conduction calculation would lead to an overestimation of
the heat transfer between the distribution network and the
ground. For the discretization, a capacitance-resistance
approach was used, dividing the radial direction into
five volumes. The ground temperature was assumed
to reach equilibrium with the undisturbed ground
temperature Tg after 0.5 m and the BoundaryCondi-
tions.GroundTemperature.UndisturbedSoilTemperature
model from the Buildings Library is used, which is based
on Smith (1996). Soil data comes from the ASHRAE
climatic constants to calculate subsurface temperature.
The pipe is placed 1 m below ground. Furthermore, a
discretization is also carried out in the axial direction
where the 500 m of distribution pipes are divided in 100 m
segments between supply, return of the plant and storage
and each prosumer supply, each pipe is discretized with
10 volumes to approximate the water outlet temperature
after exchanging heat with the ground. The yearly
temperature variation for the ground is shown in Figure 3.
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Figure 3. Effluent sewage water and undisturbed ground tem-
perature profiles used for simulations.

2.1.7 Network Controllers
The main distribution controller for variable flow opera-
tion was developed in Sommer et al. (2020) and works
as follows: The controller will reduce the network water
flow rate until the water temperature at the outlet of the
different prosumers becomes too close to user-provided
upper or lower bounds. Let T MixMin and T MixMax

be the minimum and maximum measured outlet tem-
peratures from each prosumer, let T Min and T Max be
the lower and upper bounds for the mixing temperatures
and dT slo a tuning parameter, that can be seen as the
slope along which the main pump controller curve is de-
fined for partial load. If T MixMin − T Min > dT slo =
2K or T Max− T MixMax > dT slo = 2K then the pump
speed is set to the minimum speed yPumMin. Oth-
erwise, it is linearly increased to the full speed un-
til T Min = T MixMin or T Max = T MixMax, where the
pump will work at nominal capacity. This calculation
is done for the lower and upper bound and the actual
pump speed is the larger of the two pump signals. This
control logic is implemented in the model Experimen-
tal.DHC.Networks.Controls.MainPump. In Figure 5 the
logic is represented visually.

In this study, we developed a rule-based controller for
the sewage heat exchanger plant and the borehole field
storage control, each of them has a separate instance of the
controller. The controller takes as input the average source
temperature (i.e. sewage water or average borehole field
temperature), the inlet and outlet temperature of the agent,
and the supply to the first prosumer and return tempera-
ture from the last. These supply and return temperatures
are used to estimate the net need of the district for heating
or cooling by looking at their difference. Then, the agent
outlet is used as the measured input to a proportional con-
troller that controls the mass flow rate through the agent
pump. This controller’s setpoint is the source temperature
adjusted with a negative shift for heating and a positive
shift for cooling to account for a pinch point temperature
difference between source temperature and outlet temper-
ature. Lastly, an on/off controller with hysteresis based
on the difference between inlet temperature to the agent
and shifted source temperature is used to determine when
to turn on and off the agent circulation pump and avoid
frequent switching behavior.

2.1.8 Baseline Case Study Hypotheses and Changes

In Sommer et al. (2020), the main assumptions for the net-
work side are:

1m 0.5m

Tp Tsoi
Tw,1 Tw,i Tw,n

Figure 4. Representative diagram of the radial heat transfer be-
tween the distribution pipe Tp and the ground Tsoi (left). Axial
discretization of the pipe water volumes Tw,i (right). Below is a
diagram view of the ground coupling model.
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1. The pumps use a constant motor and hydraulic effi-
ciency of ηm = 0.7 and ηh = 0.7.

2. The annual energy balance of the storage has to be
zero. The sewage heat exchanger plant will provide
the net heating and cooling demand.

3. The water temperature in the reservoir loop must al-
ways be between 6 and 17 oC. This ensures that
direct cooling is possible and that with a nominal
∆T = 4K the heat pumps can draw heat without dan-
ger of freezing.

4. The sewage water temperature is a constant value at
17 oC for the whole year.

5. The distribution pipes are simplified as adiabatic and
hence do not exchange heat with the ground.

6. The sewage heat exchanger circulation plant is al-
ways working at nominal flow rate. The storage
circulation pump uses the same control signal as
the main network circulation pump according to the
logic explained in Section 2.1.7.

In this study, these assumptions are modified in the fol-
lowing ways:

1. Since an objective of this study is to reduce pump
consumption through better control logic, we up-
dated the pump models to account for variable ef-
ficiency at part loads, as described in Section 2.1.5.

2. In this case the yearly energy balance of the storage
does not need to be zero, however, it has to reach a
reasonable steady state condition after a certain pe-
riod of , for this study 40 years were considered. The
borehole average temperature difference between the
initial condition should be within an acceptable range
of around 1 oC, for example the minimum tempera-
ture of the borehole has to be above freezing point to
avoid potential damage to the borehole filling.

Figure 5. Distribution pump controller. On the x-axis there is
the district temperature, while on the y-axis there is the main
pump control signal as a function of the minimum and maxi-
mum prosumer outlet temperatures T MixMin and T MixMax as
explained in Subsection 2.1.7. The dotted lines show the effect
of shifting T Max or T Min.

3. Instead of keeping a constant upper limit of 17 oC,
the temperature limit can be increased if no prosumer
requires cooling. This can be done by checking the
cooling pump signal. In the case no prosumer re-
quires cooling, the 17 oC temperature limit is in-
creased to 19 oC. This is to avoid that during periods
with low heating demand, such as Spring and Au-
tumn in this study, the sewage heat exchanger plant
will bring the district temperature close to 17 oC
causing the distribution pump controller to rise the
flow rate according to the logic in Figure 5, which
only causes an increase in electricity consumption
with no benefit.

4. The distribution network pipes now have a ground
thermal coupling with an approach similar to the one
presented in Maccarini et al. (2023) and described in
Section 2.1.6.

5. Instead of considering a constant sewage tempera-
ture value for the whole year, a variable temperature
profile is derived from Schmid (2008) under the hy-
pothesis of placing the sewage heat exchanger at the
effluent water of waste water treatment plant. The
yearly temperature variation for the sewage water is
shown in Figure 3.

6. The new rule based controller for the sewage heat
exchanger and borehole field is used as described in
Section 2.1.7.

2.1.9 Simulation Scenarios

A total of six scenarios were considered in this study de-
scribed as follows and summarized in Table 1:

1. bsnbor350mpla11: considered the baseline scenario,
since the model used is identical to the one used in
Sommer et al. (2020) apart from the sewage temper-
ature profile, the distribution pipe coupling and the
pump efficiency modelling.

2. bsnbor250mpla11: the model is similar to
bsnbor350mpla11, however, the borehole number
is downsized to 250. The reasoning is to carry out a
small sensitivity analysis and see how the baseline
controller behaves when the storage capacity is
reduced by around 30%, and so is the investment
cost. Looking at the technical report Oakridge
national laboratory (2018), the drilling cost of a
borehole can be assumed to be between 30 and 50
$/m, considering that each borehole is 250 m deep,
this would amount to around $1M saved with respect
to baseline.

3. bsnbor250mpla34: the model is similar to
bsnbor250mpla11, however, the nominal flow rate
of the sewage plant is increased to 34.5 kg/s. The
reason for this sensitivity analysis is to give more
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room to the sewage plant heating capacity while
keeping the overall investment cost equal or lower.
The cost increase of the heat exchanger can be
calculated according to the cost per area needed
Hewitt and Pugh (2007). We can calculate the area
starting from the effectiveness value ε model, under
the following assumptions:

• The sewage heat exchanger is a plate heat ex-
changer with enough plates to be approximated
at counter flow so that ε = NTU/(1+NTU)

• The global heat transfer coefficient U =
2000W/(m2K), which is an average value for
such heat exchangers

• The minimum fluid heat capacity rates of
for the two cases are Cmin = 50kJ/(K s) and
Cmin = 150kJ/(K s)

Under these assumptions the area is

A =
NTU Cmin

U
. (1)

Doing this calculation for our case leads to a total
area of 315 m2 when m f low = 11.46kg/s and 945 m2

when m f low = 34.45kg/s. This leads to average in-
vestment cost of $20,000 and $60,000. This exer-
cise does not account for the increase in price for
the sewage heat exchanger pump and pipes, which
are likely smaller components. The increase in cost
for the sewage heat exchanger is smaller than the de-
crease in cost for the reduced number of boreholes,
making this scenario cheaper than the baseline.

4. ncnbor350mpla11: similar to bsnbor350mpla11, but the
sewage heat exchanger plant and the borehole field
storage circulation pumps are controlled with the
new rule based controller. Furthermore, the relax-
ation logic for the upper temperature bound is used
in the main distribution pump controller and the pa-
rameter dT slo = 1.5K, slightly increasing the main
distribution pump controller dead band.

5. ncnbor250mpla11: similar to ncnbor350mpla11, but the
size of the borehole field is also downsized to 250.

6. ncnbor250mpla34: similar to ncnbor250mpla11, but the
nominal flow rate of the sewage heat exchanger plant
increased to 34.45 kg/s.

3 Results
3.1 Borehole Field Temperature Drift
In Subsection 2.1.8 we state the requirement that the bore-
hole field energy balance does not need to be zero at the
beginning, however the average borehole field tempera-
ture needs to reach a reasonable equilibrium point. In

Table 1. Summary of simulation scenarios considered. Thermal
coupling, variable sewage heat exchanger temperature and vari-
able efficiency pump are included in all scenarios.

Scenarios Controller nbor Sewage HX
bsnbor350mpla11 Default 350 m_ f low =11.47
bsnbor250mpla11 Default 250 m_ f low =11.47
bsnbor250mpla34 Default 250 m_ f low =34.45
ncnbor350mpla11 New 350 m_ f low =11.47
ncnbor250mpla11 New 250 m_ f low =11.47
ncnbor250mpla34 New 250 m_ f low =34.45

Figure 6, the evolution of the average ground tempera-
ture at the interface with the borehole for the scenarios
ncnbor250mpla11 and ncnbor250mpla34 are shown. The tem-
perature reaches a new equilibrium point after around
35 years of simulation, as it can be seen from Table 2.
For scenario ncnbor250mpla11 the temperature difference af-
ter 40 years of simulation is 3.2 K, while for scenario
ncnbor250mpla34 it is 1.6 K. This is to be expected since in-
creasing the size of the sewage plant heat exchanger satis-
fies the heating demand during winter, reducing the deple-
tion of the borehole field. This is also reflected in the total
energy cost, which in scenario ncnbor250mpla11 increases by
20%, while in scenario ncnbor250mpla34 it increases by only
0.8%. The larger increase in total energy consumption for
the first scenario is due to a lower average district tem-
perature during winter, affecting the heat pump COP and
leading to an increase in average mass flow rate for the
main distribution pump to maintain the minimum temper-
ature constraint of 6 oC. However, as mentioned in Sub-
section 2.1.1, the cooling demand is expected to increase
in Zurich, further reducing the negative temperature shift
of the borehole field. Furthermore, with such a large time
span, the district could also expand or differentiate its de-
mand due to more prosumers connecting, which increases
the uncertainty. A sensitivity analysis on such a long pe-
riod of time would be a separate study. The current Mod-
elica models are computationally efficient enough to carry
out such a study since the current implementation of the
model takes less than 5 h to run on a single thread Lenovo
workstation with a Xeon(R) W-2245 CPU @ 3.90GHz for
a 40 year simulation.

Table 2. Summary of borehole field average temperature evolu-
tion TN and total electrical energy consumption EelN at a given
year, where N is the year number.

Scenarios T1 T35 T40 Eel1 Eel40
oC oC oC MWh/year MWh/year

ncnbor250mpla11 11.75 8.69 8.59 867 1037
ncnbor250mpla34 11.90 10.28 10.25 829 836

3.2 District Energy and Temperature Profile
Analysis

This section presents the results from the scenarios intro-
duced in Table 1. Figure 7 presents the yearly cumula-
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Figure 6. The average borehole temperature is plotted on
the y-axis for scenarios newcon_nbor250mpla11,black, and
newcon_nbor250mpla34,red, while on the x-axis the time in
years is shown up to 40 years. This plot shows the tempera-
ture drift of the ground in the borehole.

tive energy and temperature profiles for each scenario for
the first year of operation. Plot a) shows the yearly to-
tal thermal demand of the buildings, which is net heating
of almost 3 GWh/year. Plot b) shows the losses through
the distribution pipes for each scenario. This chart in-
dicates that the distribution losses are generally between
2% and 4% of the overall thermal demand. Furthermore,
the new controller (nc) scenarios have lower distribution
losses with respect to the baseline bsnbor350mpla11, by 25%
in scenarios ncnbor350mpla11 and ncnbor250mpla11 by 7% in
scenario ncnbor250mpla34. This is due to an average lower
temperature during the summer months for the (nc) sce-
narios, as shown by the flatter slope of the cumulative en-
ergy curve during this period. Instead, for the baseline (bs)
scenarios, the losses remain the same for bsnbor250mpla11
and increase by 40% for scenario bsnbor250mpla34 with re-
spect to bsnbor350mpla11. The reason for this increase in
losses is due to the increase of average temperature of the
district for bsnbor250mpla34 with respect to the ground tem-
perature.

Plots c) and d) of Figure 7 show the cumulative en-
ergy flows from the borehole field and sewage heat ex-
changer to the network in each scenario. Looking at the
baseline (bs) vs. new controller (nc) scenarios, the cu-
mulative energy supply for borehole field and sewage HX
are very close for the initial winter season. The reason is
that, in winter, only heating is present as shown in Figure
2, meaning that both in bs and nc scenarios, the sewage
HX pump will run most of the time. In the summer, the
situation changes because the bs scenarios continuously
run the sewage heat exchanger pump at nominal capac-
ity, while the nc scenarios only turn it on when the do-
mestic hot water demand surpasses the cooling demand.

In the (bs) scenarios, since the average temperature of the
sewage is higher than the network limit for cooling and the
sewage plant pump is continuously running, this causes
the storage to have to overcompensate to keep the net-
work temperature lower than in the case of just serving the
building cooling load. This phenomenon is exacerbated in
the scenarios with reduced number of boreholes and in-
creased mass flow rate in the sewage heat exchanger. On
the other hand, the nc scenarios can turn off the sewage
plant production when the demand is cooling dominated,
and it benefits from any increased sewage plant capacity
by supplying more heat during heating dominated periods.
This not only improves performance, but makes the over-
all operation more robust to cases of adding more waste
heat capacity, or changing demand due to connecting new
prosumers or climate change.

Plots e) and f) report the daily maximum and minimum
network temperatures and their limits over the year. Start-
ing from the bs scenarios, the default bsnbor350mpla11 is
able to satisfy the temperature constraints in heating and
cooling seasons, while bsnbor250mpla11 and bsnbor250mpla34
violate the constraints. The reason is that by increasing
the size of the sewage heat exchanger plant and reduc-
ing the number of boreholes, it becomes impossible for
the borehole field to compensate for cooling demand and
heat injected by the sewage water plant into the reservoir
loop, as described previously. Among the nc scenarios,
scenario ncnbor250mpla11 slightly violates the constraint in
the worst months of winter, and both ncnbor250mpla11 and
ncnbor250mpla34 slightly violate the constraint in the sum-
mer. Furthermore, the plot shows the nc scenarios using
the flexible upper boundary as a function of current dis-
trict demand. This relaxes the upper limit, making the
district circulation pump controller dead band larger, and
ultimately slowing down the pump, according to the logic
presented in Figure 5. The reason for the upper bound be-
ing increased during the summer is due to times when no
cooling demand is present, but domestic hot water demand
is.

3.3 Summary Results and KPI Analysis
This section shows a KPI analysis on the performance of
the district for the various scenarios described in Table 1.
Figure 9 reports the overall electrical consumption of the
district and the circulation pumps of the network. The top
chart shows that, in general, the heat pump and prosumer
pumps make up 87.5% of the overall electricity demand
of the district, while the remaining 12.5% is due to the
main circulation, sewage heat exchanger plant and bore-
hole field pumps. Therefore, the new controller nc sce-
narios show only moderate total electricity savings with
respect to the baseline. However, it is interesting to no-
tice the increase in electricity consumption for the baseline
bs scenarios bs_nbor250mpal11 and bs_nbor250mpal34
with respect to the other scenarios. In these two sce-
narios, the temperature constraints are often violated as
shown in Figure 7, causing the main distribution pump to
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Figure 7. Visualization of energy flows and temperature distributions across the district network. For all the figures the x-axis
is time shown for the first year of simulation from January (1) to December (12). a) chart shows the overall cumulative thermal
demand of the district buildings, b) chart shows the cumulative energy flow from the distribution pipes to the ground c) and d) show
the cumulative energy flows from the sewage plant (dashed lines) and borefield (solid lines) to the reservoir loop for the baseline
bs (left) and new controller nc (right) scenarios e) and f) show the district loop daily minimum and maximum temperatures for the
different scenarios and the temperature limits of the main distribution pump control.
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Figure 8. The x-axis shows the different scenarios presented in Table 1. The y-axis shows the water mass flow rate for each agent
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Figure 9. The x-axis shows the different scenarios presented in Table 1. The y-axis shows the total yearly electrical consumption
by the whole network (top) and only distribution, plant, and stroage pumps (bottom). The % number in white corresponds to the
difference with respect to the baseline scenario bs_bor350mpla11.

run more often at nominal capacity as explained in Sub-
section 2.1.7. The situation is further exacerbated in sce-
nario bsnbor250mpla34. This indicates that the nc scenarios
are more robust towards sizing changes, which allow for
more sizing choices of different components (i.e. plant
and storage), which is critical for opportunities to reduce
capital costs. For example in this study, Section 2.1.9
described how reducing the borefield size could save ap-
proximately $1M dollars in capital cost. As shown with
scenario nc_bor250mpla11, the new control enables this
without an increase in operating costs from electricity
consumption. Furthermore, scenario nc_bor250mpla34,
with only slightly higher capital cost of around $100k
dollars than nc_bor250mpla11 to pay for higher sewage
plant capacity, though still cheaper than the cases with
full 350 boreholes, further reduces the overall electricity
consumption thanks to increase in additional heating en-
ergy provided by the sewage heat exchanger. Lastly, if we
consider the absolute savings for nc_bor250mpla34 com-
pared to bs_bor350mpla11, they equate to 40 MWh/year
of electrical energy, $12,000/year assuming an average
electricity price of $0.3/kWh, and 1.3 tonCO2/year, as-
suming 330 kgCO2/kWh. Furthermore, the bottom chart
of Figure 9 shows the nc_bor250mpla34 scenario re-
duces the total pump consumption by 29% compared to
bs_bor350mpla11.

Figure 8 presents a summary of the hydraulic and ther-
mal performance of the district in the different scenarios,
where the top chart represents the yearly hourly mass flow
rate distribution for the different network agents, the mid-
dle chart shows the yearly seasonal COP for the three
prosumers, and the bottom chart shows the yearly aver-

age circulation pump efficiency, only when the flow rate
is 10% higher than the nominal value to avoid fast tran-
sients. Looking at the top and bottom chart together, it
is clear that the nc scenarios reduce the agent mass flow
rates, thanks to the better control strategy that is able to
maintain the average district temperature further from the
upper and lower boundaries, running the main circulation
pump at partial load according to the logic in 2.1.7, and
using the storage and plant in more effective ways de-
pending on the current demand and loop temperature lev-
els. However, the partial load utilization in these scenarios
increases the variability in the agents pump efficiency as
shown in the bottom chart. Furthermore, looking at the
pump efficiency box plot, we can see that using more real-
istic efficiency curves lead to an average efficiency of the
pumps that is relatively low. There is certainly room to
improve the pump sizing coupled with control that uses
the pumps at partial load.

Lastly, looking at the middle chart, it can be seen that
the increase in size of the sewage heat exchanger helps in-
crease the seasonal COP in scenarios bsnbor250mpla34 and
ncnbor250mpla34 with respect to the other scenarios, since
it increases the average temperature of the district during
winter, as shown in Figure 7 bottom plot. However, in
bsnbor250mpla34, this causes a great penalty in the summer
since the sewage water heat exchanger pump is always
running, while in the ncnbor250mpla34, the pump is mostly
turned off during the summer period.

4 Conclusions
This study extended Sommer et al. (2020) reservoir net-
work with an updated sewage heat exchanger plant model

Session 1-A: Large-scale system modelling 1

DOI
10.3384/ecp20423

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

31



to more realistically represent seasonal changes, new
pump models with variable efficiency, ground-coupled
district pipe model to consider the inertia of the district
network, which is important for control stability, and a
new control strategy for the distribution network, sewage
heat exchanger, and borefield pumps. The updated model
was used to carry out a sensitivity analysis on the size of
the borehole field and sewage heat exchanger, using the
baseline and the new controller.

The analysis shows the robustness and performance en-
hancement of the new control approach nc over the base-
line bs. The new nc approach leads to a $4800 dollars
increase in operational costs when reducing the size of the
borehole field by 30%, saving $1M in investment cost,
reducing the overall life cycle cost. Furthermore, when
additionally increasing the capacity of the sewage heat
exchanger, the new control better exploits the additional
waste heat capacity, as shown in scenario ncnbor250mpla34,
where the overall investment cost is reduced compared to
the baseline by around $0.9M, and operational costs are
reduced by $12,000 per year thanks to the electrical en-
ergy saved. This sensitivity analysis shows the importance
of coupling design, sizing and control to reduce first and
life cycle costs. Future studies will include a more ex-
tensive sensitivity analysis and the introduction of control
and design optimization to explore the untapped potential
of the reservoir loop system and the model updates.
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Abstract
System simulation is dealing with increasingly multiphys-
ical and cyber-physical systems that involve multiple engi-
neering domains. In development and production, system
manufacturers often rely on supplier parts and their dig-
ital representations. To deal with this inherently collab-
orative setting in a more efficient way we propose a con-
cept of Simulation Model as a Service (SMaaS) developed
at simercator. In this article, we apply established work-
flows from software engineering to system simulation to
create more efficient workflows, discuss the compliance
with technical, economic, and regulatory requirements,
and present a software for digital supply chain manage-
ment that implements SMaaS.
Keywords: System simulation, FMI, Modelica, traceabil-
ity, as a service, continuous integration, microservice

1 Introduction
System simulation is an integral part in the development
of mechatronic and cyber-physical systems. These are in-
creasingly multiphysical systems that involve multiple en-
gineering domains and – to an increasing extent – also al-
gorithms from fields like machine learning. This makes
system simulation inherently collaborative: System man-
ufacturers rely on specialized suppliers to deliver subsys-
tems, e.g. battery packs for electric vehicles or HVAC sys-
tems for cruise ships. In addition to the physical hardware,
system manufacturers also require corresponding digital
assets from the suppliers like geometry data, documenta-
tion, and simulation models.

Today, system simulation experts have access to a rich
set of tools that allow to model and solve system simula-
tion models. However, little attention has been given to the
actual process of exchanging simulation models between
the various parties that are involved. Consequently, there
are few technical means supporting this supply chain of
simulation models. In this article, we introduce a concept
developed by simercator that we call Simulation Model as
a Service (SMaaS). Our proposed workflow transfers es-
tablished best-practices from software engineering to sys-
tem simulation to obtain and manage 3rd party simulation
models and is designed to comply with technical, eco-
nomic, and regulartory requirements. Finally, we present
with simercator hub an actual implementation of a digital
supply chain for simulation models implementing SMaaS.

1.1 State of the art: Modeling and file-based
model exchange

System simulation knows excellent modeling languages
and software tools for modeling and simulation of com-
plex systems. In a multidisciplinary or multiphysics con-
text, Modelica (Modelica Association 2023) is very popu-
lar and numerous softwares implement the language. The
Functional Mock-up Interface (FMI, see Modelica Associ-
ation (2022)) has become a de-facto standard for exchang-
ing models between tools of different vendors: See the
long list of tools1 that now support FMI. The list of tools
reaches well beyond the system simulation domain and
includes also tools for models based on partial differential
equations (PDEs) from solid mechanics using the finite
element method (FEM) or computational fluid-dynamics
problems using finite volume solvers. A simulation model
according to the FMI is a ZIP-file called Functional Mock-
up Unit (FMU) that contains – as defined in the standard –
a computational model implementing the FMI and model
information as structured text specifying the model inputs,
outputs, and additional meta-information. Thus, the FMI
standard allows to share and distribute simulation models
by exchanging FMU files.

However, the file-based exchange of simulation mod-
els is not standardized and the result of a bilateral, often
personal contact between model owner and model user. If
model owner and model user are representatives of differ-
ent companies a legal framework such as non-disclosure
agreements (NDA) is often required. This bilateral ap-
proach works for a small number of models and model
users. However, as a manual process it is slow, error-
prone, cannot be opened to a broader audience, and is
costly. If these complications prove unmanageable, simu-
lation experts have to fall back to making their own sim-
ulation models for 3rd party components, often merely re-
lying on datasheets.

Circuit simulation is a special case: Virtually all com-
mercial circuit simulation tools derive from the same open
sourced SPICE simulator (Vladirmirescu 2011). Other
than in mechanics-centered system simulation, this made
it possible to exchange at least elementary components or
simple SPICE netlists (plain text). However, complex cir-
cuit models developed in commercial tools can usually not

1List of supporting tools https://fmi-standard.org/
tools/
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be imported in tools from different vendors, especially if
the models are encrypted. There are model exchange plat-
forms like Ultra Librarian.2 Most semiconductor compa-
nies offer SPICE models for elementary components for
download, often without access restrictions. Netlists for
complex products are typically not openly available.

For the exchange of CAD models for supplied parts, ge-
ometry models are mostly reduced to the necessary outer
features. The resulting CAD files are often made avail-
able as downloadable objects, either on company websites
or via specialized CAD portals like PARTcommunity3 or
GrabCAD.4 While sometimes no special access restric-
tions are imposed, legal restrictions usually apply.

Technical means to deliver, track, and maintain digi-
tal assets of real hardware products are currently in their
infancies. Therefore, major efforts are being made in re-
search projects and industrial associations. The Industrial
Digital Twin Association (IDTA)5 has formulated the As-
set Administration Shell (AAS, see Federal Ministry for
Economic Affairs and Climate Action (2022)) as a super-
standard that can capture a wide variety of digital assets
and even integrate with existing standards by means of
sub-models, like with the simulation sub-model and the
FMI (Industrial Digital Twin Organization 2022). The in-
dustry association Catena-X aims at establishing “a trust-
worthy, collaborative, open and secure data ecosystem”6

and is developing an open source implementation.7

1.2 SaaS trend in simulation
In recent years, the simulation software industry is
steadily moving from local software installations on users’
computers to cloud services using Software as a Service
(SaaS). This impacts the collaboration and exchange of
simulation models, because either the entire modeling and
simulation process is executed through the web browser
in the cloud, or modeling is done locally and only the ex-
ecution of computationally heavy simulations is deferred
to a cloud infrastructure. One major advantage here is the
good availability and on-demand allocation of computa-
tional resources. Most major simulation software vendors
offer SaaS solutions. New developments tend to be cloud-
native anyway, like e.g. SimScale8 for PDE-based simu-
lation or Modelon Impact9 with its cloud-native modeling
environment for Modelica.

Some simulation software vendors now allow sharing
of easy-to-use and ready-to-use, i.e. executable simula-
tion models as interactive web applications. This trend can
also be viewed in the broader context of the so-called De-
mocratization of CAE (Taylor et al. 2015). Interactive web

2https://www.ultralibrarian.com/
3https://b2b.partcommunity.com
4https://grabcad.com/
5https://industrialdigitaltwin.org/
6https://catena-x.net/en/vision-goals
7https://github.com/eclipse-tractusx
8https://www.simscale.com/
9https://modelon.com/modelon-impact/

applications can be generated e.g. with Modelon Impact’s
App Mode10, or Siemens Simcenter Webapp Server.11

1.3 Related work
In the automotive industry, the research project SET Level
proposed a “Credible Simulation Process” (SET Level
2021) to ensure simulation quality when integrating sim-
ulation models from different stakeholders. The maritime
industry developed the Open Simulation Platform (OSP)12

as an open source project13 providing a co-simulation so-
lution tailored to the needs of the maritime industry to
“create a maritime industry ecosystem for co-simulation
of ’black-box’ simulation models”.14 In the context of
the OSP, the open source project FMU-Proxy15 has been
developed to enable single FMUs to be co-simulated via
network, see Hatledal, Styve, et al. (2019) and Hatledal,
Zhang, Styve, et al. (2019). FMU-Proxy enables model
owners to share an original FMU by means of a proxy
of the FMU, meaning the proxy FMU looks identical to
the original FMU from the perspective of the user, but
internally it features remote procedure calls (RPC) to a
server, which evaluates the original FMU. In Hatledal,
Zhang, Styve, et al. (2019, chapters 3, 4.1) one possi-
ble use-case of FMU-proxy is illustrated: Model owners
can list original FMUs delivered as proxy FMUs to au-
thorized model users through a “discovery service”. Simi-
lar to FMU-Proxy, UniFMU by Legaard et al. (2021) also
uses a FMU as a communication interface and network
communication, but as a means to enable running com-
putational models in languages or tools that do not sup-
port the FMI. In Schranz et al. (2021), UniFMU is ex-
tended in that users can encapsulate the computational
model hidden behind UniFMU in a Docker16 container
with all dependencies included, in order to improve porta-
bility; remote execution is not supported with UniFMU as
of Schranz et al. (2021). In the defense sector, exchange
of simulation models and physically distributed coopera-
tive simulations (co-simulation) are natural requirements.
For example in combat simulations, when simulated ac-
tions have to be synchronized amongst involved ships,
aircraft, and vehicles. NATO has developed the concept
of Modeling and Simulation as a Service (MSaaS) and
created reference architectures regarding possible realiza-
tions (Siegfried, Lloyd, and TVD Berg 2018; Hannay and
Tom van den Berg 2017). Note that MSaaS is different
from the SMaaS that we propose, in that MSaaS describes
a distributed execution framework for simulation, while
SMaaS is a concept for providing building blocks to as-
semble simulations from.

10https://help.modelon.com/latest/release_
notes/impact_2023_2/

11https://plm.sw.siemens.com/en-US/simcenter/
systems-simulation/webapp-server/

12https://opensimulationplatform.com/
13https://github.com/open-simulation-platform
14https://open-simulation-platform.github.io/
15https://github.com/NTNU-IHB/FMU-proxy
16https://www.docker.com/
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Trauer et al. (2022) outline strategies to facilitate the
exchange of digital twins, including simulation models,
by means of trust and quality indicators.

1.4 Outline
In section 2, we discuss the differences of any formalized
process to exchange simulation models compared to ex-
change processes for other digital assets. In section 3 we
review various obstacles (technical, economic, legal, reg-
ulatory) that occur in such a process and present the result-
ing requirements in section 4. In section 5 we then present
well-established best-practices from software engineering
that are applicable to an exchange process for simulation
models. In section 6 the SMaaS concept is described. Fi-
nally, simercator hub as an actual implementation of this
concept is outlined as a showase in section 7, followed by
conclusions and suggestions for future work in section 8.

2 Simulation models need dedicated
supply chains

In the industries, system manufacturers require simula-
tion models for supplier parts. Other than in academia,
where research and simulation is mostly done as a col-
laborative effort with openly accessible knowledge, in the
industries the involved organizations prefer to protect the
internal workings of simulation models and at most pro-
vide simulation models as ready-to-use black boxes. If
model user and owner work in different companies, the
motivation for this is to secure a real or perceived value.
But also if the model user and owner are part of the same
company and merely work in different departments, dis-
tributing ready-to-use executables, in particular as FMUs,
is common practice.

We will consider any computational model that may
take part in a dynamic system simulation and that pro-
duces numerical outputs from given inputs as a simula-
tion model. Examples are traditional system simulation
models (event-based DAE systems), FEA or CFD simula-
tions (PDEs), control algorithms, and data driven or ma-
chine learning models. In the world of system simulation
the system under consideration is mostly built from indi-
vidual submodels. Some typical examples are: 1) active
power and aging models for batteries are analyzed in a
renewable energy system simulation; 2) a finite element
strength simulation for a damper component contributes
to an overall simulation of the dynamics of a vehicle sus-
pension; 3) a neural network inference model acts as a
control algorithm for object detection in an autonomous
vehicle simulation.

All the aforementioned simulation models are mostly
files or a collection of files. Hence, bringing simulation
models from a model owner to a model user means phys-
ically copying files to a location where the model user
can access and import them into a system simulation tool.
Like with other file-based digital data, this immediately
leads to a number of issues: Who owns the digital data?

What is the receiving party allowed to do with it? In sec-
tion 3 we will address these and other questions in detail.

Finally, all involved parties need to agree on an ex-
change format. If all parties are already using exactly the
same simulation software tool, then simulation models can
be imported and further processed without major issues.
If different tools are in use, the Functional Mock-up Inter-
face (FMI) provides a tool-agnostic simulation model for-
mat. If this is not feasible, the parties first need to agree
on a common software with a specific version and plat-
form before collaboration can happen.

Here, we want to focus on the following two questions:

1. How are simulation models different compared to
other digital assets?

2. Why does the FMI as a data format not satisfy all the
resulting requirements?

Executable code Simulation models are executable. In
order to run, various software dependencies on the user’s
system have to be satisfied. If dependencies, e.g. runtime
dynamic libraries, are not met, the simulation model might
not run at all or, even worse, produce wrong results.

Runtime behavior Simulation models have a runtime
behavior. They produce simulation output as the result
of time-varying input provided to the model and numeri-
cally solving a computational model (see the mathemat-
ical problem classes above). Inputs are generally only
known at runtime and not at the time of model creation
or model distribution. Here, CAD models clearly differ,
because they are static and do not have a runtime behav-
ior; the information that they convey to a model user is
entirely known to the model owner at the time of creation.

Validity range Simulation models can only accurately
represent reality for a limited range of inputs. However,
one cannot expect a user to generally be able to judge the
modeling error while the model owner has expert knowl-
edge that helps to quantify the modeling error. Therefore,
a model owner needs to know the inputs a model user
is going to provide to the model, especially if the model
owner has a liability for the correctness of the results. Nat-
urally, also a model user needs to know for which inputs
the model produces valid outputs. This knowledge is re-
quired both at modeling time, i.e. to ensure that an exter-
nally supplied model is used in a meaningful context only,
as well as after simulation time, i.e. to ensure that a model
produced meaningful results.

Maintainability Simulation models may require up-
dates and bugfixes. If an error is discovered, in particular
by the actual user, the model owner needs the ability to
update the simulation model, or, to shut it down. If the
number of users is small and it is known where the model
has been deployed in the past, then doing this manually
in a bilateral fashion is possible. However, if the number
of users is large, or the model distribution is unclear, or
it is used in highly critical applications, a manual update
process is not feasible or satisfactory.
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As a consequence, simulation models need a dedicated
solution for the distribution from model owner to model
user. It must ensure dependency management, usage con-
trol, traceability, and update mechanisms. These features
are not part of the FMI and, from our perspective, are out-
side its scope. As we will show in sections 6 and 7, with a
particular client/server architecture that we call Simulation
Model as a Service, it is possible to build a supply chain
for simulation models that considers the aspects above.

3 Obstacles
Today, a model user has to overcome many obstacles be-
fore a simulation model can actually be run. These obsta-
cles are of technical, economic, legal, or regulatory nature.

3.1 Technical: Dependency management
The FMI is a widely used data format for the exchange
of simulation models. A major issue of the FMI is the
lack of dependency management. Both source code FMUs
and compiled FMUs require dependencies to be present in
the execution environment. If they are not met or wrong
versions are provided, FMUs cannot run or might pro-
duce wrong results. Model users typically cannot resolve
dependencies without help from the model owner. The
FMI standard states that “FMUs must reduce their de-
pendency on operating system services” (Modelica As-
sociation 2022, section 1.3) and that “tool dependencies
must be documented” (Modelica Association 2022, sec-
tion 2.5.3). However, beyond the requirement for written
documentation in the FMU’s documentation folder
(Modelica Association 2022, section 2.5.1.1), the FMI
does not provide machine-readable dependency manage-
ment to support an automatic and user-friendly process.

3.2 Economic: Real and perceived value
Economic value is attributed to simulation models by both
model owners and users. For users, the economic value
lies mainly in working time savings, if the alternative for
them means creating their own model. This allows us to
roughly approximate the value for users. For owners, this
is more difficult: Simulation models, at least if they rep-
resent a real product sold by the model owner, have little
market value on their own, because they are merely de-
scriptive and can only generate revenue in combination
with the real product they represent. In this case, the eco-
nomic value of a simulation model is mainly the added
value for the buyer. However, the costs to create a simu-
lation model are usually very well known or can be esti-
mated as the personnel costs spent on modeling, costs for
the software tools, and, if applicable, the cost for model
validation. Finally, there is a negative economic value, i.e.
the risk of economic damage that might result from the
loss of intellectual property, or from damage claims for a
flawed simulation model.

There is no good literature available on this subject. At
simercator we have experienced that managers, decision

makers, and non-experts in simulation tend to make the
following mistakes:

Mistake 1 Cost for model creation equals the market
value of the models.

Mistake 2 The information contained in a simulation
model is equal to the knowledge that went into
creating the model.

As a consequence, managers and decision-makers tend
to be over-reluctant when sharing simulation models, be-
cause they overestimate the risk of distributing models.
Hence, there appears to be a significant discrepancy be-
tween actual and perceived value.

3.3 Legal: Intellectual property and liability
Simulation models contain intellectual property and the
models themselves are subject to copyright and property
law. Model owners need to ensure that distributing sim-
ulation models does not affect any rights. Export control
laws also apply.

Simulation softwares, including Modelica tools, offer
the possibility to encrypt simulation models. However, the
processing of encrypted models is usually vendor-specific,
and, in some cases, even version-specific. The FMI’s in-
tellectual property protection relies on the binary compi-
lation. To lesser extent, source code FMUs can be obfus-
cated, but by nature the internals of the model remain ex-
posed. With simulation models, where phenomenological
or reduced order models are used, it is quite often already
hard to reverse-engineer product features from a descrip-
tive model. Restricting the distribution, i.e. the copying of
files that contain simulation models is not possible through
technical means, but one can restrict the execution, e.g. by
requiring runtime licenses or decryption keys.

Another big legal concern is liability for correctness.
Mathematically, it is not possible to quantify a priori the
modeling error of a simulation model, i.e. the accurate
representation of physical reality through the model for
any input that a user provides. The same applies to con-
trol algorithms and becomes even more pressing when the
model itself evolves when the user provides new input dur-
ing model usage, e.g. with machine learning models.

As of today, we do not know of effective mechanisms
for owners to track usage after delivering the model to the
user. Usage control is limited to restricting ranges of input
variables and other mechanisms that are compiled into a
simulation model. However, any control mechanism built
into a model at compile time is based on previously known
or anticipated model usage and model behavior. Conse-
quently, without knowledge about actual usage, the model
owner cannot improve on control mechanisms or discover
unexpected runtime behavior. Likewise, a user cannot be
warned and potential damage can only be analyzed a pos-
teriori and only if the user keeps record of specific model
versions together with the input and ideally output values.
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3.4 Regulatory: Traceability, explainability
The recent years have witnessed the widespread adop-
tion of computational methods from the fields of machine
learning (ML), statistical methods or artificial intelligence
(AI). Applications range from the prediction of human be-
havior for marketing purposes, artificial generation of text
or graphics, chatbots, or even crime prediction, to indus-
trial applications like object detection in quality control or
control algorithms. Due to the “learning” nature and the
dimensional complexity, their operational behavior is hard
to predict with mathematical means and might evolve over
time. Lawmakers all over the world will most likely en-
force regulation on their usage soon. The European Union
(EU) has taken a leading role. In 2018, it has already is-
sued the Ethics Guidelines for Trustworthy AI (European
Commission 2018). In 2021, the European Commission
has published a proposal for the EU Artificial Intelligence
Act (EU AI Act) (European Commission 2021b).

AI and ML are already used as computational models
within system simulation, mostly as control algorithms.
But also the other way round: System simulation models
themselves can be used as part of AI-based or ML-based
control algorithms to simulate the physical reality that is
being controlled, i.e. as simulation digital twins (Boschert,
Heinrich, and Rosen 2018).

The European Commission (2018, Chapter II.1.4) al-
ready demanded traceability and explainability from AI
systems. The EU AI Act proposal is more specific:
“[H]igh-risk AI systems” (European Commission 2021a,
Annex I, Annex III) are required to implement “auto-
matic recording of events (’logs’)” (European Commis-
sion 2021b, Articles 12, 20) as well as “[c]orrective ac-
tions” (European Commission 2021b, Article 21) in or-
der “to bring [the high-risk AI system] into conformity, to
withdraw it or to recall it, as appropriate” (European Com-
mission 2021b, Article 21). High-risk applications for AI
systems according to European Commission (2021b, Sec-
tion 5.2.3) and European Commission (2021a, Annex III)
comprise “[m]anagement and operation of critical infras-
tructure [...] operation of road traffic and the supply of
water, gas, heating and electricity”.

Hence, it might very well be possible that model own-
ers who provide certain computational models will legally
have to ensure automated mechanisms to control distribu-
tion, maintainability (corrective action), and usage control
(record-keeping and explainability).

4 Requirements
From section 3 we can now derive requirements for a real-
ization of a supply chain for simulation models (section 2).
The most important are:

Model owner A model owner must be able to

(RO1) control model distribution,
(RO2) enforce control, logging, and monitoring of

model inputs and outputs,

(RO3) enforce a location for storage and execution,
(RO4) update or shut down distributed models,
(RO5) comply with data privacy laws.

Model user A model user must be able to

(RU1) obtain models ready-to-use and fitting the techni-
cal and organizational (data traffic) needs,

(RU2) know if his model usage produced valid outputs,
both at modeling time and after simulation time,

(RU3) know which data is processed and communicated
to the model owner, both a priori and a posteriori,

(RU4) retain full control over his own simulation models
(no forced updates),

(RU5) rely on the fact that data logging does not reveal
any of his own models or data.

Simulation model supply chain A supply chain for
simulation models must allow for

(RC1) parallel model delivery and execution,
(RC2) integration with other digital supply chains,
(RC3) integration with simulation tools and standards.

5 Learning from software engineering
Deployment, monitoring, and maintenance of ready-to-
use software have been a core challenge in software en-
gineering for decades. Therefore, we seek best practices
and inspiration in software engineering for a supply chain
for simulation models.

5.1 Dependency management, software de-
ployment, and maintenance

Modern operating systems use package managers and spe-
cific package formats to install software from given repos-
itories, like e.g. Ubuntu’s official package repository pro-
viding .deb Debian packages.17 Package managers that
take care of dependency resolution exist for all major op-
erating systems: apt18 or rpm19 (Linux), brew20 (Ma-
cOS), and winget21 (Windows). There are also plat-
forms like Google Play22 or Apple’s App Store23 for mo-
bile applications as well as dockerhub24 for microservices
in mostly cloud applications.

While FMI’s role could be intepreted as a package for-
mat, there is – to the best of our knowledge – neither a
package manager with dependency management for sim-
ulation models nor a package repository for system sim-
ulation models. (This statement does not apply to circuit
simulation models, see section 1.1.)

17https://packages.ubuntu.com/
18https://wiki.debian.org/AptCLI
19https://rpm.org/
20https://brew.sh/
21https://learn.microsoft.com/en-us/windows/

package-manager/
22https://play.google.com
23https://apps.apple.com
24https://hub.docker.com/
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5.2 Services for source code development and
exchange

In the software world, almost all developers rely on web-
based services for exchanging software. Services like
GitHub,25 GitLab,26 or Bitbucket27 are used for devel-
opment, collaboration with others, building, testing, and
other tasks. These platforms support their users with fea-
tures like version management, release management, is-
sue tracking, continuous integration, automated testing,
vulnerability scanning, user management, usage analytics,
rights management, and collaborative development. The
code repositories are available as open to the public (open
source), or access is restricted to specific users in private
repositories or on private instances of these platforms.

For model development, simulation experts often use
the same services as software developers. In particular,
version control systems like Git28 and collaborative en-
vironments like GitHub or GitLab. Note that simulation
modeling environments like e.g. Modelica tools take the
role that integrated development environments (IDE) have
in software development. Some simulation modeling en-
vironments like e.g. Dymola29 already integrate version
control.

5.3 Quality measures
In software engineering, developers expect several qual-
ity indicators from a software library: Update cycles, the
existence of automated test and build toolchains, reliable
tracking and handling of issues, but also social indicators
like the number of contributors, regular commits, or re-
sponse times for reported issues. Also, a large portion
of software projects use the semantic versioning scheme
<major>.<minor>.<bugfix>.30

In recent years, such measures are being adopted in
model development, too. For example, the Modelica li-
braries IBPSA (Wetter, Treeck, et al. 2019), Buildings
(Wetter, Zuo, et al. 2014) and AixLib (Müller et al. 2016)
use issue tracking, automated test and build toolchains, as
well as semantic versioning based releases.

6 SMaaS concept and architecture
The Simulation Model as a Service (SMaaS) concept de-
veloped at simercator proposes a simulation model repos-
itory software combined with a scalable, microservice-
based computing backend. The core idea is to offer a
simulation model not merely as a downloadable and ex-
ecutable file to the model user. Instead, model owners
can offer their simulation model as an executable service,
where the owner retains full control over model execution,

25https://github.com
26https://gitlab.com
27https://bitbucket.org/
28https://git-scm.com/
29https://www.3ds.com/products-services/catia/

products/dymola/model-design-tools/
30https://semver.org/

distrubtion and usage. The SMaaS architecture is depict-
eded in the following Figure 1 and a concrete implemen-
tation is presented in the following section 7.

SMaaS incorporates different realizations of execution
services. An integral part of SMaaS is a special execution
service which we refer to as simulation model streaming.

Streaming Simulation model streaming describes orig-
inal models being executed in the computing backend,
while the user only uses a model doppelgaenger that is
distributed as a downloadable file. The doppelgaenger
model can be offered in different formats (e.g. FMI)
to allow the import into various tools. Every time the
model doppelgaenger is executed, the requested action
(e.g. FMI function calls like fmi2DoStep) is deferred
to the computing backend via a web-based RPC call, ef-
fectively “streaming” input data and results back and forth
between doppelgaenger and original model.

This idea is similar to FMU-proxy by Hatledal, Zhang,
Styve, et al. (2019). However, FMU-proxy uses a TCP/IP-
based socket-to-socket communication where one proxy
FMU (the equivalent to our doppelgaenger) communi-
cates with one FMU-proxy server instance. To achieve
a scalable execution service and to be able to run multi-
ple instances of the same model in parallel when using
SMaaS, we use microservices in the computing backend
and a dedicated communication backbone for routing in-
coming requests to dedicated containers. For every re-
quest from a doppelgaenger, we instantiate a dedicated
container from a container image repository. We then cre-
ate a copy of the original simulation model in the container
to perform the computations. In this fashion, the depen-
dencies only need to be resolved once with a suitable con-
tainer image, whereas the doppelgaenger delivered to the
user does not require any special dependencies.

As a consequence, one can deliver simulation models
as doppelgaengers in a format that the original simulation
model does not even support. This comes at the price of
matching model execution requests to corresponding eval-
uations of the original model during communication. This
principle has also been used in FMU-proxy to “import
FMI 1.0 models in software that otherwise only supports
FMI 2.0”,31 and furthermore in UniFMU by Legaard et
al. (2021). The advantage of resolving dependencies of an
original simulation model in a microservice has also been
exploited by UniFMU (Schranz et al. 2021).

Also, streaming inputs back and forth allows us to
implement observer and maintenance mechanisms in the
SMaaS concept to satisfy requirements such as control of
usage, distribution, as well as ensuring traceability and re-
produceability as the basis for explainability.

Browser-based Being able to execute original simula-
tion models via web-based RPC calls on a computing
backend makes it possible to offer access over the web

31https://github.com/NTNU-IHB/FMU-proxy/blob/
master/README.md

Simulation Model as a Service (SMaaS): A concept for integrated deployment, execution and tracking of
system simulation models

38 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20433



SMaaS Simulation Model Repository SMaaS Computing Backend

User Db Model Db Usage Db

REST API

Execution 
Service: 
Browser

RPC

Execution 
Service: 

Streaming

Other
Execution 
Services 

Execution 
Image Repo

Container Manager

Server 1

Exec. Container 1

Exec. Container m1

...

Container Manager

Server n

Exec. Container 1

Exec. Container mn

......

User
Manager

Model
Manager

Model 
Delivery
Factory

Analytics 
Engine

REST API

Web Frontend CLI

Communication backbone

Model Owner Model User

SMaaS User Interface

Figure 1. SMaaS concept architecture with illustration of model delivery and simulation using streaming execution

browser. Hence, within the SMaaS concept it is possi-
ble to implement a web-based frontend as an execution
service, where model users can trigger model evaluations
from a browser. This is particularly useful to perform sim-
ple runs in an explorative fashion, and also for users who
do not have access to a simulation tool or lack the required
knowledge. Hence, model owners can allow browser-
based execution for a broader user audience without hav-
ing to develop a dedicated web application.

Individualized model delivery Not in all applications
simulation model streaming is an option. For instance,
IT guidelines of a company could forbid communication
to external services, or the target platform could have no
(sufficiently reliable) network connection, e.g. a produc-
tion machine or an autonomous vehicle. In these cases the
only option is to deliver a copy of the original model to
the model user – including all the drawbacks mentioned
before. However, with the simulation model repository
infrastructure it is possible to individualize copies of the
simulation model and to augment them with additional
control functionality. We call this Simulation Model on
a Leash (SMoaL). It is ongoing research at simercator and
might be subject to a future publication.

Finally, the SMaaS concept is not specific to the FMI,
but can be adopted to future (e.g. microservice-based) ex-

change standards for computational models. For instance
the Open Neural Network Exchange32 format (ONNX).

Evaluation With the exception of RO5 and RU1, the
fulfillment of the requirements from section 4 is inherently
possible if SMaaS is implemented with the streaming ex-
ecution service. Depending on the actual implementation,
also RO5 and RU1 can be satisfied. In order to fulfill RU2
one can expose a subset of the model owner’s monitoring
mechanisms implemented for RO2 to the model user. We
summarize the fulfillment of requirements in Table 1.

Table 1. Requirement analysis: SMaaS with streaming execu-
tion service. ( * depends on implementation and deployment)

RO1 RO2 RO3 RO4 RO5 RU1 RU2 RU3 RU4 RU5 RC1 RC2 RC3

✓ ✓ ✓ ✓ ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 Realization: simercator hub
At simercator we develop simercator hub33 as a product
that implements the SMaaS concept introduced above.34

32https://onnx.ai/
33https://simercator.com/product/
34Since the implementation is proprietary and part of commercial ac-

tivity, we cannot not provide implementation details
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7.1 Implementation and features
simercator hub offers a web frontend for user manage-
ment, uploading or connecting to a model, and the pos-
sibility to share models with others. Simulation model
streaming is implemented and FMU models in FMI 2.0
(both model exchange and co-simulation) are supported
as original models that are then distributed via doppel-
gaengers. Note that the FMU doppelgaenger can be com-
piled and executed on platforms different from the ones
the original FMU is supporting.

Our recent product iteration implements browser-based
model evaluation, where a web-interface is auto-generated
from a model’s inputs and outputs and other meta-
information. Python-native simulation models are sup-
ported as well, e.g. data-driven models, and the propri-
etary Python module simercator helps model owners
to wrap their simulation models and define inputs and out-
puts in a single main.py file, so that simercator does not
intrude the actual model implementation. Built-in visual-
ization features allow the model owner to provide interac-
tive 2D and 3D plots to the user through the web frontend.

We also feature a basic semantic versioning system that
allows to enable and disable specific model versions. Fur-
thermore, we provide integrated model usage data acqui-
sition and basic analytics in an integrated dashboard.

simercator hub is designed as a licensable sofware with
different commercial license options: 1) host a private in-
stance of simercator hub, e.g. on company owned server
infrastructure, or 2) work on an instance hosted and man-
aged by simercator with the option to have a client-specific
dedicated instance.

7.2 Showcase: FEM model as a service into ve-
hicle system simulation

We now provide a fictitious showcase how simercator hub
can help to achieve a significant speed-up in setting up and
executing a system simulation, as illustrated in Figure 2.
Here, a system engineer wants to perform a vehicle dy-
namics simulation for a vehicle climbing a curb at a com-
paratively high speed (≈ 10 km

h ). The simulation is used
to predict potential damage to a hard rubber absorption
buffer and effects on passenger comfort. To assess dam-
age, the stresses in the absorption buffer need to be com-
puted using FEM analysis (FEA), while the analysis of
passenger comfort requires us to include a suitable buffer
model into the overall vehicle system simulation. The sys-
tem modeling is done in a Modelica tool (OpenModelica35

(Fritzson et al. 2020)). In the following example, we will
refer to the system engineer owning the vehicle system
dynamics model as “Alice” and to the simulation engineer
owning the buffer FEM model as “Bob”.

Typical workflow today Today, Alice would typically
use a surrogate model for the absorption buffer in her sys-
tem simulation (nonlinear spring). The system simulation

35https://openmodelica.org/

result for the buffer compression is then handed over to
Bob to carry out the damage assessment using the FEM
model. This is slow and error-prone, because the construc-
tion of a meaningful surrogate model requires a known
force-compression-dataset. Alternatively, Bob can pro-
vide a FMU that contains a FEM model of the absorption
buffer to Alice. However, the solver of choice (Calculix36

(Dhondt 2004)), does not provide an FMI interface that
could be used here.

Simulation model exchange using SMaaS As a prepa-
ration, Bob needs to prepare a Python script that wraps
the Calculix solver of the (for simplicity) elastostatic
FEA. The script calls the actual FEA as an external pro-
cess. Then PythonFMU37 (Hatledal, Zhang, and Collon-
val 2020) is used to turn the script into a co-simulation
FMU (FMI 2.0). The FMU accepts the enforced displace-
ment on the buffer surface in x, y, and z direction as in-
puts. It computes and outputs the reaction force in corre-
sponding directions x,y,z and also returns the maximum
von Mises stress from the buffer’s bulge.

Figure 3 illustrates the showcase workflow with simer-
cator hub. After logging in, Bob uploads the FMU from
above to the simercator hub instance, together with text-
based meta-information (or as a JSON file). The simerca-
tor hub instance provides pre-built docker images with a
collection of pre-installed open source solvers, including
one with Calculix that Bob uses. After that, Bob creates an
account for Alice on simercator hub and authorizes Alice
to view and download the FEA model as a doppelgaenger.

Alice now logs in to the simercator hub instance to
browse models that she has access to. She can also as-
sess whether the model fits her needs from the meta-
data. Alice uses the download option to retrieve the
model doppelgaenger of the model provided by Bob.
It only contains a communication library, the same
modelDescription.xml of the original FMU, and

36http://www.calculix.de/
37https://github.com/NTNU-IHB/PythonFMU
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an individually generated token that ensures that only au-
thorized users can execute this doppelgaenger. Because it
contains the same modelDescription.xml, to Alice
it looks just like the original model.

Alice wants to use the vertical displacement that origi-
nates from her suspension model as an input for the buffer
doppelgaenger. Then, she wants to use the vertical re-
action force computed by the buffer doppelgaenger as an
input for her suspension model. Therefore, Alice exports
the suspension model with corresponding input and out-
put connections into a FMU for co-simulation. Then she
combines both the suspension FMU and the FMU with the
doppelgaenger into one weakly coupled co-simulation.
When the co-simulation is run, the doppelgaenger model
for the buffer establishes communication with the simer-
cator hub instance via the streaming process explained
above. Bob does not know about the surrounding system
simulation. Alice’s simulation model is entire invisible to
Bob. Likewise, Alice can only access the outputs of Bob’s
model and no internal details are exposed, such as the FE
mesh or material properties.

The workflow described above takes Alice a few min-
utes (log-in, download, co-simulation setup). Also, Bob
can now make this simulation model available to multiple
experts via simercator hub’s user management.

With simercator hub, also an alternative approach is
possible: Using the browser-based evaluation, Alice can
query the response forces for various displacements from

the browser. This allows her to create a surrogate model
with a nonlinear spring from data of the FEM model.

8 Conclusion and future work
We described why the exchange of simulation and compu-
tational models between system manufacturers and sup-
pliers of mechatronic and cyber-physical systems needs
a dedicated solution (“digital supply chain”). Then we
outlined that today’s file-transfer based exchange cannot
satisfy natural technical and possible future regulatory re-
quirements for the operation and maintenance of rolled
out models. With SMaaS we have formulated a concept
and an architecture that can provide a suitable solution
for the exchange of simulation models and integrates with
existing simulation tools and standards like FMI. Finally,
we have presented our product simercator hub that imple-
ments SMaaS, illustrated how it can satisfy the identified
requirements, and demonstrated SMaaS and simercator
hub within a collaborative system simulation use case.

A key point for SMaaS will be whether and how orga-
nizations will accept communication to the outside when
it comes to simulation, as some form of communication
and collaboration is required by all implementation vari-
ants of SMaaS. Recent adoptions of package managers
and software as a service (SaaS) solutions have shown
that companies are willing to implement this if the gains
are sufficient. This has been the case for business appli-
cations and can now be observed with the rise of SaaS
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solutions for simulation software. Additional efforts have
to be undertaken to improve dependency management for
FMI-based models or other standards that may arise in the
future. Also, it remains to be seen how simulation mod-
els will be affected by future regulation. From a tech-
nical perspective, additional research is needed on per-
formance speedup in network-based co-simulation. Fi-
nally, adoption of SMaaS or other package repository like
solutions also depends on economic considerations with
potential adopters. SMaaS implementations like simer-
cator hub can provide infrastructure for digital supply
chains. Whether companies will continue to share sim-
ulation models purely request-driven like today or use it
as a digital service to differentiate from competitors will
affect the rate of adoption.
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Abstract
Regression testing is a commonly used strategy in con-
tinuous integration workflows to ensure reproduceability
of outputs. It is widely used in software engineering and
model development, including Modelica. In this article we
introduce the open source regression testing framework
MoPyRegtest written in Python. Its primary focus is to
provide Modelica library developers with a simple regres-
sion testing tool that features test automation and can be
integrated with continuous integration toolchains, in par-
ticular for open source developments. In order to simulate
the Modelica models for testing analysis, we provide an
interface to Modelica simulation tools that have a scripting
interface, like e.g. .mos files. Our current implementa-
tion works with OpenModelica. We outline the design and
functionality of MoPyRegtest and show its potential use-
fulness for open source development of Modelica models
and libraries.
Keywords: Modelica, regression testing, Python, open
source, continuous integration

1 Introduction
The development of Modelica libraries and models re-
quires test and validation. It gives indications to model
developers as to the quality and robustness of their de-
velopments. Also users request a variety of quality in-
dicators before they choose a certain library. In particular
test and test automation, besides a number of other indi-
cators like reputation, community size, update cycles, or
response times for support and handling of issues, license
conditions and many more. Testing benefits both Model-
ica library developers and users.

For a user, testing can give an immediate feedback
whether a certain Modelica model or library will run on
the intended target environment, produce the results its de-
velopers intended and which parts of the library have been
systematically studied for quality.

For developers, testing carries additional benefits. Unit
testing means that debugging does not have to be done
with large monolithic models, but rather with smaller in-
dividual elements, which helps in locating and isolating is-
sues. Test automation means that developers can quickly
detect effects of changes by running test suites, instead
of discovering effects manually or, worse, having users
discover bugs after releases. Especially with Modelica

models, developers implicitely always do tests by running
simulations and eventually judging the results as satisfac-
tory. Since Modelica libraries shall feature examples with
certain expected results, library developers usually have
already created natural candidates to be turned into re-
gression tests. Testing can also open up entirely different
development methodologies, like e.g. test-driven devel-
opment (TDD) (Beck (2003)). Indeed, if libraries or li-
brary elements are intended to model a certain product’s
or device’s physical behavior rather than containing only
generic modeling blocks, it is the test data, i.e. measure-
ment data, that is available first. A model has to be created
such that it correctly predicts the reference data. Hence,
TDD can be a valid approach for Modelica library de-
velopment, too. A TDD approach to simulation has been
studied in Onggo and Karatas (2016).

Many test criteria employed during testing of Model-
ica libraries are basically the same as in software devel-
opment, ranging from static code analysis, reproduceabil-
ity to integration testing. The one we will focus on here
is reproduceability of results through the technique of re-
gression testing. Wong et al. (1997) summarizes that “[t]
he purpose of regression testing is to ensure that changes
made to software [...] have not adversely affected features
of the software that should not change”. Regression test-
ing is an established practice in many Modelica library
developments and a number of tools have been proposed
or developed. Basically, regression testing for Modelica
library development means evaluating whether simulating
a certain library element produces a result that is suffi-
ciently close – in a suitable metric – to a reference data
set provided by the developer. As we shall see in sec-
tion 2, a dedicated, lightweight regression test solution
for mostly open source library development can be useful.
Especially, if it focuses on test automation and integra-
tion into continuous integration (CI) or continuous deliv-
ery (CD) toolchains. This is why have developed MoPy-
Regtest1 (from Modelica Python Regression testing) from
a mere helper into an open source solution that can be run
with open source tools only.

The outline of this article is as follows. In section 2
we give a broad overview over the many tools for testing
Modelica models and their use in open source Modelica li-
brary developments. Section 3 summarizes requirements
for a regression testing solution derived from the devel-

1https://github.com/pstelzig/MoPyRegtest
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opers’ needs as identified in the previous section. Then,
we outline the design of MoPyRegtest and its functional-
ities. Section 4 covers the currently built-in mathemati-
cal metrics that the user can choose from when comparing
simulation and reference results. It also shows how we
implemented the possibility to provide user-defined met-
rics. We present a showcase for how to use MoPyRegtest
in section 5. Section 6 states conclusions as well as open
points, and gives an outlook on future work.

2 State of the art
We outline the state of the art regarding testing and tools
for Modelica library development starting with a rough
analysis over actual usage of testing solutions. We then
derive indicators as to how testing is primarily used today,
and where we see that MoPyRegtest can be beneficial to
library developers.

2.1 Testing in open source Modelica libraries
In order to have some quantitative indication on the us-
age of testing solutions for Modelica library development,
we did some analysis on the repository collection “Mod-
elica 3rd-party libraries” curated by Dietmar Winkler on
GitHub.2 This collection only covers open source li-
braries. Hence, from its analysis we cannot derive any
insights on testing solutions as they are used in a commer-
cial context. We only considered libraries that had at least
one commit since the beginning of 2019. In these reposi-
tories we looked for

(C1) any automated tests in the repository’s source
folder (syntax checking or build/run automation
or regression),

(C2) whether there are CI-pipelines set up defining au-
tomated tests, e.g. in a .github or .gitlab
folder,

(C3) whether there is an automated regression test.

This approach is entirely manual and as such error-
prone. To our knowledge, there is no universally adopted
practice yet on where to put tests in Modelica libraries and
how to formulate or execute them. We found that tests are
sometimes hidden deeper inside folder structures and that
documentation does not always reveal their existence. As
we shall see, there is also some variety when it comes to
testing tools used, and sometimes ad hoc testing solutions
are implemented that are not obvious to discover. Also,
not all developers use GitHub Actions3 or GitLab CI/CD.4

Moreover, the nonexistence of test automation, i.e. the au-
tomated execution of automated tests, does not imply the
nonexistence of automated tests themselves. Hence, we
might have overlooked or not correctly recognized tests.
At this point, we emphasize once more that the numbers in

2https://github.com/modelica-3rdparty
3https://docs.github.com/en/actions
4https://docs.gitlab.com/ee/ci/

the following Table 1 can at best be interpreted as an indi-
cation. We advise against using these numbers in follow-
up work. Since we expect at least some corrections to
this preliminary and manual analysis, rather than putting
the detailed listing here, we put it in an openly accessible
repository on GitHub.5

Table 1. Estimated relative occurrence of tests in repositories
in the GitHub collection “Modelica 3rd-party libraries” as of 14
August 2023. These numbers might not be accurate.

∃ commit since #(repos) (C1) (C2) (C3)

2019 75 ≈ 28% ≈ 18% ≈ 14%
2021 60 ≈ 32% ≈ 20% ≈ 15%
2022 45 ≈ 40% ≈ 24% ≈ 20%

2.2 Insights
Despite the likely uncertainty in the numbers, we think
that one can at least observe tendencies from Table 1:

1. Repositories with more recent activity use more au-
tomated tests.

2. Developers prefer other testing strategies first before
turning to regression tests.

2.3 Testing tools
In the repositories we looked into, two popular test-
ing tools were BuildingsPy6,7 for regression testing, and
moparser for syntax checking.8

BuildingsPy has been developed as part of the Build-
ings library (Wetter et al. 2014). It supports unit testing
and regression testing, but can also orchestrate simulation
runs using Dymola9, OPTIMICA10 or OpenModelica11.
The documentation also shows it can visualize simulation
results, including regression test results.

moparser is a binary executable by MapleSoft. It is
available at MapleSoft’s homepage for various platforms.
The Modelica Association includes it as the “MapleSim
Standalone Modelica Parser” in its Modelica tools list.
Several projects use moparser to validate correctness of
Modelica syntax as an automated test.

There are also some sophisticated ad hoc regression
testing solutions developed for specific projects using vari-
ous languages. We have found a regression test implemen-
tation written in Python as part of the Modelica-Arduino

5https://github.com/pstelzig/
modelica-oss-lib-testing-analysis

6https://github.com/lbl-srg/BuildingsPy
7https://simulationresearch.lbl.gov/modelica/

buildingspy/development.html
8https://modelica.org/tools.html
9https://www.3ds.com/products-services/catia/

products/dymola/model-design-tools/
10https://help.modelon.com/latest/reference/

oct/
11https://openmodelica.org/

MoPyRegtest: A Python package for continuous integration-friendly regression testing of Modelica libraries

44 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20443



project.12 The ModPowerSystems library13 uses a test-
ing solution developed as part of a bigger utility suite at
the RWTH Aachen,14 also in Python. A shell script so-
lution is used for regression test automation in the PNlib
project.15

As far as we understood, BuildingsPy, the solution in
Modelica-Arduino, and various commercial tools use a
sort of maximum deviation metric that checks whether
the actual simulation result stays within a “funnel” (Build-
ingsPy) or a “band” (Modelica-Arduino) around the orig-
inal result. Mathematically speaking, the “band” amounts
to the ∥ ·∥L∞ norm (in the sense of the space of essentially
bounded functions; rather than ∥ · ∥C0 because Modelica
simulation result data is usually not time-continuous) ap-
plied to the difference of the time-varying functions de-
fined through the reference data and the actual simulation
result. Since the timestamps in the reference data and the
actual result do generally not coincide, some sort of inter-
polation technique has to be employed. BuildingsPy uses
the pyfunnel16 module for this; the funnel computation is
more than just an ∥ ·∥L∞-norm, but takes into account also
the difference of the timestamps. It regards the reference
data as a point cloud (t0,y0),(t1,y1), . . . and builds a tol-
erance area around each (ti,yi) datapoint of the reference
data. Then, it checks whether the simulated data points fall
into these tolerance areas. This requires that timestamps
in reference and actual data need to be close, too. As the
pyfunnel documentation states, this can make sense to en-
force control events to occur at similar times.

Apart from the solutions we found, there are of course
other powerful testing solutions available for Modelica li-
brary development.

In the open source world, besides the BuildingsPy li-
brary, there is the OpenModelicaLibraryTesting.17 Open-
Modelica (Fritzson et al. 2020) has extensive library cov-
erage including regression testing for the libraries featured
in its package manager.

The tool CSV Result Compare18 is well known in the
Modelica community. Its main purpose is comparing re-
sult timeseries files in the .csv format. It can also com-
pare .csv files recursively by walking through directory
trees. It does not allow for test formulation or execu-
tion. But it can of course be used to perform result com-
parison as part of regression testing. Not unlike pyfun-
nel, it constructs rectangular or ellipsoidal tolerance areas
around each datapoint (t0,y0),(t1,y1), . . . of the reference

12https://github.com/modelica-3rdparty/
Modelica-Arduino

13https://github.com/ModPowerSystems/
ModPowerSystems

14https://git.rwth-aachen.de/acs/public/
simulation/python-for-modelica

15https://github.com/AMIT-FHBielefeld/PNlib
16https://github.com/lbl-srg/funnel
17https://github.com/OpenModelica/

OpenModelicaLibraryTesting
18https://github.com/modelica-tools/

csv-compare

result, and then constructs a tube around these tolerance
areas defined through an upper and a lower hull curve.
csv-compare is implemented in C#, which can cause ad-
ditional efforts in Linux-based CI toolchains due to its de-
pendencies on .NET or mono.19

PySimulator by Pfeiffer et al. (2012) is a simulation
and analysis environment with a graphical user interface
that can use various different simulators through a plu-
gin infrastructure. Therefore, Asghar et al. (2015) study
the use of PySimulator20 for regression analysis, in par-
ticular across different simulation tools, and outline the
implementation of a dedicted testing plugin for PySimula-
tor. This plugin uses a simple comparison metric, but fea-
tures automatic reporting and parallelization of test execu-
tion. To our knowledge, PySimulator is no longer actively
maintained on GitHub and the last release dates back to
2016. It uses Python 2 which is no longer supported since
2020. Its much broader scope and its plugin dependencies
make it difficult to revive for regression testing only.

Commercial tools for regression testing are available
from a number of tool vendors. They often come with so-
phisticated visualization functionality, sometimes directly
integrated into Modelica simulation tools, sometimes as
standalone products. Generally, except for the case where
regression tests are executed by so-called runners in a
privately managed runtime environment, it is not possi-
ble to use commercial, license-bound tools in open source
CI toolchains. The term runner refers to an application
that executes tests or build tasks for CI applications on re-
sources outside of the CI applications’ own infrastructure,
and propagates results back to the CI application.

3 Design and functionality
We first sum up the design criteria that guided us in the
development of MoPyRegtest. MoPyRegtest shall

(DG1) be a pure testing library,
(DG2) be self-contained,
(DG3) allow for simple formulation of test automation,
(DG4) allow for simple automatic execution with popu-

lar CI toolchains,
(DG5) be platform independent,
(DG6) use a popular programming language,
(DG7) allow for user-defined comparison metrics,
(DG8) allow for use with different Modelica tools,
(DG9) integrate with other test automation tools,

(DG10) be usable within open source projects.

3.1 Rationale
Our first design choice was to implement MoPyRegtest
entirely in Python. Python is easy to learn, already in use
for regression tests in Modelica (BuildingsPy), it is plat-
form independent, easy to automize, and integrates well

19https://github.com/modelica-tools/
csv-compare/blob/master/README.md

20https://github.com/PySimulator/PySimulator
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with popular CI toolchains like GitHub Actions or GitLab
CI/CD. Furthermore, the official Python distribution in-
cludes the unittest21 framework by default. Hence, it
is available to every Python user, it supports test automa-
tion, reporting as well as test discovery. For this reason,
we use unittest as the basis for MoPyRegtest.

Any regression test for Modelica libraries requires a
software tool that translates Modelica code into executable
simulations that can be run by the testing tool. Since
MoPyRegtest shall be usable in open source projects, the
natural choice is to use OpenModelica, more precisely the
OpenModelica compiler omc. However, we want to be
able to run MoPyRegtest with other solvers, too. There-
fore, we do not call OpenModelica natively from within
Python, e.g. through OMPython22 (Ganeson et al. 2012).
Instead, we use a file interface and create Modelica script
files .mos from templates, which we pass to omc in order
to run simulations. This approach allows for integration
with any other simulation tool that supports a file-based
scripting interface. Also, it does not introduce any source
code dependencies on 3rd party APIs, which could easily
break builds or be incompatible for different API versions.

Regression requires the comparison between a refer-
ence result and a simulation result produced by a library
model. MoPyRegtest does not aim at creating superior or
new comparison metrics. Instead of a hard-coded com-
parison metric, for MoPyRegtest we chose to implement
a built-in selection of metrics and give users also the op-
tion to define their own metrics. In this fashion, one could
even reproduce proven algorithms from other regression
or comparison tools like pyfunnel or csv-compare. Call-
ing an external tool for comparison is also possible. For
details on the implementation see section 4.

3.2 Architecture and functionality
Conceptually the architecture is very simple and illus-
trated in Figure 1.

Defining a test in MoPyRegtest is very similar to one in
Python’s unittest module, see Listing 3.1.

In the simplest case, the regression test is a file
starting with the prefix test_<...>.py to allow for
test discovery. It must contain a child class inherit-
ing from unittest.Testcase. Inside this class,
every single regression test is defined as a method
called test_<...>, which in its body instantiates
a mopyregtest.RegresstionTest object like in
Listing 3.1. This object is given information on

• where to find the Modelica package to test
(package_folder),

• which model to test (model_in_package),
• where to put the results (result_folder),
• [optional] which simulation binary to use from PATH

(tool, default="omc")

21https://docs.python.org/3/library/unittest.
html

22https://github.com/OpenModelica/OMPython

• [optional] which Modelica Standard Library
version to use (modelica_version, de-
fault="default"),

• [optional] a list of Modelica library dependencies
loaded before test execution (dependencies, de-
fault=None).

The mopyregtest.RegresstionTest ob-
ject then calls its compare_result method with
information on

• where to find the reference result as a .csv file
(reference_result),

• [optional] a tolerance threshold which the distance
between each individual variable of reference and
actual result may not exceed in order to pass (tol,
default=10−7),

• [optional] a list of variable names for which
the comparison metric shall be evaluated
(validated_cols, default=“all variables
common in both data sets”),

• [optional] which comparison metric to use
(metric, default=∥ · ∥∞ vector norm on the
difference of variable values),

• [optional] which method to use to fill in miss-
ing values for timestamps which are not
present in either reference or actual result
(fill_in_method, default="ffill" from
pandas.DataFrame.fillna).

Remark. 1. In the current implementation, the Model-
ica STL is treated differently from other dependen-
cies. It is always required by MoPyRegtest. This is
just a design choice, because in practice most Mod-
elica models use the STL in one way or the other.

2. The default tolerance has been chosen small for two
reasons. First, MoPyRegtest’s original scope was to
ensure reproduceability during refactorings. Second,
choosing a small default value makes it is unlikely
that results are judged as being close by accident.

3. The user has to specify the variables to be compared
through the validated_cols parameter. Theo-
retically, this could be extended to passing a text
file containing the respective variable names, e.g.
like the comparisonSignals.txt23 proposed
for Modelica STL regression testing.

Note that a single file can contain more that one test
case like it is common with unittest. If a test
case definition like in Listing 3.1 is put in a file like
test_mymodel.py, then all of its test methods are ex-
ecuted by running

$ python3 test_mymodel.py

23https://github.com/modelica/
ModelicaStandardLibrary/files/4270977/
SetupForMSLRegressionTesting_2014-01-13.pdf
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User’s Regression Test Definition

.csv

reference_result.csv

.py

test_modelicamodel.py

MoPyRegtest

class RegresstionTest:

  def compare_result:

  def _import_and_simulate:

  def _unify_timestamps:

mopyregtest

mopyregtest.metrics

  def norm_p_dist:

  def norm_infty_dist:

  def Lp_dist:

  def Linfty_dist:

templates

model_import.mos.mos

model_simulate.mos.mos

Modelica Tool

.mos .csv

1

3 4

5

metric

user defined metric

2

Figure 1. MoPyRegtest architecture with order of test execution steps

Or, if the file is put into a folder structure like required by
unittest for test discovery,24 from the structure’s root
folder one can run

$ python3 -m unittest

to discover and execute all unittest cases. See sec-
tion 5 for a complete example, which is also contained in
the MoPyRegtest implementation.

The call to tester.cleanup() in Listing 3.1 is
optional. The examples in MoPyRegtest do not call the
cleanup method, because automatic deletion must al-
ways be handled with extreme care.

4 Comparison metrics for regression
analysis

Generally speaking, choosing a metric to measure the
closeness, or rather the distance of a simulation result from
a reference data set, is problem specific. Therefore, we
designed MoPyRegtest to give the user full control over
the metric which is used in a regression test. The current
MoPyRegtest implementation also features a set of pre-
defined metrics.

4.1 Motivation
In section 2 we have outlined strategies that in some way
or the other (“funnel” or “band”) require the values of ref-
erence and actual simulation result to be close. This might
not always fit. Both data sets are in fact time-discrete rep-
resentations of functions depending on time, which are

24https://docs.python.org/3/library/unittest.
html#unittest-test-discovery

known to us only through their values at the timestamps
in the respective datasets. In our case, .csv files for ref-
erence result and the actual simulation run.

Mathematically speaking, there is a wide variety of
norms and metrics to measure “closeness” for such time-
dependent functions. Two functions may be close in one
metric, but not in another one.

A classic example is Gibb’s phenomenon in Fourier se-
ries approximations for discontinuous functions,25 most
prominently the approximation of a Heaviside step-
function h : [0,2π] 7→ R (step at π) with partial sums of
its Fourier series. It will overshoot at the jump discontinu-
ity. However, with the basis functions {t 7→ eint : n ∈ Z}
forming an orthonormal basis of L2([0,2π]) equipped with

the canonical norm ∥ f∥L2([0,2π]) :=
(∫ 2π

0 | f (t)|2dt
) 1

2 , the
partial sums of the Fourier expansion will converge in that
norm (and for a suitable subsequence also pointwise al-
most everywhere). Hence, in this case it is more meaning-
ful to use the ∥ ·∥L2([0,2π]) norm as a measure for closeness
instead of the common “band” notion.

Another example are events for state-discrete variables,
which might occur at slightly different times in reference
and actual simulation result. See section 2 and how py-
funnel and csv-compare address this issue.

In order to give users full flexibility in choosing the
right metric for the regression test formulation, we allow
users to define their own metrics (subsection 4.2) or choos-
ing from a set of predefined metrics (subsection 4.3).

25https://en.wikipedia.org/wiki/Gibbs_
phenomenon
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Listing 3.1. Test case definition with MoPyRegtest and pre-defined comparison metric

import unittest
import mopyregtest

class TestUserDefinedMetrics(unittest.TestCase):
def test_modelicamodel(self):
tester = mopyregtest.RegressionTest(

package_folder="/path/to/mylibrary",
model_in_package="MyModel",
result_folder="/path/to/result/folder/MyModel",
tool="omc", modelica_version="4.0.0", dependencies=None)

tester.compare_result(
reference_result=str("/path/to/reference/result/MyModel_res.csv"),
metric=mopyregtest.metrics.Lp_dist,
validated_cols=["myvar1", "myvar2"], tol=1e-8, fill_in_method="interpolate")

tester.cleanup()

return

if __name__ == ’__main__’:
unittest.main()

4.2 Implementation
In our situation, both the reference data and the actual sim-
ulation data that a user compares in a regression test are
given as .csv files. They contain columns of data for in-
dividual variables at time-discrete timestamps. The times-
tamps are identical for all variables within one .csv file.
In general, the timestamps in different .csv files do not
coincide. A .csv file from a simulation run26 might look
like in Table 2.

As it can be seen, timestamps might have multiple oc-
currences, depending on whether events occurred at that
time (in one or more variables).

Metric definition We require a user-defined metric to
be a function d that

• takes two numpy.ndarray27 arrays of identical
shape (Ntstamps,2), say rref and ract with

• both rref and ract having the timestamps as the first
column and the values of one result variable in the
second column, and then

• returns a nonnegative real number d(rref,ract).

Then, a user can simply define metrics by passing a func-
tion handle, or even in situ using lambda functions. In
software development, a lambda function refers to an
anonymous, i.e. an unnamed function that can be defined
ad hoc and in place. For example,
metric=lambda r_ref, r_act: numpy.linalg.

norm(r_ref[:, 1] - r_act[:, 1], ord=1)

26https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
references/SineNoisy_res.csv

27https://numpy.org/

which amounts to taking the ∥ · ∥1 vector norm in RNtstamps

on the difference in values for all timestamps. Then, the
distance according to this metric is computed for every
variable (defined through the validated_cols param-
eter in RegressionTest.compare_result).

Note that in this fashion it is entirely up to the user if
he wants to employ absolute or relative error measures in
a comparison metric. One could also write

metric=lambda r_ref, r_act: mopyregtest.
metrics.Lp_dist(r_ref, r_act)/
mopyregtest.metrics.Lp_norm(r_ref)

to compute a relative error in the L2-norm (Lebesgue
space norm) weighted by the L2-norm of the reference re-
sult. Here, p = 2 is the default value in Lp_dist and
Lp_norm.

Despite being very convenient for the user, we require
the data rref and ract to have identical shape and, in or-
der for computations to make sense, have identical times-
tamps. Which is generally not the case. For instance,
when data sampling rates in reference result and actual
result are different.

Timestamp unification One possibility would be to
leave it to the user to provide meaningful interpolation
for data at missing timestamps. To make it eas-
ier for the user, we have implemented the method
RegressionTest._unify_timestamps.
This function is always called in
RegressionTest.compare_result before
the metric is evaluated.

It takes both the reference result rref and the actual re-
sult ract with their timestamps Tref = [tref,0, . . . , tref,Nref ] and
Tact = [tact,0, . . . , tact,Nact ] and creates a union Tunified that
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Table 2. Example for a .csv result from a Modelica tool run.

time sine.y uniformNoise.y y uniformNoise.state[1]
0 0 0.289372473723095 2.89372473723095E-05 363258270
0 0 0.289372473723095 2.89372473723095E-05 363258270
0 0 0.289372473723095 2.89372473723095E-05 -2054081690
0.02 0.125333233564304 0.289372473723095 0.125362170811677 -2054081690
0.04 0.248689887164855 0.289372473723095 0.248718824412227 -2054081690
0.05 0.309016994374947 0.289372473723095 0.30904593162232 -2054081690
0.05 0.309016994374947 0.837498257278269 0.309100744200675 14228464
0.06 0.368124552684678 0.837498257278269 0.368208302510406 14228464

• contains every timestamp from the union of both Tref
and Tact interpreted as sets (i.e. no multiplicities) and

• repeats each timestamp as often as the maximum of
its occurrences in Tref and Tact.

For both rref and ract, data rows are repeatedly added for
every timestamp from Tunified until in the such extended
rref and ract each timestamp’s multiplicity matches the one
in Tunified. The newly added values are initalized with
NaN. Then, both rref and ract are sorted along the times-
tamp axis, using a stable sorting algorithm that preserves
the original order of timestamps.

This leaves the question of interpolating the such added
NaN values. To this end, we simply use the strate-
gies offered by pandas.DataFrame.fillna28 and
pandas.DataFrame.interpolate.29 The user
can choose between these strategies, see the options in
subsection 3.2.

Remark. A valid question is whether, instead of unify-
ing the timestamps, it would be easier to define the metric
d( · , ·) for results rref and ract of different shapes (Nref,2)
and (Nact,2), respectively. And then, if needed, require
interpolation as part of the metric implementation. E.g.
for integral based metrics, timestamp unification is not
needed. Only at the numerical integration points both rref
and ract need to be evaluated. Also, there is some risk as
to the interpolation error introduced by the timestamp uni-
fication. We opted for the timestamp unification for three
reasons:

1. It is more convenient for the user and allows for
shorter metric definitions.

2. Users can still use any interpolation they want inside
the metric implementation.

3. It has the benefit of being able to write out both rref
and ract into a single .csv result for visual compar-
ison.

In the future, we might make the now always executed
call to RegressionTest._unify_timestamps

28https://pandas.pydata.org/docs/reference/
api/pandas.DataFrame.fillna.html

29https://pandas.pydata.org/docs/reference/
api/pandas.DataFrame.interpolate.html

optional, putting such users who want back in control of
handling different timestamps in their metric definitions
themselves.

4.3 Built-in metrics
MoPyRegtest comes with the following built-in metrics
in the module mopyregtest.metrics. With some
slight abuse of notation:

mopyregtest.metrics.norm_p_dist

d(rref,ract) :=
∥∥∥rref[:,1]− ract[:,1]

∥∥∥
p

for some p ∈ {1,2, . . .} where ∥v∥p = (∑N−1
i=0 |vi|p)

1
p is the

canonical p-norm in RN .

mopyregtest.metrics.norm_infty_dist

d(rref,ract) :=
∥∥∥rref[:,1]− ract[:,1]

∥∥∥
∞

where ∥v∥∞ = max{|v0|, . . . , |vN−1|} is the canonical max-
imum norm in RN .

mopyregtest.metrics.Lp_dist

d(rref,ract)

:=
(Ntstamps−1

∑
i=0

(ti+1 − ti) ·
∣∣∣rref[i,1]− ract[i,1]

∣∣∣p) 1
p

for some p ∈ {1,2, . . .} where

[t0, . . . , tNtstamps ] = rref[:,0] = ract[:,0]

are the unified timestamps of rref and ract. This is the

common Lp-norm ∥ f∥Lp =
(∫ tNtStamps

t0 | f |pdt
) 1

p (Lebesgue
space norm) when viewing rref and ract as piecewise con-
tinuous functions.

mopyregtest.metrics.Linfty_dist When
again viewing rref and ract as piecewise continuous
functions, the L∞-norm (norm of essentially bounded
functions) reduces to the canonical ∥ · ∥∞ maximum norm
on the function’s values. Hence, it returns the same value
as mopyregtest.metrics.norm_infty_dist.
This metric has been included for notational consistency.
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Remark. The values of p are chosen as integers
other than the usual real p ∈ [1,∞) because we use
numpy.linalg.norm which requires the order p to be
of type int rather than float.

5 Showcase
As a showcase we present the example
test_user_defined_metrics that is included
MoPyRegtest’s sources.30

5.1 Test definition
In this example we want to formulate a regression test
that validates during library development, whether a
certain Modelica library model stays close to a refer-
ence data set. For the showcase, the reference data
set is [0,1] ∋ t 7→ sin(2πt) + 10−4 · noise(t). A Mod-
elica model31 has been created and run with Open-
Modelica to create the .csv reference result.32 This
model uses Modelica.Blocks.Sources.Sine and
Modelica.Blocks.Noise.UniformNoise. The
Modelica library model to be tested is the original
Modelica.Blocks.Sources.Sine itself (without
the noise).

The test has the folder structure

examples
test_user_defined_metrics

__init__.py
test_user_defined_metrics.py
references

SineNoisy_res.csv

The __init__.py turns the folder
test_user_defined_metrics into a
Python package for test discovery. That is, if
python3 -m unittest would be called from
the parent directory examples, all unittest test
definitions in test_user_defined_metrics
would be executed. The entire test definition in shown in
Listing 5.1.

5.2 Test automation
The test is automated “for free” because unittest fea-
tures automated test execution and test discovery. The out-
put is shown in Listing 5.2.

5.3 Automated test execution
Modern continuous integration toolchains like GitHub
Actions or GitLab CI/CD allow the automated ex-

30https://github.com/pstelzig/MoPyRegtest/
tree/master/examples/test_user_defined_metrics

31https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
SineNoisy.mo

32https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
references/SineNoisy_res.csv

ecution of tests triggered by certain events. With
GitHub Actions for instance, one can automate test
execution of Python code on push events to a
GitHub repository. In that case, the respective user-
defined job, say python-test.yml, in the reposi-
tory’s .github/workflows/ folder is executed. The
GitHub Actions documentation33 explains how.

In our case, the execution of a regression test definition
using MoPyRegtest, e.g. the one above, requires a suitable
Modelica simulation tool. There is the option to install
the OpenModelica compiler omc and the Modelica Stan-
dard Library as a step in the job definition, as well as the
other dependencies of MoPyRegtest. This however would
require significant computational resources and consume
valuable usage time for GitHub Actions. The same goes
for other continuous integration pipelines.

Another option is to execute the tests based on a
Docker34 image. Here, one could use the OpenMod-
elica docker image tagged v1.21.0-minimal from
dockerhub35 (or respective newer versions) with the pre-
installed omc. For instance, a GitHub Action that ex-
ecutes the same test definition as in Listing 5.1, but
runs it in a docker container based on the OpenModelica
v1.21.0-minimal image is shown in Listing 5.3.

In this fashion, one can easily implement test automa-
tion in an open source Modelica library development on
GitHub. All that is needed are test definitions in MoPy-
Regtest like in Listing 5.1 and a GitHub Action like in
Listing 5.3 that executes the test definitions. Either au-
tomatically, e.g. following push events, or manually trig-
gered. Both developers and users can then review the test
results in the repository’s Actions tab.

6 Conclusions
We have outlined why regression testing is important in
Modelica library development. Then we gave a rough
overview over how test and test automation is being used
with open source Modelica library development and iden-
tified some potential trends. We have also identified con-
crete tools used for regression testing in the open source
Modelica library community. We then formulated the ra-
tionale why a continuous integration-friendly testing solu-
tion like MoPyRegtest could be of value for the commu-
nity and described its design and functionality. We high-
lighted in detail how we implemented the possibility for
users to define their own comparison metrics for regres-
sion tests. Then we presented a showcase that is included
in MoPyRegtest.

MoPyRegtest is work in progress and still under devel-
opment. It has not been investigated yet how it could inte-
grate with Modelica simulation software other than Open-

33https://docs.github.com/en/
actions/automating-builds-and-tests/
building-and-testing-python

34https://www.docker.com/
35https://hub.docker.com/r/openmodelica/

openmodelica/tags
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Listing 5.1. Showcase test_user_defined_metrics.py

# Prepar ing the dependenc i e s ##################################################
import unittest
import pathlib
import mopyregtest
import functools

# Def ine the t e s t #############################################################
# Example here f o r a Ubuntu env i ronment with OpenModelica

class TestUserDefinedMetrics(unittest.TestCase):

# Test ing use r d e f i n ed met r i c s on a Model ica s imu l a t i o n r e s u l t a g a i n s t a no i s y
r e f e r e n c e r e s u l t

def test_Sine(self):
tester = mopyregtest.RegressionTest(

package_folder=pathlib.Path.home() / \
".openmodelica/libraries/Modelica 4.0.0+maint.om/",

model_in_package="Modelica.Blocks.Sources.Sine",
result_folder=pathlib.Path(__file__).absolute().parent / \

"Modelica.Blocks.Sources.Sine",
modelica_version="4.0.0",
dependencies=None)

# Comparing r e s u l t s
tester.compare_result(

reference_result=str(pathlib.Path(__file__).absolute().parent / \
"references/SineNoisy_res.csv"),

metric=functools.partial(mopyregtest.metrics.Lp_dist, p=2),
validated_cols=["y"], tol=2e-3, fill_in_method="interpolate")

return

if __name__ == ’__main__’:
unittest.main()

Listing 5.2. Output of test_user_defined_metrics.py

$ python3 -m unittest

Testing model Modelica.Blocks.Sources.Sine
Simulating model Modelica.Blocks.Sources.Sine using the simulation tools: omc
Using simulation tool omc
Comparing simulation result /home/user/mopyregtest/examples/test_user_defined_metrics/

Modelica.Blocks.Sources.Sine/Modelica.Blocks.Sources.Sine_res.csv and reference /home/
user/mopyregtest/examples/test_user_defined_metrics/references/SineNoisy_res.csv

Comparing column "y"
.
----------------------------------------------------------------------
Ran 1 test in 2.679s

OK
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Listing 5.3. GitHub Action to execute test_user_defined_metrics.py as part of MoPyRegtest’s GitHub repo

name : Example job for Modelica library regression testing
on: [workflow_dispatch]
jobs:

examples-test:
runs-on: ubuntu-latest
container: openmodelica/openmodelica:v1.21.0-minimal
steps:

- name: Install dependencies
run: |

apt-get -qq update
apt-get -qq --no-install-recommends install python3 python3-pip git
pip install numpy pandas

- name: Install Modelica STL 4.0.0
run: |

echo "installPackage(Modelica, \"4.0.0+maint.om\", exactMatch=true);" >
installModelicaStl.mos && omc installModelicaStl.mos

- name: Install MoPyRegtest with tag v0.2.1
run: |

git clone https://github.com/pstelzig/MoPyRegtest.git mopyregtest
cd mopyregtest
git checkout v0.2.1
pip3 install --user .

- name: Run examples
run: |

cd mopyregtest/examples/test_user_defined_metrics
python3 test_user_defined_metrics.py

Modelica. Also, it has no inherent reporting functionality
except what is provided by Python’s unittest. Further-
more, reference results need to be given as .csv files,
whereas in the Modelica community result files are usu-
ally .mat, making reference result files bigger than they
need to be. The timestamp unification has proven reliable
in our use so far, but other interpolation techniques, as out-
lined in the respective remark in section 4, could perform
better in certain scenarios. Multiple tests within a single
test class are executed sequentially at the moment, despite
being independent. Execution time could be saved by run-
ning tests in parallel. Finally, we have shown the feasibil-
ity of integrating MoPyRegtest with popular continuous
integration toolchains like GitHub Actions.
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Abstract 

Cable-pulley systems consist of several segments of 

cables, winches, and pulleys, which are used in a wide 

range of engineering applications such as lifting 

equipment and pulley systems. However, its dynamics 

simulation has been a tough issue in the Modelica 

community. The absolute nodal coordinate formulation 

(ANCF) uses global displacements and slopes at nodes to 

describe the geometry of the deformed body, which allows 

the derivation of constant mass matrices and zero-valued 

quadratic velocity dependent centrifugal and Coriolis 

forces. In the last two decades this method shown its 

powerful capacity to model flexible multi-body systems. 

This paper presents an object-oriented approach to model 

cable-pulley system, where flexible cables are discretized 

using ANCF cable elements. It is compatible with the 

Modelica Multibody Library by using a unified frame 

interface and enables coupled analysis of cables and rigid 

bodies. The paper provides a rich set of application 

examples showing the ease and efficiency of the 

Modelica-based component drag-and-drop modelling way 

for modelling cable-pulley systems. 

Keywords: cable, pulley, absolute nodal coordinate 

formulation, Modelica, MWORKS 

1 Introduction 

Flexible multi-body systems are defined as complex 

dynamic systems consisting of rigid and flexible bodies 

connected in different ways (Shabana 1997). It focuses on 

the coupling between the body’s deformation and its 

large-scale spatial motion. Many approaches have been 

proposed based on different engineering background, such 

as the floating frame of reference approach (Likins 1967), 

the incremental finite element method (Shabana 1996) and 

the absolute nodal coordinate formulation (Shabana 1996) 

which will be used in this paper. Small deformations 

superimposed on large rigid body displacements have led 

to the well-known floating frame of reference formulation. 

It is used by various commercial dynamics analysis 

software but is usually considered unsuitable when the 

object undergoes large deformations and rotational 

motions. The absolute nodal coordinates method can solve 

these challenging problems, especially when the object 

under study is a flexible object floating in space, such as a 

thin film of a solar sail or a tethered net used to capture 

space debris (Liu 2013; Shan 2020). 

Drive systems consisting of cables and pulleys are widely 

used in lifting equipment. The dynamics modelling of 

cables has been extensively investigated in recent years. 

The simplest way is reduced to linear springs with length-

dependent stiffnesses, neglecting the cable weight and 

inertia forces (Rouvinen 2005). Such massless cables are 

certainly excellent in simulation efficiency, but when 

lateral vibrations and bending deformations become 

critical, the method becomes inadequate. Accurate 

modelling of the cable dynamic requires the use of non-

linear finite element methods. Absolute nodal coordinate 

formulation has been used to great effect in modelling the 

dynamics of cables (Berzeri 2000). 

Another area of interest is the simulation of the contact 

behavior of cables and pulleys. Modelling of contact 

forces is not always necessary, for example in (Aufaure 

1993) Aufaure proposes a cable pulley element based on 

the assumption of complete elasticity, where the 

supporting pulley can slide frictionlessly along the cable. 

It brings the benefit of computational efficiency but does 

not reflect the actual situation as well. The most common 

way of establishing the contact force between the cable 

and the pulley is to use the penalty method. It derives from 

the simplest phenomenon that no penetration occurs 

between objects in contact (Lugrís 2011). In the penalty 

method the contact force is related to the penetration depth. 

Different contact models are proposed, for example 

normal contact forces can be modeled as the spring 

damping model, the Hertz’s model and the non-linear 

damping model, and tangential friction forces can be 

modelled as the Coulomb friction model, the Hollars 

model (Botta 2017) and the bristle contact model. An 

alternative approach to modelling the cable pulley contact 

is to use the unilateral constraints and linear 

complementarity problem approach for numerical 

treatment (Pfeiffer 1996). Using this method, the normal 

and tangential contact forces are related to the unilateral 

constraint as Lagrange multipliers. 

Modelling flexible bodies with the Modelica language is 

not novel and related work can be found in (Ferretti 2005; 

Heckmann 2006). In previous work the flexible bodies 

modelling has generally fallen into two categories. The 
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first is based on the finite element method (FEM) using 

the native Modelica language to discretize the flexible 

body. Considering the complexity of meshing, this 

approach can only deal with simple geometries such as 

beams and plates. The second method is based on the 

floating coordinate method, which models the flexible 

body as a superposition of several eigenmodes. It relies on 

the modal files calculated in advance by structural 

analysis software and can model flexible bodies of 

arbitrary geometry. Therefore, it has a relatively wide 

range of applications. It's worth noting that we can only 

find two commercial cable pulley libraries online. One is 

released by DLR, and another is created by MapleSim. 

The theory behind them seems inaccessible since no 

publications for these libraries can be found. The 

innovation of this paper is to propose an object-oriented 

approach to model flexible cables, where the cable can 

undergo large deformations and rotational motions. The 

compatibility of flexible cables with the Modelica 

Multibody Library is achieved with a unified frame 

interface. 

The paper is organized as follows. In section 2 supporting 

theories is presented. Firstly, the dynamic equations of 

ANCF cable elements are presented in subsection 2.1, 

followed by an explanation in subsection 2.2 of how the 

cable component is compatible with the Modelica 

Multibody Library by a unified frame interface. In 

subsection 2.3 the penalty method is given for modelling 

cable-pulley contact. In subsection 2.4 the constraint 

equations for sliding joints are given. Implementation 

details with the Modelica language are given in section 3. 

Extensive cases are presented in section 4. Finally in 

section 5 the main research results are summarized and 

future related works are looked at. 

2 Fundamentals 

 

Figure 1. Diagram of cable-pulley composition. 

The pulley-cable model is constructed in three main steps, 

as shown in Figure 1: 

1. Division and assembly of cable elements. 

2. Connection of flexible cables to rigid bodies by 

applying positional constraints through the Lagrange 

multiplier method. 

3. Construction contact between cables and pulleys by 

means of the penalty method. 

2.1 ANCF Cable Element 

In the absolute nodal coordinate formulation, the cable 

element is defined in the inertial coordinate system and 

the nodal coordinates are described using the global 

displacements and slopes, which can be expressed as 
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Figure 2. ANCF cable element. 

The global position vector r  of an arbitrary point on the 

neutral axis of a cable element, as shown in Figure 2, can 

be obtained by interpolating the nodal coordinate vector 

with the following expression: 
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where S  is the shape function matrix, which can be 

written as 
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where the functions is  are defined as 

2 3

1 1 3 2s  = − + , 
2 3

2 2s   = − + , 
2 3

3 3 2s  = − , 

3 2

4s  = −  

and /x l = . Applying the principle of virtual work gives 

the dynamic equations of the cable element in matrix form 

as 

k ee + =M Q Q  (4) 

 

where M  is the mass matrix, kQ  is the elastic force vector, 

and eQ  is the external force vector, respectively, with the 

following expressions: 
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where 
3

xg = r , x xxf = r r .Where eQ  can be divided 

into point and distributed forces, with the following 

expressions: 

( ) ( )
0

e cl dl

l
T p T d

px x dx

= +

= 

Q Q Q

S F + S F
 (7) 

 

where px  is the point of action of the concentrated force, 

pF is the concentrated force vector and ( )d xF  is the 

position-dependent distributed force vector. 

2.2 Rigid-Flexible Modeling 

Using a single cable component does not really solve the 

problems encountered in engineering, as most driven 

systems consist of rigid and flexible bodies. ANCF 

elements can be combined with rigid or flexible bodies 

modelled in natural coordinates to couple the remaining 

components of the system. Here we assume that the cable 

is sufficiently flexible that it cannot transmit moments at 

the point where the cable is connected to the rigid body. 

This assumption is reasonable, especially when 

considering that the bending stiffness of the cable is 

relatively small. We use the Lagrange multiplier method 

to impose only position constraints at the connection of 

the cable to other bodies, modifying Equation (4) as 

follows. 

+ T

e k d= − −Mq  
q

Q Q Q  (8) 

( ) = 0 q  (9) 

 

where q  is a generalized coordinate vector containing 

the nodal coordinates of the flexible body and the natural 

coordinates of the remaining bodies,   is an algebraic 

constraint vector, q its Jacobian matrix and   is the 

Lagrange multipliers vector. Considering the real-world 

energy dissipation, a damping term dQ  is added to the 

right-hand side of the equation, which can be described by 

the Rayleigh damping model as follows: 

( )d  = +Q M K q  (10) 

 

where   and   are two factors. 

2.3 Pulley and Winch Modeling 

Pulleys and winches are essential components of cable 

drive systems. Simulating the interaction behavior 

between the cable and the pulley or winch can be easily 

achieved using the penalty method in contact dynamics. 

The normal contact force between the pulley and the cable 

is modelled as a non-linear damping model and is 

described by the following equation: 

n n

nf k d  = +  (11) 

 

where k  is the contact stiffness, d  is the contact 

damping,   is the penetration depth between two objects 

in contact, and n  is a factor related to the shape and the 

material of the objects in contact. 

The tangential friction between the pulley and the cable is 

described using the Hollars model with the following 

equation: 

( )

0

2

0

2
min ,1

1

s kt

t k n

t
t

t

v
f f

v v

v

 


  
  

  −   
= +   

     +    
   

 (12) 

 

where tv  is the relative velocity of the two colliding 

objects, 
0t

v  is the velocity threshold for the change from 

static to kinetic friction, nf  is the normal contact force, 

and s  and k  is the coefficient of static and kinetic 

friction, respectively. 

There is no special treatment of contact detection in this 

paper. An exhaustive method is used where points on the 

cable are simply selected at equal intervals. The number 
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of contact detection points should be chosen according to 

the practical situation. The material points on the cable are 

described in the inertial coordinate system, so they need 

to be converted to the body coordinate system of the 

pulley first, and then determine whether contact occurs 

according to the distance from the detection point to the 

pulley's axis of rotation. 

2.4 Sliding Joint Modeling 

The sliding joint used in the absolute nodal coordinate 

formulation was proposed in (Sugiyama 2003) by 

Sugiyama et al. It solves the problem of contact detection 

which cannot be avoided when using the penalty method. 

In engineering, sliding cables for river crossings and tail 

hooks on naval aircraft, for example, can be simplified as 

sliding joints. A frictionless sliding joint can be described 

by following constraint equations: 

( ) ( )

( )
1

i i j j

j j

jx

 −
 

= = 
 

  

0

r x r x

C r x


 (13) 

 

where, j
x  denotes a point on the cable, i

x denotes a point 

on a rigid or flexible body connected to the cable and   

is the Lagrange multipliers of dimension 3. Derivation of 

the first three constraint equations with respect to time 

yield constraint equations of index 2, which can be written 

as 

( ) ( ) ( )

( )
1

1

i i j j j j

j

j j

j

s
t t x

x

   
 − −

   
= = 

 
  

0

r x r x r x

C
r x



 (14) 

 

where s  is the arc length coordinate of the sliding point on 

the cable, which is time varying. 

3 Modelica Implementation 

In this section the element division and assembly using the 

Modelica language will be introduced. Some of the 

programming details considered important are explained 

below. Firstly, since the ANCF element mass matrix is a 

constant matrix, it only needs to be calculated once at 

program runtime. In this paper it is achieved by adding 

annotation (Evaluate = true) to the definition of 

the mass matrix. Secondly, a Gauss–Legendre quadrature 

is used to obtain both matrixes and force vectors. It’s a 

standard technique in the finite element method. Five and 

three Gaussian integration points per element are used for 

axial force and bending force calculations, respectively. 
Benefiting from the excellent symbolic processing 

capabilities of the Modelica language, function is used to 

calculate the elastic force vector, using nodal 

displacements as input variables. 

 

Figure 3. Cable component icon. 

The icon for a cable component is shown in Figure 3, 

where the ends of cable are represented using the frame 

interfaces in the Modelica Multibody Library. The ends’ 

positions should equal to the frames’ positions. It can be 

achieved by imposing position constraints using the 

Lagrange multiplier method. The codes are as follows: 

Listing 1. Code example using Lagrange multipliers 

v = der(e); 

a = der(v); 

M * a + transpose(Phi_q) * lamda = Qg - Qe 

- Qd; 

e[1] = frame_a.r_0[1]; 

e[2] = frame_a.r_0[2]; 

e[3] = frame_a.r_0[3]; 

e[n - 5] = frame_b.r_0[1]; 

e[n - 4] = frame_b.r_0[2]; 

e[n - 3] = frame_b.r_0[3]; 

frame_a.t = {0, 0, 0}; 

frame_b.t = {0, 0, 0}; 

frame_a.f = Modelica.Mechanics. 

MultiBody.Frames.resolve2(frame_a.R, 

{-lamda[1], -lamda[2], -lamda[3]}); 

frame_b.f = Modelica.Mechanics. 

MultiBody.Frames.resolve2(frame_b.R, 

{-lamda[4], -lamda[5], -lamda[6]}); 

where e is the generalized nodal coordinates vector, and 

n is the number of degrees of freedom. Where frame_a 

and frame_b are the frame interfaces in Figure 3. In order 

to balance the number of equations, the multipliers vector 

lamda is assigned to the flow variable force f in frame_a 

and frame_b. The mechanism behind this is determined 

by the physical meaning of the Lagrange multipliers. 

The following two examples are used to verify the 

correctness of the cable component. Example 1 is set up 

as a flexible cable in a gravity-free environment with a 

fixed left end and a concentrated moment applied at the 

right end. The magnitude of the moment is set to EI L , 

where 1 = , E  is the modulus of elasticity, I  is the 

moment of inertia of the cross section and L  is the length 

of the cable. According to (Gerstmayr 2008), the cable is 

finally stabilized into a semicircle, as shown in Figure 4, 

under the action of this moment. 

Object-Oriented Modelling of Flexible Cables based on Absolute Nodal Coordinate Formulation

56 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20453



 

Figure 4. Example 1: Flexible cable bent into a semicircle. 

Example 2 is set up as a cable with one end hinged and 

one end free, the initial configuration is along the positive 

X-axis, the initial angular velocity is along the positive Y-

axis, the magnitude is 4 rad/s, and the direction of gravity 

is set to -Y. The geometric and material properties of the 

cable are as follows: The length of the cable is 1 m, the 

cross-sectional area is 
6 210 f−  m^2, the modulus of 

elasticity is 
9 410 / f  Pa and the density is 

28000 / f  

kg/m^3, where 5f = . The calculated results are compared 

with (Gerstmayr 2006) as shown in Figure 6. It can be 

found that the cable component built on MWORKS agrees 

very well with the results of reference (Gerstmayr 2006). 

 

Figure 5. Example 2: 3D flexible cable pendulum. 

 

Figure 6. Example 2: Y-displacement of the mid-point of the 

three-dimensional pendulum as function of time. 

 

Figure 7. CPU time for simulation as function of degrees of 

freedom. 

To study the simulation performance for the presented 

model, we recorded the CPU time for simulation for 

Example 2 with increasing degrees of freedom. The time 

integration algorithm set to Dassl and the simulation stop 

time set to 2 seconds. As it can be found in Figure 7 that 

the computational cost shows a quadratic polynomial 

relationship with the number of degrees of freedom. For 

this case four cable elements are enough to get a 

converged result. 

  

Figure 8. Pulley and winch component icons. 

 
Figure 9. Diagram view of a simple lifting device. 

The icons of pulley and winch component are shown in 

Figure 8, where the frame interface of pulley component 

and the left frame of winch component is used to connect 

the mounting position. The lower frame of winch 

component is used to connect the cable, as shown in 

Figure 9, where a simple lifting device is constructed. The 
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initial configuration of cable is horizontal, as shown in 

Figure 10. Figure 12 gives the ball’s position and forces 

exerted on it. After a few swings from side to side, the ball 

ends up in a straight up and down position. 

 

Figure 10. Initial configuration. 

 

Figure 11. Final configuration at 30 second. 

 
Figure 12. Force and displacement of body as function of 

time. 

The icon of the sliding joint is shown in Figure 13, where 

the left and right frame represent two ends of the cable, 

and the lower frame is used to connect the object 

suspended. An example of zip line is constructed as shown 

in Figure 14, simulating a rigid body with a horizontal 

initial attitude sliding on a cable under the effect of gravity. 

The initial and final configuration of objects are given in 

Figure 15 and Figure 16 respectively. It can be found in 

Figure 17 that the suspension is finally stabilized near the 

midpoint of the cable after several swings. 

 

Figure 13. Sliding joint component icon. 

 

Figure 14. Diagram view of a zip line model. 

 

Figure 15. Initial configuration (left: front view, right: top 

view). 

 

Figure 16. Final configuration at 20 second (left: front 

view, right: top view). 

 

Figure 17. Body’s position as function of time. 

4 Examples for Application 

In this section, several engineering applications have been 

built in the MWORKS.Sysplorer simulation environment. 

The three most representative cases have been selected for 

presentation. 

4.1 Case 1: Belt Drives 

The belt drive model, as shown in Figure 18, consists of 

an active pulley, a passive pulley, and a conveyor belt. 
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The active pulley is driven by a rotational speed signal and 

the passive pulley is connected to a prismatic joint, which 

is driven by a position signal, simulating the tensioning 

process of the conveyor belt. The material and 

geometrical properties of the belt are as follows: modulus 

of elasticity 5.8e6 Pa, density 3500 kg/m^3, belt thickness 

0.006 m, width 0.007 m, initial length 0.724 m. In this 

case the belt is discretized into 15 cable elements and the 

contact detection points are selected at 90 points at equal 

intervals. Figure 19 shows the axial stresses in the 

conveyor belt during tensioning and operation. Figure 20 

gives the reaction forces applied to the active and passive 

pulleys, which are symmetrical. 

 
Figure 18. Diagram view of belt drive model. 

 

 
Figure 19. Stress clouds at different seconds. 

 

Figure 20. Reaction forces on pulleys. 

4.2 Case 2: Cable Nets 

The cable net model is assembled from several single 

cables, with position constraints imposed by Lagrange 

multipliers at the intersection of the cables. Four corner 

points of the net are exposed through the frame interface, 

which can be connected to parts, mechanical joints, and 

force elements. The dynamic behavior of nets in different 

scenarios can be easily simulated by changing the 

boundary conditions at the four corner points, as shown in 

Figure 21. The net configurations at different times are 

shown in Figure 22 and Figure 23. 

  
(a) (b) 

Figure 21. Diagram view of net models in different 

scenarios: (a) four corners fixed, (b) four corners 

moving along the diagonal. 

 

 

Figure 22. Net with four corners fixed. 

 

 

Figure 23. Net with four corners moving along the 

diagonal. 
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4.3 Case 3: Gantry Crane 

Gantry crane is a kind of port lifting equipment, mainly 

used for outdoor loading and unloading operations of 

cargo yards. The simple gantry crane model built in this 

paper, as shown in Figure 24, mainly consists of two 

cables, two winches, a container, and a gantry crane rack. 

It simulates the movement of a container under the 

combined action of the winches and the rack. Figure 25 

illustrates the operating process of the gantry crane. 

Figure 26 gives the position of the container during 

loading and unloading, from the initial position {7.5, 12, 

0} to the final position {-6.5, 12, 10}. 

 
Figure 24. Diagram view of gantry crane model. 

 

  

  

  

Figure 25. Gantry crane operating processes at different 

times. 

 

Figure 26. Cargo position as function of time. 

5 Conclusion 

The simulation of cable drive system covers the area of 

rigid body dynamics, flexible body dynamics, contact 

mechanics, etc. In this paper, the three-dimensional 

flexible cable model is established based on the absolute 

nodal coordinate formulation. Using the Modelica 

Multibody Library, the rigid-flexible coupling analysis is 

accomplished. Utilizing the contact force models, the 

contact behavior between cables and pulleys are realized. 

What have not yet been covered in this paper are the self-

contact of cables, efficient contact detection algorithms, 

advanced cable elements (e.g., ALE-ANCF elements), etc. 

It is noted that, MWORKS.Sysplorer provides an 

extensive and in-depth platform for modelling cable drive 

systems. 

The content covered in this paper is a prototype of a 

commercial cable pulley library. There are still some areas 

of improvement. For example, we did not establish the 

contact relationship between cables and pulleys at the 

graphical level. It concerns the ease of use of the library. 

Another point is that the initial configuration of the cable 

can only be specified as a straight segment at this moment. 

In addition, when the winch is involved in too many turns 

of the cable, the calculation cost brought about by contact 

forces should not be underestimated. More advanced 

technologies such as ALE (Arbitrary-Lagrange–Euler) 

elements will be considered in the future. 
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Abstract 

To increase the efficiency of PEM electrolysis, simulation 

models are required that accurately describe the system's 

electrochemical and thermal behavior in a 

computationally efficient manner and are thus suitable for 

developing control strategies. Therefore, a quasi-2D PEM 

electrolyzer model is presented in this paper, which is a 

compromise between the previously developed models 

regarding their model complexity. The electrochemical 

behavior is described with equations commonly used in 

the literature and the thermal behavior with correlations 

for gas-liquid heat transfer. Preliminary validation 

indicates that the model can describe the electrochemical 

behavior and thermal dynamics of a PEM electrolysis 

stack with good accuracy. 

Keywords: PEM electrolysis, dynamic modeling, quasi-

2D, gas-liquid heat transfer 

1 Introduction 

Hydrogen will play a decisive role in the decarbonization 

of future energy systems. Consequently, the number of 

electrolyzers worldwide will have to increase significantly 

in the future to be able to produce the required quantities 

with low emissions. According to the National Hydrogen 

Strategy of the German Government, a hydrogen demand 

of approx. 90 to 110 TWh a-1 is expected by the year 2030. 

Generation plants with a total installed capacity of 5 GW 

are planned to meet this demand (BMWK 2020). The 

European Commission (2020) even expects a total 

installed capacity of 40 GW in the EU. 

Proton exchange membrane (PEM) electrolysis is of 

particular importance here because of its suitability for 

coupling with volatile sources of electrical energy due to 

its rapid start-up and shutdown behavior and its partial and 

overload capability. But according to the current state of 

technology, only stack efficiencies between 56 and 74 % 

based on the lower heating value of hydrogen are achieved 

(Tjarks 2017). Approximately one-third of the electrical 

energy supplied is thus converted into heat. This heat is 

currently mostly dissipated directly to the environment via 

heat exchangers. The overall efficiency and cost-

effectiveness of PEM electrolysis could be significantly 

increased by using this waste heat. However, to exploit 

this unused potential, models are needed that accurately 

describe the heat transfer processes in the electrolyzer. In 

particular, for the development of control strategies, 

models are needed that can realistically represent the 

thermal dynamics of electrolysis stacks.  

While their electrochemical behavior has been 

extensively studied, their dynamic thermal behavior has 

been mostly simplified. A large number of models use the 

so-called lumped parameter approach, where incoming 

and outgoing heat fluxes are calculated based on the 

assumption that the electrolysis stack has a uniform 

temperature at each time step (Crespi et al. 2023; 

Espinosa-López et al. 2018; García-Valverde, Espinosa 

and Urbina 2012; Sood et al. 2020). This type of model 

has already been implemented in Modelica by Webster 

and Bode (2019). They are computationally efficient, but 

cannot represent the heat transfer within the stack and 

require intensive experimental studies for 

parameterization.  On the other hand, there are multiple 

models describing and investigating the heat transfer in 

the electrolysis cell using complex 3D finite volume 

approaches (Ma et al. 2021; Toghyani, Afshari and 

Baniasadi 2019; Zhang and Xing 2020). Although these 

models represent heat transfer very accurately, they are 

not suitable for dynamic simulation over longer periods 

due to their complexity. 

In the field of fuel cell modeling, some authors 

discretize the cell components in only one dimension and 

then couple the discretized cell components with each 

other. These approaches are called 1D+1D or quasi-2D 

models (Gong et al. 2022; Tang et al. 2017). Some similar 

approaches have also been developed in the field of PEM 

electrolysis but without heat transfer description in the 

flow channels (Kim, Park and Lee 2013; Lin and Zausch 

2022). Therefore, a quasi-2D model of a PEM electrolyzer 

is presented in this work, which can describe the heat 

transfer processes in the individual cells and thus the 

thermal dynamics of the entire stack. 
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2 Model Description 

2.1 General Structure 

Figure 1 shows the basic structure of a PEM electrolysis 

cell. In an electrolysis stack, several cells are connected in 

series, with the bipolar plate of the cathode serving as the 

bipolar plate of the next cell's anode. 

 

 
Figure 1. Basic structure of a PEM electrolysis cell. 

 

In the present model, a parallel flow field design is 

assumed and the cells are discretized in flow direction 

only. Temperatures, flow velocities, etc. perpendicular to 

the channel orientation are thus assumed to be uniform in 

the respective volumes. Furthermore, the porous transport 

and catalytic layers as well as the PEM are combined to a 

uniform thermal mass and together represent the 

Membrane Electrode Assembly (MEA), where the 

conversion of water to hydrogen and oxygen takes place.  

 
Figure 2. Structure of a single cell. 

Figure 2 shows the discretized electrolysis cell’s structure 

in the Modelica development environment. The TILSuite 

package by TLK Thermo GmbH serves as the model basis 

for the fluid data calculation and the creation of boundary 

conditions. To be precise, the Connector, Boundary, 

Splitter, Joiner, and TILMedia substance data models 

were used.   

The anode and cathode channel volumes each have a 

gas and a water inlet and outlet at the top and bottom, 

allowing the individual volumes to be interconnected. 

Except for the anode’s water inlet, all inlets of the first cell 

volumes are provided with boundaries whose mass flow 

is equal to zero, since process water is usually the only 

incoming mass flow. The MEA is connected to the flow 

channel volumes via three connectors to describe the gas, 

water, and heat exchange between them. The heat ports on 

the left and right connect the bipolar plate and cathode 

flow channel volumes to the neighboring cells. The heat 

ports at the top and bottom connect the bipolar plate to the 

ambient. 

 
Figure 3. Structure of the stack. 

 

Based on the single-cell model, the stack is now 

discretized in cell direction. For this purpose, the left and 

right heat ports of the individual cells are connected. The 

flow inputs and outputs are connected using so-called 

joiners and splitters (Figure 3). Joiners add the individual 

cells' mass flows and form the arithmetic average of their 

temperatures. Splitters distribute the incoming mass flow 

evenly over the cells. The heat ports of the first and last 

cells are connected to the end plates. These have a 

significantly larger volume than the bipolar plates and are 

therefore considered separately. All remaining heat ports 

are connected to heat boundaries representing the ambient 

 roton Exchan e  e  rane   E  

Catalytic Layer Cathode

Catalytic Layer Anode

Bipolar Plate Anode

Bipolar Plate Cathode

Membrane 

Electrode 

Assembly 

(MEA)
Porous

Transport 

Layer 

Cathode

Porous

Transport 

Layer 

Anode

 node 

 hannels

Cathode

Channels

Pressure, Enthalpy & 

Mass Flow Gas

Temperature & 

Heat Flow

Pressure, Enthalpy & 

Mass Flow Water

Bipolar 

Plate

Anode 

Channel
MEA

Cathode

Channel

H2,outH2O,outamb O2,out H2O,out

H2,inH2O,inamb O2,in H2O,in

H2O,MEA

H2O,MEA

Hydrogen 

Boundary

Oxygen 

Boundary

Water 

Boundary

Pressure, Enthalpy & 

Mass Flow Gas

Temperature & 

Heat Flow

Pressure, Enthalpy & 

Mass Flow Water

Hydrogen 
Out

Water 
Out

Oxygen 
Out

Water 
Out

Heat 
Boundary

Splitter

Joiner

End 
Plate

End 
Plate

Heat 
Boundary

Heat 
Boundary

Water 
In

Heat 
Boundary

Electrolysis 
Cells

Development of a novel quasi-2D PEM Electrolyzer Model in Modelica

64 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20463



temperature. Due to the asymmetric structure of the single 

cell, a discretization according to Figure 3 would model a 

redundant bipolar plate. This was solved in the original 

model by adding a single cell without a bipolar plate but 

is not shown in Figure 3 for reasons of clarity.  

The following sections explain how the individual 

components can be described mathematically. 

 

2.2 Bipolar / End Plate 

The bipolar and end plates of the electrolyzer are treated 

as lumped capacitance masses Cth with a uniform 

temperature T at every timestep. It is assumed that they 

are made of titanium. The temperature can be calculated 

through the following ordinary differential equation: 

𝐶𝑡ℎ

𝑑𝑇

𝑑𝑡
= ∑ �̇�𝐵𝑃,𝑗

𝑗

+ ∑ �̇�𝑎𝑚𝑏,𝑖

𝑖

 (1) 

 

The heat flows to the flow channels Q̇BP,j are calculated in 

the respective cells. Q̇amb,i describes the heat flows to the 

surrounding ambient. They can be defined as: 

�̇�𝑎𝑚𝑏 = 𝐴𝛼(𝑇𝑎𝑚𝑏 − 𝑇)  (2) 

 

For the heat transfer coefficients, values are taken from 

the work of Tjarks (2017). There, αbp = 2.5 W m-2 K-1 for 

the edges of the bipolar plates and αep = 3.6 W m-2 K-1 for 

the end plates were calculated, which is in good 

accordance with the values determined for alkaline 

electrolyzers by Diéguez et al. (2008). 

 

2.3 Anode / Cathode Flow Channel 

Because of the production of hydrogen and oxygen in the 

MEA, gas-liquid flow occurs in the flow channels. The 

following section describes the mass balance, energy 

balance, and the calculation of heat transfer in them. 

Pressure loss, on the other hand, is ignored and all fluids 

are assumed to be incompressible. Therefore, the 

momentum balance is not presented. 

In the anode flow channel, incoming process water gets 

mixed with oxygen from the MEA. In addition, water 

flows into the MEA due to its electrochemical conversion 

and electro-osmosis. In the cathode flow channel, water 

and hydrogen enter from the MEA. Therefore, the mass 

balances of the anode and the cathode flow channel 

volumes can be described with equations 3 and 4. 

In reality, hydrogen and oxygen cross the MEA as well 

due to diffusion and pressure differences. In this work, 

however, these mass flows are neglected in the calculation 

of flow conditions and heat transfer in the channels. They 

will be considered later when describing the gas flows into 

the flow channels, to be able to represent the effective 

hydrogen and oxygen production correctly. 

�̇�𝐻2𝑂,𝑖𝑛 + �̇�𝑂2,𝑖𝑛 + �̇�𝐻2𝑂,𝑜𝑢𝑡 + �̇�𝑂2,𝑜𝑢𝑡

+ �̇�𝐻2𝑂,𝑀𝐸𝐴 + �̇�𝑂2,𝑀𝐸𝐴 = 0 
(3) 

�̇�𝐻2𝑂,𝑖𝑛 + �̇�𝐻2,𝑖𝑛 + �̇�𝐻2𝑂,𝑜𝑢𝑡 + �̇�𝐻2,𝑜𝑢𝑡

+ �̇�𝐻2𝑂,𝑀𝐸𝐴 + �̇�𝐻2,𝑀𝐸𝐴 = 0 
(4) 

 

The steady-state energy balance can be formulated via 

equation 5 with the sum of enthalpy flows into and out of 

the flow channel and the heat flows to the MEA and 

bipolar plate. A dynamic energy balance was not 

introduced since the storage capacity of the flow channel 

volumes is assumed to be negligible. Furthermore, it is 

assumed that both fluids in the respective flow channels 

have the same temperature when leaving the channel 

volume (Tgas,out = TH2O,out). 

∑ �̇�𝑖𝑛,𝑖ℎ𝑖 + ∑ �̇�𝑜𝑢𝑡,𝑗ℎ𝑗

𝑗

+ �̇�𝐵𝑃 + �̇�𝑀𝐸𝐴 =

𝑖

0 (5) 

 

The heat flows Q̇MEA and Q̇BP can be described in analogy 

to equation 2. The fluid temperatures in the volumes Tfluid 

are defined as the arithmetic average between the inlet  

and outlet of the flow channel volume 

(Tfluid
 = 0.5Tfluid,in + 0.5Tfluid,out). The overall flow channel 

volume temperature Tfc again is defined as the arithmetic 

average between the gas and water temperature 

(Tfc
 = 0.5TH2O + 0.5Tgas).  

Because the flow channels are not in contact with the 

MEA and bipolar plate over the complete cell area Acell, 

the correction factor nA is introduced, which is assumed to 

be nA = 0.6 (Figure 4). Consequently, the contact area with 

the MEA becomes AMEA = Acell · nA. Since the flow 

channels are in contact with the bipolar plate on three 

sides, the contact area with the bipolar plate becomes 

Abp = 3Acell · nA if the flow channels are assumed to be 

quadratic. To reduce the model complexity, the heat 

transfer between the MEA and bipolar plate is neglected. 

The flow channels are assumed to have a thickness of 

wfc = 1 mm. 

 
Figure 4. Basic flow channel geometry. 

 

For the heat transfer coefficient calculation in the channel 

volumes, the general correlation for heat transfer in 

vertical channels with gas-liquid flow derived by Shah 

(2018) is used. There, αLS is first calculated as if the gas 

Bipolar Plate

Flow 

Channel

MEA

Abp

AMEA

wfc
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phase were not present. Then, the heat transfer coefficient 

of the gas-liquid mixture αTP is calculated using the 

velocity ratio between the pure gas and pure liquid 

phase ur. There are three different formulations for αTP 

depending on the pure liquid’s Reynolds nu  er RLS: 

For 15 < ReLS < 175: 

𝛼𝑇𝑃 = 𝛼𝐿𝑆(1 + 𝑢𝑟)0.25 (6) 

For ReLS ≤ 15: 

𝛼𝑇𝑃 = 0.75𝛼𝐿𝑆(1 + 𝑢𝑟)0.25 (7) 

For ReLS > 175:  

𝛼𝑇𝑃 = 𝛼𝐿𝑆

𝐸(414 + 89.4𝑢𝑟
0.49)

(365 + 𝑢𝑟
0.49)

 (8) 

 

Factor E is calculated using the Froude number of the pure 

liquid phase FrLS (equation 9). For FrLS > 10, it becomes 

E = 1. 

𝐸 = max(0.7𝐹𝑟𝐿𝑆
−0.36, 1.41𝐹𝑟𝐿𝑆

−0.15, 1) (9) 

 

The velocities in the flow channels are determined by their 

average single-phase volume flows and the total flow 

channel cross-sectional area. However, this velocity 

calculation is only valid if there is a parallel flow field 

design. Since the flow channels are assumed to be 

quadratic, the hydraulic diameter is dh = wfc.  

The heat transfer coefficient for the liquid phase is 

calculated by the correlation of Sieder and Tate (1936) for 

the laminar and by the correlation of Dittus and Boelter 

(1985) for the turbulent regime, where L is the total 

channel length, λLS is the thermal conductivity and PrLS is 

the Prandtl number of the pure liquid (equations 10 

and 11). Because the transition from laminar to turbulent 

occurs at significantly lower Reynolds numbers in gas-

liquid flow than in single-phase flow, the correlation for 

laminar flow applies only up to a Reynolds number of 

ReLS < 170. 

𝛼𝐿𝑆,𝑙𝑎𝑚 = 1.86 (𝑅𝑒𝐿𝑆𝑃𝑟LS (
𝑑ℎ

𝐿
))

1
3 𝜆𝐿𝑆

𝑑ℎ
 (10) 

𝛼𝐿𝑆,𝑡𝑢𝑟𝑏 = 0.023𝑅𝑒𝐿𝑆
0.8𝑃𝑟𝐿𝑆

0.4
𝜆𝐿𝑆

𝑑ℎ
  

(11) 

2.4 Membrane Electrode Assembly 

In the MEA, the conversion of water to hydrogen and 

oxygen takes place. The efficiency of this process depends 

on the cell voltage Vcell, which can be described as the sum 

of the open-circuit voltage Vocv, the activation overvoltage 

Vact, and the ohmic overvoltage Vohm (equation 12). The 

concentration overvoltage is neglected in this work 

because of its minimal effects at typical operating 

densities (Espinosa-López et al. 2018). 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑜𝑐𝑣 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚  (12) 

The open-circuit voltage describes the electromotive force 

that is required to start gas production (equation 13). It 

depends on the reversible cell voltage Vrev, the partial 

pressures of hydrogen, oxygen, and water vapor in 

the MEA (pH2,MEA, pO2,MEA, and pH2O), and its 

temperature TMEA. R = 8.3145 J mol-1 K-1 and 

F = 96 485 C mol-1 represent the universal gas constant 

and Faraday’s constant. The reversible cell voltage can be 

described as a function of MEA temperature using the 

standard temperature Tstd = 298.15 K and the reversible 

cell voltage at standard conditions Vstd = 1.23 V (equation 

14). 

𝑉𝑜𝑐𝑣 = 𝑉𝑟𝑒𝑣 +
𝑅𝑇𝑀𝐸𝐴

2𝐹
(ln (

𝑝𝐻2,𝑀𝐸𝐴𝑝𝑂2,𝑀𝐸𝐴
0.5

𝑝𝐻2𝑂
))  (13) 

𝑉𝑟𝑒𝑣 = 𝑉𝑠𝑡𝑑 − 0.0009(𝑇𝑀𝐸𝐴 − 𝑇𝑠𝑡𝑑) (14) 

 

To determine the partial pressures of hydrogen and 

oxygen in the MEA, their partial pressures in the flow 

channels pH2,cat and pO2,an must be quantified first. They 

can be calculated via Dalton's Law using the absolute 

pressures in the flow channels pan and pcat and the water 

vapor partial pressure (equations 15-17). The formulation 

for the water vapor partial pressure is taken from the work 

of Biaku et al. (2008) and calculated in standard 

atmospheres (atm). 

𝑝𝐻2,𝑐𝑎𝑡 = 𝑝𝑐𝑎𝑡 − 𝑝𝐻2𝑂  (15) 

𝑝𝑂2,𝑎𝑛 = 𝑝𝑎𝑛 − 𝑝𝐻2𝑂 (16) 

𝑝𝐻2𝑂 = 6.11 ⋅ 10−3 exp (17.27
𝑇𝑀𝐸𝐴 − 273.15

𝑇𝑀𝐸𝐴 − 34.85
)  (17) 

 

When the electrolyzer is in operation, a pressure 

difference is established, so the partial pressures of 

hydrogen and oxygen in the MEA are higher than in the 

flow channels. The factors Acat and Aan describe their 

linear dependency on the current density i (equations 18 

and 19). In the work of Schalenbach et al. (2013),            

they are specified as Acat = 2.4 bar cm2 A-1 and 

Aan= 2.8 bar cm2 A-1.  

𝑝𝐻2,𝑀𝐸𝐴 = 𝑝𝐻2,𝑐𝑎𝑡 + 𝐴𝑐𝑎𝑡𝑖  (18) 

𝑝𝑂2,𝑀𝐸𝐴 = 𝑝𝑂2,𝑎𝑛 + 𝐴𝑎𝑛𝑖 (19) 

 

The activation overvoltage describes the energy that is 

required to start the electrochemical reaction at the anode 

and cathode. According to Espinosa-López et al. (2018), 

it can be calculated only considering the activation 

overvoltage at the anode since it is significantly larger 

than at the cathode (equation 20). It depends on the charge 

transfer coefficient αan, and the exchange current density 

i0,an. The latter is temperature-dependent and can be 

defined using an Arrhenius expression, with i0,an,std being 

the exchange current density at standard conditions and 

Development of a novel quasi-2D PEM Electrolyzer Model in Modelica

66 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp20463



Eexc the activation energy required for the electron 

transport in the anode electrode (equation 21). 

𝑉𝑎𝑐𝑡 =
𝑅𝑇𝑀𝐸𝐴

2𝛼𝑎𝑛𝐹
asinh (

𝑖

2𝑖0,𝑎𝑛

) (20) 

𝑖0,𝑎𝑛 = 𝑖0,𝑎𝑛,𝑠𝑡𝑑 exp (−
𝐸𝑒𝑥𝑐

𝑅
(

1

𝑇𝑀𝐸𝐴
−

1

𝑇𝑠𝑡𝑑
)) (21) 

 

The ohmic overvoltage describes the voltage loss due to 

the electrolyzer components' resistance to electric flow. 

Followin  Oh ’s law, the overvolta e is defined as the 

product of current density and the sum of electrical 

resistances. According to Olivier, Bourasseau and 

Bouamama (2017), it is valid to consider the  e  rane’s 

electrical resistance Rmem as the only resistance since it is 

the dominant factor (equation 22). The  e  rane’s 

electrical resistance can be expressed in terms of the 

membrane thickness δmem and its protonic conductivity 

σmem. The membrane thickness is assumed to be 

δmem = 183 µm, which is equivalent to the thickness of a 

NafionTM 117 membrane (Chemours 2023). The protonic 

conductivity can be described with an Arrhenius 

expression as a function of membrane temperature, with 

σmem,std being the protonic conductivity at standard 

conditions and Epro the activation energy required for the 

electron transport in the membrane (equation 23).  

𝑉𝑜ℎ𝑚 = 𝑅𝑚𝑒𝑚𝑖 =
𝛿𝑚𝑒𝑚

𝜎𝑚𝑒𝑚
𝑖 (22) 

𝜎𝑚𝑒𝑚 = 𝜎𝑚𝑒𝑚,𝑠𝑡𝑑 ⋅ exp (−
𝐸𝑝𝑟𝑜

𝑅
(

1

𝑇𝑀𝐸𝐴
−

1

𝑇𝑠𝑡𝑑
)) (23) 

 

 To define the  E ’s mass balance, the produced and 

permeated fluid flows have to be determined. The 

produced oxygen and hydrogen flow ṁH2,prod and ṁO2,prod 

and the consumed water flow ṁH2O,cons can be calculated 

through the electrical current density and the respective 

molar masses M (equations 24-26). The Faraday 

efficiency is not introduced, since it depends mainly on 

the permeated mass flows, which are calculated 

separately.   

�̇�𝐻2,𝑝𝑟𝑜𝑑 =
𝑖𝐴𝑐𝑒𝑙𝑙

2𝐹
𝑀𝐻2 = �̇�𝐻2,𝑝𝑟𝑜𝑑𝑀𝐻2 (24) 

�̇�𝑂2,𝑝𝑟𝑜𝑑 =
𝑖𝐴𝑐𝑒𝑙𝑙

4𝐹
𝑀𝑂2  = �̇�𝑂2,𝑝𝑟𝑜𝑑𝑀𝑂2 (25) 

�̇�𝐻2𝑂,𝑐𝑜𝑛𝑠 =
𝑖𝐴𝑐𝑒𝑙𝑙

2𝐹
𝑀𝐻2𝑂 = �̇�𝐻2𝑂,𝑐𝑜𝑛𝑠𝑀𝐻2𝑂 (26) 

 

According to Fick’s law, the permeated oxygen and 

hydrogen flows can be described using the  e  rane’s 

permeability to hydro en and oxy en εH2 and εO2, its 

thickness, and the oxygen and hydrogen partial pressures 

in the MEA, assuming that the partial pressures of the 

permeated gases are small in comparison to the product 

gas partial pressures (equations 27 and 28). Schalenbach 

et al. (2013) determined εH2 = 4.65 · 10-11 mol cm-1 s-1 bar-1 

and εO2 = 2 · 10-11 mol cm-1 s-1 bar-1
 for the permeability of 

a NafionTM 117 membrane at TMEA = 80 °C. In reality, 

these values are temperature-dependent, however, they 

are assumed to be constant in this work since electrolyzers 

are operated to a large extent at membrane temperatures 

close to 80 °C. 

In addition, the water mass flow ṁH2O,ed is transported 

from the anode to the cathode through the MEA due to 

electro-osmosis (equation 29). The factor ned describes the 

percentage of proton transport through the membrane that 

involves water molecules. In the work of Santarelli, 

Torchio and Cochis (2006) it was given as ned = 0.27. 

�̇�𝐻2,𝑝𝑒𝑟 = 𝜀𝐻2

𝑝𝐻2,𝑀𝐸𝐴

𝛿𝑚𝑒𝑚
𝐴𝑐𝑒𝑙𝑙𝑀𝐻2 (27) 

�̇�𝑂2,𝑝𝑒𝑟 = 𝜀𝑂2

𝑝𝑂2,𝑀𝐸𝐴

𝛿𝑚𝑒𝑚
 𝐴𝑐𝑒𝑙𝑙𝑀𝑂2 (28) 

�̇�𝐻2𝑂,𝑒𝑑 = 𝑛𝑒𝑑

𝑖𝐴𝑐𝑒𝑙𝑙

𝐹
𝑀𝐻2𝑂 (29) 

 

It is assumed that the product gases exit the MEA 

completely saturated with water. According to Dalton's 

law, the water vapor mass flows ṁvap,an and ṁvap,cat  can be 

calculated via the mass flows of the product gases and the 

pressure ratio between the water vapor partial pressure 

and the pressure in the anode and cathode, leading to the 

following equations for the water vapor mass flows: 

𝑥𝐻2𝑂,𝑎𝑛 =
𝑝𝐻2𝑂

𝑝𝑎𝑛

 (30) 

𝑥𝐻2𝑂,𝑐𝑎𝑡 =
𝑝𝐻2𝑂

𝑝𝑐𝑎𝑡
 (31) 

�̇�𝑣𝑎𝑝,𝑎𝑛 = 𝑥𝐻2𝑂,𝑎𝑛

�̇�𝑂2,𝑝𝑟𝑜𝑑

1 − 𝑥𝐻2𝑂,𝑎𝑛
𝑀𝐻2𝑂

 (32) 

�̇�𝑣𝑎𝑝,𝑐𝑎𝑡 = 𝑥𝐻2𝑂,𝑐𝑎𝑡

�̇�𝐻2,𝑝𝑟𝑜𝑑

1 − 𝑥𝐻2𝑂,𝑐𝑎𝑡
𝑀𝐻2𝑂  (33) 

 

Consequently, the mass flows into and out of the MEA 

can be described by the following balance equations: 

�̇�𝐻2𝑂,𝑎𝑛 = �̇�𝐻2𝑂,𝑐𝑜𝑛𝑠 + �̇�𝐻2𝑂,𝑒𝑑 + �̇�𝑣𝑎𝑝,𝑡𝑜𝑡 (34) 

�̇�𝑂2,𝑎𝑛 = �̇�𝑂2,𝑝𝑟𝑜𝑑 − �̇�𝑂2,𝑝𝑒𝑟 (35) 

�̇�𝐻2𝑂,𝑐𝑎𝑡 = �̇�𝐻2𝑂,𝑒𝑑 (36) 

�̇�𝐻2,𝑐𝑎𝑡 = �̇�𝐻2,𝑝𝑟𝑜𝑑 − �̇�𝐻2,𝑝𝑒𝑟 (37) 

 

To determine the  E ’s temperature and thus the product 

gas temperatures and the heat flows into the flow 

channels, the heat flow rate generated by the electrolysis 

reaction due to overvoltages Q̇ely must be known. It 

depends on the current density and the difference between 

cell and thermoneutral voltage Vtn = 1.48 V. 
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�̇�𝑒𝑙𝑦 = (𝑉𝑐𝑒𝑙𝑙 − 𝑉𝑡𝑛) ⋅ 𝑖 ⋅ 𝐴𝑐𝑒𝑙𝑙 (38) 

 

In addition, a latent heat flow Q̇out,lat is removed from the 

MEA due to water saturation of the product gases. It can 

be determined by multiplying the vapor mass flows and 

the water enthalpy of vaporization ΔHvap
 = 40.65 kJ mol-1

. 

The MEA itself is described as a lumped capacitance 

mass analogous to the bipolar / end plates. It is assumed 

that the porous transport layers represent its only relevant 

thermal mass. The material is assumed to be titanium. The 

porous transport layers are filled with a certain percentage 

of water. The porosity value of Φ = 0.37 is taken from the 

work of Grigoriev et al. (2009) and the total thickness is 

assumed to be wMEA = 1 mm.  

The energy balance can be calculated from the sum of 

the incoming and outgoing enthalpy flows, the heat flow 

generated by the electrolysis reaction, the total heat flow 

into the flow channels Q̇MEA,tot, and the latent heat flow 

removed by the vapor mass flows (equation 39). It is 

assumed that the temperature of the outgoing mass flows 

is equal to the  E ’s operating temperature 

(Tfluid,out = TMEA). 

𝐶𝑡ℎ,𝑀𝐸𝐴

𝑑𝑇𝑀𝐸𝐴

𝑑𝑡
= ∑ �̇�𝑖𝑛,𝑖ℎ𝑖 − ∑ �̇�𝑜𝑢𝑡,𝑗ℎ𝑗

𝑗𝑖

+ �̇�𝑒𝑙𝑦 − �̇�𝑀𝐸𝐴,𝑡𝑜𝑡 − �̇�𝑜𝑢𝑡,𝑙𝑎𝑡 

(39) 

 

3 Model Validation 

To validate the simulation model, experimental data from 

a 1 kW PEM electrolysis test stand at the City University 

of Applied Sciences Bremen was used. Although the 

measured data are not ideal for validating the present 

model due to a lack of large load steps, they can be used 

to demonstrate the general functionality of the model. The 

electrolyzer’s technical specifications and simulation 

parameters required for the validation are listed in 

Table 1.  

Table 1. Technical specifications & simulation parameters. 

Parameter Value Unit 

Ambient Temp. 22 °C 

Max. Power 1.88 kW 

Max. Current 75 A 

Max. Voltage 25 V 

Number Cells 10 - 

Discretization Cell 5 - 

Cell Area 30 cm2 

Pressure Anode 1 bar 

Pressure Cathode 5 bar 

Water Mass Flow 105 l h-1 

L x W x H 174 x 107 x 110 mm 

Based on the stack dimensions it is assumed that the 

bipolar plates have a thickness of wbp = 3 mm and the end 

plates of wep = 60 mm. The test series used for the 

validation primarily served to determine the current-

voltage characteristic of the electrolyzer. For this purpose, 

current densities from i = 0,1 A cm-2 to i = 2.5 A cm-2 were 

set and the cell voltages and water temperatures were 

measured.  

Figure 5 shows the stack’s current-voltage 

characteristic at TMEA ≈ 65 °C and the pressures listed in 

Table 1. To derive the missing parameters αan, i0,an,std, Eexc, 

Epro, and σmem,std from this curve for the simulative 

mapping of the current-voltage relationship as described 

in section 2.4, the SciPy Python package was used. Its 

curve_fit function performs a non-linear least squares 

analysis to fit a set of m observations with a model that is 

non-linear in n unknown parameters. The fitted curve and 

the missing parameters are presented in Figure 5. They 

show a high agreement with the corresponding values 

from the literature review conducted by Espinosa-López 

et al. (2018). 

 
Figure 5. Current-voltage characteristic and fitted 

parameters. 

 

After finalizing the model parameterization with the 

calculated parameters, a simulation was performed using 

the input current profile with which the current-voltage 

characteristic was determined. The current profile and the 

resulting measured and simulated stack voltages are 

shown in Figure 6. It can be seen that in both simulation 

and measured data, the stack voltage drops and rises with 

decreasing and increasing current following the current-

voltage characteristic. The simulation result shows high 

accuracy with a mean absolute error of ΔVMAE = 0.088 V 

and a maximum deviation of ΔVmax = 0.40 V.  
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Figure 6. Input current and measured vs. simulated stack 

voltage. 

 

To verify the thermal modeling, the measured anode water 

outlet temperature was compared with the simulated one. 

For the simulation, the measured anode inlet temperature 

was used. The result is shown in Figure 7. It can be seen 

that the temperature difference between the inlet and 

outlet in both simulation and measured data drops and 

rises as the current decreases and increases due to varying 

stack heat production. The simulated and measured 

temperature curves agree to a large extent, the mean 

absolute error is ΔTMAE = 0.239 K, and the maximum 

deviation ΔTmax = 0.630 K. 

 
Figure 7. Anode inlet temperature and measured vs. simulated 

anode outlet temperature. 

 

4 Discussion 

Using the obtained experimental data, the general model 

functionality was successfully demonstrated. However, 

minor differences between simulation results and 

experimental data were observed during the simulation of 

the anode water mass flow's outlet temperature. As the 

specifications of the employed temperature sensors were 

unknown, the deviations could be within their 

measurement inaccuracies. Furthermore, the water mass 

flow was not measured during the experiment but 

determined afterward by metering. Therefore, an incorrect 

mass flow rate may have been used for the simulation. 

This is also indicated by the fact that the stack’s thermal 

energy balances calculated from the experimental data, 

once using mass flow and temperature difference and once 

using equation 38, show significant differences, which 

cannot be justified by additional heat losses or sources. 

Having said this, it is important to note that the 

presented model is a work in progress. During the 

development and parameterization, a multitude of 

assumptions and simplifications were made, e.g. the cell 

element dimensions, the parallel flow field design, and the 

steady-state energy balance in the flow channels. Also, as 

mentioned before, it should be highlighted that the 

experimental data utilized for validation was not ideal for 

assessing the dynamic thermal behavior, as it lacked 

significant load variations.  

Furthermore, the model incorporates calculations for 

substance transport through the membrane to realistically 

capture the quantities of produced oxygen and hydrogen. 

However, product mass flows, impurity gas fractions and 

cathode water mass flow were not measured during the 

experimental investigation. Therefore, it is necessary to 

conduct more comprehensive validation studies in the 

future, aiming to verify the accurate representation of all 

physical phenomena within the model. 

 

5 Conclusion 

In this paper, a quasi-2D model of a PEM electrolyzer was 

presented. The individual cells were discretized in flow 

direction of the flow channels, and the electrochemical 

and thermal behavior was described using analytical 

equations. Furthermore, the cells in the stack were 

thermally coupled to each other. 

To validate the developed model, experimental data 

from a 1 kW PEM electrolyzer stack at the City University 

of Applied Sciences Bremen were utilized. Comparison of 

the measured data with simulation results demonstrated 

high accuracy in capturing the electrochemical behavior 

of the stack. Smaller deviations between thermal 

simulation results and measurement data can most likely 

be justified by imprecise data acquisition. 

However, not all modeled physical phenomena could 

be validated using experimental data. In addition, a large 

number of assumptions were made regarding the design 

of the stack, which could not be substantiated. Further 

experimental investigation will be necessary in the future 

to comprehensively validate the model. 
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Abstract
System simulations are particularly useful when analyz-
ing complex systems. Simulations are often cheaper and
safer than physical tests of the actual system(s) of interest.
Models can additionally be created for systems that do
not exist to find solutions that are impossible to analyze
experimentally in, for example, early life-cycle stages.
Models used in system simulations require appropriate
input data to give results with the required fidelity and,
in the end, credibility. Integration is often challenging
as each system commonly constitutes contributions from
several engineering domains. Relying on relevant open
standards for information exchange is seen as a means of
mitigation. The results of the presented work encompass
a developed methodology that allows Computational
Fluid Dynamics (CFD) results to be integrated into a
simulator using system identification and open standards.
Reduced Order Models (ROMs) are generated based on
results from a CFD analysis. These ROMs are coupled to
lumped parameter system simulation models through the
mechanisms of the System Structure and Parameterization
(SSP) and Functional Mock-up Interface (FMI) standards.
In addition, several important factors to consider before
using the proposed methodology are presented. These
include the intended use of the ROMs, knowing the flow
inside the system, what resources are available, and any
potential licensing issues

Keywords: FMI, SSP, CATIA, CFD, System Identification,
Neural Networks, Co-simulation

1 Introduction
Complex systems often need to be analyzed using models
in order to exploit, understand, and manage emergent
behavior. The use of models and simulations instead of
physical experiments to analyze systems introduces a
number of different benefits in relation to these needs.
For instance, models can be created as cheaper and safer
alternatives to testing the corresponding physical systems.
It is also possible to create models, and multiple models
coupled in simulators, of systems that do not exist yet,

for which experimentation would be impossible (Ljung
and Glad 2003). Dynamic simulation models are models
which show how modeled system properties change over
time (Ellner and Guckenheimer 2011). Such models
are typically described mathematically by differential
and algebraic equations. Models in general are typically
developed to fulfill some specified purpose. This purpose
often requires information gathered from different engi-
neering disciplines. To achieve this exchange efficiently,
standardized means to communicate and share digital ar-
tifacts across modeling domain boundaries are necessary
(Hällqvist, Munjulury, et al. 2021).

At Saab Aeronautics, dynamic models are used during the
development of many aircraft systems and sub-systems,
both on their own in local desktop environments but also
in various co-simulation constellations at different lev-
els of abstraction (from hereon referred to as simulators)
(Hällqvist 2023; Steinkellner 2011; H. Andersson 2012).
The sharing of digital artifacts between different engineer-
ing domains (be it models, simulators, or simulation re-
sults) is often challenging partly as a consequence of a
need to use the best-suited software, deployed on the most
suitable target, for each engineering domain to address
different simulation purposes. The export and integra-
tion of models have typically, for example, the Gripen
E program (Saab Group 2023), been performed through
in-house developed standards. While these standards are
used successfully, maintaining them is difficult and a time-
consuming process. Native tool support for in-house stan-
dards, not adopted by the community as a whole, is chal-
lenging to motivate tool vendors as the tool vendors are
bound by their overall customer needs. This challenge
only becomes bigger if considering the long life cycles of
aircraft as life-cycle information needs to be aggregated,
with traceability links, and made available to the end user
and decision-makers. Failure to address any of these high-
lighted aspects may, in the end, lead to sub-optimal de-
signs founded on simulation results with in-accurate cred-
ibility (Hällqvist, Munjulury, et al. 2021).
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1.1 Contributions
The presented work provides a summary of a master the-
sis project conducted at SAAB Aeronautics & Linköping
University (Lindqvist 2022). A main result of the work
is a proposed methodology for creating portable ROMs
based on CFD results. In addition, several important fac-
tors to consider before using the proposed methodology
are presented. These include the intended use of the ROM,
a need to know the flow to be analyzed, what resources are
available both during model development and end-use, li-
censing set-ups of tools to be used, etc. The results of the
work demonstrate that steady-state data, of internal flow
systems, can be used as intended for transient system sim-
ulations. The ROMs created using the method gave re-
sults that were generally close to the corresponding hand-
book equations available in the literature, see for example
Miller (D. Miller 1990) for a comprehensive theoretical
background on internal flow systems.

2 Theoretical Background
This paper incorporates techniques from several fields of
research and industry: data-driven methods (system iden-
tification) for surrogate modeling purposes, physics-based
lumped parameter modeling, CFD, and standardized co-
simulation. The work strives to employ a set of stan-
dards, exemplified by a set of relevant tools, to address
a need identified in the industry. This need is summarized
through a development methodology where the best-suited
domain-specific tool is used for each engineering task,
where each contributing digital artifact and the model-
based decision is fully traceable to the end result.

2.1 Utilized Standards
Three different standards jointly enable the interoperabil-
ity presented herein: the FMI standard (FMI Development
Group 2020), the SSP standard (Modelica Association
2019), and the ISO 10303-21 standard also known as
Standard for the Exchange of Product Data (STEP)
(International Standards Organization (ISO) 2016). All
these three specifications strive to provide formats for a
neutral, vendor-independent, and platform-independent
information exchange and model-based decision-making.

The primary objective of the SSP standard is to estab-
lish standardized means for linking simulation models; in
the end resulting in portable and executable set of cou-
pled models. This standard offers a nested hierarchical
definition of systems and subsystems included within the
set. In contrast, the FMI standard focuses on facilitat-
ing the exchange of the constituent models, and their in-
terfaces, specific to different engineering domains. The
FMI standard additionally provides mechanisms for flexi-
ble management of Intellectual Property (IP) and simula-
tion execution. The SSP standard provides a framework
for standardized connection, configuration, and exchange
of a connected group of models, which collectively form,

what here is referred to as, a simulator application. To
convey this information, the SSP standard outlines various
Extensible Markup Language (XML) schema. The com-
position of the simulator is stored in the System Struc-
ture Description (SSD) format, the parameter values in
the System Structure Parameter Values (SSV) format, and
the associations of these values with the individual exe-
cutable models in the System Structure Parameter Map-
ping (SSM) format. All these different artifacts are ex-
ploited in the presented research. The ISO 10303-21 stan-
dard specifies a standardized file format for exchanging
and representing product data across different Computer
Aided Design (CAD) and Computer-Aided Manufactur-
ing (CAM) systems, particularly focusing on data captur-
ing three-dimensional geometric representations. STEP
is, unlike the FMI and SSP standards, not an open standard
available to all engineers. It is however widely adopted by
tool vendors in the geometry and CFD domains. In this
work, the STEP format is exploited to exchange geome-
try models between these two engineering domains. There
are several additional features presented in the STEP spec-
ification that could contribute to achieving traceable and
credible simulations, for example, the Application proto-
col 209 for specification and exchange of solver related
information (Lanza et al. 2018). These features are how-
ever not considered herein, and investigations of their use-
fulness within the presented context is left for future re-
search.

2.2 Modeling and Simulation Tools
The work expands on a simulator that has been succes-
sively developed by Saab Aeronautics in order to cap-
ture and communicate industrial requirements on Mod-
elica Association Standards, and the corresponding tool
support, that jointly provide technology deduced as essen-
tial when developing complex systems (Hällqvist, Naeser,
et al. 2022; Lind and H. Andersson 2011). The simula-
tor in focus, see Hällqvist et al. for a detailed descrip-
tion (Hällqvist, Munjulury, et al. 2022), incorporates dig-
ital artifacts developed in Dymola (Dymola User Man-
ual 2016), OpenModelica (Fritzson et al. 2005), Mat-
lab/Simulink, and CATIA. This work adds high-fidelity
information, obtained through CFD analysis, conducted
with the Altair suite of tools. The CFD simulations were
performed using the Finite Element Method (FEM)-based
Altair AcuSolve CFD-solver (Altair 2023). Furthermore,
meshing and post-processing were performed using the
built-in tools of AcuSolve.

2.3 Systems simulation
In order to simulate complex systems using mathematical
models, it is necessary to use some form of computer
software. Modelica is one of the, at Saab Aeronautics,
commonly used software languages for physics-based
modeling and simulation. Physics-based system simula-
tion models are constructed by connecting components,
or blocks, in order to transfer information between them
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(Modelica Association 2023). Components for use in
creating the systems are contained in various modeling
libraries.

The simulation of a system is performed by first convert-
ing the code of the different components into a system of
differential equations. First, the equations are sorted based
on the flow of information between them. Second, the
system of equations are simplified in order to reduce the
computational time. Finally, the equations are solved nu-
merically (Fritzson 2003). Special care needs to be taken
if the system contains both fast and slow dynamics. This
can cause the solution of the differential equations to be-
come inaccurate or unstable (Ljung and Glad 2003).

2.4 System Identification
System Identification is the process of taking some higher-
order data and creating a ROM based on it. The data used
could be experimental, from in-situ measurements, or vir-
tual from some higher fidelity simulation. ROMs can be
created through various different methods, many of them
described in detail by Ljung in (Ljung 1999b). The sys-
tem identification procedure has three main components
(Ljung 1999a): a data set, one or more candidate models
to describe the relationship between input and output, and
some selected technique for evaluating which model best
fits the data. As an example, consider some time-series
data with recorded inputs u(t) and outputs y(t). One way
of modeling the relationship between them is through a
simple difference equation

y(t)+a1y(t −1)+ · · ·+any(t −n) =
b1u(t −1)+ · · ·+bnu(t −n)

(1)

where a and b are some unknown parameters. In order to
calculate y(t), it can simply be isolated on the left-hand
side resulting in

y(t) = φ
T (t)Θ (2)

where Θ = [a1 . . .an b1 . . .bn]
T and φ(t) = [y(t −

1) . . .y(t −n) u(t −1) . . .u(t −n)]T . The goal of the sys-
tem identification procedure is to find the values of the un-
known parameters in Θ so that y(t) fits with the recorded
data. This can be done through, e.g., statistical methods or
machine learning algorithms (Sjöberg et al. 1995). Thus
u(t) and y(t) are the data set, Equation 1 is the candidate
model, and the method used to calculate Θ is the final step
in the above list.

2.5 Neural Networks to realize ROMs
One of the methods for identifying data-driven mathemat-
ical models is to train a neural network (Chen, Billings,
and Grant 1990) on available data. Neural networks are
machines or computer software that solve tasks by imitat-
ing the way a brain works. The neural network is built
up of interconnected neurons, or nodes. A neural network

needs to be trained in order to gain the necessary knowl-
edge to solve a problem. This is done by modifying the
strength, or weight, of the connections between the neu-
rons. Each neuron has an activation function that deter-
mines the output of the neuron based on the strength of the
input signals entering it. Some common activation func-
tions are the Rectified Linear Unit (ReLU), logistic, and
hyperbolic tangent functions (Haykin 1999). Neural net-
works can be useful for training on non-linear problems
and for mapping the input and output signals of unknown
systems. This makes them well suited for system identi-
fication tasks (Haykin 1999). There exist many examples
in the literature of system identification performed using,
for example, Multi-Layer Preceptrons (MLPs) (A. Parlos
et al. 1991) (Fernandez, A. G. Parlos, and Tsai 1990).

2.6 Computational Fluid Dynamics
The Navier-Stokes equations are the partial differential
equations that describe the motion of viscous fluid
substances. Since there exist no known analytical so-
lutions to the Navier-Stokes equations, they have to be
solved numerically. This is known as CFD. In CFD, the
continuity and Navier-Stokes equations are spatially, and
sometimes temporally, discretized to allow for iterative,
numerical solutions to be computed (Anderson, John D.
1995). There are several CFD methods available, with
two of the most commonly used being the Finite Volume
Method (FVM) and the FEM. The difference between
these two different methods lies in how the governing
equations are discretized.

For the FEM, the weak forms of the governing equations
are discretized over the entire fluid domain through, for
example, the Galerkin method (Donea, Jean and Huerta,
Antonio 2003) (Fontes 2018). However, the convective
term (∇ · u)u is non-linear and gives non-symmetrical
coefficient matrices, a problem that only gets bigger with
increasing Reynolds numbers and turbulent flows. Thus,
special techniques need to be used in order to stabilize
the solution (Bathe, Klaus J. 2014). In contrast, the finite
volume method discretizes the equations for each control
volume (mesh element). This means that the solution will
be stable because the flow will naturally be conserved for
each element. From a practical point of view, FEM can
achieve a higher order of accuracy for the discretization,
however, this will also lead to a higher computational cost
(Fontes 2018).

In order to spatially discretize the fluid domain, there are
several mesh element types to choose from. 2D elements
can be, for example, triangular or quadrilateral, while
their 3D counterparts can be tetrahedral or hexahedral,
etc. The choice of element type depends on the geometry
of the domain. Triangular and tetrahedral elements are
better at capturing curved and complex geometries, while
quadrilaterals and hexahedrals can cover the same domain
with fewer elements (Versteeg and Malalasekera 2007).
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3 Method
This section describes how the work was carried out and
how the previously described theory was tailored and ap-
plied to the use-case of this paper. The section covers the
three main areas of the presented research: CFD, system
identification, and integration of information from con-
tributing disciplines. A description of the resulting appli-
cation example simulator is also included.

3.1 Application example
The implementation of the targeted aircraft cooling system
Modelica model is described in detail by Hällqvist et al. in
(Hällqvist, Munjulury, et al. 2021). This particular model
represents one essential part of a broader simulator that in-
corporates models and information from the engineering
domains of hardware and physics-based modeling, con-
trol development and software modeling, architecture and
requirements modeling, and geometry modeling using 3D
CAD. The aircraft cooling system constituent piping and
the corresponding internal flow is in focus here. The pipe
component pressure drop is modeled as a function of the
mass flow,

∆p =
(z+ c · l/D)

A2 ·2ρ
ṁ2, (3)

as described by, e.g., Miller in (D. S. Miller 1990). Here
z is a parameter used to account for the pressure loss of
pipe features such as bends and changes in the area, c
is the friction coefficient, A is the pipe’s cross-sectional
area, and l is the pipe length. The pipe is connected to
a heat exchanger at its outlet and a consumer of cooling
power at the inlet. The inputs to the pipe inlet are pres-
sure, mass flow, and enthalpy. Among the specified com-
ponent outputs are pressure loss, fluid density, viscosity,
etc. The parameters for the different system simulation
components are automatically imported from the CAD ge-
ometry of the system. The Modelica model has been im-
plemented in Dymola, using the in-house developed com-
ponent library Modelica Fluid Lite (Eek, Gavel, and Öl-
vander 2017). The boundary conditions for the simulation
consist of flight data (altitude and Mach number), and the
heat load from the consumer. The atmosphere is mod-
eled using the International Standard Atmosphere (ISA).
The atmospheric conditions impact the friction heating
and heat transfer from the aircraft to the surroundings.
The equations describing this are available in (Hällqvist,
Munjulury, et al. 2021). The cooling system incorporated
software then regulates the flow to keep the fluid temper-
ature in the feed line at 20 ◦C.

3.2 Proposed Methodology
A methodology was developed based on the CFD and sys-
tem identification work done during the thesis (Lindqvist
2022). CFD, System Identification, and ROM implemen-
tation make up its three primary stages. The methodology

is depicted in more detail in Figure 1, along with the steps
that are part of each phase. There are, in addition, several
crucial considerations that should be made both before and
throughout the work, including the intended purpose of
the finished ROM, how the system will function, and the
resources that will be accessible.

Figure 1. Detailed view of the methodology and its included
steps.

The entire procedure is affected by the model’s intended
use. The appropriate CFD and system identification tech-
niques, for instance, depend on whether the system’s tran-
sient behavior needs to be accounted for or if steady-state
characteristics are sufficient. For the CFD task, under-
standing the flow within the system that is being modeled
is essential in order to, for example, choose the best turbu-
lence model, meshing approach, and to determine whether
the findings are plausible or not. In this context, the terms
available resources and available software are used inter-
changeably. This will affect the number and sophistica-
tion of CFD simulations that can be performed, the sys-
tem identification techniques that are accessible, etc. The
following are the steps for each phase in Figure 1,
Stage 1: CFD

1. Extract fluid domain: Extraction of the fluid do-
main from the geometry of the system to be simu-
lated is the first step in any CFD analysis. The do-
main could be divided into sections in order to focus
on any interesting flow features while reducing the
computational cost. Knowing the flow is crucial in
this situation.

2. Setup: The setup of the CFD solver must be chosen
in the next stage. This includes choosing a turbu-
lence model, whether to execute steady-state or tran-
sient simulations, etc. Here, understanding the flow
is equally crucial for choosing the modeling strategy
that best depicts the anticipated flow characteristics.

3. Mesh and Verification: The mesh will need to meet
different requirements depending on the turbulence
model that is used, such as near-wall resolution. To
make sure that it can handle any extreme scenarios,
mesh verification should be done in the flow where
the maximum turbulence is anticipated.
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4. Select + run cases: If the system’s operational do-
main is known, an optimization method can be used
to determine the ideal number of cases to cover the
domain with the fewest number of simulations nec-
essary. The operating domain can be expanded to
accommodate system modifications, as was done for
this study, to make the final ROM more adaptable.

5. Post-process: Depending on how much information
the solution uses provides, post-processing the find-
ings may be more or less challenging. When certain
variables must be calculated using user-defined ex-
pressions, both the workload and the chance of error
rise.

CFD can involve a lot of iterations. If, e.g., the findings
of the post-processing indicate that a different turbulence
model, is required, some processes might need to be
repeated.

Stage 2: System Identification
The system identification steps largely follow the process
outlined in Section 2.4.

1. Data: The data obtained from the CFD simulations
need to be imported to the system identification tool
used. For steady-state data, it may be necessary to
add an “artificial” time-vector for each case, as many
system identification techniques assume that such a
vector is available.

2. Method: Here method denotes the decision on what
candidate models and evaluation methods to use.
The choice is likely dependent on what software that
is chosen and available for the task at hand. In this
scenario, knowledge about the system and flow can
help with deciding, e.g., whether to use linear or non-
linear models.

3. Create ROM: It is probable that the creation of the
ROM will be highly iterative. It may be necessary to
change the candidate models or evaluation in order
to get a model that fits the CFD data.

4. Validate: The ROM should be validated against
higher-order data that was not used to create it. In
this study, the validation data consisted of CFD re-
sults for the same system at different flow cases.

Stage 3: Implementation:

1. Functional Mock-up Unit (FMU): In order to en-
able co-simulation, the ROM is exported as a FMU.
This allows the ROM to be integrated into any FMI
supporting system simulation environment.

2. Change system: In this study, the goal of the new
ROM was to replace a component in a system model.
Thus, the system model had to be modified to accept
the new ROM. This step is not applicable when cre-
ating ROM for a completely new system model.

3. Packaging: The necessary model parameters, speci-
fying the configuration or variant, for the FMUs are
specified in an SSV file. If a system of several FMUs
is to be simulated, it needs to be packaged as an SSP.

4. Verification & Validation (V&V): The new model
or system needs to be verified, to make sure that it
reflects its specification, and validated to make sure
that it fulfills its intended use.

5. Deploy: The model can now be deployed and used
for the intended system simulation.

4 Application example
The geometry modeling was performed in CATIA and the
resulting geometry model serves as the foundation for the
CFD analysis. The CFD simulations were performed us-
ing the FEM-based Altair AcuSolve CFD-solver. Meshing
and post-processing were also performed using the built-in
tools in AcuSolve. These tools were used for convenience,
as the Altair tool suite also includes system identification
and modeling tools.

4.1 Geometric Modeling
Figure 2 illustrates the feed and return lines of the air-
craft cooling system. The starting point of the feed line
is connected to a heat exchanger, while the endpoint is at-
tached to a consumer of cooling power, such as a radar. To
replicate the flow of the fluid within the pipeline, the CAD
model was used to extract the fluid domain using CATIA.
The CAD geometry of the fluid domain was then imported
into AcuSolve to initiate the flow scenario configurations.

Figure 2. Pipes in the cooling system. The blue pipe is the feed
line, while the return line is orange.

To decrease the computational cost of the simulations,
the fluid domain of the return line was split into five
distinct parts. These pipe sections were specifically
selected due to their characteristics that could result in
excessive pressure loss and turbulence, such as abrupt
expansions and contractions, and acute bends. To ensure
fully developed flow at the inlet and avoid reverse flow at
the outlet, extensions were added to the inlets and outlets
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of all pipe sections.

The initial section (heron referred to as Section 1) focused
on the inlet of the return line. It consisted of a 0.02m
diameter pipe connected to a 0.008m diameter pipe
through a fitting. The sudden contraction of the fitting
was anticipated to cause separation and intensify the
turbulence and pressure loss in this section. Since the
section is symmetric along its axis, only a quarter of the
fluid domain was simulated. The entire length of this
section amounted to approximately 0.26m.

Section 2 and Section 3 (Section 2 is shown in Figures 3)
exhibited resemblance. Each part comprised a pipe with
a diameter of 0.008m and several closely located bends.
Consequently, it was probable that turbulence would not
disperse between the bends, which would result in an
inaccurate estimation of pressure drop. Symmetry could
be employed to simplify Section 3.

Figure 3. Section 2 of the return line, the flow direction is from
right to left.

Section 4, depicted in Figure 4, constituted a complicated
portion of the routing located approximately at the
midpoint of the return line. A short pipe with numerous
bends was linked to two additional linear sections using
two fittings. Due to the intricate shape of this section,
simplification through symmetry was infeasible. Fur-
thermore, this was the most extensive section that was
extracted and required the most computational resources
to simulate. The complete length of this segment of the
conduit was approximately 1.24m.

The last section dealt with the exit point of the return line
(Figure 5). It showcased abrupt enlargements, reductions,
and a 90-degree elbow. The inlet was elongated by 0.1m,
whereas the outlet was lengthened by 0.2m in order to
ensure fully developed flow at the inlet and outlet. This
part could also be simplified using symmetry. The over-
all distance of the pipe in this segment was roughly 0.44m.

A test segment was additionally established to investigate
the turbulence and pressure drop caused by the pipe fit-
tings. This segment was comparable to Section 5, ex-
cept for the appended outlet extension with a length of

Figure 4. Section 4 of the return line, the flow direction is from
right to left.

Figure 5. Section 5 (outlet) of the return line, the flow direction
is from right to left.

50 pipe diameters, and the pipe diameter decreased back
to 0.008m. The test segment is illustrated in Figure 6.

4.2 Meshing
Tetrahedral elements were primarily used to mesh
the sections, ensuring the capture of their intricate
geometries. However, on the inlet extensions where
the flow was expected to be fully developed, hexcore
elements were employed, effectively reducing the total
element count. To obtain acceptable y+-values and
capture the boundary layer, inflation layers were utilized.
Furthermore, body of influence sizing was applied to
refine the mesh in areas where significant gradients were
anticipated, like sudden expansions. Figure 7 illustrates
the general features common to all the meshes generated,
including quad- and tri-surface meshes, the body of influ-
ence sizing around vital flow features, and inflation layers.

To verify the meshes, three different mesh sizes were eval-
uated for each section, and the solution results were com-
pared. All mesh verification simulations were conducted
using the fluid Dowcal 10 (Dow 2023) at 20◦C with an in-
let mass flow of 0.4kg/s. This resulted in a density of 1082
[kg/m3] and a dynamic viscosity of 0.005kg/ms, as shown
in Figure 8. Table 1 displays the element numbers em-
ployed for each section. Additionally, to ensure a smooth
Eddy Viscosity Ratio (EVR) gradient from the wall to the
bulk flow, the near-wall mesh’s resolution was also evalu-
ated.
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Figure 6. Test section with outlet extension with length of 50
pipe diameters, to investigate flow downstream of pipe fitting.

Section No. of elements
1 204000
2 773000
3 489000
4 4180000
5 862000

Table 1. Number of elements in the selected mesh for each sec-
tion.

4.2.1 Solver Setup

Altair AcuSolve utilizes an implicit FEM-based solver
with steady-state time-stepping. The turbulence model
k−ω SST was chosen for the simulations, because of its
good performance near walls, in adverse pressure gradi-
ents, and in separated flow. The boundary conditions for
all sections were similar. At the inlet, the mass flow was
specified, while the outlet was set to zero gauge pressure.
The turbulence parameters at the inlet were automatically
calculated. The pipe walls were given a wall roughness
height of 2e−5m, the same as in the Dymola model. Sym-
metry was applied to the symmetry planes if available.
Heat transfer through the walls of the pipe was neglected.
The material was set to the water-glycol mixture Dow-
cal 10, the same fluid used in the Modelica model. The
density and dynamic viscosity variations for Dowcal 10 as
functions of temperature are shown in Figure 8. In order to
ensure convergence of the solutions, residuals, and mon-
itor points throughout the domains were checked. Acu-
Solve also uses another convergence metric called the So-
lution Ratio, which measures the difference in results be-
tween iterations (AcuSolve Residual Computation 2013).

4.2.2 Post-processing

The pressure drop ∆p for the different sections was inves-
tigated by taking the difference in total pressure between
the inlet and outlet. For routing Section 5, the pressure
drop was defined as the difference between the point of
lowest total pressure and the outlet. This is because the
sudden expansion in the fitting causes the pressure to de-
crease rapidly to a minimum in this routing location. Thus,
the pressure drop is the pressure required to get it back to
zero at the outlet. Another example of calculating the pres-

(a) Mesh on section 1 showing in-
flation layers and bulk mesh.

(b) Surface mesh on section 1
showing a transition from quad to
tri elements, and body of influence
sizing.

Figure 7. Examples of the generated meshes.

Figure 8. Density and dynamic viscosity as functions of tem-
perature for Dowcal 10.

sure drop for a sudden expansion can be found in (Roul
and Dash 2009).

4.3 System Simulation models - romAI &
Lookup Table (LUT)

In order to integrate the romAI models in a system simula-
tion context, a new pipe model had to be created. The pur-
pose of this pipe model would be to combine the romAI
models for the pipe sections of the pipe where CFD simu-
lations had been run, with handbook equations for the rest
of the pipe. This pipe model would then be exported as a
FMU for integration using the FMI standard. The require-
ments for the FMUs were to use the FMI 2.0 standard for
co-simulation and to be license free, enabling wide-spread
use throughout the organization. The new model was cre-
ated in Altair Activate. Figure 9 shows an overview of the
romAI-based model.
The inputs provided by the surrounding modeled system
are mass flow, enthalpy, and pressure entering the pipe
model. The mass flow and enthalpy outputs from the pipe
were also set to equal the input values, implying conti-
nuity and ideal thermal insulation. In order to calculate
the pressure drop in the pipe, the input enthalpy first need
to be converted into fluid density and viscosity, which
are the inputs required by both the romAI model and the

Session 1-B: Discrete modeling techniques: FEM, CFD, DEM (Discrete Element Method)

DOI
10.3384/ecp20473

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

79



Figure 9. Overview of the romAI-based pipe model.

handbook equations. This conversion is conducted in
block labelled Units in Figure 9. The equation block Eq
receives the mass flow, density, and viscosity to calculate
the pressure drop via Equation 3. The pressure drops
calculated are then subtracted from the input pressure, to
give the output pressure.

Figure 10. Overview of the new cooling system. RL_LUT is the
new LUT-based pipe model (the romAI model was integrated in
the same way).

The new FMU is integrated into the simulator by remov-
ing the pipeB component from the legacy model, and
then inserting the new FMU as shown in Figure 10. The
complete system is then re-packaged as a SSP file together
with the necessary SSV data etc.
The simulation of the updated simulator was performed
using the OMSimulator tool (Ochel et al. 2019), exe-
cuted through dedicated Python scripts. The altitude,
Mach number, and consumer heat load boundary condi-
tions were varied over time to simulate hypothetical flight
missions. The results from the updated simulator were
then compared to the legacy version.

5 Results
This section presents the outcomes of applying the tech-
nique outlined in the preceding section. The produced
ROMs and the output data from the CFD simulations are
both included. The method for CFD-based system identi-
fication is offered as a last step.

5.1 Design of experiments

The flow cases were selected in order to give the maxi-
mum coverage of the pipe systems Operational Domain
(OD). The coverage was defined using the modified
nearest-neighbor coverage metric described in (Atam-
turktur et al. 2015). A reduced metric value implies an
increase in OD coverage. Figure 11 shows the operating

Figure 11. Operational domain of the pipe system. Black points
indicate the operating points for a specific pump. The red rect-
angle is the created operational domain.

points of the pipe system with regard to mass flow and
fluid temperature. These operating points were calculated
while using a specific pump connected to the cooling
system. The outlier at ṁ = 0.36kg/s and T = 40◦C is a
result of the simulation not reaching steady-state. In order
to make the model more generalized (e.g., be applicable
for evaluating different pump alternatives), a rectangular
operational domain was created by connecting the maxi-
mum and minimum values in Figure 11. This gave the OD
the limits of 0.25 < ṁ < 0.38kg/s, and −20 < T < 120◦C.
Between one and 15 points (flow cases) were placed
in the OD using Complex-RF optimization (Krus and
J. Andersson 2003), striving to minimize the modified
nearest-neighbor coverage metric. Figure 12 shows the
change in coverage for an increasing number of points.
A lower nearest neighbor coverage metric ηc indicates
better coverage of the domain. Based on the result, ten
cases were selected, see Figure 13. An additional ten
randomly selected cases were run to use as validation for
the created FMU. All 20 cases are shown in Table 2.
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Figure 12. Nearest neighbor coverage for the operational do-
main. A lower ηc indicates better coverage.

Case ṁnorm [-] Tnorm [-] ṁ [kg/s] T [degC] ρ [kg/m3] µ [kg/ms]

In
pu

t

1 0.999 1.000 0.380 119.99 1010.66 0.000257
2 0.663 1.000 0.252 119.94 1010.70 0.000257
3 0.954 0.796 0.362 95.53 1032.69 0.000519
4 0.658 0.316 0.250 37.93 1072.74 0.00266
5 0.774 0.028 0.294 3.38 1089.52 0.00980
6 0.786 0.611 0.299 73.30 1050.05 0.000948
7 0.754 0.805 0.287 96.63 1031.76 0.000504
8 0.674 -0.167 0.256 -19.98 1098.11 0.03141
9 0.999 -0.166 0.380 -19.93 1098.09 0.03133

10 0.917 0.319 0.348 38.26 1072.56 0.002633

V
al

id
at

io
n

11 - - 0.309 116 1014.47 0.00029
12 - - 0.334 96 1032.30 0.000513
13 - - 0.268 80 1045.08 0.000791
14 - - 0.274 28 1078.09 0.003719
15 - - 0.295 42 1070.42 0.002337
16 - - 0.356 1 1090.50 0.010907
17 - - 0.378 -13 1095.77 0.021543
18 - - 0.256 31 1076.52 0.003351
19 - - 0.328 115 1015.41 0.000299
20 - - 0.340 56 1061.88 0.001534

Table 2. Selected flow cases. Cases 1-10 were selected to op-
timize coverage to be used as input data for the ROM creation.
Cases 11-20 were selected randomly for validation purposes.

5.2 CFD Outcome
Table 3 shows the outcomes for all the steady-state CFD
cases run for each pipe segment. Cases 1-10 are the cases
that were utilized to make the ROMs, while cases 11-20
were utilized for validation. From the outcomes, it may be
presumed that the cases with the lowest temperatures and
highest mass flows give the highest pressure drop. This
demonstrates that it is the friction along the line walls that
contributes most to the losses. For more detailed of CFD
results, see (Lindqvist 2022).

5.3 Created ROMs
Figure 14 shows the calculated pressure drops for the
model of routing Section 1 created using romAI, com-
pared to the validation CFD data. The blue line shows
the results for the ROM, while the green line is the results
from the validation data. Figure 15 shows the ∆p output
from the romAI and 8x8 lookup table run for a test case

Figure 13. The 10 cases selected for the steady state model
creation. The mass flow and temperature have been normalized
with their maximum values (0.38 [kg/s] and 120 [◦C] respec-
tively).

Pressure drop [Pa]
Case Section 1 Section 2 Section 3 Section 4 Section 5

1 13575 42584 32194 130447 15789
2 6589 19670 15101 59767 6970
3 14008 43059 32784 127623 14006
4 8615 28097 21591 78081 6441
5 15240 53233 40537 142794 8808
6 10555 32886 25349 94778 9353
7 9067 28032 21388 82144 8771
8 20130 73221 55077 181600 6854
9 34975 129844 98110 330255 15023
10 15748 50652 38909 143317 15023
11 9703 29390 22914 89460 10400
12 12025 37156 28283 110235 11907
13 8450 26382 20227 76801 7598
14 10816 35672 27361 98710 7709
15 11413 36773 28254 103944 8935
16 21884 75769 57738 204107 12985
17 29551 108363 82113 281642 14814
18 9362 30791 23622 85180 6683
19 10880 33029 25044 100190 11755
20 14126 44520 34192 128187 12058

Table 3. Steady-state CFD results for the pressure drop through
each section.

with the mass flow and enthalpy inputs as sine curves. The
lookup table result differs at most between 2−3kPa from
the romAI model. Additional system identification results
can be found in (Lindqvist 2022).

5.4 System Simulations
The pressure loss for the different return line pipe mod-
els over a range of mass flow and temperature values is
shown in Figure 16. The models all have a similar pres-
sure drop when the temperature is around 20 ◦C. As the
temperature decreases, the pressure drops for the romAI
and LUT models increase. The Modelica pressure drop
decreases until Re < 2000, when it too starts to increase.
For the low-temperature flows, the romAI and LUT mod-
els consistently give a higher pressure drop than the cur-
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Figure 14. Comparison against validation data for Section 1.

Figure 15. Comparison between 8x8 LUT and romAI model.

rent model. The difference in the romAI and LUT re-
sponses to the changing flow conditions is because the
LUT model has been implemented using dynamical model
components, while the romAI model contains no dynam-
ics. Thus, the romAI model’s response is instant. It
should be noted that the temperature here goes lower than
the lower limit of the operational domain of the created
ROMs. Figure 16 mainly shows the similarity between the
romAI and LUT results and the behavior of the Modelica
pipe model at low Re.

6 Discussion and Conclusions
The work presented herein aims to fill a gap in the in-
dustry, enabling the adaption of model detail to the re-
quired level in model and simulator development. The
presented use-case entails the incorporation of informa-
tion of high-fidelity analysis using CFD in the systems’
simulation domain efficiently. However, a number of dif-
ferent application areas exist. The work demonstrates an
efficient means of producing Reduced Order Models from
high-fidelity data, and such surrogates have a wide range
of applications. One concrete example, to be exploited in
the European Defense Fund Project-NEUMANN (Euro-

Figure 16. Comparison between current Modelica, romAI, and
LUT models.

pean Defence Fund 2022), relates to adapting models for
applicability in the model-based design of energy manage-
ment control strategies in the aerospace domain.
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Abstract
Pneumatics is a branch of engineering that deals with the use
of pressurized air or gases to create mechanical motion. It in-
volves the study and application of systems and components
such as air compressors, valves, cylinders, and actuators to
control and transmit power through the use of compressed
air. For highly dynamic events in pneumatic systems, such as
fast switching processes in automation technology, lumped-
parameter simulation is not sufficient to correctly calculate
the pressure build-up in pipes. The propagation and re-
flections of different pressure waves and refraction waves
cannot be accounted for by the zero-dimensional models
provided by the Modelica.Fluid library. Therefore, this
paper presents a method for calculating such events using
the finite volume method. The library presented in this paper
uses Godunov’s scheme and an arbitrary Riemann solver
and gas model to calculate the time evolution inside 1D or
2D discretized pneumatic components, as well as systems
composed of these components.
Keywords: pneumatics, simulation, partial differential
equation, distributed parameters, library

1 Introduction
The Distributed Parameters Pneumatics library allows for
the calculating of transient events in pneumatic systems
composed of pipes, valves, open and closed endings as well
as connecting components such as T-connectors. These
components are described in partial differential equations.
These kinds of models consider the spatial distribution of
parameters, such as temperature, density, and pressure;
they are called distributed parameter models. This paper
describes the theoretical foundation for the library as well
as the core details of its implementation.

The theoretic background of the library discussed in
this paper is introduced in section 2. The details of the
implementation using Modelica is presented in section 3.
The components of the library are validated using the
analytical results of Sod-like tests, see section 4, as well
as using experiments in section 5.

1.1 Motivation
While the Modelica fluid library is a suitable tool for cal-
culating slow pressure changes in fluid systems used in hy-
draulics, pneumatics, and process engineering, it cannot be
used to describe the fast fluctuations in pneumatic systems
in the build-up phase of increasing or decreasing pressure.

This is important, for example, when analyzing the inter-
action of different fast-moving actuators in an automation
system. Another example of an application outside of pneu-
matics where the description of highly dynamic movements
of gases is essential is gas transport in process engineering.
Modelica.Fluid uses zero-dimensional components,

described by a single set of ordinary differential equations.
These equations calculate changes in the quantities pressure
𝑝, temperature𝑇 , and density 𝜌 only in terms of time and not
of space. Therefore, these components can only describe the
overall change of the averaged quantities inside of them over
time. These types of models are called lumped parameter
systems.

This is especially relevant for directional components
like T- or X-pieces. The ideal T-connectors implemented
in Fluid do not distinguish between the different directions.
Therefore, a pressure wave entering an X-piece would be
transmitted immediately to all three other sides without any
difference and without any time delay between them. In
a real X-piece, most of the pressure wave propagates to the
opposite side.

A possible solution for this problem is the discretization
of a single pipe component into a set of smaller pipes, which
are described by the same underlying ordinary differential
equations as the primitive component. This approach is
called the finite volume method for solving partial differen-
tial equations. Modelica Fluid provides a discretized model
with Modelica.Fluid.Pipes.DynamicPipe.

1.2 Sod Test
The standard method for the evaluation and test of finite
volume method for gas dynamics is the Sod Test. This test is
a fictional shock tube experiment. At time 𝑡=0, the left half
of the tube contains an ideal gas at high pressure, whereas
the right half contains gas at a lower pressure. Both halves
have an equal diameter and are directly connected. Initially,
the gas in the whole tube is at the same temperature.

While the original paper by Sod uses a certain set of
fixed and dimensionless initial pressures 𝑝, densities 𝜌 and
velocities 𝑣 = 0, the analytical solution is known and well
studied for every chosen set of start values (Sod 1978). Thus,
can be used for the verification of gas dynamics simulations.
The set-up of a Sod-like test and the pressure and rarefaction
waves occurring in this test can be seen in Figure 1.

The standard method of initialization Modelica Fluid
uses the system model. It includes the initial pressures as
well as the initial temperature and the initial velocities. The
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pR𝑡 = 0 𝑝𝐿

𝑡 > 0

rarefaction wave

𝐿

shock wave

𝑝𝑅

Figure 1. Set up and time evolution of the Sod test

density 𝜌 can be calculated from the pressure and the tem-
perature using the chosen gas law (e.g., the ideal gas law).
In this work, the same method of initialization is used and
therefore the systems are initialized using realistic values
rather than abstract standard values. The start values are
listed in Table 1. The Medium is Air. In the one-dimensional
case, the diameter of the pipe has no influence on the results.

Table 1. Parameters of Sod-like test used in this work

Description Symbol Start value

Initial temperature 𝑇 20 ◦C
Pressure in the left half 𝑝𝐿 6 bar
Pressure in the right half 𝑝𝑅 1 bar
Length of the pipe 𝐿 2 m
Discretization 𝑁 100
Modelica solver DASSL
Tolerance 1×10−6
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Figure 2. Sod test of staggered DynamicPipe at 1 ms

A sod test of the staggered model DynamicPipe
from Modelica Fluid can be seen in Figure 2. There is
a large discrepancy between the analytical result and the
simulation (Isaac Backus 2017). Thus, this library is not
suitable for highly dynamic gas simulations.

2 Theoretic Background
This section contains a brief introduction into the theoretic
background of the simulation library presented in this work.

2.1 Euler Equations
This library is based on the conservative formulation of
the Euler equations. The Euler equations are a simplified
version of the Navier-Stokes equations. They describe the
flow of a fluid without considering the thermal conductivity
and viscosity.

Conservative formulations of partial differential
equations guarantee that the amount of conserved quantities
entering a finite volume is equal to the amount leaving
it. Even if the discretization is very broad, the total and
the local balances of these quantities are conserved. In
non-conservative schemes, the quantities are not conserved
and therefore there can be erroneous sources and sinks
in the calculated solution. Therefore, the error in the
conserved quantities is only acceptable, if the grid is fine
enough (Ferziger, Perić, and Street 2020).

The conservative formulation of the one-dimensional
Euler equations takes the following form (Toro 2009, p. 30):

0=
𝜕

𝜕𝑡
U+∇F(U) (1)

UB (𝜌,𝜌𝑢,𝐸)⊺ (2)

FB (𝜌𝑢,𝜌𝑢2+𝑝,𝑢(𝐸+𝑝))⊺ (3)

𝐸B 𝜌

(
1
2
𝑢2+𝑒

)
(4)

In these equations, 𝜌 is the density of the gas, 𝑢 is the
velocity and 𝑝 is the absolute pressure. The total energy
𝐸 (see Equation 4) can be separated into a kinetic and an
internal component. The specific internal energy 𝑒(𝑝, 𝜌)
is a function of the density and the absolute pressure. The
expression for 𝑒 is dependent on the gas model used in
the simulation (Toro 2009). The entries of U shown in
Equation 2 are called conserved variables, whereas 𝑝, 𝑢,
and 𝜌 are called primitive variables. The vector F shown
in Equation 3 is called the flux vector and is a function of U.

2.2 Riemann Problem
In finite volume methods, each discrete volume has only one
value for U (see Equation 2) at each time step. Therefore, if
two neighboring cells differ in any primitive variable, there
will be a discontinuity in the initial condition of the partial
differential equation. Such a partial differential equation
with an initial condition that is constant everywhere except
for a single discontinuous jump is called a Riemann problem.

The Riemann problem can be imagined as a miniature
version of the Sod test at every cell boundary, see Figure 1.
Analogous to the shock tube, the analytical solution is
known and can be used to calculate the time evolution of
every single finite volume.
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The finite volume method used in this work is Godunov’s
scheme. In Godunov’s scheme, the spatial derivative in
Equation 1 is calculated numerically by evaluating the flux
vector F at the intercell boundary. The one-dimensional
Godunov’s method is given by (Toro 2009, p. 177):

𝜕

𝜕𝑡
U(𝑡,𝑥)=− 1

Δ𝑥

(
F𝑖+ 1

2
−F𝑖− 1

2

)
(5)

F𝑖± 1
2
BF

(
U𝑖± 1

2

)
(6)

U𝑖± 1
2
BU

(
𝑡,𝑥𝑖±

Δ𝑥

2

)
(7)

Δ𝑥B 𝑥𝑖+1−𝑥𝑖 (8)

Here, 𝑡 is the continuous time and 𝑥𝑖 the discrete position
of a specific finite volume with index 𝑖. 𝑥± Δ𝑥

2 represents
the position of the boundary between the volume at 𝑥𝑖 and
the neighboring volume at 𝑥𝑖±Δ𝑥, see Figure 3.

1 2 3 G2G1

𝑝, 𝑣, 𝜌
U3U2

0.5 1.5 2.5 3.5

F(U3.5)F(U2.5)

U𝑟

Figure 3. Discretizations used in Godunov’s scheme, including
ghost cells

The numerical method used to calculate F(U(𝑡,𝑥±Δ𝑥)) is
called a Riemann solver. If the value U at the intercell bound-
ary is calculated using the analytical solution, the solver is
called an exact solver, otherwise, it is called an approximate
solver. Compared to approximate Riemann solvers, exact
solvers are more complex to construct and implement, and
they are more computationally expensive. This work uses
the approximate Harten-Lax-van-Leer-Contact (HLLC) and
local Lax-Friedrichs solver (Toro 2016). These solvers take
only the two neighboring volumes into account and are there-
fore called first-order methods, as shown in Equation 9.

F𝑖+ 1
2
= 𝑓 (U𝑖 ,U𝑖+1) (9)

The function 𝑓 represents the first-order approximate
Riemann solver. The time derivative in Equation 5 is solved
by the Modelica solver.

2.3 Two Dimensional Formulation
To create a system that is more complicated than a single
straight pipe with linear components connected to it,
two-dimensional components are needed. These 2D
components must be discretized in two dimensions, and
a two-dimensional formulation of the finite volume method

is needed. The main difference between the one- and
two-dimensional algorithms is the additional component
of the velocity in the y-direction which must be considered.
Therefore, the state vector U needs an additional fourth
component.

The conservative formulation of the two-dimensional
Euler equations can be described as the following (Toro
2009, p. 104):

0=
𝜕U
𝜕𝑡

+ 𝜕F𝑥

𝜕𝑥
+
𝜕F𝑦

𝜕𝑦
(10)

UB
(
𝜌,𝜌𝑢𝑥 ,𝜌𝑢𝑦 ,𝐸

)⊺ (11)

F𝑥B
(
𝜌𝑢𝑥 ,𝜌𝑢

2
𝑥+𝑝,𝜌𝑢𝑥𝑢𝑦 ,𝑢𝑥 (𝐸+𝑝)

)⊺
(12)

F𝑦B
(
𝜌𝑢𝑦 ,𝜌𝑢𝑥𝑢𝑦 ,𝜌𝑢

2
𝑦+𝑝,𝑢𝑦 (𝐸+𝑝)

)⊺
(13)

Here, 𝑢𝑦 is the gas velocity in 𝑦-direction (Schulz-Rinne,
Collins, and Glaz 1993).

This differential equation is solved numerically using
a two-dimensional Godunov’s scheme, as described in
Equation 5. In this case, the flux vectors at all four intercell
boundaries have to be calculated using a 2D version of
a Riemann solver. In this work, an adapted version of
the local Lax-Friedrichs solver has been used for two 2D
discretized meshes.

3 Implementation in Modelica
This section describes how this library is structured and
how the finite volume method described in section 2 is
implemented in Modelica.

3.1 General Structure
The general structure closely follows the structure of the
Modelica.Fluid library, to keep the library as compatible
with it as possible. The models make use of replaceable
packages and inheritance to keep the code reusable. Due
to this structure and the use of a sub-package, it is possible
to quickly exchange the selected gas model or the Riemann
solver. The internal structure of the models is based on the
finite volume library presented by Sielemann (Sielemann
2012b).

The package TransientPneumatics is separated into
three sub-packages:

1. Parts: This package contains the useable components
in this library, such as pipes and valves. Furthermore,
it contains the sub-package Base in which the one- or
two-dimensional discretized pipe sections are located.
These discretized sections are used by the regular parts
as attributes.

2. Solvers: This package contains the different se-
lectable Riemann-Solvers (OneD, TwoD) and gas mod-
els (Media).

3. Systems: This package contains the base template for
new systems as well as simulation models for testing
this library.
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3.2 Components
The different components contain the initialization, the
border conditions, and the connectors. The discretization
and the solutions of the partial differential equations
are delegated to the reusable models in the sub-package
TransientPneumatics.Parts.Base. The general
structure of a component is shown in Listing 1.

Listing 1. Basic structure of a component in this library

within TransientPneumatics.Parts;
model Part "Example of a part"

import Modelica.Units.SI;
replaceable package Medium
= TransientPneumatics

.Solvers.Media.Ideal.Example
constrainedby TransientPneumatics

.Solvers.Media.Base
"Medium";

replaceable package Solver
= TransientPneumatics.Solvers.HLLC(
redeclare package Medium = Medium)
constrainedby

TransientPneumatics.Solvers.OneD
"Solver";

Modelica
.Fluid.Interfaces.FluidPort_a left(

redeclare package Medium=Medium)
"Left connector";

Modelica
.Fluid.Interfaces.FluidPort_b right(

redeclare package Medium=Medium)
"Right connector";

parameter Integer N = 20
"Number of finite volumes";
public
SI.AbsolutePressure pressure[N]
"Absolute pressure in component";

protected
Base.PipeBase discretization(

redeclare package Medium=Medium,
redeclare package Solver=Solver,
N=N)
"Reusable base model";

end Part;

The base models in Parts.Base have the following
structure:

Listing 2. Basic structure of the base model containing the logic
of every pipe section

within TransientPneumatics.Parts.Base;
model PipeBase

"Base class for pipe sections"
import Modelica.Units.SI;
replaceable package Medium
= TransientPneumatics

.Solvers.Media.Ideal.Example
constrainedby TransientPneumatics

.Solver.Media.Base "Medium";
replaceable package Solver
= TransientPneumatics.Solvers.HLLC(
redeclare package Medium = Medium)
constrainedby TransientPneumatics

.Solvers.OneD "Solver";
parameter Integer N = 20

"Number of finite volumes";
parameter SI.Length L = 1

"Length of the pipe";
parameter SI.Diameter diameter = 0.001

"Diameter of pipe";
protected

final SI.Area cross_section
= Modelica

.Constants.pi * diameter^2 / 4
"Cross section of pipe";

final SI.Length delta_x = L/N;
Real U[

N, 3] "Conserved variable vectors";
public

Medium.ThermodynamicState
volume_left, volume_right;

SI.MassFlowRate
flow_rate_left, flow_rate_right;

// f i n i t e volumes at the borde r
Medium.ThermodynamicState volume[N]

"Records containing
the primitive variables";

SI.MassFlowRate flow_rate[N]
"Mass flow rate in each volume";

// kept pub l i c f o r i n i t i a l i z a t i o n
equation

// the
d i f f e r e n t i a l equa t i on s a re put here

end PipeBase;

The primitive variables pressure and density are con-
tained in the record ThermodynamicState. Additionally,
the gas velocity 𝑢 can be calculated using the mass flow rate
¤𝑚 and the cross-section 𝑎:

𝑢=
¤𝑚
𝜌𝑎

(14)

Based on the primitive variables, the conserved variables
U can be calculated according to Equation 2 in the function
Solver.primitiveToConserved. The set of equations
in Listing 2 is chosen to avoid the implementation of a
function for the conversion from the conserved variables
to the primitive variables, because there is no function to set
a thermodynamicState record from the pressure and the
density in the Modelica standard library (Sielemann 2012a).
The function Solver.monotoneFlux calculates the flux
vector as a function of the neighboring cells according to
the solver, as seen in Equation 9.

The implementation of the sets of differential equations
into Modelica is shown in Listing 3.

Listing 3. Set of differential equation to be solved in each pipe
section

equation
for i in 1:N loop

U[i] = Solver.primitiveToConserved(
volume[i], flow_rate[i],
cross_section);

end for;
// Godunov ’ s method
// l e f t borde r
der(U[1]) = 1 / delta_x * (

Solver.monotoneFlux(
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volume_left, flow_rate_left,
volume[1], flow_rate[1],
cross_section)

- Solver.monotoneFlux(
volume[1], flow_rate[1],
volume[2], flow_rate[2],
cross_section));

// cen t e r s e c t i o n
for i in 2:N-1 loop

der(U[i]) = 1 / delta_x * (
Solver.monotoneFlux(

volume[i-1], flow_rate[i-1],
volume[i], flow_rate[i],
cross_section)

- Solver.monotoneFlux(
volume[i], flow_rate[i],
volume[i+1], flow_rate[i],
cross_section));

end for;
// r i g h t borde r
// ana logous to l e f t borde r

3.2.1 2D Components

The two-dimensional base models are implemented analog
to Listing 2; in this case, the conserved variables are stored
in an 𝑁 × 𝑀 array: U[N, M, 3]. For 2D components,
it needs to be differentiated between pipe section with
round or rectangular cross-sections. When implementing
rectangular cross-sections, it must be considered, that
depending on the discretization the cross-section for
flow in the x-direction can differ. In the case of circular
cross-sections, the cross-section 𝑎(𝑦) for flow in the
y-direction (perpendicular to the orientation of the pipe)
depends on the y-position, as indicated in Figure 4.

𝑦
𝑎(𝑦)

Figure 4. Cross-section of circular 2D pipes

3.3 Connectors
Each component is connected to the neighboring com-
ponents using connectors. The connectors are the same
connectors used in Modelica.Fluid. In this work, the
ghost cell method is used to connect the connectors to
the finite volumes. This approach is based on the work
presented by López (López 2006). Due to the connectors
being identical to the default ports, it is possible to
connect the distributed parameter components developed
in this work to the concentrated parameter components
contained in Modelica.Fluid. This is demonstrated in
Figure 5, where a graphical representation of a system in
OpenModelica’s OMEdit can be seen.

Figure 5. Two distributed parameter pipes connected to two
concentrated parameter endings from Modelica.Fluid in
OMEdit using connectors

The ghost cells on the left side of the base pipe are defined
by the additional values volume_left and flow_rate_-
left. The variables for the right ghost cells are accordingly
named volume_right and flow_rate_right. These
values are related to the connectors by the following
equations in the model of the parts shown in Listing 1:

Listing 4. Relation between the ghost cells and the connectors

discretization.volume_left
= Medium.setState_ph(

left.p, actualStream(left.h_outflow));
discretization.volume_right

= Medium.setState_ph(
right.p, actualStream(

right.h_outflow));
discretization.flow_rate_left

= left.m_flow;
discretization.flow_rate_right

= - right.m_flow;
left.m_flow = discretizaion.flow_rate[1];
right.m_flow = -discretiation.flow_rate[N];
left.h_outflow = Medium.specificEnthalpy(

discretization.volume[1]);
right.h_outflow = Medium.specificEnthalpy(

discretization.volume[N])

In this work, the direction of flow is defined as left to right.
A negative mass flow rate would therefore indicate a flow
from right to left. Therefore, the sign for flow entering from
the right connector must be inverted.

3.4 Pipe Endings
After enough time, every wave propagating in a finite pipe
will hit either a closed or an open pipe ending. In both cases,
the wave will be reflected on the ending and another wave
will travel in the opposite direction. These open and closed
boundary conditions are implemented into this library as
separate models using the ghost cell approach shown in
(Kratschun 2020).

3.4.1 Closed Ending

In the case of the reflection at a closed ending, the reflective
boundary condition states that there is no velocity compo-
nent in the x-direction at the boundary. This can be imple-
mented using with the ghost cell approach by adding another
volume with equal, but opposite velocity to the neighboring
volume (LeVeque 2012, Chapter 7). Analogous to the
connectors, a reflection on the left border of a part (Listing 1)
can be implemented by adding the following lines:

Listing 5. Reflection on a closed ending at the left border of a part

discretization.volume_left
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= discretization.volume[1];
discretization.flow_rate_left

= -discretization.flow_rate[1];

3.4.2 Open Ending
In the case of reflection at an open end, the reflective
boundary condition states that there can be any velocity
at the boundary, but there are conditions on the intensive
variables on the volume next to the open end. The ghost
cell at this end has the same velocity as the connected end,
but depending on the direction of the flow, the temperature,
and the pressure are fixed. Due to conservation of energy,
the gas velocity at the end will overshoot compared to the
wave packets inside the tube. Thus, the reflection at an open
tube end can be intuitively understood to be caused by the
discontinuity in acoustic impedance. The open end can be
implemented by using the following additional lines:

Listing 6. Reflection on an open ending at the left border of a part

parameter SI.AbsolutePressure p_start
= system.p_ambient
"Environmental pressure";

parameter SI.Temperature T_start
= system.T_ambient
"Environmental temperature";

equation
if discretization.flow_rate[1] > 0
then

discretization.volume_left
= Medium.setState_pT(

p_start, T_start);
else

discretization.volume_left
= Medium.setState_pT(

p_start, discretization.T[1]);
end if;
discretization.flow_rate_left
= discretization.flow_rate[1];

3.5 Valve
Sod-like tests can be used for the analytical validation of
a model. When trying to replicate a shock tube experiment
on a test rig, a rapid 2/2-valve is needed, preferable switch
times below 1 ms. But even in that case, the valve will
have an influence on the propagation of the pressure waves,
which cannot be neglected. Therefore, a model for valves
is needed for the experimental validation of this library.

In this work, the valve is modeled as a plate orifice with
changing diameter (Kratschun 2020). An orifice can be
implemented into a finite volume method by calculating
the flux vectors 𝐹 based on the orifice equation (Schmitz
2022). The orifice equation is only valid for ideal gases, and
it depends on the isentropic exponent 𝜅.

𝜅=
𝐶𝑝

𝐶𝑣

(15)

𝐶𝑝 is the heat capacity at constant pressure and 𝐶𝑣 is the
heat capacity at constant volume. For ideal gases, 𝜅 is
constant. If the pressures are not very high, the ideal gas law

is usually a good approximation. Therefore, 𝜅 is calculated
as the fraction of heat capacities for all gas laws and is
potentially not constant.

The orifice equation is only valid for stationary gases. To
include dynamic effects, this work uses the total pressure
instead of the static absolute pressure if the velocity is
directed towards the orifice:

𝑝tot.= 𝑝+𝜌𝑢2/2 (16)

According to the orifice equation, gas will only ever flow
from the side with higher pressure to the side with lower
pressure. In the following, it is assumed that the pressure to
the left of the orifice 𝑝𝑙 is higher than the pressure to the right
𝑝𝑟 . These equations can be implemented bidirectionally
with Modelica by using conditional statements.

The velocity of the gas flowing through the orifice 𝑢𝑣
increases when the pressure ratio Π decreases up to a
critical ratio Πcrit.. For lower ratios, the velocity remains
constant (Schmitz 2022, p. 45):

ΠB
𝑝𝑟

𝑝𝑙
(17)

Πcrit.=

(
2

𝜅+1

) 𝜅
𝜅−1

(18)

𝑢𝑣=𝑐𝑑𝑎𝑜
√
𝑝𝑙𝜌𝑙 ·

{
𝜓(Πcrit.) Π≤Πcrit.

𝜓(Π) Π>Πcrit.
(19)

𝜓(Π)B
√︂

2𝜅
𝜅−1

(
Π

2
𝜅 −Π 𝜅+1

𝜅

)
(20)

Here, 𝜌𝑙 is the pressure to the left of the orifice and 𝑎𝑜
is the area of the opening of the orifice. 𝑐𝑑 denotes the
discharge coefficient and is dependent on the geometry of
the orifice. The components of the new flux vector can thus
be calculated depending on the condition of the flow:

𝐹1=𝑢𝑣𝜌𝑙 (21)

𝐹2=

{
𝑝𝑙Πcrit. Π≤Πcrit.

𝑝𝑟 Π>Πcrit.
(22)

𝐹3=𝑢𝑣

(
𝜌𝑙

(
1
2
𝑢2
𝑣+𝑒(𝑝𝑙 ,𝜌𝑙)

)
+𝐹2

)
(23)

In Equation 23, 𝑒(𝑝,𝜌) denotes the specific internal energy
as a function of the absolute pressure and the density of the
gas.

When a pressure wave reaches a partially closed valve or
an orifice from either direction, some fraction of the wave
will be reflected at the orifice while another fraction will
be transmitted according to the orifice equation. To include
this effect into the model of the orifice, this work uses the
combined flux approach presented in (Kratschun 2020):

F=
𝑎𝑜

𝑎
F𝑐+

(
1− 𝑎𝑜

𝑎

)
F𝑜 (24)

Where F𝑐 is the flux created by the reflection on a closed
ending, (see subsection 3.4) and F𝑜 orifice flux presented
in this section.
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3.6 Stability of the Simulation
The simulations using the staggered components in this
library are stable. Usually, when using explicit schemes for
hyperbolic differential equations, the Courant-Friedrichs-
Lewy (CFL) condition must be obeyed as a necessary
condition for stability (Courant, Friedrichs, and Lewy 1928,
Page 61):

|𝑢 |Δ𝑡
Δ𝑥

≤1 (25)

To enforce or check this condition, it would be necessary
to check the current simulation time step Δ𝑡 in run time,
which is not possible in Modelica. Therefore, the finite
volume method should not be used with explicit Modelica
solvers like the Euler method. In this work, the implicit
DASSL solver has been used (Petzold 1982), which is
unconditionally stable, although slower than typical explicit
solvers. In case of an event in Modelica, DASSL will
reduce to the Euler method. Therefore, the stability of the
simulation can only be guaranteed by avoiding any events,
or by using an a-stable solver. An example for an a-stable
solver are implicit Runge-Kutta methods.

4 Analytical Validation
The different components, solvers, and gas laws are
validated using the analytical results of the sod test
described in subsection 1.2. A graphical representation
of the system can be seen in Figure 5. In this system,
two pipes with equal lengths are initialized with different
pressures and connected using a connector in the center.
The simulation parameters are listed in Table 1.

4.1 Solvers
A comparison of the different solvers can be seen in
Figure 6. The results with both solvers follow the analytical

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

position [m]

1

2

3

4

5

6

p
re

ss
u
re

 [
b
ar

]

Lax-Friedrichs

HLLC

analytical

Figure 6. Comparison of Sod tests with the local Lax-Friedrichs
Solver and the HLLC solver at 1 ms

solution. The simulated solutions are approaching the
analytical result with increasing degree of discretization.
Thus, the solvers have been implemented successfully.

The results by the HLLC solver are closer to the analyt-
ical solution at every point. The difference in calculation
time between both solvers is negligible. For this reason, the
HLLC solver is preferred for all simulations in this library.

4.2 Gas Laws
In this work, multiple gas laws have been implemented.
Besides the ideal gas law, the Van der Waals gas law has
been implemented as an example of a real gas law. The
main difference between the different gas laws is the
relation between the primitive variables and the specific
internal energy 𝑒(𝑝, 𝜌). A comparison of the gas laws at
high pressure can be seen in Figure 7. The starting pressure
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Figure 7. Comparison of Sod tests with real and ideal gas law
at a very high-pressure drop at 1 ms

in the left half is 700 bar and on the right half 200 bar. At
the initial conditions shown in Table 1, there is no visual
difference between both solvers. For the high pressures
shown in Figure 7, the results differ significantly. The
analytical solution is only based on the ideal gas law and
agrees therefore with the calculation based on the same law.

The default record ThermodynamicState contained
in Modelica.Fluid contains the pressure and the tem-
perature as basic variables. This leads to instabilities when
solving a system using the DASSL solver of OpenModelica.
The Distributed Parameter Pneumatics simulations library
thus contains an alternative implementation of both Media
and ThermodynamicState with the pressure and the
density as internal variables, as seen in Listing 7. With this
alternative record, the simulation runs flawlessly.

Listing 7. "Replacement for thermodynamic state record"

record ThermodynamicState
"Custom thermodynamic state model"

public
SI.AbsolutePressure p(start = 1e5);
SI.Density rho(start = 1.2);

end ThermodynamicState;

The two needed functions Media.setState_ph and
Media.setState_pT return this record as a function of
the pressure and the specific entropy or the pressure and the
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temperature respectively. In the case of the Van-der-Waals
gas equation, there is no closed-form expression for these
functions, and they must be computed iteratively. This
increases the computation time, which is about a factor of 3
larger compared to the ideal gas law. Thus, for low pressures,
which are the most relevant for pneumatic applications, it
is preferred to use the ideal gas law with this library.

4.3 2D Components
A sod test for a two-dimensional component with a circular
cross-section can be seen in Figure 8. The simulated
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Figure 8. Sod test of a 2D pipe section with circular cross-section
at 1 ms

pipe is circular, so the pressure curve is calculated in the
x-direction, parallel to the pipe.

The pipe is discretized into 20 segments in the x-direction
and 7 segments in the y-direction. Due to the smaller
discretization compared to the simulation shown in subsec-
tion 4.1, there is a greater difference between the simulation
and the analytical results. In the two-dimensional case, the
calculation time is multiple times larger compared to the
one-dimensional case. Therefore, simulations with a very
high two-dimensional discretization are not feasible on reg-
ular hardware. Another reason for the decreased accuracy
in this simulation is the use of a 2D-Lax-Friedrichs solver
compared to the HLLC solver used in the one-dimensional
case. Nevertheless, the simulated result still approaches the
analytical result with increasing refinement of the grid. Due
to the changing cross-section, it is not possible to perform
a useful Sod test in the y-direction.

In the case of the rectangular cross-section, the same
validation has been performed in both the x-direction and
y-direction and in both cases, the simulation reaches a
similar agreement with the analytical results as for the
circular cross-section.

The implementation of branched connectors like
T-connectors is the principal use of two-dimensional
components. These components can be constructed by the
combination of several two-dimensional sections with either
circular or rectangular cross-sections. The rectangular
cross-sections are needed to attach a pipe section to another

pipe with an angle of 90◦ because the pipes with round
cross-section taper towards the edge in the y-direction.

5 Experimental Validation
The simulation library presented in this work has been
experimentally validated using a test rig for shock test
experiments. The experiment allows the validation of
components in this library, even if there is no known
analytical solution. This is especially relevant for the open
and closed pipe endings, as well as for the valve.

A pneumatic circuit diagram of the test rig can be seen
in Figure 9. The test rig uses two absolute pressure sensors,
one in the high-pressure section and one in the low-pressure
section, to measure the environmental pressure and the
exact pressure of supplied air. Additionally, there are five
highly sensitive piezoelectric relative pressure sensors
along the pipe. These sensors measure the exact curve of
the pressure at their position.

𝑝1

𝑝2 𝑝3

𝑝4 𝑝5𝑝high 𝑝low

valve

tank

Figure 9. Pneumatic scheme of the test rig used in this work

The low-pressure half is connected to the high-pressure
half by a quick-acting pneumatic valve. According to the
manufacturer, the valve has a cycle time from closed to
open to closed of about 1 ms. In the experiment discussed
in this work, the valve starts in its closed state and is then
opened and closed as fast as possible. No analytical solution
exists for this system. The experimental conditions and the
geometry of the pipes are listed in Table 2.

Table 2. Experimental Parameters

Variable Value

Environmental temperature 21 ◦C
Environmental pressure 1.01 bar
Pressure in the tank 3.15 bar
Length of the left pipe 0.39 m
Length of the right pipe 1.985 m
Diameter of the pipe 0.7 cm
Distance between the valve and 𝑝4 0.59 m
Fluid used in experiment air

A model of the test rig shown in Figure 9 has been set
up using TransientPneumatics. The ending of the tank
to the left, as well as the connection to the environment to
the right, have been modeled using open endings, which
have been presented in subsection 3.4.
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When implementing the valve, the following parameters
can be set in the simulation, see subsection 3.5:

1. The maximal inner diameter of the orifice 𝑎𝑜
2. The discharge coefficient 𝑐𝑑

There is no obvious way to map these parameters to
properties of the valve which can be found in its datasheet.
The same is true for the signal chosen in Modelica, which
controls the degree of opening of the valve. The simulation
parameters selected for this model can be found in Table 3.

Table 3. Simulation Parameters

Variable Value

Discharge coefficient 𝑐𝑑 0.68
Inner diameter 𝑎𝑜 5.7 mm
Valve signal trapezoidal
Opening time 0.4 ms
Open time 0.2 ms
Closing time 0.4 ms
Discretization of the left pipe 40
Discretization of the right pipe 110
Solver DASSL
Tolerance 1×10−6

A comparison between the measured and the simulated
pressure curve at the fourth pressure sensor 𝑝4 can be seen
in Figure 10.
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Figure 10. Comparison between the experiment and the
simulation shown in Figure 9 measured at sensor 𝑝4

The general shape of the first five double peaks match
each other, and therefore it can be concluded, that the reflec-
tion at the open ending has been successfully implemented.
In the last two peaks, the experiment shows a large dilation
of the reflected pressure waves, which is not represented
by the simulation. In the experiment, the amplitude of
the oscillation decreases at a larger rate compared to the
simulation. This is probably due to wall friction and, to
a lesser degree, thermal transport through the walls of the
pipe. Both effects cannot be yet simulated using this library.

A frequency analysis of the experiment and the simula-
tion is depicted in Figure 11. The first peak corresponds
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Figure 11. Comparison between the experiment and the simula-
tion of the spectral power spectrum of the signal shown in Figure 10

to the principal eigenfrequency of the air column in the
right pipe of the test rig. The fundamental tone of a tube
of air, which is open at one and closed at the other, can be
found approximately by the following equation (Rienstra
and Hirschberg 2004):

𝜈=
𝑉

4𝐿
(26)

Where 𝜈 is the frequency of the fundamental tone,
𝑉 ≈ 343ms−1 is the speed of sound and 𝐿 is the length
of the pipe. This equation yields about 43.2 Hz for this
experiment, which is in good agreement with the first peaks
seen in Figure 11.

There are secondary peaks at higher frequencies seen
in the experimental data, which are not present in the
simulation. These peaks are probably due to partial
reflection at the drilling holes of the sensors or at short
cross-section jumps at the screw fittings. The frequency for
two reflections at a closed ending is:

𝜈=
𝑉

2𝐿
(27)

According to this formula, the frequency for a reflection
between the valve and 𝑝4 is approximately 291 Hz; the dis-
tance between the valve and the connector in between 𝑝4 and
𝑝5 (see Figure 9) is 1.82 m which corresponds to 209 Hz.

Considering the assumed simplifications, this library has
been successfully validated experimentally.

6 Summary, Evaluation, and Outlook
In this section, this paper is concluded by a summary of
the results, as well as a critical evaluation of the presented
method.

The compilation and simulation time for systems with
two-dimensional components is considerable. Therefore,
this library cannot be used for complex systems with many
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two-dimensional connections. The presented method allows
calculating events in systems with arbitrary gas laws. There-
fore, this library can be helpful for calculating gas transport
in process engineering. Such systems are smaller and have
a simpler topology compared to pneumatic systems, which
allows performing the simulation in a short time.

Realistic systems will contain cross-section jumps and
elastic tubes, which still need to be implemented. The
presented method can further be improved by including
wall friction and thermal conduction. It is possible to
include wall friction, thermal conduction, and elastic tubing
by adding a source term to the differential equations shown
in Listing 2. A cross-section jump can be included by
using the analytical solution of the Riemann problem at
a cross-section jump, similar to the orifice presented in
subsection 3.5 (Han, Hantke, and Warnecke 2012).

The library presented in this work allows for the
calculation of highly dynamic transient events in pneumatic
systems consisting of pipes, valves, connections, and open
or closed endings. The parts have been validated using the
analytic solution of the Sod tests, as well as experimentally.
In general, there is a good agreement between the simulation
and the analytical and experimental results.
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Nomenclature

Sym. Meaning Sym. Meaning

𝑎 cross-section 𝑎𝑜 opening of orifice
𝐶𝑝,𝐶𝑣 heat capacity 𝑐𝑑 disch. coefficient
𝐸 total energy 𝑒 sp. internal energy
F flux vector 𝑓 general function
𝐿 length of pipe ¤𝑚 mass flow rate
𝑝 abs. pressure 𝑡 time
U conserved var. 𝑢 gas velocity
𝑉 speed of sound 𝑥, 𝑦 position

𝜅 heat cap. ratio 𝜈 frequency
Π pressure ratio 𝜌 density of gas
𝜓 orifice function
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Abstract  
Almost half of the energy consumed globally is under 

the form of heat, produced mainly through fossil fuels. 
Switching to using renewable energy instead is a real 
challenge. Combining renewable thermal energy with 
thermal storage is a complex system to operate. To 
harness the full potential of thermal plants, advanced 
control strategies need to be implemented. Dynamic real-
time optimization (DRTO) seems promising to fine tune 
controller setpoints of plants. The goal of our study is to 
ultimately enable DRTO by using Optimica because of its 
ease of use and Modelica’s modularity. This paper 
presents a Modelica library developed to first perform 
offline dynamic optimization with Optimica, and would 
ultimately be used in a DRTO strategy. The library 
enables to model a renewable thermal plant composed of 
solar thermals, heat pumps and thermal storages. The 
model of each subcomponent has been validated. Initial 
dynamic optimizations of plant operation give promising 
results. 

Keywords: Dynamic optimization, Thermal plant, 
Optimica, Solar thermal, Heat pump 

1 Introduction 
Completely replacing fossil fuels for heat production by 

renewable energy requires combining several heat 
sources. The integration of thermal renewable energy in 
conversion/storage/distribution systems, in particular, 
solar thermal energy, faces several obstacles. Renewable 
thermal systems have varying thermal inertias and are 
prone to environmental disturbances. These mixed 
sources have to be well controlled to maximize 
performance and competitiveness of the global system. 

Combining both a mix of renewable thermal energy 
sources and large thermal energy storage is quite 
innovative and has never been implemented in France in 
large scale heat plants. Such innovative systems have 
successfully been built and operated in a few Northern 
European countries. The main learning highlighted by 
those first plants is the need to fine tune system setpoints 
in real time to both maximize energy output and minimize 
operational cost. In China, a study demonstrated that in 
specific cases of large-scale solar heating systems 
integrated with water-to-water heat pumps and pit storage, 

a 16% decrease of the leverage cost of heat (LCOH) can 
be achieved by operation optimization (Zhang et al. 2023). 

Since renewable heat plants are sensitive to external 
variation such as changing weather, electricity cost, and 
heat demand, real-time optimization (RTO) is a method 
that seems perfectly adapted to them. Although it is 
widely used in the field of chemical engineering, using 
RTO in the field of energy is quite recent. Adding 
dynamic optimization would allow to handle the thermal 
inertias of the system. Then, Dynamic Real-Time 
Optimization (DRTO) seems particularly adapted to the 
management of thermal installations combining several 
renewable production sources. 

In our global study, DRTO combined with Non-Linear 
Programming (NLP) will be used to optimize the 
operation of a multi-energy heat plant. The optimization 
will be performed using Modelica language and the 
Optimica Compiler Toolkit (OCT) from Modelon. 

The objective of this optimization is to maximize the 
heat produced by the plant, while minimizing the 
operational cost (mainly electric consumption).  Weather, 
electricity, and heat demand forecasts are included in the 
model. The optimization variables are temperature and 
power setpoints for each heat source. 

The modelling work and initial dynamic optimizations 
are presented in this paper. DRTO theory and results 
won´t be discussed in detail in this paper. 

1.1 Literature review 
JModelica is an open-source platform (Åkesson et al. 

2009) for numerically solving large-scale dynamic 
optimization problems of Modelica models. This tool 
evolved during the years, in particular by including 
CasADi. The actual framework JModelica.org 
(Magnusson and Åkesson 2015) became Optimica 
Compiler Toolkit (OCT) under a Modelon license in 2020. 

JModelica.org is used since its development in many 
research works, with some in heat production 
optimization. Runvik et al. (2015) developed a short-term 
planning optimization for a district heating system solved 
in two steps, one MILP (Mixed Integer Linear 
Programming) and one NLP using JModelica. More 
recently, Rohde et al. (2020) used JModelica to 
dynamically optimize control setpoints for an integrated 
heating and cooling system, including heat pump and solar 
thermal, with thermal energy storages. 
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Other works used Modelica language to model the heat 
system but chose other ways to optimize the heat 
production. Liu et al. (2018) used Dymola to model the 
system composed of CO2 heat pump coupled with hot and 
cold thermal storages, and genetic algorithm to maximize 
the efficiency of the system. 

Dynamic optimization of heat plants including solar 
thermal and thermal storage using NLP has been also 
performed by Scolan et al. (2020). They optimized the 
design and the control of the plant using the optimization 
software GAMS for modeling and optimization. More 
recently, Untrau et al. (2023) proposed a DRTO of solar 
thermal plant including thermal storage also using GAMS, 
combined with a detailed simulation model of the real 
plant in Matlab. 

1.2 Purpose of this work 
Dynamic optimization with Optimica requires dynamic 

models of the thermal plant formulated with continuous 
equations; discontinuities would be hardly interpreted by 
the time discretization method (collocation method) used 
by OCT. The objective of this research work is to develop 
a library in Modelica compatible with Optimica to model 
a thermal plant composed of a solar thermal field, a heat 
pump, and a thermal energy storage as shown in Figure 1. 
Modelica libraries already exist and model some of the 
components of thermal plants, but either are not 
compatible with Optimica or have too complex fluid 
modeling, which hinders convergence of the optimization. 

This library allows to model and dynamically optimize 
several plant layouts using the modularity of Modelica. 

First, we will present the library and the models used 
for each component of the thermal plant, then we will 
discuss the simulation results, and finally present the 
optimization methodology and the first optimization 
results. 

2 Library 
The library is developed in Modelica language using 

Modelon Impact software. 
Each main component of the library and associated 

controller will be detailed in the following sections. The 
controllers will be used to initialize the optimization 
problem as detailed in section 4. 

2.1 Hydraulic representation and interfaces 
Two different fluids will be used in this library, water 

on storage and process side, and a glycol-based water 
solution on solar side. Glycol-based water solution is used 
to avoid frosting inside the solar field during winter (in 
European countries). 

To simplify modeling, the only hydraulic parameters 
considered in this library are temperature and mass flow 
with constant fluid properties. Density 𝜌 and specific heat 
capacity 𝐶𝑝 only vary of few percents over the operating 
temperature range (40 to 90°C). The main impact of those 
hypotheses is on the viscosity of the glycol-based water 
solution, which is varying a lot over the operating 
temperature range. To further simplify and ensure 
optimization convergence, pressure loss is not modeled 
here. This hypothesis leads to inexact electricity 
consumption of the pump on solar side. However, as the 
main electricity consumption is from the heat pump, 
around 15 times more than the solar pump in the plant 
studied (based on Newheat’s proprietary plant design 
tool), it will only lead to a small error in the overall 
electricity consumption. 

The Modelica connectors used in this library are 
propagating only temperature and mass flow of the fluid. 
The mass flow is generated by the pump and is then 
propagated through each component of the hydraulic loop.  

2.2 Solar Field (SF) 
The solar thermal collector is the equipment used to 

transform solar radiation into heat. The collectors 
modeled here are Flat Plate Collectors (FPC). They 
provide heat at low temperature (below 100°C). Figure 2 
shows the main components of the FPC and how it works.  

 
Figure 2. Flat plate collector 

Solar Field 

Solar Pump 

Recirculation 
Valve 

PHEX 
TTES Heat Pump 
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To process 
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Figure 1. Typical heat plant assembly 
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The solar field is usually composed by several parallel 
loops of collectors, and each loop is composed by several 
collectors in series. This layout is described in Figure 3. 

 
Figure 3. Solar field layout 

2.2.1 Model 

The model follows the standard ISO/FDIS 9806:2017 
(International Standard 2017), using the quasi-dynamic 
equation of solar thermal collectors. This standard 
determines characteristic parameters for each collector 
(𝜂, 𝑐ଵ, 𝑐ଶ and 𝑐ହ in our model). 

 
Figure 4. Solar field model 

The whole solar field is modeled as an equivalent panel 
with 𝐴𝑟𝑒𝑎 equal to the whole solar field area, assuming a 
uniform distribution between each panel loop of the solar 
field, whose power is 𝑄ௌி

̇ .  
The model in Figure 4 is described by equations 

(1)(2)(3), with 𝐺𝑇𝐼 the global irradiance received by the 
collectors, �̇� the mass flow inside the solar field, 𝑇 
the ambient temperature, and 𝑇 , 𝑇௨௧ , 𝑇  the inlet, 
outlet and mean temperatures of the solar field. 

𝑄ௌி
̇ = 𝐴𝑟𝑒𝑎 (𝜂 𝐺𝑇𝐼 − 𝑐ଵ (𝑇 − 𝑇) −

𝑐ଶ (𝑇 − 𝑇)ଶ − 𝑐ହ
ௗ ்

ௗ௧
) 

(1) 

𝑄ௌி
̇ = �̇� 𝐶𝑝 (𝑇௨௧ − 𝑇) (2) 

𝑇 =
𝑇 + 𝑇௨௧

2
 (3) 

2.2.2 Control 

In most solar thermal plants, the outlet temperature of 
the solar field is controlled to follow a temperature 
setpoint which could vary within the year. This 
temperature is controlled thanks to the mass flow inside 
the panels. Thus, the mass flow to be provided by the solar 
pump is calculated in the simulation to get the temperature 
setpoint at the outlet of the solar field by solving equations 
(1)(2)(3) without the differential term, as standardly done 
in solar thermal plants. 

2.3 Plate Heat Exchanger (PHEX) 
A heat exchanger is needed to transfer heat from the 

solar field loop (filled with glycol-based water) to the 
storage and supply loop (filled with water). PHEX are 
used in most solar thermal plants operating at low 
temperature (below 100°C). 

2.3.1 Model 

 
Figure 5. Plate Heat Exchanger model (icon from DLR 

ThermoFluid Stream Library) 

PHEX in Figure 5 is modelled with constant efficiency 
(𝜀ுா between 0 and 1, a value of 0.9 is used to match 
Newheat’s plants data) in equation (4) and is used to have 
the heat capacity flow ratio equals to 1 in equation(5). 

�̇� = 𝜀ுா �̇�ଵ 𝐶𝑝ଵ (𝑇ଵ, − 𝑇ଶ,) (4) 

𝑅 =
�̇�ଵ 𝐶𝑝ଵ

�̇�ଶ 𝐶𝑝ଶ
= 1 (5) 

The energy conservation gives those latest equations to 
get the outlet temperatures: 

�̇� = �̇�ଵ 𝐶𝑝ଵ (𝑇ଵ, − 𝑇ଵ,௨௧) (6) 

�̇� = �̇�ଶ 𝐶𝑝ଶ (𝑇ଶ,௨௧ − 𝑇ଶ,) (7) 

2.3.2 Control 

The mass flow on side 2 will be computed to always 
respect the equality of the two heat capacity flows as in 
equation (5). 

2.4 Tank thermal energy storage (TTES) 
TTES is an essential element of solar thermal plants, it 

allows desynchronizing solar heat production and process 
heat demand, as the heat production depends on a 
fluctuating solar irradiance. During the charge phase the 
solar field provides heat to the tank (cold water from the 
bottom is warmed up by the solar field before coming back 
to the top of the tank). Conversely, during the discharge 
phase the tank provides heat to the process (hot water from 
 the top of the tank transfers heat to cold water coming 
from the process). 

The tank used in this work is an insulated water tank. 

2.4.1 Model 

Different tank models are available in the literature 
(Dumont et al. 2016). The model used in this work is a 
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one-dimensional model called Multi-Node. Tank is 
vertically discretized in n layers (or nodes) with uniform 
temperature, considering a constant and incompressible 
volume of water in the tank (Figure 6).  

 
Figure 6. Spatial discretization of TTES (Scolan et al. 2020) 

The equation governing the stratified thermal model for 
conduction and convection is the energy equation (8) 
(Hawlader et al. 1988). 

డ்(௫,௧)

డ௧
+ 𝑣 

డ்(௫,௧)

డ௫
= (𝛼 + 𝜖௧) 

డమ்(௫,௧)

డ௫మ +
 

ఘ  ௌ
 (𝑇(𝑡) − 𝑇(𝑥, 𝑡)) 

(8) 

Where 𝑇(𝑥, 𝑡)  is the storage fluid temperature 
dependent on height 𝑥 and time 𝑡, 𝑣 the flow velocity, 𝛼 
the thermal diffusivity, 𝜖௧ the diffusion coefficient due to 
turbulent mixing caused by buoyancy effect, 𝑈 the overall 
heat transfer coefficient, 𝑆 the tank cross-sectional area, 
and associated 𝑃 perimeter. 

The tank is discretized into n nodes from equation (8) 
using a finite difference method (Scolan et al., 2020). 
Each layer is exchanging heat with its neighboring, spatial 
derivatives being then expressed by second order finite 
differences. 

In the studied heat plant, solar heat and heat pump could 
lead to a temperature inversion in the tank (an upper layer 
which is colder than a lower one). It generates a mixing 
flows called buoyancy effect or plume entrainment 
(Hawlader et al. 1988). A model of buoyancy was 
implemented in Modelica IBPSA library (IBPSA 2013). 
Based on IBPSA model we implemented an equivalent 
model computing �̇�௩, as a mixing mass flow between 
layer i and layer i-1 following equations (9)(10)(11). 

𝑇ௗ, = 𝑇 − 𝑇ିଵ (9) 

�̇�௩, = ൜
𝑧 𝑇ௗ, , 𝑇ௗ() ≥ 0

0, 𝑇ௗ() < 0
 (10) 

𝑧 =
𝑚௬

𝜏. 1𝐾
 (11) 

where 𝜏 is a time constant for mixing. 

2.5 Water-to-water Heat Pump 
The first heat pump used in this work is a water-to-

water compression heat pump.  

Heat pump could be used in several ways in a thermal 
plant. In this work, as shown Figure 1, the solar heat stored 
in the tank is used as cold source (evaporator side); the 
condenser side is warming up the cold water coming from 
the industrial process. 

2.5.1 Model 

 
Figure 7. Heat pump model 

To model the heat pump, we need a simplified model 
because detailed one would be too complex for 
optimization and prevent convergence. We decided to 
neither model the refrigerant fluid inside the heat pump 
nor its dynamics. 

The heat pump is modeled using Coefficient Of 
Performance (COP) modeling with evaporator and 
condenser temperatures mapped on a datasheet. The heat 
pump can be used at partial load. We first assume that 
COP does not vary with the load of the heat pump. 

• Energy conservation: 

�̇�ௗ = �̇�௩ + �̇�  (12) 

�̇�ௗ = �̇�ௗ  𝐶𝑝ௗ ൫𝑇ௗ,௨௧ − 𝑇ௗ,൯ (13) 

�̇�௩ = �̇�௩ 𝐶𝑝௩ ൫𝑇௩, − 𝑇௩,௨௧൯ (14) 

• COP modeling: 

The COP is defined as: 

𝐶𝑂𝑃 =
�̇�ௗ

�̇�

 (15) 

We model the COP as a polynomial expression of 
temperature lift between evaporator and condenser. This 
method is used by Fischer et al. (2017) and Ruhnau et al. 
(2019). 

𝐶𝑂𝑃 = 𝑎ଶ 𝛥𝑇௧
ଶ + 𝑎ଵ 𝛥𝑇௧ + 𝑎  (16) 

𝛥𝑇௧ = 𝑇ௗ,௨௧ − 𝑇௩,  (17) 

Coefficients 𝑎 , 𝑎ଵ  and 𝑎ଶ  are determined using the 
datasheet of the heat pump at full load. 

• Compressor modeling: 

The compressor is modeled with a constant efficiency 
𝜂 and its available power �̇�,௫ depends on the 
temperature of the fluid inside him. Fischer et al. (2017) 
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propose to consider only evaporator temperature to 
determine the available power. 

𝜂 =
�̇�

𝑃,

 (18) 

�̇�,௫ = 𝑏ଵ 𝑇௩, + 𝑏  (19) 

Coefficients 𝑏  and 𝑏ଵ  are determined using the 
datasheet of the heat pump at full load. 

Partial load y is defined as below: 

𝑦 =
 �̇�

�̇�,௫

 (20) 

The electric power of the compressor is considered as 
an expenditure in the heat plant operation. 

2.5.2 Control 

To model the COP, we used specific working 
conditions. All operating points are usually given with a 
constant temperature difference between the inlet and 
outlet of evaporator and condenser. We also want to be 
able to control the evaporator and condenser temperatures. 

To control the temperature difference, we need to add a 
pump, and to control the temperature, we need to add an 
ideal three-way valve, on each side as shown Figure 8. The 
valve position and the mass flow are ideally controlled to 
get the temperature setpoints (this means specification 
equations are added to the system to be solved). 

 
Figure 8. Heat pump with recirculation loop model 

The heat pump is turned on when the cold source is 
warm enough (above the minimal temperature accepted at 
evaporator) and the warm source is cold enough (below 
the maximal temperature accepted at condenser). 
𝑇ௗ,௨௧ and y will be computed to follow heat demand 
temperature and mass flow. 

2.6 Pump 
The electricity consumption of the pumps will be 

considered as an expenditure in the heat plant operation. 
Pumps and heat pump are the main operating cost of the 
plant.  

2.6.1 Model 

The electricity consumption of a pump is determined by 
equation (21) where 𝑃,௫  is the electric power 
measured on the real pump at its maximal mass flow 
�̇�௫. 

𝑃 = 𝑃,௫  ൬
�̇�

�̇�௫

൰
ଷ

 (21) 

2.6.2 Control 

The pump works as a mass flow generator, it directly 
provides the mass flow desired. It does not need specific 
control. 

3 Simulation results 
In previous section, all the models have been detailed. 

They need now to be validated with experimental results 
or datasheet, before simulating a full plant. 

3.1 Validation 
All models (except heat pump) are compared to 

measurement from solar thermal plants operated by 
Newheat. For solar field and heat exchangers we used data 
from Solthermalt, a plant owned by Kyotherm providing 
heat to a malthouse (Newheat 2020) in Issoudun, France. 
Tank model has been compared to the one build in 
Lactosol project, a solar plant providing heat to a whey 
powder production site (Newheat 2023) in Verdun, 
France. 

Following sections show the result of comparison 
between the model and the measurements. 

In figures below, time of 0.0 day corresponds to 12AM, 
and 0.5 day to 12PM.  

3.1.1 Solar Field 

 
Figure 9. Solar field validation 

Figure 9 shows the solar global tilted irradiation and the 
outlet temperature of a 5000 m² solar field during three 
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days. Inlet temperature and solar irradiation 
measurements are coming from Solthermalt plant. 

The model fits quite well to the measurements except 
during night periods. The inlet and outlet temperature 
sensors are in an insulated pipe inside a building; 
therefore, they do not decrease to the ambient 
temperature. In the model, the solar field mean 
temperature decreases to ambient temperature when there 
is no irradiation. As ambient temperature is around 10°C 
and measured inlet around 30°C (instead of 10°C if pipes 
were not insulated), the outlet is logically computed to        
-10°C to keep the mean of the inlet and outlet 
temperatures at 10°C. Since there is no mass flow during 
this period, heat produced by the solar field is not 
impacted. 

3.1.2 Plate Heat Exchanger 

 
Figure 10. PHEX validation – solar side temperature 

 
Figure 11. PHEX validation – storage side temperature 

Figure 10 and Figure 11 show the inlet and outlet 
temperature of the plate heat exchanger between the solar 
loop and the storage. Measurements are coming from the 
same plant and the same days as for the validation of the 
solar field. 

Same as previous section, the model fits well to the 
measurements except when the solar and storage pumps 
are off. 

3.1.3 Tank thermal energy storage  

Measurements are coming from Lactosol plant. A 
3000 m3 insulated water tank is installed in this solar plant 
to buffer the heat provided by the solar field and the 
consumption of the whey powder production site. This 12-

meter-high tank is instrumented with 12 temperature 
sensors (about one every meter). 

Two models are simulated and presented, one with 12 
layers in Figure 12 and one with 60 layers in Figure 13. 
Temperature sensors are compared to the temperature at 
equivalent height in the simulation. 

The measurement period is composed of a 9-hour 
charge phase and an 8-hour discharge phase separated by 
a 7-hour standby phase.  

On the one hand, simulation fits better to measurement 
with 60 layers than with 12. A higher number of layers in 
the tank allows indeed higher temperature gradients which 
are needed to represent the thermocline zone inside the 
tank. But on the other hand, each layer is adding a state 
variable to the model and then increasing the size of the 
optimization problem. 

 
Figure 12. TTES validation – 12 layers 

 
Figure 13. TTES validation – 60 layers 

The number of layers will have to be selected carefully 
to model with a satisfactory accuracy without adding too 
much complexity to the optimization problem. For 
optimization we decided to set the number of layers at 10 
to reduce the size of the optimization problem. 

3.1.4 Heat pump 

Figure 14 below compares the COP at full load between 
the model and the datasheet of an industrial heat pump 
(WWHS ER3b) made by Ochsner Energie Technik. 
Temperatures are given for the secondary medium (water) 
and not the primary medium (refrigerant). 

The model fits well the datasheet for mean temperatures 
but leads to a 6.6% error for cold evaporator temperature. 
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The model overestimates a bit the COP, which results in 
an underestimation of the electricity consumption. 

 
Figure 14. Heat pump COP validation 

All component models are now validated separately. 
The next step is to simulate a full plant with controllers. 

3.2 Full plant simulation  
The simulated plant is a virtual plant composed of a 

solar field of 14248 m², a plate heat exchanger with a 
constant efficiency of 0.9, a 3000 m3 tank, and a 3.1 MW 
heat pump. The layout of the plant is described in Figure 
1. The heat pump is connected to the tank on the 
evaporator side while the condenser side is connected to 
the process. 

The heat consumer is represented with a constant heat 
demand (constant return temperature, and constant mass 
flow and temperature setpoints). The plant is controlled by 
the expert rules defined in section 2. 

The simulation runs over two spring days, the first one 
is cloudy and the second one sunny; Figure 15 represents 
the global irradiation of those two days. An optimization 
of the control of this plant will be performed on the same 
days in section 4.3. 

 
Figure 15. Full plant simulation - Global Tilted Irradiation 

Inlet and outlet temperatures of the solar field are 
presented in Figure 16. The setpoint given to the solar 
field is 53°C. The outlet of the solar field is following well 
the setpoint except for the second day where the 
irradiation is too strong to limit the outlet temperature 
(because the solar pump is at its maximum speed as it can 
be seen in Figure 17). 

 
Figure 16. Full plant simulation - Solar field temperature 

 
Figure 17. Full plant simulation - Mass flows 

The tank is discretized in 10 layers (layer 1 is the top 
layer and layer 10 is the bottom layer). The first day is too 
cloudy to fill the tank completely, while the second day 
allows filling the tank at higher temperature (Figure 18). 
Evaporator outlet temperature is warmer than tank bottom 
temperature during the second day, which homogenizes 
the temperatures of layers from 3 to 10. 

 
Figure 18. Full plant simulation - Storage temperatures 

 
Figure 19. Full plant simulation - Heat pump temperatures 
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Heat pump temperatures are shown in Figure 19. Heat 
pump is turned on when the top tank layer temperature 
exceeds the minimal temperature accepted at evaporator 
inlet. We can see in Figure 17 when the heat pump is on 
(supplied mass flow at 15kg/s). Finally, the evaporator 
temperature is controlled to be as high as possible while 
staying below its maximum (55°C). 

The plant behaves as expected with validated models. 
We developed and validated a library to simulate 
renewable thermal plants. The next objective is now to 
optimize control variables and see how behave the models 
with optimization solver. 

4 Optimization 
Initial optimization presented in this paper is an offline 

optimization. It means that the optimizer is not yet 
connected to the real plant (or a highly detailed model). 
The goal is to try to optimize the plant in typical days and 
to define the ideal optimization sequences. Once the 
offline optimization is working well enough, it will be 
plugged to the real plant to try real-time optimization 
(optimization launched every hour considering the 
changes in the system states and the updated forecasts). 

4.1 Tools 
The tool used for optimization in this research work is 

Optimica Compiler Toolkit (OCT) under Modelon license 
for academic and commercial use. This tool is coming 
from JModelica.org which became OCT since 2020. 
Magnusson and Åkesson (2015) presented how 
JModelica.org is working. OCT workflow is described in 
Figure 20. 

The first step is to describe the continuous models of 
the system to optimize in Modelica language. Optimica 

language (which is an extension of Modelica language) 
will be then used to describe the constraints and objectives 
of the optimization problem. 

Modelica and Optimica models are transformed into 
optimization problem in the form of DAEs (Differential-
Algebraic system of Equations), which is sent to CasADi, 
before being discretized via orthogonal collocation. 
Finally, the discretized optimization problem is sent to the 
solver (IPOPT) which will optimize the control variables 
of the system. 

4.2 Methodology 
The objective of optimization is to maximize heat 

supplied by the thermal plant, while minimizing 
operational costs. In this first optimization, this equates to 
maximizing global profit of the plant, electricity price 
assumed to be fixed. The control variables to be optimized 
are the outlet temperature of the solar field, evaporator 
outlet temperature, and the activation of the heat pump. 

The optimization is composed of several stages detailed 
in Figure 21: 

• An initial simulation of the plant is done with a 
control strategy, which would be implemented in a 
real plant (expert rules detailed in section 2). This 
simulation provides the optimizer an acceptable 
solution, which is the starting point of the optimizer.  

•  Several optimizations are done successively 
releasing degrees of freedom. Each result is 
initializing the next optimization. Last optimization 
result (with all degrees of freedom together) is then 
used to get optimal trajectories for several setpoints 
of the plant. This iterative approach was chosen to 
improve convergence of the optimization, otherwise 
too complex to be solved directly. 

Figure 21. Optimization methodology 

Figure 20. Optimica Compiler Toolkit workflow 
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• Finally, to perform DRTO, the controller of the real 
plant (or a highly detailed model) will use the 
optimal setpoints to operate the plant exposed to real 
disturbances. This part is not described in this paper. 

4.3 First optimization results 
In this section is presented the first optimization results 

using the developed Modelica library. The plant 
optimized is the one presented in section 3.2. Each figure 
below compares the standard control strategy used in 
section 3.2 (named sim) and optimized control (named 
optim). 

The optimization variables are the outlet temperature of 
the solar field, evaporator temperature, and the activation 
of the heat pump. 

One important thing to remind is that the efficiency of 
the heat pump (COP) is increasing with evaporator 
temperature (Figure 14). 

 
Figure 22. Mass flows of each hydraulic loop. The time scale 
reads as follow (likewise for all following graphs): 0.5 day = 

12PM, 1.0 day = 12AM. 

Figure 22 shows the mass flow supplied to the process 
(coming from the heat pump) shifting from the first day 
(around 0.5 day) to the first night (around 1.0 day), 
knowing that heat demand of the process is considered 
constant. This suggests that the heat pump does not turn 
on as soon as the tank is filled with enough hot water but 
rather is led to wait for the night. It allows the tank to rise 
in temperature during the first day (Figure 23). 

 
Figure 23. Storage Temperature 

Figure 24 shows that the first hours of the night the heat 
pump is turning on with a higher evaporator temperature 

(around 42°C) than the rest of the night (around 34°C), 
which allows to have a better COP the first hours of the 
night. 

 
Figure 24. Heat pump evaporator temperature. Tin evap sim 

and T from tank overlap across the whole time range. 

Figure 25 shows that the solar field outlet temperature 
is different for the two days. The first day, it is lower than 
the simulation, it leads to less heat losses in the solar field. 
But the second day this temperature is much higher. This 
could be explained by the fact that at the end of the second 
day the tank is full enough to provide heat continuously to 
the heat pump in both cases: simulation and optimization 
(Figure 23). Then, the higher is the solar field temperature, 
the higher the temperature could be at the evaporator, and 
thus the COP. It also means that, the optimizer does not 
care about what could happen after the optimization time 
horizon: we could imagine a third cloudy day which 
would need to have a tank more filled (with lower 
temperature) at the end of the second day than the 
optimization result. This example shows that the result of 
the optimization may depend on the considered time 
horizon. Further, to prevent the optimizer to empty the 
tank at the end of optimization and closer emulate the 
behavior of a real system, tank state could be constrained 
to approach the final value obtained through the initial 
simulation. 

 
Figure 25. Solar Field Temperature 

Finally, Figure 26 shows the instant profit of the plant, 
depending on the heat supplied and electricity 
consumption. We can also see the shift of the heat 
production time from the first day to the first night.  

Session 1-C: Applications of Modelica for optimization and optimal control 1

DOI
10.3384/ecp20495

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

103



 
Figure 26. Instant value of the plant 

Table 1 gives the improvement provided by the optimizer. 
The gain seams huge (+21.4% of profit), but it is still not 
considering what is happening after the two days. 

Table 1. Plant economic results for 2 simulated days 

 Electric consumption 
(k€) 

Heat 
supplied 
(k€) 

Profit 
(k€) 

Simulated 15.2 20.6 5.41 

Optimized 18.8 25.4 6.56 

Gain + 23.8% +23.2% +21.4% 

5 Conclusion and outlook 
To conclude, we developed and validated a library 

which is compatible with Optimica and models a 
renewable thermal plant. Then we obtained interesting 
dynamic optimization results of the overall system. 

However, the dynamic optimization result is not yet 
satisfactory since it does not consider the necessity to be 
able to provide heat after the optimization end time. It 
could lead to non-optimal results in the real plant, even if 
only the first hours of the optimization result would be 
sent to the real plant controller as the optimization will be 
updated every hour. It also points out the need to perform 
an offline dynamic optimization based on forecasts on a 
long enough time horizon before starting DRTO which 
will correct the control variables trajectories taking into 
account real disturbances. The final state of the tank could 
be considered in the optimization objective to get a better 
result. 

We could also consider stratification indicators into the 
optimization objective, because stratification inside the 
tank is affecting a lot the efficiency of the storages. Some 
research works developed indicators to quantify the 
quality of stratification in thermal storages. 

Equipment modeling could also be improved. 
Efficiency of the PHEX is considered constant. An 
operating point tabular efficiency could make PHEX 
model more accurate, with minimal added complexity. A 
slightly more complex model of COP could decrease error 
of the COP observed of the heat pump. The current storage 
model loses accuracy due to low discretization. Other 

storage models could be considered to either reduce the 
number of state variables or improve accuracy.  

Once the offline optimization will be robust enough, 
this work will be extended to real-time optimization of the 
thermal plant. A highly detailed model describing the 
plant will be needed, so that the optimizer can be run and 
finetune the plant setpoints in real-time. 
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Abstract
In this work, we address challenges associated with
multi parameter calibration of complex system mod-
els of high computational expense. We propose to re-
place the Modelica Model for screening of parameter
space by a computational effective Machine-Learning
Surrogate, followed by polishing with a gradient-
based optimizer coupled to the Modelica Model.
Our results show the advantage of this approach com-
pared to common-used optimization strategies. We
can resign on determining initial optimization val-
ues while using a small number of Modelica model
calls, paving the path towards efficient global opti-
mization. The Machine Learning Surrogate, namely
a Physics Enhanced Latent Space Variational Au-
toencoder (PELS-VAE), is able to capture the impact
of most influential parameters on small training sets
and delivers sufficiently good starting values to the
gradient-based optimizer.
In order to make this paper self-contained, we give a
sound overview to the necessary theory, namely Vari-
ational Autoencoders and Global Sensitivity Analysis
with Sobol Indices.
Keywords: Sensitivity Analysis, Sobol-Indices, Varia-
tional Autoencoders, VAE, Physics-Enhanced Latent
Space Variational Autoencoder, PELS-VAE, Model
Calibration, Global Optimization, Machine Learning
Surrogate

1 Introduction
To enable model based investigation of ”real world”
technical systems the underlying Modelica system
models can quickly grow in size and computational ex-
pense. When they are applied in extensive parameter
studies, in particular for model calibration or model
based optimization, computation becomes a resource
intensive task: if the objective function cannot be de-
composed into submodel dependencies but depends
on the model as a ’whole’, then also the whole model
needs to be simulated.

In practice optimization based on such models is
limited to a few varied parameters and to local, gra-
dient based optimization algorithms. If the mod-
eller has sufficient knowledge on the model, reason-

able choices of relevant parameters as well as start-
ing points for the local optimization algorithm can
be made from experience. But for complex models
this empirical approach may suffer from overlooking
parameters and the optimization algorithm running
into local minima of the objective function due to the
chosen starting points in parameter space.

In this paper we address these issues with a com-
bined approach: A Machine Learning Model, namely
a Physics Enhanced Latent Space Variational Au-
toencoder (PELS-VAE) (Martínez-Palomera, Bloom,
and Abrahams 2020; Zhang and Mikelsons 2022) is
trained on data generated by the Modelica model.
It captures the dependencies of model output to the
most influential parameters, determined by a preced-
ing sensitivity analysis (Sobol 1993), while requiring
a limited set of training data. This surrogate is com-
putationally cheap, and can be used to apply a global
optimization algorithm that relies on a large number
of model runs. After this global screening, a subse-
quent local optimization based on the original physi-
cal model (polishing) is performed.

Figure 1. Schematic of standard single office, taken from
(Freund and Schmitz 2021)

We choose to test our approach on a computational
inexpensive, thermal Modelica model of a single office
(Figure 1) with measurement data available for cali-
bration (Freund and Schmitz 2021). Like this, data
generation for the machine learning models is fast and
we are able to focus on the application of the PELS-
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VAE for parameter calibration, while being able to
cross check all obtained results against a brute force
global optimization based on the original model.

Various Optimization Tools suitable for Model-
ica models already exist, like the Dymola Opti-
mization Library, GenOpt (University of Califor-
nia 2023), ModestPy for Parameter Estimation with
FMUs (Arendt et al. 2018), AixCaliBuHA (Wüllhorst
et al. 2022) or ModelOpt (XRG Simulation GmbH
2023). All of these tools vary in detail, but build
on common-known global and local Optimization Al-
gorithms like Particle Swarm Optimization, Genetic
Algorithms, Sequential Least Squares or Nelder-Mead
Algorithm and do not generate surrogate models.
In contrast to this, surrogate based optimization aims
to represent computationally expensive models by the
use of a simpler surrogate to significantly save compu-
tational resources. Different kinds of surrogate mod-
els like linear regression, support vector regression,
radial basis functions or kriging (Gaussian process re-
gression) are commonly used (Bhosekar and Ierapetri-
tou 2018). Artificial Neural Network as a generaliza-
tion of regression models are also a possible surrogate
choice. A promising subclass is Bayesian Optimiza-
tion, which consists of a probabilistic surrogate model
and a sequential called loss function that enables op-
timal, active sampling of the objective function that
should be replaced (Shahriari et al. 2016). Bayesian
Optimization proved efficient in parameter calibra-
tion of a Modelica-modeld HVAC-system (Martinez-
Viol et al. 2022). In comparison to these techniques,
our approach replaces the actual physical model for a
fixed scenario, not the cost function of an optimiza-
tion objective.

This paper is organised as follows: section 2 in-
troduces the used Modelica model of an office room,
the PELS-VAE architecture and training, as well as
the applied optimization techniques. In section 3 we
present the results of applying our approach for cali-
bration of the Modelica model. Finally we summarize
our findings and give an outlook to present and fu-
ture work in section 4. In Appendix B, we sketch the
applied global sensitivity analysis.

2 Methods
2.1 Calibration Problem
The modelled thermal zone is a room of a large-scale
office-building (46500 m2) and high energy efficency
(primary energy demand < 70kWhm−2) (Freund and
Schmitz 2021). The buildings operation has been ex-
plored in previous research projects ((Niemann and
Schmitz 2020), (Duus and Schmitz 2021), (Freund
and Schmitz 2021)). For example, Model-Predictive-
Control (MPC) was used to enhance thermal user-
comfort and decrease energy demand (Freund 2023).
MPC requires accurate models which can be obtained

by calibrating Modelica-Models with measurement
data.
A scheme of an office is shown in Figure 1. Heat is
supplied by thermal activated ceilings (TAC), i.e. by
circulating warm water through pipes in the concrete
core of the slabs, and mechanical ventilation with pre-
heated supply air. The large area of the ceilings allows
the usage of heat-pumps for low temperature heating,
while the high thermal capacity of the concrete slabs
enables considerable time delay between heat supply
to the ceiling and heat supply to the room. For this
building, measurement data is recorded since 2014 at
more than 1100 sensors every minute. 32 office spaces
are equipped as reference zones with various sensors.
(Freund and Schmitz 2021)
For this project, we use the same data than in prior
studies (Freund 2023). The calibration target is to fit
the model output TAir to the recorded measurement
TAir,meas by adjusting the model parameters θ within
their bounds[θ−,θ+], employing an error metric such
as the Mean Squared Error (MSE):

min
θ

1
T

∑
(TAir(ti)−TAir,meas(ti))2 (1)

subject to θ− ≤ θ ≤ θ+

which is in general a constrained, nonlinear optimiza-
tion problem.
The recorded data consists of several timeseries that
serve as an input to the physical model of the thermal
zone. The model inputs are outside air temperature
TA, supply temperature of the corresponding TAC
heating circuit TSup,TAC, boolean signal of supply
ySup,TAC, supply temperature of mechanical ventila-
tion TSup,MV, boolean signal of supply ySup,MV, global
solar radiation and occupancy state. For the heat ex-
change at sun-exposed walls, an equivalent outdoor
air temperature TA,Eq is used. Internal heat gains by
persons, lighting or other equipment Q̇Int are calcu-
lated using the by constant heat gain factor multi-
plied with an heuristic based on measured occupancy
state and the buildings electric energy consumption
load profile. Internal and external heat gains are split
into convective parts acting on the air volume and
radiative parts acting on the internal masses. We
use data of the identification-timeframe 21.02.2018 -
14.03.2018 (Freund 2023).
2.1.1 Gray-Box Model
In this work, a Gray-Box Model introduced by (Fre-
und and Schmitz 2021) shall be calibrated. Gray-
Box Modeling referes to a modeling approach, where
a physical model is combined with data-driven ap-
proaches. Physical knowledge is used to derive a
model structure, while parameters are identified using
measurement data (Kathirgamanathan et al. 2021).
The gray-box model (Figure 2) consists of seven re-

sistances and four capacities (R7C4 model). The four
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Figure 2. RC network representation of gray-box zone-
model with 7 Resistances and 4 Capacitors (R7C4) (Freund
and Schmitz 2021).

state variables TW (external wall temperature), TAir
(indoor air temperature), TInt (temperature of inter-
nal masses) and TTAC (TAC core temperature) cor-
respond to the four thermal capacities CW,CAir,CInt
and CTAC.

Based on the EMPA model (Koschenz and Lehman
2000), a simplified model for the TAC is used consist-
ing of two resistances RTAC1 and RTAC2. By assum-
ing equal room temperatures below and above the
thermoactive ceiling, the two heat flow paths to re-
spectively the room above and below the ceiling can
be transformed into a single heat flow path, resulting
in a R2C1 TAC model (Sourbron 2012).

The external wall is modeled with two resistances
for the envelop (RW1 and RW2) and one resistance
for the glazing RG. Mechanical ventilation is repre-
sented with one resistance RMV. The resistance RInt
describes the heat exchange between the air volume
and the internal masses. Heat exchange between ad-
jacent zones is neglected, since the heating control is
for all zones of a building section the same.

Consequently, the simulation model has 11 param-
eters (see Table 1). Additionally, we introduce the
parameter fsol to tune the fraction of the window
projected global radiation flowing to the office and the
parameter Q̇Int as heat gain factor of the heuristic oc-
cupancy signal. The initial temperature TTAC(t = 0)
of the TAC as the mass with the highest capacity is
introduced as a parameter to the optimization prob-
lem. Estimated values for these parameters are ob-
tained by using the documentation of constructional
elements and values from literature. These estimates
are used to generate training data for the autoencoder
models, which is for most parameters performed in
the range of 1

5 to 5 times the estimated value. We
choose these broad ranges in order to account for sit-
uations, where little knowledge on the estimates is

available. In practice they should be narrowed as
much as possible by available information.

Table 1. Description of the 14 RC-Model Parameters and
Corresponding Parameters of the Modelica Model.

RC-Model Description Modelica
Model

CW Wall Capacity cExt1
CAir Air Capacity b
CInt Internal Masses cInt
CTAC Thermoactive Ceiling

(TAC) Capacity
cTABS

RTAC1 TAC Resistance Capaci-
ty/Room

rZone

RTAC2 TAC Resistance Pipe/-
Capacity

rPipe

RW1 Wall Resistance Out-
door/Capacity

rExt1

RW2 Wall Resistance Capaci-
ty/Room

rExt2

RG Window Resistance UWin
RMV Mechanical Ventilation VSup
RInt Internal Heat Exchange rInt
fsol Solar Gain Fraction fSol
Q̇Int Internal Heat Gains qIntOcc
TTAC(t= 0) Initial Value TTABSInit

The obtained model is exported by using the Func-
tional Mock-up Interface (FMI ) standard and used in
Python-Scripts with FMPy (FMPy 2023). We simu-
late with a time step of 1800 s.

2.2 Physics-Enhanced Latent Space
Variational Autoencoder

The general idea of Autoencoders is to encode data
of a dataset in a lower-dimensional compression that
is sufficient to represent the variation within that
dataset. For example, a collection of images of peo-
ple could be reduced to characteristics like gender,
hair color, skin color, pose etc. From this compres-
sion, data can be reconstructed with a decoder that
learned the influence on the compression of these at-
tribute variations to reconstruct an image from it. In
general, the lower-dimensional compression is said to
be in a "latent space", i.e. a space whose behavior is
hidden and cryptic to us. A Encoder-Decoder Neural
Network structure is an unsupervised learning tech-
nique. However, the representation of attributes in
latent space can be learned, i.e. by a neural network
(”Regressor”). By only using the Regressor and the
Decoder, new data can be generated, such that an
Generative Adversarial Network (GAN) is obtained.
A challenge is to chose an adequate dimension for
the latent space to prevent the network from just
memorizing the data (Jordan 2018a). Various tech-
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Figure 3. Physics-Enhanced Latent Space Variational Au-
toencoder (PELS-VAE). The time-series x is introduced
to the Encoder ψen, which transforms it to a latent-space
distribution with mean µ and variance σ, which can be
decoded by the Decoder ϕde by sampling z with the aux-
iliary Gaussian variable ϵ to reconstruct the time-series
as x̂ = 1

L

∑L
ϕde(z). The Regressor φre is trained simul-

tanously to predict the mean and variance of the latent
space distribution. As in (Martínez-Palomera, Bloom, and
Abrahams 2020), the physical parameters θ are introduced
to all models. (Zhang and Mikelsons 2022)

niques have been proposed for this regularization, and
a widely used approach is to learn probability dis-
tributions within the autoencoder structure, making
it an Variational Autoencoder (VAE). Hands-on ex-
planation for Autoencoders can be found in (Jordan
2018a), while for VAE in (Jordan 2018b).
Within this paper, we build on the implementation of
(Zhang and Mikelsons 2022) to predict time-series x
(i.e. our temperature trajectories), with its architec-
ture shown in Figure 3.

For the interested reader, a more detailed expla-
nation of the theory behind the Autoencoder and its
training loss function is provided in Appendix A.

2.3 Training Data Generation
To train the PELS-VAE model to mimic the be-
haviour of the physical model, i.e. learning the be-
haviour x(θ), the machine learning model needs to
be exposed to labeled training data (x|θ). Therefore,
we sample n times uniformly in parameter space:

θ ∼ U(θ−,θ+) (2)

and run the physical Modelica Model to get the pos-
terior x of θ. As the purpose of this paper is to de-
termine possible reduction in required simulations of
the physical model, we generate training sets with
different sizes in the range (32 to 4096). Validation

and test sets have a size of 320 samples. To make
results comparable, validation and test sets are the
same for all models. The validation set is used to
validate the model during the training process to se-
lect well-generalizing models and to early stop the
training if no further improvement is happening. The
test-set is used to determine the final performance of
the model, unbiased by the selection through the test
set.
The training data should cover well the parameter
space as well as the output space, which can be
checked by plotting the corresponding confusion plots
(combining every θi with each other) and plotting
all outputs of the physical model. Combining these
plots of the model outputs with available measure-
ment data, allows to make a first check if the de-
signed physical model is able to capture the observed
behaviour (see Figure 4).

2.4 Optimization-Based Parameter
Identification

This paper aims to calibrate a model by minimiz-
ing the Mean Squared Error (MSE) between the
model output and recorded measurements to deter-
mine a globally minimizing parameter combination.
An overview of the applied methods is provided in
Table 2 and discussed further below.

To demonstrate the superiority of our proposed
method over existing optimization techniques, we
combine a FMU of the Modelica model with se-
lected optimization methods from SciPy and com-
pare them with our introduced methods that use the
Physics-Enhanced Latent Space Variational Autoen-
coder (PELS-VAE).

The investigated methods that combine a SciPy op-
timizer with an FMU encompass scalar or vector-like
objectives, gradient-descent or non-gradient-descent
methods, and can be categorized as either local
or global optimization techniques. We anticipate
gradient-based optimizers to converge quickly and ex-
pect further improvements for the LS-TRF approach,
which utilizes residuals as the objective, as the opti-
mizer gains more knowledge about the optimization
step consequences compared to scalar objectives.
On the other hand, we consider Differential Evolu-
tion, a genetic algorithm (GA), a global optimization
technique, albeit with the drawback of requiring a
higher number of model evaluations.
All local techniques in this study necessitate ini-
tial values for the parameters, which may be chal-
lenging to derive in practical applications. To ad-
dress this, we combine each local technique with a
multistart approach, where the optimization is initi-
ated nstart times using starting values randomly dis-
tributed around the given initial parameter values.

Based on these evaluations, we propose to com-
bine a well-trained computationally cheap PELS-VAE
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Figure 4. Room temperature trajectories of measurement and training data with sample size n= 256, sampled uniformly
over parameter space θ ∼ U(θ−,θ+)

.

Table 2. Optimization methods used in this paper for calibration. If the objective is scalar, a MSE = µ(xsim −xmeas)2

is used as objective, if the objective is residual, the vector of squared residuals at the simulation time steps [(xsim(t0)−
xmeas(t0))2,(xsim(t0 + ∆t) −xmeas(t0 + ∆t))2, . . . ] is used as objective. For all techniques from SciPy, default settings
are used. Iterations are limited to reasonable values and tolerances are adapted to the FMU -settings.

Method Name Short Description Objective Gradient Scope
Methods from SciPy (Virtanen et al. 2020)

Powell Conjugate direction method, sequentially per-
forming one-dimensional optimization over an
iteratively updated set of direction vectors

Scalar No Local

Nelder-Mead Geometric operations (reflection, expansion,
contraction, compression) on a simplex of
points (Gao and Han 2012)

Scalar No Local

Sequential Least
Squares Program-
ming (SLSQP)

Iterative Method for nonlinear constrained
optimization that integrates constraints by
solving quadratic programming subproblems
(Kraft 1988)

Scalar Yes Local

Least Squares
Trust Region Re-
flective (LS-TRF)

Gradient-based algorithm, incorporating trust
region strategies and reflective boundaries to
improve convergence

Residuals Yes Local

Differential Evolu-
tion (Genetic Al-
gorithm)

Population-based algorithm evolving a popu-
lation of solution candidates with genetic op-
erations (e.g., mutation)

Scalar No Global

Methods introduced in this paper
Multistart first inital value θinit,0 = θinit,

following initial values j > 0 : θinit,j ∼ N (µ =
θinit,σ2 = 0.5(θ+ −θ−)), repeated until a com-
bination within the bounds (θ−,θ+) is found.

GA with PELS-
VAE

PELS-VAE coupled with a genetic algorithm Scalar No Global

GA with PELS-
VAE + Polish

Phase 1: PELS-VAE coupled with genetic al-
gorithm
Phase 2: Polishing Result by LS-TRF with
FMU of Modelica Model

Scalar Yes
(Phase 2)

Global
(Phase 1)
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neural-network (i.e. capable of evaluating 10000 pa-
rameter combinations in a few seconds on a GPU)
with a genetic algorithm to determine a parameter
set that achieves global optimization. Additionally,
we propose a 2-Phase approach in which the param-
eter combination determined by PELS-VAE coupled
with a genetic algorithm serves as starting point for a
polishing phase. The polishing phase employs the LS-
TRF algorithm coupled with the FMU of the physical
model to be calibrated. This approach is intended to
compensate for inaccuracies that may arise when re-
placing the physical model with a machine learning
surrogate model.

3 Results
3.1 Sensitivity Analysis
In order to evaluate the impact of different model pa-
rameters to the room temperature, we employ a sensi-
tivity analysis based on Sobol indices as described in
Appendix B. The result is shown in Figure 5, where
for each time step the Sobol indices are plotted. Obvi-
ously the impact of different parameters changes with
time: due to heating with TAC and air supply during
daytime the ”passive” building properties UWin and
rExt1 become less important.
This can be used in order to potentially limit the num-
ber of parameters in the overall analysis or in the
training of the Autoencoder, as parameter dependen-
cies with large impact are faster learned, that is less
training is required (see section 3.2). Often this will
be sufficient for the global phase 1 of the optimization
approach described in this paper (see section 3.3.3).

3.2 Autoencoder Training
The Autoencoder training was carried out using dif-
ferent numbers of samples n, a varied dimension of
the latent space (dim(zx)), and varied dimension of

the hidden layers. The analysis, shown in Figure 6,
was performed using the same test set (n = 320) for
all experiments.
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Figure 6. Hyperparameter variation (latent space dimen-
sion dimzx and dimension of hidden layers) over training
sets with different number of samples n, tested with same
uniformly sampled test set, all within [θ−,θ+]. The best-
performing model for each training dataset size is marked
by a star. (training performed for day 8-16 of identification
timeframe)

Firstly, the Mean Absolute Error (MAE) was ob-
served to decay with an increasing number of sam-
ples. Specifically, for 32 samples, the MAE was ap-
proximately 2, which decreased to around 0.07 for
4096 samples. Notably, with 1024 samples, the MAE
reached 0.1, and further quadrupling the sample size
only resulted in marginal improvements.

Secondly, models trained with different hyperpa-
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Figure 5. First order Sobol indices for model parameters, plotted ordered by mean value
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rameters show variation in MAE. Although at higher
numbers of samples the variations may be tolerable,
at n = 256 the influence of hyperparameter selection
lies in the range of 0.4 to 1.1 which might not be
appropriate.

Lastly, the dimension of the latent space (dim(zx))
was found to scale with the complexity of the time se-
ries. Although the model had 14 parameters, the best
latent space dimension are 64, 128, or 256. Reasons
for this assumption are that θ was also directly intro-
duced in the decoder and we found by inspection, the
worst performing models had low dim(zx).

Overall, we find that the influence of chosen hyper-
parameters changes the training outcome, although
its influence is limited, i.e. all hyperparameter sets
produced results in comparable ranges with no "fail-
ing" hyperparameter sets. We conclude from this,
that the Autoencoder training is quiet robust.

To further assess the performance of the Autoen-
coder, we have evaluated the prediction error using
test sets with varying variability. In the case of large
sample sizes n, the median lies at the midpoint of the
parameter space of each dimension, approximated as
θ̃i ≈ θi,++θi,−

2 with distance of ∆θi = θi,+−θi,−
2 to each

bound. To generate the test sets, we sample with dif-
ferent δ as follows:

θ ∼ U(θ̃ − δ∆θ, θ̃ + δ∆θ), δ ∈ 0,0.1, . . . ,1.0

We generate two kinds of test sets: A category in
that all parameters are varied and a category in
that only the six most important parameters (sub-
section 3.1, Figure 5) are varied. The Mean Abso-
lute Error (MAE) for these test sets, evaluated on
the models trained with the best-performing hyperpa-
rameters determined previously, is presented in Fig-
ure 7. For the following, we can exclude a discussion
about the numerical influence of the parameter value
magnitudes as all parameters are normalized by mean
and standard deviation before they are fed into the
Neural Networks.
First, we take a closer look on the variation of impor-
tant parameters ( 7a): We previously observed the
MAE in Figure 6 with a variability of δ= 100%. How-
ever, by reducing the variability and excluding the
border regions of the parameter space, the prediction
error of the Autoencoder decreases. For instance, in
the case of a training size of n = 32, the error is re-
duced from 0.8 Kelvin to approximately 0.6 Kelvin at
80% variability.

Figure 7 also includes the 90th percentile of the pre-
diction error. It is evident that certain predictions ex-
hibit considerably higher error than the mean predic-
tion error, which can pose challenges in the optimiza-
tion process, particularly with Autoencoder models
trained on smaller datasets. However, by reducing
the variability in the parameter space, the 90th per-
centile error also decreases.
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(a) Only important parameters sampled with δ, for non-
important parameters δ = 1.
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(b) All parameters randomly sampled.

Figure 7. Mean Absolute Error on randomly sampled
test sets with different maximum deviations of parameter
combinations from the median value of the training data
(θi ∼ U(θ̃i − δ∆θi, θ̃i + δ∆θi)). The mean absolute error
over all time-series of a test set as well as the 90% quantile is
given for the best performing models trained with different
numbers of time series. (training performed for day 0-10 of
identification timeframe)

Secondly, an analysis is conducted to examine the
variation of all parameters, as shown in Figure 7b. In-
terestingly, it is observed that for small sampling sizes
(n = 32 to 128), reducing the variability δ leads to
an increase in the mean absolute error (MAE), while
this trend does not persist for larger sampling sizes.
This finding may initially seem counterintuitive, as
one might expect that when varying all parameters,
the MAE would decrease with overall less variabil-
ity, compared to varying only the important ones and
leaving the others unlimited. However, parameters
that are considered less important contribute less to
the observed variation in the output of the physical
model. Consequently, when training sets are small,
the Autoencoder faces challenges in capturing the in-
fluence of these less important parameters on the ob-
served trajectories. By limiting the variation of all
parameters to, for example, δ = 0.2, a larger propor-
tion of parameters resides in the inner part of parame-
ter space, which can be more difficult for the Autoen-
coder to learn with small training sets as the majority
of variance is produced by the influential parameters.
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Consequently, this results in an increase in the mean
absolute error.

From this analysis, we conclude that the Autoen-
coder performs better when predicting parameter
combinations θ that are more centered within the
training parameter space. When selecting the bounds
[θ−,θ+], it should be ensured that they are larger
than the parameter region where we anticipate the
calibrated parameter results to lie. Furthermore, for
small number of samples in the training set, the Au-
toencoder faces difficulties learning properly the in-
fluence of less influential parameters on the model
output, while learning the impact of the more influ-
ential. However, to integrate the influence of the less
influential parameters on the model output variation,
they should still be sampled during training data gen-
eration. This property of the Autoencoder enables to
resign on a Sensitivity Analysis before training it.

3.3 Model Calibration
In the following section, we present our findings
regarding the curve-fitting methods minimizing MSE
between model output and measurement outlined in
Table 2. This section is organized as follows: firstly,
we present the results obtained from the Optimizers
directly coupled to the Modelica Model’s FMU, along
with the corresponding multistart approach (refer
to Table 3), and gain insights to the uniqueness of
a solution. Secondly, we showcase the optimization
results achieved using the surrogate PELS-VAE
Model (see Table 4) and highlight the advantages of
our proposed method.

3.3.1 Direct Optimizer Coupling

First of all, one should keep in mind that the mea-
surement signal is prone to error which results from
measurement uncertainty of the temperature sensor
(≤ 0.5K (Freund 2023)), the data processing and the
position of the sensor in the room.
The calibration results obtained from the directly
coupled optimizer are presented in Table 3. The ma-
jority of methods achieve a final Mean Squared Error
(MSE) of approximately 0.01, although they vary sig-
nificantly in terms of required model calls. Among the
local optimizers, LS-TRF achieves the lowest number
of iterations, with 261 model calls using the given
initial value. SLSQP follows with 3-6 times higher it-
erations. The none-gradient optimizers Nelder-Mead
and Powell perform less efficiently, requiring 5000
model calls (limited by the predefined iteration limit)
with the given initial value. The notable difference
between SLSQP with a scalar objective and LS-TRF
with a vector-like/residual objective can be attributed
to the fact that the residual objective allows after cal-
culating the gradient for a more detailed considera-
tion of the consequences of optimizer steps.

When initial values are poorly known, global opti-

Table 3. Calibration Results of Methods which were
directly coupled with the Modelica Model’s FMU with
achieved MSEf (θopt).

Method model
calls

MSE

LS-TRF with initial guess 261 0.0117
SLSQP with initial guess 650 0.0149
LS-TRF with 16 starts 3486 0.0114
Nelder-Mead with initial guess 5000 0.0126
Powell with initial guess 5000 0.0881
LS-TRF with 32 starts 6311 0.0114
LS-TRF with 64 starts 12612 0.0113
SLSQP with 16 starts 18245 0.0117
Nelder-Mead with 16 starts 76483 0.0117
Powell with 16 starts 79120 0.0134
SLSQP with 64 starts 86322 0.0114
Nelder-Mead with 64 starts 286728 0.0110
Powell with 64 starts 319322 0.0125
Diff. Evolution with FMU 748020 0.0104
Nelder-Mead with 256 starts 1188496 0.0111

mization strategies help to find the global minimum
of a function. The Differential Evolution (Genetic)
Algorithm uses unsurprisingly a high number model
calls, namely 0.7 million. The introduced multistart-
approach also quickly scale the number of required
model calls, i.e. for the best performing algorithm
LS-TRF 6311 calls with 32 different initial values.

3.3.2 Uniqueness of Solution
To gain more insights into the uniqueness of the
solution to our optimization problem, a more detailed
analyis of the best-performing algorithm LS-TRF
was performed. To perform this a benchmark, a high
number of starts (256) was chosen. The identified
parameter combinations results were clustered with
K-Means Clustering around common centroids
(Pedregosa et al. 2011) with the 3 largest groups
depicted in 8a, while the 5% best solutions are shown
in 8b. From these results, we can infer two insights:
First, the optimization problem is ambiguous: one
parameter can compensate for the effect for another,
e.g. in 8b, a high capacity cExt1 of the external wall
can compensate for low heat resistance rExt2 and
vice-versa. Furthermore, the optimization problem
is clearly non-convex, i.e. it hast multiple local
minima and the identified parameter combination
is depending of the initial value when using local
optimizer, which can be seen by the difference
between the MSE of the best 5% results with 0.0114
and the average value of 0.0364. If the the problem
would be convex, every initial value should lead to
the same solution. Therefore, multiple parameter
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combinations might lead to equally well performing
calibrated models.

3.3.3 Calibration with Surrogate PELS-VAE
Model

The results of the model calibration performed with
the surrogate PELS-VAE Model are shown in Ta-
ble 4 and Figure 9. For the MSE calculated based
on the Autoencoder prediction (MSEϕde,φre(θ̂opt)),
MSE-values comparable to the direct coupling of Op-
timizer and Modelica-Model (≈ 0.01) are achieved.
However, as shown in subsection 3.2, the Autoen-
coder is prone to prediction errors, i.e. for some
parameter combinations, the predicted room temper-
ature trajectories are more faulty than others. Be-
cause of this, the MSE of the parameter combina-
tion determined by the GA and the Autoencoder, de-
noted as θ̂opt, calculated with the Modelica-Model
f , MSEf (θ̂opt), can be considerably larger than the
predicted MSEϕde,φre(θ̂opt). This effect occurs at
low numbers of training samples and decreases with
higher sampling ntrain, i.e. a MSE-gap of 1.05 to 3.44
at ntrain = 32 to 128 is reduced to a gap of 0.02 to 0.22
at ntrain = 512 to 4096. Although this increase might
be negligible at low magnitude, for the results ob-
tained with low number of training samples it might

Table 4. Calibration Results of PELS-VA coupled with
Differential Evolution Genetic Algorithm (GA) for dif-
ferent number of training samples ntrain, MSE calcu-
lated by PELS-VAE (MSEϕde,φre(θ̂opt)) and with FMU
(MSEf (θ̂opt)) to determine prediction error introduced by
the Autoencoder, number of steps nopt of polishing with
LS-TRF and achieved MSEf (θopt).

ntrain

MSE
PELS-VAE

+ GA

MSE
with
FMU

nopt

MSE
after
polish

ntotal

32 0.0121 1.0623 228 0.0121 260
64 0.0128 1.6390 124 0.0128 188

128 0.0122 3.4509 171 0.0122 299
256 0.0117 0.7498 306 0.0117 562
512 0.0124 0.2486 139 0.0124 651

1024 0.0133 0.0816 65 0.0133 1089
1536 0.0128 0.0298 80 0.0128 1616
2048 0.0135 0.2080 65 0.0135 2113
4096 0.0118 0.0326 201 0.0118 4297

not be appropriate.
To compensate for that, polishing of the achieved re-
sults with the LS-TRF Algorithm, (local, gradient-
based, vector-like objective), is performed. This pro-
cess is illustrated in Figure 9. For all sampling sizes,
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(a) 3 largest clusters of solutions, covering 110/256 results, clustered with sklearn.cluster.KMeans (Pedregosa et al. 2011)
K-Means clustering around 10 centroids.
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Figure 8. Identified normalized parameters for Least-Squares Trust Region Reflective Algorithm with 256 starts.
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Figure 9. Calibration Results of PELS-VA coupled with Genetic Algorithm (GA), including the prediction gap and
the MSE-trajectory during the LS-TRF Optimization.

the MSE is reduced considerable to a magnitude of
MSEf (θopt) ≈ 0.012. More important, comparing the
results for ntrain = 32,64,128, a MSE comparable to
that of the LS-TRF directly coupled with the Model-
ica model with an initial guess is achieved (Table 3),
while requiring less or comparable model calls. This
effect could be explained as following: As the Au-
toencoder learns the model reaction on different pa-
rameter combinations, especially for the most influ-
ential parameters (see subsection 3.2), it allows for a
"screening" of parameter space to find a good starting
point for the following gradient-based optimization
with the exact Modelica-Model. At higher sampling
sizes, the prediction gap decreases, which results in
the number of model calls reduced as well.
Depending on the number of training samples, one
might argue at which point we achieve a screening
which is sufficient to call this approach a "global
method".
To stress the advantage of this proposed novel method
of model calibration: Using the Autoencoder allows a
screening of parameter space, which relieves us of the
burden of finding an initial value for the optimization,
that could potentially even lead us into the "trap" of
a local minimum.

4 Conclusion
In this paper, we address the challenges associated
with physics based Modelica models increasing in
complexity and computational expense regarding
optimization-based multi parameter calibration. To
overcome these issues, we present a novel approach
that enables computationally efficient parameter
calibration by using a Machine-Learning Surrogate.
To showcase our developed method, we use a simple
thermal zone model implemented in Modelica, which
allows to focus on the analysis of the proposes
method.
The used Machine-Learning Surrogate is a Physics-
Enhanced Latent Space Variational Autoencoder

(PELS-VAE). It provides efficient model regulariza-
tion and robust training. We propose to combine
a PELS-VAE trained on a small dataset with a
Genetic Algorithm (as PELS-VAE inference is
computational cheap) to screen parameter space
for well-performing parameter regions. To achieve
best-performing results, we furthermore propose
to polish the achieved result with a gradient-based
residual-objective optimizer (LS-TRF).
To compare our approach to existing alternatives,
we have tested a variety of optimizers and found
significant variation in number of required model
calls and strong dependence on initial values. When
moving towards global optimization, the usage of
multi-start approaches or global optimizer quickly
scales significantly the number of model calls,
making this potentially infeasible for computational
demanding system models.
We were additionally able to show that the chosen
optimization problem is non-convex and has ambigu-
ous solutions.

We also perform a detailed analysis of the PELS-
VAE application. By analyzing the training process,
we find that hyperparameter variation has limited
impact on the training process, i.e. we have a robust
training, while predicting time-series that are more
centered within the training parameter space exhibit
considerably lower prediction error.

Our results provide evidence that even PELS-VAE
trained with small datasets (32-128 samples) and
resulting high prediction errors proved effective to
screen parameter space for initial values which are
then used in a gradient based optimizer. We provide
indications that the PELS-VAE is able to capture
the impact of most-influential parameters on small
training sets. Comparing to the best-performing
optimizer with the need for an initial value, we
were able to show that our initial value free method
achieved comparable MSE with comparable number
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Figure 10. Physics based model of the office with XRG-
simulation’s HumanComfort Library

of model calls.
In summary, our proposed method offers an effective
solution for calibrating complex models. Using
the PELS-VAE models allows for a screening of
parameter space with a low number of model calls,
and relieves us from the burden of fining suitable
initial values for local optimizers.
For future work, our method will be applied to other
examples like a White-Box Model of the office (see
Figure 10) to prove its suitability for various kind of
optimization problems. Furthermore, the training
process could be improved by adaptive online data
generation, narrower parameter ranges, other layers
in the network and embedding of multiple Modelica
model outputs.
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A Physics Enhanced Latent
Space Variational Autoen-
coder (PELS-VAE)

This is a explanation with more detail but simplifica-
tions intended for the Modelica Community to gain
understanding. For theory without simplifications,
please refer to (Kingma and Welling 2022), (Murphy
2022) and (Murphy 2023).
Machine Learning can be done with a probabilistic
perspective, such that the quantities of interests are
modeled as random variables (Murphy 2022). In
stochastic variational inference, it is assumed that
the data x to be learned has initially emerged from
a latent variable distribution p(z) with a condi-
tional probability density function p(x|z) (Kingma
and Welling 2022).

To model this process within means of unsuper-
vised learning, we have to infer the stochastic latent
variable z by a recognition model p∗(z|x) from a data
sample x and then reconstruct the data with a gen-
eration model p∗(x|z). As both the true recognition
and generation model are inaccessible to us, we model
them by using Neural Networks; qψen(z|x) for the
recognition model and pϕde(x|z) for the generation
model.

For training probabilistic models, one commonly
tries to maximize the marginal likelihood of the data,∑N
i=0 logp(xi). This is the likelihood the network

structure assigns to the probability density function
at xi, if xi was inserted. One can think of this as fol-
lowing: If the probability of a data sample xi is high,
the information content it carries is low, i.e. the char-
acteristics are learned by the probability distributions
which are modeled by the Neural Networks ψen and
ϕde. (Odaibo 2019).
One can show (Odaibo 2019) that the right hand side
of

logp(xi) ≥ −KL(qψen(z|xi)∥p(z))
+Ez∼qψen(z|xi)

(logpϕde(xi|z)) = G (3)

is a lower bound (namely the evidence lower bound G,
ELBO) to the likelihood of a data sample logp(xi),
which we seek to maximize. In general, the used net-
work structure is a deterministic one, i.e. y = f(x).
To use the network for the approximation of probab-
listic distributions, two tricks are applied. First, the
encoder model ψen is used to predict the mean µ and
variance σ for a data sample xi of the distribution
p(z), which is prescribed to be a multivariate gaussian
(i.e. normal) distribution, i.e. z ∼ N (µ,σ). Assum-
ing this, an analytical expression for the Kullback-
Leibler-Divergence-Term (KL) in Equation 3 can be
found (Odaibo 2019). Then, sampling of a random,
normal distributed auxiliary variable ϵ ∼ N (0,I) is
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required to obtain samples z = µ + σ ⊙ ϵ, where ⊙
represent element-wise multiplication. Using this,
an estimate for the second term in Equation 3, the
reconstruction likelihood, can be found. The re-
construction term can be determined from the net-
work structure (Kingma and Welling 2022), however,
in our model, we follow the approach of (Martínez-
Palomera, Bloom, and Abrahams 2020) and use the
negative mean squared error between prediction and
ground truth, MSE(x̂,x) as representation of the re-
construction likelihood. Taking this together, the ev-
idence lower bound for our network becomes for a
training sample xi with L samples in latent space

G ≈
dim(z)∑
j=1

1
2

[
1+ log(σ2

j )−σ2
j −µ2

j

]

−β MSE( 1
L

L∑
l=0

x̂i,l,xi) (4)

which should be maximized. When minimizing in a
Optimizer, we should do this with L = −G. Further-
more, the hyperparameter β is added to help disen-
tangling the latent space distribution z (Burgess et
al. 2018). Finally (Martínez-Palomera, Bloom, and
Abrahams 2020) introduce the physical parameters θ
as inputs for all sub-models.
To use the Variational Autoencoder as a generative
model, the representation of the Modelica model pa-
rameters θ within the latent space must be traceable,
which is why (Zhang and Mikelsons 2022) added a
regression model in a Teacher-Student Architecture.
The regression model tracks θ in latent space, i.e.
µre,σre =φre(θ). MSE-losses of this model are added
to the loss-function to train all models simultaneously.
Further details of the implementation can be found
in (Zhang and Mikelsons 2022). The overall objective
function becomes with this for a batch size N

(ψen,ϕde,φre) = argmin
N∑

L + MSE(µ,µre)
+ MSE(σ,σre) (5)

Finally, a well-trained PELS-VAE can replace the
physical model by determining the latent space repre-
sentation of the physical parameters with the regres-
sor model (6): the time-series x is reconstructed after
sampling multiple times z = µ+σ ⊙ϵ by the decoder
as the mean of the outputs (7).

{µre,σre} = φre(θ) (6)

x̂ = 1
L

L∑
ϕde(z) (7)

B Global Sensitivity Analysis
In the following we sketch the idea of Sobol indices.
For a more elaborate and mathematical sound intro-

duction we refer to Hart (2018) or the book by Saltelli
et al. (2008). A comprehensive implementation of the
required functions is available in SALib (2023).

Consider X to be a real continuos random variable
with probability density function pX(x), such that∫ ∞

−∞ pX(x)dx = 1. X can be thought of as a specific
measurement setup, giving a measured value x each
time the experiment is carried out. If a large number
of experiments is conducted and the obtained results
x are collected into a histogram, then this histogram
resembles the probability density distribution pX(x),
that characterizes the experiment X. The probabil-
ity P of measuring x inside the interval [T1,T2] is
P (x ∈ [T1,T2]) =

∫ T2
T1
pX(x)dx. We define the

mean µX of x as µX = EpX [X] =
∫ ∞

−∞x ·pX(x)dx.
The variance of x is defined as
Var(X) = EpX [(X−E(X))2] =

∫ ∞
−∞(x−µX)2 ·pX(x)dx.

For a function f(X) of the random variable
X one can equivalently define its mean value
µF = EpX [f(X)] =

∫ ∞
−∞ f(x) ·pX(x)dx and its vari-

ance VarpX (F ) =
∫ ∞

−∞(f(x)−µF )2 ·pX(x)dx.

Now assume that a system model is evaluated on a
fixed scenario (=fixed time series of boundary condi-
tions) for different variations of its model parameters
θ = (θ1, . . . ,θr). If we look at a specific output yt of the
model at a specific timestep t then we can interpret
our model as a map f : θ → yt(θ). Now assume for a
moment that the parameters θ are an r-dimensional
random variable Θ with known probability density
function pΘ and f to be square integrable. Then it
can be shown (Sobol 1993) that

f(θ) = f0 +
r∑
i=1

fi(θi)+
∑

1≤i<j≤r
fi,j(θi,θj)

+ . . .+f1,2,...,r(θ1,θ2, . . . ,θr)

= f0 +
r∑

k=1

∑
|u|=k

fu(θu) (8)

where in the last line we summarize the previous line
by the sum over the multi label u representing all pos-
sible subsets u ⊆ {θ1, . . . ,θr} having |u| = k elements.
Moreover we have the special expectation value func-
tions

f0 = EpΘ [f(θ)]
fi(θi) = EpΘ [f(θ)|θi]−f0

fi,j(θi,θj) = EpΘ [f(θ)|θi,θj ]−fi(θi)−fj(θj)−f0
...

fu(θu) = EpΘ [f(θ)|u]−
|u|−1∑
k=1

∑
v⊂u

|v|=k

fv(θv)−f0

with the conditional expectation values
EpΘ [f(θ)|u] =

∫ ∞
−∞ f(θ)pΘ(θ)dθθ\u, where θ \ u
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is the complement of u ⊆ {θ1, . . . ,θr}. Now if all
elements {θ1, . . . ,θr} are statistically independent
then it can be shown (Sobol (1993)) that

Var(f(θ)) =
r∑

k=1

∑
|u|=k

Var(fu(θu)) (9)

that is the overall variance Var(f(θ)) =
EpΘ

[
(f(θ)−f0)2

]
is the sum of all variances of

the subset functions fu. Then the Sobol index Su

of the subset u ⊆ {θ1, . . . ,θr} measures the relative
contribution of θu to the total variance of f(θ):

Su = Var(fu(θu))
Var(f(θ)) (10)

Moreover the total Sobol index Tu measures the rel-
ative contribution of all members of u to the total
variance of f(θ):

Tu =
∑

v∩u̸=∅
Sv (11)

Finally the first order Sobol indices are those Su,Tu

which are defined on single element subsets |u| = 1,
that is u = {θ1,{θ2}, . . . ,{θr}} = {θk}. Then the Sobol
indices Sk,Tk measure the importance or sensitivity
of Var(f(θ)) to {θk}:

• the first order Sobol index Sk measures the con-
tribution of θk

• the total Sobol index Tk measures the contribu-
tion of all interactions involving θk

The previous discussion is valid for a specific model
output yt at a single time step t so far. The extension
to time series {t1, t2, . . . , tn} is straight forward: one
simply computes the Sobol indices for all parameters
at each time step. In this way one can observe the
impact of different model parameters to the chosen
output y at several times. This is especially important
for transient scenarios, as the sensitivity of the model
output to the values of a specific model parameter
may vary over time, as can be seen in Figure 5.
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Abstract
Strict operating boundaries on commercial lithium ion
cells are defined to mitigate the effect of aging and avoid
safety hazards like, the appearance of lithium plating dur-
ing fast charge, which can lead to internal short circuit
and subsequent thermal runaway. Most studies so far have
focused on the single cell charging problem because the
temperature difference between cells within a battery pack
is often considered small, and therefore optimal charg-
ing profiles can be extrapolated from single cell investiga-
tions. In practice, temperature spread can reach up to 10
K from coldest to warmest points in the pack, and at least
5 K between same position of different cells. With this
in mind, a Nonlinear Model Predictive Control (NMPC)
scheme is proposed that considers both electrochemical
and thermal constraints at pack level, establishing, at least
on a theoretical basis, the practical limits of fast charge.
An electrochemical cell model and the pack thermohy-
draulic balance equations were modeled using Modelica.
The NMPC implementation is carried out using JModel-
ica.org to find the optimal control actions, and includes
the closed loop control problem on a high fidelity plant
model. We demonstrate how active thermal management,
i.e., controlling the fluid inlet temperature, is critical to
reducing charging times below 40 min (from 5% to 80%
state of charge), and discuss some challenges when using
online optimization-based control techniques.
Keywords: Li-ion battery pack, fast charge, constrained
control, temperature spread, FMI

1 Introduction
The performance and lifetime of lithium-ion battery packs
strongly depend on the operating conditions, typically de-
termined and/or limited by the user’s needs and the auxil-
iary systems, i.e., the thermal management system (TMS)
and the battery management system (BMS). Moreover,
operating limits and control strategies may change over
time to accommodate for changes in the battery state of
health (SOH). Therefore, an operating strategy that meets
the required performance and lifetime must be established
around the individual cells, the packs built upon them,
and the subsystems responsible for adjusting the bound-
ary conditions and applying the constraints under which
cells operate.

1.1 Compromises between performance and
lifetime

The battery operation strategy modifies or adjusts the per-
formance in the short term, for example, tightening the op-
erating power envelope, thus reducing peak temperatures,
in order to achieve a desired lifetime (Barreras, Raj, and
Howey 2018). Another example of adjusting thermal and
electrochemical limits is the so-called extreme fast charge
(XFC) (Yang, T. Liu, et al. 2019), where the cell operating
temperature is increased to enhance the electrochemical
dynamics to ensure safety requirements. The negative ef-
fect in lifetime of higher temperatures is compensated by
a significant shorter charging times, which is considered
a critical requirement in certain applications, like electric
vehicles (EV).

1.2 Temperature limits for commercial Li-ion
cells

Modern lithium-ion cells can nevertheless operate over a
wide range of temperatures, typically from -30◦C to 60◦C.
A common upper limit of commercial cells can be found
around 80◦C (Groß and Golubkov 2021), while the De-
partment of Energy of the United States (DOE) estab-
lished the maximum operating cell temperature at 52◦C
(Keyser et al. 2017). But already within these limits,
and especially beyond them, different degradation mech-
anisms lead to the progressive deterioration of the perfor-
mance, reducing the life time of the cells beyond practical
or economical criteria. According to information summa-
rized in (Keyser et al. 2017), cell lifetime doubles approx-
imately for each 13K temperature reduction: if 10 years of
lifetime is achieved operating at 20◦C, the same cell under
the same current load would last less than 5 years at 35◦C.

Early studies on lithium-ion batteries established the
ideal operating temperature range between 25◦C and 40◦C
for a "good balance between performance and life", as
well as a module to module temperature spread below 5K
(A. A. Pesaran 2002). More recently, temperature limita-
tions have been established using different guidelines to
improve safety and performance: maximum temperature
40◦C, minimum temperature -30◦C, maximum (internal
cell) temperature difference 10K, and mean temperature
between 25◦C and 30◦C (M. Sievers, U. Sievers, and Mao
2010).

Recent efforts in quantifying the actual thermal perfor-
mance of battery packs have been done. Wassiliadis et al.

DOI
10.3384/ecp204121

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

121



(2022) determined that sensors located at different cells
within a battery module of an electric vehicle (with bot-
tom plate liquid cooling) measured a temperature spread
below 2 K during a DC fast charging (maximum C-rate be-
low 1C). Given the large cell format of their test, the max-
imum difference between the coldest and warmest points
of the module (i.e., the absolute difference) could indeed
be closer to the difference between cell sensors and fluid
inlet temperature, which for their fast charge test is a dif-
ference of up to 20 K. On a similar but only simulated
case, J. Wang et al. (2020) report between 3.5 and 5 K ab-
solute difference during a 2C discharge depending on the
design of the cooling channels and the mass flow rate of
the fluid. In practice, absolute temperature spread in real
packs are likely to reach 10 K, although efforts to keep it
below 5 K is the general consensus, whether absolute or
cell to cell spread.

1.3 Solving the fast charge problem
Temperature limits during charge may differ significantly
from those while discharging due to the possibility of
lithium plating. This negative side-reaction usually takes
place at low temperatures, but it can also appear at room
temperature for moderate to high charging C-rates (Yang
and C.-Y. Wang 2018). As indicated by Yang, T. Liu, et al.
(2019), it is desirable to relax the upper temperature lim-
its while charging in order to improve performance at the
expense of a marginally higher aging to ensure safety.

The problem fast charge (i.e., how to tackle its com-
plexity and produce safe and fast charge profiles) has
been addressed in the literature with different methods,
and today vehicle manufacturers have developed practi-
cal approaches that consider not only the battery limits,
but also the TMS, BMS, on-board converters, power grid
(and charger), the local environmental conditions and the
user driving needs. The scientific literature has mainly
addressed the fast charge problem at cell level (for an ap-
plication in Modelica, see Romero, Goldar, and Garone
(2019)), but studies at pack level that address the effect
and limits of TMS are less abundant.

With exclusive focus on cell level fast charge, recent
efforts on cell modelling in various spatial and physic do-
mains have led to the conclusion that Li-ion cells can be
safely charged below 20 min (0-80% SOC). Frank et al.
(2022) established (simulation results only) a theoretical
minimum of 18 min for 18650 and 21700 cylindrical cells
with conventional tab design, and 13 min for the larger
4680 format with tabless technology; according to the au-
thors, cooling limitations bring the values closer to 20 min
and 16 min, respectively. However, the anode potential
constraints are set to 0 mV, which leaves no safety mar-
gin for the possibility of lithium plating. With the pur-
pose of avoiding lithium plating through a safety buffer
(e.g., 20 mV) Yin and Choe (2020) optimized a com-
bined fast charge profile with periodical discharge pulses
that favour lithium stripping, i.e., the recovery of already
plated lithium. Together with offline and online optimiza-

tion methods, which include the selection of the optimal
temperature boundary, the authors prove experimentally
that 18 min is possible (0-80%) with lifetime degrada-
tion similar to 1C CCCV (1C constant current, followed
by constant voltage) protocol (47 min, 0-80%). It is in
general acknowledged, nevertheless, that these fast charge
speeds are hardly attainable at pack level, where cell het-
erogeneities and challenges cooling technologies play a
critical role (Tomaszewska et al. 2019).

Modelica has seen a growing number of libraries and
studies dedicated to battery systems. The reader is re-
ferred to validated libraries reported in Dao and Schmitke
(2015), Uddin and Picarelli (2014), Gerl et al. (2014),
Bouvy et al. (2012), Brembeck and Wielgos (2011), Ein-
horn et al. (2011), and Janczyk et al. (2016), as well par-
ticular applications on fuel economy (Batteh and Tiller
2009; Spike et al. 2015), thermal management (Bouvy et
al. 2012), cell modelling and coolant analysis (Krüger, M.
Sievers, and Schmitz 2009),and battery aging (Gerl et al.
2014; Stüber 2017). More recently, (Groß and Golubkov
2021) developed a comprehensive Li-ion library that in-
cludes not only electrical cell models, but also thermal
runaway (TR) and propagation dynamics, i.e., equations
that capture the chemical reactions once an onset temper-
ature is reached.

Completing the single cell level optimal charging anal-
ysis presented in (Romero, Goldar, and Garone 2019),
this work addresses the limits of fast charge at pack level
on an immersion cooled battery with dielectric fluid un-
der electrochemical and thermal constraints. Such cool-
ing approach puts the fluid in direct contact with the cells,
which results in higher heat transfer compared to indi-
rect cooling. We make use of Model Predictive Control
(MPC) (Camacho and Alba 2013), implemented using the
tool JModelica.org (Andersson et al. 2011; Magnusson
and Åkesson 2015). A validated functional mock-up unit
(FMU) (Blochwitz et al. 2011) is used as a plant model,
while a simplified, yet nonlinear model of the pack writ-
ten in the Modelica language with the same inputs (cur-
rent, fluid flowrate and inlet temperature) is considered.

The reminder of the paper is organized as follows. Sec-
tion 2 describes the electrochemical cell model used to
model the internal states associated to lithium plating.
Section 3 introduces the proposed MPC scheme, describ-
ing the cost function, the prediction model, and the plant
model. The first part of section 4 explores the optimal pro-
files under a different set of constraints solved as an offline
optimization problem, and then presents the NMPC results
accompanied with a discussion related to constraints sat-
uration. This paper is closed with the conclusion section
completed with future paths to be investigated.

2 Electrochemical cell model
To support its development activities around battery pack
design and simulation, Kreisel Electric (2023) has been
working with different Li-ion cell model paradigms, in-
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cluding Equivalent Circuit Models (ECM), Equivalent
Hydraulic Model (EHM), Single Particle Model (SPM),
and higher level detail models like the P2D Neuman-
Fuller-Doyle model. For most of the electrothermal sim-
ulations, we rely on ECM-based battery packs, and resort
to the light weight EHM when some electrochemical state
information is needed, for example in fast charge analyses,
the focus of the present paper.

The EHM is based on the original work of (Manwell
and McGowan 1993), where the hydraulic analogy is used
to describe the dynamics of charge moving between vol-
umes of active material. One recent use of this analogy on
Li-ion batteries was proposed by Couto et al. (2016), al-
though derivations of similar models can be found in dif-
ferent sources (Y. Li et al. 2019). The EHM is equivalent
to the second order Padé approximation and valid for cur-
rent pulses with frequencies below 0.5mHz (0.002rad/s)
(Forman et al. 2011). Knowing that the 1C/1C cycle re-
sults in a frequency of 0.14mHz (charge and discharge
included, 1h long each), aging protocols including high
charging, steady currents of up to 3.6C fall well under the
validity range of the EHM to accurately predict lithium
plating.

Consequently with the model choice, the following as-
sumptions must be considered:

1. 0D electrochemical and thermal dynamics

2. Homogeneous behaviour in electrode and separator

3. Fast positive electrode dynamics

4. Constant lithium concentration in electrolyte

5. Temperature dependent exchange current density

6. Heat transfer dominated by side liquid cooling

The EHM considers two electrochemical states, the
bulk concentration and the surface concentration, in repre-
sentative solid particles of the positive and negative elec-
trodes. They are normalized with the maximum concen-
tration (cs,max) and denoted by SOC and CSC respectively.
The model considers as input the normalized current (I)
using the electrode area (Acell), to provide a form factor
independent calculation.

d SOCn

dt
=−γ I (1)

d CSCn

dt
=

g
β (1−β )

(SOCn −CSCn)−
γ

1−β
I (2)

SOCp = ρ SOCn +σ (3)
CSCp = SOCp (4)

V =Up −Un +ηp −ηn − (Rf +Rcc Acell) I (5)
Vn =Un +ηn (6)

ηp,n =
RT
α F

sinh−1

(
θp,n I√

CSCp,n (1−CSCp,n)

)
. (7)

Table 1 summarizes the most relevant model parameters
and exact or reference values for energy cells (C.-H. Chen
et al. 2020). The actual values of such parameters used
in this work are not disclosed. Moreover, since the dif-
fusion dynamic of the cathode is assumed to be orders of
magnitude faster, only the negative electrode is modelled.

Table 1. Cell model parameters

Parameter Units Value

Particle radius, Rs [µm] 5
Electrode thickness, l [µm] 80
Diffusion coefficient, D [m2/s] 1e-15
Active material vol. fraction, ε % 75
Specific interfacial area, a [m2/m3] 45e3
Effective reaction rate, reff [ A

m2 (
m3

mol )
1.5] 7e-6

Maximum concentration cs,max [mol/m3] 30e3
Electrolyte concentration, ce0 [mol/m3] 1200

The relationships of these parameters with the proper
parameters of the EHM system are the following

γ =
3

Rs aF l cs,max
g =

147
20

τ β =
7
10

τ =
R2

s

D
a = 3

ε

Rs
θ =

1

2al reff c1/2
e0 cs,max

.

For more information regarding the cell electrochemi-
cal models and the equations used in this paper the reader
is referred to Romero, Goldar, and Garone (2019), Dao
and Schmitke (2015), Chaturvedi et al. (2010), and M.
Sievers, U. Sievers, and Mao (2010).

The thermal model assumes lumped properties collaps-
ing on the cell centre, i.e., the warmest area. The ther-
mal resistance consists of a serial sum of convection and
conduction terms (external and internal heat flow respec-
tively)

mcellCp,cell
d T
dt

= i(V − (Up −Un)

+T (
∂Up

∂T
− ∂Un

∂T
)) − 1

Rth
(T −Tamb)

(8)

A = π DHc Rth = (
1

4π Hc k
+

ln(Dcan/D))

2π Hc kcan
+

1
hA

)

(9)
where Rth is the thermal resistance of the lumped ther-

mal model of the cell, h is the heat transfer coefficient
w.r.t. the liquid cooled section, and

∂Up(n)
∂T define the so

called entropic heat of the positive (negative) electrode
(Dao and Schmitke 2015). We note here that this model
approximates the behaviour of an infinite cylinder with ho-
mogeneous heat generation. In reality, the active cooled
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length is limited to a portion of the total height of the cell,
while the rest is cooled passively by natural convection
with the surrounding air. The can conductivity is high
enough, and its thickness is so small, as to neglect its con-
tribution in the total resistance. The entropic heat, as well
as the heat transfer to the air, are also considered negligi-
ble. Thus, the simplified model can be reduced to

mcellCp,cell
d T
dt

= i(V − (Up −Un))−U A(T −Tamb),

(10)

where U is the so called overall heat transfer coefficient.

Figure 1. Single Cell thermal model.

3 Model Predictive Control scheme

MPC has been selected as a control paradigm to adjust
the inputs, denoted as u(t), which in the general case of
a battery pack operation with liquid cooling consists of
current, fluid flowrate and fluid inlet temperature. Addi-
tional, non-manipulated inputs or disturbances, can be the
ambient temperature or the parasitic loads connected to
the battery pack. For simplicity, we neglect the effect of
the latter, and limit the control inputs to the battery cur-
rent and the fluid inlet temperature. Moreover, we con-
sider that internal states are observable in practice, but in a
real implementation a well tuned estimation method (e.g.,
Kalman-Filter) must be used.

The nature of the system is non-linear, not only from
the coupling between electrochemical and thermal model
(the heat source is proportional to i2, i being the current of
the cell or pack), but also because the product of flowrate
(considered however constant in the present work) and
temperature difference in the heat exchanged. The lat-
ter can be simplified for the single cell case, and decou-
pling and linearisation of the state space system could be
solved in a decentralized fashion as reported in Romero,
Goldar, Couto, et al. (2019). Therefore, in general, non-
linear solvers are needed in the optimization problem, spe-
cially when pack-level control is considered.

3.1 Optimization problem

The on-line nonlinear optimization problem subject to
constraints that can be written as

min
u(t)

∫ tf

t0
[(SOC(t)−SOCref)

2 + kT(T(t)−Tinit)
2]dt

s.t. model dynamicsconstraints
electrochemical constraints
thermal constraints.

(11)
The first row in Equation 11 is the integral cost over

the horizon determined between t0 and tf. Its first term
penalizes the difference between the SOC at time t and
the desired reference SOCref. An additional cost term is
added to bring the cell/pack temperature to a desired value
for storage or before discharge begins. In addition to the
model dynamics itself, two type of constraints are consid-
ered: electrochemical constraints on the anode potential
(Vn) to avoid lithium plating, and thermal constraints in-
cluding maximum and minimum cell temperature (Tmax,
Tmin), as well as maximum temperature spread within the
pack (Tspread).

Figure 2. Model Predictive Control Scheme

3.2 Prediction Model
The optimization class extends the pack model
PackEHMT, i.e., the prediction model, which includes all
state and output dependencies with the input variables.
The following listing is part of the optimization class
EHMTVpack_OptMPC, which includes a constraint section
that defines the limits of operation for the cell and pack.

Listing 1. Optimization class EHMTVpack_OptMPC

optimization EHMTVpack_OptMPC (
objectiveIntegrand =

(SOC - SOC_ref)^2 + 1e-8*(T-T_init)^2,
startTime = 0, finalTime = 1000)

extends PackEHMT(
CSC(fixed=true), CSCn_0=0.05,
SOC(fixed=true), SOCn_0=0.05,
T(fixed=true), Tm(fixed=true),
Tf(fixed=true), T_init = 298.15);

// . . .

// Example o f l i m i t v a l u e s :
parameter Real SOC_ref = 0.80;
parameter Real SOC_max = 0.65;
parameter Voltage V_max = 4.2;
parameter Temperature T_max = 450;
parameter Temperature Tf_max = 450;
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parameter Temperature Tspread_max = 10;
parameter Temperature DTf_low = 10;
parameter Temperature DTf_high = 25;
parameter Current i_max = 20;
parameter Voltage Van_min = 0.1;

equation
U_n = ...;
U_p = ...;
Van = R * T / alpha / F * Modelica.Math.

log(theta_n * (I) / sqrt(CSC * (1 -
CSC)) + sqrt(1 + (theta_n * I / sqrt(
CSC * (1 - CSC))) ^ 2)) + U_n;

constraint
SOC <= SOC_max;
CSC <= SOC_max;
SOC >= 0.0001;
CSC >= 0.0001;
Van >= Van_min;
Tfin >= T_amb - DTf_low;
Tfin <= T_amb + DTf_high;
(Tf - T) <= Tspread_max;
-(Tf - T) <= Tspread_max;
i <= i_max;
T <= T_max;
Tf <= Tf_max;
V <= V_max;

end EHMTVpack_OptMPC;

The core model of the battery pack is the cell model
CellEHMT_base, where the main electrical and electro-
chemical parameters and equations are defined. The only
exception is lack of a cell temperature model. This and
the temperature balances of the full pack form the model
class PackEHMT as shown in Listing 2. Figure 3 shows the
approach to simplify the pack equations, where the cells
between the first and last are lumped into a single thermal
node. Despite its simplicity, this approximation allows us
to obtain an inlet fluid temperature for the last cell, and
yields a level of fidelity for the pack model sufficiently
accurate for an MPC scheme.

Listing 2. Pack model class PackEHMT

model PackEHMT

extends CellEHMT_base; // i n c l u d e s s t a t e
v a r i a b l e T

// . . .
parameter Integer nmid = 400 "Cells in

the middle";
Power Q(start = 0);
Power Qm(start = 0);
Power Qf(start = 0);
Temperature Tf2(start = T_init);
Temperature Tf3(start = T_init);
Temperature Tf4(start = T_init);
Temperature Tm(start = Tm0) "Temperature

cells in the middle";
Temperature Tf(start = Tf0) "Temperature

last module cell";
parameter MassFlowRate mfr = 0.001 "Mass

flow rate";

inputTemperature Tfin "Inlet fluid
temperature";

equation
// . . .
V = U_p - U_n + ...;
Q = 1/(1/(h * A) + 1/G_rad)*(T-(Tfin+Tf2)

/2);
Q = mfr*Cpf*(Tf2-Tfin);
Qm = nmid*1/(1/(h * A) + 1/G_rad)*(Tm-(

Tf3+Tf2)/2);
Qm = mfr*Cpf*(Tf3-Tf2);
Qf = 1/(1/(h * A) + 1/G_rad)*(Tf-(Tf4+Tf3

)/2);
Qf = mfr*Cpf*(Tf4-Tf3);
P_loss = i * (V - U_p + U_n);
der(T) = (P_loss - Q)/(M*Cp);
der(Tm) = (nmid*P_loss - Qm)/(M*Cp*nmid);
der(Tf) = (P_loss - Qf)/(M*Cp);

end PackEHMT;

Figure 3. Simplified pack model with lumped dynamics within
the rectangle.

3.3 Plant Model
For the plant model, a high definition, 1D battery pack
nonlinear model is used. The pack consists of several
stacks connected hydraulically in parallel and electrically
in series. Each stack consist of several modules, made of
staggered groupings of 36 cells secured within a cooling
enclosure, which allows for a dielectric fluid to circulate
in contact with the surface of the cells using immersion
cooling technology (Kastler and Menzl 2021). More in-
formation about a similar stack can be found in the work
of Kasper et al. (2023).

Figure 4. Stack formed by a variable number of modules

The maximum voltage of the pack’s energy content is
60 kWh. A detailed view of an arbitrarily long stack is
shown in Figure 4. This pack model, of which an FMU
was created and integrated in the main simulation loop,
uses a validated ECM cell model without aging dynamics,
with a discretized model consisting in 9 sub-volumes (3
divisions in radial direction and 3 in axial).
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Figure 5. Pack model tested with a CCCV charge using a lim-
ited PI

Figure 6. Pack model interface detail

4 Case studies
To illustrate what an optimal operation strategy looks like
and how it is calculated, a series of optimization problems
are solved, first solving the off-line, fast charge problem,
and then a closed-loop NMPC with state feedback on a re-
alistic plant model. We are concerned in this work with the
optimal charge, i.e., the overall control strategy including
the discharge phase of the cycle is part of ongoing investi-
gations. The main control parameters needed in JModel-
ica.org are shown in Table 2.

First, the optimal constrained fast charge profile of a 5
Ah, 21700 format cylindrical single cell with immersion

Table 2. NMPC controller setup

Variable Value Units

tf 1000 [s]
SOCref 0.665 [-]
ne 100 [-]
ncp 1 [-]
H 1000 [s]
∆tMPC 10 [s]
∆tsim 1 [s]
solver IPOPT

cooling is computed and compared with standard charg-
ing protocols with passively cooled cell. The optimization
is carried out under several constraints involving voltage,
temperature, and electrochemical limits, that prevent pre-
mature aging and lithium plating. Subsequently, the opti-
mal profile for the battery pack, based on the same cell, is
calculated without and with additional temperature spread
limit. In all cases the same EHMTVpack_OptMPC class,
where only the constraints (upper and lower values) are
adjusted for each of the cases described.

Finally, the NMPC scheme proposed in the previous
section is used to determine the impact of imperfect state
feedback and control horizon on the constraint satisfaction
and the controller performance.

4.1 Single cell optimal charge

We begin by comparing the conventional charge protocol
in three basic situations: passive cooling with 1C charge
CCCV, and immersion cooling at different C-rates: 1C/2C
CCCV. Passive cooling is defined by a boundary condition
defined by the overall heat transfer coefficient (U) equal
to 1 W/m2K over the whole surface of the cell, which
is the case of a slightly insulated cell subject to natural
convection heat transfer. For immersion cooling, a value
of U = 200 W/m2K has been chosen.

4.1.1 Cooling system comparison

Figure 7 illustrates a typical 1C-CCCV charge profile of a
commercial Li-ion cell. Starting at 7.5% SOC, it reaches
80% in 45 min. From top to bottom, the subplots con-
tain state of charge and critical surface concentration (ex-
pressed as percentage at target SOC stoichiometric), cur-
rent and voltage, anode potential, and cell temperature.
Passively cooled cells experience high peak temperatures
during charge. Figure 7 shows that, for slightly insulated
cells, temperature reaches 25 K above the ambient tem-
perature (fluid at 20◦C) at the end of the CC phase. On the
positive side, the anode potential remains above 42 mV
thanks to improved dynamics at higher temperature.

Immersion cooling, as shown in Figure 8, improves
thermal management, i.e., the ability to bring the tempera-
ture of cells to a desired reference. There is no decrease in
charging time compared with passive cooling when charg-
ing at 1C because temperature or electrochemical limits
are not achieved in both passive or immersion. Special
care should be taken not to cross the anode potential lim-
its at lower temperatures and higher currents. This is illus-
trated in Figure 8, showing an anode potential margin of
18 mV. Depending on the expected fidelity of the electro-
chemical model, this may not be sufficient to ensure total
lithium plating avoidance. In this case 4 K of peak cell
temperature above ambient is achieved. Although a higher
fluid flowrate is possible, the temperature reduction due to
improved heat transfer will lead to a further drop in anode
potential, and therefore higher risk of plating.
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Figure 7. 1C-CCCV, single cell, passive cooling (Tfluid refers
here to the environmental temperature)

Figure 8. 1C-CCCV, single cell, immersion cooling

4.1.2 C-rate comparison

An increase in C-rate improves charging time signifi-
cantly, from 45 min at 1C to 26 min at 2C (from 7.5% to
80% SOC). Only 5 mV of margin w.r.t. plating, and 33◦C
peak temperature set a limit in performance for safety
and lifetime, but again model inaccuracies and cell-to-cell
variations at BOL would encourage additional improve-
ments to this profile, specially when considering charge at
pack level.

4.1.3 Optimal constrained profile, 2C maximum C-
rate

When constraints are present (40 mV for the anode poten-
tial, 45◦C), the only way to reduce the charging time is to
increase the fluid temperature so that the cell properties are
enhanced. Figure 10 shows the calculated optimal current
and temperature profile, which brings the charging time to
28 min, only 8% higher than the 2C-CCCV profile. The
fluid temperature can vary +25/-10 K around the nominal
value 20◦C. It is worth noting the optimal trajectory of the

Figure 9. 2C-CCCV, single cell, immersion cooling

fluid temperature, which brings the temperature of the cell
to the maximum level after a series of swings, and finally
brings the cell to the nominal value even before the charge
is completed. This of course depends on the controller
setup, i.e., the weightings of the cost function. It must
be noted that the time derivatives of the fluid temperature
are limited in practice, for example, by the heating/cool-
ing devices mounted on the vehicle. The consideration of
such limits are beyond the scope of this work. If the fluid
temperature is kept at 20◦C at all times, the charging time
increases to 44 min, just above the 1C-CCCV protocol.

Figure 10. 2C Optimal profile, immersion cooling with temper-
ature control

4.2 Pack level offline charge optimization
The obtained profiles are valid only for a pack where all
the cells face the same boundary conditions, which in
practice is generally not possible. The optimization al-
gorithm can control the temperatures of all the cells (pro-
vided the first and last cell hold the extreme temperature
values), as well as the temperature spread in the pack. For
simplicity, we control the first and last cell’s temperature,
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as well as the absolute value of their temperature differ-
ence (Tspread).

4.2.1 No inlet fluid temperature control, no tempera-
ture spread control

We present first the case in which a pack is charged and
only the current is manipulated. The only constraint that
is not considered is the temperature spread. The maximum
temperature is nevertheless not active, while the anode po-
tential constraint is active for most of the charge, before
the CV phase begins at about 53 min. The charging time
(7.5%-80% SOC) is 44 min.

Figure 11. 2C Optimal profile, immersion cooling at pack level
without fluid temperature control

4.2.2 Fluid temperature control, temperature spread
control option

When the fluid temperature is amenable to manipulation,
results become more interesting. Charging time is reduced
to 34 min (Figure 12) when temperature spread is not in-
cluded, and 36 min otherwise (Figure 13), which indicates
that controlling temperature spread is marginally difficult
if the inlet temperature can be controlled. These values are
21% and 29% higher than the single cell case. Inciden-
tally, the maximum cell temperature constraint becomes
active at some point due to increased inlet fluid temper-
ature. Further limitation of the pack temperature spread
down to 5 K leads to a charging time of 43 min, a 20%
increase.

4.3 Pack level NMPC scheme
The results concerning the online fast charge optimization
using NMPC are presented in this section. Some imple-
mentation details to be taking into account when utilizing
this scheme on a real battery pack are also discussed. Fig-
ure 14 represents the same offline problem described in
the last example (pack level constrained optimization with
manipulated fluid temperature), now from a more realis-
tic perspective. It should be noted, notwithstanding, that
further limitations in pressure drop and fluid temperature

Figure 12. 2C Optimal profile, immersion cooling at pack level
with fluid temperature

Figure 13. 2C Optimal profile, immersion cooling at pack level
with fluid temperature and temperature spread control

ramps may slow down the overall charging operation.
The control horizon chosen in this work is 1000s, i.e.,

100 steps of 10s each. The total computational time per
step remained over the complete integration loop below
2 s for the device used (Windows system, processor Intel
i7, 32 GB RAM, overall usage less than 20%). The total
charging time (7.5%-80% SOC) is slightly increased up
to 37 min. If the control horizon decreases to 100s, the
computational time is reduced ten-fold, but the myopia of
the controller leads to a charging time of 63 min, not be-
ing able to avoid temperature constraint saturation. This
highlights the need for sufficient computing power.

Another limitation arises from model inaccuracies in
the cool-down part after the charge (beyond 60 min),
which leads to an increased temperature spread that would
violate the controller’s constraints. This helps us introduc-
ing how the scheme leads to constraint saturation when
feeding back the plant’s actual temperatures. Without ex-
plicit handling of such saturation, state values of the plant
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Figure 14. 2C NMPC profile, immersion cooling at pack level
with temperature spread and temperature spread control

may initialize the optimization problem from an infea-
sible point. Correcting the state slightly to always stay
within the limits of the saturation is proposed for the max-
imum temperature, which leads in this problem to satisfac-
tory results, as seen in Figure 14, since plant and predic-
tion models similar dynamics. However, it is clear from
this figure that the temperature spread is violated during
the cool-down phase. Saturation is resolved by fixing ei-
ther the minimum or maximum temperature, and after-
wards the remaining one considering the limited spread.
Not dealing with spread saturation leads to slightly higher
charging time (38 min), and future work will be devoted
to examine better options to include a robust approach that
ensures feasibility.

5 Conclusions
Fast charging of battery packs present a rich set of de-
sign and operational challenges. In this paper, it has
been shown that active thermal management is critical to
achieve competitive charging speeds in combination with
optimization-based control algorithms. Unlike previous
works tackling only single cell level operation, this work
has demonstrated that the objective of less than 20 min
pack-level fast charge (0-80%) is not yet attainable. In
fact, we proved that even with high-effective immersion
cooling and optimization-based algorithms, the charging
time from cell to pack is expected to increase by more
than 40%. In summary, further improvements from the
current state-of-the-art on cell design, cell-to-pack inte-
gration, and thermal management are needed. Ongoing
extensions for the current formulation include the addition
of a flow-pressure model and a more realistic approach of
the available heating/cooling power for thermal manage-
ment, so that constraints in pack pressure drop, volumetric
flowrate, and fluid inlet temperature ramps can be applied.
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Abstract
Domain-overarching system models are crucial to investi-
gate sector coupling concepts. Specifically, the coupling
of building and electrical energy systems becomes cru-
cial to integrate renewable energy sources such as pho-
tovoltaic power systems (PV). For such interdisciplinary
models, Modelica is a suitable language. However, most
open-source Modelica libraries are either domain-specific
or lack simple-to-parameterize PV models. We close this
gap by developing a PV model for the IBPSA Modelica
Library. The model comprises two I-V-characteristic mod-
els and three mounting-dependent cell temperature mod-
els. The I-V-characteristic models follow a single- and
two-diodes approach. This study uses measurement data
from a rooftop PV system in Berlin, Germany, for valida-
tion. The focus lies on comparing the implemented single-
and two-diodes approach. Results prove that both models
accurately calculate the modules’ DC power output and
cell temperature.
Keywords: PV, Modelica, Validation, Open-Source

1 Introduction
Interconnected systems facilitate the integration of renew-
able energy sources resulting in a decrease in CO2 emis-
sions. One important sector with a high emission reduc-
tion potential is the building sector (2022 Global status
report for buildings and construction: Towards a zero-
emissions, efficient and resilient buildings and construc-
tion sector 2022). The electrification of buildings’ energy
systems has proven to be a valuable instrument to inte-
grate renewable energy sources from the grid and, hence,
interconnect sectors. Consequently, synergy effects arise
from the connection of the two sectors while the system
complexity increases. Buildings cannot only exploit re-
newable energy sources from the distribution grid level but
also make use of self-generated electricity by, e.g., photo-
voltaic power plants (PV). PV is already a common way
in practice to integrate renewable energy sources on both

a small and large scale. Exemplary PV application fields
in the building sector are rooftop PV, facade-integrated
PV, and stand-alone PV on district level. While design-
ing building energy systems is already a challenge, it be-
comes even more complex when also considering poten-
tial PV integrations. Here, simulation tools support the
design and operation of such interconnected systems.

For building energy systems, Modelica has proven to be
a suitable modeling language. In this regard, open-source
libraries facilitate the knowledge transfer from research to
practice and harmonize the modeling process. As an out-
come of the Annex 60 project and the subsequent Project
1 (Wetter, Treeck, et al. 2019), five modeling libraries fo-
cusing on building performance simulations started their
collaboration. Among the five modeling libraries are
one core library and four derivative libraries. The four
derivative libraries, namely Buildings (Wetter, Zuo, et al.
2014), BuildingSystems (Nytsch-Geusen, Huber, Ljubi-
jankic, et al. 2013), IDEAS (Jorissen et al. 2018), and
AixLib (Maier, Jansen, et al. 2023) share a common core
library, called Modelica IBPSA Library. These libraries
aim to provide models for all relevant domains in build-
ing energy systems, namely, HVAC components and sub-
systems, building envelope models as well as internal and
external boundary conditions. In addition, the derivative
libraries partially include relevant electrical components,
such as battery energy storage and PV models. However,
prior to this development, the core library IBPSA neither
includes an electrical package nor a PV model. Conse-
quently, the derivative libraries have developed their own
modeling approaches. This work aims at harmonizing the
existing work by implementing a PV model in the core
library.

The development is motivated by the already existing
infrastructure between the core and its derivative libraries
as well as the wide selection of building energy systems-
related models and unified interfaces. We implement and
compare two popular modeling approaches for PV sys-
tems, namely, the single- and two-diodes model approach.
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While the former is an easy-to-parameterize and more
simplified model, the latter is a more accurate representa-
tion of the physical behavior of the PV cell. Both models
are compared and validated based on real measurement
data from a rooftop PV system based on thin-film CIGS
modules in Berlin, Germany.

2 Related work
This section gives an overview of existing modeling ap-
proaches for PV modules. At first, we define relevant
criteria for the developed model. Subsequently, popular
modeling approaches are discussed including their advan-
tages and disadvantages. Following, existing Modelica
models and libraries are presented.

2.1 Requirements
PV systems interact with building energy systems in var-
ious ways. While rooftop PV systems are the most com-
mon installation type in building energy systems, stand-
alone PV systems play an important role in the context of
district energy systems. Consequently, the focus lies on
both PV system types. The present study does not focus
on PV systems interacting with the thermal building mass,
e.g., facade-integrated PV, despite their potential. In addi-
tion, this study aims at developing PV system models for
the building design and operating phase focusing on en-
ergy performance. Consequently, the overall PV system’s
output power, rather than a detailed cell analysis, is the
main performance metric . Since the models aim at sup-
porting both practitioners and researchers, the parameteri-
zation effort should account for limited available informa-
tion. In addition, the model execution time should be short
so that different system configurations can quickly be as-
sessed for annual system performance. To summarize, we
define the following criteria for the model(s):

1. Representation of a rooftop or stand-alone PV sys-
tem.

2. Suitability for energy performance evaluation.

3. Modular modeling approach for simple extensions
and adaptations.

4. Simple parameterization based on readily accessible
data.

5. Fast model execution for annual simulation.

2.2 Photovoltaic modeling approaches
The present study distinguishes the modeling approaches
in electrical and thermal model. We first focus on the elec-
trical modeling and discuss thermal models subsequently.

2.2.1 Electrical modeling approaches: I-V character-
istic

In the literature, there exist different approaches to model
the electrical characteristics of a PV module, the so-called
I-V-characteristic. These approaches can be distinguished
into empirical and physics-based models. In the context of

this study, the latter are further differentiated into single-
and two-diodes models, corresponding to the electrical
equivalent circuit that they are based on. For the present
study, we compare different techniques regarding their ac-
curacy, computational effort, and parameterization effort.
Table 1 shows a qualitative comparison based on the fol-
lowing literature review.

Table 1. Comparison of modeling techniques.

Scheme Accuracy Comp. effort Parameter.

Empirical + + -
Single-diode 0 + +
Two-diodes + - to 0 0

Empirical approaches
Two well-known empirical PV modeling ap-

proaches are the Sandia PV Array Performance Model
(SAPM) (King, Boyson, and Kratochvill 2005) and
the Loss Factors Model (LFM) (Sellner et al. 2012;
Sutterlueti et al. 2008). To obtain these models, selected
points of the electrical characteristic, are determined
based on measurement data. Those points cover the
maximum power point (MPP), the short circuit current
Isc and the open-circuit voltage Voc. In addition, fitting
parameters are calculated based on measurement data
that consider the change in the I-V characteristic with a
change in irradiation and the cell temperature. Stein et al.
(2013) and De Soto, Klein, and Beckman (2006) compare
empirical models with numerical single-diode models In
these experiments, De Soto, Klein, and Beckman (2006)
prove that the empirical models outperform the single-
diode approach. Their explanation for this phenomena
lies in a variety of experimental data that was used to fit
the parameters of the empirical models.

Single-diode approach
In contrast to the empirical models, physics-based mod-

els are based on the assumption that PV cells can be de-
scribed as diode circuits. Two approaches are common:
The single- and the two-diodes approach (see Figure 1
and Figure 2). The single-diode model assumes that the
PV modules’ current IPV can be described as the sum of
the photo current Iph, the leakage current Ish, and the dark
current Id (see Figure 1). Id is opposed to Iph. Id derives
from the Shockley equation

Id = Is(e
U+IRs

a −1), (1)

where a denotes the modified ideality factor

a =
Ns nI k Tcell

q
, (2)

where Id and a are based on the saturation current Is, the
ideality factor nI, the elementary charge q, the Boltzmann
constant k, and the cell temperature Tcell. Rs is the serial
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resistance resulting in a voltage loss, while Rsh is the shunt
resistance that leads to the leakage current Ish. The result
is the I-V characteristic

I = Iph − Id − Ish, (3)

I = Iph − Is(e
U+IRs

a −1)− U + IRs

Rsh
. (4)

These equations have five unknown parameters Iph, Is, a,
Rs, and Rsh, which is why they are referred to as 5p mod-
eling approach. This approach is a compromise between
accuracy, parameterization effort, and computational ef-
fort (see Table 1).

Figure 1. Single-diode equivalent circuit

The five parameters can be computed numerically or
analytically. Both approaches are based on the idea that
the five unknown parameters are calculated for standard
conditions first and their change with changing operating
conditions is computed subsequently. For more details,
we refer to Duffie and Beckman (2013) for an exemplary
numerical solution method and to E. I. Batzelis and Pap-
athanassiou (2015) for an analytical approach. The ana-
lytical approach’s advantage over the numerical one lies
in more robust and quick computation times (E. Batzelis
2019).

Two-diodes approach
The two-diodes model is a refinement of the single-

diode approach introducing a second diode into the elec-
trical equivalent representation (see Figure 2).

Figure 2. Two-diodes equivalent circuit

According to this model, the I-V characteristic of a PV
module can be described as

0 = Iph − IS1(e
U

nser +
I

npar Rs
Ut −1)− IS2(e

U
nser +

I
npar Rs

2Ut −1)

−
U

nser
+ I

npar
Rs

Rsh
− I

npar
, (5)

Ut = k
Tcell

e
, (6)

Iph = (c1 + c2 0.001Tcell)H, (7)

IS1 = cS1T 3
cell e−

Eg e
k Tcell , (8)

and

IS2 = cS2

√
T 5

cell e−
Eg e

2 k Tcell . (9)

These equations contain six parame-
ters (Rs,Rsh,c1,c2,cS1,cS2), which cannot be taken
directly from the module manufacturer’s data sheets.
Instead, they must be obtained by parameter identification
from the module’s I-V characteristics for different module
temperatures. Consequently, the two-diodes approach
results in a high accuracy due to a detailed representation
of the I-V characteristic, but it results in a higher com-
putational effort due to an additional parameter fitting
process and, hence, a more complicated parameterization.

2.2.2 Cell temperature calculation
The cell temperature affects the I-V characteristic and,
hence, the electrical efficiency of the PV module. The
absorbed irradiation is partially transformed into electri-
cal and thermal energy within the cell. The module’s heat
transfer to the ambient is influenced by the wind velocity,
the ambient temperature, and the irradiation. The energy
balance can be formulated as

Gn(τα) = ηcGn +UT(Tcell −Tambient), (10)

where τα is the transmission-absorption coefficient of the
module that accounts for the transmission of the glazing
and the absorption of the anti-reflection layer, ηc is the
cell efficiency under operating conditions and UT the heat
transfer coefficient (Duffie and Beckman 2013; Jakhrani
et al. 2011). Duffie and Beckman (2013) and Jakhrani et
al. (2011) describe that the energy balance can be solved
using the normal operating cell temperature (NOCT) con-
ditions that assume no load conditions, no wind, and a
module tilt of 45° as

Tcell = Tambient+

(TNOCT −20 ◦C)
Gn

800W/m2
UT,NOCT

UT
(1− ηc

(τα)NOCT
).

(11)

Because some parameters, such as (τα)NOCT and UT,
are difficult to assess, some studies neglect their influ-
ence by assuming no load conditions and no wind (Ro-
mary et al. 2011) or real operating conditions and no
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wind (Bai et al. 2014). Other studies find empirical re-
lations to consider the wind velocity’s influence on the
cell temperature (Duffie and Beckman 2013; Romary et
al. 2011). Apart from the NOCT-based approaches, which
are purely physical or a mix of empirical or physical mod-
els, there exist purely empirical approaches, such as de-
scribed by King, Boyson, and Kratochvill (2005). King,
Boyson, and Kratochvill (2005) develop empirical solu-
tions for two different mounting types, i.e., a type with
an installation close to ground and the other installed in
contact with the ground.

2.3 Existing photovoltaic models in Modelica
libraries

The following review investigates already existing open-
source PV models in Modelica. We distinguish mod-
els that are part of the Project 1-related derivative li-
braries from external libraries. All of the derivative li-
braries of the IBPSA core library contain some type of
PV model. While the AixLib and IDEAS library both con-
tain a model based on the 5p-modeling, i.e., single-diode
approach (see subsubsection 3.1.2), the Buildings library
contains two simplified models assuming constant effi-
ciencies. The model implemented in the AixLib library
contains different cell temperature models accounting for
three mounting types (open rack, close to the ground, and
in contact with the ground) following Duffie and Beckman
(2013) and King, Boyson, and Kratochvill (2005). In con-
trast, the models implemented in the IDEAS library use a
simplified approach for which a heat transfer coefficient
needs to be known. Both models assume an internal MPP
tracker. In contrast to that, the models implemented in the
BuildingSystems library cover both single- and two-diodes
models with and without internal MPP tracking (Pruthvi-
raj Balekai 2018; Nytsch-Geusen, Huber, and Nie 2013).

In contrast to the IBPSA-related libraries, two special-
ized open-source libraries for PV system simulation ex-
ist: the PhotoVoltaics (Brkic et al. 2019) and the PVSys-
tems (Villalva, Gazoli, and Ruppert Filho 2009). The
former is based on the single-diode model and contains
various examples and validation data. It is also based
on manufacturer data only but neglects the effect of dif-
ferent mounting types, which affect the cell temperature.
In addition, the latter library is also based on the single-
diode approach and applies a numerical solution method
to obtain the 5 unknown parameters (Villalva, Gazoli, and
Ruppert Filho 2009). However, according to Brkic et al.
(2019), the library is missing a parameterization support
for the parallel and serial resistances. In addition, sim-
ulation results for the open-circuit voltage do not neces-
sarily match the points provided in the data sheets (Brkic
et al. 2019). As in the case of the PhotoVoltaics library,
the mounting’s effect on the cell temperature and, hence,
the module’s efficiency is not included. To summarize,
most of the implemented models rely on the same phys-
ical assumptions, i.e., the single-diode approach. How-
ever, literature is currently missing a detailed comparison

of the single- and the two-diodes approach. Furthermore,
the mounting’s effect on the cell temperature has not yet
been implemented in any of the analysed models. Finally,
an implementation in the IBPSA library facilitates the use
in the derivative libraries due to consistent interfaces and
parameterization schemes.

3 Methodology
The following section gives an overview of the model im-
plementation. In the last section, we describe the rooftop
system in Berlin that is used for the validation.

3.1 Model implementation

3.1.1 Basic model structure

Figure 3 presents the basic model structure. The two
model formulation both extend the PartialPVSystem
model. The weather data, i.e., the dry bulb tem-
perature, the wind velocity, and the global irradia-
tion on the tilted surface are given by existing mod-
els of the package IBPSA.BoundaryConditions.
The PartialPVSystem includes three replaceable
models, namely the PartialPVElectrical, the
PartialPVThermal, and the PartialPVOptical.
The PartialPVElectrical model calculates the I-
V characteristic. The single- and two-diodes modeling
approach are implemented. The PartialPVThermal
model computes the cell temperature, taking into account
how the PV mounting type affects the cell temperature due
to the wind velocity. The PartialPVOptical model
calculates the PV-material-specific absorption ratio of the
module, which is an input to the thermal and the electrical
model. The overall model inputs comprise weather infor-
mation such as the zenith angle, the incidence angle, the
diffuse horizontal irradiation, the irradiation on the tilted
surface, the irradiation on the horizontal surface, the dry
bulb temperature as well as the wind velocity via real in-
puts. In addition, the tilt and azimuth angle can be manip-
ulated by real inputs if not used as parameters. The model
outputs the DC power using a real output connector. The
current and voltage as well as the cell temperature are ad-
ditional model variables.

3.1.2 Single-diode modeling approach

One of the implemented electrical partial models fol-
lows the single-diode approach as described in subsub-
section 3.1.2. The model is based on five unknown pa-
rameters that need to be estimated. To determine these
parameters, two approaches exist: an iterative, numeri-
cal solution method and an analytical one. Since the nu-
merical approach is computationally less efficient, and to
avoid users having to provide start values for the iteration
variables, the implemented model uses the analytical ap-
proach. Even though it is less accurate, it does not suffer
from initialization problems and is robust (Bai et al. 2014).
We implement the approach presented by Bai et al. (2014).
It is based on the approximation of the Lambert W func-
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Figure 3. Basic model structure with partial models, main interfaces, and parameters. For simplicity, only the main parameters and
variables are displayed.

tion and uses simplifications to derive an explicit formula-
tion of the I-V characteristic based on manufacturer data,
only. In addition, it provides explicit formulations for the
initialization of the five unknown parameters. For more
details on the initialization method, we refer to Bai et al.
(2014). The current and voltage at the MPP is deduced as
described in Bai et al. (2014),

Imp = Iph (1−
1
w
)−a

(w−1)
Rsh

(12)

Ump = a(w−1)−RsImp, (13)

where w is the wind velocity. Bai et al. (2014) do not con-
sider any temperature- or irradiation-dependence of the
parameters. Since the presented model aims to consider
these dependencies, we assume for the operating condi-
tions equations based on De Soto, Klein, and Beckman
(2006) and Messenger and Abtahi (2017),

a
a0

=
Tcell

Tcell
, (14)

Iph =
Htilt

Htilt,0
(Iph +µI,K (Tcell −Tcell,0)), (15)

Is

Is,0
= (

Tcell

Tcell,0
)3e(

Eg,0

kTcell,0
−

Eg

kTcell
), (16)

Eg

Eg,0
= 1−C (Tcell −Tcell,0). (17)

We assume that the parallel resistance Rsh is temperature
invariant, but that it depends on irradiation, and we assume

the serial resistance to be constant (De Soto, Klein, and
Beckman 2006). Therefore,

Rsh

Rsh,0
=

H0

H
, (18)

Rs = Rs,0. (19)

This approach is purely based on manufacturer data and is,
therefore, simple to parameterize. At this point, we high-
light that even though the unknown quantities are called
parameters in the scientific literature, they are variables
within the models. The proposed method includes pre-
defined initialization values for those variables and cal-
culates their values during operation using (14) to (19).
Despite its simplicity, the single-diode approach is based
on strong assumptions regarding the behavior of the par-
allel and serial resistance. In this contrast, the two-diodes
approach described in the next section provides a more ac-
curate representation.

3.1.3 Two-diodes modeling approach
We implemented the two-diodes model as

0 = Iph − IS1(e

Ump
nser +

Imp
npar Rs

Ut −1)− IS2(e

Ump
nser +

Imp
npar Rs

2Ut −1)

−
Ump

nser
+

Imp

npar

Rs

Rsh

Imp

npar
, (20)

0 =
Imp

npar
−λ

ISat1

Ut
e

Ump
nser +

Imp
npar Rs

Ut +
ISat2

2Ut
e

Ump
nser +

Imp
npar Rs

2Ut
+ 1

Rsh ,

(21)
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and

0 =
Ump

nser
−λ

RsIS1

Ut
e

Ump
nser +(

Imp
npar )Rs

Ut

+
RsIS2

2Ut
e

Ump
nser +(

Imp
npar )Rs

2Ut
+ Rs

Rsh+1 , (22)

where the module voltage Ump and module current Imp are
unknowns. The calculation of the current Imp and voltage
Ump in the MPP uses the method of Lagrange multipli-
ers to find the maximum of power Pmp = Imp Ump. This
leads to a system of three equations for the three unknowns
Imp,Ump and λ .

With the two-diodes model, the electrical behavior of a
PV module can be represented more accurately due to the
second diode in the equivalent circuit. The drawback is
that the six parameters cannot be derived from manufac-
turer data, as is the case with the single-diode model, but
must be determined using optimization. For parameter fit-
ting, we use GenOpt (Wetter 2009).

3.1.4 Thermal modeling approach
To calculate the cell temperature, we implemented three
different thermal modeling approaches. These are im-
plemented using replaceable classes of the thermal base
model, allowing the user to select the modeling approach
that corresponds best to the mounting situation. In addi-
tion to the physics-based model for the open rack instal-
lation, we also integrated the empirical models of King,
Boyson, and Kratochvill (2005). They reflect a mount-
ing close to ground and in contact with ground, respec-
tively. King, Boyson, and Kratochvill (2005) found their
cell temperature calculation to be applicable for different
cell types.

3.2 Preliminary studies
Both modeling approaches have been partially validated in
preliminary studies. The single-diode modeling approach
combined with the implemented thermal models has been
validated in Maier, Kratz, et al. (2021) using measurement
data from the National Institute of Standards and Technol-
ogy (NIST). The underlying model was integrated in the
AixLib library (Maier, Jansen, et al. 2023). The measure-
ment data was taken from two different arrays consisting
of mono-SI wafer-cell-based modules. We extend the ex-
isting work by including an analysis of the thermal model
and focusing on thin-film CIGS modules. The two-diodes
model has been developed and presented in Pruthviraj
Balekai (2018) and implemented in the BuildingSystems
library (Nytsch-Geusen, Huber, Ljubijankic, et al. 2013).
This work enhances the model by implementing it in a
modular model structure that forms the basis of the single-
and two-diodes modeling approach. In addition, the ther-
mal model has been replaced.

3.3 Validation data
The measured values for the validation of the newly devel-
oped single-diode and two-diodes models were obtained

using the monitoring system of the rooftop experimental
building1 as shown in Figure 4), which is located on the
university campus in Berlin-Charlottenburg. A total of 84
thin-film PV modules (type Solibro SL2 CIGS 110-1202)
with a total power of 9.24 kWpeak are installed on the roof
of the building on two movable single-axis tracking facade
elements.

Figure 4. Rooftop building with roof and facade mounted pho-
tovoltaic system in Berlin (Germany).

These modules are monitored separately in 42 groups,
each with 2 interconnected PV modules using the So-
larEdge (SolarEdge 2006) monitoring platform. For the
validation, a non-movable, rarely shaded module group on
the roof was selected, which has a slight inclination of 2°
and is oriented 27.5° to the west. The following variables
were recorded in a time interval of 5 min during the mon-
itoring process for this module:

• Module temperature (using a digital sensor on the
back of the module),

• total horizontal radiation (using KIPP and Zonen SP
Lite Pyranometer),

• wind speed and direction and outside air tempera-
ture, using the Netatmo (Netatmo 2011) weather sta-
tion, and

• electric power per module group (4 x 120 Wpeak and
2 x 115 Wpeak) using the monitoring system as shown
in Figure 5.

The data from the Netatmo weather station are extracted
using a Python-based data collector which then feeds it to
the InfluxDB data base for further processing. The module
temperature and total horizontal radiation is collected in-
dividually using NodeMCU microcontroller and then fed
wireless to InfluxDB via MQTT.

1http://www.solar-rooftop.de
2https://hanergy.eu/wp-content/uploads/

2015/08/Solibro_data-sheet_SL2-F-module_G1-4_
100-110-120-125_EN.pdf
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Figure 5. Layout of the PV system with 84 PV modules and
generated electricity on April 30th, 2023 (and the selected PV
system marked in red rectangle).

4 Results
This section first describes the results from the model im-
plementation and continues by discussing the validation.

4.1 Model application
4.1.1 Single-diode model application

The parameters of the single-diode model is based on
the manufacturer data, only. The following five pa-
rameters were used to parameterize the 115 Wp (and
120 Wp module, respectively): Isc,0 = 1.69A (1.71 A),
Voc,0 = 101.2V (102.3 V), eta0 = 0.122 (0.128), αIsc,0 =
0.01%/K, βVoc,0 = −0.27%/K, γPMPP,0 = −0.32%/K,
and PMPP,0 = 115W.

4.1.2 Two-diodes model application

To determine the parameters of the two-diodes model,
a set of U-I characteristics curves for different cell
temperatures of the module type Solibro SL2 CIGS 110
were used. We note that we only had access to data for
the modules with a peak power of 110 W. However, the
target system comprises four modules with a peak power
of 115 W and 120 W. Consequently, we cannot directly
compare measured with simulated data for the two-diodes
model. To still validate the plausibility of the two-diodes
model, a second validation set is generated. For the
second validation set, the single- and the two-diodes
models are both parameterized with 110 Wp modules.
This serves as a plausibility check for the two-diodes
model. Note, however, that the lack of measurement data
for the 110 Wp modules precludes an assessment of the
accuracy of the single- vs. two-diodes model.

To obtain the best possible combination of the six
model parameters using optimization, a cost function
was defined. This function calculates the squares of the
difference between the calculated module current with

the two-diodes model and the value from the manufac-
turer curve for 20 different voltage values along the U-I
curve. We used the Hooke-Jeeves algorithm from GenOpt,
which yields the following parameters values: Rs =
0.027484527 Ω, Rsh = 500.0 Ω, c1 = 0.0011962052, c2 =
0.001542755, cS1 = 9.490919, and cS2 = 0.007634368.

4.2 Model validation and plausibility check
The validation and plausibility check comprises three as-
pects: (i) the validation of the single-diode model (115 Wp
and 120 Wp) using the measurement data (see Sec-
tion 4.2.1), (ii) the plausibility check of the two-diodes
model using the single-diode model (110 Wp) simulation
results (see Section 4.2.2), and (iii) the cell temperature
validation (see Section 4.2.3). The validation period is
from July 27th until August 9th, i.e., it covers 12 d. To
evaluate the cell temperature approaches, an exemplary
day from the spring period was added.

4.2.1 Validation of the single-diode model
Figure 6 depicts the curves of the simulated and measured
DC power output of the six modules for the single-diode
model. A comparison of the simulated and the measured
DC power for the whole validation period yields an R2

value of 0.86 and a mean absolute error of 16.6 W. This
is rated as a high accuracy. The measurement data con-
tains days with low, medium, and high irradiation, which
confirms high model accuracy for different operating con-
ditions. To better understand the data, Figure 7 picks an
exemplary day. We select July 30th as an exemplary day
because it covers both high and low irradiation periods
during one day. The figure shows the simulated and mea-
sured DC output power of the modules on the top and the
global horizontal irradiation at the bottom. We observe
that the simulated and measured DC power generally fol-
low the trend of the global irradiation, as expected. How-
ever, at around 3 pm, the measurements show a DC power
peak, while the simulation and irradiation data do not. A
potential explanation is that the irradiation sensor might
detect shading while the observed modules do not. Other
possible explanations include imperfect calibration of the
irradiation sensor or measurement errors. However, since
this behaviors is only observed for a negligible amount of
time, the overall measurement data quality is rated high.

4.2.2 Plausibility check for the two-diodes model

Since the measurement data do not cover 110 Wp mod-
ules, the two-diodes model is compared to the simulation
data of the single-diode model. For this plausibility check,
the single-diode models are parameterized based on the
manufacturer data of the 110 Wp modules. Figure 8 il-
lustrates the simulated DC powers of both modeling ap-
proaches for July 30th. When comparing the simulated
outputs, it becomes evident that they are almost identi-
cal. The comparison for the whole validation period of
12 d yields an R2 value of 0.99 and a mean absolute error
of 5.5 W. This is a high accuracy and it shows that both
models yield similar DC power outputs.
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Figure 6. Comparison of measured and simulated DC power output for the validation period for the single-diode approach.
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Figure 7. July 30th as an exemplary day to demonstrate the ac-
curacy of the single-diode model.
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Figure 8. July 30th as an exemplary day to compare the single-
and two-diodes model outputs.

4.2.3 Cell temperature validation

In addition to the DC power, we also validated the cell
temperature model. Figure 9 shows the curves of the
measured cell temperature, the ambient temperature, and
the simulated cell temperature for the three modeling ap-
proaches (“open rack”, “close to ground”, and “in con-
tact with ground”), as discussed in Section 3.1.4, for a
spring (left) and a summer day (right). The thermal model
corresponding to the mounting of the use case is “close to
ground”, the other modeling approaches are added to the
figure for plausibility check. While for the spring day, the

thermal model corresponding to the mounting type “close
to ground” best predicts the cell temperature, the mount-
ing type “open rack” results in the highest accuracy for
the summer day. When taking the R2 as a KPI, the fol-
lowing values are realized for the spring (and summer)
day, respectively: “close to ground”: 0.81 (0.3), “open
rack”: 0.7 (0.75), and “in contact with ground”: 0.68 (-
0.01). The cell temperature calculations are, among other
influences, based on the wind velocity and the ambient
temperature. On the summer day, the ambient temperature
is higher while the wind velocity is lower. The thermal
models seem to overestimate this combined influence on
the temperature leading to an overestimation of the tem-
perature. In addition, we observe that the model overesti-
mates the cell temperature during the night time. We find
that the assumption of the cell temperature reaching the
dry bulb temperature during no-irradiation periods is in-
correct. The PV modules experiences radiative heat trans-
fer with the sky leading to lower cell temperatures than the
dry bulb temperatures during no-irradiation periods. How-
ever, the night time is not relevant for PV system evalua-
tion since no DC power is generated.

Finally, we discuss the CPU time of the model. Both
models result in a similar set of equations. While the
single-diode model has 544 equations, the two-diodes
model results in 534. To compare the CPU times, we sim-
ulated both models for the validation period 10 times and
took the median of the CPU times. The simulations were
done on a Lenovo L480 with an Intel Core i5-8250U CPU
and 1.60 GHz. The operating system is Windows 10 and
Dymola 2023 was used as simulation environment. Two-
diodes model results in average CPU times of 0.19 s and
single-diode of 0.2 s Consequently, we rate the models’
simulation speed as sufficiently fast for most applications.

5 Limitations
The validations show high accuracy of DC power output
for the single-diode model for the thin-film CIGS module.
Due to missing measurement data for the 110 Wp mod-
ules, we cannot directly validate the two-diodes model
making a general comparison between both modeling
techniques difficult. The cell temperature validation
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Figure 9. Comparison of measured and simulated cell temperature for a spring day (left) and a summer day (right). Both the two-
and single-diode model use the same cell temperature model.

shows that the cell temperature model overestimates
the actual temperature, especially during summer days.
However, the cell temperature computations only have a
small effect on the computed DC power due to small tem-
perature coefficients of the modules (αIsc,0 = 0.01%/K
and βVoc,0 =−0.27%/K). Uncertainty may be introduced
by the irradiation sensor not capturing all shading effects
of the six modules. This might lead to an overestimation
of the power output at certain points as shown in Figure 7.

We focus the validation on the summer period. The val-
idation should be extended to account for colder days and
days with almost no direct irradiation. This is explained by
the advantage of thin-film CIGS modules that benefit from
diffuse radiation. In addition, the cell temperature model
validation should be extended to a very cold winter day
to capture all relevant effects and better understand how
to correctly select an appropriate thermal model. More-
over, the presented models were not yet validated regard-
ing their accuracy in current and voltage estimation. Even
though it is possible to model each module separately, we
modelled the PV array as one system and neglected the
detailed electrical connections between the modules. For
such a detailed analysis, we expect the two-diodes model
to outperform the simplified single-diode model.

6 Conclusions
We presented a new open-source Modelica model of a
PV system that is implemented in the Modelica IBPSA
Library. The model includes two typical modeling ap-
proaches for the electrical characteristics of PV modules, a
single- and a two-diodes approach. To validate the model,
real measurement data from a rooftop building in Berlin,
Germany, was used. The validated PV modules are thin-
film CIGS cells. The comparison is done for a validation
period in July and the DC power output and cell tempera-
ture are analysed. The investigation reveals that the single-
diode model captures the PV DC power output well (see
Figure 6) and that the two-diodes model estimates simi-
lar DC power outputs (see Figure 8). However, we could
not evaluate which modeling technique is favorable since
proper measurement data for the two-diodes model were

not available, and we therefore only verified its accuracy
based on the single-diode model.
The mounting situation of the measured system corre-
sponds to an installation close to ground. The simula-
tion results show that this approach does not necessarily
lead to the best cell temperature estimation (see Figure 9).
For the regarded spring day, the cell temperature model
for the intended mounting type results in the highest accu-
racy, while for the summer day, the cell temperature model
corresponding to an installation with open rack yields the
highest accuracy. The thin-film modules are characterized
by small temperature coefficients and, hence, their perfor-
mance decline with increasing cell temperatures is small.

7 Future work
The present paper shows the comparison and validation
for a thin-film CIGS PV module. Even though, the single-
diode model has been validated before based on mono-Si
modules, literature is still lacking a comparison of the two
presented modeling approaches for a wider range of typ-
ical configurations. These configurations include mono-
and poly-Si wafer cells for different setups (i.e., tilts and
mountings) as well as orientations and locations. Valida-
tion data of different mounting situations could also be
used to further validate the cell temperature calculations
implemented in the thermal model. Furthermore, our vali-
dation does not include a detailed current and voltage anal-
ysis due to missing data. Moreover, the validation only
focuses on 12 days in July. Even though the validation
period was carefully selected to cover different irradiation
situations, validation in other seasons would be beneficial.

8 Data availability
The validations were done with the model that
is available in the Modelica IBPSA Library and
can be found at https://github.com/ibpsa/
modelica-ibpsa/pull/1766 3. The measurement
data is available in the corresponding IBPSA resources
folder and obtained from the UdK Berlin.

3The corresponding commit hash is
6e263f8cfa1ea65c0f4f91b610f205ece11e8a51.
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Abstract
Neural Ordinary Differential Equations (NeuralODEs)
open up the possibility to enhance the modeling of dynam-
ical systems, in terms of prediction quality and computa-
tion time, as well as shortened development time. Port-
ing NeuralODEs, the combination of an artificial neural
network and an ODE solver, to real engineering applica-
tions is still a challenging venture. However, we will show
that Neural Functional Mock-up Units (NeuralFMUs), an
evolved subgroup of NeuralODEs that contain Functional
Mock-up Units (FMUs), are able to cope with these chal-
lenges. This paper briefly introduces to the topics Neu-
ralODE and NeuralFMU and describes the procedure and
considerations to apply this technique to a real engineer-
ing use case. Further, different workflows to apply Neu-
ralFMUs dependent on tool capabilities and use case re-
quirements are discussed. The presented method is illus-
trated with the creation of a Hybrid Twin of an hydraulic
excavator arm, which features various challenges such as
discontinuity, nonlinearity, oscillations and characteristic
maps. Finally, we will show that the Hybrid Twin created
on basis of measurement data from a real system gives
more accurate results compared to a conventional simu-
lation model based on physical equations (first principle
model).
Keywords: NeuralFMU, NeuralODE, PeNODE, FMI,
PhysicsAI, Hybrid Twin, Scientific Machine Learning

1 Introduction
In the following sections, short introductions to the used
techniques are given.

1.1 NeuralODE
Since their introduction in 2018, Neural Ordinary Differ-
ential Equations (NeuralODEs) (Chen et al. 2018) are one
of the key techniques for data driven modeling of physi-
cal systems. NeuralODEs consist of an Artificial Neural
Network (ANN) that functions as the right-hand side of an
Ordinary Differential Equation (ODE), together with an
ODE solver to obtain the solution of the ODE, see Fig-
ure 1. Training such models on the ODE solution xxx re-
quires (efficient) differentiation through the ODE solver
by Automatic Differentiation (AD) or estimating sensitiv-

𝒙(𝑡)

𝐴𝑁𝑁
ሶ𝒙(𝑡)

න
𝒙(𝑡 + ℎ)

Figure 1. The topology of a NeuralODE. On basis of the system
state xxx(t) the ANN computes the system state derivative ẋxx(t),
which is numerically integrated into the next system state xxx(t +
h) by the ODE solver with step size h.

ities with adjoint sensitivity analysis (Bittner 1963). As
almost any other machine learning model for learning
dynamic systems like recurrent neural networks or long
short-term memory networks in (Champaney et al. 2022),
plain NeuralODEs need a significant amount of data and
are only able to learn physical effects that are represented
as part of this data. In real world engineering, there is of-
ten far more system knowledge available, which is only
partially included or not included at all in the NeuralODE
training data set. This knowledge can be used to drasti-
cally improve training, by incorporating it into the Neu-
ralODE model itself, for example in the form of differ-
ential equations. The resulting structure, consisting of
ANNs, differential equations and a numerical ODE solver,
is further referred to as Physics-enhanced Neural Ordi-
nary Differential Equation (PeNODE) or synonymously
hybrid NeuralODE (see Figure 2). In this case, the

𝒙(𝑡)

𝑂𝐷𝐸

𝐴𝑁𝑁

ሶ𝒙(𝑡)
න

𝒙(𝑡 + ℎ)

Figure 2. An example topology for a PeNODE. The system
dynamics are determined by an ODE and an ANN, for which a
variety of different interconnection topologies are possible.

ANN needs only to learn the missing physics that is not
part of the system of differential equations. Compared to
plain NeuralODEs, this allows for the use of smaller ANN
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topologies with less trainable parameters, which result in
faster training times and often much better convergence.
Further, introducing physical equations opens up to much
better explainability regarding the learned process by the
ANN, because a physical interpretation can be given for
signals between ANN and physical equations. In practice,
this incorporated knowledge might often be the part of the
system that is well understood by the engineer and can
therefore be modeled easily, for example the kinematics
of an industrial robot, whereas the ANN has to learn the
remaining physical effects that are challenging to model,
like e.g. the friction behavior of the robot joints.

1.2 NeuralFMU
If the concept of a PeNODE shall be applied to real world
engineering problems, another issue has to be faced: Phys-
ical models, designed in dedicated modeling tools, are not
available in a symbolic representation of the equation sys-
tem that can easily be used as parts of a PeNODE. Even
if the symbolic ODE is accessible, large and complex sys-
tems often count thousands of equations, which is cum-
bersome to handle. Therefore, modeling PeNODEs on
basis of large systems of equations, which are common
in industrial applications, is not practicable out of the box.
Fortunately, this can be solved by deploying the model
foundation not by a system of equations, but a handy con-
tainer for such: The Functional Mock-up Unit (FMU)
(Blochwitz et al. 2011). The FMU type Model-Exchange
(ME) provides an interface in analogy to an ODE system:
On basis of the current time t, the system state xxx(t) and
optional inputs uuu(t), the system dynamics ẋxx(t) are calcu-
lated. Comparing to the PeNODE model, instead of com-
bining an ODE with an ODE solver and ANN, a ME-FMU
is used. This topology (see Figure 3) is referred to as Neu-
ral Functional Mock-up Unit (NeuralFMU) and was intro-
duced in (Thummerer, Kircher, and Mikelsons 2021).

𝒙(𝑡)

𝐹𝑀𝑈

𝐴𝑁𝑁

ሶ𝒙(𝑡)
න

𝒙(𝑡 + ℎ)

Figure 3. An example topology for a ME NeuralFMU. In this
specific case, the system dynamics are determined by an ME-
FMU and an ANN in parallel. In general, a wide variety of
different interconnection topologies is possible.

Because determination of the loss function gradient for
NeuralFMUs (and NeuralODEs in general) is computa-
tionally expensive compared to gradient determination in
plain ANNs without ODE solvers, efficient differentiation
is a necessity to achieve an economic training (and there-
fore development) time. The Julia programming language

(Bezanson et al. 2014) offers some of the most power-
ful frameworks for AD that implement a variety of dif-
ferent approaches, therefore the first library for building
and training NeuralFMUs called FMIFlux.jl1 was imple-
mented in this language. As a proof of concept for the
applicability of NeuralFMUs in industrial applications, a
vehicle longitudinal dynamics model for the prediction of
an electric vehicle’s energy consumption was enhanced in
terms of result accuracy (Thummerer, Stoljar, and Mikel-
sons 2022). Further, the applicability to medical use cases
was shown at the example of a hybrid simulation model
of the human cardiovascular system (Thummerer, Tinten-
herr, and Mikelsons 2021).

2 Method
Deploying a NeuralFMU for a custom use case can be sub-
divided into three main tasks. First, the transfer of the
First Principle Model (FPM) from modeling environment
to the machine learning environment Julia (discussed in
subsection 2.1). Second, the actual topology design and
training of the NeuralFMU in Julia (subsection 2.2) and
third, the reimport of the trained Hybrid Model (HM) from
Julia into the original (or another) modeling or simulation
environment (subsection 2.3).

2.1 From modeling environment to Julia
Because high performance differentiation is not available
in most modeling tools, the FPM needs to be transferred
from the original modeling tool into Julia (Thummerer,
Stoljar, and Mikelsons 2022). This is achieved by using
the FMU export functionality of the modeling tool to ex-
port an FMU and the Julia library FMI.jl2 to import the
FMU into Julia, see Figure 6 (step 1). After the import
of the FPM FMU into Julia, the HM can be designed and
trained.

2.2 Designing the topology
Basically, a wide range of topologies for NeuralFMUs are
thinkable and designing a suitable one might not be intu-
itive. In the following, different aspects are highlighted
and suggestions for decision-making based on require-
ments are given.

2.2.1 Sequential/Parallel

While the position of the numerical integrator in a Neu-
ralODE is fixed, the positions of the FMU(s) and ANN(s)
are not. Here, two main topologies can be distinguished.
First, the elements can be connected sequentially, so one
element is computing results on basis of intermediate re-
sults from another element, see Figure 4. A common use-
case is an ANN, that corrects the system dynamics re-
trieved from an insufficient FMU model. Second, ele-
ments can be connected in parallel, so multiple elements

1https://github.com/ThummeTo/FMIFlux.jl
(accessed on May 24, 2023)

2https://github.com/ThummeTo/FMI.jl (ac-
cessed on May 24, 2023)
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Figure 4. An example for a sequential NeuralFMU topology.

are computing results on basis of the same or different in-
puts, whereas the results need to be merged, as shown in
the introduction in Figure 3. This approach is useful for
example if the ANN needs to learn an effect that can be
added to the existing dynamics (like many friction effects)
or only a subpart of the state derivative vector shall be
computed by the ANN, whereas the remaining part is de-
termined by the ODE.

If no decision can be made on how the final effect will
influence the system, e.g. because of lack of information
regarding the unmodeled system part, both topologies can
be used at once with minimal overhead: A topology using
gates, as introduced in (Thummerer, Stoljar, and Mikel-
sons 2022), allows for continuous fading between a se-
quential and parallel interconnection of the ANN, see Fig-
ure 5. Note, that the gate parameters do not need to sum

𝒙(𝑡)

𝐹𝑀𝑈 𝐴𝑁𝑁 ෩ሶ𝒙(𝑡)

න
𝒙(𝑡 + ℎ)

𝑝𝐴𝑁𝑁

+

𝑝𝐹𝑀𝑈

Figure 5. A NeuralFMU using gates. The parameters pANN and
pFMU control how much the ANN dynamics and FMU dynam-
ics contribute to the final system dynamics ˜̇xxx. For vectors of
signals, gate parameters can be used for all signals at once or be
extended to a vector parameter, to control each signal’s contri-
bution individually.

up to 1, but can be treated independently. Dependent on
the status of the gates, different edge cases can be param-
eterized:

• For pANN = 0 and pFMU = 1, the system behaves like
the original FMU without any ANN attached to it.

• For pANN ̸= 0 and pFMU = 0, the system behaves like
a series connection of FMU and ANN.

• For pANN ̸= 0 and pFMU ̸= 0, the system uses the
FMU as well as the ANN dynamics. The ANN is
able to manipulate the FMU dynamics (series) as
well as learning its very own dynamics on given sig-
nals (parallel).

Finally, these gate parameters can be trained together with
the ANN parameters and so bypass the initialization chal-
lenge of (physics-enhanced) NeuralODEs, which was fur-
ther highlighted in (Thummerer, Stoljar, and Mikelsons
2022).

2.2.2 Data processing between FMUs and ANNs

FMUs and ANNs operate in different numerical ranges.
Whereas the signal interface of FMUs is basically only
limited by Float64, ANNs suffer if layer inputs become
too large or too small dependent on the used activation
functions. Small values from the FMU may not suffi-
ciently influence the ANN output, large values lead to
saturation if activation functions with limited output are
used, like tanh, sigmoid or relu. A straight forward
workaround for this is to scale and shift the FMU’s out-
put values to fit the activation function of the ANN, which
is further described in (Thummerer, Stoljar, and Mikel-
sons 2022). To restore signal ranges at the ANN outputs,
a post-processing transformation can be added here. If the
ANN input signals are matching the outputs, this transfor-
mation can be initialized as inverse of the pre-processing
transformation. The parameters of these pre- and post-
processing operations can be initialized to suit known sig-
nal ranges and further be optimized together (as forward
and reverse transformation) or separately (as individual
transformations) with the ANN parameters to adapt well
to changing signal ranges that might occur with further
training convergence.

2.2.3 Signal selection

By design of the Functional Mock-Up Interface (FMI),
different signals can be passed between FMU and ANN.
Using all available FMU signals (in principle, any sys-
tem variable can be retrieved by supported FMUs) results
in suboptimal training performance, because unnecessary
large Jacobian matrices need to be computed during train-
ing and the signal information is highly redundant, if be-
sides system states and inputs further dependent variables
are connected. Further, connecting signals that have no
causal dependency on the physical effects being learned
carries the risk of the ANN learning wrong correlations
or at least delays training convergence. This motivates to
define an efficient and minimal interface. A clever and au-
tomatic signal selection during training is an active topic
of research. For now, choosing a small set of interface
variables is driven by expert knowledge of the system and
only some general instructions can be given. One is, that
for higher order differential equations (mechanical system
are usually modeled as second order ODEs), the order of
differentiation of the ODE should be preserved (Thum-
merer, Stoljar, and Mikelsons 2022). This is achieved by
preventing the ANN to modify the derivatives that are also
states. For example, consider a translational mechanical
system with the states position and velocity and the state
derivatives velocity and acceleration. If the ANN is al-
lowed to modify the entire derivative vector (here the ve-
locity and the acceleration), the second order ODE disin-
tegrates into a first order ODE, because the state veloc-
ity does not match the integrated acceleration anymore.
This can be tackled by allowing the ANN to manipulate
only the highest derivatives of the system, in the consid-
ered example the derivative acceleration, while passing
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the derivative velocity directly to the numerical integrator
without modifications.

2.3 From Julia to modeling environment
After training, the HM needs to be reimported from Ju-
lia back into the original (or another) development tool.
For this, three different approaches to integrate the newly
learned dynamic effect into the original modeling envi-
ronment are possible and explained in the following sub
sections.

2.3.1 Export the HM as FMU
The entire HM, including the FPM as FMU, can be ex-
ported as FMU, see Figure 6 (step 2a). This approach is
useful if model development has (almost) finished and no
other modifications to the structure needs to be done or
if the HM is being used in a different modeling tool that
features another modeling language (but support for FMI).
From software side, this can be accomplished using the Ju-
lia library FMI.jl or the related sub-library FMIExport.jl3

directly. An example on how to export NeuralFMUs as
FMUs is part of the FMIExport.jl repository.

From a technical perspective, the FPM FMU (the FMU
exported from the original simulation model) is copied
to the resources folder of the HM FMU (the FMU be-
ing exported from Julia) and most of the FMI functions
of the HM FMU are directly connected to the embed-
ded FPM FMU. Because these connections are imple-
mented by redirecting function pointers, the execution per-
formance of the hybrid FMU is only influenced by the
ANN dynamics without overhead. To induce the modi-
fied dynamics to the HM FMU, some functions need to be
extended, which is discussed in the following paragraphs
at the example of model-exchange FMUs.

Getting system state derivative
The functions fmi2GetDerivatives (FMI2) and
fmi3GetContinuousStateDerivatives (FMI3)
need to return the dynamics of the entire HM instead of
the FPM FMU. This can be simply achieved by obtaining
the FPM FMU state derivative and passing it through
the part of the HM topology, that modifies the system
state derivative. Finally, the modified state derivatives are
returned instead of the derivatives of the FPM FMU.

Setting system state
The functions fmi2SetContinuousStates (FMI2) and
fmi3SetContinuousStates (FMI3) set a new state for
the FPM FMU. If the system state is manipulated by the
HM topology before being passed to the FPM FMU, the
HM FMU state is not matching the FPM FMU state. As
a consequence, a new state for the FPM FMU needs to
be retrieved by optimization through the topology (Thum-
merer, Stoljar, and Mikelsons 2022).

Getting/Setting ANN parameters
Before overwriting the corresponding functions, the

3https://github.com/ThummeTo/FMIExport.
jl (accessed on May 24, 2023)

model description needs to be extended by new parame-
ter identifiers for the ANN parameters. After that, to be
able to read and change the ANN parameterization, the
functions fmi2GetReal and fmi2SetReal (FMI2) and
fmi3GetFloat64 and fmi3SetFloat64 (FMI3) need
to be overwritten to get and set corresponding ANN pa-
rameters.

Finally, further functions can be overwrit-
ten to add additional functionalities but are not
highlighted at this point, for example function
calls to fmi2GetDirectionalDerivatives
(FMI2), fmi3GetDirectionalDerivatives and
fmi3GetAdjointDerivatives (FMI3) can easily be
chained to the Julia AD framework to efficiently retrieve
partial derivatives.

2.3.2 Export the ANN only

Export as FMU
By exporting only the trained ANN as FMU, the FPM
can further be used in its original format, maintaining the
white-box structure that is known by the modeling engi-
neer, see Figure 6 (step 2b). Exporting ANNs as FMUs
is supported by FMIExport.jl, an example is part of the
library repository.

Export in a dedicated format
Further, the ANN can be exported in a dedicated format
instead of being compiled into an FMU, see Figure 6 (step
2c). Two different formats are discussed in the following.

From a linguistic point of view, the Modelica language
is capable of describing any operation that is performed
by an ANN layer. Even more uncommon layers, like the
gates layer used in the presented use case, can be ex-
pressed with simple mathematical operations and there-
fore with Modelica. Currently, the ANN is exported as
Modelica model by hand, but an automated export is part
of an upcoming research project. The Modelica ANN can
easily be imported into tools that support the Modelica
language.

Further, also the Open Neural Network Exchange4

(ONNX) can be used to export the ANN separately.
ONNX is capable of describing conventional as well as
custom layers, as long as they are subdivisible into prim-
itive mathematical operations (like e.g. the gates layer).
For Julia, an ONNX library is available, called ONNX-
NaiveNASflux.jl5, that is able to import and export ONNX
models including custom layers.

Instead of exporting the ANN structure alongside with
the identified parameters, it is also possible to export both
elements separately. This can be achieved by importing
the ANN topology in the original modeling environment
and transferring the parameters separately via an arbitrary
file format (like CSV, MAT or TXT).

4https://github.com/onnx/onnx (accessed on
May 30, 2023)

5https://github.com/DrChainsaw/
ONNXNaiveNASflux.jl (accessed on May 31, 2023)
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Figure 6. Comparison of different ways on how to deploy NeuralFMUs. Step (1) shows the export of the FPM as FMU from
modeling environment and the import of the FMU into Julia. After hybrid modeling and training inside Julia, the entire HM can
be exported as FMU (2a), only the ANN as FMU (2b) or a dedicated ANN format like Modelica or ONNX can be used for ANN
export (2c). Dependent on the chosen exporting step, the further usability of the HM varies.

Reintegration of the exported ANN in the original
modeling environment
The exported formats (FMU, ONNX, Modelica) share the
input and output structure. When reintegrating them into
the original modeling environment they all behave like
data driven sub-models such as characteristic maps. The
connection to the original FPM depends on the modeling
tool’s specifics. If the targeted modeling environment is
a Modelica tool, the following has to be considered: The
inclusion of the modified dynamics into the original FPM
is not straight forward since the original Modelica system
is acausal. The definition of variables as states or state
derivatives only takes place during compilation. To mod-
ify a variable’s derivative prior to compilation means to
modify/replace equations in the Modelica system. This
becomes a limitation, since ...

• . . . component models could be protected,

• . . . there are multiple equations to replace or modify,
so the solution is not unique,

• . . . sometimes variables/equations do not even exist
(but are only created during compilation).

Hence, in general the integration of a causal ANN into
the acausal Modelica model is not straightforward, and re-
mains a future research topic.

3 Experiments
In the experimental part, the NeuralFMU approach is ap-
plied to a subsystem of an excavator model. Figure 7
sketches the excavator arm and the considered subsystem.

3.1 Motivation
The model of the excavator was developed in Simula-
tionX6 during the real excavator’s setup period, in which
the model was used to test an automatic steering con-
troller. Now, during the operation of the excavator, the
model shall be extended and used with measurement data
as a Hybrid Twin to detect and predict faults (i.e. devia-
tions, leaks in hydraulic components, etc.) (Gundermann
et al. 2018). The Hybrid Twin concept enhances physics-
based models with real data from physical sensors to in-
crease the model’s accuracy and prediction capabilities
(Chinesta et al. 2019). The advantage of the applied Hy-
brid Twin of the excavator - a condition monitoring system
of the latter - is that the real system requires less sched-
uled maintenance while at the same time can be repaired
in time before serious faults occur. One major prerequi-
site for detecting deviations using Hybrid Twins is that the
simulated nominal behavior must match the measured data
very accurately during operation. This can be acchieved
by applying the NeuralFMU method to the system. The
results for the bucket cylinder subsystem of the excava-
tor (including reimport to the original model) are outlined
below.

3.2 Model selection for NeuralFMU
The complete, comprehensive model of the excavator con-
tains components of various domains of the SimulationX
libraries, such as Multi Body Systems (MBS, i.e. 3D) and
1D mechanics, hydraulics and control signals. The real
excavator is equipped with pressure and cylinder position

6www.SimulationX.com (accessed on May 24, 2023)
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Figure 7. Sketch of the full excavator arm with all three cylin-
ders. For the NeuralFMU approach, the subsystem controlled by
the bucket cylinder (red box) is used.

Figure 8. The submodel of the bucket cylinder and mechan-
ics in SimulationX. The model shows different domains (color
marked): MBS mechanics (blue), 1D mechanics (green), hy-
draulics (red), signal blocks for measured pressures and initial
position values (orange). The original FPM is shaded with the
colors of the domains. The extension of the model to a Hybrid
Model (cf. subsection 3.4) is highlighted by the red boxes.

sensors, the signals of which can be recorded together with
the control signals. This allows to collect data of the mo-
tion of a single cylinder as well as of the full motion of
the excavator arm. Comparing model with data, one will
find that there are deviations, e.g. between simulated and
measured cylinder positions.

One source of deviation is the friction in the hydraulic
cylinders, which is hard to model. Simple models are not
able to describe the process accurately enough, sophis-
ticated models are hard to parameterize, and the model-
ing task is even more complex since different parts in the
cylinder system contribute to the effective friction force.
To avoid the influence of interaction with connected com-
ponents, the model is considered for each cylinder sepa-

rately. Therefore, the bucket cylinder subsystem and at-
tached mechanics are cut out of the full model and are
used with the measured pressure signals in the cylinder
chambers as inputs, to focus on the movement of the con-
sidered cylinder only. Figure 8 shows the submodel of
the bucket cylinder and mechanics, which will be used
in experiments, and be referred to as the First Principle
Model (FPM). The model already includes some generic
friction components - a pressure based force FR_CTL and
a damper F_CTL_b, which prevents oscillations. The ne-
cessity of including or excluding such components will be
examined below.

It shall be mentioned that similar submodels can be
created for the other cylinders of the excavator arm, in
which case there are more components on the lower end
of the kinematic tree which affect the mass and momen-
tum distribution. Note, that the system model is unstable
if the center of mass of the rotated components lies above
the joint around which the mechanical components rotate
when extending or retracting the cylinder. This can lead to
difficulties, e.g. when trying to fit the friction force for the
boom cylinder. Even with submodels in a stable state, the
fitting method is time-consuming and requires knowledge
of engineers with system specific experience.

The cylinder chambers in Figure 8 are fed with non-
constant pressure signals, taken from real measurements
shown in Figure 9. These pressure signals cause the piston
in the cylinder to move. As mentioned, the simulated po-
sition deviates from the measurement, which can be seen
in Figure 14 which spans the same time sequence. The
position of the bucket cylinder will be used as training ob-
jective in the NeuralFMU optimization. Further, the mea-
surement data is noisy and contains irregular deviations
(e.g. position measurement around 470s), which cannot
be removed by standard filters.

Figure 9. Measured pressure signals pA and pB of the two cylin-
der chambers (normalized, units removed).

3.3 NeuralFMU setup and validation

3.3.1 The FMU of the Bucket model

For applying the NeuralFMU method, an FMU of the
FPM is generated, with the top bucket cylinder position
CTL.dx as the output y. Figure 10 shows two extraction-
retraction-cycles of the time segment used to train and test
the NeuralFMU. For the NeuralFMU training, a single

Paving the way for Hybrid Twins using Neural Functional Mock-Up Units

146 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204141



extraction-retraction-cycle ranging from 148s to 205s is
selected from the data since it covers most of the possible
dynamics of the measured series. A second cycle ranging
from 205s to 262s is used for testing. Please note, that
the amount of data for training is very small in terms of
machine learning applications and should be increased to
contain every aspect of the effect to be learned. Here how-
ever, it is shown that even small and incomplete data sets
can be used to significantly improve the simulation model.

Table 1. FMU states xxx and output y.

Symbol Name Description
x1 der(fourBar.q[2]) Angular velocity
x2 connection12.x Position
x3 fourBar.q[2] Angle
y CTL.dx Position

As shown in Table 1, the FMU has three states,
which seems not intuitive, since the mechanical system
(cf. Figure 8) has only one degree of freedom: the mo-
tion around the revolute joint in the four bar. The re-
lated states are the angle fourBar.q[2] and the corre-
sponding angular velocity der(fourBar.q[2]). The
third state connection12.x is the position of the 1D
mechanical connection between force interface (CTL)
and hydraulic cylinder port B, which is equivalent to
the length of the bucket cylinder. This state is intro-
duced since the 3D-1D force interface creates a con-
straint on the 1D velocity. Hence a differential equa-
tion for the 1D position (connection12.x) exists. Fur-
ther, the bucket cylinder position CTL.dx is identical
to the state connection12.x in the considered simu-
lation range. Because of the zero-crossing behavior in
der(fourBar.q[2]), the FMU has state events that
must be handled during simulation to obtain correct simu-
lation results (Blochwitz et al. 2011).

Figure 10. FMU states xxx (normalized, units removed) during
training and testing. State events (discontinuities) are triggered
whenever the cylinder reaches or leaves one of the end stops. In
the graph, they are shown as gray-dashed horizontal lines.

3.3.2 The definition of the ANN

The definition of the ANN topology bases on past experi-
ence and empirical hyper parameter tuning, and is consid-
ered as large enough to cover the dynamics, while being
trainable in reasonable time. In addition to a core of two
dense layers, pre- and post-processing layers are included,
as shown in Figure 11. These shift and scale the value of
all inputs to a distribution with mean 0 and standard devi-
ation 1 to suit the applied activation function tanh of the
first dense layer. The figure further shows the additional
gates layer introduced in subsubsection 2.2.1 which allows
efficient training of the unknown friction effect and a solv-
able initialization for the system. The final ANN topology
with 91 parameters is shown in Table 2.

Table 2. Parameters of the NeuralFMU topology.

Type Inputs Outputs Bias Num.

Pre-process 3 3 0 6
Dense 3 16 16 64
Dense 16 1 1 17

Post-process 1 1 0 2
Gates 2 1 0 2

Total: 91

3.3.3 Solver details and loss function

To solve the NeuralFMU in FMIFlux.jl, the explicit
Runge-Kutta method Tsit5 (Tsitouras 2011) is used as nu-
merical ODE solver. Using the gradient-based optimiza-
tion algorithm Adam (Kingma and Ba 2017) with step size
10−3, the following loss function of the mean absolute er-
ror (mae) is minimized during training:

mae(xxx2, x̂xx2) =
1
n

n

∑
i=1

∣∣xi
2 − x̂i

2
∣∣ , (1)

where xi
2 is the simulated bucket cylinder position

connection12.x at time instant i, x̂i
2 the corresponding

measured position, and n the number of compared mea-
surement points.

3.3.4 Training and testing in Julia

After defining the ANN topology and its training param-
eters, the NeuralFMU is trained in Julia for 2000 epochs
on the first extraction-retraction-cycle of the selected time
interval ranging from 148s to 205s in 0.1s second incre-
ments. Two experiments are considered: The training of
a Hybrid Model (HM) on basis of the FPM with a simple
friction model and on basis of the FPM without friction
(undamped system).

FPM with friction model
The results after training of the NeuralFMU are very close
to the measurement data, which is confirmed by the small
value of the loss function from Equation 1 of 0.0094m.
After training is complete, the NeuralFMU is simulated
the second extraction-retraction-cycle in the time interval
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Figure 11. The topology of the used NeuralFMU using gates adapted from (Thummerer, Stoljar, and Mikelsons 2022). The current
system state xxx and time t are passed to the FMU, which computes the system state derivative ẋxx. On basis of the state derivatives
from FMU, only the revolute joint acceleration ˜̇x1 is computed by the ANN (featuring pre- and post-processing layers) and linearly
combined with the corresponding derivative from the FMU ẋ1 in the gates layer. The remaining FMU derivatives ẋxx2,3 only enter
the ANN as inputs and are bypassed directly to the final derivative vector ˜̇xxx, to preserve a second order ODE.

Figure 12. Comparison of bucket cylinder position to data (top)
and absolute deviation from data (bottom). The HM is modeled
on basis of the FPM with simple friction.

Figure 13. Comparison of bucket cylinder position to data (top)
and absolute deviation from data (bottom). The HM is modeled
on basis of the FPM without friction.

from 205s to 262s, shown in Figure 12. The test re-
sult shows that the loss function value of 0.0228m dou-
bled compared to the training sequence, but it is still three
times smaller than the loss function value of 0.0696m in

the original FPM FMU simulation (cf. in Table 3).

FPM without friction model
As introduced, another NeuralFMU is built using an FPM
without friction components. Training and testing results
for the same sequence are shown in Figure 13. These con-
firm the fact, that the NeuralFMU can be trained com-
pletely without friction components and the ANN can
compensate the oscillations of the border-stable system.
The loss function value of the NeuralFMU featuring the
FPM without friction is 0.0327m and therefore about 30%
higher than the one trained on basis of the FPM with fric-
tion for the same sequence (cf. in Table 3). The accuracy
of the case without friction under the same training condi-
tions is lower than the one implementing viscous damping,
therefore the model with friction is used for the outlined
application.

Table 3. Loss function values.

Model FPM friction Training [m] Testing [m]
FPM yes 0.0616 0.0696
HM yes 0.0094 0.0228
FPM no 0.0543 0.0497
HM no 0.0157 0.0327

3.4 Hybrid Model in SimulationX
As described in section 2.3.2, one way to reimport the
NeuralFMU to the original modeling environment is to ex-
port the ANN in a dedicated format and to couple it with
the FPM (or an FMU containing the FPM) inside the mod-
eling tool. Thereby after training and testing in Julia, the
ANN parameters are exported as a TXT file and a Modelica
model with an equivalent network topology (cf. Figure 11)
and the parameter values loaded from this text file is cre-
ated. Listing 1 shows the equation section of the ANN
type implemented in SimulationX.

Listing 1. Equation section of Modelica type of ANN

preProcess = (dxIn+prePShift).*prePScale;
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dense1 = tanh(preProcess*w1 + b1);
dense2 = dense1*w2 + b2;
postProcess = dense2*postPScale+postPShift;
dxOut={

gates[1]*dxIn[1]+ gates[2]*postProcess,
dxIn[2],
dxIn[3]};

Here, dxIn and dxOut are the state derivatives as cal-
culated by the FPM and modified by the ANN, respec-
tively. prePShift, prePScale, w1, b1, w2, b2,
postPScale, postPShift and gates are the opti-
mized parameters of the different layers. To include
the ANN in the FPM, equations have to be modified
(cf. Sec. 2.3.2). In the bucket system (see Figure 8), this
affects only the equation which defines the angular accel-
eration in the four bar. The variables defining the FMU
state derivatives (cf. Table 1) are read from the model
components (derS), and are passed as input into the ANN.
The modified der(fourBar.q[2]) enters the FourBar
component as an input (named derS1mod) and is used in-
stead of the original variable. The equation section in the
four bar is modified as written below:

Listing 2. Modification of FourBar equation section

der(q[2]) = om[2]; //−> input 3 to ANN
alp[2] = ... //−> input 1 to ANN
// der (om[ 2 ] ) = a lp [ 2 ] ; r e p l a c ed by :
der(om[2]) = derS1mod; //<− output 1 o f ANN

In Figure 8, the extension and modifications of FPM
by the ANN are highlighted with red boxes. The bottom
right box shows state derivatives (derS), ANN, and modi-
fied state derivative of state x1 (derS1mod). This modified
derivative is fed into the modified fourBar component
(also highlighted with red box).

The output of the HM with a simple friction model sim-
ulated in SimulationX in the interval from 50s to 500s is
shown in Figure 14. The figure also shows that the bucket
cylinder position can be reliably predicted in SimulationX
for a measurement sequence that was not used to train and
test the NeuralFMU. Comparing the results in the time in-
terval for training and testing, the NeuralFMU shows the
same cylinder position in Julia as well as in SimulationX
for the original FPM and HM without friction, as can be
seen when comparing results in SimulationX (Figure 14
and 15) with results in Julia (Figure 12 and 13). Figure 15

Figure 14. Measured data and simulation results of FPM and HM for the bucket cylinder position for the entire measurement. The
HM is modeled on basis of the FPM with simple friction.

Figure 15. Measured data and simulation results FPM and HM for the bucket cylinder position, for the entire measurement. The
HM is modeled on basis of the FPM without friction.

Session 1-D: Mechatronics and robotics 1

DOI
10.3384/ecp204141

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

149



also confirms that the HM without friction is able to damp
oscillations for the full measurement sequence.

4 Conclusion
We started by introducing the concept of a NeuralODE
and adapted this machine learning model step by step to
suit the requirements of industrial engineering applica-
tions, resulting in a so called NeuralFMU. We highlighted
a generic workflow, that allows for NeuralFMU develop-
ment in custom applications, dependent on tool capabil-
ities and further model use. Finally, we exemplified the
presented theory at a real engineering use-case: The mod-
eling of a Hybrid Twin of a hydraulic bucket cylinder to be
used for process and failure monitoring.

Next, additional features of the FMIFlux.jl package
shall be investigated - input values to NeuralFMUs for in-
teraction with other excavator components and the batch-
ing method for more effective training on a broader data
base. Besides, we plan to apply the workflow to larger
submodels and other examples, and to automate parts of
the workflow where possible. For the excavator model,
the final goal is the creation of the Hybrid Twin for the
detection of malfuntions in the system.

Besides physical equations, further system knowledge
in the form of ODE properties like stability, oscillation ca-
pability, stiffness as well as frequency and damping infor-
mation can be integrated into the PeNODE training pro-
cess in form of Eigen-informed NeuralODEs (Thummerer
and Mikelsons 2023). All listed properties depend on the
eigenvalue positions of the system model over time. By
computing eigenvalues and rating their positions as part
of the (or an additional) loss function, the desired ODE
properties can be enforced for the considered Hybrid Twin
and may further improve training and prediction.
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Abstract
This work introduces a new solution for the modeling and
simulation of dynamically constrained objects for limited
structurally variable systems purely in Modelica. A com-
bination of a collision detection algorithm, the limitation
of collisions, and a method to constrain objects based on
forces leads to a constraint network in Modelica. It allows
a stable and accurate simulation of applications such as
robot tool changers in a flexible way without the need for
predefined connections in the model.
Keywords: collision detection, structural variability, con-
straint force, network, tool change, robotics, Modelica

1 Introduction
Structurally variable systems often occur in different fields
of technical problems. One prominent example is robot
tool changers. The production industry has an ever-
increasing demand for flexibility because manufacturing
is shifting from standardized products with high quantities
to individual goods. Tool changers are a common method
to increase the flexibility of an assembly cell.

Simulation is important for the development and testing
of robot cells for example in virtual commissioning (Wün-
sch 2008). There have been many works about the simu-
lation of robots (Paryanto et al. 2014; Bellmann, Seefried,
and Thiele 2020; Reiser et al. 2022) and manipulation
(Reiser 2021) in Modelica. Existing tools such as Ro-
boDK, CoppeliaSim, and ANSYS (Li et al. 2016) can be
used to simulate tool changers but they do not offer the
high degree of flexibility of the Modelica language.

In the Modelica environment (Modelica Association
2017) it is especially challenging to simulate applications
such as tool changers since structural variability is not pos-
sible, limited to special cases (Stüber 2017) or requires
additional effort (Tinnerholm, Pop, and Sjölund 2022). To
our knowledge, there has been no work in the area of sim-
ulating a tool changer based on Modelica models.

There are also examples in the field of aeronautics, such
as the structural changes during runtime in the area of
stage separation (Acquatella and Reiner 2014) or for in
orbit construction of orbital platforms (Reiner 2022).

This work builds on the previous work of (Acquatella
and Reiner 2014) and (Reiner 2022) to make it usable in
a wider range of applications, and shows how robot tool

changers can be modeled using the proposed technique.
We present a new solution for the modeling and simulation
of structurally variable systems in Modelica. It combines:

• A collision detection algorithm in Modelica

• A method to limit the number of possible collisions
(see Figure 1 and section 3.2 for details)

• The Constraint Force Equation method combined
with the Baumgarte stabilization technique

The next section introduces the state of the art. Sec-
tion 3 presents the new solution for the modeling of struc-
turally variable systems in Modelica. The following sec-
tion contains the implementation. In Section 5, a tool
change process and the transition of a spring-borne object
are simulated. In conclusion, the approach is discussed
and future developments are considered.

Figure 1. An example showing the limitation of possible colli-
sions. If all collisions are allowed, there are 21 possible collision
pairs (top). A restriction divides the objects into two groups and
only collisions between blue and grey objects are allowed. Now
there are only 10 possible collision pairs (bottom).
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2 State of the art
In this section, related existing work is analyzed. This
includes an overview of collision detection and the intro-
duction of the Constraint Force Equation (CFE) method
and the Baumgarte stabilization technique.

2.1 Collision detection
Collision detection is a complex task. There are special
libraries such as the libccd (Fiser 2018) to detect collisions
between convex shapes. The most common algorithms
are the Gilbert-Johnson-Keerthi distance algorithm (GJK)
(Gilbert, Johnson, and Keerthi 1988) and the Minkowski
Portal Refinement algorithm (MPR) (Snethen 2008).

There are several works about collision detection in
Modelica: (Otter, Elmqvist, and López 2005), (Hofmann
et al. 2014), and (Elmqvist et al. 2015).

To the knowledge of the authors, the approaches above
have in common that they combine Modelica with an ex-
ternal library for the collision detection task. The usage
of external function calls can result in delays (i.e. val-
ues might be one time step behind in the simulation), ad-
ditional model complexity, and possible incompatibility
when used on different computing platforms.

In the works of (Oestersötebier, Wang, and Trächtler
2014) and (Bortoff 2020), the collision detection is native
in Modelica. However, predefined contacts are needed.

2.2 Constraint Force Equation method and
Baumgarte stabilization

The Constraint Force Equation (CFE) method was devel-
oped at NASA (Toniolo et al. 2008). The aim is to con-
strain two bodies by applying joint forces to each body.
(Acquatella and Reiner 2014) used this method for the
modeling and simulation of stage separation dynamics in
Modelica and (Reiner 2022) for robot based in orbit con-
struction of orbital platforms. Their solution is however
limited because the contact pairs are predefined or use spe-
cial cases and cannot be changed during runtime. There-
fore an application such as a tool changer cannot be mod-
eled easily. A tool is usually connected to more than one
robot and a tool holder and the connections change during
a process. A more general method is needed.

The Baumgarte stabilization (Baumgarte 1972) is used
to stabilize the constraint force equation. The basic for-
mula for the constrained force calculation with Baumgarte
damping can be seen in the following equation:

ξ̈ +2ηξ̇ +η
2
ξ = 0 (1)

ξ represents the (generalized) difference in position and
orientation between the two objects and η > 0 the damp-
ing factor, resulting in an asymptotically stable ODE. Note
that the constraint is defined as a kinematic condition.
Modelica can automatically calculate the resulting forces
and torques when the equation is correctly used together
with mechanical bodies with mass and/or inertia (see im-
plementation details in later sections).

Since the constraint ξ̈ = 0 is defined on the relative ac-
celeration between the to be constrained objects, small nu-
merical errors can lead to drift in the relative generalized
velocity ξ̇ and position ξ between the objects. Using the
additional damping terms in equation 1 for the relative ve-
locities and positions between the objects can reduce this
drift substantially. See section 4.6 for more details on the
implementation used here.

3 Modeling structurally variable sys-
tems in Modelica

The solution for modeling structurally variable systems in
Modelica is presented in the following. The section starts
with the general idea behind this approach. Furthermore,
the method for limiting the number of possible collisions
is introduced and a Modelica native collision detection al-
gorithm is presented.

3.1 Idea
The idea is to build a constraint network within Model-
ica. By forgoing external libraries, the approach is stable
and accurate. In general, the CFE method implemented
in (Acquatella and Reiner 2014) is combined with a col-
lision detection algorithm. Thus, predefined contact pairs
are no longer required. In addition, the number of possible
collisions is limited to achieve a higher performance.

3.2 Limitation of possible collisions
Building a general collision detection library in Modelica
is challenging. However, it is possible to restrict the scope.

In collision detection, the number of possible collision
pairs x depends on the number of objects in the scene n
and can be determined by:

x =
n!

k! · (n− k)!
=

n!
2 · (n−2)!

(2)

This is based on the equation to calculate the number of
combinations of k from n elements. An example is shown
in Figure 1 (top). Seven objects in a scene have 21 possi-
ble collision pairs. With an increasing number of objects,
the number of pairs increases significantly. To avoid this,
the number of possible collisions is limited by dividing
the objects in a scene into two groups and allowing only
collisions between objects of one group and another.

In the example, one group contains two and the other
group five objects. Therefore the number of pairs de-
creases to ten objects (see Figure 1 (bottom)).

Now the number of possible combinations is:

x = n1 ·n2 (3)

where n1 is the number of objects of the first and n2 the
number of objects of the second group.

The number of collision checks performed during sim-
ulation runtime is directly related to the number of possi-
ble collision pairs in a scene. In other words, limiting the
number of possible collision pairs allows a fast collision
detection algorithm in native Modelica code.
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3.3 Collision detection in Modelica
The reasons for building a native Modelica collision detec-
tion algorithm are a high stability and compatibility of the
resulting simulations and a high accuracy of the results.

Implementing a collision detection algorithm (e.g. GJK
or MPR) in Modelica in general is not feasible since op-
erations such as the handling of complex 3D models are
hardly manageable without external code. Furthermore,
such an algorithm would have a weak performance be-
cause it is not possible to use all the optimization tech-
niques usually applied in collision detection libraries.

Hence, for this work, the collision detection algorithm
is highly restricted. Only the following contact combina-
tions are allowed:

• Sphere and sphere

• Sphere and rectangle surface (with length and width)

This reduces the complexity significantly and leads to a
fast calculation of collision checks.

The collision detection between two spheres (located
at position pSphere1 and pSphere2) is straight forward: Each
object has a radius and the collision check between two
objects is based on the Euclidean distance. The Euclidean
distance dEuclidean is calculated by:

dEuclidean = ∥pSphere1 − pSphere2∥ (4)

Using the sum of the radius rSphere1 and rSphere2 of both
objects a collision occurs when the following inequality is
fulfilled:

dEuclidean < rSphere1 + rSphere2 (5)

The collision check between sphere and rectangle sur-
face can also easily be calculated. The sphere (located
at position pSphere) is defined by its radius rSphere and
the rectangle (located at position pRectangle) by its length
lRectangle and width wRectangle. The distance vector be-
tween the sphere origin and the rectangle origin dSP in the
orientation of the rectangle TRectangle can be calculated by:

dSP =

dSP1
dSP2
dSP3

= TRectangle · (pSphere − pRectangle) (6)

For the implementation, it is assumed that the rectangle
normal is the local z-axis of the object. Now a simple dis-
tance inequality can be checked to determine the collision.
If all of the following inequalities are fulfilled, a collision
occurs between the sphere and the rectangle surface:

dSP1 < lRectangle (7)
dSP2 < wRectangle (8)

dSP3 < rSphere (9)

Since these inequalities are easy to solve in Modelica
for a limited number of objects, a native implementation
is possible with good computational performance, while
still maintaining the flexibility and power of the Modelica
language.

4 Implementation
This section shows the implementation of the solution pre-
sented in section 3. Figure 2 shows an overview of the im-
plementation in the library browser. The structure consists
of three objects (see Figure 3 for details):

• CollisionCollector (outer object to store information
of the CollisionObjects and ConstrainedObjects)

• CollisionObject (lightweight object whose position
and orientation are stored in the CollisionCollector)

• ConstrainedObject (contains the collision detection
algorithm and calculates the constraint forces)

4.1 Objects
This section contains descriptions for the objects of the
implemented solution (CollisionCollector, CollisionOb-
ject, ConstrainedObject). An overview of all objects and
their interaction is illustrated in Figure 3.

4.1.1 CollisionCollector
The CollisionCollector is an outer object to store all in-
formation of the CollisionObjects. This includes the posi-
tion, velocity, acceleration, orientation, angular velocity,
and angular acceleration of each object. Further infor-
mation are the collision type (see section 4.5), the shape
type (sphere/rectangle) with the related radius, length and
width, and the closed indicator.

In addition, the CollisionCollector stores information of
the ConstrainedObject. This includes the force and torque
calculated in the ConstrainedObject and the ID of the Col-
lisionObject in contact with the ConstrainedObject.

Figure 2. Overview of the library structure.
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CollisionCollectorCollisionObject
Data of each CollisionObject:
- Position/orientation (and derivatives)
- Collision type (Control/Passive)
- Shape type (sphere/rectangle)
- Geometry (radius, length, width)

Defined as "inner" object

Store data in
CollisionCollector

Check if collided and
retrieve force and torque

Data from each ConstrainedObject:
ID of collided CollisionObject and 
related constraint force and torque

iD collision type

shape type

input closed

outer CollisionCollector

geometry

ConstrainedObject

Collision check for each
CollisionObject

Store resulting force/torq.
for the CollisionObject

Calculate the constraint
force and torque

iD

transition parameters

outer CollisionCollector

Baumgarte parameters

geometry

Store data

Read resulting
force/torque

Read data

Store resulting
force/torque

Figure 3. Overview of the implemented objects with parameters (grey), inputs (red), methods (blue), and the inner/outer depen-
dency (green). The arrows show the interaction based on the data flow. The CollisionObject stores its data in the CollisionCollector.
The ConstrainedObject reads this data and performs a collision check for each CollisionObject. If a collision occurs, the Constraine-
dObject calculates the constraint force and torque. The resulting force and torque for the related CollisionObject are returned.

4.1.2 CollisionObject

The CollisionObject is lightweight and has mainly the
aim to store its position and orientation and their deriva-
tives to the CollisionCollector (used as outer object). Pa-
rameters are the ID, the collision type (see section 4.5),
and the shape type (sphere/rectangle) with the related ra-
dius, length, and width. The closed indicator is an input.

4.1.3 ConstrainedObject

The ConstrainedObject contains the collision detection
algorithm and equations to calculate the constraint forces
and torques. It also uses the CollisionCollector as outer
object. Parameters are the ID, the radius (the Constraine-
dObject is always a sphere), the damping factor for the
Baumgarte stabilization (η), the duration for the smooth
transition phase, and settings to enable the smooth transi-
tion phase and the offset.

4.2 Building the constraint network
The constraint network is built as follows:

• The CollisionObjects store their information in the
CollisionCollector. This includes the position and
orientation (with velocity and acceleration), radius
(or rectangle length and width), collision type, col-
lision shape, and closed indicator.

• Each ConstrainedObject runs a collision check to
all CollisionObjects by calculating the correspond-
ing equations from section 3 (it gets the relevant data
via the CollisionCollector).

• If a collision occurs, the constraint force and torque
are calculated (see section 4.6) to constrain the Con-
strainedObject to the related CollisionObject.

• The resulting force and torque for the related Colli-
sionObject is then returned (see section 4.6).

4.3 Boundary conditions
To achieve the procedure in section 4.2, some boundary
conditions are necessary:

Only collisions between CollisionObjects and Con-
strainedObjects are possible. Two CollisionObjects
can’t collide. The same applies for two ConstrainedOb-
jects. An example is Figure 1 (bottom), where the blue
objects as can be seen as ConstrainedObjects and the grey
ones as CollisionObjects.

The ConstrainedObject can only be constrained to
one CollisionObject (in other words it can only have
a collision with one CollisionObject). This reduces the
number of possible combinations significantly and im-
proves the performance, while still allowing to model
many relevant scenarios.

4.4 Manual definition of IDs
The Modelica Language Specification (Modelica Associa-
tion 2017) does not provide the capabilities for unique IDs
although it has been proposed in the past (Otter, Elmqvist,
and López 2005; Hellerer and Buse 2017). To achieve a
standard compliant solution, one necessity is the manual
definition of unique IDs for each CollisionObject (1 ... n)
and ConstrainedObject (1 ... m). In addition, the count
must be set for both objects in the CollisionCollector.

4.5 Opening and closing connections
The boundary conditions restrict the ConstrainedObject to
only one collision. This leads to the following question:
How can tool changers be simulated having contact with
both the robot and the holder? A tool changer is only con-
strained to one other object, the robot or the holder. But
there is a transition phase as well.

Therefore additional capabilities are needed. The Col-
lisionObjects have a mode, defined by a type. There are
two possible types: Control and Passive. In Passive mode,
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nothing changes for the CollisionObject. In Control mode,
the CollisionObject only collides if an additional input
closed is true.

In addition, the CollisionObjects are prioritized based
on their mode. If a ConstrainedObject collides with two
CollisionObjects, the one in Control mode is higher prior-
itized, i.e. the collision occurs with this object.

Now the simulation of tool changers is possible. The
tool is attached to a ConstrainedObject held by a Colli-
sionObject in Passive mode. A CollisionObject in Con-
trol mode is attached to the robot flange. When the robot
has approached the tool, the closed indicator of its Colli-
sionObject switches from false to true. This enforces the
ConstrainedObject of the tool to switch its constraint from
the holder to the robot. An application of this procedure is
demonstrated in section 5.1.

4.6 Calculation and return of the constraint
force and torque

Constraining accelerations in a complex inner/outer sce-
nario only leads to forces and torques in the Constraine-
dObject. There is a high relevance for the constraint forces
and torques in the CollisionObject, e.g. to determine the
load on the robot.

Hence the force and torque in the ConstrainedObject
must be transferred back to the CollisionObject. This
is achieved by using the CollisionCollector. Each Con-
strainedObject adds the resulting force and torque for the
related CollisionObject and the ID of the related Colli-
sionObject to the CollisionCollector (if a collision occurs).
The CollisionObject is then able to check for its own ID
in the CollisionCollector and if it occurs it retrieves the
stored force and torque and applies it to its frame.

In the case of a tool changer, it makes sense to constrain
the tool exactly at the position of the robot tool center
point (TCP). In reality, there would be some kind of me-
chanical flange to fixate the tool exactly there. For other
scenarios, it is necessary to constrain one object to another
at the contact point. An example is the robot based in orbit
construction of orbital platforms (see (Reiner 2022)). For
such applications, the position and orientation of the Con-
strainedObject should be kept and reaction forces com-
puted accordingly. To achieve this within the same Mod-
elica framework, position and orientation offsets have to
be computed at the time t0 when the collision occurs.

The calculation of the resulting constrained force is de-
scribed in the following (the calculation of the torque is
omitted for brevity).

When a collision is detected as described in section 3.3,
the position offset po f f set is computed as the difference
between the position pc of the counterpart and the Con-
strainedObject itself ps. The start time t0 is also saved.

po f f set =

{
0 if no collision
pc − ps if collsion deteced

(10)

Since collisions can occur at high speed between objects

this can lead to numerical problems when using fixed-step
solvers for quick simulations, especially when elastic sys-
tems with weak damping are involved. To elevate this
problem a slack or transition function str(t) can be enabled
(optional) to scale up the constraint forces and torques. If
not enabled, str(t) is simply set to 1 at all times.

It can be parameterized by its duration td (should be
chosen as small as possible to achieve a stable simulation).
The transition function is a smooth function between zero
and one and can be differentiated by Modelica automati-
cally (see equation 11).

str(t) =

1 if t − t0 >= td(
sin

(
(t−t0)·π

2·td

))2
if t − t0 < td

(11)

Equation 12 shows the constrained equation, which
leads to the calculation of the constraint force fcon,s act-
ing on the ConstrainedObject itself when connected to a
mechanical body.

str(t) · ((p̈c − p̈s)+2 ·η · (ṗc − ṗs)

+η
2 · (pc − ps − po f f set)) = 0 (12)

Equation 13 can then be used to calculate the correspond-
ing reaction force fcon,c acting on the CollisionObject us-
ing the rotation matrices of both objects (Tc and Ts).

fcon,c =−(Tc ·T T
s ) · fcon,s (13)

When no constraint is active fcon,s is set to zero.

5 Applications
In this section, two examples of dynamically constrained
objects are shown, namely the simulation of a tool change
process and the simulation of the transition of a spring-
borne object with offset. We used Dymola 2023x (64-bit)
on Windows 10 with a Rkfix4 solver (0.001 s step size) on
an Intel® Core™ i7-11700K workstation.

5.1 Simulation of a tool change process
This example demonstrates the capabilities of the devel-
oped solution by simulating a tool change process. It con-
sists of two robots, two tools, and four tool holders. The
Modelica model is shown in Figure 5. Both tools are at-
tached to ConstrainedObjects. The robot flanges are con-
nected to CollisionObjects in Control mode and the tool
holders to CollisionObjects in Passive mode.

The flange of Robot1 is moved to the holder of Tool1
(green sphere). Then for the CollisionObject attached to
the robot the closed input switches from false to true. This
causes the ConstrainedObject to switch its constraint from
the holder to the robot (see section 4.5 for details). Now
equipped with Tool1, Robot1 moves to a different holder
(red sphere) and releases Tool1 there. Robot2 does the
same simultaneously for Tool2 (equipping at the yellow
sphere and releasing at the pink sphere). Subsequently,
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t = 0s

t = 11s

t = 25s

Figure 4. Visualization of the simulation of a tool change
process in the DLR Visualization 2 Library. The gray tool is
equipped by the left robot and moved to the next holder. The
same applies to the right robot and the orange tool (t = 11s). In
addition, the right robot is equipped with the gray tool (t = 25s).

Robot2 is equipped with Tool1 and moved upwards to
demonstrate the flexibility of our solution.

The visualization of the final state based on the DLR
Visualization 2 Library (Kümper, Hellerer, and Bellmann
2021) is illustrated in Figure 4. Figure 6 shows the results
for the constraint forces applied to the ConstrainedObject
and to the CollisionObject. The latter represents the re-
sulting forces for the robot when the tool is attached. Sim-
ulating the model with 25 s simulation time took 4.5 s.

5.2 Simulation of the transition of a spring-
borne object with offset

The second example of dynamically constrained objects is
the simulation of a spring-borne object. In the simple sce-
nario, two rigid bodies are connected with a revolute joint.
The joint is connected to a spring damper pair. One of
the rigid bodies is connected to a ConstrainedObject with
enabled transition function (transition duration 0.5s) and
offset calculation. The model also contains three differ-
ent CollisionObjects (all in Control mode, i.e. they can be
enabled or disabled by the input closed).

Figure 7 shows an overview of the scenario. At the

Figure 5. Model for the tool change example. There are two
robots equipped with CollisionObjects, two tools attached to
ConstrainedObjects, and four tool holders with CollisionOb-
jects. No pre-defined connections are necessary, all components
can be added to the model by drag-and-drop.
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Figure 6. Simulation results for the tool change process. The top
shows the forces applied to the ConstrainedObject (connected to
the tool) and the bottom shows the forces applied to the Colli-
sionObject (connected to the robot).
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g

t = 0s t = 1.5s t = 2.4s

Figure 7. Visualization of the transition of a spring-borne object in the DLR Visualization 2 Library. At first (t = 0s), the object is
connected to the green sphere. Then it falls and is attached to the pink sphere (t = 1.5s). It continues falling and is constrained to
the yellow rectangle surface (t = 2.4s). The connecting line (black) shows the offset between the origin of both objects.

beginning of the scenario, the ConstrainedObject (blue)
is connected to CollisionObject1 (green color). At the
time t = 1s the closed input of CollisionObject1 is set to
false, and the assembly falls down (due to the world grav-
ity in the model) and collides with CollisionObject2 (pink
color). At t = 2.0s the input closed for this CollisionOb-
ject is also set to false, so that the object falls further down

1.4 1.6 1.8 2.0 2.2 2.4 2.6
-4E4

-3E4

-2E4

-1E4

0E0

1E4

[N
]

eta50.constrainedObject.frame_a.f[3] eta25.constrainedObject.frame_a.f[3]

Figure 8. Simulation results for the transition of a spring-borne
object with offset. The blue curve shows the constraint force in
the z-direction for η = 50 (damping factor for the Baumgarte
stabilization). The red curve shows the result for η = 25.

until it hits CollisionObject3 (yellow rectangle).
The offset from ConstrainedObject (blue sphere) to

CollisionObject2 (pink sphere) and to CollisionObject3
(yellow rectangle) is illustrated in Figure 7. Since the use
of offsets is enabled in the ConstrainedObject, the sphere
is constrained exactly at the contact point. Otherwise, the
sphere would be forced to the center of the rectangle (also
with the same orientation as the rectangle). At t = 2.5s the
input closed for CollisionObject3 is also set to false.

The resulting constraint force in the local z-direction
can be seen in Figure 8 for two different values of η

(see equation 1). The selection of η is unfortunately not
straightforward. In principle, it should be set as low as
possible and as high as necessary. A high value of η can
lead to a numerically stiff system. This can cause prob-
lems with numeric integration, especially when fixed-step
solvers are used. However, a too-small value for η can re-
sult in large deviations between the objects. As shown in
Figure 8, the resulting constrained forces can change sig-
nificantly for different values of η , especially when flexi-
ble elements are involved. This can also lead to different
behavior in the overall model. The difference for the be-
ginning of the second force spike (for t > 2.25s) in the
plot results from the higher constrained force (and torque)
which affects the flexible element in the system. As such
the parameter η is an engineering (control) parameter and
has to be chosen problem specific and very carefully. Sim-
ulating the model with 3 s simulation time took 0.08 s. It
takes 0.44 s to simulate a model with five spring-borne
objects and 1.2 s for one with ten objects.

6 Conclusion
In this paper, a new solution for the modeling and sim-
ulation of structurally variable systems in Modelica was
presented. It combines a collision detection algorithm in
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native Modelica code, a method to limit the number of
possible collisions, the Constraint Force Equation method,
and the Baumgarte stabilization. The result is a constraint
network within Modelica. It allows the stable and accu-
rate simulation of structurally variable systems in a flexi-
ble way (no pre-defined connections are necessary). The
ability of the new solution was demonstrated in two ex-
amples: the simulation of a tool change process and the
simulation of the transition of a spring-borne object with
offset. However, the presented approach has some restric-
tions and limitations: The user has to manually set unique
IDs for the objects since it is not (yet) possible within the
Modelica language standard and the scalability of the con-
cept is limited. Possible future developments are the sup-
port of more geometries for the collision check and exter-
nal objects to automatically generate unique IDs.
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Abstract
Computer simulation has become a vital tool for modeling
complex systems. However, the development and deploy-
ment of simulation models often involve multiple stages,
tools, and teams, which can lead to significant challenges
in maintaining quality, reliability, and efficiency. DevOps,
a set of practices that combines software development and
IT operations, has emerged as a promising approach to
streamline the simulation development. Although most
system engineers are not DevOps specialists and there
are a lot of manual steps involved when writing build
pipelines and configurations of simulations. For this pur-
pose, an abstract graph-based meta-data model was pre-
sented in Stefan H. Reiterer, Balci, et al. (2020) to pro-
vide an automation framework for DevOps with simula-
tions (see also Stefan H Reiterer, Schiffer, and Benedikt
(2022)). In this work we want to continue our investi-
gations by expanding and harmonizing this approach to
better work with established standards like SSP, SysML2
and DCP and demonstrating its application on real-life use
cases.
Keywords: Continuous Integration, DevOps, MBSE,
NoSQL Graph databases, DCP, SysML, UML, SSP

1 Introduction
DevOps is a set of practices, cultural values, and tools
that aim to improve collaboration and automation between
software development and IT operations teams, with the
goal of delivering high-quality software products and ser-
vices more efficiently and reliably. This approach empha-
sizes the integration of development, testing, deployment,
and monitoring processes to enable faster and more fre-
quent software releases, while maintaining stability and
reliability.

Formally Bass, Weber, and Zhu (2015) introduced
DevOps as a set of practices intended to reduce the time
between committing a change to a system and the change
being placed into production while ensuring high quality.

DevOps involves a range of practices, such as con-
tinuous integration and continuous delivery (CI/CD), in-
frastructure as code (IaC), automated testing and moni-
toring, and often includes agile development methodolo-
gies. It also emphasizes the importance of communica-
tion, collaboration and shared responsibility between De-

velopment and Operations teams and the use of the con-
tinuous improvement processes to assess quality and out-
comes.

The benefits of DevOps include improved software
quality and reliability, faster time-to-market, increased ef-
ficiency and productivity, enhanced flexibility and scal-
ability, and better collaboration and communication be-
tween teams. It is increasingly being adopted by organi-
zations across a wide range of industries, from startups to
large enterprises, as a key enabler of digital transformation
and innovation.

With the need to accelerate development cycles in other
domains as well like Advanced Driver-Assistance Sys-
tems (ADAS) or mechatronics it is crucial to carry over
DevOps practices to computer simulations as well. How-
ever, there are several difficulties arising when transferring
these methods from pure software environments into the
world of computer aided engineering (CAE).

The first difficulty arising is that most people working
in engineering and scientific fields are not software engi-
neers. This means it is important to democratize DevOps
practices with several tools which allow to easily imple-
ment, abstract, and reuse the setup of build pipelines to en-
able better automatic testing. The next problem that arises
is the simulation of specific needs, especially when deal-
ing with simulation coupling from different domains. Fur-
thermore, testing and evaluating the simulation quality is
much more difficult than regular software applications due
to norms and safety requirements which often are physi-
cal in nature. Although, there are assessment processes
for dealing with those issues (see e.g. the UPSIM project
described in ahmann2022towards) it is still necessary to
seamlessly integrate proper tooling and methodology into
the DevOps cycle for simulations.

For that matter a graph-based meta-data model was de-
veloped in order to provide a data structure which eas-
ily can be stored into modern database systems and is
also able to represent dependencies, the topology of co-
simulations and is able to be easily mapped from and onto
pre-existing standards. In Stefan H Reiterer, Schiffer, and
Benedikt (2022) an overview of the topic is given. Ad-
ditionally, it must be abstract enough to describe a whole
range of use cases, but still concrete enough to generate
process descriptions out of it to make it accessible for au-
tomation.
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In this work we will further investigate how to properly
leverage the graph-based approach to harmonize it with
established standards and will demonstrate its viability on
a real-life use case. Furthermore, we will analyze potential
shortcomings of the current state of affairs and will discuss
potential extensions of the DCP standard to come by with
these limitations.

For that matter we first start with a description of the
goal we want to achieve with a specific ADAS use case
as motivation, following a description of the established
standards. We will then continue with a short summary
of our graph-based approach and how to create mappings
from high level system descriptions (e.g. SysML 2) to
more concrete simulation descriptions (e.g. SSP) and how
those are rolled out and integrated. In the end we will
have a closer look at the DCP standard and what tools and
extensions could be helpful in the future to support the
proposed workflow.

2 Motivation and ADAS Use Case
In the development of complex systems there is a huge gap
between the systems engineering point of view, the practi-
cal implementation of software, setup of simulations (De-
velopers) and setting up the of the infrastructure (DevOps)
as those require very different sets of skills. Especially,
DevOps as the third pillar becomes much harder to per-
form with raising complexity as the automation pipelines
need constant maintenance by experts. Expert knowledge
of networking and understanding of containerization and
virtualization technologies like Docker or Podman and
services like Kubernetes. For that reason, it is important
to provide abstraction between those layers to be able to
seamlessly transfer the information from one end to the
other without being confronted with to much detail. In or-
der to lay out our approach we will describe in this section
an example and how its automation will be handled.

2.1 ADAS Use Case Description
In this simple scenario we have 3 roles. The first role is
a systems engineer which provides us with a system de-
scription and requirements provided in SysML 2.0 (see
Figure 2). As the systems engineer does not know all as-
pects of the simulation the simulation engineer has to set
up the simulation from the description and has to come
up with a script to compute the desired Key Performance
Indicator (KPI). Finally in order to improve on the work-
flow and raise re-usability the DevOps engineer has to au-
tomate the necessary steps to run (and potentially re-run)
the simulation under different parameters and provide a
pipeline which starts the simulation.

The ADAS use case consists of the following models:
A simple vehicle dynamics written in C, a scenario player
(EsMini) an FMU with an sensor perception, a simple
ADAS function (in this case an FMU with an ACC imple-
mented in C) a transform block for signal mappings. See
Figure 1. Furthermore, a post processing script written in
Python was used to analyse the driving comfort where we

used the methodology described in de Winkel et al. (2023)
to compute a suitable key performance indicator.

Figure 1. ADAS simulation architecture

2.2 Challenges
However, considering the complexity which arises with
variations of the models when changing parameters or
adding or removing models of the (co-)simulation this
adds a layer of additional complexity to the problem which
should not be underestimated. Even small changes to the
model can be tedious to apply if they occur often. Hence,
it is of utmost importance that these procedures are au-
tomated and made traceable as one could easily lose the
oversight of the many steps that were taken.

In order to ease the load of the developer it is beneficial
that the changes on parameters and architecture could be
automatically mapped onto the different models so that the
simulation engineers and DevOps engineers can focus on
their main tasks. In the next sections we will discuss the
standards and concepts which will be used to achieve that
goal and how a potential implementation looks like.

3 Established Standards
We use this section to shortly introduce some of the more
common standards we want to look at to tackle the arising
challenges described in the previous section. We chose
these standards due to their open nature and availability,
which enables a broad spectrum of use cases. We also
will have a short look at the not yet released SysML2.0
standard for system modeling, which is a successor to the
widely accepted SysML standard.

3.1 SSP Standard
The Modelica SSP (System Structure and Parameteriza-
tion) standard described in Hällqvist et al. (2021) is a com-
prehensive framework for developing cyber-physical sys-
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Figure 2. SysML2 model description with requirement

tems that enables the modeling and simulation of com-
plex systems across various domains, including automo-
tive, aerospace, and energy systems. It was designed to be
compatible with major Modelica standards like Functional
Mock-up Interface (FMI) and is based on the XML stan-
dard. The SSP standard provides a systematic approach
to structuring and parameterizing system models, which
facilitates model exchange and reuse, enhances interoper-
ability, and enables the development of more accurate and
efficient simulations.

The SSP standard includes a set of guidelines and con-
ventions for modeling the structural and physical aspects
of systems, such as components, connections, and param-
eterization. The standard also provides a well-defined syn-
tax and semantics for describing the behavior and interac-
tions of system components, which allows for the devel-
opment of executable models that can be simulated using a
range of simulation tools. In addition, it supports the inte-
gration of models with other software tools and platforms,
such as control systems and optimization tools.

3.2 The SysML Standard 2.0
The widely used System Modeling Language (SysML)
is a general-purpose modeling language for developing
complex systems and SysML 2.0 is the latest version
(which is under current development see OMG (2023)).
It is designed to support model-based systems engineer-
ing (MBSE) and provides an integrated set of modeling
concepts, notation, and semantics that are optimized for
the specification, analysis, design, verification, and vali-

dation of complex systems. While its predecessor SysML
is an extension of the Unified Modeling Language (UML),
SysML 2.0 is based on the KerML metamodel.

The main objective of SysML 2.0 is to provide a
comprehensive language for MBSE, which can be used
throughout the entire system development life cycle. The
language provides a standardized way of representing dif-
ferent aspects of the system, including its structure, be-
havior, requirements, constraints, and interfaces. Further-
more, support for the integration of different domains and
perspectives, such as mechanical, electrical, and software,
in a single model is provided.

The standard is open and is developed and maintained
by the Object Management Group (OMG) with input from
a wide range of stakeholders, including industry experts,
academics, and users. The language is supported by a
growing ecosystem of tools and frameworks, which en-
able users to create, analyze, and manage SysML models
efficiently, e.g. plugins for Eclipse.

The standard can be used by a system engineer to rep-
resent the system in concise manner which can be used
to generate graphical representations of the system (see
Figure 2 for an example). Furthermore, this can be used
to describe dependencies between different components of
the system and the respective requirements which in return
can be leveraged to extract the system architecture and its
signal flows like we demonstrate in Section 5.1.

4 The Co-Simulation Process Graph
The Co-Simulation Process Graph concept was originally
introduced in Stefan H. Reiterer, Balci, et al. (2020) and is
an extension of the classical Process Graph Concept Tick
(2007) which allows to not only map process steps (for
e.g. a build and deploy pipeline) but also to map the struc-
ture of a co-simulation with inputs and outputs and neces-
sary information of the setup steps. In this section we will
give a brief introduction of the concept for reader which
are unfamiliar with it and also will discuss methodologies
to version changes of the Co-Simulation Process Graph
which is important for many applications in engineering
as traceability is a hard requirement in that sector.

4.1 Definition and an Example
The main problem when trying to map simulation config-
urations within a process graph is that the moment closed
loop simulations are included this introduces cycles within
the graph structure. However, this violates the main con-
dition to compute execution orders namely that a process
graph is cycle free. In order to solve the problem of cycles
introduced by closed loop simulations and models with-
out the need of separating the workflow sequence and the
topology of the simulations the Co-Simulation Process is
defined with the following properties:

• The set of nodes consists of data nodes, transforma-
tion nodes, master nodes, signal nodes and commu-
nication (or gateway) nodes.
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• To represent the instantiation of a process or the us-
age of a signal inside a simulation, copies of the
nodes which represent these instances are made. In-
stances must be directly connected to their originals.

• Instead of using the bi-partite structure to represent
data transformations, only instances of processes can
connect to data nodes to perform operations. In this
way, the nodes which perform operations and their
instantiation can be determined with a suitable al-
gorithm, which determines a different partition of
the graph with help of the defined structure, to pro-
vide the correct order of executions. This is neces-
sary since it is allowed that transformation nodes are
neighboring, e.g., a Docker container which is built
and then used for executing a program.

• An information node can never be the successor or
predecessor of another information node. A process
must be placed in between. However, neighboring
process nodes are allowed. This may happen if a
program-performing transformation at a later stage
is modified beforehand by another process (e.g., pa-
rameterization of tools).

• A simulation is a sub-graph with the following prop-
erties: a) It contains the instance of a master node. b)
The instance of the master node is connected to all
instances of signal nodes that belong to the simula-
tion. c) All the other nodes inside the simulation (i.e.,
the simulation participants and communication gate-
ways) neighbor a signal instance. d) Each instance
of a signal is only allowed to appear once inside a
simulation.

• Cycles are only allowed inside a simulation sub-
graph.

A more detailed description of the data structure and anal-
ysis of the used algorithms can be found in Stefan H. Re-
iterer and Kalab (2021), which was recently accepted in
the International Journal of Simulation and Process Mod-
elling. An example is shown in Figure 3. In this exam-
ple the nodes (of type Node) c1 and c2 represent software
sources (e.g., source code of a model) b represents a build
tool like CMAKE and b1 and b2 (of type Bridge) rep-
resent two processes of this build tool which are started,
which leads to the simulation units P1 and P2 (nodes of
type Bridge) while the node M represents a simulation
master (a node of type Master/Bridge). After the build in
stage 1) the simulation is executed and the master is con-
figured by the information contained in the node M and
gets additional parameters from node I, while the node O
represents the output of the simulation. The Signal nodes
i j and o j represent in- and outgoing signals like velocity or
acceleration, while Gateway node g j represents the com-
munication protocols (e.g., a network protocol like IP) for
j = 1,2.

b1

b

b2

M

c1 c2

P1 P2

P1 P2

g1

g2

M

I

O

o1

i1

i2

o2

1) Build Stage

2) Simulation Stage
Figure 3. Simple example of a co-simulation process graph

4.2 Versioning Aspects
Graph Databases are to some degree able to use ver-
sioning, however this feature is in general not imple-
mented (ArangoDB 2023). In stark contrast to relational
databases, where several add-ons exist. Oracle Flashback
or Postgres Time Travel are two notable examples. As
the structure of a graph differs from the relational model
a different approach has to be used. It is also required to
take into consideration that not every backup-and-storage
technology might be fitting to solve the challenge of ver-
sioning. The database used in this work is ArangoDB as it
allows handling data more flexibly than its competitors.

When backup is discussed, there are mainly three strate-
gies: Full vs. Incremental vs. Differential. The use case
that we consider should cover the following aspects when
handling the versioning of graphs which undergo many
incremental changes:

• The current/latest graph has to be loaded the fastest
as it is used in production.

• Fast loading of the previous versions which were re-
cently added.

• Storage-benefits over full-backup as a lot of redun-
dant data is created.

This is motivated by the fact that a model will undergo a
lot of small incremental changes during the development
process and hence will create a lot of redundant data. With
regards to the solution is an inverse differential storage
which has the latest version of the graph saved in an un-
modified state. The previous versions only save the data
changed over each iteration. For the sake of simplicity,
currently this is done by using a signal-character which
marks the unchanged data. One of the benefits of this
model is the hybrid approach that still allows to imple-
ment a partial-full model to jump back to any given fully
backed up version.

Almost any given record can be persisted in a collec-
tion of the database. After adding another collection of
a different version of the data the versioning starts. All
the fields are checked whether or not they are equal to the
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previous version. In case of unchanged data, the previous
records will be overwritten by the signal character. The
differing fields remain unchanged. By doing this version
1 and version 2 are obtained. On any other given data set
the same algorithm is applied to create the next iteration.

In order to return back to a previous version either a
full-backup-milestone or the most recent version are used
to start from. All the signal-characters are reverted to the
latest state. A prototype is currently under development
in the scope of a bachelor thesis at Virtual Vehicle Re-
search. First tests with a simple co-simulation process
graph which underwent some changes over time already
showed roughly a memory saving between 20-30% in con-
trast to full back ups of the different versions. See Table 1
for an overview of different cases and the saves for the file
sizes. However, there is a lot of potential for optimization

Table 1. Difference in file sizes (FS) given in bytes

Records FS Orig. FS Compressed Saving [%]

10 7094 5348 24.6
50 35156 24942 29.1

100 73455 49377 32.8
123 52964 43360 18.1
125 53822 44010 18.2
250 108036 88184 18.4
500 215884 176470 18.3
750 397946 315564 20.7

1000 668678 425724 36.3
2500 1394335 981182 29.6
5000 4168767 2938219 29.5

10000 15442067 12299693 20.4

which will be explored further in the future.

5 Mappings between the Graph and
the Standards

In this section we will discuss shortly the mappings be-
tween the Co-Simulation Process Graph and the SysML
2.0 and SSP standard and their connection to the graph
database.

5.1 Mappings between the Graph Database
and the SysML 2.0 Standard

Since the SysML 2.0 standard is not finalized yet tools are
not completely available yet. Since the new standard is
based on the KernML meta language and not XML like
its predecessor it was necessary to write a simple Python
parser which parses the SysML file. We used the freely
available Pyparsing module for this task. As example
we use the simple SysML 2.0 model described in List-
ing 1 which refers to the model depicted in Figure 2 and
is linked to the use case we described in Section 2.1. To
modularize the SysML 2.0 document it is hierarchically
stored into the graph database (where the hierarchy is with

respect to nesting of the KernML blocks) with dependen-
cies within the hierarchy stored as edges. See Figure 4 for
the structure in the database.

Listing 1. "SysML 2.0. model"

package adas
{

part Vehicle {
attribute ’param:initial.Ego.speed’

=13.888889;
attribute ’kpi:comfort’;
attribute ’j_max’=2.94;
attribute ’a_max’=1.23;

}
part esmini {
}
part IdealSensorPerception{
}
part ’ACC ViF’ {

attribute ’param:Parameters.
Constant1_Value’=2.0;

attribute ’param:v_soll’=20;
}
part Pedals {

attribute ’param:korrekturfaktor’=0.04;
}
connect Vehicle to esmini;
connect Pedals to Vehicle;
connect esmini to IdealSensorPerception;
connect IdealSensorPerception to ’ACC ViF

’;
connect ’ACC ViF’ to Pedals;

}

Figure 4. SysML2.0 model stored within the graph database

With help of this representation, we are able to extract
building blocks and modules. We are also able to easily
search and extract information by recursive search meth-
ods. We can use this to inject or update information of
the co-simulation process graph which is used for setting
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up, configuration and start of the test simulation. The co-
simulation process graph for this model can be seen in Fig-
ure 5. It should be noted that in the graph the simulation
with all its sub-nodes (participants, signals, and commu-
nication) is contracted within the "Simulation" node for
the sake of simplicity. With help of the Arango Query

Figure 5. Co-Simulation process graph of the simulation model

Language (AQL) it is then possible to locate possible pa-
rameter changes within the SysML 2.0 model and map it
onto the graph. After the computation is finished and the
post-processing tools evaluated KPIs and performed qual-
ity checks the information can then stored back into the
graph database. With an inverse mapping it can even be
written onto the abstract SysML 2.0 model as information
for the system developer. While the transfer of parame-
ter changes in this example is rather trivial, we already
demonstrated in Stefan H Reiterer, Schiffer, and Benedikt
(2022) that also changes of participants, simulation set-
tings or even the topology of the co-simulation is easily
possible. We will also discuss in the next section how this
can directly applied to SSP files.

5.2 Mappings between the Graph Database
and the SSP 2.0 Standard

Since the SSP standard is designed to represent a co-
simulation graph its mapping into the co-simulation pro-
cess graph and the graph database is rather straight for-
ward. We use the following transformation:

• The System itself and its parameters can be repre-
sented by the Master node of the co-simulation pro-
cess graph, i.e., the SystemStructureDescription
and its meta-data can be directly written into the
(JSON-)dictionary representing the master node. In-
formation like ssd:DefaultExperiment with
start and stopping time directly go there.

• Components and their meta-data are directly
mapped onto Bridges representing the simulation
participants.

• The Connectors of the Components and their re-
spective meta-data are mapped onto Signal nodes.
The kind parameter which denotes if it is an input or
output connector is indirectly mapped by the direc-
tion of the edge of between the participant and the
signal node.

• Moreover, the metadata of Connections is di-
rectly mapped onto (communication) Gateway
nodes, while the direction of the connection
(startConnector to endConnector) is represented
by the edges between the signals and the gate-
way connections. It should be noted that the keys
startElement and endElement of the Connections
is implicitly provided by the connectivity of the com-
ponent, signal and gateway nodes and thus has not to
be explicitly stored.

• Last but not least, necessary edges can be added af-
terwards as well,

With these mapping rules the inverse mapping is also
rather clear. It may be necessary to use a tool for the ge-
ometry information if the graph comes from a different
source than an SSP file, but such tools are vastly available.
The mappings could be done either directly in XST or any
programming language like Python. In Figure 6 we see
the graph database view of the transformed SSP file repre-
senting the simulation architecture in Figure 1. Note that a
lot of signals were filtered out in the view for better clarity
in the representation as the simulation has a lot of signals
which were not actively used during the simulation. Fur-
thermore, it should be noted that the process graph is the
master model in this scenario which collects the key infor-
mation that is necessary to let the simulation run. It only
has to deal with a portion of the SysML 2.0 description
as the SysML 2.0 model may contain information which
are not relevant for the simulation run or the DevOps pro-
cesses (e.g. business relevant information), although, the
graph based model is flexible enough to store information
outside the scope of automation as well. On the other hand
the graph model stores information about the setup of the
simulation, hence, it contains more information than a reg-
ular SSP file. This means it may be necessary to enrich an
extracted graph from an SSP file with additional informa-
tion, except the simulation only consists of FMUs and the
FMU master is predefined.

6 The Role of the DCP Standard in
the Workflow and How to Enable
Broader Adoption

The Distributed Co-simulation Protocol (DCP) is a Mod-
elica standard (Modelica Association Project DCP 2019)
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Figure 6. Graph database view

for real-time and non-real time system integration and
simulation. It aims to augment the Modelica eco-system
of FMI and SSP by adding distributed inter-operable
simulation units, thus enabling the simulation of cyber-
physical systems (CPS). This standardization is achieved
by defining a common state machine and configuration to-
gether with the use of a transport protocol, either UDP,
TCP are implemented in the reference implementation,
while Bluetooth and CAN are specified but not yet im-
plemented. The capabilities of a simulation unit (a DCP
slave) are described in an XML-document known as a
slave-description, which is intended to be shared with a
DCP master before the simulation. The DCP master can
then integrate a simulation scenario by configuring the
simulation units according to their capabilities. The ex-
change of simulation data itself is achieved by protocol
data units (PDUs) that are sent in a defined manner ac-
cording to the transport protocol used. It aims to close
the gap between software in the loop (SIL) and hardware
in the loop (HIL) as DCP allows for a drop-in replacement
of each component. The industry need for distributed sim-
ulation and standardized interfaces is in part covered by
OPC UA (Schwarz and Börcsök 2013), ROS2 (Macenski
et al. 2022) and similar technologies, however, only DCP
specifically focuses on co-simulation. Recent use cases
of DCP include (Rautenberg et al. 2023) which provides
valuable input for possible extensions and use of DCP on
coupled hardware test benches, while Segura, Poggi, and
Barcena (2023) describe a generic interface using DCP in
Simulink. Generally, in many applications where a dis-
tributed simulation is needed, it is implemented by either
using proprietary technology or established standards with
a different focus. Having a simplified – yet standard com-
pliant – version of DCP available, such that developers
only need to implement a minimal set of features, e.g.,
sending data via a TCP/IP port, would help in establishing
DCP as a widely adopted protocol.

We identified DCP as a core technology for the pro-
posed workflow as DCP provides us with a proper co-
simulation standard for which configurations can be auto
generated. While FMI has become the de-facto standard
for the integration of co-simulation units and SSP for the
description of systems of FMUs, there remain some is-
sues: Either code for FMUs is generated resulting in a
static artifact or the FMU has dependencies – such as in-
stalled programs, libraries or licenses. In the future we ex-
pect the development of the concept of on-line simulation
platforms that enables the direct coupling of models using
DCP without sharing the underlying model, as is partly
discussed in Ahmann et al. (2022). The model needs to be
available for a standardized distributed system simulation
with a description available beforehand and the ability to
be started remotely, which is essential for easy deployment
on a big pool of workers either in the cloud or on premise.

However, during our work the high complexity of the
DCP standard became more visible. While it is desirable
that the standard covers a lot of use cases the vast range
of options can become a hindrance when we want to pro-
vide basic tooling. Thus, we propose the idea of a reduced
DCP core standard, which is able to cover most use cases,
but enables the creation of easy-to-use tooling based on
this minimal viable set of rules to accelerate the distribu-
tion of DCP. While we already proposed the use of an FMI
to DCP wrapper to leverage the broad availability of FMI
in our last work, we observed several times that packing
FMUs can confront developers with several challenges to
pack third party tools like open-source driving simulations
such as esMini or Carla. A minimal standard could help in
developing simple deployable DCP nodes but also a sim-
plified master which covers a lot of use cases.

Ideally, the build and dependency of the model should
be made explicit to allow for traceability as well as the
ability to trigger a build to use the most recent version.
This also would benefit the proposed workflow. The sys-
tem description needs to be formulated in a standardized
way, that allows for the description of the system architec-
ture as well as the integration of the co-simulation system.

7 Summary
We have extended the methodology outlined in Stefan
H Reiterer, Schiffer, and Benedikt (2022) how to make
use of graph-based automation using dynamically gen-
erated build pipelines for co-Simulations by making use
of mappings between standards for system description
(SysML2.0) and system structure description (SSP) which
can be used to configure a co-simulation master with a
more practical example. Additionally, we demonstrated
how to decompose SysML2.0 and SSP descriptions to
properly store them into graph databases and how to map
them properly into co-simulation process graphs to en-
able a more seamless workflow and proposed a method
for graph versioning tailored for development workflows.
Furthermore, we identified some shortcomings of the cur-
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rent state DCP standard and proposed a potential solution
in the form of a DCP core standard to address these issues.

8 Outlook
While the proposed graph-based methodology already ad-
dresses several issues like making standardized formats
available on graph databases and some methods for ver-
sioning them were discussed, there is still a lot of poten-
tial to improve on the existing algorithms and how to bet-
ter organize the pool of data which is created. Further,
we have to explore the potential of data driven testing and
validating the running simulations with help of the gener-
ated data over time to foster a more automated continuous
improvement process over longer development periods.

Furthermore, the proposal of a core DCP standard for
easier tooling has to be explored and properly formulated
and activities regarding discussions with partners from
academia and industry have to be initiated.
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Abstract 
This paper introduces a new method for mechanical 
systems with its own interface that enables the object-
oriented formulation of very stiff contacts. It thereby 
suppresses high frequencies and yields stable replacement 
dynamics leading to an equivalent steady-state. Potential 
applications are the efficient modeling and simulation of 
robotic manipulation or the easier handling of what 
formerly have been variable-structure systems. 
Keywords: multi-body systems, Mechanical contacts and 
limitations, Robotics 

 

1 Motivation 
Libraries for classic multibody simulation have been 
among the first Modelica libraries ever published. The 
Modelica Standard Library supports the 3D solution of 
multibody systems (Otter 2003) with special support for 
kinematic loops. There are also 1D rotational and 
translational libraries and a planar mechanical library has 
been developed that proved its value for teaching purposes 
(Zimmer 2012) and advanced modeling of gearwheels 
(van der Linden 2016). 

Yet there are modeling tasks that have remained very 
difficult to master throughout all the years such as: 

 The modeling of limited joints 
 The modeling of breaking objects 
 The modeling of stiction and friction 
 The modeling of kinematic loops when reaching 

maximal extension 
 Real-time simulation of hard contacts 
 etc. 

Our impression is that at least for the Modelica 
community,  progress in these areas has been under-
whelming, especially given the high relevance of these 
issues. For instance, when modeling the manipulation of 
an object using a robot hand on a robot arm, a combination 
of any of the above problem may occur.  

Many attempts in solving this problem were focused on 
improving the tooling. Tasks like the modeling of limited 
joints were identified as variable structure problems or 
Multi-mode DAEs (Benveniste 2019) and tackled 
correspondingly by new tools (Mehlhase 2013) or even 
new languages (Zimmer 2010, Neumayr 2023). 

The underlying model equations were practically never 
questioned. After all, classic Newton mechanics is more 
than two centuries old (Szabo 1987), and seems hardly 
worth revisiting. 

 Au contraire, mon capitan! It is worth revisiting the 
way we idealize mechanical systems. After all, object-
oriented modeling and computers are much younger. We 
may be able to find a reformulation that enables a better 
expression of modeler’s intent than what was previously 
conceived. This is the exact aspiration of this paper. 
 

2 On the Idealization of Rigid Body 
Mechanics 

We easily forget that when we model the mechanics of 
rigid bodies, we model the mechanics of imaginary 
objects: rigid bodies.  

In our real, physical world, there exist no rigid bodies. 
Everything is elastic and deformable. It is just a matter of 
degree. If a bullet out of a gun will not convince you, 
certainly a small piece of space debris as in Figure 1 will: 

 

 

Figure 1: Impact of a 15g piece of plastic on a block of 
aluminum with a speed of 24140km/h in public display at 
NASA Johnson Space Center, Houston, TX, USA. 

Rigid bodies thus represent an entirely hypothetical idea, 
but also a very useful idea. Instead of modeling the 
pressure waves through an elastic material we can directly 
formulate non-holonomic constraints and assume an 
immediate transmission of impulse that upholds the 
conservation of energy and momentum, since none of 
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these terms can get dissipated in a truly rigid body. We 
thereby exchange a process that typically operates above 
10 kHz (micro-elastic motion within objects) with a 
process that may often be slower than 10 Hz (macro-
motion of objects). Evidently this enables a much more 
efficient simulation of the kinematic system using far 
fewer states and much slower eigen-dynamics. 

Rigid body mechanics is thus the preferred method to 
use when we deal with kinematic chains with a fixed 
number of degrees of freedom. Phenomena as limited 
joints or stiction can consequently be interpreted as 
varying the number of degrees of freedom. When 
regarding such problems as discrete configuration 
changes, this leads straight to the previously mentioned 
approaches (Zimmer 2010, Mehlhase 2013, Benveniste 
2019,  Neumayr 2023) for variable structure systems. Also 
discrete Dirac impulses then need to be considered as in 
(Zimmer 2006). 

However, even if a (potentially very complex) solution 
for discrete configuration changes is available, it is often 
inappropriate to apply since it forces us to simplify by 
discretization the very thing we actually want to focus on. 
Whether a gripping mechanism is actually holding an 
object or not and when and up to what degree is a question 
that is not easily answered by yes or no. When going into 
detail, one may detect many transient states. 

For such cases, the modeler is now forced to re-
establish elastic bodies at least for the region of contact 
dynamics. Whereas he may succeed, to keep the set of 
state variables small, applying realistic constants for the 
elasticity will often yield high frequency behavior or other 
ill-suited eigen-dynamics that drastically lower the 
simulation efficiency. This is especially true when a stiff 
object is tightly gripped, and notably it is the very intent 
of gripping devices to grip things tightly in order to create 
a force-locked connection.  
 

 
 

Figure 2: A one-dimensional spring-damper system modeling 
an elastic contact with ground. 

For illustration, let us look at the simple 1D mechanics of 
a spring-damper system as in Figure 2. 
 

 
𝑣 =

𝑑𝑠

𝑑𝑡
 (1a) 

   
 𝑑𝑣

𝑑𝑡
=

𝑓

𝑚
+ 𝑔 

 

(1b) 

 𝑓 =  −𝑐𝑠 − 𝑑𝑣 
 

(1c) 

where 𝑠 is the position and 𝑣 is velocity. The force 𝑓 
results out of the spring damper dynamics with their 
respective coefficients 𝑐  and 𝑑 . 𝑔  is the gravity 
acceleration.  

For 𝑑 >  0 and 𝑚 > 0, this system reaches a steady-
state solution at: 
 

 𝑠 =
𝑚𝑔

𝑐
; 𝑣 = 0 

 
The eigenvalues of the system are well known: 

 

𝜆ଵ,ଶ =  −
𝑑

2𝑚
± ඨ

𝑑ଶ

4𝑚
−

𝑐

𝑚
 

 
Let us suppose, we as modelers are willing to sacrifice 

the precision of the transient dynamics for the sake of 
simulation efficiency. Since both 𝑚  and 𝑐  contribute to 
the steady-state solution, we may hence only modify the 
damping constant 𝑑.  

Below critical damping we may move the eigenvalues 
only alongside a circle in the plane of imaginary numbers. 
This helps at least avoiding high frequencies and is often 
feasible for implicit ODE solvers. Going beyond critical 
damping makes matters even worse, causing one 
eigenvalue to become highly negative whereas the other 
starts to interfere with potentially other slow dynamics 
that may exist in extension of this system. The direct 
manipulation of 𝑑  in a complex system is often 
cumbersome because a favorable choice depends on the 
values for spring constants and masses for the 
configuration.  

Despite its tight limitations, this method is often applied 
and for real-time simulation, many simulation 
practitioners are desperate enough to even manipulate 
constants for masses or springs (Neves 2019, Reiser 
2021), often leading to a virtual world of strangely 
wobbling objects. 
 

3 The Idea of Dialectic Mechanics 
When practitioners show such signs of desperation, it is 
mostly because their model does not match their original 
intent.   

Indeed, it is not very intuitive for us why the gripping 
of an object is such a tough task to simulate, our brain 
simulates it all the time and it seems to do a pretty good 
job at it despite being a low-frequency computational 
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device (albeit being massively parallel). We thereby 
intuitively decompose the macroscopic motion of our arm, 
hand, and object from the microscopic motion of the 
object in the tension-regime of the gripping hand. The first 
motion is dominated by the kinetic forces resulting from 
the acceleration of objects, the latter motion is dominated 
by the elastic forces resulting from the positional shift of 
the object. 

Realizing such a decomposition in form of equations is 
unfortunately not intuitive at all but it can be achieved:  

 We denote the velocity in the elastic regime: 𝑣 
 We denote the velocity in the kinetic regime: 𝑣 

 
In an ideal world 𝑣 = 𝑣 . However, to express the 
modeler’s intent of splitting into two regimes, we 
formulate: 

 𝑑𝑣

𝑑𝑡
 𝑇 = 𝑣 − 𝑣    (2a) 

 
with 𝑇 being denoted as dialectic time-constant.  This 

represents a first-order filter for the kinetic motion. High-
frequency motion in the elastic regime are therefore 
inhibited for their impact on the kinetic regime. Let us now 
restate the equations of our spring damper system: 

We can compute the elastic force 𝑓: 
 

 𝑓 = −𝑐𝑠 + 𝑚𝑔 (2b) 
With 

 𝑑𝑠

𝑑𝑡
= 𝑣 (2c) 

 
We can compute the kinetic force 𝑓: 
 

 
𝑓 = −𝑚

𝑑𝑣

𝑑𝑡
− 𝑑 ∙ 𝑣 (2d) 

 
Evidently, the decomposition of velocity led us to 

decompose also the forces and we now treat elastics and 
kinetics as separate phenomena. In order to rejoin them to 
a consistent solution, we remember our equation (1) of the 
first-order filter and enforce the balance of forces: 
 

 𝑓 + 𝑓 = 0 (2e) 
 

This is why we call this approach: dialectic mechanics. 
If we personify the phenomena of elastics and kinetics 
then both persons would argue for their regime by 
expressing their respective force. In the end, they have to 
reach a common conclusion that neutralizes their 
respective counterarguments. 

In correspondence, this system of equations has two 
states: the position 𝑠 belonging to the elastic domain and 
𝑣 , belonging to the kinetic regime. We can plug in 
Equation (2b) and (2d) in Equation (2e) to eliminate the 
forces: 

 

 𝑑𝑣

𝑑𝑡
=  𝑔 −

𝑐

𝑚
𝑠 −

𝑑

𝑚
𝑣 (3a) 

 
and plugging in Equation (2a) in (2c) eliminates 𝑣: 

 
 𝑑𝑠

𝑑𝑡
=  𝑔𝑇 −

𝑐𝑇

𝑚
𝑠 + ൬1 −

𝑑𝑇

𝑚
൰ 𝑣 (3b) 

 
We see that for 𝑇 → 0 this system becomes equivalent to 
the original system of Equations (1a-1c). Small values for 
𝑇 shall thus result in a small deviation. We also see that 
𝑇  has no impact on the steady-state solution, which is 
still: 
 

𝑠 =
𝑚𝑔

𝐶
; 𝑣 = 0 

 
But the eigen-dynamics are now manipulated so that we 

have new eigenvalues: 
 

𝜆ଵ,ଶ = −
𝑑 + 𝑐𝑇

2𝑚
± ඨ

(𝑑 + 𝑐𝑇)ଶ

4𝑚ଶ
−

𝑐

𝑚
 (4) 

 
The term in the square root is now a quadratic function 

on 𝑐/𝑚 with a minimum at: 
 

ቀ
𝑐

𝑚
ቁ


=

2

𝑇
ଶ −

𝑑

𝑚𝑇
 

 
and the minimum value of: 

 

−
1

𝑇
ଶ +

𝑑

𝑚𝑇
 

 
For an undamped system with 𝑑 = 0, this simplifies to: 

 

−
1

𝑇
ଶ 

 
which limits the imaginary part of the eigenvalues to 

not exceed  ±𝑖𝑇
ିଵ, corresponding to a maximum rotation 

of  
 

𝜔௫ = 𝑇
ିଵ 

 

or a frequency limitation of 
ଵ

ଶగ ವ்
. In the original 

undamped system, the angular velocity was simply:  
 

𝜔ௌ
ଶ =

𝑐

𝑚
 

 
The dialectic undamped system yields a different 

rotation: 

𝜔
ଶ =

𝑐

𝑚
− ൬

𝑐

𝑚

𝑇

2
൰

ଶ
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which (for 𝜔 > 0)  can be expressed in terms of 𝜔ௌ: 
 

𝜔
ଶ = 𝜔ௌ

ଶ ቆ1 − 𝜔ௌ
ଶ

𝑇
ଶ

4
ቇ   

 
We see that the deviation from the original system is small 
for low frequencies but keeps rising quadratically up to 
and beyond the frequency limitation. From equation (4) 
we can also see that there is an additional damping term 
added with the strength of 𝜔ௌ

ଶ𝑇/2 .  
In terms of eigenvalue manipulation: what is subtracted 

on the imaginary axes is added on the left side of the real 
axis (for an undamped system). This means that our error 
is of stabilizing (or dissipative) nature. Indeed, we can see 
from Equation (4) that working with 𝑇 is equivalent to 
manipulating the damping constant. The time-constant 
however offers a systematic approach to perform this: 
eigenvalues near the center are only little influenced, 
eigenvalues close to the frequency limitations are 
drastically manipulated. Also, we still have the original 
damping coefficient 𝑑 available for further manipulation 
of the eigenvalues in case this is needed.   

If the slow dynamics of interest is well below the 
imposed frequency limitation, we can expect our error to 
be within an acceptable range for many practical 
applications, especially those applications where the 
model uncertainty is quite high like gripping little known 
objects. We shall also remember that the steady-state 
solution is not manipulated.  
 

4 Object-Oriented Formulation  
4.1 1D Translational Systems 

All what has been discussed in the previous section has 
just been the eigenvalue manipulation of a small system 
with two states. This would not deserve our attention, if 
the conclusion remains restricted to this problem class. 
Fortunately, the idea of dialectic mechanics is very well 
suited for an object-oriented formulation, which allows its 
application to larger and more complex kinetic constructs. 

To this end, let us review the core idea and devise a 1D 
library for translational mechanics. The first key idea was 
to split the mechanics into two regimes:  

 
 The elastic regime, taking care about position and 

storage of potential energy such as springs or 
gravity. 

 The kinetic regime, taking care about dissipation 
and storage of kinetic energy 

 
We can represent these two regimes, by two 
corresponding pairs of effort and flow: 
 

Listing 1. 1D-connector implementation 

connector Flange 
  SI.Position s; 
  flow SI.Force f_el; 
 
  SI.Velocity v; 
  flow SI.Force f_ki; 
end Flange; 
 

We also define that 𝑣: =
ௗ௦

ௗ௧
 and if not stated explicitly 

otherwise 𝑣 ≔ 𝑣 and the acceleration is 𝑎 = 𝑑𝑣/𝑑𝑡. 
When we implement the components, we simply do so in 
a dialectic manner. We set up the equations for each of the 
regimes independently. 

The fixation is boring as usual: 
 

Listing 2. Component for a fixed position 

model Fixed 
  Interfaces.Flange_b flange_b; 
  parameter SI.Position s; 
 
equation  
  flange_b.s = s; 
  flange_b.v = 0; 
end Fixed; 
 
The element for translation now has to contain the 
derivative of the non-holonomic constraint in the kinetic 
domain. Kinetic and elastic forces are independently 
transferred. 

Here is the implementation of a body component: 
 

Listing 3. Component representing a 1D mass 

model Body 
  Interfaces.Flange_a flange_a; 
 
  parameter SI.Mass m; 
  parameter SI.Acceleration g = -9.81;  
 
  SI.Acceleration a; 
  SI.Velocity v(stateSelect= ...avoid); 
  SI.Position s(stateSelect= ...avoid); 
 
equation  
  a = der(v); 
  s = flange_a.s; 
  v = flange_a.v; 
 
  flange_a.f_ki = m*a; 
  flange_a.f_el  = -m*g; 
end Body; 
 
Please note that the gravity is attributed to the elastic 
domain since it represents a potential force depending on 
position (albeit not in this particular example). Also, the 
body component does not state that the velocity is 
derivative of the position. Other than a typical body 
component, it does not define states.  
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To finally join the two regimes and reach a common 
conclusion, we have to apply the filter equation that 
relates 𝑣 and 𝑣 and also enforce the balance of forces: 
𝑓 + 𝑓 = 0. This has to happen where we define our 
degrees of freedom for the motion of the system. These 
are the joint elements. In 1D mechanics there is only 1 
degree of freedom and hence only one type of joint: the 
prismatic joint. 
 

Listing 4. The prismatic joint in 1D 

model Joint 
  Interfaces.Flange_a flange_a; 
  Interfaces.Flange_b flange_b; 
  RealInput f_ext; 
  parameter SI.Time TD; 
  SI.Position s(stateSelect = …prefer); 
  SI.Velocity v(stateSelect = …prefer); 
  SI.Velocity v_el(start = 0); 
 
equation  
  flange_a.s + s = flange_b.s; 
  flange_a.f_el + flange_b.f_el = 0; 
  flange_a.v + v = flange_b.v; 
  flange_a.f_kin + flange_b.f_kin = 0; 
  flange_a.f_el + flange_a.f_kin =f_ext; 
  v_el = der(s); 
  der(v)*TD = (v_el - v); 
end Joint; 
 
In dialectic mechanics, typically 𝑠  and 𝑣 are chosen as 
states of the system. A linear system has then to be solved, 
in order to solve for 𝑣 with the balance of forces 𝑓 +
𝑓 forming the corresponding residual. In this particular 
component model, this sum adds up not to zero but to an 
external force 𝑓௫௧ that can be used to actuate the joint.  

Following the same spirit, we can model an asymmetric 
spring-damper to model a mechanical stop element.  
 

Listing 5. ElastoGap model 

model ElastoGap 
  Interfaces.Flange_a flange_a; 
  Interfaces.Flange_b flange_b; 
  parameter SI.Position l; 
  parameter SI…SpringConst. c; 
  parameter SI…DampingConstant d; 
  SI.Position ds( start = 0); 
  SI.Velocity dv( start = 0); 
 
equation  
  flange_a.s + l + ds = flange_b.s; 
  flange_a.f_el + flange_b.f_el = 0; 
  flange_b.f_el = if ds < 0 then ds*c 
                  else 0; 
  flange_a.v + dv = flange_b.v; 
  flange_a.f_kin + flange_b.f_kin = 0; 
  flange_b.f_kin = if ds < 0 then dv*d 
                   else 0; 
end ElastoGap; 

The following model uses two of such elasto-gaps to 
model a 500g ball clamped into two pieces of hard wood 
with an indentation of 0.1mm resulting in a spring 
constant of roughly 2MN/m. The system is modelled 
without any damping (which is totally unrealistic). The 
whole construction is then moved by two subsequent and 
counteracting force impulses.  The corresponding setup of 
Figure 3 can be regarded as a very simplistic model of a 
robotic grip holding and moving an object.  

 
Figure 3: Modelica Diagram of a clamp on a fixed actuator. The 
upper body is squeezed between to elasto-gap models. The 
lower body represents the cartridge that is being moved by two 
force impulses. 

The simulation plot in Figure 1Figure 4 below shows the 
result of the corresponding simulation using two different 
time constants 1 microsecond and 1 millisecond. The 
system has been simulated in both cases with Runge-Kutta 
of 3rd order, using the corresponding step-width.  
 

 
Figure 4: Penetration depth [mm] into the left clamp component 
represented by an elasto-gap, for the choice of two different time 
constants (TC = 𝑇). Both agree on the time-averaged solution.  
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Using a microsecond as time constant, we can see the 
resulting high-frequency solution in the contact region of 
the idealized hard-wood. Ideally, the oscillation should 
last forever (since no damping is assumed) but the small 
added damping lets the oscillation decay roughly within a 
second.  

Using a millisecond as time constant, the system is 
almost perfectly damped artificially but exhibits the same 
shift in its quasi-equilibrium. The minute changes in 
penetration depth due the acceleration of the body are 
correctly assessed (on time-average basis).  
 
4.2 1D Rotational Systems 

Using strict analogy, a 1D-rotational library can be 
created. Here we use two angular velocities: 𝜔 and 𝜔 
to establish the dialectic regimes where again a balance of 
torque 𝜏 + 𝜏 forms the root of the equation system. 
 

5 Complex Kinematics 
To demonstrate the suitability of dialectic mechanics for 
complex kinematics, we have developed a planar 
mechanical library, similar to (Zimmer 2012).  

As connector we use 2x3 pairs of potential and flow 
variables. 
 

Listing 6. Planar mechanical connector 

connector Frame  
  //elastic regime 
  SI.Position x; 
  SI.Position y; 
  SI.Angle phi; 
  flow SI.Force fx_el; 
  flow SI.Force fy_el; 
  flow SI.Torque t_el; 
 
  //kinetic regime 
  SI.Velocity vx; 
  SI.Velocity vy; 
  SI.AngularVelocity w; 
  flow SI.Force fx_ki; 
  flow SI.Force fy_ki; 
  flow SI.Torque t_ki; 
end Frame; 
 
The implementation is in strong correspondence, with the 
1D translational library. For the sake of brevity, the code 
of the prismatic joint, is to be regarded as exemplary and 
provides sufficient insight into the general dialectic 
modeling style: 

 

Listing 7. A prismatic joint in a planar world 

model Prismatic "A prismatic joint" 
  extends DialecticPlanarMechanics.Inter
faces.PartialTwoFrames; 
 
  parameter Boolean useFlange=false; 

  parameter SI.Time TD; 
  parameter SI.Position r[2]  
  final parameter SI.Length l=sqrt(r*r);
  final parameter SI.Distance e[2]= r/l 
 
  Translational1D…Flange_a flange_a( 
    s=s,v=v, 
    f_el=f_el,f_kin=f_kin) if useFlange; 
 
  SI.Position s(stateSelect = …prefer); 
  SI.Velocity v(stateSelect = …prefer); 
  SI.Velocity v_el; 
  SI.Force f_el; 
  SI.Force f_kin ; 
  Real e0[2] ; 
  SI.Position r0[2]; 
  Real R[2,2]; 
 
equation  
  R={{cos(frame_a.phi),-sin(frame_a.phi)}, 
      {sin(frame_a.phi),cos(frame_a.phi)}}; 
  e0 = R*e; 
  r0 = e0*s; 
 

  //elastic regime 
  frame_a.x + r0[1] = frame_b.x; 
  frame_a.y + r0[2] = frame_b.y; 
  frame_a.phi = frame_b.phi; 
  frame_a.fx_el + frame_b.fx_el = 0; 
  frame_a.fy_el + frame_b.fy_el = 0; 
  frame_a.t_el  + frame_b.t_el  
  + r0*{frame_b.fy_el,-frame_b.fx_el} 
  = 0; 
 

  //kinetic regime 
  frame_a.vx - r0[2]*frame_a.w + v*e0[1]
  = frame_b.vx; 
  frame_a.vy + r0[1]*frame_a.w + v*e0[2]
  = frame_b.vy; 
  frame_a.w = frame_b.w; 
  frame_a.fx_kin + frame_b.fx_kin = 0; 
  frame_a.fy_kin + frame_b.fy_kin = 0; 
  frame_a.t_kin  + frame_b.t_kin  
  + r0*{frame_b.fy_kin,-frame_b.fx_kin} 
  = 0; 
 
  //synergy 
  v_el= der(s); 
  der(v)*TD = (v_el- v); 
  {frame_b.fx_el,frame_b.fy_el}*e0 
   + {frame_b.fx_kin,frame_b.fy_kin}*e0 
   + f_el + f_kin = 0; 
 
 
  //actuation force 
  if not useFlange then 
    f_el = 0; 
    f_kin = 0; 
  end if; 
  
end Prismatic; 
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Please note also, that the prismatic joint contains 1D-
flange for actuation. Combing this joint with the 1D-elasto 
gap model provides for instance the opportunity to model 
limited joints in a natural way, without needing any extra 
components.  

Indeed, when we combine this prismatic joint with a 
1D-Elasto Gap model, we get a limited prismatic joint. We 
can then use then this joint to create the simple model of a 
thread pendulum as presented in Figure 5.  

 
Figure 5: Model of thread pendulum. An elasto-gap is used to 
model the maximum extension of the thread.  

Under the chosen initial conditions, the pendulum first 
swings through the lower hemicircle before it reaches its 
apogee and entering free fall conditions as in Figure 6. 
From then on, it sharply drops into its own thread, 
continually bouncing off the confining circle of the 
pendulum. This is because the thread is quite stiff with a 
spring constant of 1MN/m but only lightly damped with a 
damping constant of 1kNs/m 
 

 
 
Figure 6: Trajectory of the thread pendulum for the first 2.6 
seconds. 

The simulation thus exhibits both slow mode and fast 
mode behavior. The first second with its swing through 
the hemicircle represents a slow mode behavior. 
Independent of the time constant for 𝑇  all simulations 
agree on the elongation length of the thread due to the 

centrifugal and gravitational forces acting on the mass. 
There is only a slight phase shift depending on 𝑇 visible 
in Figure 7.  
 

 
Figure 7: Extension of thread in meter through the first 
hemicycle due to gravity and centrifugal forces. In the slow-
mode, the agreement of models with different time constants 
(TC = 𝑇) is high. 

The bounce off its own thread represents a fast mode 
behavior. Here significant differences become visible in 
Figure 8 with respect to the choice of 𝑇. Low values for 
𝑇 lead to an artificially dampened system that dissipates 
its energy much quicker. This is exactly what is expected 
from the previous eigenvalue analysis. 
 

 
Figure 8: Center distance of pendulum body in meter during the 
overall trajectory. The artificial dampening with increased time 
constants (TC = 𝑇) impacts the elasticity of the bounce.  
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5.1 Kinematic Loops 

When using dialectic mechanics, all joints always express 
state variables. Kinematic loops are closed using an elastic 
element (which however can be very stiff). The system 
therefore has more states than the classic set-up of 
kinematic loops, but avoids the formulation of a non-
linear equation system. To solve for the balance of forces, 
still only a linear system of equations needs to be solved. 
Figure 9 presents is a simple 2D-kinematic loop for the 
extension of a landing gear.  
 

 
Figure 9: Model diagram of a simple unfolding kinematic of a 
landing gear. The loop is closed by the green component 
representing a spring-damper element (translational and 
rotational) with high stiffness.  

This example has 8 state variables (the angles and the 
kinetic angular velocities of the revolute joints) and there 
is one linear implicit equation system of size that can be 
torn by 4 iteration variables: the 4 elastic angular 
velocities 

One advantage of using an elastic element for closing 
loops is that typical singular points of maximal extension 
can now be properly handled. A fully rigid formulation 
exhibits a singular point at its point of maximum extension 
as depicted in Figure 10 because the kinetic energy at this 
point has nowhere to go. Using the elastic element for loop 
closure avoids this problem and the elastic elements can 
take the impulse from the kinematic reaching its limits. 

As this example shows, even impulses on kinematic 
loops can be handled by dialectic mechanics.  Because of 
the suppression of high frequencies, stiff springs can be 
used for closing kinematic loops without creating high 
frequencies. As with the example of the thread pendulum, 
the applied time-constant matters for the fast-mode 
behavior of the impulse but not for the slow unfolding 
dynamics. 
 

 

 
 

Figure 10: Visualization of the kinematic loop in two different 
states: unfolded on the right and partially folded on the left.  

 

6 Conclusions 
Let us now recapitulate on what we have actually 
implemented. Usually for a mechanical library, one of the 
first equations to write down would be: 
 

𝑎 =
𝑑ଶ𝑠

𝑑𝑡ଶ
 

 
The acceleration is the second time-derivative of the 

position. What else should it be? Remarkably, this 
equation is not fulfilled in dialectic mechanics. Here we 
only make an approximation for lower frequencies. 
 

𝑎 ≈
𝑑ଶ𝑠

𝑑𝑡ଶ
 

 
Effective modeling always represents an effective (and 

thereby lossy) compression of reality. It is hence all about 
doing an error on purpose where it is the most helpful. 
First of all, the rigid body assumption only holds up for 
low frequencies. At high frequency excitation, all bodies 
increasingly appear to be elastic. Limiting the frequency 
bandwidth is hence simply a consequential alignment to 
the rigid body assumption. 

By making the acceleration only an approximation of 
the second derivative of position, we enable a 
disassociation of the regime for kinetic energy from the 
regime of potential energy. This disassociation enables the 
direct transfer of energy within these domains, especially 
within elastic elements.  

Figure 11 illustrates a light-weighted, weakly damped 
body in the center of two very stiff springs and dampers.  
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Figure 11: Classic representation of a body clamped in by two 
spring-damper elements. Any change of the potential energy 
stored in the springs has to go through the kinetic energy.   

In the classic formulation any transfer of potential energy 
between the two springs has to go through the kinetic 
energy of the body component. This enforces very high 
frequencies. 

In dialectic mechanics, we split the two regimes and 
couple them by a low-pass filter. This is illustrated in 
Figure 12. 
 

 
Figure 12: Dialectic view of the same system. On the elastic 
side, the body is now represented by a massless-point where 
only its low-frequency motion passes through the mass-holding 
body on the kinetic side. This enables an independent energy 
exchange of the potential energy stored in the springs. In this 
way, the elasto-static equilibrium can be found without 
transferring all energy through the body, instead it is (to a 
various degree) dissipated in the filter.  

The dot connecting the two springs is now massless and 
only connected to the original mass by the first-order low-
pass filter. In this way, a direct (dissipative) energy 
transfer between the springs is enabled and also the filter 
equation furthermore ensures that the springs are always 
undergoing a continues motion. Hence, the steady-state 
solution can be reliably and consistently found while 
avoiding higher frequencies.  

This is useful because a lot of mechanical phenomena 
can be quite conveniently modelled using very stiff 
springs: 

 Limited joints 
 Contact dynamics 
 Stiction 
 etc… 

The reason modelers learn to avoid very stiff springs is 
that they typically yield highly unfavorable 
eigendynamics. Using dialectic mechanics, the modeler 
can now use realistic spring constants without a bad 
conscience for many applications since the manipulation 
of eigenvalues for high frequencies keeps the dynamics in 
check without modifying the steady-state solution and 
only causing small errors for the dynamics of the slow 
modes. This greatly eases modeling of all of the above 
phenomena. 

Regarding impulses: dialectic mechanics works fine for 
inelastic contacts. Fortunately, many gripping 
mechanisms are designed to provoke inelastic contacts 
having multiple layers of material with high damping 
constants (like human hands). For purely elastic contacts, 
there is a substantial error and the conservation of energy 
and momentum is disregarded. The error gets worse, the 
harder the material. With being too dissipative, the error is 
at least benevolent, meaning that it does not destabilize the 
system and enables a robust solution nonetheless.  

The robustness and the avoidance of non-linear 
equation system in implicit form makes dialectic 
mechanics especially suited for the hard real-time 
simulation using explicit solvers. To this end, the 
presented manipulation of eigenvalues is however not 
sufficient and a further manipulation needs to be applied. 
Together with an extensive error analysis these are 
presented in the corresponding follow-up paper 
(Oldemeyer 2023). Interestingly also other approaches for 
explicit solvers split the time-domain and use a two-fold 
model approach such as (Peiret 2020). 

Two remarks regarding the interface of dialectic 
mechanics. First remark: it is of course possible to model 
the ideal case where 𝑣 = 𝑣 using this interface as well. 
The interface would then be partly redundant which in 
consequence simply yields a slightly bloated formulation 
of classic multibody mechanics. In principal, mixing of 
approaches is hence possible. For the example of on-orbit 
servicing of satellites, the satellite trajectories could be 
modeled with ideal equations ensuring the conservation of 
momentum in space. The robotic interaction between 
satellites could then be modeled using a dialectic 
approach. 

Second remark: Dialectic Mechanics is part of a larger 
modeling class denoted as Linear Implicit Equilibrium 
Dynamics (Zimmer, 2023). This class of models has 
originally been conceived to enable robust modeling of 
thermofluid systems but it revealed application potential 
outside this domain as well. Linear Implicit Equilibrium 
Dynamics is also a class of models whose compilation 
scheme is comparable simple and enables a generation of 
simulation code per component. This could be useful for 
mechanical libraries in a more dynamics run-time setting. 
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Abstract
In the current state-of-the-art modeling tools for simula-
tion, it is common to describe system behavior symbol-
ically using mixed continuous and discrete differential-
algebraic equations, so called hybrid DAEs. To correctly
resolve higher index problems, hybrid systems and to ef-
ficiently use ODE solvers, a matching and sorting prob-
lem has to be solved, commonly referred to as Causaliza-
tion. Typically multidimensional equations and variables
are scalarized, which leads to excessive build time and
generated code size in the case of large systems. In the
following paper an algorithm will be presented, that pre-
serves array structures as much as possible while still solv-
ing the problem of causalization in scalar fashion. Test
results carried out in the OpenModelica tool show a re-
duction in build time of one/two orders of magnitude and
a reduction by a factor of two/three in the simulation run
time for models of the ScalableTestSuite library.
Keywords: array preservation, causalization, matching,
sorting, large scale

1 Introduction
The simulation of complex physical systems typically re-
quires the handling of large systems of hybrid differential-
algebraic equations. To model such systems the object-
oriented equation based language Modelica was devel-
oped. The development of Modelica drastically decreased
the amount of work necessary to simulate a model based
on these so called hybrid DAEs. Necessary steps such as
causalization, index reduction and consistent initialization
have been automated using symbolic transformation.

The results of this publication have been implemented
in the OpenModelica Compiler (Fritzson et al. 2020),
which is able to compile and simulate models from differ-
ent domains, such as mechanics, electrics, fluids (Braun et
al. n.d.) biology (Proß and Bachmann 2011; Kofránek et
al. 2010) or power systems (Casella, Leva, and Bartolini
2017; Qi 2014; Viruez et al. 2017). Generally, it is de-
signed to simulate any model that can be described with a
system of hybrid DAEs. Theoretical background and def-
initions for differential-algebraic equations can be found
in (Mattheij and Molenaar 2002). The goal, is to create
a holistic environment for modeling and simulation to be
used for teaching, research and in the industry.

2 State of the Art
Current simulation tools based on the modeling language
Modelica scalarize the equations and variables of a system
to apply scalar methods of causalization and symbolic ma-
nipulations. This has major drawbacks, mainly revolving
around computation time and memory usage. Besides the
approach of scalarization, there has been work published
with similar intentions to this paper (Otter and Elmqvist
2017; Neumayr and Otter 2023; Zimmermann, Fernán-
dez, and Kofman 2020).

The work of (Otter and Elmqvist 2017) focusses around
reducing a model containing array equations to index-1
form using index-reduction methods, without having to
scalarize. Although index reduction will not be covered in
this paper, it is expected to be able to apply scalar methods
for index reduction using pseudo array causalization.

Methods presented in (Neumayr and Otter 2023) allow
the size of generated arrays to be changed after code gen-
eration. These ideas are not part of this paper, but the
idea of generalized for-equations will be expanded in fu-
ture work to for-equations of variable size.

The approach of (Zimmermann, Fernández, and Kof-
man 2020) presents a new algorithm that adapts the idea
of scalarized matching and expands it to set-based graphs.
Array structures are preserved as much as possible and
only split up during the process of matching if no other
solution can be found.

This paper focusses on providing a solution that is ap-
plicable without language restrictions while retaining the
most compact array form possible. The core algorithms
of matching and sorting are not expected to be bottlenecks
in computation time and are performed using scalar meth-
ods, while having all other symbolic manipulation meth-
ods operate on array structures. The test results shown in
section 6 support this assumption.

3 Causalization
Solving hybrid differential algebraic systems of equations
requires the process of causalization, also known as BLT-
Transformation1, to ensure that

a. high differential index problems (index > 1) can be
resolved

1BLT: Block-Lower-Triangular
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b. the dependencies involving discrete equations and
variables are found.

c. causalized systems can be simulated far more effi-
ciently due to explicit assignments instead of a large
implicit system. Exceptions prove the rule of course
(Henningsson, Olsson, and Vanfretti 2019).

BLT-Transformation mainly consists of three steps,
Matching, Index-Reduction and Sorting.

3.1 Scalarization
Before being able to perform scalar BLT-Transformation
on a system of variables and equations, they need to be
scalarized. Modelica offers comfortable ways of defining
multiple equations at once, such as for-equations:

for i in 1:N loop
der(x[i]) = i * sin(time);

end for;

Scalarizing this for-equation leads to following equations

der(x[1]) = 1 * sin(time);
der(x[2]) = 2 * sin(time);
...
der(x[N]) = N * sin(time);

which scales with the size of N. This currently is common
practice among Modelica tools. Scalarization increases
the computation time unnecessarily, as symbolic manipu-
lation on the body is done N times instead of only once
on the body equation. However, for current methods of
Causalization this step is necessary.

Instead of scalarization, for-equations and array-
equations will be converted into canonical form, which is
further explained in 5.

3.2 Matching
The first step to the process of causalization is matching.
The goal is to find an equation for each variable in which
it can be solved. Note that this is only a theoretical as-
signment, in the sense that these assignments can also be
either ambiguous, resulting in an algebraic loop, or only
implicitly solvable in the first place.

A system of equations can be understood as a bipar-
tite graph, where one set of nodes represents the equations
and the other set represents the unknowns for which the
system has to be solved. Edges in that graph show vari-
able incidences in equations. The goal of matching al-
gorithms is to find a perfect matching, which is achieved
by assigning each variable uniquely to an equation such
that each variable and each equation is assigned only once.
This matching problem was analyzed thoroughly and the
most commonly used algorithm to solve it is the Ford-
Fulkerson (or maximum flow) algorithm, first described in
(Ford and Fulkerson 1956). The OpenModelica-Compiler
has a large selection of different matching algorithms, of
which Pothen and Fan’s algorithm (PF+) was selected to
be the default (Duff, Kaya, and Uçcar 2012; Kaya et al.
2011).

3.3 Sorting
After a perfect matching has been found, the process of
sorting determines the order in which to execute those
assignments. The order, once again, can be ambiguous,
depending on the system. Furthermore, sets of equa-
tions which have to be solved at the same time, so called
algebraic loops are identified. Tarjan’s algorithm (Tar-
jan 1972) is implemented in OpenModelica and the most
commonly used sorting algorithm.

4 Pseudo Array Causalization
The main idea of Pseudo Array Causalization (PAC) re-
volves around doing as few scalarization steps as needed,
while still using scalar causalization methods. Previous
tests have shown that the graph-based causalization al-
gorithms scale linearly with the size of well posed and
reasonable models, even though the theoretical compu-
tational complexity is nonlinear (Kaya et al. 2011). Far
more time is spend on symbolic manipulation or generat-
ing code.

In the following an algorithm will be presented, that
keeps all equations and variables in their array form only
creating a scalarized graph for causalization (a differ-
ent approach to (Zimmermann, Fernández, and Kofman
2020), where a set-based graph is used). Known matching
(see section 3.2) and sorting (see section 3.3) algorithms
can be used on the scalar graph to resolve causalization. A
three-step sorting as described in section 4.3 is applied, to
ensure that the result contains as few slicing steps as possi-
ble. Array-based strong components can be derived using
information about the underlying array structures and the
result of causalization.

Due to the array equations and variables never being
scalarized symbolically, all optimization methods only
scale with the number of array components rather than
the number of scalarized components. Furthermore, the
created simulation code is far smaller, due to the fact that
compact array structures were preserved.

4.1 Preparation for Causalization
To recover the array structures after causalization with
scalar methods, three structures have to be created before-
hand:

Mapping: Maps array indices to the list of their
scalar children and vice versa.

Matrix: Represents the scalar graph as an adjacency
matrix.

Modes: Compact way of tracking which equation is
solved for what variable instance.

4.1.1 Mapping

The goal of this section is to obtain functions MV and
ME that map a variable name and its indices or an equa-
tion and its iterator values (if it is a for-equation) to a
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unique scalar index. Furthermore, the four inverse func-
tions M−1

V and M−1
E to recover the indices or iterator

values and M̂−1
V ,M̂−1

E to recover the original variables
and equations from the unique scalar indices, have to be
defined.

First, there needs to be a mapping for variable and equa-
tion names to their respective array indices Ia. These are
trivial, but necessary for further explanations:

NV : V → Ia (1)
NE : E→ Ia (2)

with V and E as the set of variable and equation names
and Ia being the set of array indices. Since these have to
be uniquely indexed, they are bijective and have inverse
functions N−1

V ,N−1
E .

Furthermore, an index mapping for variables and equa-
tion has to be defined. The main restriction is that all
scalar variables that belong to the same array variable need
to have consecutive indices, the same is true for equa-
tions. This restriction allows more predictable outcomes
from the causalization methods such that reasonable rec-
ollection and slicing is possible. In the following the vari-
ables will be indexed in such a way, that the innermost di-
mension is iterated first, then the second etc. The same
is true for equations and the innermost iterator, second
to innermost iterator and so on. It is important to differ
between iterator value and normalized index for this in-
dexing method. Considering an iterator with a range of
10 : −2 : 2, the value 10 corresponds to index 0, value 8
corresponds to index 1 and so on. Even though the mod-
eling language Modelica has 1-based indices, all indexing
will be considered to be 0-based. This allows easier com-
putation of index mappings. The mapping of a single vari-
able index sv can be done by subtracting 1. The index se
representing an iterator value i of an equation on the other
hand, has to be computed:

sv(i) = i−1 (3)

se(i) =
i− rstart

rstep
(4)

with rstart as the start and rstep as the step of the range.
This mapping is only defined for reachable iterator values
with i ≡ rstart mod rstep. The function applying this in-
dex shift on all indices of a variable or iterator values of
an equation will be called Sv(indices,v) and Se(indices,e)
respectively. For scalar variables and equations these
functions return 0 if indices is an empty list. Further-
more these functions are bijective and therefore invertible
(∃S−1

v ∧∃S−1
e ).

The local mapping of an equation or variable with n
dimensions can be described as a function

m : Π
n
i=1Ii→ I (5)

where Ii = {x ∈ N0 | x < di} and di being the size of the
i-th dimension. I = {x ∈ N0 | x < d} with d = Πn

i=1di as

the set of all flattened indices. The inverse local mapping

m−1 : I→Π
n
i=1Ii (6)

is also needed to recover the original multi-dimensional
indices for slicing. Each equation and variable has their
own local mapping m and inverse local mapping m−1.

The two global mappings ME and MV each map all ar-
ray indices to the indices of their scalar members. They
are derived by creating the pseudo inverse2 maps M†

E and
M†

V through enumeration of all array equations (Ia
E ) and

variables (Ia
V ) and all (hypothetical) scalar equations (Is

E )
and variables (Is

V ) and letting the scalar indices point to
the index of the original array equation.

M†
E : Is

E → Ia
E (7)

M†
V : Is

V → Ia
V (8)

Since scalar indices have to be consecutive, the global
mapping M can be stored more efficiently, by only storing
the start index and its length. For further explanations the
length is irrelevant and therefore omitted. These global
mappings have to be created for equations (ME ,M

†
E ) and

variables (MV ,M
†
V ). An example for these mappings can

be found in figure 1.

In the following, variable and equation names will
be used instead of their indices. Using a variable as vind
with ind as the indices will be used as a representor of
the variable index in scalar context. It is found using the
following full map MV which converts a variable name
and its list of subscript indices to the scalar variable index.

vind = MV (v, ind) = MV (NV (v))+mv(Sv(ind,v)). (9)

The inverse of this function is split up into two parts, one
recovering the variable name and one recovering the in-
dices. It will be necessary in chapter 5 to recover the orig-
inal variable representations in equations.

v = M̂−1
V (vind) = N−1

V (M†
V (vind)) (10)

ind = M−1
V (vind) = S−1

v (m−1
v (vind−MV (NV (v))),v)

(11)

Likewise an equation as eval with val as the iterator values
implies the following operations:

eval = ME(e,val) = ME(NE(e))+me(Se(val,e)). (12)

and has similarly formulated inverse mappings:

e = M̂−1
E (eval) = N−1

E (M†
E(eval)) (13)

val = M−1
E (eval) = S−1

e (m−1
e (eval−ME(NE(e))),e).

(14)
2These pseudo inverse maps have the property M†M = id, however

in general MM† 6= id, which is similar to the Moore-Penrose pseudo
inverse matrix definition from (Penrose 1955).
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model mapping_example
parameter Integer n = 3;
Real x[n+1];
Real y[n,n];

equation
x[1] = sin(time) "Scalar equation e";
for i in 1:n loop
x[i] = y[i,i] + x[i+1];

end for "For-equation f";
for i in 1:n, j in 1:n loop
y[i,j] = i*cos(j*time);

end for "For-equation g";
end mapping_example;

Local Mapping Global Mapping

mx :
[0] 7→ 0
[1] 7→ 1
[2] 7→ 2
[3] 7→ 3

my :
[0,0] 7→ 0
[0,1] 7→ 1
[0,2] 7→ 2
[1,0] 7→ 3
[1,1] 7→ 4
[1,2] 7→ 5
[1,3] 7→ 6
[2,1] 7→ 7
[2,2] 7→ 8

me :
[0] 7→ 0

m f :
[0] 7→ 0
[1] 7→ 1
[2] 7→ 2

mg :
[0,0] 7→ 0
[0,1] 7→ 1
[0,2] 7→ 2
[1,0] 7→ 3
[1,1] 7→ 4
[1,2] 7→ 5
[2,0] 7→ 6
[2,1] 7→ 7
[2,2] 7→ 8

MV :
0 7→ 0
1 7→ 4

M†
V :
0,1,2,3 7→ 0
4,5, . . . ,11,12 7→ 1

ME :
0 7→ 0
1 7→ 1
2 7→ 4

M†
E :
0 7→ 0
1,2,3 7→ 1
4,5, . . . ,11,12 7→ 2

Figure 1. Example for index mapping.

4.1.2 Matrix

A scalar adjacency matrix A has to be created while re-
specting the index mappings ME and MV from (7). The
rows belonging to for-equations can be created by first ex-
tracting all occurring variable instances and afterwards it-
erating over the ranges of the iterators, replacing every in-
stance of an iterator in the variable instance indices with
their local values. For each possible iterator configuration
a list of occuring variable instances is created. The multi-
dimensional indices are mapped to their respective scalar
index using mapping MV . Each iterator configuration re-
sults in the i-th row of the scalar adjacency matrix, where i
is that configuration mapped using the mapping ME . The
pseudo code for this procedure is shown in algorithm 1.

In all further explanations a bipartite graph representa-
tion of the adjacency matrix will be used where the nodes
are enumerated from top to bottom. The bipartite digraph
for the example from figure 1 can be seen in figure 2. The
causalization modes derived from algorithm 1 are repre-
sented as edge markings and will be explained in the fol-
lowing section 4.1.3.

4.1.3 Modes
Each equation can be solved in n different ways, where n
is the number of different variable instances in that equa-
tion. It is important to note here, that the occurence of the
same variable indexed differently, has to be counted as two
distinct variable instances. A causalization mode for solv-
ing an array equation e for variable v will be denominated
as

e _ v. (15)

Example 4.1. There are three instances x[i], y[i]
and x[i+1] in the following for-equation e:

for i in 1:10 loop
x[i] = y[i] + x[i+1];

end for;

It has three causalization modes, e _ x[i], e _ y[i] and
e _ x[i+1].

For each scalar equation a mode mapping will be created
as a function

c : V→Mi (16)

with V being the set of all scalar variable indices and Mi
as the set of all modes (variable instances) for the corre-
sponding array equation i. These mode mappings can be
created alongside with the adjacency matrix A while re-
placing the iterators. If variable indices are used it is more
efficient to create it as an inverse mapping

c−1 : Mi→ V (17)

to not create large arrays when only a few variables ac-
tually occur. Since the number of modes is usually very
low, one can easily traverse all modes in search for the cor-
rect scalar variable to determine in which mode the scalar
equation was solved. These causalization modes can be
used to correctly slice an array equation after causaliza-
tion by determining the slices that have been solved for
the same variable instance.

For the example from figure 1 and its digraph shown in
figure 2, one can see that there are five different causaliza-
tion modes in total. These causalization modes are shown
in figure 3 in greater detail.

4.2 Pseudo-Array Matching
The Pseudo-Array Matching algorithm requires all the
preparation described in section 4.1 and further explana-
tions are based on the example in figure 1.

Based on the digraph shown in figure 2(a) the scalar
matching algorithm described in section 3.2 is applied.
The resulting perfect matching uses the causalization
modes e _ x[1], f _ x[i] and g _ y[i, j] in its entirety.
This convenient solution requires no slicing, harder prob-
lems requiring more sophisticated methods are shown in
section 5. The matching solution is represented as an ar-
ray Ω that maps a scalar equation index to the matched
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Algorithm 1 Adjacency Matrix and Causalization Modes

Input: equation array E
Input: variable array V
Output: adjacency matrix A . efficient structure for matching
Output: causalization modes C (inverse map) . modes to recover after matching
Output: mode to variable instance map N
A,C,N← initialize as empty arrays of size |Is

E |
for eq in E do

vars← find all variable instances in eq using V
modes← create unique identifiers for eq being solved for each var in vars
N[eq][modes]← vars . array assignment
if eq is a for-equation then

for all iterator combinations iter in eq do
row← apply function (9) on each var in vars using iter
i← apply function (12) on eq name using iter
A[i]← row . list assignment
C[i][modes]← row . array assignment

end for
else

row← apply function (9) on each var in vars
i← apply function (12) on eq
A[i]← row . list assignment
C[i][modes]← row . array assignment

end if
end for
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(a) Scalar-based digraph.
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(b) Array-based digraph.

Figure 2. Digraph for model 1. The different causalization modes are as follows:
e _ x[1] (green), f _ x[i] (red), f _ x[i+1] (blue), f _ y[i, i] (orange), g _ y[i, j] (purple).
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ce :
0 _ x[1]

c f1 :
0 _ x[i]
1 _ x[i+1]
4 _ y[i, i]

c f2 :
1 _ x[i]
2 _ x[i+1]
8 _ y[i, i]

c f3 :
2 _ x[i]
3 _ x[i+1]
12 _ y[i, i]

cg11 :
4 _ y[i, j]

cg12 :
5 _ y[i, j]

cg13 :
6 _ y[i, j]

cg21 :
7 _ y[i, j]

cg22 :
8 _ y[i, j]

cg23 :
9 _ y[i, j]

cg31 :
10 _ y[i, j]

cg32 :
11 _ y[i, j]

cg33 :
12 _ y[i, j]

Figure 3. Scalar equation mode mapping. The colors indicate the corresponding causalization mode:
e _ x[1] (green), f _ x[i] (red), f _ x[i+1] (blue), f _ y[i, i] (orange), g _ y[i, j] (purple).

scalar variable index. To correctly interpret this matching
in the context of array recovery, the causalization modes
(see section 4.1.3) have to be taken into account. The
causalization modes for the given example are shown in
figure 3 but are stored as an inverse mapping for more ef-
ficient lookup by avoiding large empty arrays. The basic
idea is to iterate over all modes of a given equation un-
til the matched variable is found to determine the correct
mode. A mapping, further called buckets, or in short B,
that collects scalar equations that belong to the same array
equation and are solved for the same variable instance (in
the same causalization mode), is found by the procedure
shown in algorithm 2. The bucket structure returns a list
of scalar equations when provided with an array equation
and a causalization mode identifier. For this trivial case,
the arrays could be split up as shown in the array based
digraph from figure 2(b). More complicated cases require
the Three Step Sorting presented in the following chap-
ter 4.3.

Algorithm 2 Recover Causalization Modes
Input: matching Ω . eqn→ var
Input: mapping M−1

E . scalar→ array
Input: causalization modes C
Output: buckets B
B← empty lists for all entries
for e in 0 : length(Ω)−1 do

m←−1
do

m← m+1
var←C[e][m]

while var 6= Ω[e]
append e to B(M−1

E (e),m)
end for

4.3 Three Step Sorting
The result of the sorting process presented in section 3.3
does not have a unique solution and rather strongly de-
pends on the ordering of variables and equations and even
more so on the chosen mapping (see section 4.1.1). Since
the result is ambiguous it can be hard to recover the most
compact way of representing arrays if fragments of arrays
are scattered instead of consecutive, if possible. The Three
Step Sorting was implemented to ensure that the resulting

sorted strong components respect the original array struc-
tures.

The three steps are scalar sorting, array sorting and
internal sorting. A schematic outline for this process is
shown in example 4.2 and the basic outline is as follows:

1. Pseudo-Array Matching Perform scalar matching
while collecting all necessary information to recover
arrays, as described in section 4.2.

2. Scalar Sorting The first step of sorting using Tarjan’s
algorithm (see section 3.3).

3. Merge algebraic loop nodes Merge all equation
nodes that belong to the same strong component
in the result of step 2 and do the same for variable
nodes.

4. Merge array nodes Merge all equation nodes that be-
long to the same array and are solved for the same
variable instance, using the information preserved in
step 1. Do the same for variables. Equations and
variables that were already merged in step 3 do not
get merged in this step.

5. Array sorting Apply Tarjan’s algorithm again on the
new graph.3

6. Internal sorting Strong components of size greater
than one that are a result of step 5 are not alge-
braic loops, because these would have been found in
step 2. They are equations that have to be executed
sequentially, but alternate between different arrays
(and/or scalar equations). These strong components
will be called entwined equations in further explana-
tions. Furthermore all array and entwined equations
have to be sorted internally using Tarjan’s algorithm.

Example 4.2 (Sliced Arrays).
As a first example for hard to solve slicing problems, we
consider the following model.

model sliced_arrays
Real x[3];
Real y[6];

3By construction each super node has scalar matching edges only to
one other super node, therefore the matching for the new graph does not
have to be computed.
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(a) Step 1: E, F, G as array equations and x, y as array
variables.
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(b) Step 2: Blue super nodes represent algebraic loops and
red super nodes represent arrays.

Figure 4. The process of Three Step Sorting.

equation
for i in 1:3 loop
x[i] = y[i]*cos(time);

end for "For-equation e";
for j in 1:4 loop
y[j] = y[j+1]*2;

end for "For-equation f";
for k in 5:6 loop
y[k] = y[k-1] + sin(time);

end for "For-equation g";
end sliced_arrays;

The expected outcome of this model for the process of
causalization is as follows:

• The first for-equation will be matched to all of x.

• The second for-equation will be matched to index 1
to 4 of y.

• The third for-equation will be matched to index 5 and
6 of y.

• The last equation f4 of the second for-equation forms
an algebraic loop with the first equation g1 of the
third for-equation.

As can be seen in figure 4(a) the matching turns out as
expected. Furthermore, one can see that there is an alge-
braic loop connecting the mentioned equations f4 and g1
and y[4], y[5]. To efficiently resolve this loop, it is desir-
able to slice the for-equations in such a way, that only the
two relevant equations end up in the algebraic loop and
the rest is recovered as for-equations. After the first step
of scalar sorting one can combine all the equations of an
algebraic loop to a singular super node and do the same
with variables of each algebraic loop. Only after this is
done, the array super nodes should be created by merging
all the remaining equations and variables to super nodes,
while respecting the information gathered in section 4.1.
To achieve the desired result of minimal algebraic loops

while retaining as much array structure as possible, it is re-
quired to do array node merging after algebraic loop merg-
ing. The result of node merging can be seen in figure 4(b).

5 Generalized For-Equations
Before processing for-equations and array-equations they
have to be converted into canonical form. Any for equa-
tion that contains n > 1 body equations can be split into n
for-equations that each contain one single body equation.
If the solution requires the body equations to be evaluated
in alternating order, it will be processed as an entwined
for-equation, which is explained in the following. Fur-
thermore, array-equations can be converted into canonical
for-equations using simple transformations, allthough this
is not sufficiently tested yet.4

After the process of sorting, described in section 4.3,
there are four general types of strong components.

Explicit Strong Component. An explicit strong compo-
nent is a single assignment that can be solved explic-
itly for the chosen variable. These don’t necessarily
have to be scalar, they can be array assignments.

Implicit Strong Component. Implicit strong compo-
nents can be single equations that cannot be solved
symbolically, as well as algebraic loops, consist-
ing of multiple equations that have to be solved
simultaneously.

Simple For-Equation. A simple for-equation is a section
of a for-equation that can be executed without the
need to perform other assignments in between.

Entwined For-Equation. Entwined for-equations are
for-equations that have mutual dependencies and

4Some array-equation to for-equation transformations are not effi-
cient e.g. if they contain a function call. These will be handled as algo-
rithms.
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need to be executed in alternating order. They can
also contain explicit or implicit strong components
that have to be executed once.

The first two types of strong components pose no fur-
ther challenge an can be processed using techniques de-
scribed in section 3. The latter two for-equation based
strong components require further analysis. Simple For-
Equations have to undergo the third step of inner sorting,
described in chapter 4.3, which results in a specific order
of the for-equation body. This order might not be in a or-
der that can be represented using the original for-equation
iterator ranges because of slices being solved differently.
An example for this is shown in the following example 5.1.

Example 5.1 (Diagonal Slice).
As an example for slices of for-equations that cannot be re-
covered using the original iterator range, consider a model
where the diagonal of a matrix has to be solved in a differ-
ent equation than the rest of it. The results for following
model are shown in the two digraphs of figure 5 and con-
firm the expected results:

• The first for-equation will be solved for the diagonal
elements of x

• The second for-equation will be split up into two for-
equations:

1. i 6= j solves the remaining non-diagonal ele-
ments of x

2. i = j solves y

model diagonal_slice
Real x[3,3];
Real y[3];

equation
for i in 1:3 loop
x[i,i] = i*cos(time);

end for "For-equation e";
for i in 1:3, j in 1:3 loop
x[i,j] = y[j] + i*sin(j*time);

end for "For-equation f";
end diagonal_slice;

As can be seen in figure 5(a), the expected matching
is found. No algebraic loop super nodes are created, but
three different equation and variable super node pairs.

1. The first for-equation (e1,e2,e3) solved for the vari-
able instance x[i, i].

2. The second for-equation ( f12, f13, f21, f23, f31, f32)
solved for the variable instance x[i, j].

3. The second for-equation ( f11, f22, f33) solved for the
variable instance y[ j].

The three resulting for-equations are Simple For-
Equation strong components and need to be sorted in-
ternally. The first for-equation does not pose a problem

since it is not sliced at all and has no structurally forced
order. Furthermore, one can safely assume that, if noth-
ing is forced, the sorting algorithm will act index-first and
keep the equation as it is:

for i in 1:3 loop
x[i,i] = i*cos(time);

end for;

The second for-equation poses the problem that it does
not use the entirety of the original for loop. Furthermore,
it cannot be represented by a single for-equation, without
using an additional element, like an if-condition to strip it
off its diagonal. Even though this technique could be used
in this specific case, a general solution is desirable. To
achieve a procedure that can be applied on for-equations
sliced and ordered in any way, the list of scalar equation
indices is iterated by applying algorithm 3. Trivially, the
same can be done for the third for-equation.

Algorithm 3 Evaluate Generic Body

Input: Scalar index eval
e← M̂−1

E (eval) . get equation body, see (13)
val←M−1

E (eval) . get iterator values, see (14)
evaluate equation e with iterator values val

The following code is representative for the code
OpenModelica generates compiling the example model
diagonal_slice, simplified for readability. It shows
the non-diagonal section of for-equation f .
void diagonal_slice_eq_1(DATA *data)
{

const int idx_lst[6] = {5,2,7,1,6,3};
for(int i=0; i<6; i++)

genericCall_0(data, idx_lst[i]);
}

The idx_lst represents the order in which the body
equations have to be solved, which is arbitrary in this spe-
cific example. This solution is provided by the sorting
algorithm and no further optimization is done since this
order might be enforced structurally, which is the case
for other examples. The function genericCall_0 rep-
resents the body of the function, which maps the scalar
index to the iterator values, as described in algorithm 3.
Allthough the theory speaks of a global mapping, in prac-
tice one uses the local mapping and the local index to eval-
uate the body equations of a for-equation.
void genericCall_0(DATA *data, int idx)
{

int tmp = idx;
int i_loc = tmp % 3;
int i = 1 * i_loc + 1;
tmp /= 3;
int j_loc = tmp % 3;
int j = 1 * j_loc + 1;
tmp /= 3;
&data->realVars[(i-1)*3+(j-1)] /∗x [ i , j ] ∗/

= &data->realVars[9+(j-1)] /∗y [ j ] ∗/
+ i * sin(j * data->timeValue);

}
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(a) Scalar-based digraph and matching.
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Figure 5. Causalization of the example model 5.1 requiring diagonal slicing.

Example 5.2 (Entwined Loops).
As a second example for hard to solve slicing problems,
we consider the following model.

model entwined_loops
Real x[7];
Real y[7];

equation
x[1] = 1;
y[1] = 2;
for j in 2:7 loop
x[j] = y[j-1] * sin(time);

end for "For-equation e";
for i in 2:4 loop
y[i] = x[i-1];

end for "For-equation f";
for i in 5:7 loop
y[i] = x[i-1] * 2;

end for "For-equation g";
end entwined_loops;

The expected results for this model are as follows:

• The first two scalar equations will be solved for x[1]
and y[1]

• The three for loops will be solved as follows:

1. alternating between the first and the second for
i = 2 : 4

2. alternating between the first and the third for
i = 5 : 7

Although this example seems more intricate, the same
general solution as presented in example 5.1 can be used.
The three for loops are accumulated to an entwined for-
equation and its full list of alternating scalar equation in-
dices are iterated while applying algorithm 3.

The following (simplified) code is generated by Open-
Modelica for the entwined_loops model. The body

equations genericCall_X are similar to the one pro-
vided in example 5.1 and the alternating call order is rep-
resented by the array call_order.

void entwined_loops_eq_4(DATA *data)
{

int call_indices[3] = {0,0,0};
const int call_order[12] =

{2,1,2,1,2,1,2,0,2,0,2,0};
const int idx_lst_2[6] = {0,1,2,3,4,5};
const int idx_lst_1[3] = {0,1,2};
const int idx_lst_0[3] = {0,1,2};
for(int i=0; i<12; i++)
{

switch(call_order[i])
{

case 2:
genericCall_2(data, idx_lst_2[

call_indices[0]]);
call_indices[0]++;
break;

case 1:
genericCall_1(data, idx_lst_1[

call_indices[1]]);
call_indices[1]++;
break;

case 0:
genericCall_0(data, idx_lst_0[

call_indices[2]]);
call_indices[2]++;
break;

default:
throwStreamPrint(NULL, "Call index

%d at pos %d unknown for: ",
call_order[i], i);

break;
}

}
}
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Figure 6. Causalization of the example model 5.2 requiring entwining.

6 Performance Test Results
The algorithms discussed in the previous Sections have
been implemented in the new backend of the OpenMod-
elica compiler. Their input is the result of the flattening
process of an object-oriented Modelica model, where vari-
able arrays and for-loop equations are not expanded into
their scalar constituents. This output can be obtained from
the new OpenModelica frontend (Pop et al. 2019), which
preserves arrays during the flattening process, by skipping
the final scalarization phase.

This Section reports the results obtained with large in-
stances of some models of the ScalableTestSuite (Casella
2015), that can be run with the currently available imple-
mentation.

The tests were run on an AMD Ryzen 9 5950X 16-Core
Processor, 63 GB RAM, running Ubuntu 22.04.2 LTS.
The tests are run one at a time, so they can exploit par-
allelism on the 16 cores for garbage collection, code gen-
eration and C compilation. Also, simulations run at full
speed, because they are not hindered by other processes
competing for DMA channels. All simulations use vari-
able step-size algorithms with error control.

The following models were run:

• CascadedFirstOrder: the model is a cascaded con-
nection of N first-order linear systems, approximat-
ing a delay line. The response to a smooth increase
of the system input is simulated with the sparse stiff
solver IDA.

• HarmonicOscillator: the model describes the se-

quential connection of N masses with N−1 springs.
It has 2N state variables and equations, where the
initial position of the first mass is set off the equi-
librium value, which initiates the propagation of an
elastic wave through the system. As the system is
only moderately stiff, the transient is simulated using
the explicit DOPRI45 Runge-Kutta solver, whose ex-
ecution time scales more favorably with system size.

• OneDHeatTransferTT_FD: this model contains the
finite-volume discretization of 1D Fourier’s equa-
tion, describing heat conduction in a rod, with N vol-
umes and prescribed temperatures at the two ends. It
has N states and about 2N equations. We simulate a
transient with the sparse IDA solver, increasing the
two boundary temperatures and observing how that
change propagates through the length of the rod.

• CounterCurrentHeatExchangerEquations: this
model contains a finite-volume discretization of
a 1D counter-current heat exchanger model, con-
sidering the thermal inertia of the primary fluid,
secondary fluid, and separating wall. Fluids are
assumed to be incompressible and with constant
specific heat capacity. The model has 3N states and
7N equations. We simulate a transient where we
apply a step increase of the inlet temperature of one
of the two fluids, using the sparse IDA solver.

Results are shown in Figure 7. On the x-axis, the num-
ber of model equations is shown; on the y-axis, build time
(in red) and simulation time (in blue) are shown, compar-
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Figure 7. Comparison of Pseudo Array Causalization (PAC) to Scalarized Causalization (SCC) on a logarithmic scale. The x-axis
shows the number of equations and the y-axis shows the time spent in seconds. The largest tests could not be run with SCC methods
on the provided machine, due to timeout or memory overflow.

ing the pseudo-array-causalization algorithm (PAC) with
the scalar causalization algorithm (SCC).

The first interesting result is that the build time with
PAC is nearly constant below 1,000 equations, and only
starts growing linearly for substantially large sizes, where
the time spent for the scalarized causalization dominates
all other phases of code generation and compilation. As
a consequence, the build time is one/two orders of mag-
nitude smaller with PAC than with SCC, with increasing
advantage as the size of the model grows. In fact, PAC al-
lows to build the code of models with size exceeding one
million equations, which are simply not manageable with
the SCC algorithm. The time is saved mostly by avoid-
ing to re-run code optimizations (e.g. alias elimination or
CSE) on each instance of array equation, as well as avoid-
ing to compile huge amounts of nearly identical C-code.

The second interesting result is that simulation time is
also appreciably lower with PAC, though by a constant
factor of about two-three. This is probably due to the ex-
ecution of for-loops in the simulation code being more ef-
ficient than the execution of similar lines of code.

Last, but not least, we observe that build time, which
used to be much larger than simulation time with SCC, is
now comparable or possibly shorter than simulation time.

This is a key usability improvement in the model develop-
ment process, which is characterized by an iterative build-
simulate-analyze-modify workflow.

These results were obtained with simple models writ-
ten by array variables and for-loop equations. However,
large number of components of the same type can be col-
lected into arrays, eventually leading to the same kind of
array-based structure once flattened, provided that arrays
are preserved during flattening.

Hence, we can claim that the PAC algorithm un-
locks the possibility of handling Modelica models in the
million-equations range, characterized by large arrays of
variables and/or components, which was not previously
practically possible with state-of-the-art Modelica tools.

7 Conclusions
In this paper, a new Pseudo-Array-Causalization (PAC)
algorithm was presented. When dealing with equation-
based models using arrays of variables and equations, PAC
allows to first carry out the causalization process on the
fully flattened bipartite graph, as it is currently done in
Modelica tools, without ever scalarizing them symboli-
cally. This allows to generate much more compact sim-
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ulation code that exploits for-loops, and to do so much
faster.

The presented algorithm was demonstrated in a few
simple cases on the paper, but also successfully imple-
mented and tested in the OpenModelica compiler. Early
results obtained on simple but large-sized models from the
ScalableTestSuite show improvements of one/two orders
of magnitude in the simulation code build time, and of a
factor two/three in the simulation run time, thus unlocking
the possibility of simulating models with over a million
equations within reasonable amounts of time.

Future work includes improving the implementation so
it can be tested in realistic use cases (e.g., large transmis-
sion or distribution power system models), and most im-
portantly handling static and dynamic index reduction.

Furthermore, generating large integer lists for the
generic for-equations might become a bottle neck in the
future, therefore sequence compression methods will be
used to reduce the used disk space and access time.
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Abstract
This paper provides a detailed analysis of the reasons
behind the poor simulation performance observed when
mass flow rates become very small, commonly referred to
as zero mass flow issues. By using simple example mod-
els, we effectively demonstrate the underlying causes of
these simulation performance issues. We highlight vari-
ous contributing factors that play a significant role in ex-
acerbating the problem.

Furthermore, we propose and examine countermea-
sures to mitigate these challenges. These countermeasures
include modifications to the model itself, utilization of
available settings in simulation tools, and adjustments to
the solver. By implementing and evaluating these coun-
termeasures, we illustrate their impact on improving sim-
ulation performance in scenarios involving low mass flow
rates.
Keywords: zero mass flow issue, fluid dynamics, ODE in-
tegration, non-linear modeling

1 Introduction
Modelica is a great option to easily create models to sim-
ulate complex fluid systems. The created models can be
simulated in one of the available tools. Thanks to advance-
ments in algorithms and computational power, it is now
possible to model these intricate systems within a short pe-
riod of time.However, there is a challenge when it comes
to systems that contain branches with no flow during cer-
tain periods or when the model is used to simulate ramp-
up or shut-down sequences. In such cases, simulation time
can drastically increase, resulting in what is commonly
known as zero mass flow problems. From our experi-
ence in supporting several customers in creating and sim-
ulating models using different libraries, this issue causes
large problems. Nevertheless, there is limited literature
available on this subject. Dermont et al. (2016) presented
an analysis of measures to improve robustness of models
used to simulate air condition cycles. The demonstrated
the impact of different measures including regularization
of the mass flow pressure correlation at low mass flow
rates, heat transfer modeling and choice of solver. The
study (Li et al. 2020) highlighted the impact of an accurate
and fast calculation of the system Jacobian matrix as part
of the solution process. Qiao and Laughman (2022) ana-
lyzed the impact of different measures to improve perfor-

mance of air conditioning models at low mass flow rates.
They came up with a new regulation scheme for the pres-
sure drop mass flow correlation around zero mass flows
and an analysis of heat transfer handling methods.

In our opinion these article only scratch the surface of
the numerical reasons which cause the slow simulations
at zero mass flow rates. We strongly believe that gaining
a deeper understanding of this phenomenon is crucial for
developing effective strategies to improve simulation time
in scenarios involving low mass flow rates. Therefore, the
primary objective of this paper is to elucidate the underly-
ing causes behind the sluggish performance observed dur-
ing simulations with low mass flow rates.

To achieve this goal, we begin by examining and an-
alyzing the solution process of a highly simplified fluid
dynamic model. This analysis serves as a starting point
to unveil the root causes of zero mass flow issues. Fur-
thermore, we expand this model to incorporate additional
complexities, thereby showcasing the impact of increased
intricacy on simulation performance. By employing all
these models, we illustrate the application of various coun-
termeasures aimed at mitigating the challenges posed by
zero mass flow problems.

2 Analysis for simple model
For demonstration of the underlying phenomenon we use
a simple model of an isothermal ideal gas in a volume with
the variable pressure p connected over a flow resistance to
a boundary with fixed pressure pb

dm
dt

=
V

R ·T
dp
dt

= mflow . (1)

When including a quadratic flow model with the param-
eter c but neglecting the dynamics of the momentum flow
as often done for gas flows

mflow = c · sign(pb − p) ·
√
|pb − p| (2)

we can derive the single ordinary differential equation

V
R ·T

· dp
dt

= c · sign(pb − p) ·
√

|pb − p| (3)

dp
dt

=
1
τ
· sign(pb − p) ·

√
|pb − p|= 1

τ
·F(∆p) . (4)

In order simplify the equation we introduced ∆p = pb − p
and τ = V

R·T ·c . Equation (4) could be integrated using an
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implicit Euler scheme

pti − pti−1

∆t
=

1
τ
·F(∆pti) (5)

R(pti) = pti − pti−1 −
∆t
τ
·F(∆pti) = 0 (6)

in which pti denotes the solution at the current and pti−1
the solution at the previous time step. Equation (6) is a
nonlinear equation which has to be solved to determine
the pressure at the current step ti. We have brought the
equation to residual form. So we have to find the root of
the residual function R(p). For the solution solvers usually
apply a Newton method, in which the linearized equation
is repeatedly solved

p j
ti = p j−1

ti −
(

R′(p j−1
ti

))−1
·R(p j−1

ti ) . (7)

Here the prime denotes the derivative and p j
ti is the up-

dated solution for pressure at time step ti in iteration j.
The iteration is performed starting with an initial guess
p0

ti for the solution. Solving the equation requires solving
the linear system R′(p j−1

ti

)
· (p j−1

ti − p j
ti) = R

(
p j−1

ti

)
. For

a single equation this can be done without much effort,
but for a system of differential equations, the derivative
of the residual equation system becomes a matrix (which
is closely related to the Jacobian matrix of the system
function F). Calculation of the derivative/Jacobian matrix
and calculation of a decomposed form for solution comes
at high computational effort. Additionally, in many sys-
tems the matrix does not change too much while advanc-
ing in time. Therefore, solvers usually never update the
derivative during the iterative solution process for a time
step and use (R′(p j

ti))
−1 = (R′(p0

ti))
−1 (known as Chord

method (Kelley 1995)). Additionally, solvers try to use
the same derivative (R′(p̃))−1 for solving multiple time
steps. With this assumption the following iteration scheme
is used with a constant R′(p̃))−1

p j
ti = Φ(p j−1

ti ) = p j−1
ti − (R′(p̃))−1 ·R(p j−1

ti )). (8)

Figure 1 visualizes an exemplary successful iteration for
the example problem from equation (4). The slope of the
linearized approximations (red lines) do not match the ac-
tual local slope of the residual function (blue curve). Nev-
ertheless, the iteration schemes converges, but it has lost
its quadratic convergence due to the constant derivative.
But as shown in Figure 2 the iteration might fail. The iter-
ations schemes drifts off from the actual root of the resid-
ual equation and finally circles around the solution. In the
following we will analyze this phenomenon in more de-
tail and demonstrate that the iteration with not-up-to-date
derivative becomes more difficult to solve when mass flow
rate becomes small. If the solution diverges, as shown in
Figure 2 or if due to the slower convergence no solution is
found within a given number of iterations the step will be
rejected. As reaction the solver will request an update of
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Figure 1. Example of a converging iterative solution for the
example problem.

the Jacobian matrix and repeat the solution process. If the
solution still fails, it might be necessary (as we will show
later on) to reduce the step size. Then a solution with the
outlined method can only be achieved for very small time
steps and if the Jacobian matrix is updated at every time
step. In this setting the time step is not chosen to ful-
fill the chosen tolerance anymore, but to make the system
solvable with the approximated Jacobian matrix from the
initial guess. This slows down the solution process and is
the cause of slow models performance what is named zero
mass flow issues.

Let us take a closer look on the iterative solution pro-
cess of Equation 4. The Banach fixed-point theorem states
that an iteration scheme Φ(p j

ti) will converge if it is con-
tractive. In that case a contraction factor λ < 1 exists and
the iterative schemes fulfills

∣∣∣Φ(p j
ti

)
−Φ

(
p j−1

ti

)∣∣∣≤ λ ·
∣∣p j

ti − p j−1
ti

∣∣ . (9)

For the Chord method we can calculate the contraction
factor with

λ =

∣∣∣Φ(p j
ti

)
−Φ

(
p j−1

ti

)∣∣∣∣∣p j
ti − p j−1

ti

∣∣ =

∣∣∣∣∣Φ(p j
ti)−Φ(p j−1

ti )

p j
ti − p j−1

ti

∣∣∣∣∣ . (10)

By applying the mean value theorem there exists a pξ ∈
(p j−1

ti , p j
ti) such that

λ = |Φ′(pξ )|= |1−R′(p̃))−1 ·R′(pξ )| . (11)
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Figure 2. Example of a failing iterative solution attempt for the
example problem.
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For the second step we included Equation 8. As conver-
gence requires λ < 1 we can obtain with Equation 11

0 < R′(p̃))−1 ·R′(pξ )< 2 . (12)

This criterion can be used for a more detailed analysis
of the cause of zero mass flow issues and how it can be
avoided, or its effects can be reduced.

But before applying this criterion to our demonstration
problem Equation 1, we want to take a general look on the
significance of Equation 12. For the reasons mentioned
above a solver will try to reuse the derivative R′(p̃)) for
multiple steps. But the actual derivative in the region of
the solution R′(pξ ) might differ from the used derivative
R′(p̃)) by a factor of two as demonstrated in Figure 2. In
that case the iterative solution of the nonlinear system will
fail. The solver will reject the step and repeat the solution
with a reduced step size and an updated value for R′(p̃)).
Unfortunately, the actual criterion for convergence is even
stricter than that from Equation 12. If the condition is ful-
filled, but with values close to two, the convergence is very
slow. The integrator demand convergence within a few it-
eration, e.g. Hindmarsh et al. (2023), otherwise the step
is rejected and the simulation performance decreases. But
as the ratio |R′(p̃))−1 ·R(p j

ti)| represent somehow the con-
vergence speed of the method, we can use it for an analy-
sis. Smaller values for |R′(p̃))−1 ·R(p j

ti)| will lead to con-
vergence within fewer steps. As convergence within few
steps is demanded, a good initial guess is of great impor-
tance. The closer this initial guess is to the actual solution,
the more likely is convergence of the method to the actual
solution within the demanded solution tolerance. This has
three consequences:

1. Methods which have a good approximation or fore-
cast used for the initial guess will not be affected as
much by the zero mass flow issue like method with
no good forecast.

2. Reducing the time step improves the approximation
of the initial guess. Therefore, reducing the step size
has two positive aspects: it improves the initial guess
and the ratio |R′(p0

ti))
−1 ·R(p j

ti)| will be closer to one.
But obviously this comes as the price of a slower
simulation.

3. The stricter the tolerance demanded for the solution,
the harder it becomes to reach the tolerance within
the desired number of iteration. So decreasing the
tolerance might cause more problems at low mass
flow rates.

After that general analysis, we will take a closer look on
that criterion for our demonstration problem.

2.1 Analysis of Convergence for Demonstra-
tion Problem

If we apply Equation 12 to our simple problem in Equa-
tion 1, we get

1+ ∆t
2τ
√

pb−pξ

R′(p̃)
< 2 . (13)

First of all, one can see that as p −→ pb results in p −→ pξ

the method has only a chance to convergence for ∆t −→ 0.
Therefore, in almost all libraries the square-root in the
mass flow pressure relation is replaced by an approxima-
tion which has a finite derivative when crossing zero. For
the regulation named regRoot from the Modelica Standard
Library (Modelica Standard Library 4.0.0 2023) eq. 13
becomes

1+ ∆t
τ

0.5·(pb−pξ )
2+∆psmall

2

((pb−pξ )
2+∆psmall

2)1.25

R′(p̃)
< 2 . (14)

But still convergence for p −→ pb can become problem-
atic for small values of τ and if ∆psmall is not chosen
large enough.The solver will find a solution within the de-
manded number of iteration but only for small time steps.
Additionally, the simple demonstration model can be used
to explain some general phenomena which can be seen in
more complex models concerning if zero mass flow issues
occur or not. Therefore, the simple model has been imple-
mented as Modelica model and was solved with Dymola
2022x (Dassault Systemes AB 2023) with the regulated
form of the square root mentioned above. Two different
solvers from Dymola were used: Dassl and Radau. Dassl
as a general purpose solver with good performance and
Radau, as it was recommend by Dermont et al. (2016),
when encountering zero mass flow problems. Figure 3
shows the number of Jacobian matrix evaluation when
solving the problem while varying the pressure level of
the boundary pb. The pressure was initialized at the same
level as the boundary. After one second the pressure in
the boundary was increased or decreased by 10Pa and the
system was simulated for further 10s to settle. One can
see that after exceeding a certain threshold in pressure
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Figure 3. Number of Jacobian matrix evaluations for the exam-
ple problem for different settings.
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Figure 4. Demonstration of the approximate calculation of the
derivative as secant (red) to the residual function (blue). If
the two supporting points have different signs, the slope of the
derivative approximation is much low than the slope in the re-
gion around ṁ = 0.

level the number of Jacobian matrix evaluation dramati-
cally increases. This indicates presence of a zero mass
flow problem as the integration steps are rejected, and a
new Jacobian matrix must be calculated. This pressure
level threshold depends on the chosen solver. Radau gen-
erally performs better in this case. But in general, it is
surprising that the pressure level has an impact on the so-
lution of the problem. The pressure level of pb is only a
constant offset for the solution and therefore on first look
it should not have an impact. Additionally, if Dassl is cho-
sen as solver, the number of Jacobian matrix evaluations
depends on the sign of the pressure step. When Radau is
used, the same number of Jacobian matrix evaluation is
required independent of the sign of the pressure step.

Both phenomena can be explained if one focuses on
how the derivative R′(p̃) is calculated in the solution pro-
cess. If no special settings are applied the derivative is cal-
culated numerically presumably with a given relative vari-
ation ∆pε = ε · p̃ with a small number ε . Typical methods
are

R′(p̃)≈ R(p̃+∆pε)−R(p̃)
∆pε

(15)

or

R′(p̃)≈ R(p̃+∆pε)−R(p̃−∆pε)

2 ·∆pε

. (16)

Firstly, if the pressure level increases, the absolute vari-
ation for calculation of the derivative increases. But the
physical meaning of a changed pressure difference has
not changed. For a solution around the steady solution
p̃ ≈ pb the variation ∆pε used to approximate the deriva-
tive might flip the sign of p̃ − pb. In that case the ab-
solute value of approximation of R′(p̃) becomes smaller
than the absolute value of the actual derivative (see Fig-
ure 4). As Equation 13 shows this decreases the speed of
convergence. Secondly, the problem itself is symmetric to
an increasing or decreasing step of the pressure. But us-
ing the approximation Equation 15 to calculate the deriva-
tive introduces an asymmetry. As only the Dassl solver

is susceptible to the sign of the variation it suggests it-
self that Dassl uses a forward differencing scheme while
Radau uses a central difference scheme like Equation 16.
We created an external external function which is called
in the model to track the value of states during all mod-
els calls: by analyzing the state variation one can identify
the times at which the Jacobian matrix is updated. When
using Radau as solver the perturbation is applied in both
directions while for Dassl only a perturbation in one direc-
tion is applied - therefore we can verify the assumption.
The central scheme is is more accurate and symmetric,
and therefore the results to not show a dependence on the
sign of the pressure step.

There are two options to improve model performance
for zero mass flow rate. If possible one could use an ana-
lytic calculation of the Jacobian matrix to get rid of the un-
derestimation of the derivative. Additionally, or solely the
problem could be reformulated to use ∆p= p− pb as state.
This measure improves the accuracy of the numeric ap-
proximation of the Jacobian matrix. Pressure differences
are driving the mass flow rates and therefore the changes
in pressure. If the pressure becomes large, the perturbation
applied ε ·∆p to calculated the derivative might be in the
range of the driving pressure differences and the approx-
imate Jacobian matrix is not accurately enough to solve
the system with large steps. Choosing the pressure differ-
ence as state, leads to a perturbation much smaller used to
calculate the derivative and the applied solution method is
much more robust. In both cases the model performs much
better as one can see in Figure 3. If one of the tweaks is
applied, no issues occur even if pressure level is increased.
Additionally, the number of evaluations is independent of
the step sign.

2.2 Non-linearity as root of the problem
Furthermore, we want to use the simple model to empha-
size the importance of the non-linearity of the problem.
Dermont et al. (2016) gave the time constant of the prob-
lem which increases when decreasing the mass flow rate
as reason for the poor model performance for small mass
flow rates. We want to demonstrate that the time con-
stant itself is not the root of the problem. For this test
we run the model with Radau as solver and the pressure
level of 1×106 Pa with a step of 10Pa. For the second
run the regRoot mass flow pressure relation was replaced
with a linear relation which has the same slope for van-
ishing mass flow rates (Figure 5). Due to the linearity
this slope remains the same for all mass flow rates. The
slope of the mass flow pressure relation determines the
time constant of the problem. The comparison is designed
in a way that the time constant of the non-linear problem
is at maximum the same as the time constant of the lin-
ear problem. Figure 6 shows the solver step when both
models are simulated with the same settings. Though the
linear problem should be tougher to solver from a simple
perspective of the time constant, it is actually the other
way round. A linear model cannot face zero mass flow
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Figure 5. Linearized and actual non-linear mass flow pressure
relation used in the example model to demonstrate the impact of
the non-linearity.
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Figure 6. Solver step size for example model with linear and
non-linear mass flow pressure relation as shown in Figure 5.

issues as the Jacobian matrix calculated at any position is
valid for the whole domain. As a result the linear prob-
lem can be solved with much higher time steps, though it
actually has the higher dynamics. Actually, the presented
findings could have been derived from Equation 12. But
the results are presented as they impressively show which
solver steps are possible coming from the pure dynamic
of the problem. The non-linearity of the problem which
results in a change of the time constant, causes the Chord
method to fail and as a result the possible time steps of the
integration method cannot be exploited.

3 Extended model with transported
scalar

Obviously, models are normally much more complex.
One additional level of complexity are additional equa-
tions to be solved e.g. balances for balance, mass, compo-
sition etc. The form of these equations has a crucial impact
on the resilience of the model against zero mass flow is-
sues. In order to demonstrate and analyze this impact we
extend our simple models with an additional equation

dψ

dt
=

{
mflow

m · (ψb −ψ), if mflow ≥ 0
0, otherwise

. (17)

Now we introduce the abbreviation ∆ψ = ψb − ψ and
observe that sign(mflow) = sign(∆p) in order to use the
Heaviside step function H(∆p). Moreover from Equa-

tion 4 and Equation 2 we can replace mflow = c ·F(∆p)
and m = V

R·T · p. Then

dψ

dt
= c2

τ · G(∆p)
p

·∆ψ (18)

where we have introduced G(∆p) = H(∆p) ·F(∆p)) and
again use τ = V

R·T ·c .
The residual equation becomes the form

R(ψt) = ψt −ψt−1 −∆t · c2
τ · G(∆p)

pt
·∆ψt (19)

The solution of equation R(ψt) = 0 depends on
G(∆p) = H(∆p) ·F(∆p) and hence on the flow direction
through H(∆p) and on the actual mass flow rate through
F(∆p). It is given by

ψt =
ψt−1 +∆t · c2τ · G(∆pt )

pt
ψb

1+∆t · c2τ · G(∆pt )
pt

(20)

Though in our model it would be possible to solve the
equation for pressure and the equation for the passive
scalar sequentially, in a Modelica tool these equations are
solved simultaneously. So Equation 17 is added to the
model from the previous section and solved again while
tracking the number of Jacobian matrix evaluations as it
was plotted in Figure 3. This time only Radau and a step
of 10Pa was used. The results are show in Figure 7. For
reference purposes the results for only the pressure equa-
tions are shown additionally. Adding the equation for the
transported scalar causes the zero mass flow issue to occur
at lower pressure levels and from that pressure level addi-
tional Jacobian matrix evaluations are caused compared
to the reference case. When integrating the solution of
Equation 17 depends on the actual mass flow rate. There-
fore, the iteration can only converge after the Equation 1
has converged reasonably close to the actual solution. If
Equation 1 alone converges only just within the desired
number of iteration, the system will not converge, causing
the zero mass flow issue occurring at lower pressure lev-
els. Figure 8 shows an exemplary course of the residuals
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Figure 7. Number of Jacobian matrix evaluations for example
model with (w/) and without (w/o) transported scalar and differ-
ent settings.
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Figure 8. Residuals of pressure and transported scalar during
iterative solution.
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Figure 9. Transported scalar flow rate for different modeling
approaches: all combinations of with (w/) and without (w/o) dif-
fusion and convection with (w/) and without (w/o) regulation.

of the two equations over the iterations. One can clearly
see that the residual of the scalar (Equation 17) even in-
creases before it starts to converge. But convergence rate
is slow, while the mass flow rates oscillates around its fi-
nal value. Figure 7 contains measure which are intended
to improve convergence around zero mass flow rate. One
idea is to introduce diffusion into Equation 17 by adding a
transport term which is independent of the mass flow rate

dψ

dt
=

(
c2

τ · G(∆p)
p

+µ

)
·∆ψ (21)

We use a artificial diffusion constant µ .
The second idea is to introduce a (nonphysical) regu-

lation of the convective transport as depicted in Figure 9.
The convective transport with is set to be zero if the mass
flow is regulated. After the mass flow has left the regula-
tion the convective flow is ramp up to its actual value.

From Figure 7 we can see that the pure diffusion does
not improve the system convergence around zero. No im-
provement was observed for reasonable big values of the
artificial diffusion constant µ . The problem is that the so-
lution for ψ still depends on the mass flow rate, though
it is shifted. Nevertheless, the scalar converges only after
the mass flow has converged. For an improvement the so-
lution should be independent of the mass flow rate for very
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Figure 10. Number of Jacobian matrix evaluations for a multi-
volume model with and without adjusted linearization interval.

small mass flow rates. That is the aim of the second mea-
sure, with the additional regulation of the convective flow.
This method has to be implemented carefully to avoid a
violation of conservation. When this measure is applied
the system is more robust against zero mass flow issues,
but it still performs worse than the model with only mass
conservation.

4 Extended model with multiple vol-
umes

In this step we want to extend the model from section 2 to
a model with multiple connected control volumes.

4.1 Pressures
For the pressures we obtain

dp[k]
dt

=
1

τ[k]
·
(

F(∆p[k])−F(∆p[k+1])
)

(22)

where we have extended the notation from Equation 4 to
the control volume label k = 1...N with ∆p[1] = pb− p[1],
∆p[k] = p[k−1]− p[k], ∆p[N+1] = 0 and control volume
dependent time constant τ[k] = V [k]

R·T ·c .
Following the procedure in Equation 14, we now ap-

proximate

F(∆p[k]) = sign(∆p[k]) ·
√
|∆p[k]| (23)

≈ regRoot(∆p[k], ∆psmall[k])

In a numerical experiment with n = 9 the control volume
V [k] was chosen uniformly V [k] = V except for volume
five, in which it was chosen to be a tenth of the other val-
ues V [5] = 0.1 ·V , such that τ[5] = τ/10. The other pa-
rameter varied is ∆psmall[k]. Two strategies are applied:
in the first strategy all regularization intervals have the
same size and in the second strategy all have the same
size except for that of k = 5. The value is chosen to be
∆psmall[5] = 10 · ∆psmall. The results are given in Fig-
ure 10. It is important to mention that the given level of
∆psmall corresponds to the value applied for most of the
equations. The first important thing which one can see is
that increasing the regularization interval will improve the
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performance until a certain threshold. After that one could
say that the zero mass flow problem is not present any-
more. But the increase in ∆psmall comes at a certain price,
the pressure drop at low mass flow rates will be computed
incorrectly. If this is an issue, the second strategy might
be an interesting option. It is only required to apply a
larger linearization for flow models which are connected
to pressure state with the large values of τ . So the overall
accuracy of the model will be better.

4.2 Passive Scalars
Using the same notation as in the previous section we can
extend Equation 18 for the passive scalar to obtain

dψ[k]
dt

=

(
c2

τ[k] · G(∆p[k])
p[k]

+µ

)
·∆ψ[k]

−

(
c2

τ[k] · G̃(∆p[k+1])
p[k]

+µ

)
·∆ψ[k+1]

(24)

with ∆ψ[1] = ψb −ψ[1] and ∆ψ[k] = ψ[k−1]−ψ[k] and
G̃(∆p) =G(−∆p) =

(
H(∆p)−1

)
·F(∆p), where we have

used the symmetry properties of the Heaviside step func-
tion H and the function F due to Equation 4. Finally we
approximate

H(∆p)≈ SM(∆p, func,nofunc) (25)

with the stepsmoother function SM(.) from
Modelica.Fluid.Dissipation.Utilities...
as regularization for the Heaviside step function. Here
the difference |func − nofunc| denotes the width of the
rgulated step.

4.3 Generalized convergence criterium
In this section we would like to extend the computation of
λ in Equation 11 and the resulting convergence criterium
in Equation 12 to general state space systems with N states
(x[1], · · · ,x[N]) =: x⃗. For a given time step ti we have

d
dt

x⃗ti = f⃗ (x⃗ti) (26)

and for an implicit integration algorithm it holds that

x⃗ti = x⃗ti−1 +∆t · f⃗ (x⃗ti) (27)

with the non linear residuum equation

R⃗(x⃗ti)
!
= 0⃗ = x⃗ti − x⃗ti−1 −∆t · f⃗ (x⃗ti) (28)

which can be solved iteratively by a Newton-Raphson
scheme

x⃗ j+1
ti = Φ⃗(⃗x j

ti) = x⃗ j
ti −
[
JR⃗(⃗x

j
ti)
]−1R⃗(⃗x j

ti) . (29)

Here JR⃗ denotes the Jacobian of the residuum vector
R⃗(⃗x j

ti). In analogy to Equation 8 the Chord method at-
tempts to solve Equation 29 with the inverse Jacobian
fixed at some state ˜⃗x:

x⃗ j+1
ti = Φ⃗(⃗x j

ti) = x⃗ j
ti −
[
JR⃗(
˜⃗x)]−1R⃗(⃗x j

ti) . (30)

Now in analogy to Equation 9 this iteration converges if it
is contractive, that is for some λ < 1 it holds that∥∥∥Φ⃗(⃗x j

ti)− Φ⃗(⃗x j−1
ti )

∥∥∥≤ λ ·
∥∥∥⃗x j

ti − x⃗ j−1
ti

∥∥∥ (31)

In order to further develop this expression, notice that we
re-write the difference on the left as the result of an inte-
gration along a straight line x⃗(s) = x⃗ j−1

ti + s · (⃗x j
ti − x⃗ j−1

ti ) in
state space with curve parameter s ∈ [0,1]:

Φ⃗(⃗x j
ti)− Φ⃗(⃗x j−1

ti ) =

1∫
0

ds
{

J
Φ⃗

(⃗
x(s)

)
· d⃗x(s)

ds

}
, (32)

where J
Φ⃗

(⃗
x(s)

)
denotes the Jacobian of Φ⃗ at position x⃗(s).

Now clearly the tangent vector d⃗x(s)/ds is constant along
the line and given by

d⃗x(s)
ds

= x⃗ j
ti − x⃗ j−1

ti . (33)

Moreover from Equation 30 it follows that

J
Φ⃗

(⃗
x(s)

)
= 1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)
(34)

with 1 denoting the N-dimensional identity matrix. So we
can formally re-write Equation 32 as

Φ⃗(⃗x j
ti)− Φ⃗(⃗x j−1

ti ) = A ·
(⃗

x j
ti − x⃗ j−1

ti

)
(35)

with the matrix A given by

A =

1∫
0

ds
{
1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)}
(36)

With these ingredients we can replace Equation 31 simi-
larly to Equation 11 by

∥A∥ ≤ λ < 1 (37)

Here ∥A∥= ∥A∥2 denotes the spectral norm of the matrix
A as induced from the L2 vector norm ∥⃗x∥. The spectral
norm is defined as the square root of the largest eigenvalue
of AT A, with AT the conjugate transpose of A. We can
further estimate ∥A∥ as follows

∥A∥ =

∥∥∥∥∫ 1

0
ds
{
1−

[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)}∥∥∥∥
≤ max

s∈[0,1]

∥∥∥1− [JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)∥∥∥
≤

∥∥∥[JR⃗(
˜⃗x)]−1

∥∥∥ · max
s∈[0,1]

∥∥∥JR⃗(
˜⃗x)− JR⃗

(⃗
x(s)

)∥∥∥
!
< 1 (38)

Although Equation 38 holds for any matrix norm, for prac-
tical application in the context of Equation 31 one has to
use the spectral norm ∥J∥2.
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4.4 Explicit application
The bound obtained in Equation 38 can be used in order
to give conditions for convergence and also recommenda-
tions for the regularization parameters of the regRoot and
SM functions contained in F(∆p) and G(∆p).

4.4.1 General case
The matrix elements JR⃗(⃗x)[I,J]of the Jacobian JR⃗(⃗x) can
be computed from Equation 28 as follows:

JR⃗(⃗x)[I,J] =
∂R[I](⃗x)

∂x[J]
= δ [I,J]−∆t · ∂ f [I](⃗x)

∂x[J]
(39)

Here δ [I,J] denotes the Kronecker delta. For the
coupled pressure scalar system we have the time
derivatives f [I] given from Equation 22 and Equa-
tion 24. Let (x[1], . . . ,x[N]) = (p[1], . . . , p[N]) and
(x[N +1], . . . ,x[2N]) = (ψ[1], . . . ,ψ[N]). Then

1 ≤ I ≤ N f [I] = f
(
x[I−1],x[I],x[I+1]

)
N < K ≤ 2N f [K] = f

(
x[K−1],x[K],x[K+1],

x[K−N−1],x[K−N],x[K−N+1]
)

Hence the resulting incidence matrix is tri-diagonal for
the pressures and tri-diagonal for the scalars with an addi-
tional tri-band between pressures and scalars. This prop-
erty may be used in order to arrive at an estimate to the
spectral norms of Equation 38. An explicit computation
of the eigenvalues can in principle be avoided by approxi-
mating the spectral norm by the general property:

∥A∥2 ≤
√

∥A∥1 · ∥A∥∞ (40)

where ∥A∥1 = max j ∑
N
i=1 |ai j| is the maximum absolute

column sum norm of A and ∥A∥∞ = maxi ∑
N
j=1 |ai j| is the

the maximum absolute row sum norm of A. This also
avoids computation of AT A. An explicit symbolic anal-
ysis for the pressure system in the fashion of section 7 in
J. Brunnemann (2008) will be subject to future work.

4.4.2 Single pressure
For the case of a single pressure p[1] and boundary pres-
sure pb the Jacobian JR⃗(⃗x) has only one single element:

JR⃗(⃗x)[1,1] =
∂R[1](⃗x)

∂x[1]
=: R′(p) (41)

For simplicity of notation we have dropped the discretiza-
tion index on the right hand side. Plugging this into Equa-
tion 38 we obtain

max
s∈[0,1]

∥∥1− [R′(p̃)]−1 ·R′(p(s))
∥∥< 1c (42)

In order to fulfill this inequality it must hold that

0 ≤
R′(p(s)

)
R′(p̃)

≤ 2 ∀s ∈ [0,1] (43)

This re-produces the result of Equation 12.

4.4.3 Single pressure and passive scalar
For the case of a single pressure p[1] with boundary pres-
sure pb acoupled to a single passive scalar ψ[1] with
boundary ψb the Jacobian JR⃗(⃗x) is a 2x2 matrix with three
non-zero elements:

JR⃗(⃗x)[1,1] =
∂R[1](⃗x)

∂x[1]
=

∂R[1](p)
∂ p

=: a

JR⃗(⃗x)[2,1] =
∂R[2](⃗x)

∂x[1]
=

∂R[2](p,ψ)

∂ p
=: c

JR⃗(⃗x)[2,2] =
∂R[2](⃗x)

∂x[2]
=

∂R[2](p,ψ)

∂ψ
=: d

Here we have left out the discretization indices for p,ψ on
the left hand side for simplicity of notation.

JR⃗

(
p(s),ψ(s)

)
=

(
a 0
c d

)
and JR⃗

(
p̃, ψ̃

)
=

(
a0 0
c0 d0

)
In the sequel we will suppress the (s)-dependence of
(a,c,d) for simplicity of notation. The above setting im-
plies

M := 1−
[
JR⃗(
˜⃗x)]−1JR⃗

(⃗
x(s)

)
=

(
m11 0
m21 m22

)
=

(
− a

a0
+1 0

− c
d0
+ ac0

a0d0
− d

d0
+1

)
And finally

MT M =

(
m11

2 m11m21
m11m21 m21

2 +m22
2

)
(44)

From the symmetry of MT M it follows that the two eigen-
values λ1,λ2 are real. For the 2D case we can explic-
itly compute them. However one may also apply Gersh-
gorins circle theorem (Gershgorin (1931) ) |λ1 −m11

2| ≤
|m11m21| and |λ2 −m21

2 −m22
2| ≤ |m11m21| for an upper

bound of the eigenvalues:

∥A∥2 ≤
√

max
s∈[0,1]

(
|λ1(s)|, |λ2(s)|

) !
< 1 (45)

This is of particular use for higher dimensional cases of
Equation 38.

5 Solver Modification
The adaptions shown which should lead to an improved
simulation of the model where all on the model side.
These modification can be applied by the simulation en-
gineer or library developer and they work independently
of the used tool. But these modifications cause devia-
tions between model results and the physical correct or
the expected results. These deviations might be tolerable
in many cases, but in some cases they are not. Therefore,
it would be interesting to have a solution process which
completely avoids zero mass flow issues or reduces the
impact.
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Table 1. Performance key figures for the solution process for the presented models with and without damping strategy.

Jacobian Evaluations Function Calls Integrator Steps
Damped Normal Damped Normal Damped Normal

Simple Mass Flow (section 2) 7.1×101 2.0×104 7.0×103 1.4×105 2.1×103 3.4×104

Mass Flow + Scalar (section 3) 5.3×102 6.7×103 3.0×104 7.7×105 1.0×104 3.0×104

Multi volume (section 4) 2.2×101 1.1×104 2.7×103 1.3×105 1.1×103 4.6×104

BranchingDynamicPipes 7.3×101 7.1×101 4.3×103 4.3×103 3.4×103 3.4×103

PID 1.9×101 1.9×101 9.5×102 9.5×102 8.4×102 8.4×102

BatchPlant_StandardWater 1.7×102 1.9×102 6.8×103 6.7×103 5.1×103 5.2×103

Overshooting during the iteration process is a known
problem even for normal Newton methods, if the starting
point is far off from the actual solution and/or if the equa-
tion to solve is highly nonlinear. In that case damping
of the solution can reduce the required number of itera-
tion or even avoid divergence of the method. As shown
above overshooting is as well the problem which causes
the zero mass flow issue. Therefore, we tried to apply a
damping strategy to the solution process. For this test we
used OpenModelica and the Cvode solver as for both the
full code is available and can easily be modified. The al-
gorithm is taken from Dahmen and Reusken (2008) and
modified to be usable for the Chord method. For a general
residual equation

R(xti) = 0 (46)

a Chord step is done to calculate an update the solution for
all states

∆x j
ti =−(R′(x̃))−1 ·R(x j−1

ti ) . (47)

The update is not applied directly. Instead the condition

||(R′(x̃))−1 ·R
(

x j−1
ti +λ ·∆x j

ti

)
||

≤Cλ · ||(R′(x̃))−1 ·R(x j−1
ti )|| ,

(48)

is checked until it is fulfilled with the series λ =
1, 0.5, 0.25, ... using Cλ = 1 − λ

4 . When the condition
is fulfilled the step is applied and the same procedure is
repeated for the next step ∆x j+1

ti . The right hand side of
Equation 48 is (a fraction) of the norm of the full step cal-
culated from Equation 47. The left hand side is the next
full step which is calculated if the current damped step is
applied. Therefore, by using this method we damp the cal-
culated step until the norm of the next step is smaller than
the current. As the size of the step depends of the resid-
ual R(x j

ti)), we enforce the residual to reduce. Checking
the condition comes with no relevant extra computational
effort. The price of a recalculation after a rejected Chord
update costs the same as a normal step. So if the rejected
steps are included in the total number of Chord updates,
one could design a method which comes at almost no ex-
tra costs.

The method was applied to the example problems de-
scribed above in configuration in which the zero mass flow
issue occurs. The performance of the damped strategy is
compared to the normal algorithm. The results are sum-
marized in Table 1. Damping the steps causes a signif-
icant reduction in Jacobian matrix evaluations and func-
tions calls. The number of integrator time steps is reduced
as well, though in case of the problem from section 3 the
reduction of integrator steps is not a high as in the other.
But function calls and the decomposition of the Jacobian
matrix are the main expenses during integration. There-
fore, using the damped solving approach significantly re-
duces the solution time in all the cases. Beside the some
models from the Modelica Standard Library were simu-
lated with both methods, though zero mass flow rate was
not a particular issues for these models. The performance
indicator numbers are very similar. The slight difference
can result from differences in the solution and the fact that
with the used settings damping steps were not counted in
the total step count for an iteration. Therefore, the number
of function with damping exceed the number of calls with-
out damping though less steps were taken and less Jaco-
bian updates were required. These minor deviation could
be tolerated. All in all the method looks promising to re-
duce the impact of zero mass flow issues.

6 Summary and Outlook
In this paper we demonstrated the reason for the slow in-
tegration process of fluid system close to vanishing mass
flow rates: Due to the high non-linearity of the problem
the solution of the non-linear system for calculating an
integration step fails, as the simplified chord method is
used. The system can only be solved for steps smaller than
the steps required from the dynamics of the system itself.
And additionally the Jacobian has to be updated almost
every step. Therefore, more step which are itself even
more computational expensive are required. The problem
can be aggravated due to inaccuracies in the calculation of
the Jacobian matrix depending on the choice of the states.
Though we focused on models of fluid systems, this phe-
nomenon is not restricted to this kind of problem. It oc-
curs for any model with high non-linearity in state where
a system should come to rest.

Some approaches which help to avoid the issues were
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given: If possible the non linearity of the model should be
reduced e.g. by linearization close to the zero mass flow
rate. The linearization interval can be adapted to the local
model behavior. Additionally, it is helpful to make other
variables independent of the solution of the mass flow rate
if the mass flow rate becomes small. Furthermore, it is
advisable to improve the accuracy of the Jacobian matrix
calculation e.g. by modified state choice or by a analytic
calculation of the Jacobian matrix. With the knowledge
of the exact cause of the problem it might be possible to
develop additional improvements or enhance the existing
once. For example it might be possible to develop an au-
tomatic calculation of the linearization interval for the re-
lation of mass flow rate and pressure drop.

As the zero mass flow issue comes from the non-linear
solution process, a modification of that process was sug-
gested as well. By including a damping procedure in the
solution process, the solution process for small mass flow
rates can be improved. Unfortunately, this method only
improves solution process if the iterative solution "over-
shoots" the actual solution. Non-linearity might also lead
to a slow iteration progress without overshooting: for ex-
ample when calculating the root of ṁ2 = 0. If a dynamic
momentum balance is used, the problem to solve is in that
nature and a damping of the steps is not helpful anymore.
This problem should be analyzed as well as it is done here
for models without mass flow rate state. It might be pos-
sible to improve the solution process as well, e.g. by in-
cluding factors or solution processes which do an approxi-
mated update of the (inverted) Jacobian matrix during iter-
ation (e.g. Broyden method). The usage of these methods
might be useful in the presented cases as well.
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Abstract
Machine learning models improve the speed and quality of
physical models. However, they require a large amount of
data, which is often difficult and costly to acquire. Predict-
ing thermal comfort, for example, requires a controlled
environment, with participants presenting various charac-
teristics (age, gender, ...). This paper proposes a method
for hybridizing real data with simulated data for thermal
comfort prediction. The simulations are performed using
Modelica Language. A benchmarking study is realized to
compare different machine learning methods. Obtained
results look very promising with an F1 score of 0.999 ob-
tained using the random forest model.
Keywords: machine learning, hybridization, simulation,
thermal comfort

1 Introduction
1.1 Context and problematic
Nowadays, numerical simulation represents an essen-
tial tool in designing and managing real-world systems,
thanks to its lower cost compared to direct experimen-
tal testing on the system to be designed. Many indus-
trial applications have benefited from the contributions of
numerical simulation to improve the performance of sys-
tems. Thermal comfort is considered as a important topic
the field of numerical simulation and several studies have
been conducted but the results are often far from reality
(Feng et al. 2022). One of the main difficulties is the lack
of reliable data. Indeed, the acquisition of data on thermal
comfort is very expensive. It requires to place the subjects
in an environment where the temperature, the hygrome-
try rate and the thermal radiation are controlled. It also
requires testing over a long period of time to avoid tran-
sient phenomena, and on a wide variety of subjects (age
and gender). In this paper, we address the following prob-
lem: how can we increase the quantity of data to improve
thermal comfort prediction?

1.2 State of the art
Time series data augmentation is a technique that aims to
increase the size of the dataset using synthetic data gen-
eration or data transformation methods. This technique is
used to improve the performance of time series prediction

models by increasing the diversity of the training data and
reducing the risk of overfitting. In the area of time series,
the increase in data is particularly important because data
are often scarce and expensive to collect.

1.2.1 Data generation approaches

One of the most well-known approaches in the field of
data augmentation is synthetic data generation. Synthetic
data generation approaches aim to increase the size of the
dataset by generating synthetic data that resembles the
real data. Some of the most common approaches include
Markov processes, Gaussian mixture models and genera-
tive adversarial neural networks (GANs).

Since their inception, GANs have gained a lot of trac-
tion in the deep learning research community. Their abil-
ity to generate and manipulate data in multiple domains
has contributed to their success.

A GAN is a generative model composed of a gener-
ator and a discriminator, typically two neural network
(NN) models. GANs have demonstrated their ability to
produce high-quality images and videos, transfer styles,
and complete images. They have also been successfully
used for audio generation, sequence prediction and im-
putation. Jinsung Yoon et al. (Yoon, Jarrett, and Van
der Schaar 2019) proposed Time-series GAN (TGAN), a
novel version of GAN for generating realistic time-series
data. They introduced the concept of supervised loss; the
model is encouraged to capture time conditional distribu-
tion within the data by using the original data as a supervi-
sion. They obtained significant improvements over state-
of-the-art benchmarks in generating realistic time-series
of multiple datasets.

One of the advantages of these techniques is their power
to greatly increase the size of the dataset and help to model
extreme situations that may not be observed in real data.

And, one of the main limitations of TGANs is the re-
striction of the specified sequence length that the architec-
ture can handle. In addition, generated data may not accu-
rately reflect real data and may require significant compu-
tational resources.

1.2.2 Data transformation approaches

Data transformation approaches aim to increase the size
of the data set by applying transformations to the existing
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time series. Some common approaches include normaliza-
tion, Fourier transform, time warping and interpolation.

Time warping technique consists in applying random
guided transformations to existing time series to generate
new training series. The time warping transformations are
applied using a cost function that measures the similarity
between two series. The experiments conducted in the pa-
per (Iwana and Uchida 2021) show that the proposed data
augmentation technique significantly improves the perfor-
mance of neural networks for various time series related
tasks, such as energy consumption prediction and human
activity recognition.

The Fourier Transform method (Yang, Yuan, and X.
Wang 2023) involves dividing the training data into mul-
tiple sets and then applying the Fourier Transform to each
set. The Fourier coefficients of each set are then combined
in a stratified manner to generate new training series. The
newly generated series are used to train a time series clas-
sification model.

The paper also describes a method for selecting the data
sets to be used for data augmentation. This method in-
volves using a clustering algorithm to group the training
data into similar sets and then selecting the data sets that
are most different from each other.

Experiments conducted in the paper show that the pro-
posed data augmentation method significantly improves
the classification performance for various time series
datasets.

Interpolation (Oh, Han, and Jeong 2020) is a method
of estimating unknown values in the time series using the
known values based on a specific interpolation function
like cubic splines. This method may greatly improve the
score on the generated data especially when the interpola-
tion function is well suited to the problem.

Other approaches using data transformation include
time slicing window which consists of cutting a portion
of each data sample, to generate a different new sample.
Adding noise to time series, flipping by inverting a time
series, scaling by changing the magnitude of a certain step
in the time series, rotation and permutation. Some of these
techniques can only be used for specific datasets. Indeed,
it does not make sense to apply flipping for a time series
describing a temperature variable for example.

One of the advantages of these techniques is their sim-
plicity to implement and the fact that they allow to control
the generated time series.

On the other hand, if the data have complex patterns the
generated data may not accurately reflect the real data.

1.2.3 Simulation approaches

Another way for data augmentation is to use a simulation
model to generate synthetic data.

For example, in the autonomous driving (Cao and
Ramezani 2022) field, simulators such as DeepGTA-V
and CARLA (Car Learning to Act) can be used to gen-
erate large amounts of synthetic data that can complement
the existing real-world dataset in training autonomous car

perception. These models allow to generate several sce-
nario configurations (bad weather conditions, road acci-
dents, obstacles...etc.), which gives different driving envi-
ronments.

One potential downside of data augmentation using
simulation is that the simulated data may not perfectly
represent the real-world data, which can affect the perfor-
mance of machine learning models trained on the data.

On the other hand, simulation also provides more di-
verse information. For example, for a time series describ-
ing the operative temperature of a housing, it is possible
to simulate the operative temperature in several seasons.

Simulation enrichment allow to reduce the gap between
the training dataset and the dataset used for inference and
evaluation. the comfort models are typically learned from
real data but evaluated of these models are performs from
simulation results. It is important to note that simulation
results may deviate from the actual models, thus impacting
the accuracy of the learning process based on simulated
data. To address this issue, it is crucial to conduct the
inference of the learned model using simulated variables.

However, in order to prevent any biases in machine
learning (ML) models, simulations must accurately reflect
the real-world context. Creating a simulation model that
closely resembles the actual environment poses a signifi-
cant challenge.

2 Methodology
The aim of this approach is to complete each observation
with environment variables generated by simulation. For
each observation a simulation model will act as a digital
twin. The methodology is divided into four main stages
Figure 1.

The first step is the data preprocessing. This is a classi-
cal step in preparing data for machine learning. The main
objectives of this step are, to verify the data format, to
ensure the data consistency, complete missing data and re-
move outliers.

The second step is the data adaptation. The prepos-
sessed data may differ from the parameters of the model to
be generated. for example, if the data consists of question-
naires sent to a sample of people. The person answering
the questionnaire may not know the parameter of a sim-
ulation model. But this parameter can be deduced from
another question. For example, in the case of thermal sim-
ulation of buildings, it is easier for respondents to enter the
year of construction of their house than the thickness of its
insulation. It is then possible to approximate the thickness
of the insulation with the norms for the year of construc-
tion. The application section 3.1 will contains more details
on this step. As well as surveys.

The third step is the model generation. Model gener-
ation is performed for each observation. It requires the
creation of rules to generate the simulation model, or the
creation of several simulation templates whose parameters
are filled in according to the adapted observations.
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Figure 1. Description of data generation process

The last step is the simulation of each model, and the
post-processing of the results. The objective of this step is
to prepare simulation results for learning.

3 Application
3.1 Description
3.1.1 Survey Analysis

The aim of this study is to predict household thermal com-
fort. A survey was sent to 4000 French households. The
sample was selected to be as representative as possible of
the French population.

The survey is composed of 240 questions divided into
5 categories; building geometry, building insulation, heat-
ing systems, heating habits and comfort perception. As
descried in Figure 2, building geometry, building insula-
tion and heating systems questions are adapted in order to
generate the thermal simulation of the housing.

Figure 2. Synopsis of approach

Heating habits answers are used in order to reproduce
household heating curve, including, Transmitter control
curve and the opening and closing curves of the shutters

and windows. Finally, questions about perceived comfort
are adapted to feed the learning model.

3.1.2 Survey Validation And Preprocessing

The reliability of questionnaire responses was validated
by an external organization (IPSOS). Prior to the survey,
200 homes were instrumented with power and tempera-
ture sensors for each emitter. The technicians who visited
the homes filled in the necessary information. When the
survey was completed, the results from these 200 homes
were compared with the instrumented data to validate the
approach. These results, and the comparison with simu-
lation results, will be the subject of a future paper. The
present paper deals with the methodology Process.

The first step was to pre-process the data. Dwellings
containing outliers were removed. For each variable the
Interquartile Rule were applied in order to identify out-
liers. For example, dwellings with surface too large or too
small are removed. After this step, 3 529 dwellings con-
tained statistically acceptable variables.

3.2 Completion of data with simulation

3.2.1 Model hypothesis

The simulation model used for the model generation is
created thanks to buildSysPro (Plessis, Kaemmerlen, and
Lindsay 2014). This opensource modelica library contains
parametric models for different building parts, including
wall, windows, roof and floor. The parametrization is
simplified by grouping all the characteristic parameters in
records. A record contains the parameters of the differ-
ent materials used for the structure, insulation and interior
cladding. It also includes geometrical parameters, such as
the thickness of the different materials. The records are
established according to the years of construction of the
buildings and the different standards.

For every dwelling, each room is modeled as a thermal
node. The temperature is considered uniform at each point
of the room volume. The conductive exchanges between
the walls of the rooms and the external walls are modeled
using the heat transfer in one spatial dimension. Transient
phenomena are considered. Walls are discretized every
time materials are changed or every five cm (this is done
automatically by the buildSysPro library). It allows to lin-
earize the heat equations for each wall.

The air flow exchanges between individual rooms are
neglected. We have assumed that all the interior doors are
closed. Convection exchange between the outside air and
the wall is calculated using the newton law. Heat transfer
coefficient is given by the record according to the exterior
materials.

The solar radiation is calculated using the model from
Hay Davies Klucher Reindl (HDKR) (Padovan and Del
Col 2010). The environment variables (external tempera-
ture, humidity, wind speed and direction, variables needed
to calculate the incident radiative flux, etc.) are loaded
from a file.
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3.2.2 Description of model templates

Two generic building models are created with buildSysPro
library; a 2-3 bedroom house (Mozart house) and a 1-
2 bedroom apartment (Matisse apartment). 35% of the
households interviewed in the survey correspond to these
two types of housing which corresponds to about 1400
dwellings. The plans of these dwellings are described in
Figure 3. For each template, the Bedroom 2 can be empty.

Figure 3. Plan of different model templates

A simulation model template has been created by
dwelling category. An example of simulation template
for Mozart house is described in Figure 4. In this fig-
ure, each variable is a vector. Each coordinate of the
vector corresponds to a room. The dimension of the vec-
tor corresponds to the number of rooms of the dwelling.
This template is composed of 4 parts; one part is the
model that generates environment variables previously de-
scribed. The second part is the thermal model of the build-
ing. Hypothesis of this model have also been previously
described.

The window model controls the opening and closing of
windows room by room. The opening of the windows is
controlled by an external file (generated from the survey
answers). At each time step, the model allows to open
a window if its window state variable is set to true and
the set temperature is reached. This model also closes
the window if the difference between the set temperature
and the air temperature is below a certain threshold. This
threshold has been set at 3°C by default.

The heating models are composed of two models. One
model controls the heat flow injected room by room by
the fixed heaters. The second one controls the heat flow
injected room by room by the mobile heaters. The model
controlling the heat flow for mobile heaters consists in two

Figure 4. Example of simulation template for Mozart House

heat flow injections; one by convection and a second one
by radiation. Total heat flow injection is defined by an in-
put csv file (generated from the survey answers). The ratio
between convective and radiative heat flow is considered
constant and is established according to the type of heating
system entered in the questionnaire.

The parametrization of fixed heaters for Matisse apart-
ment with one bedroom is described in Figure 5. For each
room, it is possible to set the heater type and heater con-
troller. Variable P_nom_heater is a vector that contains at
each coordinate the sum of the nominal power of all the
heaters in a room. Scenario and InputPath parameters in-
dicate the path for the file describing the wood reloading
hours. This scenario is specific for the inhabitants using a
fireplace for heating. It depends mainly on the activity of
the inhabitants composing the household.

Three control models have been implemented. A Pro-
portional integral differential (PID) model, a dead band
model and a model of absence of control, when the inhab-
itants declared not to have heating in the room. Six heat-
ing models have been implemented: electric heating type
convector, radiant panel, soft heat, accumulation, water
heating or wood heating.

Models have been implemented using method Th-BCE
(écologique 2023) except for wood heating model that
have been instantiated from the buildSysPro library. Th-
BCE method is a French regulation. The two hypothesis
concerning heaters are that: the thermal inertia of heaters
is neglected and the ratio of heat transfer radiated flow and
convective flow is considered constant.

3.2.3 Description of data used for simulation

The parameters used to fill the simulation model are de-
scribed in Table 1. This table also describes the questions
in the survey, and the method used to calculate simulation

Hybrid data driven/thermal simulation model for comfort assessment

202 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204199



Figure 5. Parametrization of fixed heaters room by room

model parameters from the questions. The temporal vari-
ables were filled from the survey by choosing three typi-
cal days per week. For each day, the variables are filled
in hour by hour for each room. These typical days are
assigned to each day of the week.

The temperature measured in the questionnaire is based
on a typical week. It does not give details of the tem-
perature hour by hour over a year. Also, room tempera-
tures are likely to vary according to the insulation of the
dwelling and the power of the radiators. The simulation
shows this variation. In the simulation, the temperature
measured over a typical week is approximated as the set
temperature and repeated every week.

Two algorithms were used; a first one allows to com-
pute the orientation variables and a second one to control
the opening and closing of the shutters.

Concerning orientation variable, the chosen algorithm
is a decision tree. The decision node was manually imple-
mented. The survey contains for each room whether the
windows are predominantly south-facing. Thus, orienta-
tion is calculated thanks to different plans (Matisse and
Mozart) in order to maximize the surface of the windows
facing to the south according to the survey. 1 describes the
decision tree for Mozart house. By convention, the Orien-
tation variable is null when north is oriented at the top of
the plan in Figure 3. A similar algorithm was built for the
Matisse template.

In this algorithm, IsSouthroom is a binary list where
room belongs to each available room of Mozart house,
Orientation designates the variable in degree of house
Orientation.

The instruction for opening and closing the shutters is
calculated from the presence variable room by room. The

time at which the shutters open is determined by the time
at which a room becomes empty.

Table 1. links between questions and variables used to complete
the simulation models

Question Variable in simu-
lation

Calculation
method

Number of rooms Number of rooms assignment
The total floor
area of the
dwelling

Floor total area assignment

Room with
south-facing
windows

orientation deductive al-
gorithm

Heating power
for each room

Nominal power
of heater for each
room

assignment

Year of con-
struction of the
dwelling

House record assignment

Temperature
measured hour
by hour over a
week

setpoint tempera-
ture

assignment

Ignition time of
auxiliary heaters
and power of
auxiliary heaters

auxiliary heating
power

assignment

Hour of opening
of the windows
and duration of
the opening

instruction for
opening and clos-
ing the windows

assignment

Presence in the
rooms

instruction for
opening and clos-
ing the shutters

deductive al-
gorithm

Date of switching
on the heating

instructions for
switching the
heater on and off

assignment

The closing time of the shutters has been calculated in
relation to the sunset time. The sunset time depends on the
day and the location of the dwelling. The python library
suntime (Stopa 2019) has been used for the calculation of
the sunset time according to the department in which the
dwelling is located and the simulated day. The closing
time corresponds to the times of presence in the dwelling
closest to the sunset.

3.2.4 Description of input files

Thermal regulation 2012 (RT 2012) (écologique 2023) is
a French regulation. it separates France into 8 thermal
zones. RT2012 provides for each thermal area, an aver-
age environment file. This file provides each 30 minutes
a value for weather variables, including, wind speed and
orientation, different temperatures variables, relative hu-
midity, atmospheric pressure and solar irradiance direct
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Algorithm 1 Calculation of orientation for Mozart House
Start

if IsSouthliving then
if IsSouthbedroom3 then

Orientation← 0◦

else
Orientation← 90◦

end if
else

if IsSouthbedroom2 & IsSouthbedroom3 then
Orientation← 270◦

else
Orientation← 180◦

end if
end if

End

and indirect. These files were used in order to estimate
environment variables. The thermal area of a dwelling is
determined according to its department.

3.2.5 Generation of modelica models
Each observation is instantiated using the class diagram
of the algorithms as described in Figure 6. Modelica files
were generated from instantiation of this class diagram us-
ing model transformation process. The implementation
was carried out using the Modelica Language.

Figure 6. Class Diagram of python models

The simulations were launched using Dymola-Python
application programming interface (API). The solver used
is Differential/Algebraic System Solver (DASSL) with a
time step of 1800s. The simulations were launched from
October 1st to April 30th, results files are stored as CSV
files. The simulations were run on a laptop with a quad
core processor with 16GB of RAM. It took 72 hours to

run 1,400 simulations. Simulations were parallelized on 4
cores.

In order to facilitate the training of recurrent machine
learning models, it is frequent to use an invariant time step
for all the time series. Therefore, the results were post-
processed to have a constant time step of 1800s, because
DASSL is a variable time steps solver.

3.2.6 Simulation results

The simulation results are given in Figure 7. The average
air temperature in the living room is 19◦C for an apart-
ment or a house. The main difference concerns the max-
imum and minimum values. Indeed, the maximum and
minimum temperatures are higher for apartments than for
houses. The difference concerns the minimum tempera-
ture, which is explained by the proximity of an apartment
to other apartments. Thus, an unheated apartment will be
heated by convection by the other surrounding apartments,
avoiding too low temperatures. This is not the case for
houses. As regards the increase of the temperature be-
tween October 1st and November 1st, it concerns only one
apartment, this apartment combines an early ignition of
heating managed by a collective boiler with a high out-
side temperature due to the localization of the apartment
(in the department of Corsica). Note that weather vari-
ables are approximate, and local weather conditions may
be different, which explains this difference. Finally, the
generalized fall of temperature after the 15th April is due
to the stop of the heating at this date.

Figure 7. Comparison of simulation results between House and
Apartements

The inhabitants surveyed were able to fill in the thermal
discomfort time in the questionnaire. 5 choices were avail-
able: being comfortable (84.6% of total observations), be-
ing cold for at least 24 hours (6.9%), being cold for a
few days (5.2%), being cold almost all the time (1.9%)
or all the time (1.4%). Figure 8 illustrates the average liv-
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ing room temperature of households according to their re-
sponse to the comfort question.

This figure highlights that air temperature is not a good
indicator. It does not allow to differentiate between house-
holds that are cold all the time and those that are cold some
days.

Figure 8. Air temperature of living room according to comfort
clusters

The operating temperature is a good but not sufficient
indicator of comfort. In fact, it considers the air temper-
ature and the radiated temperature. However, this tem-
perature does not represent the temperature felt by an in-
habitant, because the inhabitant does not always occupy
the cold room. For example, even if the operating tem-
perature of the bathroom is 10◦C, if there is never anyone
in the bathroom it is useless to take this variable into ac-
count. Thus, we have introduced the operating tempera-
ture of presence. This variable is the operating tempera-
ture averaged by the presence of inhabitant per room. This
variable is calculated at each time step when there is at
least one inhabitant in the house (∑nroom

i Presroomi > 0),
as follow:

Top pres =
∑

nroom
i Top roomi . Presroomi

∑
nroom
i Presroomi

(1)

Where; nroom is the number of rooms for one dwelling,
Top roomi is the operating temperature of the roomi with
i ∈ 1;nroom, Presroomi is a Boolean variable for each
room of one dwelling with i ∈ 1;nroom. This variable
is equal to 1 if there is a presence in the room and null if
there is nobody in the room and Top pres is a list composed
of the operating temperatures. As illustrated in Figure 9,
the presence operating temperature allows to recover the
comfort trend established in the questionnaire. Therefore,
we focused on this variable for learning. Note, however,
that inhabitants that are cold for a few days and those that
are cold almost all the time are difficult to differentiate.

Figure 9. Air temperature of living room according to comfort
clusters

3.2.7 Preparation of data for learning
Simulation model computes for each time step the thermal
environment of the inhabitants for a dwelling. However,
in order to train the ML model of thermal comfort, it is
required to calculate the thermal comfort at each time step.

The first algorithm implemented is a simple threshold
on the operating temperature of presence. Indeed, for each
dwelling a threshold was calculated to respect the discom-
fort period. If operating temperature is below this thresh-
old, the inhabitants are considered as uncomfortable, oth-
erwise, they are considered as comfortable. The problem
with this model is that there were some comfort/discom-
fort switches between two successive time step(s). The
second issue of this approximation is that it does not con-
sider the inertia of thermal comfort.

The improved algorithm computes for each dwelling
two thresholds. When the first threshold is reached, the in-
habitant is in a discomfort state. It is then required to wait
for the presence operative temperature to rise to the second
threshold before the inhabitant will be again considered to
be comfortable. The calculation of the thresholds is per-
formed by minimizing the number of comfort/discomfort
switches under the constraint of respecting the discomfort
time indicated in the survey.

For one dwelling, the problem is stated as the following
optimization problem:

argmin(εmax,nswitch) (2)

The constraints are:

{
εmax > εmin

max(∆t1, . . . , ∆tn)≥ tdiscom f ortsurvey
(3)

Where; (εmax,εmin) is the couple of thresholds to cal-
culate, with εmax ∈ R+ and εmin ∈ R+, nswitch is the
number of comfort/discomfort switches, with nswitch ∈N,
(∆t1, ...,∆tnswitch ) is the list of discomfort times with
∆tk ∈ R+ with k ∈ 1,nswitch and tdiscom f ortsurvey ∈ R+

is the discomfort time indicated in the survey.
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The estimation of these two thresholds is performed us-
ing the following algorithm. This algorithm is an heuristic
which is divided into 3 main steps. The first step is to cal-
culate a first value of εmax, named ε0 (2). The calculation
of ε0 is similar to the calculation of a single threshold for
comfort/discomfort switching.

In this algorithm, the following variables are used;
Top pres[ ] designates a real list composed of the operat-
ing temperature at each time step, Tasc_op pres[ ] is a real
list composed of the operating temperature ordered in an
ascending order, n is an integer , nconsecutive is an inte-
ger representing the number of consecutive time steps in
Tasc_op pres between 0 and n, tdiscom f ort_survey a real repre-
senting the discomfort time indicated in the survey, ∆tstep
is a real representing the duration of one simulation time
step, ε0 is a real representing the minimum threshold to
have nconsecutive discomfort time steps.

The function used are : list ← sorting_asc(list) is a
function that orders a list in an ascending order, int ←
get_consecutive_tstep(int : n, list) is a function that re-
turns the number of consecutive time steps in a list be-
tween 1 and n.

The second step is to define a set of εmax,i and
εmin,i pairs that are close to the optimal solution
εmax,1,εmin,1, ...,εmax,m,εmin,m (3). The third step is to se-
lect the optimal couple εmax,k,εmin,k that minimizes the
objective function and respects the constraints described
above.

In this algorithm, the following variables are used :
Top pres[ ] a real list composed of the operating tempera-
ture at each time step; ε0 is the first value of the thresh-
old calculated by the first algorithm; Tthresholdo p pres[ ] is
a real list composed of the operating temperature bellow
the threshold ε0; tdiscom f ortsurvey is a real representing the
discomfort time indicated in the survey; ∆tstep is a real
representing the duration of one simulation time step; nclu
designates an integer defining the number of time steps of
discomfort; idmin[ ] a list of indexes for local minimums;
i,minID ,maxID are integers, εmin[ ] is a list of candidates
of minimal threshold value; εmax[ ] is a list of candidates
of maximal threshold value.

The function used are : list ←
keep_value_below(list,real : threshold) a function
that keeps the values of a list below the threshold value;
list ← local_minium_list(list) a function allowing to
calculate the local minimums of a list; int ← len(list) a
function that calculates the length of the list.

The algorithm was implemented in python language
and executed on the 1400 dwellings. Figure 10 shows an
example for an inhabitant that reported to be cold almost
all the time. In this figure, the x axis defines the time step.
The y axis corresponds to the operating temperature in de-
grees Kelvin.

Algorithm 2 First step Find a first value for εmax

Initialization
Tasco p pres← sortingasc(Top pres)

n← tdiscom f ort_survey
∆tstep

nconsecutive← get_consecutive_tstep(n,Tasc_op pres )

Start
while nconsecutive . ∆tstep < tdiscom f ortsurvey do

nconsecutive← get_consecutive_tstep(n,Tasco p pres)
n← n+1

end while
ε0 ← Tasc_op pres[n]

end

Figure 10. Results of the change from comfort to discomfort in
a household that is almost always cold

Algorithm 3 Find candidate couples εmax

Initialization
nclu← tdiscom f ortsurvey/over∆tstep
i← 0

Start
Tthreshold_op pres← keep_value_below(T _op pres , ε0)
id_min ← local_minium_list(Tthreshold_op pres)
while i < len(id_min) do

minID ← id_min[i]
εmin[i]← Top pres[minID]
maxID← min(minID +nclu, len(Top pres))
E psi ← max(Top pres[minID : maxID ])
εmax[i]← E psi
i ← i + 1

end while
End

3.3 Machine learning results
A data-driven modeling was performed in order to learn
the comfort based on the both real and simulated data.
The inputs considered are the simulations output at each
time step (Radiation temperature, Convective temperature,
presence operative temperature, heat flux emitted by radi-
ators for each rooms, Outdoor temperature ) and sociolog-
ical data from survey (average age of household, average
gender of household). The output of the machine learning
model is a prediction of occupant comfort and discomfort

Hybrid data driven/thermal simulation model for comfort assessment

206 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204199



states.
The dataset was divided into 3 sets (60% on Train, 20%

on Validation and 20% on Test). The training set is used
to train the model and calibrate its parameters, the vali-
dation set is used to prevent the model from overfitting
during the training phase; by monitoring the evolution of
the cost function on both sets. Finally, the test set is used
the evaluate the model performances once the training is
done.

A first version was built, considering the time steps in-
dependent between them. That is, the comfort at a given
time step depends only on the simulated temperatures and
the characteristics of the housing, and does not depend on
the comfort at the time step that precedes it.

Using this configuration, several Machine Learning
(ML) models were trained and tested; including Ensem-
ble models like Random Forest and XGBoost, neural
networks: Multi-Layer-Perceptron (MLP) (Singh et al.
2017).

In a second step, a new version of modeling was built.
It would allow to consider that each comfort value at a
given time step depends on its previous values, in addition
to exogenous variables (temperatures...etc.). For this con-
figuration, a multi-horizon model (Wen et al. 2018) was
tested, consisting of a past horizon and a prediction hori-
zon. This model is particularly well suited for time series
prediction.

For this model, two configurations were compared. A
first one was built using the real values in the past hori-
zon of the model. The second supposes not to know these
real comfort values, and therefore uses only the predicted
values to feed the past horizon comfort values.

In order to train these different models, the CrossEn-
tropy loss (CE) (Q. Wang et al. 2020) was used as a cost
function to minimize during training, it is defined for one
sample as follow:

CE =
C

∑
i = 1

yi× log(pi) (4)

Where C is the total number of classes, yi is the truth
value of the label, and pi the softmax probability for the
ith class.

This loss penalizes the probabilities far from the truth
label. The logarithm gives a large score for large differ-
ences close to 1 and small score for the ones tending to 0.
The total cost is then calculated by averaging the individ-
ual costs obtained for the different samples.

And, to evaluate and compare the different models’ per-
formances, many classification scores were used; includ-
ing precision, recall and F1 score (Erickson and Kitamura
2021) for each class of comfort. Precision represents the
rate of correct predictions, recall represents the rate of pos-
itive samples detected, and the F1 score is a compromise
of these two scores. These scores are defined as follow:

Precision =
T P

T P+FP
(5)

Recall =
T P

T P+FN
(6)

F1 = 2 × Precision×Recall
Precision+Recall

(7)

Where TP represents the number true positives, FP the
number of false positives and FN the number of false neg-
atives. Table 2 and Table 3 illustrate the different classifi-
cation scores evaluated on the test dataset. Table 2 shows
the results obtained using the first modeling configuration
with the three models (RF, XGBoost and MLP).

Table 2. links between questions and variables used to complete
the simulation models

Class Model Precision Recall F1score

Comfort
MLP 0.95 0.98 0.97
XGBoost 0.999 0.999 0.999
Random
Forest

0.999 0.999 0.999

Discomfort
MLP 0.61 0.37 0.46
XGBoost 0.97 0.95 0.96
Random
Forest

0.999 0.999 0.999

Unknown
MLP 1.0 1.0 1.0
XGBoost 1.0 1.0 1.0
Random
Forest

1.0 1.0 1.0

Table 3 shows the results obtained with the second mod-
eling configuration using the multi-horizons model with
its two configurations. The support column represents the
number of test examples used for each class of comfort.

From Table 2, with the first configuration, the ran-
dom forest model performed very promisingly for all three
comfort classes with the different evaluation metrics. This
is likely due to the fit between how the comfort labels
were defined using the thresholds and how a decision tree
(unit of an RF model) works. In addition, a random for-
est model is composed of a set of simple decision trees,
making it accurate and robust on small datasets.

On the other hand, Table 3 shows that with the sec-
ond configuration, the multi-horizon model can also ob-
tain very promising results when it is possible to feed
its past horizon with the actual comfort values. Unfor-
tunately, for this use case, and with the available data, this
configuration cannot be applied because the comfort val-
ues in the past horizon cannot be available for each time
step. Therefore, according to these benchmark results, the
most sweated model for comfort modeling is the random
forest model which is simple and demonstrated very accu-
rate prediction results.

Session 2-B: Symbolic algorithms and numerical methods for model transformation and simulation 1

DOI
10.3384/ecp204199

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

207



Table 3. Multi-horizons model evaluation
C
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strategy P
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R
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co
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D
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fo
rt Real values

in past hori-
zon

0.999 0.999 0.999 33550

Recursive
prediction

0.88 0.25 0.39

C
om

fo
rt Real values

in past hori-
zon

0.999 0.999 0.999 124390

Recursive
prediction

0.83 0.99 0.90

U
nk

no
w

n Real values
in past hori-
zon

1.0 1.0 1.0 44220

Recursive
prediction

1.0 1.0 1.0

4 Conclusion
The hybridization of thermal simulation and data-based
modeling addressed the problem of data scarcity and al-
lowed for the inclusion of additional variables not cap-
tured in the survey. Various machine learning models were
trained and tested, with the random forest model perform-
ing best.

This first study considers temperature, convective, and
radiative flux variables. To improve the accuracy and re-
alism of the approach, humidity and air speed parameter
shall be considered. In this context, implementing a Stol-
wijk model (Stolwijk 1971) instead of calculating thresh-
olds on operating temperature would significantly improve
the realism of simulated data. Additionally, integrating a
multi-agent model like the SMACH model (Albouys et al.
2019) developed by EDF would help for making more ac-
curate predictions of comfort. Finally, a more complete
simulation model, modeling air exchanges between each
room, could improve the precision of results.

Lastly, although this approach is promising, it has taken
a long time to develop. A comparison of the cost, qual-
ity, development time and repeatability of the different
approaches would allow to assess which approach is best
suited to the need. The LIPS platform (LEYLI ABADI
et al. 2022) will be used to perform such a benchmark.
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Abstract 
The transformation of energy-intensive industries towards 

greenhouse gas neutrality leads to increasing complexity 

of industrial energy supply systems. This affects 

particularly thermal energy systems due to waste heat 

utilization measures as well as the integration of 

renewable energy sources and further storage capacities. 

This complexity is also reflected in the control strategies 

of such systems, which makes the development of 

dynamic simulation models for testing them a research 

field of growing interest. 

The ThermalSystemsControlLibrary is a novel Modelica 

library, which aims at standardized modeling of industrial 

energy supply systems for control strategy development. 

Based on a generic data model, all components cover 

physical as well as control modeling and are particularly 

suitable for testing supervisory control strategies within 

external frameworks using the FMI standard. The library 

is validated for an exemplary use case of an industrial 

energy supply system comparing two different 

supervisory control strategies. 

 

Keywords: supervisory control, HVAC, dynamic 

simulation 

1 Introduction 

Global aspirations towards greenhouse gas neutrality as 

well as consequences of geopolitical developments force 

industrial companies to increasingly consider energy 

related aspects. In addition to sustainability, also 

affordability as well as resilience must be addressed from 

an industrial perspective. Therefore, measures like 

diversification, redundancy as well as de-centrality will be 

prevalent in future energy supply systems (Fridgen, 

Keller, Körner, & Schöpf, 2020; Lund et al., 2021). Apart 

from the positive effects of these measures, they tend to 

increase the complexity of the underlying system.  

To master this complexity throughout the operation of the 

system, control strategies must be developed and 

implemented. Here, not only local control functions (e.g., 

temperature control loop) but also supervisory control 

functions (e.g., converter sequencing control) must be 

considered (Wang & Ma, 2008). In research, many 

different approaches exist for the latter. Those can be 

differentiated for example by the nature of the underlying 

model (e.g., reinforcement-learning) as well as the degree 

of centralisation (e.g., multi-agent system) (Yao, Hu, & 

Varga, 2023). Here, detailed simulation models can still 

be beneficial for validation of the developed control 

strategies. 

For that, we present a Modelica library which enables 

developers and users to model the physical systems’ 

behavior as well as the corresponding control strategy. We 

primarily focus on fluid-bound thermal energy supply 

systems, due to the relevance of heating and cooling 

supply in industry. 

 

1.1 State of research 

The following section focuses on existing Modelica 

libraries and modeling approaches, as the multi-domain 

capabilities of Modelica are particularly suitable for the 

described application. The research field can be separated 

in two major fields: modeling of physical system behavior 

and control functions.  

Regarding the physical system behavior, a profound 

research base already exists. Here, Modelica-libraries 

such as AixLib, Buildings and BuildingSystems are state-

of-the-art and can be applied depending on the users’ 

needs (Müller, Remmen, Constantin, Lauster, & Fuchs; 

Nytsch-Geusen, Huber, Ljubijankic, & Rädler, 2013; 

Wetter, Zuo, Nouidui, & Pang, 2014). However, these 

Modelica-libraries inherit only basic functionalities for 

system control.  

An approach which focuses on the development of 

automation and control programs is presented in (Wetter 

et al., 2022). Here, a workflow is presented for the design, 

verification, and deployment of control sequences. An 

exemplary implementation is included in the Modelica 

Buildings Library 7.0.0. Modelica-aspects are more 

intensively addressed in (Schneider, Pessler, & Steiger, 

2017). Here, the BuildingControlLib is presented, which 

allows the modeling and simulation of standardized 

control functions. Focusing more on supervisory control, 
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Blum et al. presents a framework for simulation-based 

testing of control-strategies in buildings (Blum et al., 

2021). Therefore, Modelica blocks are developed, which 

enable overwriting local control-functions. By that, 

different control approaches can be tested and compared 

in a robust manner. Wüllhorst et al. also present with 

BESMod a library for the development of supervisory 

control functions for building energy systems (Wüllhorst 

et al., 2022). Furthermore, Modelon Impact provides a 

web-based tool for modeling and virtual testing of 

industrial energy systems (Modelon, 2023). 

 

1.2 Research gap and requirements 

The approaches described beforehand outline, that the 

modeling of physical systems as well as control functions 

are often addressed separately within the research 

community. However, Modelica already offers standard 

models for the development of rule-based operating 

strategies, which are still necessary as a fallback strategy 

in combination with intelligent approaches when applied 

to real-world systems. By the integration of an additional 

interface, which allows for switching between the fallback 

strategy in Modelica and an intelligent strategy within an 

external framework (e.g., reinforcement learning in 

Python), a Modelica library would represent the 

automation architecture of such a system in more accurate 

way and accounts for the simulation of operation 

permissions of the external strategy. 

In addition, the modeling of local-control loops in 

Modelica is often regarded only on a small scale. 

Requirements caused by more complex system, such as 

cascading of multiple local control-loops as well as 

sequencing of multiple components, are not addressed in 

detail so far.  

The requirements for a Modelica library in the given 

research field can be summarized as follows: 

• Standardized development of physical and 

control models through provision of base classes 

• Provision of base methods for more complex 

control tasks 

• Hierarchical package structure for development 

and testing of (system) models 

• Consistent variable declaration and data model 

representing the automation architecture of real-

world systems 

 

1.3 Automation data model for industrial 

energy systems 

To develop a Modelica library that meets the above 

mentioned requirements, we use our previously published 

automation data model for the energy-flexible cyber-

physical production systems (Fuhrländer-Völker, Borst, 

Theisinger, Ranzau, & Weigold, 2022). The properties 

and methods of this model form the basis for the 

developed model library and are briefly summarized in the 

following. The model consists of three base classes to 

abstract the control functions of single actuators and 

systems of multiple actuators: 

• Actuator2Point: Actuator with discrete behavior 

(e.g., uncontrolled pump) 

• ActuatorContinuous: Actuator with continuous 

behavior (e.g., speed-controlled pump) 

• SystemContinuous: System consisting of several 

actuators and sensors with continuous behavior 

(e.g., boiler with distribution pump and mixing 

valve). 

 

These base classes implement two essential key methods, 

which will be reused within the Modelica libary: 

• SelectControlMode: Enables switching between 

the automatic control (e.g., fallback strategy) and 

algorithm mode (e.g., reinforcement learning) 

• SystemFlowControl: Sequential component 

control of the actuators within a system. 

 

Furthermore, we propose standard data structures to 

ensure a high comprehensibility of the data model. 

Therefore, we define the following structures holding the 

related variables.  

• control: access and discrete control variables 

• controlState: current component state 

• setSetPoint: component setpoints 

• setPointState: operating point, setpoint limits 

• systemState: current system state. 

 

2 Library concept 

In the following, the structure of the developed 

ThermalSystemsControlLibrary (TSCL) and the 

underlying base classes for component as well as system 

modeling are explained. After introducing the main 

structure as well as the base classes, we describe the 

general procedure for system modeling. All components 

are based on the Modelica Standard Library (MSL, 

version 3.2.3). 

 

2.1 Overall structure 

The library follows in its basic structure existing Modelica 

libraries (Modelica Association, 2020). Therefore, we 

introduce the packages User's Guide, BaseClasses, 

Components and Applications (see Figure 1). 

While the User's Guide contains basic license and usage 

information, the BaseClasses package consists of the sub-

packages AutomationBaseClasses, FluidBaseClasses, 

Utilities, Media and Icons. AutomationBaseClasses holds 

all classes, functions and interfaces of the underlying data 

model, which must be used for component and system 

modeling with the TSCL. A component model represents 

an individual system, whereas a system model consists of 
multiple component models. The physical model part uses 

Modelica.Fluid connectors, whose basic properties are 
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defined within the package FluidBaseClasses. Their use 

is also mandatory for TSCL-based models. The other base 

class packages hold utility functions, media declaration 

and icon models. The Components package contains sub-

packages for each technology. These always contain a 

control method package, a package for physical models 

and the component itself, consisting of the control and 

physical model. The Applications package holds 

exemplary use cases, which demonstrate possible 

applications of the TSCL. Here, a package structure 

consisting of records holding use case specific 

parameters, system models, thermal networks, operating 

strategies, and the main model may be used. 

 

 

Figure 1. Library structure. 

2.2 Base classes 

One of the main features of the TSCL lies in the 

implementation of the AutomationBaseClasses package 

for standardized component and system control. The 

package is structured in the base classes and packages for 

interfaces, methods, and tests. The implementation 

follows largely the introduced data model, but is extended 

for the implementation of local control functions 

(Fuhrländer-Völker et al., 2022). 

The ActuatorContinuousLocalControlMode class enables 

the standardized implementation of multiple control 

modes for one actuator. This feature is also applied to the 

SystemContinuousLocalControlMode, which considers 

the implementation of control modes concerning multiple 

components within a system (e.g., thermal storage with 

loading and unloading pump). Figure 2 shows the overall 

architecture of the AutomationBaseClasses. 

Within the Interfaces package, several connectors 
implement the hierarchical data structure introduced in 

(Fuhrländer-Völker et al., 2022). In addition, we provide 

FMI connectors, giving the user reading and writing 

permission on sub-level variables within Functional 

Mock-Up Units (FMU) based on the underlying data 

model (Fuhrländer-Völker et al., 2022). Usually, input 

variables of a FMU can only be set when propagated to 

the top level of the model, which would be not in 

accordance with our data model. Using the FMI 

connectors results in a fully compatible implementation of 

the hierarchical data model. Following this, name strings 

for accessing the variables of the FMU are fully 

compatible to the Open Platform Communications 

Unified Architecture (OPC UA) identifiers from a 

Programmable Logic Controller (PLC). Thus, OPC UA 

nodes for controlling the real-world device can be 

accessed the same way like for the FMU, which makes 

time-consuming variable mapping obsolete. In summary, 

this enables the virtual commissioning of the 

implemented systems. 

 

 

Figure 2. Class diagram of AutomationBaseClasses package. 

Regarding the key methods of the data model, the 

sequence control enabling method SystemFlowControl, is 

the only method, which is extensively revised against 

(Fuhrländer-Völker et al., 2022). The application of the 

data model to numerous systems has shown that the 

machine states defined in (ISO, 2017) are suitable for the 

implementation of machine tools, but not for the 

implementation of energy supply systems due to the 

limited number of states. Therefore, this limitation of 

system states is removed, resulting in the basic sequence 

control, which is shown in Figure 3. 
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1:  for component in system loop 

2:  if run system then 

3:  if not in standby state then 

4:   if previous component runs then 

5:     switch on component 

6:   end if 

7:  else 

8:   switch on component 

9:  end if 

10:   set system state 

11: else 

12:  if not in working state then 

13:   if not previous component runs then 

14:     switch off component 

15:   end if 

16:  else 

17:    switch off component 

18:  end if 

19:  set system state  

20: end if 

21: end for 

Figure 3. Procedure of SystemFlowControl method. 

2.3 Components 

Component models follow the structure shown in Figure 

4 and consist of a physical model part based on 

Modelica.FluidPorts, the base class control part, and a 

local, component-specific control unit. Furthermore, each 

component has standardized control and state interfaces, 

which are implemented by the underlying automation 

base class. Based on this modeling structure, the TSCL 

provides the following component models: pipes, valves, 

buffer storages, heat exchangers, pumps, condensing 

boilers, combined heat power units (CHP), compression 

chillers, dry coolers, and generic heat consumers. All 

component models are parameterized by records. 

 

 

Figure 4. Component and system model structure. 

2.4 Modeling procedure 

Modeling with the TSCL follows a three-step procedure 

consisting of technology, system, and scenario modeling 

(see Figure 5). 

During the first step, the generic component records are 

extended by use case-specific parameters. After that, 

subsystems implementing the physical interactions of 

component models and especially their sequence control 

are modeled. 

Secondly, several subsystems may be combined in a 

supply system model. This is especially useful for 

complex structures, e.g. multiple networks of different 

supply temperatures. The control variables of the 

subsystems within a supply system should be defined by 

use case-specific connectors which allows using the same 

physical model with different control strategy models. 

Afterwards, the control strategy, which enables the top-

level system control, is implemented. Here, supply 

temperatures and prioritization of energy supply as well 

as storage systems are implemented. 

Thirdly, the developed strategy models are combined with 

the supply system model to set up different scenarios. 

Finally, the scenarios may be evaluated in simulation 

studies.  

 

 

Figure 5. TSCL modeling procedure. 
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3 Use case - ETA Research Factory 

According to the described modeling procedure, the heat 

supply system of the ETA Research Factory of the 

Technical University of Darmstadt is partly modelled as a 

validation use case. In the following section the overall 

system topology, the parameterization of network 

components and the basic operating strategy is described. 

 

3.1 Overall system topology 

The use case comprises of two connected heating 

networks, operating on a high and low temperature level. 

The high temperature heating network (HNHT) includes 

two combined heat and power units and a condensing 

boiler. For active heat storage, a vacuum super insulated 

(VSI) heat storage is integrated in the HNHT. For the 

decoupling of production and consumption, a buffer 

storage is used as a hydraulic separator. A static heating 

represents the consumer in the HNHT. 

Furthermore, a counterflow heat exchanger connects the 

HNHT to the heating network low temperature (HNLT) 

and acts as a heat producer in the HNLT. The consumer 

side comprises an underfloor heating, which is connected 

to the producer side through a buffer storage. 

 

3.2 Supervisory control strategy 

For the supervisory control strategy of the thermal supply 

systems, temperature limits for both networks are defined. 

The prioritization of the producers is tuned by defining 

di  erent o   sets  or the produ ers’ set points, which are 

controlled by hysteresis controllers. Following the 

nomenclature of the data model, the fSetPointAutomatic 

of the producers is defined by the target temperatures of 

the HNHT and the HNLT. The hysteresis controllers 

prioritize the condensing boiler against the CHP units and 

control the operation variable bSetStatusOn for all 

systems. 

The fSetPointAutomatic of the consumers, static heating 

in the HNHT and underfloor heating in the HNLT, is set 

according to the heating characteristic, determined by the 

outdoor temperature. 

 

4 Application 

In the following section, we validate the TSCL for the use 

case of the ETA Research Factory. We first demonstrate 

the system modeling procedure for an exemplary CHP 

system and then present the results from comparing two 

operating strategies using the TSCL. 

 

4.1 Subsystem modeling for a CHP system 

Figure 6 shows the implementation of an exemplary CHP 

system. For this, the base class SystemContinuous is 

extended to provide basic control functions. The system 

consists of a discrete valve, a rotational pump, a mixing 

valve, a heat meter and the CHP unit. For the physical part 

of the model, all components are connected by 

Modelica.FluidPorts. All components have identical 

control interfaces due to the use of the same base classes 

(see Figure 2). The system control enables the state 

dependent start and stop process of the components. In 

this case, discrete and mixing valve, pump and CHP are 

started in sequence. The time delay is thereby modeled by 

component-internal PT1-elements. The component 

control (nControlMode) implements a flow temperature 

control for the CHP, a differential temperature control of 

15 K for the mixing valve and constant speed control for 

the pump. 

 

 

Figure 6. Modelica model of exemplary combined heat power 

system. 

All other systems described in section 3 follow this 

modeling approach and are instantiated in two supply 

system models for HNHT and HNLT. Both supply 

systems are completed by specific control connectors 

forwarding the control signals from the supervisory 

control. The supervisory control strategy models consist 

of several sub-models for the implementation of supply 

system-specific prioritization of the subsystems. The 

complete modeling example is located within the 

Applications package of the TSCL repository. 
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(a) (b) 

  
(c) (d) 

Figure 7. Simulation results for the control strategy without (a-b) and with an active storage (c-d). 

4.2 Results 

Figure 7 shows the simulation results of the supply system 

model of the ETA Research Factory considering two 

different supervisory control strategy models. In the 

baseline scenario, it is assumed that the temporal 

decoupling of heat production and consumption is 

exclusively enabled by a buffer storage. To reduce the 

number of operation cycles of heat producers, the VSI 

heat storage is used as an additional, controllable heat 

storage. The simulation duration for both scenarios is set 

to 24 hours. 

For the baseline scenario, the strongly fluctuating demand 

within the HNLT leads to many operation switching 

cycles of the condensing boiler and CHP (see Figure 7a). 

In addition, the allowed temperature range in the HNHT 

is very small (see Figure 7b).  

By considering the VSI heat storage in the supervisory 

control strategy, the operating cycle of the heat producers 

can be significantly reduced (see Figure 7c). The 

additional storage is used after switching on the CHP and 

enables a longer operation time of the condensing boiler 

and the CHP. From 6:30 a.m. to 5 p.m., the heat demand 

is exclusively covered from the previously loaded VSI 

heat storage. This leads to a continuously decreasing 

storage temperature while the buffer storage temperature 

remains within the allowable range. As soon as the 

temperature of the VSI heat storage is too low to meet the 

supply requirements, the condensing boiler and the CHP 

are started to heat up the buffer storage and then the 

additional storage. Finally, the simulation study validates 

that the integration of an additional heat storage including 

an optimized supervisory control strategy, leads to a 

reduction of switching cycles from 14 to 2 within 24 

hours. 

 

5 Conclusion 

The ThermalSystemsControlLibrary is the consistent 

implementation of our previous published data model for 

the energy-optimized control of industrial energy supply 

systems. Because of its flexible base classes, which 

already implement lots of control functions that are 

necessary for using the model in combination with 

intelligent control strategies within external frameworks, 

it allows the rapid modeling of complex infrastructure and 

enables virtual testing of supervisory control strategies. 

Moreover, all models implement a data model conform 

FMI interface, so they can be easily used to validate 

control strategies operating in external frameworks. 

Up to now the TSCL has only been validated for the heat 

supply systems of the ETA Research Factory. Future work 

should therefore address modeling other use cases, 

especially cooling supply systems consisting of more 

complex supply technologies (e.g. absorption chillers). 

Furthermore, it should be noted that the library is limited 

to the modeling of fluid systems. In the future, additional 

base classes to model sector coupling technologies could 

be also addressed. Finally, the performance of co-

simulations in combination with different optimization 
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approaches should be investigated. This may also include 

the real-time capability of the modeling approach to 

enable the implementation of digital twins. 
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Abstract
This article reports on our experience in creating Mod-
elica classes that serve as templates for modeling HVAC
systems with thousands of configurations and closed-loop
controls. Our motivation is to reduce model creation and
parameterization time, provide access to state-of-the-art
control sequences, while limiting the risk of error and en-
forcing modeling best practices. The development of such
templates required exploration of class parameterization
techniques and data structures for handling large sets of
equipment parameters. By describing these issues and the
approach taken, we show how the Modelica language can
support advanced templating logic. The main limitation
we encountered relates to parameter assignment and prop-
agation. The interpretation of parameter attributes at user
interface runtime, or the handling of non-trivial constructs
involving record classes at compile time is not consistently
supported by Modelica tools. This leads to choices that are
difficult to make when looking for a generic implementa-
tion.
Keywords: Modelica Buildings Library, template, class
parameterization

1 Introduction
Modeling Heating, Ventilation and Air-Conditioning
(HVAC) systems with the Modelica Buildings Library
(Wetter, Zuo, et al. 2014) usually relies on a component-
by-component approach that is both time-consuming and
error-prone, requiring expertise in configuring HVAC sys-
tems and designing and implementing the appropriate
feedback control logic. This motivates the development of
pre-built Modelica models that can be easily reconfigured
and serve as templates for a variety of HVAC systems.

In our experience, developing Modelica-based tem-
plates for complex systems requires not only advanced
knowledge of the language, but also experience in tem-
plate development in particular. To circumvent a high
level of complexity, or to allow for a more straightfor-
ward development process, some tool developers instead
resorted to external templating engines, such as Mako
(Nytsch-Geusen et al. 2017) or Jinja (Long et al. 2021). In
the latter application, the highly variable network topol-
ogy of district heating and cooling systems is captured
by a GeoJSON parameter schema, from which a Python-
based templating layer generates Modelica code. For use

of templating engines, in addition to the underlying Mod-
elica models that serve as building blocks for such a work-
flow, a parameter schema must be developed, along with
template files and the software that does the translation
into Modelica. This leads to more dependencies to man-
age, and we believe it also increases the maintenance over-
head compared to Modelica-based templating. For exam-
ple, a change in the underlying Modelica library may re-
quire an update of the templates or the translator itself.
Moreover, such tools usually implement a one-way trip
from the parameter schema to Modelica. Any subsequent
change to the Modelica model will therefore result in the
configuration workflow no longer being applicable. If the
configuration workflow involves programmatic creation of
connect statements, this will most likely affect the graph-
ical aspect of the model. Finally, a lack of reusability
becomes apparent. There are as many template schemas
and translators as there are development projects, with
no clear way for other applications—even from the same
domain—to leverage the existing work.

Alternatively, some developments rely exclusively on
the Modelica language and its parametric polymorphism
(Broman, Fritzson, and Furic 2006). For example, the Ve-
hicle Dynamics Library developed by Modelon achieves
a high degree of configurability through the use of class
parameterization techniques, which are described in more
detail in this paper. The Vehicle Dynamics Library also
provides the ability to specify system parameters via
XML, JSON, MAT, or Adams data properties files. The
library covers both the chassis and the powertrain con-
figurations of all current architectures of passenger vehi-
cles, as well as many classes of trucks. The hierarchi-
cal use of class parameterization gives a high flexibility to
include new technologies, and also allows to use differ-
ent levels of modeling details during the design process.
Another example is given by Greenwood et al. (2017)
for modeling power plants. The approach uses replace-
able elements to configure subsystems and controls, and
a record class for parameter assignment within each sub-
system. More recently, Wüllhorst et al. (2023) introduced
BESMod, an open-source Modelica library for research
and teaching purposes that provides a modular approach to
domain-coupled simulations of building energy systems.
The library is structured with modules that represent the
various systems, e.g., demand, ventilation, hydraulic sys-
tem. Each module is built using expandable connectors,
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vector-sized ports, and a unified parameterization frame-
work based on Modelica records. The modules are ag-
nostic of the component models, which can come from
various open source libraries such as Buildings or IBPSA
(Wetter, Blum, et al. 2019). An example illustrates how
building models are interchangeable from one library to
another. However, for each module, the configuration op-
tions are limited to those of the underlying libraries, and
there is still a need for system-level templates. For ex-
ample, it is not possible to change the system layout and
control options of an air handling unit if those features are
not present in the library that provides that component.

In this paper we will go over the advantages and dis-
advantages of Modelica-based templating, which is the
method we use. In addition to providing insights to help
future template developers, we discuss the main constructs
of the Modelica language that serve the purpose of tem-
plating, and we point out the limitations and possible lan-
guage extensions or tool improvements that could make
the task easier. We start with some important definitions
in section 2 and the key requirements guiding our devel-
opment in section 3. The core concepts that support tem-
plating are introduced in section 4. Some implementation
choices related to connecting signal variables, structuring
system parameters and integrating graphical elements for
control diagrams are then presented in section 5, section 6
and section 7, respectively. Finally, an overview of the test
workflow we use to validate the numerous configurations
covered by the templates is given in section 8.

2 Definitions
Throughout this article, the following terms are used ac-
cording to the definitions given here.

Configuration. A system configuration corresponds to
the specification of the type and layout of the equipment
and the corresponding control logic. Systems with differ-
ent capacities may have the same configuration, provided
they have the same control software and hardware type.

Parameterization. By parameterization we mean all
possible class modifications, such as changing parameter
values and redeclaring components or classes, which we
refer to as class parameterization (Zimmer 2010).

Structural and value parameters. We use the term
structural parameters if a parameter affects the number and
structure of the equations, and value parameters if they do
not. An example of a structural parameter is a parameter
used to specify an array size. The use of these terms is
consistent with Kågedal and Fritzson (1998).

System. By system we mean a set of components that
"share a load in common, i.e., collectively act as a source
to downstream equipment, such as a set of chillers in a
lead/lag relationship serving air handlers", whereas "each
air handler constitutes its own separate system because
it does not share a load (terminal unit) in common with
the other air handlers". Our use of the term "system" is
adopted from ASHRAE (2021).

Template. A template, or template class, is defined as
a Modelica model that can be parameterized (as defined
above) to represent a particular system configuration.

3 Requirements
We will now present key requirements that guided the de-
velopment of the templates to provide the necessary con-
text for understanding the main implementation choices.

3.1 Tool Compatibility
Our main requirement is that the language constructs used
to create the templates are supported by various Mod-
elica compilers. This appeared particularly constraining
when dealing with nested expandable connections (see
section 5) or choosing the right data structure for system
parameters (see section 6). Our test workflow (see sec-
tion 8) currently includes Dymola (Dassault Systèmes AB
2023), Modelon Impact (Modelon AB 2023b; Modelon
AB 2023a), and we are working on support with Open-
Modelica. In addition, the graphical primitives used for
icons and diagrams (see section 7) should also be sup-
ported by various Modelica tools, especially if they in-
clude a visible attribute that requires the evaluation of
Boolean expressions at user interface (UI) runtime.

3.2 Diversity of Equipment and Controls
To illustrate the diversity that must be represented, it
should be noted that a simple air handling unit can have
thousands of possible combinations of equipment, not
counting the various control options and the type and
placement of sensors required for them.

In addition, there is a strong dependency between the
different types of equipment and control logic. For in-
stance, ASHRAE (2021) specifies that the primary hot wa-
ter flow sensor in a boiler plant is "required for primary-
only plants", that the sensor is "optional for variable
primary-variable secondary plants" and "not required nor
recommended for constant primary-variable secondary
plants." In this case, the specification of some equipment
(the primary and secondary hot water pumps) together
with a control option (the type of sensors used to con-
trol the primary recirculation in variable primary-variable
secondary systems) constrains the possible options for an-
other piece of equipment (the primary flow sensor), which,
if present, can be located either in the supply or in the re-
turn pipe.

Conceptually, this means that the user’s choices can af-
fect the possible options that are exposed at another level
of the model’s composition. We will see in subsection 4.3,
with a concrete example, the language constructs that are
used to support this process.

3.3 System Parameters
The data structure containing the design and operating pa-
rameters should allow parameter values to be assigned via
a unique object at the top level of the simulation model.
Such an object can be viewed as a digital avatar of the
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manufacturer’s data sheets for a complete HVAC system,
from plant to zone equipment.

System parameters usually run into the hundreds and
are highly dependent from one device to another, so it
should be possible to express these relationships in bind-
ing equations. In addition, a mechanism should be avail-
able to expose only the parameters required for a project’s
specific system configurations.

Finally, it should be possible to reuse existing equip-
ment datasets implemented as Modelica record classes
from the library on which the templates are based, e.g.,
pumps, fans, chillers and boilers for the Buildings library.

We will see in section 6 the resulting implementation
choices.

3.4 System Level Templates
The templates need to be provided at the system level,
e.g., a central plant or a air handler. Therefore, creating
a simulation model for a complete HVAC system involves
multiple instances of templates and multiple connections
between physical connectors (for fluid circuits) and in-
put/output connectors (for controls). This task should be
achievable without need of an automation tool. In prac-
tice, this leads to the use of expandable connectors (Mod-
elica Association 2021) to connect control inputs and out-
puts between systems (see section 5), as otherwise a large
set of connections would be required, and this set would
vary with each system configuration.

3.5 Scalability
Any number of identical devices must be supported. In
practice, this leads to use of array instances for models
that can represent multiple units, such as pumps, chillers
or zone equipment. The main difficulty then lies in man-
aging this dimensionality for non-trivial constructs such
as nested expandable connectors (see section 5) or record
classes (see subsection 6.2).

3.6 Integration With OpenBuildingControl
The OpenBuildingControl project aims to digitize the con-
trol delivery process based on control specifications that
are a subset of Modelica and now being standardized
through ASHRAE Standard 231P (Wetter, Grahovac, and
Hu 2018; Wetter, Ehrlich, et al. 2022). To support this
workflow, the templates shall contain the information nec-
essary to prepare the documents required for the bidding
and project execution of HVAC systems.

The ability to generate a control diagram is of particular
importance to our development, see section 7. The main
requirement is that the data used to create control diagrams
be provided as graphical annotations that a Modelica tool
with a graphical user interface (GUI) can interpret. This
way, when a template is configured in a Modelica tool,
the user can get direct graphical feedback on the system
layout.

Although outside the scope of this work, additional re-
sources can be exported by dedicated tools, all of which

use a JSON representation of Modelica templates as a cen-
tral digital resource (Wetter, Hu, et al. 2021). These re-
sources include documentation of the sequence of opera-
tion, the control point list, or an executable version of the
control sequence that control vendors can translate into
their product line and commissioning agents can use to
verify implementation of the control logic.

4 Structural Changes to a Model
In this section, we describe the mechanism by which we
enable structural changes to a model directly through the
parameter dialog, i.e., without manual user intervention
on the model components. These structural changes al-
low representing a variety of system layouts and control
options—and corresponding sensors and actuators—with
a single pre-built model. This mechanism is thus at the
core of template design and is based on the concept of
class parameterization, which we first introduce in sub-
section 4.1. To support class parameterization in practice,
template components typically need to be derived from in-
terface classes designed to ensure plug-compatibitility as
described in subsection 4.2. In subsection 4.3, we then
present a concrete example of how parameterization con-
structs are used in conjunction with element annotations
to represent dependencies between options for different
components of a model and, more broadly, to cover the
diversity of equipment and controls as first described in
subsection 3.2.

4.1 Class Parameterization
The concept of class parameterization is central to tem-
plate development. Class parameterization allows a class
or component to be used as a parameter of another class.
Zimmer (2010) gives an overview of the main language
constructs supporting class parameterization in Modelica.
Class parameterization can be accomplished via the fol-
lowing alternative approaches:

Container class. A container class, also called a wrap-
per class, is a class that contains structural parameters that
are used to conditionally instantiate the components of the
class. The main advantage is that a simple parameter bind-
ing with possible expressions can be used to reconfigure
the class when instantiating or extending it. The main dis-
advantage is that the instance tree becomes more complex
with additional nesting levels and instance names that vary
depending on the system configuration.

Replaceable elements. Replaceable elements, either
instances or classes, provide an alternative in which the
instance tree is preserved, at least down to the level of the
object being replaced. However, as pointed out by Zimmer
(2010), these elements cannot be manipulated as standard
parameters and require specific syntax (using the key-
words replaceable, constrainedby and redeclare)
that precludes conditional redeclarations involving expres-
sions and parameters.

There is no single way to achieve the same goals in cre-
ating templates, and our developments use a variety of the
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Outdoor air
dampers

Heat recovery

Mixed air system 100 % outdoor air
system

Separate dampers for
ventilation and
economizer
Single damper for
ventilation and
economizer

No heat recovery

Shut-off damper

Flat plate heat
exchanger
Rotary air-to-air heat
exchanger
Run-around coil

System option →
Equipment ↓

Figure 1. Example of equipment options depending on a high-
level configuration option for an air handling unit air intake.

above constructs. In this section, we will try to illustrate
how these concepts can be put into practice to solve some
challenging use cases.

4.2 Interface Class
Designing appropriate interface classes is of paramount
importance when creating templates. The main goal is to
achieve plug-compatibility (Modelica Association 2021)
for each component model created by extending such in-
terface classes. Applying this concept ensures that all
possible connections and parameter assignments can be
specified in advance in a template class, so that each time
a component is redeclared, no change to the connect

clauses or binding equations is required.
This differs from the usual practice where interface

classes typically contain the minimum common set of el-
ements (e.g., outside connectors and parameters) required
by all derived classes, which then extend this set as needed
and are thus type compatible. In our templates, all outside
connectors are declared within the interface class, with
the appropriate conditional instance statements. Any class
that extends an interface class does not declare any outside
connector, but rather conditionally removes inherited con-
nectors. Similarly, the interface class instantiates a record
containing the full set of system parameters covering all
possible configurations, see section 6.

4.3 Redeclarations and Choices Annotations
4.3.1 Concrete Example

To illustrate the use of class parameterization, let us con-
sider the possible equipment options when specifying the
air intake section of a multiple-zone air handling unit. Fig-
ure 1 shows these options: In a mixed air system, there are
several options for the outdoor air dampers, but usually no
heat recovery. In contrast, a 100 % outdoor air system of-
fers several heat recovery options, but should be equipped
with a shut-off outdoor air damper. The challenge is to
fully cover these options and their constraints, and to se-
lect appropriate control logic while minimizing code du-
plication and maintenance overhead.

Subsection interface

Subsection
configuration 1

Subsection
configuration 2

Section 
configuration A

Section 
configuration B

replaceable model 
 annotation(
  choices(...),
  Dialog(enable=...))

Extends Contains short class
definition of Instantiates

Section interface

Subsection
configuration 3

Subsection
configuration 4

Subsection
for section A

Subsection
for section B

Snippet from class
definition

Used in declaration
annotation

Figure 2. Class diagram for implementing the air intake section
for an air handling unit template.

One might see the lack of conditional class definitions
(or redeclarations) in the Modelica language as a limita-
tion when trying to represent dependencies between op-
tions for different components of a model. For example,
the following construct, although appealing, is not a valid
short class definition.
class-prefixes IDENT "=" if expression
then type-specifier [ class-modification ]
else type-specifier [ class-modification ]

Similarly, conditional choices annotations, in which
the exposed options depend on a Boolean expression, are
not allowed. However, by using different levels of inheri-
tance we can achieve almost the same intent, at the price
of a more complicated class structure though.

Figure 2 gives an overview of the classes developed
for such purpose, focusing on the options for one type of
equipment (e.g., the outdoor air dampers) and consider-
ing the most generic case where multiple options exist for
each system configuration, i.e., options 1 and 2 for system
configuration A (mixed air) and options 2 and 3 for system
configuration B (100 % outdoor air). At the top level of the
template, a so-called "section" is declared, which contains
all the interdependent components (labelled "subsection"
in the figure), e.g., in our case the outdoor air dampers
and the heat recovery (not shown in the figure for concise-
ness). This section derives from an interface containing
short class definitions, optionally as replaceable models,
and uses these definitions as constructors for its compo-
nents. As illustrated in Listing 1 the choices specified in
the annotation of the replaceable model Subsection_A
(resp. Subsection_B) are only exposed for configura-
tion "A" (resp. "B") due to the enable attribute in the di-
alog annotation. Then the model selected from the given
choices is used by the derived class Section_A (resp.
Section_B) to create the actual object representing the
subsection subSec.
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Listing 1. Minimal working example illustrating the structure
of a template class.

model Template "Template"
replaceable Section_A sec
constrainedby PartialSection "Section"
annotation(choices(
choice(redeclare replaceable Section_A

sec),
choice(redeclare replaceable Section_B

sec)));
end Template;

partial model PartialSection
"Section interface"
parameter String config;

replaceable model Subsection_A = Config1
constrainedby PartialSubsection
"Subsection" annotation(choices(
choice(redeclare replaceable model

Subsection_A = Config1),
choice(redeclare replaceable model

Subsection_A = Config2)),
Dialog(enable=config=="A"));

replaceable model Subsection_B = Config3
constrainedby PartialSubsection
"Subsection" annotation(choices(
choice(redeclare replaceable model

Subsection_B = Config3),
choice(redeclare replaceable model

Subsection_B = Config4)),
Dialog(enable=config=="B"));

end PartialSection;

model Section_A "Section config A"
extends PartialSection(final config="A");
Subsection_A subSec "Subsection";

end Section_A;

model Section_B "Section config B"
extends PartialSection(final config="B");
Subsection_B subSec "Subsection";

end Section_B;

partial model PartialSubsection
"Subsection interface"
// I n s t a n t i a t e a l l p o s s i b l e connec to r s and

parameters .
end PartialSubsection;

model Config1 "Subsection config 1"
// Set parameter v a l u e s needed to remove

non−needed connectors , and implement
a c t ua l components .

end Config1;
model Config2 "Subsection config 2"
end Config2;
model Config3 "Subsection config 3"
end Config3;
model Config4 "Subsection config 4"
end Config4;

replaceable Template system;

Zimmer (2010) mentions that replaceable models are
most commonly used instead of replaceable components

when multiple instances are to be redeclared with a unique
statement. Replaceable packages are typically used for
medium models because access to enclosed elements (e.g.,
constants and functions) is required. Our use case dif-
fers and replaceable models are used here in conjunction
with inheritance and "deferred" instantiation as a practi-
cal means of achieving conditional class parameterization
and conditional choices for replaceable elements. From a
user experience (UX) perspective, this is identical to ma-
nipulating a replaceable component. Note that we sys-
tematically use choices annotations with redeclare
replaceable to support further editing of the template
after a configuration workflow.

4.3.2 Caveats and Alternatives

Resorting to UI features does not provide the same degree
of robustness as using pure language constructs for object
manipulation. For example, with a single line of code, one
could manually redeclare Subsection_A with any type
compatible model and violate the constraints imposed by
the choices annotation.

One could also argue that for the configurations de-
scribed in Figure 1, where there is either an option list
or a unique option, as opposed to another option list, a
simpler construct is to declare a replaceable component in
the air intake section to represent the outdoor air dampers,
with an enable attribute that evaluates to true for the
mixed air configuration, and to false for the 100 % out-
door air configuration. For the latter case, an additional
redeclare final statement then enforces the unique op-
tion for the outdoor air dampers (i.e., shut-off damper).
However, additional scrutiny on the configuration work-
flow is here necessary. Indeed, an issue appears if a sys-
tem model is first created by extending the template with a
class modification that pertains to the mixed air configura-
tion. Any further modification of the air intake section, ei-
ther during inheritance or instantiation, risks an error due
to a final override in the merging of modifiers, as shown
below.

partial model PartialSection
"Section interface"
parameter String config;

replaceable Config1 subSec "Subsection"
annotation(choices(
choice(redeclare replaceable Config1

subSec),
choice(redeclare replaceable Config2

subSec)),
Dialog(enable=config=="A"));

end PartialSection;

model Section_A "Section config A"
extends PartialSection(final config="A");

end Section_A;

model Section_B "Section config B"
extends PartialSection(final config="B",
redeclare final Config3 subSec);

end Section_B;
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model System1
extends Template(sec(redeclare replaceable

Config2 subSec));
end System1;
// The f o l l ow i n g y i e l d s a f i n a l o v e r r i d e

e r r o r .
System1 system(redeclare Section_B sec);

Another limitation arises from the fact that no param-
eter dialog is generated for the subcomponent redeclared
as final, so that other configuration options nested below
it are not accessible to the user.

As an alternative, an annotation override may be con-
sidered. Indeed, Modelica Association (2021) spec-
ifies that a description is allowed as part of an
element-redeclaration. So, if the original com-
ponent is replaceable, the concrete syntax allows an
annotation-clause when redeclaring the component.
If a replaceable component subSec is declared inside
PartialSection as before, the same configuration logic
as in Listing 1 could be implemented as follows.
model Section_B "Section config B"
extends PartialSection(
redeclare replaceable Config3 subSec
annotation(choices(
choice(redeclare replaceable Config3

subSec),
choice(redeclare replaceable Config4

subSec))));
end Section_B;

However, although it conforms with Modelica Associ-
ation (2021), the above syntax is not interpreted by any of
the Modelica tools we tested.

5 Connections
The connect equations for signal variables in the tem-
plates use expandable connectors, also called control
busses, which have the following useful properties. The
set of variables in an expandable connector is augmented
whenever a new variable is connected to an instance of the
class. Thus, there is no requirement to pre-declare vari-
ables, and in fact we do not pre-declare any variable within
the control bus. Variables that are potentially present but
not connected are eventually considered as undefined, i.e.,
a tool may remove them or set them to a default value.
Not all variables need to be connected, and therefore the
control bus does not need to be reconfigured depending on
the model structure.

Like any other Modelica type, expandable connectors
can be used in array instances. A typical use case is to
connect control signals from a set of terminal units to a
supervisory controller of an air handling unit. In our ex-
perience, some care is required when handling such array
instances to maximize support by different Modelica com-
pilers, especially when nested expandable connectors are
involved. We have opted for the pragmatic rule of limiting
the number of nested expandable connectors to one. In
other words, a control bus may have none or one sub-bus.

Also, we use local instances of array sub-busses to force
the compilers to assign the dimensionality to the correct
variable. For instance, let us consider the following model
where the variables nested under the bus object are not
pre-declared.

model Control
parameter Integer nDim1 = 2, nDim2 = 1;
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
ControlBus bus;

Modelica.Blocks.Sources.RealExpression exp
[nDim1, nDim2](y=fill(fill(1, nDim2),
nDim1));

equation
connect(exp.y, bus.subbus.y);

end Control;

Some compilers assign the dimensionality of exp.y
(that is equal to two) to bus.subbus.y, while the
template developer may expect both bus.subbus and
bus.subbus.y to have a dimensionality of one. Other
compilers will reject such a model. Therefore, the follow-
ing implementation is used instead.

model Control
parameter Integer nDim1 = 2, nDim2 = 1;
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
ControlBus bus;

Modelica.Blocks.Sources.RealExpression exp
[nDim1, nDim2](y=fill(fill(1, nDim2),
nDim1));

protected
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
SubControlBus subbus[nDim1];

equation
connect(exp.y, subbus.y);
connect(subbus, bus.subbus);

end Control;

Most compilers we have tested can handle the above
implementation, and bus.subbus and bus.subbus.y
are necessarily assigned a dimensionality of one. Further-
more, having the instance of the sub-bus as a protected
element of the control block instead of a pre-declared vari-
able inside the main control bus avoids binding equations
for the dimension parameters wherever the control bus is
used.

Finally, we use strict naming conventions for all com-
ponents, including signal variables, which support a natu-
ral syntax for the connect equations. For example, con-
necting the measurement signal yielded by the supply air
temperature sensor component to the bus variable used by
the controller is done with: connect(TAirSup.y, bus.

TAirSup). Connecting the supply fan command and feed-
back signals to the corresponding sub-bus is done with:
connect(fanSup.bus, bus.fanSup). Connecting all
signal variables for the air intake section described in sub-
section 4.3 is done with: connect(secAirInt.bus,

bus), where the main bus of the template is used in the
section class, because the section itself contains nested
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components with sub-busses (such as dampers), so the
number of nested levels is effectively limited to one.

6 Design and Operating Parameters
When trying to meet the requirements of subsection 3.3,
the main difficulty is that conditional declarations cannot
be used for parameters, since a "component declared with
a condition attribute can only be modified and/or used in
connections" (Modelica Association 2021). We therefore
considered the use of an external data file and the use of
record classes and chose the latter in our implementation
for the reasons explained below.

6.1 External Data File
At first glance, using an external data source, such as a
JSON parameter file, is promising because it eliminates
the need for parameter propagation. Instead, each com-
ponent can retrieve the required parameter values by in-
voking accessor functions. The Modelica library Extern-
Data (Beutlich and Winkler 2021), which we used for this
purpose, provides accessor functions for each predefined
variable type (Real, Integer, Boolean, String) with
dimensionality up to 2.

However, we had to scale back our original require-
ments from subsection 3.3 due to the inherent limitations
of using literal constants from an external file. For in-
stance, referencing existing equipment data records from
the Modelica Buildings Library is not possible because a
class cannot be instantiated by passing the class name as
a string. Similarly, binding equations cannot be used to
express relationships between parameters of different sys-
tems because there is no built-in function to interpret a
string as Modelica code and evaluate it. Also left open is
the question of how to create the structure of this external
data file so that only the parameters required for the actual
system configurations are exposed, although automation
could address this problem.

More importantly, many structural parameters need to
be stored in the external data file, for example, to spec-
ify the size of the parameter array for a multi-unit com-
ponent. Ideally, the value for these parameters should be
assigned in this file. However, as structural parameters,
they must be evaluated at compile time. FMI-compliant
compilers (such as Modelon Impact) can handle this well
as the compiler flags that the accessor function must be
executed at compile time. This is not the case with other
compilers. Dymola, for example, requires the function an-
notation __Dymola_translate = true to force compile
time function execution, even though the parameter decla-
ration is already annotated with Evaluate = true. This
raises concerns about the impact on the translation time,
since each function call requires the creation of an exter-
nal object and access to the external file with fopen, even
though all function calls target the same external file.

It gets even worse when the compiler also stores the val-
ues for some variable attributes in the translated model, ei-
ther by legacy (e.g., nominal) or because they are used in

symbolic processing (e.g., min and max). Then all value
parameters used in bindings of these attributes have to be
evaluated as well, causing a significant translation over-
head. This marked the end of our attempt to use an exter-
nal parameter file.

6.2 Record Class
As an alternative, we resorted to record classes to handle
parameter assignment from the top level and propagation
throughout the instance tree. The use of record classes
benefits from the following features of the Modelica lan-
guage. Records are the only composite components al-
lowed in bindings, and the only composite components
of an instance that can be accessed by another instance.
Thus, the following conforms with Modelica Association
(2021) and records are the only specialized classes that
support such constructs, which largely help reduce the
number of binding equations when propagating parame-
ters.

record Rt "Template record"
parameter Rc c;

end Rt;

record Rc "Component record"
parameter Real p=1;

end Rc;

model Template
parameter Rt dat;
Component c(final dat=dat.c);

end Template;

model Component "Component"
parameter Rc dat;

end Component;

Specifically, in our case, two record classes are devel-
oped for each component model and instantiated within
the model’s interface class. The first record contains all
configuration parameters (structural parameters). This can
be considered as the "signature" for a given system config-
uration, accessible from any component and any template.
The second record contains the full set of design and oper-
ating parameters (value parameters) covering all possible
configurations, as well as an instance of the first configu-
ration record.

The inclusion of configuration parameters makes it pos-
sible to disable input fields in the parameter dialog if the
parameters are not needed for a particular configuration by
using the annotation attribute enable. Also, if enable =

false, no value can be assigned to this parameter (Mod-
elica Association 2021) although this is a non-normative
part of the language specification, and some compilers
may issue warnings or errors if no value is assigned to a
parameter, even with enable = false. In addition, some
compilers require that the start attribute be assigned for
parameters that have no assignment.

The inclusion of all value parameters is a requirement to
ensure plug compatibility with the interface class, which
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serves as the constraining type and supports parameter
propagation via a single binding equation.

Although simple by design, the implementation of this
parameterization logic proves tricky, as shown in List-
ing 2.

Listing 2. Minimal working example illustrating the use of pa-
rameter records.

model Template
final parameter ConfigTemplate config(
comp=comp.config) "Configuration record";

parameter DataTemplate data(
config=config) "Data record";

Component comp(final data=data.comp)
"Component";

end Template;

model Component
parameter Integer typ;
final parameter ConfigComponent config(
typ=typ);

parameter DataComponent data(config=config
);

// Parameter myPar needed on ly i f typ==1.
SubComponent1 sub1(myPar=data.myPar)
if typ==1;

end Component;

model SubComponent1
parameter Real myPar;

end SubComponent1;

record DataTemplate
// Annotat ion enab l e used i n l i e u o f f i n a l

b i nd i ng i n i n s t a n c e to avo id f i n a l
o v e r r i d e .

parameter ConfigTemplate config
annotation(Dialog(enable=false));

parameter DataComponent comp(
config=config.comp);

end DataTemplate;

record DataComponent
parameter ConfigComponent config
annotation(Dialog(enable=false));

// E x p l i c i t s t a r t a t t r i b u t e i s needed to
avo id the warning : "The f o l l ow i n g
parameters don ’ t have any va lue "

parameter Real myPar(start=0)
annotation(Dialog(enable=config.typ==1));

end DataComponent;

record ConfigTemplate
parameter ConfigComponent comp;

end ConfigTemplate;

record ConfigComponent
// Annotat ion Eva luate i s needed to avo id

the warning : "The f o l l ow i n g parameters
don ’ t have any va lue "

parameter Integer typ
annotation(Evaluate=true);

end ConfigComponent;

// To use the template , they can be
i n s t a n t i a t e d as f o l l ow s :

// I f typ=1, the data need to be s e t to
a s s i g n parameter myPar .

replaceable Template system1(
comp(typ=1), data(comp(myPar=1)));

// The f o l l ow i n g i n s t an c e does not r e q u i r e
a s s i g n i n g parameter myPar .

replaceable Template system2(comp(typ=2));

The comments inserted in this listing give an insight
into our experience and show that some ad hoc rules from
the various Modelica tool vendors make a generic imple-
mentation difficult and lead to a lengthy trial-and-error
process. Also, a parameter with enable = false re-
mains in the variable namespace, and compilers use the
value of the start attribute to initialize the parameter
when it is unassigned. So we still need to assign a value to
this attribute and guard against corner cases, such as divi-
sion by zero of another variable attribute that has a binding
with this parameter, or zero-sized arrays of records. The
situation gets worse when dealing with UI/UX features
as, in the above example, the input field for the parame-
ter system.data.comp.m_flow_nominal may remain
enabled in the parameter dialog, even though the con-
figuration parameter system.data.comp.config.typ
evaluates to 2. This is the case with many Modelica tools
we tested, even for such a minimal example where class
name lookup is kept as simple as possible. In practice,
and as illustrated in subsection 4.3, templates require com-
plex class structures with multiple levels of inheritance
and composition, or the use of outer components that fur-
ther limit the support by various tools.

Our ultimate goal entails even more demanding require-
ments for interpreting annotation attributes at UI runtime.
Specifically, we want to read the configuration parameters
of template instances from an object at the top level of the
simulation model, such as with the following construct.
Note that we use a generic class construct as opposed to
the specialized class record because the latter does not
allow for outer elements.

class DataAllSystems
outer Template system;
parameter DataTemplate data_system(
config=system.config);

end DataAllSystems;

parameter DataAllSystems data;

inner replaceable Template system(
comp(typ=2),
final data=data.data_system);

The top-level component data can thus serve as a sin-
gle object for storing all design and operating parameters,
displaying only those required for the particular system
configurations, thus satisfying the requirements of sub-
section 3.3. This structure is composed of records for
each system and its components, so existing equipment
data records from the library can be easily reused. Vector-
ized instances are also possible for systems with multiple
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units, and different classes can be used in them as long
as they have the same type. Parameterization of multiple
units with different properties is therefore straightforward
and most compilers allow these arrays to be populated on-
the-fly using record functions as shown below.

parameter ElectricReformulatedEIR.Generic
data[2] = {

ElectricReformulatedEIR.
Carrier_19XR_1234kW_5_39COP_VSD(),

ElectricReformulatedEIR.
Carrier_19XR_1143kW_6_57COP_VSD()};

All in all, the use of Modelica records offers great po-
tential, but suffers from uneven support from various com-
pilers, especially when using array instances or evaluating
the enable attribute at UI runtime, and for use cases re-
quiring complex class structures. At the beginning of the
development of system templates, we certainly did not ex-
pect that the handling of value parameters would be the
most difficult part and take the most development time—
estimated to be over 30 %—with a final result that we still
judge to be far from optimal. We believe that the lack of
conditional declarations of value parameters is the biggest
obstacle to the development of complex system templates
and makes the parametric polymorphism of the Modelica
language cumbersome in practice.

7 Control Diagram
To meet the requirements of subsection 3.6, all data
needed to create the diagram for a given system are in-
cluded in the template class in the form of Modelica
graphical annotations. Figure 3 shows the diagram view of
the boiler plant template and gives an example of the direct
graphical feedback that can be obtained about a particular
system configuration. It also illustrates the capability of
the template to adapt to different equipment and control
specifications by programmatically generating the neces-
sary objects for equipment, actuators and sensors, and re-
solving the hydronic routing of components and control
signal connections without user intervention.

The template components include Bitmap primitives in
the icon layer to reference equipment symbols provided
as vector graphics in SVG format (W3C 2003). Although
Modelica tools render them as raster images in the dia-
gram view, a tool can use the referenced SVG files to cre-
ate diagrams that conform to industry standards and are
accurate at the pixel level. The visibility of these graph-
ical objects is controlled with the annotation attribute
visible and bindings to the template class configura-
tion parameters. Due to the lack of a "group" element in
the Modelica Language Specification—as opposed to the
SVG specification (W3C 2003) which includes the 'g'
element—dealing with complex graphical objects using
only native graphical primitives would require many du-
plicates of the visible attribute and its binding equation,
which is the main reason we rely on external SVG files.
Text in equipment symbols is handled separately, so it can

be flipped or rotated independently of the component sym-
bol.

Piping systems are represented directly by the graphi-
cal annotations of the connect equations, with an explicit
visible attribute added in the case of conditional com-
ponents. This is necessary because Modelica tools, while
removing the corresponding connect statements at trans-
lation, generally do not provide direct graphical feedback
and the connection lines remain visible in the diagram
view. In the case of air systems, we use separate graph-
ical annotations in the diagram layer to represent the duct-
work. The connection lines are then graphical artifacts
that should be deleted when creating the final control dia-
gram.

8 Validation
We have implemented a comprehensive test workflow to
verify that all system configurations supported by a given
template are implemented correctly. However, generating
the list of these supported configurations was not straight-
forward, considering that elaborate class parameterization
techniques are used together with choices annotations
to implement the actual decision tree (see subsection 4.3).
Thus, we recreated this set of options in a standalone script
that first builds the list of all possible combinations of
structural parameters and redeclare clauses, and then
prunes this list based on exclusion patterns that must be
manually specified by the template developer. Then, sim-
ulations are run for all the resulting class modifications.
For example, this results in over 2000 simulations for the
chiller plant template and nearly 1000 simulations for the
boiler plant template. Due to the computation load, we
only trigger these tests in our continuous integration work-
flow when the checksum computed for all classes in the
Templates package changes.

Currently, the percentage of tool coverage is about
60 %,1 but is steadily growing with the updates of the
Modelica compilers released by various vendors.

9 Conclusion and Future Work
Our experience with relying entirely on the Modelica lan-
guage to create user-friendly models for systems with
thousands of configurations and closed-loop controls has
shown that complexity is not necessarily where one ex-
pects it to be. Originally, we saw the lack of condi-
tional element redeclaration as the main obstacle, espe-
cially since there is convincing work already pointing out
this deficiency and proposing some changes to allow for
better class parameterization (Zimmer 2010). Although
these proposed changes would have made our task easier,
it appeared to us that advanced model configuration could
be achieved with the current syntax, provided that com-

1The percentage of tool coverage is calculated as the ratio between
the number of successful tests and the number of tests, where the num-
ber of tests is equal to the number of templates times the number of
compilers tested.
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Figure 3. Diagram view of the boiler plant template (as rendered by Dymola) in a primary-secondary configuration, with three
condensing boilers equipped with headered variable speed pumps and two non-condensing boilers equipped with dedicated constant
speed pumps.

ponents have well-designed interface classes and that UI
features are used in conjunction with pure language con-
structs for object manipulation.

However, the assignment of equipment parameters and
their propagation throughout the instance tree proved to
be the most problematic. The main reason is that the con-
ditional declaration of parameters used in binding equa-
tions, as opposed to connectable components, is not al-
lowed. We believe that this restriction is what most limits
the templating capabilities of the Modelica language. In
the absence of such a feature, we are left with only a non-
normative part of the specification, namely the use of the
attributes enable and start in parameter declarations.
With this pattern, a parameter can remain unassigned if
it is not needed for a given configuration where enable

evaluates to false. But this approach is fraught with some
issues. First, the fact that it is a non-normative feature
limits the support of our templates by various Modelica
compilers, which may issue a warning or error in case of
unassigned parameters. Second, a disabled parameter re-
mains in the variable namespace and compilers use the
value of the start attribute to initialize the parameter if
it is unassigned. So we still need to assign a value to this
attribute, and several corner cases occur that we need to
guard against. Finally, the behavior of the UI is almost
unpredictable because the interpretation of the enable at-
tribute at UI runtime to generate the parameter dialog is
not specified. Thus, if the logic to disable a parameter in-
put field fails, it is difficult to determine which constructs
are the cause. We believe that a unified UX matters, es-
pecially for templating, and that it would be good for the
Modelica community if more UI features were normative
and much more clearly specified than currently. The un-

even support by Modelica compilers of another fundamen-
tal structure for handling parameters further complicates
the task. Indeed, we have observed and reported many
compiler failures with record classes used in non-trivial
constructs such as array instances, composite component
bindings, or on-the-fly instantiation with record functions.
Thus, development work often becomes a tricky naviga-
tion around the specific limitations of the various Model-
ica compilers.

Our next step is to implement templates for entire
HVAC systems, from plant to zone equipment, with cou-
pling to thermal zone models. This means assembling
templates from templates, and for highly scalable systems.
The main difficulty that we foresee arises from the con-
straint that array elements must be of the same type, which
is rarely the case with class parameterization techniques
that only aim at type or plug compatibility. Again, we
think that the suggestions from Zimmer (2010) would be
very valuable to use an array of model parameters for this
purpose. We have some alternatives, such as building con-
tainer classes around templates, or using multiple array
instances for the same system type. This also means that
our developments have not yet reached the highest level
of complexity, even though it sometimes seems that they
have already exceeded the complexity that most compilers
can handle.

10 Data Availability
The templates discussed in this paper are available in the
feature branch issue3266_template_HW_plant from
commit e15d845, and are planned to be released in future
versions of the Modelica Buildings Library.
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Abstract
Hydrogen will play a key role in the global energy transi-
tion if we are able to produce it with low-carbon emis-
sions. However, clean hydrogen production today is
mostly limited to demonstration projects ranging from 2
up to 20 MW. Modeling the way low-carbon hydrogen is
produced, stored and used will allow us to significantly
improve our understanding of how clean hydrogen could
be produced and thus increase the production efficiency.
In this paper, we show that the newest version of Ther-
moSysPro (TSP), an open-source Modelica library for
modeling energy systems, provides a suitable framework
to model and simulate the hydrogen production, storage
and consumption. The model presented in this paper con-
tains three electrolyzers, a storage station and a vehicle
station. We present how the model was built, which com-
ponents were adapted and how, and show that its simu-
lation can be useful in the design phase, as well as for
diagnosis purposes. In the future, a complete validation of
these developments will be performed when experimental
data is publicly available.
Keywords: Modelica, ThermoSysPro, Hydrogen, Real
gas, Equation Of State

1 Introduction
The global energy system is undergoing major changes,
(International Energy Agency 2022b). This transforma-
tion aims mostly at reducing the oil and other fossil fuels
dependency in order to cut as much as possible CO2 emis-
sions and thus the consequences of global warming. In
this context, hydrogen plays a crucial role in accelerating
this energy transition by allowing the decarbonisation of
key sectors like industry, aviation, shipping or heavy-duty
transport, (International Energy Agency 2022a; Green hy-
drogen cost reduction 2020).

Hydrogen has already been identified as indispensable
in the strategy to build a climate-neutral Europe (European
Commission 2020). However, it is still mostly produced
with natural gas, which represents 96% of the total pro-
duction (European Commission 2023). For this reason,
and in order to accomplish the ambitious climate objec-
tives, it is extremely important to develop technologies
able of producing clean hydrogen (i.e. with no or low
CO2 emissions) at a large scale and in a competitive way.

To successfully develop these hydrogen related technolo-
gies and integrate them in the future energy mix, the de-
velopment of flexible and adequate modeling tools is also
fundamental. This will allow to contribute and accelerate
the ongoing energy transition. Hydrogen based systems
can be modeled with different types of modeling tools.
Without attempting to be exhaustive, in the literature it
is possible to find Matlab (Khan and Iqbal 2005; Eriksson
and Gray 2017; Bhuyan, Hota, and Panda 2018), Python
(Kuroki et al. 2021) and Modelica (Migoni et al. 2016)
based models. These models aim at representing different
aspects of a hydrogen based system (electrolyzers, vehicle
hydrogen fueling, storage, etc.) and for different purposes
(optimization of the management of hydrogen based tech-
nologies, better understanding of the physical behavior of
such systems, etc.).

Hydrogen based systems usually require different types
of physics to be described and this is why the Modelica
language can be suitable to describe such systems. In
particular, it can be interesting to adapt existing Model-
ica libraries that have already shown relevant and trust-
ful results in similar domains. This is the case of
the ThermoSysPro (TSP) library1(El Hefni and Bouskela
2019), an open-source Modelica library developed by
EDF R&D2, which has already been used to successfully
model other energy systems such as power plants, indus-
trial processes, energy conversion systems etc. (El Hefni
and Bouskela 2017). To achieve these results, different
physics are already available in TSP such as thermal-
hydraulics, combustion, solar radiation and neutronics. In
addition, to these already existing features, the latest ver-
sion of ThermoSysPro3, the so-called V4, allows to easily
modify the fluid considered for modeling in addition of
giving the possibility to handle efficiently zero-mass flow-
rates configurations (based on the principles explained in
(Bouskela and El Hefni 2014b). For the reasons previ-
ously mentioned, the ThermoSysPro library appears as
suitable starting point to model and simulate hydrogen
based systems.

1https://thermosyspro.com
2ThermoSysPro is compatible with OpenModelica and many orga-

nizations and individuals use currently ThermoSysPro around the world
to model different types of energy systems.

3ThermoSysPro is freely available here: https://github.
com/ThermoSysPro/ThermoSysPro.
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The goal of this paper is therefore to expose and show
how the latest version of the ThermoSysPro library has
been adapted to efficiently model and simulate hydrogen
based systems that already exist or that are going to ex-
ist in the future. To illustrate the modification of Ther-
moSysPro previously described, this paper focus on the
modeling and simulation of a low-carbon hydrogen plat-
form in which the whole value chain of hydrogen is con-
sidered (production, storage and distribution, and con-
sumption/application (TÜV SÜD 2023)).

This paper is structured as follows. Section 2 describes
the model considered in this study as well as the equa-
tions implemented in the new developed modules. Sec-
tion 3 presents the construction of the model as well as
the simulations performed with this model. Finally, sec-
tion 4 presents the discussion as well as the future work
that can be initiated with the promising results presented
in this paper.

2 Model Description and Equations
In this section, the proposed low-carbon hydrogen plat-
form is presented as well as the components that consti-
tute a library dedicated to hydrogen which is compatible
with ThermoSysPro. As mentioned previously, TSP is al-
ready available and thus provides certain advantages like
the possibility of reusing some of its components in this
hydrogen platform.

2.1 Gas Plate Scheme

The proposed platform is denominated Gas Plate and it
serves to connect the components of the system. Such
components include mainly, as seen in the simplified
model scheme on Figure 1, electrolyzers and a set of
blocks as valves, compressors and heat exchangers to
compose two branches: Storage and Station, each rep-
resenting one of the considered final applications. First
of all, the block corresponding to the electrolyzer allows
to estimate hydrogen production through water electrol-
ysis at given conditions. Such hydrogen gas will then go
through a check valve, ensuring one-directional flow in the
platform. Afterwards a compressor and a heat exchanger
block will allow to reach the desired conditions in terms
of temperature and pressure depending on each final use:
either storing it directly or manipulating it in a filling sta-
tion. Finally, to ensure the correct flow of hydrogen, a
control valve will be used for each one of these so-called
branches.

Figure 1. Case study model

2.2 Notations

Cp
J

kgK Isobaric heat capacity

Cv
m4

sN5 Flow coefficient
CV

J
kgK Isochoric heat capacity

C0
V

J
kgK Ideal gas isochoric heat capacity

∆rg0 J
mol Reference specific Gibbs free en-

ergy difference for the reaction
∆rh0 J

mol Difference in specific enthalpy of
reference for the reaction

∆TLM K, °C Logarithmic mean temperature
difference

η - Energy efficiency
η f - Faraday efficiency
ηis,comp - Isentropic compression effi-

ciency
F 96485 C

mol Faraday constant
h J

kg Specific enthalpy
I A Current
ṁ kg

s Mass flow rate
LHVH2

J
kg Low Heat Value for hydrogen

P bar, Pa Absolute pressure
Pc bar, Pa Critical pressure
PvH2O bar, Pa Vapor pressure
R 8.31 J

molK Ideal gas constant
s J

kg Specific entropy
T K, °C Temperature
Tc K, °C Critical temperature
Tr - Reduced temperature
u J

kg Specific internal energy
U W

m2K Overall heat transfer coefficient
Uact V Activation over-potential
Ucell V Cell voltage
Ures V Resistive over-voltage
Urev V Reversible voltage := ∆Eeq
µJT

K
bar Joule-Thomson coefficient

v m3

mol Molar volume
ω - Acentric factor

2.3 Pure Real Gas Properties
The hydrogen platform operates at a pressure ranging
from a few decades to several hundred bars. At high pres-
sure, the ideal gas assumption is not precise enough and
the use of an Equation of State for real gas is preferable.
The so-called Peng-Robinson Equation of State (Equa-
tion 1)4 can be found in the classical literature of ther-
modynamics and process engineering (Zohuri 2018):

P =
RT

v−b
− αa

v2 +2bv−b2 (1)

a = 0.45723553
R2T 2

c

Pc
; b = 0.07779607

RTc

Pc
;

4From now on referred as PR-EOS
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α =

(
1+ k

(
1−
√

T
Tc

))2

;

k = 0.37464+1.54226ω −0.26993ω
2 ;

ω =−1− log
(

Psat

Pc

)
Tr=0.7

,

where "a" accounts for inter-molecular attractive forces (it
decreases the pressure that molecules exert on the reser-
voir (Zohuri 2018)), while "b" represents the volume oc-
cupied by the gas molecules. The molar volume is repre-
sented by v, Psat is the saturation pressure of the fluid (to
find the acentric factor ω we use the value of Psat consid-
ering Tr =

T
Tc

= 0.7) and R is the universal gas constant.
Taking the total derivative of the internal energy (u =

f (T,v)) and after development using Maxwell’s third rela-
tion, we obtain the following expression verified by (Cen-
gel and Boles 2015) where the pressure P is defined by the
PR-EOS and the isochoric heat capacity CV is unknown.

∆u =
∫ T2

T1

CV dT +
∫ v2

v1

[
T
(

∂P
∂T

)
v
−P
]

dv (2)

Concerning Modelica, a function called
PR_InternalEnergy (containing the Equation 4) is
created after having developed the Equation 2 considering
the state 1 as v0 = ∞ and using the PR-EOS Equation 1
(Trujillo, O’Rourke, and Torres n.d.):

u(v,T )−u(v0,T0) = u(v0,T )−u(v0,T0)

+
∫ v

v0

[
T
(

∂P
∂T

)
v
−P
]

dv (3)

u(v,T ) = u0 +a
(

α −T
dα

dT

)
1

2
√

2b
ln

[
v+b(1−

√
2)

v+b(1+
√

2)

]
(4)

With :
dα

dT
=

−k√
TcT

√
α (5)

Where u0 = C0
V T , and C0

V corresponds to the isochoric
heat capacity of perfect gases. Then, according to (Leach-
man et al. 2009) one can express such isochoric heat ca-
pacity according to the following expression:

C0
V

R
= 1.5+

N

∑
k=1

uk

(vk

T

)2 exp(vk/T )

(exp(vk/T )−1)2 (6)

The parameters uk and vk are taken from (Leachman et
al. 2009) for normal hydrogen (n-H2) because in the tem-
perature range of interest (≈ 260−360K) one will always
have n-H2. Moreover, n-H2 is defined as hydrogen’s equi-
librium concentration at room temperature, which corre-
sponds to 75% orthohydrogen and 25% parahydrogen.

Finally, as there is interest in estimating enthalpy and
entropy at different states, we take advantage of previous

developments to use the following expressions in order to
calculate such properties:

h = u+Pv (7)

s2 − s1 =
∫ T2

T1

CV

T
dT +

∫ v2

v1

(
∂P(v,T )

∂T

)
v
dv (8)

However, Equation 8 is expressed more specifically as
follows, where the integrals are to be solved:

∆s=C0
V ln

T2

T1
− a

2
√

2b
ln

[
v+b(1−

√
2)

v+b(1+
√

2)

]∣∣∣∣∣
v2

0

∫ T2

T1

d2α

dT 2 dT

+
∫ v2

v1

(
∂P(v,T )

∂T

)
v
dv (9)

The derived formulas for internal energy, enthalpy and
entropy can be found in the Appendix subsection 4.1.

2.4 Electrolyzer
To model the electrolyzer we start from the classical ex-
pression (Kuroki et al. 2021; Ulleberg 1998)5 which in-
cludes the over-potentials in the electrodes of the cell:

Ucell =Urev +Ures +Uact (10)

The term Urev concerns the reversible tension expressed
by the Nernst equation (Atkins and Paula 2006). It is ob-
tained by considering that two opposite forces of equal
magnitude act on the ion at equilibrium, electrical forces
and diffusion forces are equal in magnitude but of oppo-
site sign. From such expression, while making certain as-
sumptions6, the Equation 11 is obtained to approximate
the value of the reversible voltage.

Urev := ∆Eeq ≈
∆rg0(T )

nF
+

3RT
4F

ln
(

P−PvH2O

P0

)
, (11)

where the vapor pressure PvH2O is defined by

PvH2O ≈ e(37.04− 6276
T −3.416lnT), (12)

with pressures expressed in bar and T in Kelvin. The ap-
proximation (12) is valid between 25-250°C (Patterson et
al. 2019).

To determine the last two terms of Equation 10 (namely
the over-potentials Ures and Uact , referring to the electri-
cal and the activation resistance of the electrodes, respec-
tively) we consider semi-empirical models found in the
literature for alkaline electrolyzers. For the time being,

5It should be noted that there exists also a component called diffu-
sion over-potential (Udi f f ) but it is negligible (Ulleberg 1998). It is cre-
ated by slow diffusion of ions through the electrolyte making it harder
for ions to reach active sites.

6Considering the isobaric heat capacity (Cp) to be constant, uniform
acidity between the electrodes, water as an undiluted liquid, and oxygen
and hydrogen to be ideal gases at the same pressure equal to the total
pressure minus the vapor pressure of water (Patterson et al. 2019)
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two semi-empirical models were coded and an ulterior and
more detailed work will compare both models as it is be-
yond the scope of the present work. Therefore, only the
one found in literature will be presented here. The model
in question is taken from the work of (Ulleberg 1998;
Ulleberg 2003) which models a stand-alone photovoltaic-
hydrogen power plant (PHOEBUS) in Jülich (Germany)
equipped with an alkaline electrolyzer with circular bipo-
lar cells and a 30 wt% KOH solution as electrolyte.

Ures = (r1 + r2T )
I

Acell
(13)

Uact = (s1 + s2T + s3T 2) log

(
t1 +

t2
T + t3

T 2

Acell
I +1

)
(14)

Where si, ti, and ri are known parameters 7, Acell is the area
of a cell in m2, I is the current in amperes and the tempera-
ture T is expressed in °C. We can observe that Equation 14
is an expression derived from the Butler-Volmer relation.
Then, for all that concerns the Faraday efficiency, we con-
sider the model developed by (Ulleberg 1998) and already
used in (Khan and Iqbal 2005) where the temperature T is
expressed in °C:

η f = f2

(
I

Acell

)2

f1 +
(

I
Acell

)2 (15)

f1 = 2.5T +50 ; f2 =−0.00075T +1

This calculation allows to estimate the real production
of hydrogen in the electrolyzer considering the current
losses and the number of cells Ncell in the stack.

ṁH2 = η f
NcellMH2

2F
I (16)

In addition, we want to estimate the heat losses since
they could potentially be used as an energy source for the
heating of the water inlet. This is obtained by an energy
balance:

Q̇ = Ẇelec −∆Ḣ = Ẇelec − ṁH2

(
∆rh0

T 0 +∆rCp(T −T0)
)

(17)
Finally, we can also estimate the energy efficiency of our
electrolyzer by using the lower heating value of hydrogen.

η =
ṁH2LHVH2

Ẇelec
(18)

In Figure 2, we observe that there are inputs as working
temperature (Tre f ), the supplied current (I) and the water
inlet at a given pressure (Pre f ); as well as the outputs of
oxygen and hydrogen flows on the top side of the elec-
trolyzer model.

7The empirical parameters (si, ti, and ri) can be found numerically
using non-linear regression techniques. Consequently one can fit the
model for an alkaline electrolyzer in particular

Figure 2. Model of Alkaline Electrolyzer with corresponding
inputs and outputs

Figure 3. Polarization curves at two different temperatures
(80◦C in red lines, and 25◦C in blue lines)

After having modeled the electrolyzer, it is pertinent to
obtain the polarization curve (which represents the volt-
age as a function of current density) to verify that the cell
voltage calculated using Ulleberg (1998) model has been
well coded. From its shape and values, Figure 3 corre-
sponds to the expected behaviour for alkaline electrolysis
at two working temperatures (80◦C in red line, and 25◦C
in blue line). The cell voltage Ucell is represented by the
continuous lines and the reversible voltage Urev is repre-
sented by the dotted lines. By observing the continuous
lines (cell voltage), one could also specifically verify that
when placed around low current densities, the activation
over-potential (Equation 14) has a more important impact
on the total voltage of the cell and at higher densities the
behavior is rather linear due to the shape of the resistance
over-potential (Equation 13). One can also verify that the
reversible potential (Equation 11) is independent of the
current density.

2.5 Compressor
The compressor is modeled using a isentropic efficiency
coefficient. From Equation 8 isentropic processes may
then be introduced. They refer to the assumption of equal
entropy between two different states (1 −→ 2). Namely,
there is not any change when moving from state 1 to
state 2, and then the left side of Equation 8 becomes equal
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to zero. Knowing the properties in such a state allows us
to use the isentropic efficiency of the compressor defined
by Equation 19. A graphical representation of the com-
pressor model is given in Figure 4a.

ηis,comp =
h2is −h1

h2 −h1
(19)

Starting from the fact that the state 1 and the value of
ηis,comp is known, and considering ∆s = 0 in Equation 8,
h2is, the enthalpy in the state 2is where s2is = s1 is calcu-
lated, and then h2 for state 2 is obtained from Equation 19.

Moreover, when looking at the safety aspect, one must
not forget that there are limits concerning the temperature
and pressure that the gas should reach. For example, the
SAE J2601 standard mentioned in the section "SAE2020"
indicates these upper limits during hydrogen refueling. So
for compression a maximum temperature of 135°C (Insti-
tute 2007) may be established (recommendation for high
pressure hydrogen rich services) when using a piston com-
pressor. This safety measure consequently sets a maxi-
mum compression ratio and therefore probably the need
to compress in several stages.

(a) Representation
of the compressor
model

(b) Representation
of the Pressure
Control Valve
model

(c) Representation
of the gaseous stor-
age model

Figure 4. Example of model components.

2.6 Heat Exchanger
For the heat exchanger used to cool the hydrogen, the
concept of the Logarithmic Mean Temperature Difference
(LMTD) should be introduced first. According to New-
ton’s law of cooling, the rate of heat transfer is related to
the instantaneous temperature difference between the hot
and cold media (in a heat transfer process, the temperature
difference varies with position and time). As a result, the
temperature variation is non-linear and can best be rep-
resented by a logarithmic calculation, hence the LMTD
(Engineering ToolBox 2003).

Q̇ =UA∆TLM , ∆TLM
∆Tb −∆Ta

ln ∆Tb
∆Ta

(20)

Where ∆Ta is the temperature difference between the two
flows at the A end, and ∆Tb is the temperature difference
between the two flows at the B end (sides of the exchanger
whether if its design is that of a counter-current heat ex-
changer or not), Q̇ [W ] is the heat service exchanged, U
[ W

m2K ] is the overall heat transfer coefficient, and A [m2]

is the area of exchange. After developing Equation 20 we
obtain an expression according to the specific heat capaci-
ties of "cold" and "hot" fluids (Cp, f and Cp,c respectively):

ln
∆Tb

∆Ta
=UA

[
1

ṁ fCp, f
− 1

ṁcCp,c

]
(21)

As the main interest of this first work is not particularly
the heat transfer phenomenon, the heat exchanger model
is quite simple which entails to having certain limitations
that must be indicated to not make physical mistakes while
using the component. Such limitations and assumptions
will be discussed in Section 4

Figure 5. Test model of the heat exchanger component

2.7 Pressure Control Valve
The valve flow coefficient (Cv) is defined as the flow ca-
pacity of a control valve under fully open conditions rela-
tive to the pressure drop across the valve. It is defined as
the volume of water (GPM in the U.S.) at 60°F that will
flow through a fully open valve with a pressure differen-
tial of 1 psi across the valve. It is useful to know how
to calculate Cv because it is the standard method of siz-
ing and selecting control valves used in the industry. In
addition, an oversized valve can lead to control problems
such as flushing or poor heat transfer (∆T ) through a coil
due to overflow. Conversely, an undersized valve may not
provide sufficient flow and exceed the available ∆P. In
general, the volume flow rate q and Cv are related by an
expression of type

q =Cv f (x)

√
∆P
G

Where G is the specific gravity of the fluid (G = ρ/ρair).
However, the functions to describe the behavior of the gas
passing through the valve are generally more complex.
According to (Swagelok 2007) they can be expressed with
the following two equations, where p = [bar] , T =
[K] , q =

[
std L

min

]
:

q2GT1 = (0.471N2)
2C2

v p2
1 , p2 ≤

p1

2
(22)

q2GT1 = N2
2C2

v p1

(
1− 2∆P

3p1

)2

∆P , p2 >
p1

2
(23)

N1 and N2 are parameters provided in (Swagelok 2007)
that depend on the units used and the volumetric flow rate
q is expressed under standard conditions (25°C and 1 atm).
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On the other hand, it is also necessary to illustrate this
valve from a thermodynamic point of view to understand
the physical process. Choke valves are generally small
devices, and the flow through them can be assumed to be
adiabatic (Q∼= 0) since there is not enough time or area for
efficient heat transfer to occur. There is also no work done
(w ∼= 0), and the change in potential energy, if there is any,
is very small (ep ∼= 0). Even though the output velocity is
often considerably larger than the input velocity, in many
cases the increase in kinetic energy is negligible (Cengel
and Boles 2015). Then the energy conservation equation
for this single-stream steady-state flow device reduces to:

h1 ∼= h2

u1 +P1v1 ∼= u2 +P2v2 (24)

Thus, the end result of a throttling process depends on
how much a certain property has increased during the pro-
cess. If the flow of energy increases during the process
(P2v2 > P1v1), this can be at the expense of the internal
energy. As a result, the internal energy decreases, which
is usually accompanied by a decrease in temperature. If
the Pv of the product decreases, the internal energy and
temperature of a fluid will increase during a throttling pro-
cess8. In these cases, the magnitude of the ∆T is governed
by a property called the Joule-Thomson coefficient :

µJT =

(
∂T
∂P

)
H

(25)

The Joule-Thomson coefficient is a measure of the varia-
tion of temperature versus pressure during a process with
constant enthalpy, which corresponds to the situation of
the valve. So if this coefficient is negative, the tempera-
ture increases during an expansion. The sign of the coeffi-
cient will therefore depend on the conditions in which the
gas is, and the so-called inversion temperature (Figure 6)
at these conditions.

Thus, considering such phenomenon, a valve model is
adapted (Figure 4b) from TSP to take into account the ef-
fects on temperature of a throttling process with hydrogen
as a fluid. From such development, and through a compar-
ative simulation, one can observe the difference in prop-
erties at the end of the expansion process using the TSP
valve9 and the hydrogen-adapted Pressure Control Valve
(PCV). As a simple study case, a simulation is carried out
with the following parameters for both of the valves:

• Inlet pressure: 400bar

• Hydrogen flow rate: 0.0038885674 kg
s

• Inlet temperature: 65°C

8In the case of an ideal gas, h = h(T ); therefore, the temperature
must remain constant during a throttling process, which is not the case
for a real gas where h = h(T,P)

9The valve available on TSP was initially designed for water and
steam flows applications

Figure 6. Inversion temperatures for three real gases: nitrogen,
hydrogen and helium (Central Michigan University 2013)

• Cvmax : 0.015 m4

sN5

• Outlet pressure which varies from 150 to 350 bar

In this comparative simulation, the valve opening is con-
trolled to obtain a certain outlet pressure that will vary
from 150 to 350 bar. The goal is to analyze the change of
the outlet temperature as a function of pressure and while
maintaining the same inlet pressure, thus generating a dif-
ferent pressure drop value at each moment.

From the main result (Figure 7), it is observed that
the outlet temperature of the PCV (PCV _realsgas.T )
evolves in function of the outlet pressure (sensorP.C2.P),
which is not the case when using the TSP default valve
(PCV _idealgas.T ) that considers an ideal fluid. Specifi-
cally, it is noted that for the operating conditions of tem-
perature and pressure, the Joule-Thomson coefficient is al-
ways negative, causing a temperature rise during the isen-
thalpic expansion process, which can be verified in Fig-
ure 6. Therefore, it is proved that the modified valve does
include the Joule-Thomson phenomenon through the use
of PR-EOS which describes a real gas. Even though the
results have not been compared to real values from exper-
imentation, the PR-EOS is widely accepted as an approxi-
mation in the process engineering field, however the use of
a hydrogen-dedicated equation of state could be envisaged
(Sakoda et al. 2012).

Figure 7. Outlet temperature comparison for two valve models
at variable outlet pressure
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2.8 Gaseous Storage
The modeling of the pressurized gas storage is summa-
rized in (Migoni et al. 2016) where an equation of state
is implemented to estimate the pressure. However, un-
like such work which uses the ideal gas equation, one can
improve the estimates by using the PR-EOS. For that the
Equation 1 which allows to model the pressure is used.
Then it is necessary to know the mass stored in a given
moment. For that we use a mass balance (Equation 26)
which allows to calculate the quantity of hydrogen in each
bottle and finally to estimate the pressure according to this
mass and the volume of the tank. The number of bottles in
the storage is a parameter that can be modified and the way
in which the bottles are filled is directly managed by the
model itself (a maximum and a minimum pressure in each
bottle can be provided in order to manage the switches).

dm
dt

= ṁin − ṁout (26)

3 Gas Plate modeling
3.1 Model construction
The case study model (Figure 1) was briefly presented in
subsection 2.1 where the general idea of the so-called Gas
Plate was introduced alongside the two branches (Storage
and Station) which illustrate the final usages of the low-
carbon hydrogen produced upstream through water elec-
trolysis. At this time the theoretical fundamentals of each
of the components (or blocks) in the platform has been set-
tled and so a more detailed version of the model may be
presented. Such is the case for Figure 8, where three elec-
trolyzers are placed upstream on the left, and then a series
of components such as pressure loss blocks at the outlet of
each electrolyzer, valves10, volumes, sensors (to read tem-
perature, pressure and mass flow) compose the hydrogen
pipeline towards two branches or usages.

On the right upper side (Storage Branch) a pressure
control valve, a compressor, and counter-current heat ex-
changer are used to regulate the flow, to obtain a desired
pressure and to refrigerate the hydrogen flow to a safe tem-
perature, respectively. This, to finally arrive to the gaseous
storage system at the end of the branch. On the other hand,
the charging station branch in our chain is composed of a
compressor to increase the pressure to the desired values
according to the type of vehicle, a valve (PCV) that allows
to regulate the output pressure according to the normative
(SAE 2020), and a heat exchanger between those previous
components in order to limit the temperature rise due to
the Joule-Thomson effect in the valve.

Finally, it must be noted that some of the components
used in this platform are taken from the TSP library. Such

10The Check Valve right before the volume that serves to divide the
flow into the two branches is found on TSP (El Hefni and Bouskela
2019) and the PCVs used once on the Storage branch and twice on the
Station branch is adapted from the Control Valve model of the same
TSP library

is the case for the Singular pressure loss component at the
outlet of each electrolyzer, the volumes, the check valve
and other common blocks as signals and sources. Com-
ponents like the sensors, the compressor and the pressure
control valve where adapted from TSP; other blocks like
the electrolyzer and the storage tanks where developed for
a new hydrogen-dedicated library compatible with TSP.

3.2 Model simulation
The model presented in Figure 8 and described in the pre-
vious subsection has been used to perform various dy-
namic simulations that have allowed to validate and bet-
ter understand the physical behavior of the hydrogen plat-
form. These simulations give as well an overview of the
different types of predictions that can be performed with
this model.

For this purpose, three different scenarios have been
considered. These dynamic simulations in which sev-
eral events occur are described below together with graphs
showing the evolution of key variables for each scenario.

Scenario 1: the three electrolyzers are working during
the whole simulation and at the beginning the hydrogen
storage is being filled up. At 500s, the outlet mass flow
rate of the storage is temporarily increased (see dotted red
line in Figure 9). During this simulation it is possible to
observe the filling of gaseous storage while there is no in-
crease in the outlet mass flow rate, see continuous blue
line in Figure 9 in which the evolution of the hydrogen
mass in the first bottle (and only bottle in this simulation)
of the gaseous storage is presented . When the outlet mass
flow rate increases, it can be observed how the bottle is
being emptied before resuming the filling at the end of the
simulation.

Scenario 2: as in the previous scenario, the three elec-
trolyzers are working during the whole simulation and at
1200 seconds the valve of the storage branch of the plat-
form is partially closed (as shown by Figure 10a). The
consequence of closing this valve is directly observed in
the storage inlet mass flow-rate evolution, see Figure 10b
where a remarkable decrease is shown after 1200s. In ad-
dition to this important decrease, it is also possible to no-
tice in the previous graph a small perturbation of the inlet
mass flow-rate at around 800s. This reduction can be ex-
plained by the graph plotted in Figure 10c and in which
the evolution of the hydrogen mass in the storage is rep-
resented: the blue line corresponds to the total hydrogen
mass of the first bottle and the red one to the total hy-
drogen mass in the second bottle. The above-mentioned
perturbation of the inlet mass flow-rate occurs when the
switch between the filling of the first and second bottle
occurs (corresponding to the moment at which the maxi-
mum allowed pressure in the first bottle is reached). The
valve closing occurs therefore when the second bottle is
being filled and the consequences can be observed in the
red curve where the increase of the hydrogen mass in the
second bottle is reduced (slope decrease) after 1200s.

Scenario 3: contrary to the previous scenarios, in this
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Figure 8. ThermoSysPro model of the hydrogen platform

Figure 9. Scenario 1 simulation results

case, the three electrolyzers of the gas plate are not work-
ing during the whole simulation. In this scenario, one
of the electrolyzers is completely shutdown at 200s as
shown by the dotted red line in Figure 11 which represents
the evolution of the current in this electrolyzer. When
this shutdown occurs, the hydrogen produced by the three
electrolyzers is reduced by a third. The corresponding
evolution of the hydrogen mass flow rate leaving all the
electrolyzers is plotted in continous blue line in Figure 11.

The three simulated scenarios correspond to smooth
transients implying slow dynamics and to avoid numeri-
cal problems the valves are never completely closed.

4 Discussion and Further Work
In this paper, we illustrated how to use the latest version
of ThermoSysPro Modelica-based library, the so-called V-
4, in order to model a hydrogen platform where hydrogen
is produced by three electrolyzers, stored in a storage sta-
tion and consumed by a vehicle station. It turns out that
one advantage of using TSP is that some components of
TSP library can be reused and easily adapted to hydrogen

modeling. In our case study, we created two new compo-
nents in TSP (the electrolyzer and the storage station) and
adapted the other components (the compressor, the pres-
sure control valve and the heat exchanger).

Even if the results obtained so far are already extremely
encouraging and useful for the current studies, it is impor-
tant to keep in mind that the modeled components have
some limitations. For instance, the dynamics were ne-
glected for the pipes, the heat exchanger and the elec-
trolyzer. Also, the heat transfer equations might not be
adapted for fast transients. Moreover, even though the
last version of TSP can handle zero flow rate, this feature
has not been tested in the present work and fast closing
of valves may require solutions like multi-mode simula-
tion for instance (Bouskela and El Hefni 2014a; Bouskela
2016). In addition, some simplifications have been made
in the architecture of the gas plate with respect to a real
installation. For example, here we only modeled the elec-
trolyzer behaviour without considering the water purifica-
tion or gas separation. We also merged the various com-
pression and cooling stages into one single stage.

Considering the above mentioned limitations, we argue
that the model presented in this paper is good enough for
what it was meant for: model a hydrogen platform at a
large-scale with Modelica and show its potential appli-
cations. The model presented in this work shows how
this modeling approach can be used in the design phase
of an hydrogen platform (determine an adequate architec-
ture, study the dynamic response of the platform, etc.) and
could be used as well in the operation phase of the plat-
form. In this later case, the model developed would corre-
spond to an existing platform, and the results provided by
this model could be combined to on-site measurements in
order to provide accurate diagnosis. This diagnosis could
be performed using advanced mathematical methods that
allow to combine simulated and measured and that have
recently been adapted to Modelica models such as Data
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(a) Valve opening command

(b) Hydrogen storage inlet mass flow rate

(c) Hydrogen mass in the pressurized gas storage composed
of two bottles

Figure 10. Scenario 2 simulation results

Figure 11. Scenario 3 simulation results

Assimilation (Corona Mesa-Moles, Argaud, et al. 2019;
Corona Mesa-Moles, Henningsson, et al. 2021) or Data
Reconciliation (Bouskela, Jardin, et al. 2021).

In addition of the above-mentioned advanced uses of
the models, in future work, the model developed could be
used to optimize other systems of the hydrogen platform
such as the associated instrumentation and control (using
a linearized version of the model) or to perform technical-
economic optimization. This kind of approach could be
used as well to optimize the overall architecture of the hy-
drogen platform (number of electrolyzers, storage volume,
number of branches for the fuelling station, etc.). In ad-
dition, this model can be easily enriched to include for
example the source of energy used for the electrolyzers
(for instance wind or solar energy sources). It is however
important to keep in mind the possible simulation difficul-
ties that may occur when increasing the size of the model
or combining different kind of physics. Furthermore, the
TSP developments to correctly model hydrogen based sys-
tems could be continued. For example, the library can be
completed to model more detailed components and phys-
ical phenomena as needed or required to correctly model
the behaviour of the real system. To reach this goal it is
important to validate the models with experimental data,
however, as far as we know, there is no publicly available
data on real experiments to validate the developments pre-
sented in this article as a whole. For now, only validated
models in the literature can be considered, such as the fill-
ing stations models (Kuroki et al. 2021) which have been
validated with experimental data (SAE 2020).
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Appendices
4.1 Properties Equation Solutions
4.1.1 Specific Internal Energy (Equation 4)

u(v,T ) = u0 +a
(
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)
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4.1.2 Specific Enthalpy (Equation 7)
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4.1.3 Specific Entropy (Equation 9)
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Abstract
Dialectic mechanics was introduced as an approximative
modeling alternative to the classic Newtonian formulation
of mechanics. It allows for additional freedom in placing
a systems eigenvalues to facilitate simulation of systems,
that are not suitable for most integration methods, when
modeled according to the classic approach. The origi-
nal idea of dialectic mechanics enables the suppression of
high frequencies, but may still yield very stiff systems un-
suitable for explicit integration methods. An additional
term is added to enable real-time simulation with explicit
methods. The goal of this paper is an analysis of the result-
ing equations and a comparison to the classic Newtonian
formulation, aiming for an understanding of which appli-
cations most benefit from using dialectic mechanics.
Keywords: simulation, stiff systems, dialectic mechanics,
real-time

1 Introduction
Industrial robots are designed to move precisely and re-
peatably in the presence of external forces, leading to sys-
tems that are built stiffly. These properties pose problems
during simulation, since both within the robot itself as well
as in its interaction with the environment stiff springs are
an obvious choice for the modeler. While considering the
robots gear stiffness does not require special care, simu-
lation performance takes a significant hit, when the struc-
tural parts are explicitly modeled as flexible bodies with a
stiffness a few orders of magnitude higher.

Another challenge is the simulation of a process, that
requires the robot to touch a non-compliant object or en-
vironment. An example is the standard robot task of grip-
ping an workpiece and moving it. One way to include the
contact dynamics in the existing Modelica models would
be to model the contact between gripper and object as a
stiff spring and locking both parts together with friction.
As the simulation performance with realistic parameters
is unacceptable for most use cases of the model, approxi-
mations are usually necessary. Just reducing the stiffness
might get the simulation to run well, but has unwanted side
effects like larger oscillations and changed equilibriums.

Being able to simulate such processes in real-time
would enable model use cases like model predictive
control, virtual commissioning and Hardware-in-the-loop
testing. In these applications the bandwidth of interest is
often limited and well below the eigenfrequencies of very

elastic
kinetic

m > 0

TD ≥ 0

c > 0

del ≥ 0

d > 0

s,vel

vki, v̇ki

Figure 1. Concept drawing of damped dialectic mechanics. Ad-
ditionally to the first order filter a damper connects elastic and
kinetic domains.

stiff objects. Removing high frequency oscillations with
small amplitudes, that are not relevant to the models pur-
pose, is the main goal of dialectic mechanics.

1.1 Real-Time simulation of stiff systems
Stability is an essential property in both system dynam-
ics as well as solver methods. Even if a system is sta-
ble, simulating it stably require a careful choice of solver
method and step size. For a lot of solver methods stability
regions can be calculated, in which a systems eigenval-
ues have to be for a stable simulation. Although Higham
and Trefethen (1993) indicate looking at eigenvalues is
not enough in some cases, stability regions provide a use-
ful tool for most systems in explaining problems with
stiff systems. Higham and Trefethen (1993) summarized
the essence of stiffness of Ordinary Differential Equations
(ODE) as the case, when "Stability is more of a constraint
than accuracy". A remark earlier made by Hairer and
Wanner (1991) states, that "Stiff equations are problems
for which explicit methods don’t work". A remedy for
this is the usage of implicit methods as pointed out by e.g.
Dahmen and Reusken (2008). The authors mention back-
ward differentiation formula (BDF) methods as especially
useful, as well as higher order implicit Runge-Kutta meth-
ods.

When adding the requirements for real-time simulation,
the number of suitable integration methods reduces signif-
icantly. The analysis in Cellier and Kofman (2006) comes
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to the conclusion, that mostly low-order explicit methods
fulfill the need for predictable, bounded execution times.
This creates a dilemma when planning to simulate a stiff
system in real-time. Two ways around this fact proposed
in Cellier and Kofman (2006) are linear implicit methods
and multi-rate integration which requires slow and fast dy-
namics to be contained in discernible subsystems. Arnold,
Burgermeister, and Eichberger (2007) mention the possi-
bility of having dedicated real-time models neglecting stiff
terms. This comes with the disadvantage of having to keep
all models consistent.

1.2 Extending the equations of dialectic me-
chanics

Figure 1 shows a concept drawing of a dialectic mass-
spring-damper-system. Although it cannot be used to de-
rive the equations because of the way forces are split up
between components it is helpful to explain the general
idea of dialectic mechanics. The system is split into a
massless elastic part on top and a kinetic part below. Both
parts are connected by a first order filter that allows for
low frequency interaction, but reduces high frequency ef-
fects. In addition to the system introduced in Zimmer and
Oldemeyer (2023) a damper is placed between the elas-
tic and kinetic parts. The resulting behavior, beneficial for
real-time simulation as will be shown in the following sec-
tions, limits high-frequency energy transfer within the two
domains.

The additional damper extends the equations presented
in Zimmer and Oldemeyer (2023) and is marked with
squared brackets in Equation 1b:

ds
dt

= vel (1a)

fel =−cs+mg [−del (vel − vki)] (1b)
dvki

dt
=

(vel − vki)

TD
(1c)

fki =−m
dvki

dt
−dvki (1d)

fel + fki = 0 (1e)

1.3 Content

Based on the change to the dialectic equations this publi-
cation will analyze and illustrate the properties of damped
dialectic mechanics. In section 2 the eigenvalues of the
dialectic mass spring damper system are formulated and a
choice for the added damping parameter is derived. Sec-
tion 3 compares the properties of damped dialectic me-
chanics with the standard modeling approach, before sec-
tion 4 illustrates the contents of the previous sections with
simulation examples implemented in Modelica. In the end
section 5 provides a summary and an outlook towards re-
maining work.

1
TD

− 1
TD

Im(λ )

Re(λ )

Figure 2. Illustration of the eigenvalue limitation of dialectic
mechanics with added damping as shown by Equation 18. All
eigenvalues are transformed into the gray area.

2 Properties of damped dialectic me-
chanics

For an understanding of what effect damped dialectic me-
chanics has on a system’s dynamics Equation 1 can be
combined to form a second order differential equation.

(m+delTD) v̈ki +(d + cTD) v̇ki + cvki = 0 (2)

The eigenvalues λ ′ of the dialectic system are:

β
′ =

d + cTD

2(m+delTD)
(3a)

ω
′
d =

√√√√√β
′2 − c

m+delTD︸ ︷︷ ︸
D′

(3b)

λ
′ =−β

′±ω
′
d (3c)

Based on these equations it is interesting to derive limits,
within which the eigenvalues of the dialectic system lie.
The maximum absolute value of the eigenvalues is derived
differently depending on whether they are real-valued or
complex-valued.

∣∣λ ′∣∣=

∣∣∣−β

′−
√

D′
∣∣∣ , D′ ≥ 0 (4)∣∣∣−β

′± i
√
−D′

∣∣∣ , D′ < 0 (5)

Considering the assumptions made in Figure 1 the second
term of D′ is always positive, which in the first case leads
to the upper bound

β
′2 ≥ D′ (6)

With this upper bound Equation 4 is limited to∣∣∣−β
′−

√
D′
∣∣∣= ∣∣β ′∣∣+ ∣∣∣√D′

∣∣∣ (7)

≤
∣∣2β

′∣∣ (8)∣∣2β
′∣∣= d +TDc

m+delTD
(9)
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Figure 3. Dialectic transformation of eigenvalues for three different magnitudes of undamped eigenfrequecies. Original eigenval-
ues (�) are created by increasing damping in a system with a chosen undamped eigenfrequency. For each pair of original eigenvalues
the dialectic eigenvalues (×) are calculated based on Equation 3. The area to which transformed eigenvalues are constrained is
marked by the same gray (cut-off) semicircle in all figures corresponding to the chosen TD = 1×10−5 s. Each figure zooms in by a
factor of 10 when going from 3a to 3c.

In order to come to a useful conclusion, a suitable choice
for del is necessary. Setting del = d + cTD and using the
assumption m > 0 again, results in

d + cTD

m+delTD
=

d + cTD

m+(d + cTD)TD
(10)

<
d + cTD

(d + cTD)TD
(11)

d + cTD

(d + cTD)TD
=

1
TD

(12)

In the second case the absolute value simplifies to∣∣∣−β
′± i

√
−D′

∣∣∣=√
(−β ′)2 +

(√
−D′

)2
(13)

=

√
c

m+delTD
(14)

With the same choice for del as in the first case and the
strict inequalities m > 0 and dTD > 0 this results in an
upper bound for the absolute value of the eigenvalues√

c
m+delTD

=

√
c

m+(d + cTD)TD
(15)

<

√
c

cT 2
D

(16)√
c

cT 2
D
=

1
TD

(17)

As a result Equations 4 and 5 can be replaced by the sim-
ple limitation of the absolute value of the eigenvalues of

the dialectic system:∣∣λ ′∣∣< 1
TD

∀ m,d,c,TD > 0 (18)

Together with the fact that β ′ > 0, which can be seen from
Equation 3a, Equation 18 enables the user to specify a
half-circle in the left half-plane in which all eigenvalue
of the dialectic system lies. The imaginary axis is not part
of the half-circle. An illustration is presented in Figure 2.
The radius depends only on one design parameter TD, that
can be adjusted to fit the stability requirements for a cho-
sen solver-method and step size.

Figure 3 illustrates the qualitative difference in the di-
alectic modification of eigenvalues depending on the scale
of the original eigenvalues. The original eigenvalues in
Figure 3c, lying well within the gray area, are changed
relatively little. In the middle figure, where the original
eigenvalues are of the same magnitude as the limit, the
transformation is considerably more obvious. Note that all
original real-valued eigenvalues become complex-valued.
For the highest magnitude, depicted on the left, the trans-
formation is very aggressive and shoves all eigenvalues
into the same region of the limit semicircle.

Another interesting observation is visible in the en-
larged part of Figure 3a. The real part of the transformed
eigenvalues are all very similar and appear to be bounded
by

β
′ <

1
2TD

(19)

This is explained by the steps taken to get from Equation 8
to Equation 11. The omission of m goes from just leading
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to a valid inequality to being a decent approximation, if the
mass is far smaller than the rest of the denominator. This is
the case here, because of the fixed, high undamped eigen-
frequencies used to create the original eigenvalues. The
same is true for the inequality 18. Hence, when the un-
damped eigenfrequencies are increased even higher than
in the left picture, all transformed eigenvalues trend more
and more towards

λ
∗ =− 1

2TD
± i

√
3
4

1
TD

(20)

For systems with low stiffness and high damping however
this is not the case and there the transformed eigenvalues
stay real-valued and move towards

λ
† =− 1

2TD
± 1

2TD
(21)

Generally the properties of damped dialectic mechanics
discussed in this section are advantageous for real-time
simulation with explicit solvers. The semicircle boundary
provides a solid assumption about the placement of the
eigenvalues even in complex systems and is easily config-
ured by a single global parameter. A difference in mag-
nitude of 100 is enough to have a strong reduction in the
fast dynamics without changing the slow dynamics signif-
icantly. This behavior gets more pronounced, when there
are more orders of magnitude between fast and slow dy-
namics. Of course the user has to check in every applica-
tion, whether the model still fulfills its purpose with the
changes made to the system. This check, however, can be
conducted in an easy manner since the library enables the
global setting of TD. A corresponding sensitivity analysis
is thus quickly performed.

3 Comparison to the classic Newto-
nian formulation

Formulating the eigenvalues of a regular mass spring
damper system analogous to Equation 3 gives:

β =
d

2m
(22a)

ωd =

√
β 2 − c

m
(22b)

λ =−β ±ωd (22c)

A comparison of the eigenvalue equations shows that the
difference between Newton and dialectic mechanics can
be viewed as a modification of damping and mass, while
the stiffness remains untouched.

m′ = m+delTD (23a)
d′ = d + cTD (23b)
c′ = c (23c)

del = d + cTD (23d)

−3 −2 −1

0.5
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1.5

2

2.5

3

3.5

d

dd

TD

Re(λ )

Im(λ )explicit Euler
Runge-Kutta 2
Runge-Kutta 4

Figure 4. Changes in eigenvalues from original eigenvalues (×),
when increasing d (�) or increasing TD (+) and stability regions
of selected integration methods. Systems are simulated stably, if
their eigenvalues lie within the plotted contours.

Results of numerical experiments related to this observa-
tion will be presented in subsection 4.1. Notice that with-
out the additional damper introduced in Equation 1b the
modification is limited to the damping parameter.

The design parameters del and TD allow a modification
of the system dynamics without explicitly changing the
values of m and d. Thus effects like gravity can still be
calculated based on the original values. This is beneficial,
as it prevents also changing the steady state of the system.

An advantageous choice of the additional damper pa-
rameter is del = d + cTD, as shown in section 2. With this
choice the eigenvalues of a stiff system with little damping
are modified depending on the remaining design parame-
ter TD as shown in Figure 4. While the imaginary part
of the eigenvalues becomes smaller with every increase in
TD, the real parts absolute value increases at first before
decreasing again as the dialectic transformation gets more
and more aggressive. In general the transformed eigen-
values show a strong trend towards the included stability
regions of the solver methods.

Figure 4 also shows what happens, if just the damping
of the original system is increased. As can be seen from
Equation 23b for a single pair of eigenvalues this is equiv-
alent to the modification done by dialectic mechanics as
presented in Zimmer and Oldemeyer (2023) without the
additional damper. The values of d were chosen based on
the varied TD according to Equation 23b to get a better
comparison between the two approaches. Since the trans-
formed eigenvalues travel along the semicircle with radius
of the eigenfrequency of the original system, they circum-
vent the solver stability regions of the explicit solver meth-
ods. This modification however is sufficient for the use of
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m1 = 0.9kg m2 = 0.1kg
f

c

Figure 5. Two masses coupled by a spring as implemented by
example model in subsection 4.2

implicit methods, because it effectively lower the imagi-
nary part of the eigenvalues, thereby suppressing high fre-
quencies.

4 Modelica examples
In order to verify the theoretical results derived above, ex-
ample Modelica models are built with the dialectic planar
mechanics library introduced in Zimmer and Oldemeyer
(2023). The models are simulated using Dymola.

Equations 1b and 23d are added to the elastic compo-
nents, for which they are relevant.

4.1 Spring Damper System
Section 3 showed, that dialectic mechanics can be viewed
as a modification of the parameters of the Newton system,
for a simple mass spring damper system. To verify this the
system is built twice, once with the Modelica Standard Li-
brary (MSL) and once with the Dialectic Planar Mechan-
ics Library (DPM) introduced in Zimmer and Oldemeyer
(2023).

Table 1 lists the parameters used. The parameters on the
right have been calculated according to Equation 23. Both
models are simulated with the same solver settings using
an explicit fixed step solver. Dymola’s Linear Analysis
feature confirms, that both models have the same eigen-
values. The masses return to their equilibrium from the
same starting position.

When comparing the masses trajectory, a first order fil-
ter with time constant TD is required for the position s in
the dialectic model to receive the exact same output in
both models. This raises the question of whether to in-
clude first order filters in sensor implementations in the
DPM library.

Table 1. Parameterizations of Spring Damper models

DPM MSL

m = 1kg m = 2.1kg
d = 100 Ns

m d = 1100 Ns
m

c = 1×106 N
m c = 1×106 N

m
TD = 0.001s -

4.2 Moving two stiffly coupled masses
An example showing the capability of dialectic mechanics
to use stiff springs as a means for force transfer is shown
in Figure 5. Two bodies are connected by a stiff spring. A
force f of 10N is applied to m1 in such a way that it results

2.1 2.12 2.14 2.16 2.18 2.2
−6

−4

−2

0

2

4

6

Time in s

Fo
rc

e
in

N

Fc,MSL[N]

Fc,DPM[N]

Figure 6. Simulation results for DPM and MSL model of the
system in Figure 5. Plotted is an excerpt of the respective spring
forces beginning with a step of the applied force f from 10N
to 0N. Under the assumption that the modeler is mainly in-
terested in the macroscopic movement of the bodies, accuracy
in the high-frequency oscillations is not necessary to fulfill the
models purpose.

in a point-to-point motion of both bodies. The forces act-
ing between both bodies in the DPM model are compared
with the corresponding forces in the MSL model. Since
elastic and kinetic forces are separated in the DPM library,
the spring forces are calculated within the spring compo-
nent from the stiffness and the displacement. In contrast
to the previous example the MSL model is parameterized
with the same values as the DPM model. The stiffness c is
chosen together with the step size of the 3rd order Runge-
Kutta method to bring the MSL model close to the border
of the stability region. Figure 6 shows an excerpt of the
simulation results. The dialectic model reacts slower to
the start of the movement and oscillations of the force val-
ues die down much quicker towards a value of zero than
in the other model. Note that the oscillations in the MSL
model are damped as well despite there being no damp-
ing modeled. The damping is introduced by the solver
method itself as described by Cellier and Kofman (2006).
Looking at the mean value of the difference between both
signals, which is close to zero, verifies that the dialectic
model approximates the MSL model well by filtering the
high frequency oscillations. Although they have a high
amplitude, these oscillations have little effect on the large
movement of the two bodies. The oscillations are visible
in the difference between both bodies’ positions, but their
final positions are exactly the same.

After establishing the difference between MSL and
DPM models, it is time to make use of the advantages
of the DPM model and increase the stiffness beyond what
the MSL model could do without changing solver settings.
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Figure 7. Simulation results for DPM model of two stiffly coupled masses for different values of the spring stiffness. Plotted are
the differences of position between the two masses. The values have been scaled for the stiffer simulation runs by 1 ·106 and 1 ·1012

to have all curves in the same order of magnitude.

The order of magnitude of the spring stiffness is doubled
and tripled in successive simulation runs. While the MSL
model becomes unstable with these settings, the dialectic
simulates as expected as Figure 7 shows. The difference
in the masses positions gets smaller as expected, when in-
creasing the stiffness. In the plot this has been adjusted
by applying scaling in order to focus on the transient be-
havior. The small change in dynamics fits the observation
formulated in Equation 20. A TD of 0.001s leads to a limit
period of 0.00725s, which is roughly the distance that can
be measured between minima in Figure 7.

4.3 Performance considerations
The strength of damped dialectic mechanics mainly lies
in enabling the simulation with settings, that would oth-
erwise be unstable. More equations and variables lead
to a higher computational cost for function evaluations.
First observations indicate an increase of approximately
20% in the dialectic example models used in this section,
when compared to the MSL ones. Hence using the dialec-
tic model for systems suitable for simulation with classic
MSL models might slow down simulation.

Variable step solvers in combination with stiff sys-
tems benefit from using the dialectic approach by enabling
larger step sizes. Once the number of necessary function
evaluations decreases significantly, a simulation speed-up
is observed.

5 Discussion
Summing up the previous sections, damped dialectic me-
chanics appears to be a powerful tool for simulating
models including challenging eigendynamics with explicit
solvers. The central result is the guaranteed limit to the
absolute value of the transformed eigenvalues. Since this
limit is configured via a single parameter adaption to dif-
ferent use-cases should be straightforward. Heavily modi-
fying fast dynamics, while largely keeping slow dynamics
the same is another beneficial property. The integration
into the Dialectic Planar Mechanics library enables fur-
ther exploring example applications within existing tools.

Additional attention should be dedicated to more complex
systems and how dialectic mechanics works within higher
order or nonlinear systems.

For robotic applications a 3D implementation of dialec-
tic mechanics is necessary. Especially the inclusion of 3D
rotations might introduce different challenges, that require
addressing. Existing models will need to be rebuild for
use with dialectic mechanics. To avoid this the feasibility
of automatic model transformation or adapters between a
MSL and a DPM part in one model should be checked.
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Abstract
Cyber-physical systems are composed of a variety of el-
ements developed by different vendors that are often ge-
ographically distributed. Therefore, its development pro-
cess presents a double challenge: each element has to be
developed individually and, at the same time, a correct in-
teraction with the rest of the elements has to be ensured. In
a previous work, we proposed and developed an interface,
based on the non-proprietary Distributed Co-simulation
Protocol standard, to ease the interaction between these
elements. In this paper, we improve it to be applicable in
a variety of hardware platforms and we test its applicabil-
ity for the verification and validation process. To do so,
firstly, we prove that our interface is hardware agnostic,
demonstrating its easy implementation on different plat-
forms. Secondly, we test its applicability in different X-in-
the-Loop simulations. Finally, we also test its behaviour in
distributed real-time executions, a necessary requirement
for linking elements from different suppliers and helping
to preserve their Intellectual Property.
Keywords: Simulation interface, Real-time, Intellectual
Property protection, Distributed Co-Simulation Protocol,
Verification and Validation

1 Introduction
Model-based design (MBD) is a commonly used prac-
tice for the development of cyber-physical systems (CPS)
(Böhm et al. 2021). This process consists of developing
virtual models that reproduce certain behaviours of a real
system, thus avoiding the need to create costly physical
prototypes and facilitating the process of validation and
verification (Marwedel 2021). It is common that these
models are located in different modelling and simulation
(M&S) environments, either because they have been de-
veloped by different vendors and they want to preserve
confidentiality (Falcone and Garro 2019), or because it
is wanted to implement part of the model on a specific
hardware platform in order to verify its performance in
a specific environment (Alfalouji et al. 2023). Testing
the correct interaction between these elements at an early

stage of the development phase facilitates the process of
validation and verification of them. However, as stated
in (Attarzadeh-Niaki and Sander 2020), it is common to
solve the challenge of linking such elements using ad-hoc
methods. In (Segura, Poggi, and Barcena 2021) we ar-
gue the lack of a language and platform independent co-
simulation architecture to address this problem and in (Se-
gura, Poggi, and Barcena 2023) we propose a solution for
it, presenting an architecture based on the non-proprietary
Distributed Co-Simulation Protocol (DCP) standard. Nev-
ertheless, we did not dive into how it could be deployed on
different hardware platforms and thus, demonstrate how
the verification and validation process can be simplified. It
is worth mentioning that this implementation would save
time, resources and money, as it facilitates the coupling of
elements, saves displacements for integration testing and
helps to preserve Intellectual Property.

Accordingly, this article discusses three points. First,
we demonstrate the easy implementation of this interface
on a variety of hardware platforms, deploying it in generic
but different targeted hardware platforms such as, the Xil-
inx Zynq UltraScale+, Xilinx Zynq-7000 SoC ZC702,
NVIDIA Jetson Nano, and Raspberry-Pi. Second, taking
into account that the use of X-in-the-Loop (XIL) simu-
lations is widely extended in the development of CPSs,
we analyse the limitations of our interface in a real-time
communication between a development software such as
Simulink and the platforms mentioned above. Finally, in
order to show how our interface can solve the challenge
of communicating systems developed by geographically
distributed suppliers, we link the Xilinx Zynq-7000 SoC
ZC702 with the Raspberry-Pi in a real-time simulation us-
ing our interface via UDP communication.

The paper is structured as follows. Section 2 addresses
the need for a generic architecture for co-simulation. Sec-
tion 3 introduces the generic interface that enables per-
forming co-simulations between a variety of simulation
environments. Section 4 explains the tests that we ex-
ecuted to demonstrate the applicability of the interface.
Section 5 exposes the results of the conducted tests. Sec-
tion 6 analyses the results of the previous section. Finally,
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Section 7 presents the conclusions and future work.

2 Background and Related Work
Co-simulation is used to couple different simulation en-
vironments (e.g. a continuous and an event driven sim-
ulation environment) in order to use an appropriate sim-
ulation environment for each part of the system (Köh-
ler 2011). Co-simulation can also be used to link spa-
tially distributed models (Baumann et al. 2019). Addition-
ally, in the development and verification process of con-
trol systems, different co-simulation techniques referred
to as X-in-the-Loop (XIL) (Ivanov et al. 2019) are used,
encompassing the well-known Model-in-the-Loop (MIL),
Software-in-the-Loop (SIL), Processor-in-the-Loop (PIL),
or Hardware-in-the-Loop (HIL) techniques. Nevertheless,
despite being a widely used technique, coupling problems
often arise and there is no a generic methodology for link-
ing different simulation environments. This problem is
detected in several works, where different co-simulation
architectures are proposed to solve it. For instance, (Ha-
tledal et al. 2019) presents a language- and platform-
independent co-simulation framework based on the Func-
tional Mock-up Interface (FMI). Its major drawback is
that it has not considered the integration of real-time sys-
tems or hardware-in-the-loop simulations. In (Ivanov et
al. 2019) the authors propose an architecture applicable
in a variety of XIL approaches and it is intended to per-
form real-time and distributed co-simulations in different
geographical locations. However, they use a proprietary
architecture that is not enforced by any standard and there
is no mention of how it could be implemented in different
modelling and simulation environments, which suggests
that its integration is not straightforward. The architec-
ture proposed in (Attarzadeh-Niaki and Sander 2020) at-
tempts to avoid ad-hoc approaches and it is focused on
guaranteeing IP protection, however, no mention is made
on real-time applications.

Some standards also aim to manage distributed co-
simulations, such as Distributed Co-Simulation Protocol
(DCP) (Modelica Association 2023b). DCP is a non-
proprietary standard that aims to integrate real-time sys-
tems into co-simulation environments. It follows the
master-slave principle and it is independent of the com-
munication medium, as it works over common transport
protocols such as Bluetooth, UDP, or CAN. However, as
the DCP is a relatively new standard, it has a limited ap-
plicability in terms of simulation environments. Further-
more, its operation resides in encapsulating the systems
to be communicated, thus a particular DCP slave must be
created for each application.

In previous works, we propose (Segura, Poggi, and
Barcena 2021) and present (Segura, Poggi, and Barcena
2023), a co-simulation architecture, based on non-
proprietary standards, that facilitates coupling between
different M&S environments and hardware platforms. By
relying on a non-proprietary standard such as DCP, the ar-

chitecture is implementable without any intellectual prop-
erty restrictions and on top of that, it is compatible with
any other DCP slave. In comparison with the DCP, we
propose a generic co-simulation interface, i.e., the system
to be communicated is independent to the interface and
there is no need to develop a specific slave for each ap-
plication. In (Segura, Poggi, and Barcena 2023) we ex-
tended the scope of the DCP by creating a Simulink li-
brary, allowing Simulink to be easily integrated not only
into our architecture, but also into any DCP application.
Moreover, our architecture is agnostic to the simulation
platform and to the communication medium, which fa-
cilitates cross-platform migration, which is what we will
demonstrate in this article. Additionally, it enables real-
time co-simulation. This is boosted by the Simulink im-
plementation, that is, thanks to the automatic code gener-
ation capability of Simulink, we can convert our interface
into source code (e.g. C or C++) and execute it on a wide
variety of platforms, facilitating the validation of the sys-
tem to be developed. In this work we take advantage of
this capability by adapting the Simulink code developed
previously, so it can be directly implemented on different
platforms. Consequently, we provide a means to perform
real-time communication between the models executed on
such platforms.

As this paper deals with real-time (RT) simulations, it
is worth having a little background on the characteristics
of these systems. First, it is worth mentioning that, in
real-time systems, the instant in which the response oc-
curs is as important as the response itself (Kopetz 2011).
If the response does not arrive at a predefined time, called
deadline, the response may be unusable and may have ad-
verse consequences for the system. Another characteristic
of these systems is the so-called wall-clock. All compu-
tational elements involved in a real-time simulation must
have a common clock reference and be synchronised to it.
The higher the accuracy of this synchronisation, the bet-
ter the system will be able to carry out temporally more
constrained simulations. Determinism is another charac-
teristic of these systems, it indicates the reproducibility of
the system. That is, if we run several simulations of the
same system, where all its components start at the same
time and with the same starting conditions, the determin-
ism means ability of the system to replicate the results at
the same time instants.

On the other hand there are non real-time (NRT) simu-
lations. These are controlled simulations that usually re-
peat a read-compute-write sequence, where they first wait
for receiving data, then process it, and finally write the re-
sult at the output port. Once this cycle is finished, the next
cycle starts following the same sequence. Comparing with
real-time systems, they do not have to provide a tempo-
rally accurate response. It is to say, the message transport
latency can vary without affecting the behaviour of the
system. Simulink, for example, is a tool that by default
runs in NRT, however, it also has a tool called Simulink
Desktop Real-Time (MathWorks 2023), which allows us
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to synchronise the simulation with the wall-clock. This
tool has two modes of use: I/O mode and kernel mode.
The first one synchronises the I/O drivers with the real-
time clock and allows us to perform real-time executions
up to 1 kHz (1 ms sampling time), this is the one that we
use in this work.

3 Proposed interface
The interface we propose is based on the non-proprietary
DCP standard, thus it must be configured as a DCP slave.
Nevertheless, as depicted in Figure 1, its behaviour is not
that of a conventional DCP slave. Our implementation
focuses on transmitting information from one environ-
ment to another and it is completely model-independent.
Whereas in conventional usage, the slave wraps the model
(Krammer et al. 2020), having to link them internally by
hand. From a practical point of view, there is a big differ-
ence, since in the original paradigm a specific DCP slave
has to be developed for each application, whereas our pro-
posal is designed to indicate only the number of input/out-
puts plus an easy configuration of them. To achieve this in-
dependence between the model and the DCP slave, apart
from implementing a specific DCP slave, we also devel-
oped a series of peripheral modules, which are explained
in (Segura, Poggi, and Barcena 2023). Thus, our inter-
face is composed of these modules and a DCP slave. Our
goal in developing this interface as a Simulink library, was
to take advantage of its tools so that we could generate
C/C++ code for our interface and implement it on a variety
of hardware platforms without additional modifications.

3.1 Configuration of the interface
We have advanced that the configuration of the interface
is based on the DCP standard, therefore, we will use the
DCP standard specification document (Modelica Associa-
tion 2023a) for the explanations of this section. The refer-
ences to specific clauses of the standard will be in italics
to better guide the reader. In this section we will only fo-
cus on the essential parameters (in monospace font) to de-
fine our interface, however, there are also other optionally

modifiable parameters whose explanation can be found
in the standard specification document. Figure 2 will be
helpful to understand certain concepts.

Some parameters are set in each slave, while others are
set in the master. The slaves are limited to set their inter-
nal parameters (see 5.4 Definition of dcpSlaveDescription
Element, pp. 80-82), of which, the essential parameters
for configuring the interface are defined by the following
elements:

• Time resolution (5.9 Definition of TimeRes Element,
pp. 87-88). It defines one atomic step of the
slave and it is represented by an element that con-
tains a list of permissible single time resolutions or
a list of resolution ranges. To set a single reso-
lution, that is what we are going to do next, we
have to set two sub-parameters: numerator and
denominator. Where the numerator divided
by the denominator represents the time resolu-
tion of the slave.

• Transport protocol (5.11 Definition of TransportPro-
tocols Element, p. 88). The DCP supports multiple
transport protocols and this element is used to store
their specific settings. For instance, if UDP transport
protocol is used, this element must indicate it and
contain the host and port data of the slave.

• Variables (5.13 Definition of Variables Element,
pp. 92-98). This element contains the in-
formation about the variables of the slave, they
can be either an Input, an Output, a Parame-
ter, or a Structural Parameter. Among its sub-
parameters, the indispensable ones to configure our
interface are: valueReference, dataType, and
declaredType. valueReference is the iden-
tifier of each variable and its value must be unique,
in Figure 2 it can be seen how each I/O of each slave
has different valueReference (vr) values. With
dataType we declare the data type of the variable,

Model

DCP Slave I/O

(a) Original DCP Slave design representation. Internally
linked DCP Slave and Model. One specific DCP Slave for
each Model.

Model

DCP Slave I/OI/O

(b) Proposed interface. New DCP Slave design. Externally
linked DCP Slave and Model. The same slave with easily
configurable Input/Outputs.

Figure 1. Comparison between original DCP Slave design and our interface.
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see Table 174: Data type elements to know the ac-
cepted data types by the DCP standard. Finally, with
declaredType we indicate whether the variable
is used as an input/output that connects to another
slave or as an input/output that connects to an exter-
nal model. For this purpose, we have two predefined
options: default, for communication between slaves,
and interface for communication with the models.

As the task of the interface is to communicate differ-
ent co-simulation environments, inputs and outputs will
always have to be declared in pairs. Each pair will be
internally linked in an automatic way as long as their
valueReferences are consecutive. In other words,
the valueReference parameters of an input-output
pair must be consecutive. These values shall consist of
the pairs 1-2, 3-4, ..., regardless of which of the two is
the value of the input and which of the output. Addi-
tionally, if an output of one interface communicates with
an input of another interface, both must have the same
valueReference. This is shown in Figure 2. In this
way we determine the link between interfaces and certify
a correct communication.

The master, on the other hand, configures how the in-
puts and outputs of the slaves should communicate with
each other. That is to say, it indicates to each slave where
the inputs corresponding to its outputs are and vice versa;
in addition, it establishes the sending frequency of each
output. To do this, the following parameters must be con-
figured:

• Step Size. The master defines the step size of each
output of all slaves. The step size is a multiple of
the time resolution parameter mentioned in the slave
configuration. That is, the step size of each output is
defined by the time resolution of its slave multiplied
by the step parameter.

• Data Identifier (data_id). When exchanging infor-
mation between slaves, Outputs are communicated to
Inputs via DAT_input_output PDUs. Thanks to the
data_id parameter, the values of several outputs of
a slave can be grouped in a single DAT_input_output
PDU. Only outputs that have the same configuration,
i.e. sender, receiver and step size, can be grouped
together.

4 Methodology
In this section we explain the experiments that we per-
formed to show how the architecture presented in (Se-
gura, Poggi, and Barcena 2021) is applicable on several
hardware platforms, and how it is applicable on a dis-
tributed real-time co-simulation application. To do so, we
apply it on four different platforms, which are introduced
in subsection 4.1. As proof-of-concept use case, we use a
closed-loop control model explained in subsection 4.2. In
subsection 4.3 we present the co-simulation scenarios we

use to demonstrate the applicability of the interface. Fi-
nally, in subsection 4.4, we explain how to configure our
generic co-simulation interface for this particular use case.

4.1 Hardware platforms
In order to test the applicability of our architecture, and
thus of our interface, it has been decided to work with
hardware platforms designed for different purposes, con-
cretely we used:

• Hardware platforms with integrated FPGA, such as
the Xilinx Zynq UltraScale+ and the Xilinx Zynq-
7000 SoC ZC702.

• Hardware platforms with integrated GPU, such as the
NVIDIA Jetson Nano.

• Generic hardware platforms such as the Raspberry Pi
3B, which is very accessible and widely used.

By working with platforms that integrate FPGAs or
GPUs, we are able to introduce these technologies into
co-simulations, expanding our design to new applications,
such as simulation accelerators, artificial intelligence, or
image processing.

However, for now our interface has two limitations.
Firstly, it is only implemented to run on soft real-time
(SRT) and hard real-time (HRT) operation modes, the
non-real-time (NRT) operation mode has not yet been im-
plemented. Therefore, as both implemented modes re-
quire a common clock reference shared by all computing
elements, the interface must be implemented in an envi-
ronment that can provide it. Secondly, for the moment,
we have only implemented UDP communication, so the
boards must have an Ethernet port.

4.2 Use case: control of a closed-loop system
As was done in (Segura, Poggi, and Barcena 2023), as
a proof of concept we use a closed-loop control system.
This system consists of two parts: a plant, which is mod-
eled as a discrete time first-order system, represented by
Equation 1; and a PI control algorithm, represented by
Equation 2. The simulation analysis is done by observing
the time evolution of the closed-loop system response to a
step input, comparing both the transient and steady-state
parts. It is worth pointing out that this work is focused
on testing the capability of the interface to communicate
distributed systems in real-time. Therefore, in order to
facilitate the demonstration process, we have chosen this
simple use case.

y(k) = a · y(k−1)+b ·u(k) (1)

Where:

• u is the control signal.

• y is the plant output or feedback signal.
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• a is a constant parameter, and it was permanently set
to a = 0.99.

• b is a constant parameter, and it was permanently set
to b = 0.01.

u(k) =
[

Kp +KiTs
1

z−1

]
e(k) (2)

Where:

• u is the control signal.

• Kp is the proportional gain coefficient.

• Ki is the integral gain coefficient.

• Ts is the sampling period.

• e(k) = r(k)− y(k) is the error signal.

• r(k) is the target reference signal.

• z is the unit delay operator.

4.3 Co-simulation scenarios
In (Segura, Poggi, and Barcena 2023) we presented dif-
ferent scenarios to explain the development process of the
interface. We started with a scenario composed only of
Simulink and ended up with a scenario where the control
algorithm was running in an UltraScale+ and the plant in
Simulink. However, in order to implement the control sub-
system on the UltraScale+ board, we manually created a
DCP slave using C++ code that was specifically adapted
to work on this board and be compatible with the control
algorithm. Now we want to progress in the development

of the interface and test its applicability. To do so, follow-
ing the MBD methodology, we have automatically gen-
erated the interface code from the Simulink model, using
the Embedded Coder tool. In order to be able to generate
code correctly, we adapted the Simulink model by adding
blocks and creating functions compatible with this gener-
ation. After that, we were able to generate directly imple-
mentable code, without the need for any changes, in any
of the platforms presented in subsection 4.1.

Figure 2 represents the co-simulation scenario. In it, we
can see the two models that compose the use case, defined
in the subsection 4.2, located in different simulation envi-
ronments and communicated by two entities/slaves of our
interface. On the left we can see the Model 1, where the
control algorithm is located. On the right, we can see the
Model 2, which is composed of the plant and a synchro-
nisation mechanism. The latter has the function of ensur-
ing a controlled start of closed-loop control applications.
Guaranteeing identical starts in all executions help us ana-
lyze the interface behaviour. For a detailed description of
its operation refer to (Segura, Poggi, and Barcena 2023).
The communication medium used to link both systems is
UDP.

To demonstrate the easy implementation capability of
the interface on different hardware platforms and, at the
same time, to analyse its scope for performing real-time
XIL simulations, we have considered the following sce-
narios:

• Scenario 1.A: Control algorithm and interface in the
ARM-based processor of the ZC702 and Plant in
Simulink.

• Scenario 1.B: Control algorithm and interface in the
ARM-based processor of the UltraScale+ and Plant
in Simulink.

Interface Master (ID 0)
Host: 192.168.0.20

Port: 8080

Ubuntu 18.04

dataId_cntrl = 1

single

dataId_enable = 3

boolean

dataId_fdb = 2

single

Co-simulation platform 2

Model 2:
Plant & Sync. 

algorithm

dataId_interface = 0

Interface Slave 2 (ID 2)
Host: 192.168.0.10
Port: 8082

in_cntrl
(vr = 2)

out_enable
(vr = 6)

in_enable
(vr = 5)

out_cntrl
(vr = 1)

out_fdb
(vr = 3)

in_fdb
(vr = 4)

Co-simulation platform 1

Model 1:
Control 

Algorithm

dataId_interface = 0

Interface Slave 1 (ID 1)
Host: 192.168.0.30
Port: 8081

in_cntrl
(vr = 1)

out_enable
(vr = 5)

in_enable
(vr = 6)

out_cntrl
(vr = 2)

out_fdb
(vr = 4)

in_fdb
(vr = 3)

Figure 2. Interface configuration of the employed use case.
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• Scenario 2: Control algorithm and interface in the
ARM-based processor of the Jetson Nano and Plant
in Simulink.

• Scenario 3: Control algorithm and interface in the
CPU of the Raspberry-Pi and Plant in Simulink.

• Scenario 4.A: Control algorithm in the FPGA of the
ZC702, interface in the ARM-based processor of the
ZC702, and Plant in Simulink.

• Scenario 4.B: Control algorithm in the FPGA of the
UltraScale+, interface in the ARM-based processor
of the UltraScale+, and Plant in Simulink.

Additionally, to demonstrate its applicability in dis-
tributed real-time executions, we have proposed the fol-
lowing scenario:

• Scenario 5: Control algorithm in the FPGA of the
ZC702, interface in the ARM-based processor of the
ZC702, and Plant in the CPU of the Raspberry-Pi,
see Figure 3.

Figure 3. Scenario 5.

It is worth to mention that in all scenarios we have kept
the same interface configuration (see subsection 4.4), thus
facilitating the interoperability between simulation tools.

As we mentioned in subsection 4.1, our interface is lim-
ited to work in real-time operation mode, therefore all the
scenarios have to be executed in real-time. The DCP stan-
dard defines that in its real-time mode, all components
within the simulation must be synchronised with POSIX
time. That is to say, they have to synchronise their clock
by reference to 1 January 1970, 00:00:00 UTC. Conse-
quently, we have to make all the components run in an
environment that supports it and make them synchronised
with each other. To do this possible on the platforms, we
have installed an Ubuntu operating system on the CPUs
of all of them, whose clock will be synchronised with
the POSIX time. Therefore, the interface and the system
(plant or controller) will run on it. Regarding Simulink,

as explained above, by default it works in non-real-time
mode. However, we will use its Simulink Desktop Real-
Time tool in I/O mode, which allows us to synchronise the
UDP ports with the wall-clock. This way, it will be also be
synchronised to the POSIX time. It should be noted that
we will run Simulink on a conventional PC that contains a
6 core Intel Core i7 CPU processor and using a Windows
10 operating system.

The use of the interface must not alter the behaviour
of the closed-loop system in any of the scenarios. There-
fore, we need a reference in order to be compared with
the scenarios. To this end, using the Embedded Coder
and HDL Coder tools provided by Simulink, we con-
ducted Processor-in-the-Loop (PIL) and FPGA-in-the-
Loop (FIL) simulations equivalent to the scenarios. In this
way, we obtained a reference response for each of the sce-
narios. In other words, for scenarios 1.A, 1.B, 2, and 3 we
performed PIL simulations, one with each hardware plat-
form. While for scenarios 4.A and 4.B we performed FIL
simulations. Each of these simulations are used as a ref-
erence for their respective scenario. Regarding scenario 5,
we compare its responses to those of the system running
entirely in Simulink.

4.4 Interface and simulations configuration
Two types of configurations were applied to conduct the
experiment: the configuration of the models to be simu-
lated and the configuration of the interface.

Regarding the configuration of the models, in (Segura,
Poggi, and Barcena 2023) we saw that the behaviour of the
interface varied depending on the execution time, there-
fore we performed the tests using six different configura-
tions. In the current article, instead, we are going to focus
on working only with the most limiting configuration that
we encountered, which is shown at Table 1.

Configuration I Ts = 10 ms Kp = 10
Ki = 10

Table 1. Configuration for the simulation

Regarding the configuration of the co-simulation inter-
face. In subsection 3.1 we explain the indispensable pa-
rameters to be configured. Now, we specify which values
we chose for our particular use case:

• Time resolution. With this parameter we indicate
under which step-size the state machine of the in-
terface is executed. We set it to the lowest resolu-
tion that Simulink Desktop Real-Time allows when
working in I/O mode. Therefore, we set it to 1ms:
numerator = 1 and denominator = 1000. It is also
worth mentioning that the step-size of the interface
must be lower than that of the model (Segura, Poggi,
and Barcena 2023).

• Transport protocol. As mentioned, we use UDP. In
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the Figure 2 we can see the chosen host and port val-
ues.

• Variables. We declared 3 inputs and 3 outputs to each
interface. In the Figure 2 we can see the data types
and the value reference of each one.

• Data identifier. In the Figure 2 we can see that each
slave has been assigned four data_id. This means
that each variable that is transmitted between slaves
has grouped independently, while the outputs that go
from the interfaces to each of the models have been
grouped together.

• Step size. We assigned a step value of 3 to the three
data_ids that are transmitted between slaves (i.e.
dataId_cntrl, dataId_fdb, and dataId_enable) and a
step value of 10 to dataId_interface. With this config-
uration we could have assigned the same data_id to
the three signals that are transmitted between slaves,
but this makes it easier in case of future modifica-
tions.

5 Results
In this section, we present the simulation results of the sce-
narios explained in subsection 4.3. They will be discussed
in section 6. In order to prove that the system behaves
identically every execution, as done in (Segura, Poggi, and
Barcena 2023), we perform 25 executions of each sce-
nario. Between each run, the system is reset in order to
ensure identical starting conditions in each of them. Sub-
sequently, we compare the time response of the y(k) out-
put of each scenario with the respective reference. From
this comparison we obtain the error, which is calculated
by means of Equation 3.

err =

√
1
N

N

∑
k=1

[y(k)− yre f (k)]2 (3)

where N represent the steps executed in a simulation,
y(k) is the response of the closed-loop system at step k
under a specific scenario, and yre f (k) is the response of
the closed-loop system under the corresponding reference.
Table 2 reports the maximum, the minimum, the mean and
the standard deviation of the error over the 25 repetitions.

Figure 4 helps us understand the results of the table. It
comprises two graphs, each comparing the response y(k)
of a scenario (red line) with its corresponding reference
(green line). There are 25 red lines in each graph, corre-
sponding to the 25 repetitions that were executed for each
configuration. We have decided to show only these two
scenarios because they are sufficient to explain the behav-
ior of the rest.

6 Results Analysis
There are three topics we have discussed in this article, so
this analysis will also be divided into three parts.

Scenario 1.A - PIL in ZC702
max = 0.23479
mean = 0.12957

min = 0.042779
sd = 0.05131

Scenario 1.B - PIL in UltraScale+
max = 0.21266
mean = 0.13098

min = 0.024876
sd = 0.048035

Scenario 2 - PIL in Jetson Nano
max = 0.20944
mean = 0.11274

min = 0.030067
sd = 0.043965

Scenario 3 - PIL in RaspberryPi
max = 0.20592
mean = 0.13517

min = 0.050682
sd = 0.04197

Scenario 4.A - FIL in ZC702
max = 0.14277
mean = 0.04963

min = 0
sd = 0.0404

Scenario 4.B - FIL in UltraScale+
max = 0.12031
mean = 0.051518

min = 0
sd = 0.036303

Scenario 5 - Distributed co-simulation
max = 0
mean = 0

min = 0
sd = 0

Table 2. Comparison between MathWorks PIL/FIL
solution and our Interface.

The first point focuses on evaluate the viability and ease
of implementation of the interface in a variety of hardware
platforms. Since we developed it in Simulink and adapted
all its functions to be compatible with the generation of
generic C/C++ code, we were able to implement it easily
on all the platforms mentioned in subsection 4.1. This way
we demonstrate that the interface can be migrated between
platforms without any extra effort.

As for our second point, we evaluated the viability
of the interface to perform real-time executions between
Simulink and the platforms described in subsection 4.1.
In Table 2, from Scenario 1A to Scenario 4.B, we find the
results of the tests carried out for this point. Addition-
ally, Figure 4a displays graphically the results obtained in
Scenario 1A. As the graphs obtained in Scenarios 1A to
4B are very similar, we decided to omit the rest and dis-
play only this one to assist in the interpretation of Table 2.
Analysing this table, we observe that there is an error in
every scenario. Simplifying the results, we can say that the
mean error of PIL simulations (from Scenarios 1A to 3) is
in the order of 0.215 units (±0.02), whereas the mean er-
ror of FIL simulations (Scenarios 4A and 4B) is about 0.13
units (±0.01). This error occurs because the PIL and FIL
simulations made with MathWorks tools exhibit identical
behaviour in each run, while our simulations vary in each
of the 25 runs. This can be seen in Figure 4a, where there
is single green line (corresponding to the MathWorks re-
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(b) Scenario 5. The responses overlap.

Figure 4. Comparison of the responses of Scenarios 1A and 5 with their respective References.

sponse) and multiple red lines (each corresponding to one
of the 25 tests). Nevertheless, it can also be seen that this
error is focused in the transient state, while in the steady
state it is minimum. In fact, in the steady state, from sec-
ond 0.4 onwards, the mean error is of the order of 0.019
units (±0.008), with a standard deviation of another 0.019
units (±0.007).

The appearance of this error means that our solution
is not deterministic, which is an indispensable quality in
the real-time executions for the verification and validation
processes of the CPS. Therefore, we can say that our in-
terface is not suitable for linking Simulink and hardware
platforms in real-time. However, we did not test how our
interface would behave with these scenarios working in
non real-time mode, that is, following the controlled read-
compute-write sequence explained previously. In fact, this
is the way that MathWorks perform PIL and FIL simula-
tions. Nevertheless, as explained before, this is an opera-
tion mode that we have yet to implement.

Analysing the cause of this non-deterministic response,
we have not been able to link Simulink simulation time
with POSIX time. In other words, POSIX time is con-
stantly moving forward, and in a period of time, the simu-
lation time get blocked and it does not advance. Figure 5
demonstrates this behaviour, where the graph instead of
showing a perfect diagonal line shows "jumps", which are
sometimes more pronounced. As we discussed previously,
real-time systems must guarantee a response every prede-
fined period and this breaks do not allow it. This can be
caused, for instance, due to an interruption in the comput-
ing platform. This is the reason why we have not been
able to benefit from all the power that the Simulink Desk-
top Real-Time tool provides.

The effect of this desynchronization in our scenarios is
that the plant, which is executing in Simulink, stops run-
ning for an indefinite period; while the control algorithm
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Figure 5. Desynchronisation between POSIX and
Simulation time

on the hardware platform continues to run. During this
period, the control will not receive updated input values
from the plant, however they will be processed, provoking
incorrect output control signals. When the plant resumes
running, it reads the last of this unwanted values, resulting
in an incorrect feedback value being sent to the controller.
This way, a single desynchronization in the execution can
significantly impact the system’s behavior, leading to non-
deterministic behavior. It is worth mentioning that the
faster the system runs, the smaller its execution steps will
be. As a result, a pause in the simulation time will involve
more simulation steps, creating a more adverse effect on
the system’s response.

Finally, it remains to analyse the response of our im-
plementation in real-time distributed applications, i.e., the
Figure 4b. Contrary to what happens in the previous tests,
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we can see how the 25 red lines are overlapped. On top of
that, they have the same behaviour as the reference (green
line). The fact that we obtained identical results in all ex-
ecutions means a deterministic simulation. Therefore, we
can be assured that our interface is suitable for real-time
distributed simulations. At the same time, these results
demonstrate that the problem we had in linking Simulink
with hardware platforms lies in the fact we were not able
to link Simulink with the wall-clock correctly.

7 Conclusions and future work
In this paper we present an empirical demonstration of
the applicability of the previously developed generic co-
simulation interface. Specifically, we demonstrated i) its
easy implementation on a variety of hardware platforms,
and ii) how it can be used in real-time distributed sim-
ulations. Both capabilities are very useful in the pro-
cess of verification and validation of cyber-physical sys-
tems, especially in those whose components are devel-
oped by different suppliers; in those where the system
is split into smaller modules to spread the computational
load across different processors; or in those where the in-
tegration of different simulators into a single system is re-
quired. Therefore our interface could save time, resources
and money, as it facilitates coupling of elements, saves
displacements for integration testing and helps to preserve
Intellectual Property.

To test the interface we deployed it in different hard-
ware boards and performed a closed-loop simulation be-
tween them, obtaining reliable responses. Consistent
with the MBD methodology, as we have developed it in
Simulink and take advantage of its code generation capa-
bilities, our interface is easily implementable in a wide
variety of simulation environments. Additionally, as our
interface is based on the non-proprietary DCP standard, it
is fully compatible with any other DCP slave.

Looking to extend our work to the future, in order to
improve the linking capability to Simulink, we want to
develop the non-real-time simulation mode. Additionally
we have planned to test the applicability of this interface in
a more complex use case involving hardware-in-the-loop
simulations.
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Abstract
A key feature of the Modelica language is its object-
oriented nature: components are instances of classes and
they can aggregate other components, so that extremely
large models can be efficiently designed as “trees of compo-
nents”. However, the structural analysis of Modelica mod-
els, a necessary step for generating simulation code, often
relies on the flattening of this hierarchical structure, which
undermines the scalability of the language and results in
widely-used Modelica tools not being able to compile and
simulate such large models.

In this paper, we propose a novel method for the modular
structural analysis of Modelica models. An adaptation of
Pryce’s Sigma-method for non-square DAE systems, along
with a carefully crafted notion of component interface,
make it possible to fully exploit the object tree structure of a
model. The structural analysis of a component class can be
performed once and for all, only requiring the information
provided by the interface of its child components. The
resulting method alleviates the exponential computation
costs that can be yielded by model flattening; hence, its
scalability makes it ideally suited for the modeling and
simulation of large cyber-physical systems.
Keywords: DAE, Modelica, object-oriented modeling, in-
dex reduction, structural analysis, linear programming,
interface theory, difference bound matrices

1 Introduction
System modeling tools are key to the engineering of safe
and efficient Cyber-Physical Systems (CPS). Although
ODE-based languages and tools, such as Simulink (Math-
Works, Inc. 1994–2023), are widely used in industry, there
are two main reasons why DAE-based modeling is best
suited to the modeling of such systems: it enables a mod-
eling based on first principles of the physics; it is physics-
agnostic, and consequently accomodates arbitrary combi-
nations of physics (mechanics, electrokinetics, hydraulics,
thermodynamics, chemical reactions, etc.).

The pioneering work by Hilding Elmqvist (Elmqvist
1978) led to the emergence of the Modelica community in
the 1990s, and the DAE-based modeling language of the
same name (Modelica Association 2023) has become a de
facto standard, with its object-oriented nature enabling a
component-based modeling style. Its combined use with

the port-Hamiltonian paradigm (Rashad et al. 2020) re-
sults in a methodology that is instrumental to the scalable
modeling of large systems, additionally ensuring that the
model architecture preserves the system architecture, in
stark contrast to ODE-based modeling (Benveniste, Cail-
laud, Elmqvist, et al. 2019; Benveniste, Caillaud, and Ma-
landain 2022).

Consequently, DAE-based modeling requires that Mod-
elica tools properly scale up to very large models. However,
although Modelica enables the modeling of extremely large
systems, its implementations (Dassault Systèmes 2002–
2023; Fritzson et al. 2020) are often not capable of com-
piling and simulating such large models. Scaling has been
and still is a subject for sustained effort by the Modelica
community (Casella and Guironnet 2021), and although
HPC issues belong to the landscape (Braun, Casella, and
Bachmann 2017), a more specific issue is of uttermost
importance for the Modelica language.

In the first steps of the compilation of a Modelica model,
its hierarchical structure is flattened, thanks to a recursive
syntactic inlining of the objects composing it.1 The re-
sult of this flattening process is an unstructured DAE that
can be exponentially larger than the source model. The
structural analyses that are required for the generation of
simulation code (namely, the index reduction of the DAE
system, followed by a block-triangular form transformation
of the reduced-index system) are then performed on this
monolithic DAE model. As the compilation process does
not fully take advantage of the hierarchical nature of the
models it has to handle, the modeling capabilities offered
by the Modelica language are undermined by performance
issues on the structural analysis itself (Höger 2015; Höger
2019). Additionally, model flattening poses a challenge
when attempting to extend DAE-based modeling to higher-
order modeling or dynamically changing systems (Broman
and Fritzson 2008; Broman 2010; Broman 2021).

In this paper, a new modular structural analysis algo-
rithm is proposed that takes full advantage of the object
tree structure of a DAE model. The bedrock of this method
is a novel concept of structural analysis-aware interface
for components. The essence of a component interface is to
capture the necessary information about a Modelica class
that needs to be exposed, in order to perform the structural

1See (Modelica Association 2023), Section 5.6 for a complete defini-
tion of the flattening process.
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analysis of a component comprizing instances of the for-
mer class, while hiding away useless information regarding
the equations and all protected features it may contain.

In order to compute a component interface, one has to be
able to perform the structural analysis of the possibly non-
square DAE system that this component encapsulates, and
to use the interfaces of the components it aggregates in this
analysis. We base our algorithm on Pryce’s Σ-method for
index reduction (Pryce 2001), which essentially consists in
the successive solving of two dual linear integer programs.
The striking difference with Pryce’s algorithm is that these
problems are solved by parts, in a scalable manner.

Putting all of this together, it is then possible to per-
form a modular structural analysis, in which structural
analysis is performed at the class level, and the results
can then be instantiated for each component of the system
model, knowing its context. Hence, structural information
at the system level is derived from composing the result
of component-level analysis. Modular structural analysis
yields huge gains in terms of memory usage and computa-
tional costs, as the analysis of a single large-scale DAE is
replaced with that of multiple smaller subsystems. More-
over, the analysis is performed at the class level, meaning
that a single structural analysis is needed for all system
components that are instances of the same class.

To the best of our knowledge, only (Höger 2015) ad-
dresses the specific issue of performing the structural analy-
sis of a hierarchical model; Section 2.1 of this paper shows
the approach proposed by Höger and explains why we
regard it as an efficient but still partial solution. On the re-
lated subject of sorting equations, attention is paid in (Zim-
mermann, Fernández, and Kofman 2019) to methods that
avoid unrolling loops and expanding arrays when sorting
equations, an issue targeting the same overall objective as
both (Höger 2015; Höger 2019) and the present work.

Section 2 introduces two simple examples of DAE sys-
tems, to be used for illustrative purposes, and explains the
modular approach from (Höger 2015) on one of them. In
Section 3, we provide background information on structural
analysis, which includes the Σ-method used to perform in-
dex reduction.

In Section 4, we introduce Σ-systems as an abstraction
of DAE systems suitable for structural analysis. Σ-systems
include the linear programming problems associated with
the Σ-method and the structural description of the BTF.
They also provide a notion of composition that abstracts
the composition of DAE systems. This formalization leads
us to the main contribution of this paper, presented in
Section 5, where we propose the notion of Σ-interface. A
Σ-interface exposes the necessary information to assemble
partial structural analyses into a system-level structural
analysis for a DAE system. We discuss how Σ-interfaces
can reduce the computational cost of structural analysis for
large systems.

Finally, Section 6 introduces our prototype implementa-
tion of the resulting modular method, then presents numer-
ical applications to both examples presented in Section 2.

2 Examples
In this section, we develop two illustrative examples: a
slightly modified version of the chained circuit proposed
by C. Höger in (Höger 2015), and a homemade chained
mass-and-spring system. Both will be used to illustrate how
our approach changes and improves the structural analysis
process of models where several instances of a same class
are connected, while also highlighting different features of
our algorithm.

2.1 A chained circuit

2.1.1 The circuit model

This example is a minor modification (with a second induc-
tance added) of the one developed in (Höger 2015). The
following text is borrowed verbatim from this reference:

The Modelica representation of the circuit [...]
consists of a name (Circuit), declarations of
parameters (n), unknowns (u and i) and sub-
components (c). The physical behavior is de-
fined directly by multiple equations, including
the description of sub-circuit interconnection.
Without knowledge about the internal structure
of SubCircuit it is possible to use it inside the
larger circuit, as long as it provides the corre-
sponding interface (i.e. variables u and i). This
composition of models is an easy and safe way
to create more complex models out of simpler
building blocks and is the very foundation of
object-oriented modeling.

The Circuit and SubCircuit Modelica codes and
schematics are given in Fig. 1 and 2 respectively.

2.1.2 The approach by C. Höger

While the flattening of the Circuit model is linear with
n, the cost of the structural analysis of the resulting model
is super-linear, thus preventing the classical approach from
properly scaling up. In (Höger 2015), important contribu-
tions are proposed to cope with this problem. As far as
we know, this paper is the first one pointing this issue very
clearly. A faster method is proposed to perform the struc-
tural analysis of a hierarchical model, involving scoping
and hiding.

This method is based on Pryce’s Σ-method (Pryce 2001),
which is explained in Section 3. The Σ-method involves
solving a pair of dual Linear Programming problems (pri-
mal and dual), using a specific iterative algorithm for the
dual. In Theorem 1 of (Höger 2015), the author provides
a complexity argument to support the claim that the dual
problem is not a bottleneck on its own.2 Hence, the author
focuses on the primal problem, for which a decomposition
method is proposed.

2Our own numerical experiments confirm this observation.
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model Circuit
parameter Integer n = 10;
SubCircuit[n] c;
Real u,i;

equation
c[1].i = i;
u = sin(time);
for j in 2:n loop

c[j].i = c[j-1].i;
end for;
sum(c.u) = u;

end Circuit;

...c_1 c_2 c_n

u

Figure 1. Modelica code and electrical schematics of the chained circuit.

class SubCircuit
parameter Real R1, R2, L, C;
Real i, u;
protected
Real u1,i1, u2,i2, uC,iC, uL1,iL1, uL2,iL2;

equation
iC=C*der(uC);
uL1=L1*der(iL1);
uL2=L2*der(iL2);
u1 = R1 * i1;
u2 = R2 * i2;
u2 = uL1;
uC=u1+u2;
i1=i2+iL1;
u=u1+uL1+uL2;
i=i1+iC;
i=iL2;

end SubCircuit;

a b

C=C

c

R=R1

r1

L=L2

l2

R=R2

r2

L=L1

l1

Figure 2. Modelica code of the SubCircuit class, and schematics of the corresponding electrical circuit.

2.2 A recursive mass-spring-damper system
Figure 3 shows the model, consisting of a chain of mass-
spring-damper elements, defined with the 1D translational
components of the Modelica Standard Library (MSL). Al-
though recursive classes are not allowed in Modelica, we
use a recursive definition of a chain of elements. This
gives a binary-tree structure to the model, that is best suited
for the modular structural analysis method presented in
the sequel of the paper. Our prototype implementation of
the method supports recursive classes, with conditional
statements evaluated statically, at compile time.

2.3 Our contribution for these examples
Despite its important contribution, we believe that (Höger
2015) does not provide the ultimate answer. While a hi-
erarchical algorithm for solving the primal problem is a
great contribution in terms of computational costs, it still
does not fully take advantage of object-oriented modeling.
We would like instead to advance towards the separate
compilation of components and systems, which consists
in:

1. Proposing a notion of interface for model components,
that is rich enough to subsequently perform system-
level structural analysis; and

2. Proposing a modular structural analysis method, con-
sisting of the needed algorithms performing hierarchi-

cal structural analysis based on interface information.
In doing so, both primal and dual problems, as well as
the construction of a Block-Triangular Form (BTF) for the
Jacobian, need to be addressed—this is also in contrast
to the approach of (Höger 2015), where only the primal
problem is considered.

To simplify our presentation, we skip the discussion of
the BTF; it will be developed in an extended version of this
paper, that is currently in the works.

3 The Σ-method for DAE
The index reduction method proposed by J. Pryce (Pryce
2001), called the Σ-method, is an interesting alternative
to the classical method originally proposed by C. Pan-
telides (Pantelides 1988). Its elegant and compact formula-
tion as a pair of dual Linear Programming problems (LP)
makes it particularly valuable for an extension to DAE
components and architectures. The Σ-method can be sum-
marized as follows:

The Σ-matrix

For S = (F,X) a square DAE system involving equations
f=0, where f∈F , and variables x∈X and their derivatives,
form the Σ-matrix Σ = (σ f,x)( f,x)∈F×X of the DAE system,
where σ f,x is the highest differentiation order of variable x
in f , or −∞ if x does not appear in f .
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import ...;
model HarmonicString

parameter Integer n = 1 "Number of elements";
parameter Mass m = 1e-3 "Mass";
parameter Distance l = 1e-2 "Length";
parameter TranslationalSpringConstant c = 1;
parameter TranslationalDampingConstant d = 1e-3;
parameter Distance s0 = 0 "Initial position";
Flange_a a;
Flange_b b;
static if n > 1 then
protected
parameter Integer n1 = n/2;
parameter Integer n2 = n - n1;
HarmonicString s1(n=n1, m=n1*m/n, ...);
HarmonicString s2(n=n2, m=n2*m/n, ...);

else
protected
Element e(m=m, l=l, c=c, d=d, s0=s0);

end if;
equation

...
end HarmonicString;

Figure 3. A mass-spring-damper system; the element (top-left) is assembled from the 1-D translational mechanical components of
the Modelica Standard Library. An assembly of two elements is shown at the bottom-left. A chain of mass-spring-damper elements
of length n is defined by the recursive Modelica-like class shown on the right. Although Modelica does not allow for recursive
classes, our software prototype allows recursion, provided conditional statements can be evaluated at compile-time.

Primal problem

The primal LP encodes the search for a maximum weight
transverse of Σ, that will be described as ( f ,xf ) f∈F or,
equivalently, ( fx,x)x∈X in what follows. The existence
of a solution to the primal LP is a success check for the
Σ-method.

Dual problem

The variables of the associated dual LP are variable offsets
(dx)x∈X and equation offsets (c f ) f∈F , and we search for
the minimal non-negative solution to this LP. (Pryce 2001)
proves the uniqueness of this solution and proposes a relax-
ation method for finding it, given a solution to the primal
problem.

The dual problem can be rewritten as the following con-
straint system, involving only the variable offsets (dx)x∈X :

∀x ∈ X : dx ≥ σfx,x
∀( f,x) ∈ E : dx −dxf ≥ σf,x −σf ,xf

(1)

and the equation offsets are then given by

cf = dxf −σf ,xf . (2)

It is proved in (Pryce 2001) that the set of solutions of (1)
does not depend on the particular choice of a solution to
the primal problem.

Use of the offsets

Equation offset c f indicates how many times equation f=0
needs to be differentiated to get the index-reduced system,
whereas dx indicates the maximum differentiation order of
x in this index-reduced system. In addition, the solution of

the primal problem is useful for computing a BTF for the
Jacobian of this system.

C. Höger (Höger 2015) explains that the primal prob-
lem is the main bottleneck, hence it focuses on solving it
efficiently, by decomposing it into smaller subproblems.
In contrast, we extend and adapt the Σ-method for open
DAE systems, which are DAE systems that can possess
more variables than equations, and that can be composed
with other open DAE systems by unifying their common
variables.

4 Structural analysis of open DAE
The set of variables of an open DAE system can be decom-
posed as

X = Xs⊎Xℓ

where Xs and Xℓ are its sets of shared and local variables,
respectively. For example, the SubCircuit of Fig. 2 pos-
sesses 2 shared variables and 10 local variables (declared
as protected in Modelica).

4.1 Selectors
Since SubCircuit possesses 11 equations, we can regard
it as a square system by assuming that one among the
shared variables i, u is dependent and the other one is free
(determined by the yet unspecified environment of this
circuit):

Xs = X free⊎Y

where Y ⊆ Xs is a subset of the shared variables. The set
of dependent variables of the system is then Xdep = Y⊎Xℓ.

If we compose open DAE system S with an environment
S′ (another open DAE system), then the two selectors Y
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and Y ′ for S and S′ must satisfy the condition

Y ∩Y ′ = /0 , (3)

expressing that S′ cannot claim determining variable x if
the latter is already claimed by S, i.e., belongs to Y . We
say that selectors Y and Y ′ are compatible if (3) holds.

For SubCircuit, two possible choices for selectors are

Y = {i} or Y = {u} . (4)

4.2 Matching selectors in compositions
If {i} is selected, then u is free, i.e., it must be determined
by the (yet unspecified) environment. Thus, we expect this
environment to allow for a selector containing u but not i.
This means that information (4) has to be exposed by S as
part of its interface for structural analysis.

Then, by exposing (4), S sets structural constraints on
the interface of any environment for it. We will show that

information (4) is sufficient for characterizing
the environments that are compatible with S. (5)

This information, however, is not sufficient to perform the
structural analysis in a modular way. In the sequel, we will
identify the information that is missing for this purpose.

5 Interfaces for the modular structural
analysis of DAE systems

This section introduces the main contribution of this paper,
which is the notion of component interface needed for the
structural analysis of DAE systems. This notion is called
Σ-interface as a reference to the Σ-method itself. Possible
ways to perform the modular structural analysis of the
Circuit example are also shown, as a way to illustrate
the benefits of the modular approach.

5.1 The Σ-method for open DAE systems
We first show the result of the Σ-method, applied to the
open DAE system SubCircuit (see Fig. 2), for the two
possible choices of selectors given by (4).

5.1.1 Primal problem

The solutions of the primal problem for both selectors
are given in Fig. 4. For each case, the free variable for
the considered selector is written in blue. The chosen
maximum weight transverse is indicated by highlighting
in red the dependent variable associated to each equation,
and we give in the third column the differentiation order of
this variable in this equation. Two important observations
will guide us in defining the primal Σ-interface:

1. The choice of the transverse, which fixes the assign-
ment of variables to equations, does not depend on
the (yet unspecified) environment of SubCircuit;

2. The total weight of the maximal transverse of
SubCircuit, for a given selector, is added to the
total weight of a maximal transverse of the environ-
ment (for a compatible selector), yielding the total
weight of the overall transverse (that covers both the
component and its environment).

5.1.2 Dual problem

The dual problem is the constraint system (1), whose
dependent variables are the offsets (dx)x∈X . For S =def
SubCircuit, both selectors have to be considered:

• S has selector {i}. A maximal weight transverse is
shown in red on Fig. 4-left. With this transverse, the
dual problem (1) is shown in Fig. 5-left.

• S has selector {u}. A maximal weight transverse is
shown in red on Fig. 4-right. With this transverse, the
dual problem (1) is shown in Fig. 5-right.

Note that, while edges ( f,x) are local (since all equations
are local), variables can be shared between components;
hence, dual problems only interact via the offsets of their
shared variables (i and u for SubCircuit). This observa-
tion will guide us in defining the notion of dual Σ-interface.

5.2 Σ-interfaces
5.2.1 Primal Σ-interfaces

We say that a selector for a component is consistent if the
primal problem has at least one solution for this selector.

Primal Σ-interface of a component Based on the dis-
cussion at the end of Section 5.1.1, it suffices to expose,

for each consistent selector, the set of all pairs
(selector, maximal transverse weight) (6)

at the interface of the considered component, for the primal
problem. Thus, (6) defines the primal Σ-interface of an
open DAE system. For the SubCircuit example, the
primal Σ-interface is the set{

(Y = {i},JY={i}
S = 3) , (Y = {u},JY={u}

S = 2)
}

(7)

Composing primal Σ-interfaces Let us consider two
open DAE systems S1 and S2 whose composition S =
S1∪S2 is another open DAE system. Then, solving the
primal problem for S for a given selector Y is equivalent
to:

1. Solving the primal problems for Si, i=1,2, for each
selector Yi, thus producing optimal weights JYi

i , then

2. Selecting an optimizing compatible pair (Y1,Y2) of
selectors, i.e., solve

max
{
JY1

1 +JY2
2 | Y1 ∩Y2 = /0 and Y1 ∪Y2 = Y

}
. (8)
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class SubCircuit
parameter Real R1, R2, L, C;
Real i, u;
protected
Real u1,i1, u2,i2, uC,iC, uL1,iL1, uL2,iL2;

equation
iC = C * der(uC); // 1
uL1 = L1 * der(iL1); // 1
uL2 = L2 * der(iL2); // 1
u1 = R1 * i1; // 0
u2 = R2 * i2; // 0
u2 = uL1; // 0
uC = u1 + u2; // 0
i1 = i2 + iL1; // 0
u = u1 + uL1 + uL2; // 0
iL2 = i1 + iC; // 0
i = iL2; // 0

end SubCircuit;

class SubCircuit
parameter Real R1, R2, L, C;
Real i, u;
protected
Real u1,i1, u2,i2, uC,iC, uL1,iL1, uL2,iL2;

equation
iC = C * der(uC); // 1
uL1 = L1 * der(iL1); // 1
uL2 = L2 * der(iL2); // 0
u1 = R1 * i1; // 0
u2 = R2 * i2; // 0
u2 = uL1; // 0
uC = u1 + u2; // 0
i1 = i2 + iL1; // 0
u = u1 + uL1 + uL2; // 0
iL2 = i1 + iC; // 0
i = iL2; // 0

end SubCircuit;

Figure 4. The primal problem for SubCircuit, seen as an open DAE system, for two possible choices for the selector. Left:
selector Y = {i} yields a maximal transverse (in red) of weight 3; right: selector Y = {u} yields a maximal transverse (in red) of
weight 2. In each case, the contribution of each equation to the weight of the transverse is provided on the right of the equation, and
the free variable (to be determined by the environment) is highlighted in blue.

∀x, dx ≥ 0
duC,diL1,diL2 ≥ 1

diC−duC ≥ −1
duL1−diL1 ≥ −1
duL2−diL2 ≥ −1

du1−di1 ≥ 0
di2−du2 ≥ 0

du2−duL1 ≥ 0
duC−du1 ≥ 0
du2−du1 ≥ 0
di1−di2 ≥ 0

diL1−di2 ≥ 0
du1−duL2 ≥ 0

duL1−duL2 ≥ 0
du−duL2 ≥ 0
di1−diC ≥ 0

diL2−diC ≥ 0
diL2−di ≥ 0

∀x, dx ≥ 0
duC,diL1 ≥ 1

diC−duC ≥ −1
duL1−diL1 ≥ −1
diL2−duL2 ≥ +1

du1−di1 ≥ 0
di2−du2 ≥ 0

du2−duL1 ≥ 0
duC−du1 ≥ 0
du2−du1 ≥ 0
di1−di2 ≥ 0

diL1−di2 ≥ 0
du1−du ≥ 0

duL1−du ≥ 0
duL2−du ≥ 0
di1−diC ≥ 0

diL2−diC ≥ 0
di−diL2 ≥ 0

Figure 5. The dual problem when S has selector {i} (left) and
{u} (right).

The primal Σ-interface of S is then obtained by collecting
the pairs (Y,JY

S ) for every consistent selector of S. Given a
consistent selector Y for S, we denote by

(π1(Y ),π2(Y ))

an optimizing selector pair. Remark that this pair may
not be unique. However, the end result of the structural
analysis (the offsets dx and c f ) does not depend upon the
choice of (π1(Y ),π2(Y )).

5.2.2 Dual Σ-interfaces

Dual Σ-interface of a component Based on the discus-
sion at the end of Section 5.1.2, we can now define the dual

Σ-interface as collecting,

for each consistent selector Y , the projection DY

of system (1) on the subset of offsets (dx)x∈Xs .
(9)

For the SubCircuit example, the dual Σ-interface is the
following set (collecting two elements):

(
Y = {i}, DY={i} :

{
di,du ≥ 0
di ≤ du+1

)
,(

Y = {u}, DY={u} :
{

di,du ≥ 0
du ≤ di+1

)
 (10)

In (10), the two constraint systems are obtained by pro-
jecting, over the offsets di and du, the constraint systems
given in Fig. 5.

Composing dual Σ-interfaces Two open DAE systems
S1 and S2 can only interact via their shared variables Xs

1 ∪
Xs

2. Hence, for their composition S:

Given a consistent selector Y for S, the projec-
tion of the dual problem of S onto the offsets of
Xs ⊆ Xs

1 ∪Xs
2 is the composition of the projec-

tions of the dual problems D
πi(Y )
i of Si, i=1,2

over the offsets of Xs.

(11)

5.3 Using Σ-interfaces in DAE systems
In this section, we illustrate the use of Σ-interfaces for the
modular structural analysis of DAE systems. To each open
DAE system, we associate its Σ-interface, by fusing the
primal and dual Σ-interfaces defined above: it is a set of
triples whose elements are a consistent selector, the weight
of a solution of the corresponding primal problem, and the
projection of the dual problem on the offsets of the shared
variables. We shall then use (8) and (11) to perform the
structural analysis of a DAE system in a modular way.
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5.3.1 The Circuit, seen as a chain
From (7) and (10), one gets the following Σ-interface for
SubCircuit:

(
Y = {i} , JY

S = 3,
[

di,du ≥ 0
di ≤ du+1

])
(

Y = {u} , JY
S = 2,

[
di,du ≥ 0
du ≤ di+1

])
 (12)

In what follows, successive instances of SubCircuit are
chained, as shown in Fig. 1. The structural analysis will be
performed by induction on the length n of the chain.

Call Sn the chain of length n; in particular, S1 =
SubCircuit, denoted by SC in what follows. Call i, un
the shared variables of Sn. Seen an a chain, Sn is ob-
tained by composing Sn−1 with SC and adding a Kirchhoff
equation for voltages. We regard this last equation as a
component with no local variables, denoted by eq below.

Note that we also have to rename u as v in SC in order to
avoid name clashes, which we write [u/v], and that vari-
able hiding has to be used on the result of the composition,
as variables un−1 and v have to be made local in Sn.

As a result, for all n ≥ 2, Sn is defined as the following
composition:

Sn = hide un−1,v in

 Sn−1
SC[u/v]
un = un−1 +v

(13)

For every n, Sn has exactly one more variable than it has
equations. Thus, there are two possible selectors for Sn:
YSn = {i} and YSn = {un}.

Case YSn = {un} Then, i is free and there is only one
triple of compatible selectors in the composition occurring
in the right-hand side of (13):(

YSn−1 = {un−1},YSC = {v},Yeq = {un}
)
.

An immediate induction argument shows that the optimal
weight for Sn is 2(n−1)+0+2 = 2n.

We prove by induction that the dual Σ-interface is{
di,dun ≥ 0
dun ≤ di+1 (14)

for every n. This holds for n = 1, as (14) then yields the
dual Σ-interface of class SubCircuit for selector {u}
(see (10)). Assuming that (14) holds for n−1, the dual
Σ-interfaces compose as follows:

hide un−1,v in


di,dun−1 ,dv,dun ≥ 0

dun−1 ≤ di+1
dv ≤ di+1
dun ≤ dun−1
dun ≤ dv

which yields (14) when projected on un, i.

Consequently, the variable offsets of a SubCircuit
in a Circuit are independent of the number of chained
instances, and the equation offset of an equation in the
k-th component of the chain is equal to that of the same
equation in the original class.

Case YSn = {i} Then, un is free and there are two triples
of compatible selectors:(

YSn−1 = {un−1},YSC = {i},Yeq = {v}
)

(15)(
YSn−1 = {i},YSC = {v},Yeq = {un−1}

)
(16)

By adding the contributions of the components, in the
order they are written above, in each case, we get:

• In case (15): [2(n−1)]+0+3 = 2n+1
• In case (16): [2(n−1)+1]+0+2 = 2n+1

Thus, each of the two triples (15) and (16) is optimiz-
ing, which brings an important question: Does the dual
Σ-interface depend on the choice of a tuple of selectors?

If triple (15) is used: System (14) for n−1 provides us
with the dual Σ-interface of Sn−1 for selector un−1. For Sn,
the dual Σ-interfaces then compose as follows:

hide un−1,v in


di,dun−1 ,dv,dun ≥ 0

dun−1 ≤ di+1
di ≤ dv+1
dv ≤ dun−1
dv ≤ dun

which yields {
di,dun ≥ 0
di ≤ dun +1 (17)

If triple (16) is used: We will prove by induction that
(17) still holds. Assuming that (17) holds for n−1, the dual
Σ-interfaces compose as follows:

hide un−1,v in


di,dun−1 ,dv,dun ≥ 0

di ≤ dun−1 +1
dv ≤ di+1
dun−1 ≤ dv
dun−1 ≤ dun

which yields again (17).
Recall that solutions to the Σ-method’s dual problem are

independent of the particular choice of a solution for the
primal problem. This property generalizes to the composi-
tion of dual interfaces:

the dual Σ-interface of a composition does not
depend on the choice of a particular optimizing
tuple.

(18)

5.3.2 The Circuit, seen as a tree
Instead of a chain, the architecture of the Circuit can be
regarded as a binary tree:

Tm =def

ŜC
↙ ↘

T−m−1 T+m−1

(19)

where:
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• the length ℓm of Tm is defined by ℓm = 2ℓm−1 + 1,
which is exponential in m;

• Tm has shared variables im, um;
• T±m−1 are two copies of Tm−1 with renamings
[i±m−1/i];

• ŜC is made of an instance of SC and a component (sim-
ilar to component eq above) made of the connection
equation um = u−m−1 +u+u+m−1.

We reuse the Σ-interface (12) of class SubCircuit, the
optimal weights 2ℓm and 2ℓm+1 for selectors YTm={um}
and YTm={i} respectively, and we focus on the dual in-
terface. It is computed by the recursion shown in Fig. 6.

YTm={um} : hide u,u±m−1 in



0 ≤ di,du±m−1
,dum

du−m−1
≤ di+1

du+m−1
≤ di+1

du ≤ di+1
dum ≤ du±m−1
dum ≤ du

which yields
{

0 ≤ di,dum

dum ≤ di+1

YTm={i} : hide u,u±m−1 in



0 ≤ di,du±m−1
,dum

du−m−1
≤ di+1

du+m−1
≤ di+1

di ≤ du+1
du ≤ du±m−1
du ≤ dum

which yields
{

0 ≤ di,dum

di ≤ dum +1

Figure 6. The dual Σ-interface of tree shaped architecture (19).

5.3.3 Discussion

It is worth comparing the chain-based and tree-based ap-
proaches above. At first glance, since recursion arguments
were used in both cases, the two approaches may seem
equivalent in terms of computational costs. However, this
impression shall not last once we detail how implementa-
tions should proceed.

• For the chain architecture of Section 5.3.1, each induc-
tion step consists in the computation of the Σ-interface
of prefix Sk as a function of the Σ-interface of Sk−1,
for k increasing from 2 to n.

• For the tree-shaped architecture of Section 5.3.2, the
induction step expresses the Σ-interface of the root
of each subtree Tk as a function of the Σ-interface
of each subtree T±k−1. Remark that the Σ-interface of
each subtree Tk is only computed once, as all leaf

components are instances of the same class, and all
subtrees of height k have, by construction, identical
interfaces.

The number of steps is proportional to n in the first case,
and m ∼ logn in the second case. Since the computational
complexity of each induction step is roughly the same,
treating the Circuit model as a tree-shaped architecture
can dramatically improve performance.

6 Implementation and experimental
results

6.1 Implementation considerations
A significant difficulty in our modular structural analysis is
the consideration of selector-dependent structural analyses.
Both the primal and dual problems are functions of the
selectors, which can be numerous for components with
a large number of public variables. Although Modelica
models are usually sparse, with components exposing only
a few variables, a mere enumeration of selectors can result
in an exponential growth of the handled data structures.

To deal with this issue, we advocate the approach pro-
posed in (Benveniste, Caillaud, Malandain, and Thibault
2022; Caillaud, Malandain, and Thibault 2020) for multi-
mode DAE systems. In these works, a dual representation
is introduced, where equations are labeled with a predicate
on mode variables, characterizing the modes under which
they are active. Using this representation (instead of a di-
rect one, that lists the active equations for each mode of the
model) provides a compact representation of the structure
of multimode systems. Reduced Ordered Binary Decision
Diagrams, or ROBDD (Bryant 1986), provide not only an
adapted data structure, but also efficient computation algo-
rithms that can be used for performing the whole structural
analysis in an “all-modes-at-once” fashion.

For modular structural analysis, a similar representation
can be used, but with selectors instead of modes. The
whole structural analysis chain can then be performed in
an “all-selectors-at-once” fashion: (Benveniste, Caillaud,
Malandain, and Thibault 2022) provides all building blocks
for the computation of primal interfaces and their compo-
sitions, as presented in Section 5.2.1. The computation
and composition of dual interfaces reduce to projecting
parametrized constraint systems such as the one illustrated
Fig. 5. Such systems are called Difference Bound Matri-
ces (DBM) and come equipped with a rich calculus (Dill
1989; Miné 2001) with a polynomial computational com-
plexity. Although there are excellent implementations of
DBM, parametric DBM remain to be implemented, possi-
bly using tuples of ROBDD for the representation of matrix
elements.

6.2 Benchmarks and measured performance
Experimental results have been obtained on the modular
structural analysis method, using two benchmarks: the

Towards the separate compilation of Modelica: modularity and interfaces for the index reduction of
incomplete DAE systems

262 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204255



 100

100.100 10.103 1.106 100.106 10.109 1.1012

 1

 10

100.100 10.103 1.106 100.106 10.109 1.1012

Figure 7. Number of interfaces computed (top plot) and computa-
tion time (bottom plot, in ms) for the mass-spring-damper (purple
curves) and chain circuit (green curves) models, as functions of
parameter n.

chain circuit (Section 2.1, Figure 2) and the mass-spring-
damper model (Section 2.2, Figure 3). Models of increas-
ing sizes have be analyzed, up to n = 1012.

The experimental results presented below have been
obtained with a prototype implementation of the method,
based on an enumeration of the selectors. This has a limited
impact on performance, for these particular models, since
the selector combinatorics is limited to 2 cases for the chain
circuit, and 6 cases for the mass-spring-damper model. The
key feature of the prototype implementation is the use of
a dynamic programming approach for the computation of
the interfaces of model tree nodes. For this purpose, a
memoization table (see (Cormen et al. 2022), pages 390–
392) is used to store the computed interfaces. The software
consists in about 10 kLOC of OCaml code and performance
has been measured on a MacBook Pro with a 2.4GHz 8-
core i-9 Intel processor with 16GB of RAM.

Figure 7 shows the computation times for both models
as a function of parameter n. It clearly appears that the
empirical time complexity of the method is a logarithmic
function of n, like in (Höger 2015). Memory usage is very
modest, with about 1MB to store the memoization table.

7 Conclusion and perspectives
In this paper, we present a modular index-reduction method
for (possibly incomplete) DAE systems, based on John

Pryce’s Σ-method (Pryce 2001) and extending the seminal
work of Christoph Höger on scalable algorithms for the
compilation of Modelica (Höger 2015; Höger 2019). Our
method is built upon three key contributions: (i) a concept
of selector that allows to characterize, from a structural
analysis point of view, the possible effects of unknown en-
vironments on an incomplete DAE system; (ii) a concept of
interface for the primal and dual problems of the Σ-method,
that encapsulates the minimal information regarding a sub-
system that needs to be exposed to its environment in order
to perform the structural analysis; and (iii) interface compo-
sition and transformation operators that allow to compute
the interface of a system from the interfaces of its parts.

Our modular structural analysis method is well-suited to
the Modelica language, since the interface of a class can
be computed inductively from the interfaces of the objects
contained in the class. Modelica models are often sparse,
meaning that each component shares only a few variables
with its environment. This guarantees that the interface of
a component remains small, independently of the number
of components, variables and equations it may contain.

We believe that this concept of interface, and the mod-
ular structural analysis method it yields, pave the way to-
wards a genuine separate compilation of Modelica, that can
scale up to extremely large models.

The benchmarks performed with our prototype imple-
mentation demonstrate that extremely large models, orga-
nized in a component tree with sufficient regularity, can be
analyzed in a few milliseconds.

Future work shall focus on a more robust implemen-
tation of the method, based on our IsamDAE multimode
DAE structural analysis software (Benveniste, Caillaud,
Malandain, and Thibault 2022; Caillaud, Malandain, and
Thibault 2020). We plan to use a functional, BDD-based,
representation of interfaces, in order to curb the combina-
torics of selectors that is expected when computing inter-
faces of Modelica classes with a large number of public
variables. This functional representation is also a promis-
ing approach to the extension of the notion of interface to
multimode models.

The structural analysis of Modelica models comprising
for loops could be done by (i) computing a tree decomposi-
tion of the component graph obtained from the evaluation
of the loops, followed by (ii) the modular structural anal-
ysis of the resulting component tree. Benchmarking this
approach on the scalable test suite (Casella and Guironnet
2021) would be of great interest.

Several features of the Modelica language, such as in-
ner/outer declarations, expandable connectors and over-
constrained connections, may turn out to be difficult to
deal with. In the Modelica Language Specification (Mod-
elica Association 2023), the semantics of these features
is expressed in terms of an elaboration phase, that is not
modular. Devising a modular transformation of these fea-
tures into the Modelica kernel language is a challenge that
needs to be addressed before the modular structural analy-
sis method can be applied to the full Modelica language.
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There are also a few fundamental issues, related to the
modular structural analysis, that ought to be investigated:
(i) Is it possible to decide, by inductive reasoning, whether
a parametric model is structurally nonsingular for every
valuation of its parameters? (ii) Is it possible to perform
the structural analysis of DAE systems that have a large
treewidth, such as systems organized as a grid of dimension
2 or higher?

Answers to these questions are key to the design of scal-
able separate compilation methods for the Modelica lan-
guage. One could envision the standardization of interfaces,
possibly as an extension of the FMI standard for model ex-
change, so that precompiled Modelica libraries, equipped
with their Σ-interfaces, could be built and reused.
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Abstract 
New robust and yet powerful Modelica libraries have been 
developed such as the DLR ThermoFluid Stream library 
or the introduction of the Dialectic Mechanics library. 
These libraries apply a special modeling approach that 
uses linear implicit equilibrium dynamics. In this paper, 
we study the basic motivation of this approach, its benefits 
and drawbacks before we finally demonstrate how to get 
from models to applicable simulation code.  
Keywords: Object-oriented modeling, Code Generation, 
Modeling principles  

1 Introductory Example 
Classic continuous laws of physics can be interpreted as 
communicating by means of waves. When you read these 
lines, your eye’s photon receptors measure the 
electromagnetic waves communicating the corresponding 
visual information. When we speak, pneumatic waves 
communicate our audible voices. In a mechanics, pressure 
waves distribute the impulse in seemingly rigid bodies. 

Even for things that we consider not to be alive, this 
analogy may be applied. A famous example is called: 
“communicating vessels” (in German: “kommunizierende 
Röhren”) where various vessels filled with a homogenous 
liquid (let us use water) agree on a common surface level. 
This agreement is reached by hydraulic pressure waves 
going through the pipes, finally establish the hydrostatic 
equilibrium.  

 
Figure 1: Depiction of communicating vessels displaying the 
hydro-static equilibrium. Public domain from Wikipedia. 

Evidently, the macroscopic motion of a system can be 
interpreted as the emerging behavior of wave functions 
agreeing on an (quasi-) equilibrium state. One straight-
forward way to model and simulate classic physics is thus 
simply to implement the corresponding wave equations 
directly using a spatial discretization scheme. 

1.1 Example: Communicating Vessels 

We can implement this in Modelica for the example of the 
communicating vessels by using a staggered grid, where 
the inertia and compression of the fluid is alternately 
placed such as in the lower half of Figure 2. 

When we model the wave equation in an object-
oriented way, we need an interface to connect the 
distributed elements. Since a wave can be interpreted as 
the rotation within two dimensions as in Figure 3, it is a 
natural choice to choose two variables on the two 
corresponding orthogonal axes. Each of these variables 
thereby indicates a different form of energy storage. 

 

Figure 2: A model of 3 communicating vessels using a simple 
hydraulics library. Different from the depiction in Figure 1, the 
speed of flow is modulated by three narrow orifices at each tank.   
The one-dimensional hydraulic wave is modeled using a 
staggered grid for discretization. From top to bottom the layered 
icons represent the following elements: open-tank, non-linear 
pressure drop, fluid inertia, fluid compressibility. 

In our hydraulic example, these two axes are: pressure 
𝑝 and volume flow �̇�.  The pressure represents the 
potential energy of the compressed element whereas the 
volume flow rate represents the kinetic energy. We may 
call one of them a potential variable and the other one a 
flow variable. Since we work with an Eulerian framework, 
choosing the volume flow as flow is the natural choice.  

Figure 4 shows the simulation result corresponding to 
our example. We can see that at the end of the simulation, 
we reach the desired equilibrium point. However, the 
computational efficiency is abysmal if this point is the 
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only result we are interested in. The pressure waves have 
a very high frequency (artificially lowered here) and so the 
simulation had to take many, very small time-steps.  

 
Figure 3: Trajectory of the pressure wave for the compressible 
volume in the two dimensions spanned by pressure and volume 
flow rate 

 

Figure 4: Step response of the communicating vessels after 
height of vessel 1 being increased at time = 1, showing the 
volume-flow through the valve openings. For the sake of 
illustration, the compressibility of water has been divided by 
1000(!). Using the actual values, frequency would be much 
higher and ripples on volume flow barely visible.  

Fortunately, we can avoid having to deal with high 
frequencies if we reduce the wave to its role as a conveyor 
of energy. The energy contained in our linear hydraulic 
wave is 

𝐸 =
1

2
𝜌𝐴ଶ𝜔ଶ𝑐 

where 𝜌 is the linear density, 𝐴 the amplitude, 𝜔 the 
frequency and 𝑐 the speed of sound. If the macroscopic 
phenomenon of interest is orders of magnitudes larger 
than the amplitude and slower than the frequency, we can 
presume the wave to be an instantaneous transmitter of 
energy that simply has to uphold the conservation of 
energy (given that also the speed of sound is quick enough 
over the required distance). 

This transfer of power can be modelled by the same pair 
of variables that we have used to describe the wave 
equation. In our case the product of the pair represents a 
flow of energy: 

�̇� = 𝑝�̇� 

The power produced by a component with two such 
pairs is thus: 

𝑃 = 𝑝ଵ�̇�ଵ + 𝑝ଶ�̇�ଶ 

 If we are simply interested in the exchange of potential 
gravitational energy between the vessels over dissipative 
valve openings, we can choose to ignore the modeling of 
the hydraulic wave completely and simply connect the 
elements directly as in Figure 5. 

 
Figure 5: Modelling the communicating vessels by the sheer 
exchange of potential energy 

By doing so, we have created an implicit non-linear 
algebraic equation system: the pressure level below the 
valves has to be found so that the corresponding volume 
flows resulting from the pressure drop are in balance. In 
our case, this system can be reliably solved, even for the 
case of the step response as depicted in Figure 6. 

In general, we may have more than one solution or none 
at all. Also, the equation system is only available in 
implicit form. We thus replace the physical method to 
compute the transfer of energy with the solution for an 
algebraic system. Whether this works or not is simply 
down to luck in the general case. Here we were lucky.  

 

Figure 6: Corresponding step response of the direct model 
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1.2 Comparing the Modeling Approaches 

We have created our first model using explicit wave 
dynamics. 

We have created our second model using non-linear 
implicit power dynamics 

Generating code for explicit wave dynamics is rather easy. 
All the equations are in explicit form and can be directly 
written as an ODE. Setting up the simulation code is thus 
principally rather trivial. 

Simulating explicit wave dynamics is often 
computationally very expensive. Worse than the 
potentially high number of state variables is the that the 
frequency of the wave dynamics is often several orders of 
magnitude higher than the frequency of the macro-
phenomenon of interest.  

Simulating non-linear implicit power dynamics is much 
more efficient. Assuming an instantaneous transfer of 
power enables us to ignore the high frequency and phase 
shifts of the wave and we only have to deal with the low 
frequency of the macro-phenomenon. Also, we may use 
significantly fewer states.  

Generating code for implicit power dynamics however, 
is far from trivial. Our system above had permutation 
index 1, because it requires the solution of a non-linear 
equation system. In mechanical systems, higher-index 
systems are common that require a reduction of the 
differential index for instance by applying Pantelides 
(Pantelides 1988). Because the simulation code is of high 
algorithmic complexity, we like to have a Modelica 
compiler creating it for us. 

Choosing between these two can thus be seen as a trade-
off between computational complexity (time needed for 
simulation) and algorithmic complexity (length of 
program for model generation) of the simulation code. 
This comparison is also highlighted in Figure 7 where 
wave dynamics is on the left and power dynamics is on 
the right. 

For both forms of complexities, it is in practice nearly 
impossible to determine their theoretical limits. Since the 
computational complexity includes the ODE solver, we 
would need to determine the solver that reaches the 
desired precision within the shortest amount of time. The 
algorithmic complexity is to be interpreted in terms of 
algorithmic information theory (Chaitin 1987) and we 
would need to find the shortest possible program for code 
generation.  In practice, it is however feasible to work with 
the numbers at hand: measuring the code-length of the 
compiler and measuring the time the simulation took. For 
our considerations, the general concepts suffice. 

Explicit wave dynamics is computationally complex 
but can be low in algorithmic complexity. Non-linear 
implicit power dynamics is often of high algorithmic 
complexity but lower in computational complexity.  

However, Figure 7 also shows that there seems to be an 
interesting middle ground in between these two classes of 
models, that might offer a very favorable trade-off. I 
denote this class: Linear Implicit Equilibrium Dynamics 
(LIED) (you can keep the pun).  This class is typically not 
found in classic text-books and I presume that the primary 
reason for this is simply that we have to use an extended 
interface, which is not intuitive to come up with in the first 
place. 
 

Figure 7: Illustration of different modeling approaches and their impact on algorithmic and computational complexity 
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2 The Idea behind Linear Implicit 
Equilibrium Dynamics 

Figure 9 illustrates the desired result. To a step change we 
react neither with a high-frequency wave function nor 
with a discrete jump but by approaching the desired 
equilibrium with replacement dynamics. These dynamics 
shall reach the same steady-state behavior than the 
original wave dynamics and exhibit only a limited 
deviation for slow-mode behavior. Any deviation shall be 
of dissipative nature in case energy conservation cannot 
be upheld. There is one additional catch though: we shall 
limit our equations which are in implicit form to constitute 
a purely linear system.  

The motivation for restricting ourselves to linearity for 
the implicit part is, to enable a robust solution of the 
system at all time, something that cannot be guaranteed 
for non-linear systems in general. 

To put these statements in formal terms: if a system is 
described by differential algebraic equations (DAEs) in 
the following implicit form: 

 

𝟎 = 𝐹(𝐱, �̇�, 𝐮, 𝑡) 
 

where 𝒙 is the vector of potential states, �̇� represents 
all time derivatives, 𝒖 the input vector and 𝑡 time.  

We aim to transform this system into the following 
form with an implicit linear part and an explicit non-linear 
part: 

𝐋�̇� = 𝑔(𝐱 , 𝐱ே , 𝐮, 𝑡) 
 

�̇�ே = 𝑓(𝐱, 𝐱ே , 𝐮, 𝑡) 
 

where 𝐱 and 𝐱ே are both disjoint sub-vectors of 𝐱. 𝐋 
is a linear matrix and 𝑓  and 𝑔 are non-linear functions. 
The original DAE system 𝐹 is defined as a LIED system 
if and only if the functions 𝑓 and 𝑔 can be constructed just 
by ordering the corresponding equations of 𝐹.  

Techniques for symbolical reduction of the differential 
index (Leimkuhler 1985) or the permutation index 
(Campbell 1995) may hence only be applied to derive the 
matrix 𝐋.  Hence, all non-linearities have to be brought 
into an explicit form and placed in either 𝑓  or 𝑔 . 
Equations in implicit form (including constraints between 
potential states) have to be linear and to be placed in 𝐋.  

How can we construct such DAEs for classic physical 
systems? And how to do this in an object-oriented form? 
The basic idea is simple: we find a part in the transient 
dynamics that is suitable for linear approximation and that 
completely vanishes at steady-state. A suitable candidate 
is often the dynamics of kinetic energy since it has a linear 
characteristic for a wide range of systems. 

To enable this extraction, we have to split our interface, 
especially suited are variables that contain the flow of 
impulse (force, pressure, etc.) because here we can apply 
the superposition principle. Otherwise it may be very hard 
to separate the linear part in implicit from the non-linear 
part in explicit form. 

All of the above is much easier said than done. I have spent 
several months figuring it out for thermo-fluid domain and 
later for the mechanical domain. Refinement took years 
for thermo-fluids and is still in the process for mechanics. 
The good news is: once we have identified a suitable 
interface, the remaining part of implementation is straight-
forward, often even easy. 

 
2.1 LIED for Thermofluid Systems 

Here is the full interface for thermo-fluid streams: 

- 𝑟: inertial pressure (potential) 
- �̇�: mass-flow rate (flow) 
- Θ: Vector repr. state of medium (signal) 

o �̂�: steady-mass flow pressure 
o ℎ: steady-mass flow enthalpy 
o 𝑋: mass fractions   

For the thermo-fluid streams, we have to split the 
potential variable into two parts: The steady-state pressure 
�̂� and the inertial pressure 𝑟. The dynamics for the inertial 
pressure can be described by an implicit linear system 
using the law of inertance using the fluids inertia 𝐿: 

 

𝑟 = 𝐿
𝑑�̇�

𝑑𝑡
 

For the steady-state with a constant mass flow rate, 𝑟 
will thus go to zero. To enable the approximation during 
transients, the impact of 𝑟 on the thermodynamic state has 
to be neglected and hence Θ is composed using �̂�. 

When the interface is used correctly, the whole 
thermofluid system will be a LIED system. 𝐱 will form a 
vector that describes all mass-flow rates of the system in 
non-redundant manner. Typically, the dummy derivatives 
method (Mattsson 1993. Pantelides 1988) needs to be 
applied to construct the Matrix 𝐋. Its coefficients are then 
formed by linear combinations of the inertances. 𝐱ே will 
contain all other states (such as specific enthalpy, etc. ). 
Using these states the functions 𝑓 and 𝑔 can be computed 
in a downstream manner. More details on this interface 
and the implementation of a full library can be found in 
(Zimmer 2020, 2022). Models using this interface are 
especially suitable for the simulation of complex thermal 
architectures with bypasses and switches even under hard 
real-time constraints.  

 
Figure 8: For this particular model of the communicating 
vessels, the LIED approach has an equivalent counterpart using 
conventional connectors. Modeling the inertia but leaving out 
the compressibility does the trick here. 
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In the particular case of our example with the 
communicating vessels, the LIED approach is equivalent 
to using only inertias for the fluid but disregarding the 
compressibility.  Figure 8 shows the equivalent model 
diagram and Figure 9 depicts the corresponding 
simulation results. 

This simple equivalence does however only work in 
this example because we treat the water as having constant 
density and also neglect any influence of temperature. 
Hence in this example we can mimic the LIED approach 
using the basic connectors. Using more realistic media 
models, the ThermoFluid Stream approach works more 
subtly and the split interface is needed. 

 

Figure 9: Modelling the communicating vessels by the sheer 
exchange of potential energy 

2.2 LIED for Mechanical Systems 

For mechanical systems, the interface is defined as 
follows:  

- 𝑠:  position (potential) 
- 𝑓:  elastic force (flow) 
- 𝑣:  velocity (potential) 
- 𝑓:   kinetic force (flow) 

We have thus two pairs of effort and flow not one. The 
derivative of the position 𝑠 is thereby defined as 𝑣. The 
velocity 𝑣  is also denoted as 𝑣 . The difference Δ𝑣 =
𝑣 − 𝑣 should ideally be zero at all times. To enable a 
linear implicit approximation, we tolerate non-zero values 
for Δ𝑣  at fast transients but establish a first order 
dynamics that ensures zero is approached for slow 
dynamics with the dialectic time constant 𝑇: 

𝑑Δ𝑣

𝑑𝑡
𝑇 =  −Δ𝑣 

Because this interface separates the regimes of elastics 
and kinetics, I have denoted it as dialectic mechanics. First 
implementations and analysis are presented in (Zimmer 
2023) and (Oldemeyer 2023). Models using this interface 
are especially suitable for the simulation of contacts and 
limited joints also under hard-real time constraints. 

 

Dialectic mechanics are also LIED systems: the vector 𝐱 
will contain all the (generalized) positions in a non-
redundant form so that all degrees of freedom are 
described. 𝐱ே then typically consists in the corresponding 
kinetic velocities.  𝑓 and 𝑔 can then be computed from the 
mechanical root of the system to the branches. Kinematic 
loops are explicitly closed using elastic elements with 
high stiff springs which is the preferred way in dialectic 
mechanics since high frequencies can be suppressed. 

The details of the domain specific implementation shall 
not be the topic of this paper. But evidently this class of 
models is very useful and hence we shall further 
investigate its implications for the generation of 
simulation code. 

 
Figure 10: Penetration depth into the left claw represented by 
an elasto-gap, for the choice of two different time constants. 
Both agree on the time-averaged solution.  

Just for the sake of quick illustration: Figure 10 from 
(Zimmer 2023) is repeated here again that shows the 
dynamics of a lightweight object moved in clamp modeled 
by a very stiff spring. The figure simply illustrates how 
the oscillatory dynamics is replaced with a replacement 
dynamics leading to the same (quasi) steady-state 
solution. 

3 How to Create Simulation Code for 
LIED Systems? 

The original intention of the LIED approach was simply 
to ensure that no non-linear system is created that spans 
across the components and hence a robust solution of the 
model evaluation could be taken for granted, given robust 
component models. When we started with it, we expected 
it to be the only notable change from other Modelica 
models and that all other features of a Modelica compiler 
(state selection, differential index-reduction, tearing of 
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linear equation systems, etc.) would basically remain 
untouched.  

However, over time, we realized that LIED systems are 
much simpler to transfer to simulation code than general 
DAEs resulting from non-linear implicit power dynamics. 
Let us go through the observed simplifications one-by 
one: 

 Because we avoid the creation of non-linear 
equation systems, we do not need a non-linear 
equation system solver anymore. 

 For the same reason, constraint equations among 
potential states cannot be non-linear and hence no 
dynamic state selection is needed (Mattsson 
2000). 

 Even stronger: we can select the states on 
component level. This is less obvious but 
ultimately the connection rules that enforce the 
linearity of the system also enforce this rule. 

 Because we can select the states on component 
level, this means that the dummy-derivative 
method can be applied also on component level 
before system composition. 

 Since the goal of the linear equation system is to 
have a synchronized replacement dynamic 
towards the equilibrium, we know suitable 
tearing variables for this system. These will be 
the linear state derivatives: �̇� or at least a subset 
of it. 

 The residual for a tearing variable can be 
attributed to the same component as the tearing 
variable. 

The items above represent observations resulting from 
modeling many components and system examples using 
the LIED approach. However, these observations have 
profound implications: For each component we know: 

 the set of pairs of state-variables and their 
derivatives it adds to the system. 

 the set of pairs of tearing and residual variables it 
adds to the system.  

If this is the case, we can basically causalize everything 
already on the component level. In concrete terms, this 
means for each component: 

 we stipulate the states 
 we stipulate the tearing variables of the linear 

system and the corresponding residuals 
 we perform the dummy derivative method on 

those equations where necessary.  
 we define the causality of the interface variables 
 we causalize all equations into assignments in a 

particular order 
 we group the list of assignments depending on 

their dependence of the inputs. 

Practical experience so far indicates that performing index 
reduction to construct the matrix 𝐋 can be performed in a 
very methodical and deterministic manner. It is thus far 
easier to generate simulation code for the LIED modeling 
approach than it would be for general higher-index DAEs. 
Neither there is a need for global flattening anymore nor 
are elaborate heuristics needed for the selection of state or 
tearing variables. Indeed, the generation of simulation 
code is so easy that a direct implementation in C++ 
becomes feasible. The following code excerpts illustrate 
the implementation for a ThermoFluidStream Library 
(using idealized water) in C++. 

First, we have to define the interface. This is naturally 
more tedious than in Modelica because there is no direct 
support in the C++ language. Yet, it is feasible and after 
all, interfaces only need to be defined once: 

 
Listing 1. ThermoFluid Interface in C++   

class ThermodynamicStateOut: public Signal{ 
  public: 
    double p; 
    double h; 
     […] 
}; 
 

class ThermodynamicStateIn: 
  public ThermodynamicStateOut 
{ 
  public: 
    void connect(ThermodynamicStateOut* o); 
    […] 
}; 
 

class MassFlowOut : public Signal{ 
  public: 
    double flow; 
    double flow_der; 
    […] 
}; 
 

class MassFlowIn : public MassFlowOut{ 
  public: 
     void connect(MassFlowOut* o); 
    […] 
}; 
 

class InertialPressureOut : public Signal{ 
  public:     
    double r; 
    […] 
}; 
 

class InertialPressureIn : 
  public InertialPressureOut 
{ 
  public: 
    void connect(InertialPressureOut* o); 
    […] 
}; 
 

class ThermalPlugOut : public Signal{ 
   public: 
     ThermodynamicStateOut state{}; 
     MassFlowOut m{}; 
     InertialPressureIn inertial{}; 
     […]        
}; 
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class ThermalPlugIn : public Signal{ 
  public: 
    ThermodynamicStateIn state{}; 
    MassFlowIn m{}; 
    InertialPressureOut inertial{}; 
    void connect(ThermalPlugOut* o); 
    […] 
}; 
 

class Connection { 
  public: 
    Connection(ThermalPlugOut* o, 
               ThermalPlugIn* i) { 
                i->connect(o); 
     }; 
}; 
typedef std::vector<Connection>  Connections; 
 
To best understand the interface, let us look at the classes 
ThermalPlugOut for a nominal outlet flow and at 
ThermalPlugIn for a nominal inlet flow first. These 
contain the same 3 components as the corresponding 
Modelica connector of the DLR ThermoFluid Stream 
library. 

There are two notable differences however. In 
Modelica, inertial pressure and mass flow were not 
causalized signals as in the C++ implementation. Also the 
mass-flow signal in the C++ library consists of the mass-
flow rate and its derivative. In Modelica, this is not 
necessary since symbolic differentiation can be applied by 
the Modelica compiler. Using this interface, we can now 
implement a component such as the pressure drop: 

 
Listing 2. Implementation of a pressure drop component 

class PressureDrop : public Component{ 
  public: 
    ThermalPlugIn inlet; 
    ThermalPlugOut outlet;    
     PressureDrop(double v_ref,double dp_ref)  
    void evalState(); 
    void evalFlow(); 
    void evalInertial(); 
    double v_ref; 
    double dp_ref; 
   
    virtual void metainfo(Meta& meta)  
      override; 
    […] 
}; 
 
First, we declare our interface for outlet and inlet. Then 
we have to implement three blocks represented by 
methods. The first is evalState and computes the 
thermodynamic state downstream: 

Listing 3. Calculation of the pressure drop by the corresponding 
method 
void PressureDrop::evalState() { 
   const double v =  
     inlet.m.flow / density(inlet.state); 
   const double v_norm = v/v_ref; 
   const double dp = 0.5*dp_ref* 
     (v_norm + v_norm*v_norm); 

   outlet.state.h = inlet.state.h; 
   outlet.state.p = inlet.state.p – dp;                    
}; 
 

The second method is evalFlow to ensure what flows in 
is what flows out. However, this constraint is restated for 
the derivative. This is because the dummy derivative 
method is applied on the component level.  

Listing 4. Trivial implementation of evalFlow 

void PressureDrop::evalFlow() { 
  outlet.m = inlet.m; 
} 
 
 
The third one is evalInertia that implements the law 
for the inertance as in the ThermoFluid Stream Library.  

Listing 5. Calculation of the inertial pressure 
void PressureDrop::evalInertial() { 
   inlet.inertial.r = outlet.inertial.r 
                    + L*inlet.m.flow_der; 
} 
 
Meta-information can be collected by a dedicated virtual 
method to register state and tearing variables as well as to 
track the signal dependence of the computing blocks. 

Listing 6. The meta information of the component is described 
in a virtual method. 
void PressureDrop::metainfo(Meta& meta) 
{ 
  meta.regComp (&inlet, “inlet”);   
  meta.regComp (&inlet, “outlet”); 
  meta.addBlock(this, 
     LambdaFuncCalling(this->evalState()), 
     Signals{&inlet.state,&inlet.m}, 
     Signals{&outlet.state});          
  meta.addBlock(this, 
    LambdaFuncCalling(this->evalFlow()),  
    Signals{&inlet.m}, 
    Signals{&outlet.m});          
  meta.addBlock(this, 
    LambdaFuncCalling(this->evalInertial), 
    Signals{&outlet.inertial,&inlet.m}, 
    Signals{&inlet.inertial});          
} 
 
 
For the pressure drop the signal dependencies of the 
methods have to be registered as vital structural 
information. Because of the horribly bad support of 
method function pointers in C++, the implementation 
requires the use of a lambda function which is done here 
in pseudo-code for the sake of readability.   

In similar manner the other components of our 
introductory example can be implemented. Each of these 
components declares its interfaces, defines and 
implements methods representing the computational 
blocks and then registers these blocks as well as states, etc 
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by overriding the virtual metainfo method. It is not as 
convenient as Modelica but also not overburdening. 

Finally, we can compose the introductory example: 
 

Listing 7. Total system composition 
class ComVessels : public Component { 
public: 
  OutTank t1{}; 
  InTank t2{}; 
  InTank t3{}; 
   Splitter s{}; 
  PressureDrop p1{}; 
  PressureDrop p2{}; 
  PressureDrop p3{}; 
 
  Connections con {  
    Connection{&t1.outlet, &p1.inlet}, 
    Connection{&p1.outlet, &s.inlet}, 
    Connection{&s.outlet1, &p2.inlet}, 
    Connection{&p2.outlet, &t2.inlet}, 
    Connection{&s.outlet2, &p3.inlet}, 
    Connection{&p3.inlet, &t3.inlet}, 
  }; 
 
  virtual void metainfo(Meta& meta) override{ 
    meta.regComp(&t1, "t1: first vessel"); 
    meta.regComp(&t2, "t2: second vessel"); 
    meta.regComp(&s,  "s: flow split"); 
    meta.regComp(&t3, "t3: third vessel"); 
    meta.regComp(&p1, "p1: first valve"); 
    meta.regComp(&p2, "p2: second valve");          
    meta.regComp(&p3, "p3: third valve"); 
 
  }; 
}; 
 
Regarding that C++ is a statically compiled imperative 
general-purpose language, the end result is astonishingly 
close to what we are used to from Modelica.   

When an instance of the class is coupled to a simulator, 
a crawler for meta information collects all blocks 
recursively as well as the structural information regarding 
the signals, the states and the tearing variables for the 
linear equation system. Then the blocks are put into right 
order for complete or partial model evaluation.  The full 
model evaluation is thus simply a list of method calls that 
are called in their respective order.  

This also means that all component code is statically 
compiled but the system composition is performed at run-
time. Advanced tasks such as variable structure systems 
would thus be comparably easy to achieve.  

This is also the purpose of this code demonstration. It is 
not suggesting that we should use C++ instead of 
Modelica but to highlight that for a certain class of models 
the object-oriented Modelica code could be translated to 
object-oriented imperative code that can be statically 
compiled even before system composition. 

This would avoid the flattening of all equations before 
code generation and help to overcome many limitations of 
current Modelica compilers and you can of course choose 
a different target than C++.  

4 Conclusions 
That a more restrictive class of modeling enables a simpler 
compilation scheme is not surprising. The same can be 
said about the many conventional signal-based modeling 
schemes or simple modeling schemes as Forrester’s 
System Dynamics (Junglas 2016). Typically, the 
disadvantage is that the easier generation of simulation 
code has to be paid by an inferior modeling approach and 
indeed modeling complex mechanics or thermo-fluid 
streams is painful when using signal-based approaches 
(nevertheless this pain has been taken in industrial 
practice all too often). 

The remarkable thing about the LIED approach is that 
you have a simple scheme for code generation but you can 
conveniently model both mechanics and thermo-fluid 
streams in a very robust manner. The corresponding 
Modelica Libraries prove this (Zimmer 2022, Zimmer 
2023). Both application domains are known to be rather 
difficult but LIED can even be applied to the challenging 
parts of these fields such as handling stiff contact 
mechanics or complex by-passes in thermal architectures. 
It is yet unclear for what other domains LIED is an 
attractive choice.  

Figure 11 attempts to qualitatively depict the trade-off 
between computational complexity and algorithmic 
complexity. LIED forms a very exposed point on a 
hypothetical Pareto front. This means that for a large 
number of applications it is a very attractive choice.  

 

 
Figure 11: Hypothetical Pareto front weighing computational 
complexity against algorithmic complexity for code generation. 
LIED systems form an attractive compromise. The ultimate 
choice of the modeling approach depends however on the 
concrete application.  

What does this mean for the Modelica community? We 
should recognize that fully within our standard, this 
particular class of LIED models has been hidden. Due to 
their non-conventional interfaces (that appear in no 
textbook), this class has been overlooked for more than 20 
years. It is a robust class of models that scales for complex 
systems and also it is suitable for hard-real time simulation 
since everything non-linear is explicit and there are 
effective methods to manipulate fast eigendynamics.  

Object-Oriented Formulation and Simulation of Models using Linear Implicit Equilibrium Dynamics

272 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204265



I think it is justified to give this class extra support, by 
enabling the following features: 

 
 The modeler shall be enabled to mark 

components that are compatible to LIED, and 
provide additional meta-information to this end. 
The Modelica compiler can then check whether 
this is true. 

 The Modelica compiler can then enable the 
component-wise compilation of such 
components, at least for explicit ODE solvers and 
for implicit solvers with the numerical 
computation of the Jacobian. 

The primary motivation of this paper is to raise awareness 
on this class of models and the possibilities it enables for 
the generation of simulation code. The provided code 
examples are not necessarily the best approach and can be 
improved on. Furthermore, this modeling approach is still 
new and open for further investigation.  

Many statements in this paper require further validation 
also the topic is not very tangible. Hence, I want to 
encourage the reader to play with the open-source library 
ThermoFluid Stream and study dialectic mechanics. The 
practical way is the best way to develop an understanding 
for this modeling style. 

As a final remark, I shall say that I am very grateful for 
Modelica and its tool-set. I am not sure whether I would 
have ever found this particular class without it. Quick 
experimentation within Modelica was certainly extremely 
helpful.  
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Abstract
When simulating a Modelica model, non-linear algebraic
loops may be present, which involves solving multiple
equations simultaneously. The classical Newton-Raphson
method is commonly employed for solving a non-linear
equation system (NLS). However, the computational bur-
den of using this method during simulation can be signif-
icant. To tackle this issue, utilizing artificial neural net-
works (ANNs) to approximate the solution of algebraic
loops is a promising approach. While ANN surrogates of-
fer fast performance, ensuring the correctness of the com-
puted solution or quantifying reliability can be challeng-
ing.

This publication presents a prototype, based on the
OpenModelica compiler (OMC) (Fritzson et al. 2020),
that automates the extraction of time-consuming algebraic
loops. It generates training data, trains ANNs using ma-
chine learning (ML) methods, and replaces the algebraic
loops with ANN surrogates in the simulation code. A hy-
brid approach, combining the trained surrogate with the
nonlinear Newton solver, is then used to compute the so-
lution with a desired level of accuracy.
Keywords: Machine Learning, Dynamic Systems, Surro-
gate Model, Non-Linear System, Error Control

1 Introduction
Modelling and simulation play a major role in many
fields of science, technology, engineering and mathemat-
ics. Modelica (Mattsson and Elmqvist 1997) is an estab-
lished object-oriented language for multi-domain model-
ing. It is easy to develop model-based components us-
ing simple textbook equations and combine them into de-
tailed and complex cyber-physical systems. With increas-
ing complexity even on modern Modelica compilers sim-
ulation performance can slow down.

One way to computational accelerate Modelica compo-
nents is using ML surrogates. Such a surrogate approx-
imates the equation-based Modelica model with a data-
driven approach. When sufficiently trained, a surrogate
can replace the corresponding Modelica equations and the
resulting speedup can be utilized e.g., in parameter opti-

mization.
Different data-driven ML methods are used in the con-

text of modelling and simulation. ANNs as methods
of artificial intelligence (AI) are often used, in partic-
ular physics informed neural networks (PINNs) (Lawal
et al. 2022), long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber 1997), continuous-
time echo state networks (CTESNs) (Anantharaman et al.
2020) could demonstrate impressive speedups of simula-
tion time for complex models. While these methods are
fast and precise no guarantees for correctness can be made
that the surrogate solutions stays within the desired error
tolerances.

So called hybrid physical-AI based models are a com-
promise between classical and ML models. A hybrid
model can consist of equations derived from first princi-
ple physics as well as data-driven ML models. They offer
better simulation performance with acceptable accuracy.
While (Hübel et al. 2022) could show improved perfor-
mance with a reduced order model the resulting hybrid
model cannot be used outside of the trained area or ensure
a given error tolerance.

In this publication the authors present a partially au-
tomated method to replace non-linear algebraic loops of
Modelica models with error-controlled ML surrogates to
generate hybrid physical-AI based models. The relation
between inputs and outputs of the loop are learned from
synthesized data and reference simulations. It could be
shown, that with the use of ANN the simulation time could
be sped up by a factor of 1.5 while keeping the surrogate
prediction within a given error tolerance.

This enables users to select the tradeoff between accu-
racy and speedup.

Paper Organization
Subsection 3.1 describes the use of profiling to identify
NLSs that are worthwhile to replace. Different methods
to generate artificial training data from the original model
are discussed in Section 3.2. The exemplary training of
feedforward neural networks (FNNs) is illustrated in Sec-
tion 3.3 while Section 3.4 shows an approach to reduce the
demand for generated training data. Section 3.5 presents
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the integration of the trained surrogate into the simulation
while the error control is discussed in Section 3.6. Results
are shown in Section 4.2.2 with models from the Scalable-
TranslationStatistics Modelica library. Finally section 5
discusses results and encountered problems and section 6
concludes the paper.

2 Problem Statement
Developing a detailed high fidelity Modelica model
named Mhf is an elaborated task and simulating such a
model can take a significant amount of time. For appli-
cations like parameter fitting simulation speed outweighs
fidelity, so another Modelica model named Msur is needed
to complete the given task in an acceptable amount of
time. The classic approach is to manually replace expen-
sive equations of the original Mhf model and reduce the
complexity of the modeled physics. Another approach is
to generate large sets of artificial data from the expensive
to solve Mhf model to then train a ML surrogate.

The ordinary differential equation (ODE) of Mhf can
have subsystems of equations that need to be evaluated si-
multaneously. These subsystems, also known as algebraic
loops, can consist of linear or non-linear equations. This
paper only discusses the treatment of non-linear loops,
since in general they are harder to solve than linear loops.

An algebraic loop can be described in its residual form

fres : It ×Rnp ×Rnin ×Rnout → Rnout ,

fres(t, p,zin,zout)
!
= 0

(1)

with simulation time It := [tstart , tstop] ⊂ R, parameters
p ∈ Rnp , used variables zin ∈ Rnin computed in preced-
ing model equations and unknowns zout ∈ Rnout . Define a
function

fNLS : It ×Rnp ×Rnin → Rnout , fNLS(t, p,zin) = zout (2)

that solves Equation 1 explicitly. For simplicity non-
unique solutions to Equation 2 are ignored for now. In
practice this function is approximated by iterative root
finding methods solving Equation 1, for example the
Newton-Raphson method.

Instead of replacing all equations of Mhf with ML surro-
gates the authors propose to replace only the slowest non-
linear equation systems fNLS with faster ML surrogates fS
to reduce the time each evaluation of the right-hand side
of the ODE takes.

Because the residual fres and its Jacobian J are avail-
able, it is possible to compute error approximations for
prediction z̃out = fS(t, p,zin). Therefore it is possible to
ensure, that the prediction z̃out stays within a given tol-
erance and the default non-linear solver can improve the
solution if necessary.

By using an error controlled surrogate overall simula-
tion time could be improved by a factor of 1.5 as shown in
Section 4.2.2.

3 Method
Dependency information of the equations as well as a
callable C function are necessary to replace fNLS with
a fast surrogate fS. Because of this the authors choose
the open-source OMC. It offers ways to interfere with
the compilation process in order to retrieve the aforemen-
tioned requirements.

The method to generate a FMU containing the fast sur-
rogates for slow non-linear equation systems consists of
four main steps:

1. Find NLSs worth replacing (Section 3.1).
2. Generate training data (Section 3.2).
3. Train surrogates (Section 3.3).
4. Integrate trained surrogates into original model (Sec-

tion 3.5).
Steps 1, 2 and 4 can be handled by the prototype imple-
mentation while the training process in step 3 still needs
human intervention.

3.1 Profiling Model
The first step consists of analyzing how much time is spent
for each NLS in relation to the total simulation time. Pro-
filing for each model equation is performed to find all
NLSs that need more of the total simulation time than a
defined threshold. Since NLSs from the initial systems
are solved only once at simulation time t = tstart they are
not considered for replacement.

Solving an NLS is time consuming, indepen-
dent of the chosen Modelica tool. The exam-
ple ScaledNLEquations.NLEquations_5 from Sec-
tion 4.2 was profiled in two popular tools: Dymola and
OpenModelica. Most of the simulation time is spent solv-
ing the 8 non-linear systems, as can be seen in Table 1.
Dymola spends around 53.05% and OpenModelica spends
around 51.50% of the total simulation time solving these
non-linear systems.

To find suitable equations for surrogate replacement the
OpenModelica profiler (Sjölund 2015) is used to iden-
tify the Modelica equations corresponding to the slowest
NLSs. The generated simulation results are used in Sec-
tion 3.2 to specify the relevant input space for generating
training data.

3.2 Data Generation
After identifying equations for replacement data driven
surrogates need training, validation, and test data.

For the NLS all reached values for zin are recorded. To
only generate data in the area of interest the reference so-
lution from the profiling step can be used to define a hy-
percube around the reference variables:

Hin := It × Iin (3)

Iin := {z ∈ Rnin | a j ≤ z j ≤ b j∀ j} (4)

where
a j := min

t∈It
zin(t) j, b j := max

t∈It
zin(t) j. (5)
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Table 1. Profiling non-linear equation systems of
ScalableTranslationStatistics.Examples.ScaledNLEquations.NLEquations_5

OpenModelica Dymola
Index Total [s] Fraction [%] Block Total [s] Fraction [%]

5.892 100.00 4.830 100.00
907 0.434 7.54 1100 0.334 6.91
928 0.433 7.51 1117 0.334 6.91
834 0.423 7.35 1187 0.333 6.91
813 0.396 6.88 1136 0.327 6.76
882 0.392 6.81 1204 0.323 6.68
951 0.392 6.80 1153 0.322 6.65
857 0.386 6.70 1170 0.319 6.60
987 0.111 1.92 1083 0.272 5.63

If the user has knowledge of the input variables it is viable
to refine Iin to limit the training area further. For exam-
ple physical constraints or boundary conditions can en-
force that the surrogate only has to be valid in a specific
region or that some combinations of different inputs are
not reachable.

For the training process the input space Iin must be sam-
pled sufficiently dense and corresponding solutions saved.
One straightforward approach is to initialize the model
at time tstart to set all constants and parameters. Subse-
quently pairs (zin,zout) are computed, where zin ∈ Iin ran-
dom and zout is computed by Equation 2.

Improvements of the data generation regarding the
ANN training effort are discussed in Section 3.2.4.

3.2.1 evaluateEquation C Interface

All equations fNLS can be evaluated with
evaluateEquation without evaluating any other
equations. The input variables zin must be set using the
appropriate set function before evaluating the equation.
Afterwards the solution zout can be inquired with the
corresponding get functions.� �
status evaluateEquation(model c,

const size_t eqNumber);� �
• Argument c is the pointer to the model specific data

structure of OMC.
• Argument eqNumber specifies the unique equation

index of the equation to be evaluated.
• If the equation was successfully evaluated success

is returned, otherwise discard is returned.

3.2.2 Implementation Details

The methods described in this paper are im-
plemented in the prototypical Julia package
NonLinearSystemNeuralNetworkFMU.jl1. For the

1NonLinearSystemNeuralNetworkFMU.jl v0.5.1:
github.com/AnHeuermann/NonLinearSystemNeuralNetworkFMU.jl

function evaluateEquation an OpenModelica
source-code ModelExchange 2.0.4 Functional Mock-
up Unit (FMU) is built from the original Model-
ica model M using the following compiler flags2:� �

--fmiFilter=internal
--fmuCMakeBuild=true
--fmuRuntimeDepends=modelica� �

Then the C source files for evaluateEquation are
included into the FMU. The binaries and M.fmu are re-
compiled using the provided CMakeLists.txt file. The
resulting extended FMU is called M.interface.fmu.

To compute input-output pairs (zin,zout) Julia pack-
age FMI.jl3 (Thummerer, Mikelsons, and Kircher 2021)
is used to instantiate the FMU, set zin and call
evaluateEquation to evaluate fNLS(t, p,zin) with the
Newton-Raphson method. The resulting input-output
pairs (zin,zout) are saved to a CSV file for each NLS.

The Functional Mock-up Interface (FMI) standard is
used because it provides a standardized way to instantiate,
initialize, and solve an ODE system. At the time of writ-
ing FMI.jl allows the illegal call of fmi2SetXXX, allow-
ing this workflow for a provisional but functioning proto-
type. This might change in a future version. In a matured
implementation these steps must be performed directly in
the Modelica compiler or its simulation runtime.

3.2.3 Preprocessing Data

It is possible for a NLS to have multiple solutions
zout1 ̸= zout2 , such that for the same input zin

fres(t, p,zin,zout1) = fres(t, p,zin,zout2) = 0. (6)

In this case Equation 2 is multi-valued and no unique func-
tional relation exists. In case the training data has two sets

2OpenModelica User’s Guide on compiler flags:
openmodelica.org/doc/OpenModelicaUsersGuide/1.20/omchelptext.html

3ThummeTo/FMI.jl v0.10.2: github.com/ThummeTo/FMI.jl
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of input data that are close together but the correspond-
ing outputs are far apart, the surrogate will not be able
to approximate it. The training data has to be processed
in a way that the relation from input to output is suffi-
ciently continuous, i.e. not jumping between different so-
lution branches.

Modelica tools usually follow one solution continu-
ously if the step size of the ODE solver is small enough
and the previous solution of the NLS is a good enough
start value for the root finding method. Algorithm 1 from
Section 3.2.4 tries to mimic this behavior, so on one tra-
jectory the solution should not jump between different
branches. However this only guarantees local uniqueness
as two different trajectories to an input zin can still lead to
two different outputs zout1 ̸= zout2 .

3.2.4 Improving Data Generation
Iterative non-linear solver methods need a decent start
value to converge to a solution. Whether the method con-
verges and if so at which rate highly depend on the cho-
sen start values. An intuitive method to generate training
data using small random perturbations is described in Al-
gorithm 1.

Algorithm 1 Random Walk

1: procedure RANDOMWALK(δ ,∆t)
2: zout ← 0
3: zin← random value from Iin
4: for t = tstart , tstart +∆t , . . . , tend do
5: zout ← fNLS(t, p,zin), using previous zout as

start value
6: Save (zin,zout)
7: zin← zin +δω , where ω ∈ [−1,1]nin random
8: Ensure zin ∈ Iin

With small enough δ > 0 and ∆t > 0 the number of iter-
ation steps needed to solve the NLS for a given tolerance
should be low (close or equal to 1), since the previously
computed solution zout is a good start value for the next
small random perturbation of input vector zin← zin +δω .
The data generation process consists of creating several of
these randomWalk trajectories to cover Iin densely.

3.3 Supervised Learning
Using the generated training data from Section 3.2 it is
possible to train a ML surrogate for each NLS. This paper
restricts itself to simple FNN models:

model1(t,zin)≈ fNLS(t, p,zin) = zout (7)

Due to implementation limitations parameters p are not
changeable now and constant during the training process.
That means each parameter configuration requires its own
surrogate. It is planned to address this in future work.

To solve the issue of ambiguous solutions a different
FNN

model2(t,zin, ẑout)≈ fNLS(t, p,zin) = zout (8)

is defined, where the solution from the previous time step
ẑout is given as an additional input. With the informa-
tion from the previous ODE integrator step the surrogate
should learn to predict a solution that is close to the previ-
ous solution and not jump to a different solution branch.

3.4 Active Learning
Data for the NLS can be generated at arbitrary inputs in-
side an appropriate region as discussed in Section 3.2.
However, a call to the root finding algorithm is expensive
in general. Therefore, a variation of active learning (AL)
(Settles 2009; Wu, Lin, and Huang 2018) can be used for
training the surrogate fS.

The general idea of AL is to let the surrogate decide
which samples to label, i.e. which inputs to generate the
corresponding outputs for. Between training steps the per-
formance of fS is tested on new inputs zin. Samples from
unfit inputs i.e., inputs for which fS performs poorly, are
added to the set T for the next training step. This is de-
scribed more precisely in Algorithm 2, where m is the
number of active learning steps, n is the number of total
samples to generate, and 1− p is the fraction of samples
that are generated randomly for the first training step, so
p = 0 is equivalent to not using AL.

Algorithm 2 Active Learning

1: procedure ACTIVELEARN(m,n, p)
2: T ← initial data set with |T |= (1− p)n
3: for i = 1, . . . ,m do
4: train fS on T
5: T ′← FINDUNFITSAMPLES( pn

m )
6: T ← T ∪T ′

7: return fS

8: procedure FINDUNFITSAMPLES(n)
9: T ← /0

10: for i = 1, . . . ,n do
11: choose zin ∈ Iin with large expected error
12: zout ← fNLS(t, p,zin)
13: T ← T ∪{(zin,zout)}
14: return T

If Equation 6 does not apply, the residual norm

τabs(zin, fS) := ∥ fres(t, p,zin, fS(zin))∥2 (9)

gives a comparatively cheap measure for identifying unfit
inputs, without the need for root finding. However, resid-
ual equations may still contain expensive computations, so
in either case evaluations need to be done economically.
Since there is some freedom in generating new data, find-
ing unfit inputs can be seen as a multimodal optimization
problem inside the classical ML optimization problem

min
fS

{
max

zin
τabs(zin, fS)

}
(10)

which can be solved by any cheap optimization heuristic
and points generated along the way can be added to the
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data set T . This corresponds to line 11 in Algorithm 2.
A simple variant of the bees algorithm (Pham et al. 2006)
was chosen which combines global and local search.

An analysis of the effectiveness of AL is given in Sec-
tion 4.3.

3.5 Integrate Surrogate into Simulation
The trained Flux model from Section 3.3 is exported
in the Open Neural Network Exchange (ONNX) for-
mat (Bai, Lu, Zhang, et al. 2017) using ONNXNaive-
NASflux.jl4. For each fNLS that is replaced by a sur-
rogate the corresponding ONNX file is copied into the
M.interface.fmu resources directory. The ONNX
Runtime (ORT) (ONNX Runtime developers 2021) is
used to interact with the ONNX object. During
fmi2Instantiate all ORT data is initialized and the
ONNX files are loaded. In the C code responsible for
evaluating the NLS it is possible to switch between the
iterative solver method and the evaluation of the surro-
gate FNN. The FMU is then compiled and packed into
M.onnx.fmu.

3.6 Surrogate Error Control
Using Equation 1 it is possible to define an error control
algorithm. Computing the residual error from Equation 9
is cheap, but for many examples it is important to use the
scaled residual norm instead:

τs(J) := ∥s(J)◦ fres(t, p,zin, z̃out)∥2 (11)

Here ◦ is element-wise multiplication, s a scaling vector

si(J) :=
1

∥Ji,∗∥∞

, i = 1, . . . ,nout , (12)

with Ji,∗ being the i-th row of the Jacobian J of fNLS and
∥ · ∥∞ the maximum norm. To utilize the scaled residual
norm for the error control it is necessary to evaluate the
Jacobian J at each time step. Especially for numeric Jaco-
bians this can be costly to evaluate, but it is still cheaper
than a Newton-Raphson step, where the Jacobian needs to
be inverted in addition.

Hoping that the Jacobian does not change too much dur-
ing simulation, Algorithm 3 reuses J from the initializa-
tion and updates it whenever the default iterative method
needs to evaluate the Jacobian anyway.

If fS is not performing well on zin or zin /∈ Iin, Equa-
tion 2 can be solved by the iterative solver method with a
start value from the surrogate or extrapolated from previ-
ous solutions ẑout .

3.7 (Re-)Initialization and Events
The Modelica language is able to express models that
can have discontinuities in the right-hand side of their
ODE system. For model1 from Equation 7 events and re-
initialization are no issue, if the event is not changing the
system structure of the NLS.

4GitHub Repository: DrChainsaw/ONNXNaiveNASflux.jl

Algorithm 3 Error Control

1: procedure ERRORCONTROL(τ , J)
2: if zin ∈ Iin then
3: zout ← fS(t, p,zin)
4: if τs(J)> τ then
5: zout ,J← fNLS(t, p,zin) with start value zout

6: else
7: zout ← extrapolate(ẑout)

▷ extrapolate zout from previous time step(s)
8: zout ,J← fNLS(t, p,zin) with start value zout

In contrast model2 from Equation 8 uses the solution
ẑout from the previous time step. If the NLS is solved for
the first time or if the previous solution is invalid because
an event occurred the previous solution is not available
and the original equation fNLS is evaluated first.

The delay and spatialDistribution operators of
the Modelica language specification are not considered but
they don’t seem to be an issue as long as they are not used
inside fres.

4 Experiments
The method described in section 3 is tested on a mechan-
ical mass-spring system with scalable non-linear equation
systems. The library is presented in Section 4.2 and the
generation of surrogates is described in Section 4.2.1. In
Section 4.2.2 the simulation results are compared to the
Newton-Raphson method used by OpenModelica. Sec-
tion 4.3 demonstrates reduced data consumption on a
Modelica toy model.

4.1 Test Setup
All examples were run on a test server with an Intel Xeon
Gold 6248R CPU @ 3.00GHz, 192 GB DDR4 RAM @
2933 MT/s, NVIDIA Quadro RTX 6000 GPU with 24 GB
SDRAM on Ubuntu 22.04.2 LTS. Julia v1.9.0 with pack-
ages FMI.jl v0.12.2, Flux.jl v0.13.16, ONNXNaiveNAS-
flux.jl v0.2.7, OMJulia.jl v0.2.1 together with OpenMod-
elica v1.22.0-dev-156 was used.

4.2 ScalableTranslationStatistics Library
In this section the Modelica library ScalableTranslation-
Statistics5 is presented, which will be used as an example
for the algebraic loop replacement in Section 4.2.1. The
ScalableTranslationStatistics library offers many possibil-
ities to create models of specified numerical complexity.
It can be used to create generic examples for specific nu-
meric problem classes and thus avoids the need of sharing
confidential models.

Model properties like number of algebraic loops, con-
tinuous time states or use of numeric Jacobians can be
specified a priori via structural parameters in the model.
These are the structural properties the model will have af-
ter the translation. Due to different algorithms used during

5ltx.de/download/ModelicaLibraries/ScalableTranslationStatistics
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Figure 1. Scalable mass-spring system with parametriza-
tion num_masses=4, Lin_equations = {2,3,2} and
NL_equations = {2,1,5,1,2,2}.

the translation in different Modelica tools, the final struc-
tural properties might slightly differ from the given param-
eters, but the principal functionality is not tool-dependent.

The principal idea of this library - to scale models - is
based on the ScalableTestSuite6. But since this library
doesn’t offer the possibility to scale structural properties
like the size of algebraic loops, the ScalableTranslation-
Statistics library was developed. Figure 1 shows the phys-
ical representation for an exemplary parametrization of the
model.

A specified number of continuous time states is reached
by introducing masses, each having two state variables
(position and velocity). In the most simple case the
masses are only connected with simple linear springs (blue
springs in Figure 1), to avoid in any case singular sys-
tems due to free, unconnected masses. To obtain linear or
nonlinear equation systems, springs are directly connected
with each other. Thus, an algebraic loop of size M− 1 is
created, where M is the number of springs. Depending on
the spring characteristics the algebraic loop has a linear or
nonlinear behavior.

A simple way to enforce numeric block Jacobian is to
introduce an assert-statement in the spring-characteristic
to limit the force to a given maximum value, or reading the
characteristics from a file. In both cases the characteristic
cannot be differentiated analytically but needs to be solved
numerically. In the latter case an arbitrary characteristic
can be defined.

Furthermore, following additional features are imple-
mented:

• External forces (Fi) can act as inputs to the system,
position measurement sensors (Si) as outputs. By an
appropriate definition of the input-forces (e.g. via
a TimeTable) a desired number of time- or state-
events can be reached.

• Additional parameters, time varying variables and
alias variables can be added to the model. They have

6github.com/casella/ScalableTestSuite

no influence on the physical behavior, but increase
the size of the model.

• The model contains an independent mass-spring sys-
tem with a different stiffness of the spring (m4 in Fig-
ure 1). Thus, the stiffness can be adjusted to increase
the effort for an integrator to solve the model.

• Two-dimensional springs can be added to the model.
The directional stiffness of these springs depends on
the deflection in both directions. In this way partial
derivatives are introduced.

Besides the principal model, the library offers numer-
ous examples of different scaling and for the above-
mentioned features.

4.2.1 Generating Surrogates

To test the method presented in section 3 the model
ScalableTranslationStatistics.Examples.
ScaledNLEquations.NLEquations_N is used with
N ∈ {5,10,20,40} where N scales the number of iteration
variables. The model has eight NLSs with 2N unknowns.
Because of tearing (Täuber et al. 2014) there are N
iteration variables and N inner variables. The first
seven systems cannot be differentiated symbolically,
therefore numeric Jacobians are used. The fastest system
is differentiated symbolically. ODE integrator DASSL
(Petzold 1982) is used with tolerance 10−6 to simulate
in It = [0,10]. For small systems (N ∈ {5,10,20}) the
dense Newton-Raphson method is used. For the larger
systems (N ≥ 40) the sparsity of J is 7 %, so the sparse
solver KINSOL (Alan C Hindmarsh et al. 2005; Alan C.
Hindmarsh et al. 2023) is used instead of the dense one.
After profiling Figure 2 shows a significant amount of
the simulation time is spent to solve seven of the NLSs,
which is an upper bound for the amount of time that could
be saved by a faster surrogate.

Figure 2. Profiling relative simulation times for
ScalableTranslationStatistics.Examples.
ScaledNLEquations.NLEquations_N with
N ∈ {5,10,20,40} and the eight NLS eq 1, . . . ,eq 8 as
well as all remaining equations rest.
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During data generation Algorithm 1 is used to gen-
erate 5,000 data points in 100 batches of 50 calls to
randomWalk with δ = 0.01 for each N.

80 % of the available data points are used for the train-
ing set, the remaining 20 % for the validation set. The
model is simulated over It = [0,10] to test the ANN.

For FNN Equation 7 is fitted to the normalized training
data Ĩin using Julia package Flux.jl (Michael Innes et al.
2018; Mike Innes 2018). A model with one input, one
hidden and one output layer is created:� �

model1 = Flux.Chain(
Flux.Dense(nIn, nIn*10, σ),
Flux.Dense(nIn*10, nOut*10, tanh),
Flux.Dense(nOut*10, nOut)

)� �
with nIn = 1+nin and nOut = nout , activation functions
sigmoid σ and hyperbolic tangent tanh. The mean square
error is used as loss function and Adaptive Moment Esti-
mation (Adam) optimization is used to train the model.

model1 is trained over 1000 epochs or until the loss of
the training set is below 10−6.

4.2.2 Simulation Results
With the generated FMU containing surrogates for all
eight NLSs the simulation times are measured and com-
pared to the Newton-Raphson method as reference. The
models are simulated with an explicit Euler method with
fixed step size of 0.001 in time interval [0,10]. In Figure 3
the simulation times and speedup factors are plotted for
different values of N. While the evaluation of model1 is
slower for small NLS, with growing N the surrogates are
significantly faster to evaluate (up to 9 times). With more
sophisticated ANN structures even better performance is
expected. Unfortunately, the overall savings for the total
simulations are not as large as expected. For N = 40 the
surrogate is only 1.55 times faster than the original high
fidelity model.

In Figure 4 the simulation results of iteration vari-
ables scalableModelicaModel.springChain[1].
spring[m].s_rel for m ∈ {1,3,4,5} from NLS equa-
tion 808 are displayed. It can be observed, that while the
results of the iteration variables of the surrogate compared
to the reference solution have a low absolute error

|zouti − z̃outi |, i ∈ {1, . . . ,4} (13)

the error τs(J), displayed in Figure 5, of the residual is
relatively large. If τs(J)> 1 the original Newton-Raphson
method was used to solve the NLS.

The relevant output variables are the positions of eight
masses output[m] for m ∈ {1, . . . ,8}. The results of the
surrogate simulation are compared to the reference solu-
tion in Figure 6.

4.3 Controlled Data Generation
The training improvements of AL from Section 3.4 are
studied using the simple Modelica model SimpleLoop

Figure 3. The simulation time of the surrogates are plotted
against the reference Newton-Raphson method as well as the
respective speedup in total simulation time.

which has a single NLS of size 2. It describes the inter-
section of a circle with a line, both changing over time:� �
model SimpleLoop

Real r = 1+time;
Real s = sqrt((2-time)*0.9);
Real x(start=1.0), y(start=-0.1);

equation
rˆ2 = xˆ2 + yˆ2;
r*s = x + y;
annotation(experiment(StopTime=2));

end SimpleLoop;� �
This model has two distinct solutions since the equations
are symmetric in x and y. The NLS is torn to a single
iteration variable and has two inputs, r and s.

For this model a surrogate with a total of 441 param-
eters was trained. Figure 7 shows the peaks in τabs from
Equation 9 for different training scenarios. For p = 0 sur-
rogates improve slightly with increasing data size n. Using
AL on p = 1

4 of the generated data improves the surrogate
significantly, even for small n. Generating p = 1

2 to 3
4 with

AL seems to be optimal with slight improvements over
p = 1

4 . However, surrogates with no pre-training what-
soever perform no better or even worse than with p = 1

2
pre-training. In particular, for the scenario n = 800, p = 1,
two out of ten simulations showed bad results and so did
one simulation for n= 1000, p= 0.5. Still, p= 0 produces
worse results regardless of the value of n.

5 Results
When increasing the size of the non-linear systems the
advantage of surrogates becomes more and more evident.
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Figure 4. For N = 5 the iteration variables of the surrogate and
the reference solution are compared in the upper graph. The
solid lines are the reference and the dotted lines the surrogate
solution. They are so close, that the dotted lines are not visible.
The variables are describing a relative position of springs in a
chain of springs. The lower graph shows the absolute difference
between the reference and surrogate solution.

However, the examined Modelica model is simple. When
more complex and application-oriented examples where
investigated several problems were encountered, that are
not yet solved and discussed in the following subsection.

The AL approach was tested on a small toy example
and proved to outperform the method of random data gen-
eration both in precision and in data efficiency. However
further experiments need to be done to see to what ex-
tent AL can impact the surrogate training process for more
complex Modelica models.

5.1 Encountered Problems
For larger and highly non-linear NLS it is more compli-
cated to train accurate enough FNN. Simple NLS that
have only a few iteration variables can use a lot of previ-
ously computed variables. The surrogate tries to approxi-
mate a function from the used variables to the solution of
the iteration variables. In this case an easy to solve NLS
becomes difficult to train for an ANN.

An especially difficult problem are iteration variables
that influence the ODE states. There are two different is-
sues with this. When trying to solve the simulation exe-
cutable with the surrogates the error control cannot man-

Figure 5. For N = 5 equation 808 the residual vector and its
norm over the simulation time are displayed. If the value of
τs(J) is larger than 1 Algorithm 3 switches to the original non-
linear solver method to refine the prediction from the surrogate.

age the imprecise solution of the surrogate. While the ap-
proximation would be good enough for the use case the
error control of the ODE method will reduce the step size
until the lower limit is reached. And when the error con-
trol of ODE integrator is deactivated coupled states are a
problem.

For analytic stable ODE a well-suited integration
method transports this stability to the numeric approxima-
tion of the solution. This means numeric errors will vanish
over time and the numeric solution converges to the ana-
lytic solution. In contrast it seems that small errors from
the surrogate will escalate over time and the numeric so-
lution gets worse over time. This needs to be investigated
more. Iteration variables that have a high sensitivity to-
wards states can be a significant issue.

6 Summary and Outlook
The presented prototype NonLinearSystemNeuralNet-
workFMU.jl aims to lower the bar for Modelica users to
utilize hybrid modeling approaches in their models. Even
though the scripts are in an early development stage they
could pave the way for tool supported integration of ML
into Modelica models.

The example from section 4 shows that there is some
potential in replacing sufficient large NLS with machine
learning surrogates. The focus of this paper is to automate
the workflow for data generation and integration of trained
surrogates into the simulation executable. So further re-
finements of the ANN could result in faster and more pre-
cise evaluations of the surrogates. The ability to use hy-
brid ML methods for problems with discrete events and
inputs distinguishes the presented method from methods
replacing all of the right-hand side of the ODE and en-
sures correctness of the surrogates.

The workflow can be extended to profile linear equa-
tion systems as well as external Modelica functions and
automate data generation for these systems or functions.
Especially functions computing media properties, e.g. for
thermal fluid systems, can be expensive and library de-
velopers and users are searching for ways to decrease the
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Figure 6. Simulation results in the upper graph and absolute
errors in the bottom graph for N = 5 equation 808. In the upper
graph the solid lines are the reference and the dotted lines the
surrogate solution. They are so close, that the dotted lines are
not visible.

time spent evaluating these functions.
Instead of using ANN we plan to use symbolic re-

gression to obtain equations that represent the underlying
physics while being less of a black box.
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Abstract
The need for modeling different aspects of microgrid de-
sign and operation has seen the development of various
tools over time for different analysis purposes. In this study,
Modelica has been adopted as the language of choice to
construct a University Campus Microgrid model, utilizing
the Modelica Standard Library and the OpenIPSL library.
This paper explores the advantages of utilizing Modelica
for campus microgrid modeling, emphasizing its benefits
and unique features. Modelica features, such as the use
of record structures and replaceable templates prove to be
particularly advantageous for the modeling task, enabling
flexibility and efficiency in the modeling process. Fur-
thermore, comprehensive validation tests are conducted
to ensure the accuracy and reliability of sub-systems (e.g.
specific power generator systems), before assembling the
microgrid network model as a whole. The results demon-
strate the efficacy of Modelica in accurately modeling and
simulating microgrids, highlighting its potential for advanc-
ing microgrid research and development.
Keywords: Microgrid modeling, Modelica, OpenIPSL,
record structures, replaceable templates

1 Introduction
1.1 Background and Related Works
The growing deployment of microgrids over the past few
decades can be attributed to a multitude of factors that
have collectively shaped their development. These include
significant technological advancements, the growing trend
towards decentralization in power generation and distribu-
tion, the increasing utilization of renewable energy sources,
a heightened focus on grid resilience, and comprehensive
studies on energy security. Microgrid modeling and sim-
ulation provide designers and operators the flexibility to
explore diverse design options, and moreover, operational
power dispatch scenarios and control strategies, without
risking any disruptions in the actual operation of the phys-
ical system. This enables the identification of potential

issues and facilitates the optimization of control strategies,
ensuring the provision of a reliable and efficient power
supply.

Over the years, numerous tools have been developed and
employed specifically for the purpose of modeling micro-
grids. These tools serve as essential resources for a micro-
grid’s stakeholders (e.g., operators, owners, etc.) seeking
to accurately represent and analyze different aspects in-
volved from the design, to deployment and operation of
microgrid systems (Feng et al. 2018). The Distributed En-
ergy Resource Customer Adoption Model (DER-CAM),
pioneered by the Berkeley lab, integrates thermal and elec-
trical storage sizing while optimizing equipment selection
and operation to effectively reduce energy costs (Marnay
et al. 2008).
The National Renewable Energy Laboratory (NREL) has
developed the Hybrid Optimization Model for Multiple
Energy Resources (HOMER), an optimization model for
microgrids. This tool enables evaluating of various equip-
ment options, accommodating various constraints and sen-
sitivities (Mendes, Ioakimidis, and Ferrão 2011).
Diverging from the aforementioned tools, the Smart Grid
Computational Tool (SGCT), created by the Electric Power
Research Institute, takes a distinct approach to perform-
ing techno-economic analysis, providing valuable insights
into the economic feasibility and advantages of smart grid
implementations by considering a range of factors beyond
energy balance (Xu et al. 2017).
The agent-based smart grid simulation software GridLAB-
D developed by the Pacific Northwest National Labora-
tory offers comprehensive capabilities for simulating both
the power flow of transmission networks and the perfor-
mance of individual components within microgrids (Chas-
sin, Schneider, and Gerkensmeyer 2008).

While most of these software tools focus on important
microgrid design and analysis aspects, they do not provide
adequate means to represent the system’s dynamics, where
the Modelica language excels. The primary motivation
behind selecting Modelica as the modeling language for
this work is its adoption by multiple software tools that
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support the language. This permits the use of these mod-
els across several software platforms, enhancing flexibility
and enabling wider accessibility for analysis features be-
yond power flow and time-series simulations. In particular,
Modelica tools provide user-friendly environments for ef-
fortlessly linearizing models, which is challenging with
traditional power system analysis tools. Meanwhile, dy-
namic simulation analysis, including transient and steady-
state simulations, can be performed efficiently, providing
valuable insights into the system’s behavior under differ-
ent operating conditions. Additionally, these features of
the Modelica language allow to perform stability analysis,
enabling the assessment of stability margins and the identi-
fication of potential stability issues within the microgrid’s
power system models.
In addition, Modelica-based libraries enable the utilization
of diverse models that encapsulate the behavior and interac-
tions of systems across different domains such as electrical,
mechanical, thermal, and more. As highlighted in (Winkler
2017), Modelica exhibits substantial potential as a robust
power system modeling tool when utilized in conjunction
with the Open-Instance Power System Library (OpenIPSL)
library (Baudette et al. 2018; Castro et al. 2023). The dis-
tinct features of the Modelica language, such as the ability
to create and manage record structures, prove particularly
advantageous for power system models that necessitate
initialization with power flow data in various power dis-
patch scenarios. Furthermore, the inherent replaceable
model structure and object orientation of Modelica greatly
facilitate the modeling of a microgrid’s sub-systems and
components.

This paper presents the modeling of a University Cam-
pus Microgrid utilizing the Modelica language (Fritzson
and Engelson 1998; Fritzson 2014) and the OpenIPSL
(Baudette et al. 2018; Castro et al. 2023) and explores the
benefits of utilizing specific unique features of Modelica for
microgrid modeling. Through this work, valuable insights
are gained into the potential of Modelica as a versatile mod-
eling language for microgrid modeling, that can ultimately
contribute to advancements in microgrid research, design,
operation, and optimization.

1.2 Motivation
On the topic of microgrid modeling utilizing the OpenIPSL
library, the author’s previous work (Fachini et al. 2023)
aimed to demonstrate the use of Modelica as a viable mod-
eling language for microgrid, as well as the engineering
rationale on how to translate document information into
power system models using OpenIPSL. This work, on the
other hand, is focused on sharing the exploitation of Model-
ica features and modeling details of a real-world microgrid
system, that albeit similar in implementation as in paper
(Fachini et al. 2023), represents a different facility in Texas.
The topics explored in this paper address the utilization of
records for both component parameter and initial condition
instantiation, implementation of reusable templates (us-
ing replaceable) with a structure for generation unit

implementation and characterization of variants, genera-
tion unit validation through simulation comparison, and
description and simulation results of the microgrid model.

1.3 Contributions
The paper’s main contribution is to illustrate how Modelica-
specific features can be used in the implementation of a
real-world microgrid. Thus, the contributions are:
• To describe the record structures used for initialization

of the dynamic microgrid model implemented utiliz-
ing the OpenIPSL Modelica library, and component
parameter instantiation.

• To describe the implementation of a synchronous
generator-based replaceable model that allows the user
to create variants by easily configuring a generation
unit model and the use of inheritance.

• Description of the validation of the generation units
utilized in the microgrid model using csv compare
(Modelica-Tools n.d.) to contrast with results from the
domain-specific tool.

• Description of the implementation of the microgrid
model and closed-loop system stability through root
locus analysis.

1.4 Paper Structure
This paper is structured as follows: Section 2 describes
the university campus microgrid model and the advantages
of using Modelica for microgrid modeling including the
records structure proposed to handle the power-flow vari-
ables. In Section 3, we illustrate how this data container
can be linked to OpenIPSL, validate the generation units de-
veloped, and benchmark the power flow values against the
results obtained with commercial tools. Section 4 presents
the simulation result. Finally, Section 5 concludes the
work.

2 University Campus Microgrid Mod-
eling utilizing the OpenIPSL Model-
ica Library

When modeling power systems dynamics, there are two
distinct mathematical representations that one can choose:
Electromagnetic Transient (EMT) based models, or Phasor
domain (RMS) based models. EMT-based power system
models provide a three-phase waveform representation of
instantaneous values for currents and voltages, used for
the analysis of high-frequency events in the grid, such
as power electronic switching, lightning phenomena, etc
(Mahseredjian, Dinavahi, and Martinez 2009). RMS-based
power system models provide a positive sequence phasor
representation of currents and voltages, used to model elec-
tromechanical oscillations in the system. This modeling
representation considers only the fundamental frequency
of the AC voltages and currents of the real-life electrical
system. The OpenIPSL library components are validated
against Siemens PTI PSSE (Siemens PTI 2017), therefore
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the majority of the models within the library are RMS-type
models.

Figure 1 displays the campus microgrid model, de-
scribed in this paper, and implemented utilizing OpenIPSL
components. This university campus microgrid is located
in Texas and is connected to the local utility through four
69kV feeder lines as shown in Figure 1. The utility bus
voltage level is reduced to 12kV through four step-down
transformers, namely T1 - T4. The microgrid also contains
a 4.16kV portion in bus B15, stepped down from 12kV to
4.16kV through transformers T5, and T6.

The university campus microgrid is powered by two
combustion turbo generators (CTs) and four steam turbo
generators (STs). The two oldest steam turbine generation
units rarely operate, typically online for a few days a year
in extreme load conditions. For that reason, the model in
Figure 1 contains two CTs and two STs, producing power
at 12kV each. The maximum amount of power that the
combined generation units can produce is approximately
127MW. The CTs and STs are composed of three essential
components: the synchronous machine, which converts
mechanical energy into electrical energy, the prime mover,
which drives the synchronous machine, and the control
system, which regulates and monitors the overall opera-
tion. Together, these components work in tandem to ensure
the optimal performance of the CTs and STs within the
power plant. Both the CT1 and ST1 utilize the GENROU
synchronous machine, IEEEVC as the voltage compen-
sator, a power system stabilizer (PSS), and the ESST4B and
ESST4A as the excitation system respectively. The CT2
and ST2 models share a similar internal structure, with the
distinction that they lack a voltage compensator. Notably,
the CT2 and ST2 models employ the AC7B excitation sys-
tem. The transformers are denoted as T1, T2, etc. The
power transmission lines are denoted as X1, X2, and so on.
Correspondingly, the buses within the network are labeled
as B01, B02, etc, and the loads are symbolized by L01, L02,
and so forth. The blocks labeled Y in the network represent
the shunt component with conductance and susceptance
as its parameters. The microgrid model also displays an
electrical contingency block, namely pwFault, used for
three-phase to ground fault testing. Lastly, the UTI compo-
nent represents the utility bulk power system, modeled as
an infinite source model.

This campus microgrid has a peculiarity to its opera-
tion: it is only allowed to purchase a limited amount of
power from the utility grid in emergency situations, i.e.,
it operates to meet the campus demand on a continuous
basis. Currently, the university satisfies the campus power
demand from internal generation sources, however, with
the increasing variability in the price of natural gas, the
university management is studying the possibility of both
purchasing more power and also selling excess power when
lucrative. The development of this microgrid’s model in
OpenIPSL, utilizing the Modelica modeling language, will
open the possibility of expanding the current model for
multiple purposes, including the optimization of operation

and revenue of both electrical and thermal domains of the
combined heat and power system. This paper will focus
on the electrical domain, while future work will expand it
to represent the thermal domain, i.e., heat generation and
distribution.
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Figure 1. University Campus Microgrid “Virtual” Testbed
Model.

2.1 Advantages of using Modelica for Micro-
grid Modeling

The Modelica modeling language was developed to pro-
vide a systematic approach to developing models of cyber-
physical systems through mathematical equations (Fritzson
and Engelson 1998). With that in mind, the OpenIPSL Li-
brary was implemented as a means to study power system
dynamics with a modern and modular approach to power
system modeling through the usage of the Modelica model-
ing language. The modeling paradigm used for the imple-
mentation of the OpenIPSL Library is the phasor-domain
representation of power system components, meaning that
the models are represented in terms of a set of differential-
algebraic equations that represent the electromechanical
transients in the power system (Kundur and Malik 2022).
The general form of the differential-algebraic set of equa-
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tions in power system studies is:

ẋ = f(x(t),y(t), t),
0 = g(x(t),y(t), t),

(1)

with initial conditions, (x0,y0, t), i.e. 0 = f(x0,y0, t) (Kun-
dur and Malik 2022).

When implementing phasor-domain dynamic models,
the assumption that is taken is that the balanced system
is at its nominal system frequency, being it 50 or 60 Hz,
depending on the system in study. This particular simpli-
fication allows representing passive system components,
such as transmission lines, with algebraic equations that
rely on lumped impedance values instead of a set of dif-
ferential equations. Therefore, the differential equations
in the phasor-domain models describe the states of genera-
tion units and their controls. The initial condition values
utilized to generate different simulation starting points are
derived from steady-state simulations of the electrical grid,
known as power flow analysis (Powell 2004).

Unlike traditional power system tools for phasor-domain
dynamic simulation, OpenIPSL was built utilizing the Mod-
elica modeling language. With its object-oriented con-
structs, models can be reused and modeled conveniently, es-
pecially intricate systems containing multiple components
(Fritzson and Engelson 1998; Fritzson 2014). Among sev-
eral benefits of utilizing the Modelica language for power
system simulation, two are of major interest and are im-
plemented to be used in the microgrid models: (1) record
structures, herein used for both system initialization and
system characterization and (2) replaceable model tem-
plates, herein used for creating variants of generation units.

2.2 Initial Guess Record Structure
On the modeling front, the Modelica language utilizes its
object-oriented paradigm to enable users to create models
in a hierarchical manner. Similarly, one can also manage
model parameter values and initial guess data through a
hierarchical structure based on records. Figure 2 displays
the PfData record structure that is used to initialize the
dynamic power system model. The initial guess data nec-
essary for the start of the dynamic simulation utilizing
OpenIPSL components, which is obtained through power
flow simulations, are voltage magnitude and angle of all
buses, active and reactive power injection/consumption
from the generation units, and the respective load profile
of the microgrid.

The PowerFlowTemplate is a record template for the
entire record structure which constrains the power flow
records. The record files BusTemplate, LoadTemplate, and
MachineTemplate define partial models that define the pa-
rameters that are extended in the data-filled record files.
The record files PfBus1, PfLoad1, PfTrafo1 and PfMa-
chine1 are extension records from the record templates,
where the initial guess parameters from the templates are
the attributed values. The Pf1 record holds the template
for all the record components. The numbering has been

assigned to signify the initial record, creating room for
incorporating multiple additional values for each compo-
nent within their respective records across diverse power
dispatch scenarios. This means that the defined record tem-
plates can have a multitude of different parameter values for
multiple different initial guess values in the same system.
The implementation of such a record structure can be done

Figure 2. Record Structure for Dynamic Model Initial Guess

manually, but it can also be done automatically through
an automation tool, namely the pf2rec Python script, that
converts power flow simulation results into *.mo record
file (Dorado-Rojas et al. 2021).

2.3 System Characterization Record Structure
Records can also be used for model parameter setup, which
is useful when the user has the intention of modifying mul-
tiple system parameters to effectively study different grid
or component models, without actually re-implementing
the model from the ground up. This feature empowers
users to easily customize and adapt the model based on spe-
cific requirements or scenarios by manipulating the record
structure. This capability not only saves time and effort
but also enhances model reusability and promotes iterative
model refinement.

Figure 3 displays the DynParamRecords record structure,
which serves as a repository for parameter values related to
the model equipment, including the synchronous generator
(Machine), exciter (ES), and the power system stabilizer
(PSS). This record structure efficiently stores and organizes
the data associated with each individual component, and
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visually demonstrates the arrangement of the record struc-
ture, showcasing how the data for each machine or exciter
model is maintained within this organized framework. Ma-
chineDataTemplate, ESSTxATemplate, ESSTxBTemplate
and ACxBTemplate record files are also partial record mod-
els that define the parameters of the generation unit equip-
ment. The set of record models, excluding the aforemen-
tioned ones, in the sub-packages MachineData, ESData,
and PSSData extends their template files to attribute values
to the defined component parameters. CT1, CT2, ST1, and
ST2 as denoted in the record structure as CTG1, CTG2,
STG1, and STG2 respectively, extend the GUDynamicTem-
plate, which is used as a replaceable in GUDynamics.
This last record file is utilized in the models in order to
(re)parametrize the components in the model.

Figure 3. Data Record Structure for Generation Units

2.4 Replaceable Model Template for the Gen-
eration Units (CT and ST)

Because of the way the models are implemented in
OpenIPSL, each type of generation unit component has
multiple extensions to a base class. This means that it is
possible to implement an “ALL-IN-ONE” generation unit
model architecture that can be used to create variants that
represent different generator units based on the different
types of synchronous generator models, exciter models,

and power system stabilizer models. For instance, Figure
4 displays an example of the CT1 gas-turbine generation
unit.
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Figure 4. Replaceable Generation Unit Model Example

The sunken gray components are replaceable models for
the synchronous generator (1), exciter (2), PSS (4), and
turbine-governor model (3). Component (5) from Figure4
is a voltage compensation block. For the purpose of this
work, the turbine-governor model is defined as a constant
mechanical power to the generator, because of the lack of
information on the turbine during the model implementa-
tion phase, however, this will be expanded in future work.
Inspecting the generation unit component in the microgrid
model, shown in Figure 5, one can observe the result of
enabling the use of the records for parameter definition and
model initialization (i.e. the use of the power flow data as
an initial guess for the initialization problem).

Figure 5. Parameters and Power Flow Data from the CT1 Model

The image displays the possibility of the user selecting
different component models for the replaceable machine,
exciter, governor, and pss components. On the Power flow
data section, the user is able to select initialization values
for P_0, Q_0, v_0, and angle_0 based on values from the
PowerFlow record file shown in Figure 2.

3 Validation System Models for the
Generation Units

Before assembling the entire microgrid model, this work
proposes the development of validation models that allows
checking if the generator unit models have been charac-
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terized correctly by reutilizing a partial model from the
OpenIPSL library that is used for unit testing of the library.
This helps in minimizing the complexity of debugging
when assembling the microgrid system model, as the most
crucial dynamic sub-systems have been verified in this
step. To this end, the modeling and verification process is
discussed next.

3.1 Generators
The campus microgrid power plant utilizes two gas-fired
combustion turbo-generators (CT1 and CT2) that produce
steam at high pressure. This steam is then directed towards
the two steam turbo-generators (ST1 and ST2) in order
to generate electricity. This section provides an in-depth
explanation of the CT model, shedding light on the internal
structure and components of the model.

Figure 4 provides a visual representation of the CT1
model, offering a diagram view that highlights its key com-
ponents. The central element is the GENROU synchronous
machine, which is driven by a constant power component.
The IEEEVC component acts as a voltage compensator,
supplying the necessary voltage to the exciter, represented
by the ESST4B component. The output of the exciter model
i.e. the excitation voltage EFD is fed to the synchronous
machine. Meanwhile, the power system stabilizer (PSS)
continuously monitors the generator’s shaft speed and elec-
trical power output. To interface with the wider grid, the
pwPin serves as the connection point between the genera-
tion unit and the rest of the system.

The CT2 model, depicted in Figure 6, follows a similar
approach, with the components following a similar num-
bering convention as the one in Figure 4. However, there
are distinct differences, specifically in the exciter model,
which is AC7B in this case. Additionally, the absence of the
voltage compensator sets it apart from the previous model.
The guData component within the model is used to pa-
rameterize the model components, including the machine,
exciter, and power system stabilizer. By selecting the data
record associated with CT2, the component parameters are
automatically populated from the record structure, as de-
picted in Figure 3. This approach streamlines the process
of configuring the model components with the appropriate
values, enhancing efficiency and ease of use.

3.2 Single Machine Infinite Bus Test System
To ensure dynamic modeling accuracy, the generation units
consisting of the two combustion turbo-generators (CTs)
and the two steam turbo-generators (STs) undergo a valida-
tion process through the creation of individual test models.
The single-machine infinite bus test system model is imple-
mented utilizing the Modelica modeling language with the
OpenIPSL Library components, simulated using Dymola
(Brück et al. 2002), and in the Siemens PTI PSSE tool.
The simulation results from both tools are then compared
via csv compare tool. This comparison algorithm fits a
tolerance tube around the data set, where the tube is linked
to a tolerance value set by the user, and the simulation
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Figure 6. Combustion Turbo-Generator (CT2) Model

result values are then checked to see if they lie within the
tube. In order to validate the Modelica-based model against
the reference Siemens PTI PSSE model, a fault event is
generated in order to evaluate the dynamic response of the
generation unit and its controls.

Figure 7 depicts the test model for the CT2, in which the
pwFAULT component from the OpenIPSL library is uti-
lized to simulate a three-phase electrical fault contingency.
This fault is applied to the designated FAULT bus, specifi-
cally from 2 to 2.15 seconds. The introduction of this fault
condition results in a reduction in the voltage magnitude at
the specified bus, thereby reflecting the ensuing impact on
the system dynamics. Figure 8(a) and Figure 8(b) depict
the active, and reactive power injection from the generation
unit being validated (CT2).
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Figure 7. Single Machine Infinite Bus Validation Test Model
with CT2

The orange curve is the simulation plot from Siemens
PTI PSSE (Base), while the dark green curve is the simula-
tion plot from Dymola (Result). The blue and light green
curves are the lower and upper values of the tube mentioned
earlier in the subsection, with a tolerance value chosen to
be 0.01. From the comparison result, one can observe that
the simulation in Dymola is practically identical to the
simulation results from Siemens PTI PSSE and that both
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curves are inside the tolerance tube. This means that the
simulation passed the validation process and it is adequate
to be used in the microgrid model. The same validation
process is conducted in all the generation unit models im-
plemented in this work, namely the two gas turbines and
the two steam turbine units.

(a) Active Power Injection from CT2

(b) Reactive Power Injection from CT2

Figure 8. Active power injection comparison simulation results
utilizing csv compare algorithm Figure 8(a), and reactive power
injection comparison simulation results utilizing csv compare
Figure 8(b).

4 Simulation Results
Paper (Fachini et al. 2023) discussed two simulation re-
sults for a similar microgrid model of another university
campus in Colorado: an electrical contingency study in the
microgrid, and an eigenvalue analysis of the microgrid. To
expand on available Modelica capabilities in this work, us-
ing the newly developed model for a real-world microgrid
in Texas, the authors explore the stability of the microgrid
system when varying the proportional gain Kp from the
exciter proportional-integrator (PI) controller in CT1. It is
worth mentioning that the addressed PI controller takes in
as input the error signal between a voltage reference and

Figure 9. Root Locus Result for Increasing Values of Kp in the
CT1 Generation Unit

the terminal voltage.
The equilibrium solution to the system when increasing

the proportional gain in increments can be used to perform
a root-locus analysis, as an exploration of the system’s
eigenvalues with changing proportional gain values. Figure
9 displays the root-locus analysis done in the microgrid
model from Figure 1, where Kp of the exciter from CT1
generation unit is systematically for the range [1,500].

The X markers in Figure 9 define the eigenvalues from
the first root locus simulation for Kp = 1. The subsequent
iterations of the root locus plot are displayed in a gradient
color spectrum, with vibrant red being values near the min-
imum of the Kp range and dark maroon being values near
the maximum of the Kp range. The root locus plot displays
a complex eigenvalues pair, labeled eig 1, and eig 2, which
are associated with the exciter’s voltage. As Kp increases,
the complex eigenvalue pair present a reduction in the real
components, which implies an increase of dampening.

Figure 10. Time domain-simulation of Voltage in Bus 7 for
different Kp values
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This is verified in the plot shown in Figure 10, where
a fault and a consequent line trip are applied to the sys-
tem in Figure 1 to display the oscillatory behavior of the
voltage magnitude at Bus 7. The voltage magnitude at
Bus 7 for three different values for the proportional gain
in the exciter: Kp = 1, Kp = 40, and Kp = 500, are shown.
As expected, increasing the value of the gain results in a
more aggressive dampening of the voltage magnitude os-
cillations, all due to a reduction in the real component the
complex eigenvalue pair eig 1, and eig 2.

5 Conclusions
In this work, Modelica and the OpenIPSL library have been
utilized to model a real-world university campus microgrid.
The implementation of Modelica allowed leveraging its
unique features, such as the record structures and replace-
able templates, to effectively design and parameterize the
generation units of the microgrid. To ensure reliable per-
formance, each generation unit underwent a separate vali-
dation test before being integrated into the main grid. By
adopting this approach, the advantages of utilizing Model-
ica in the development and validation of microgrid models
have been demonstrated, bringing added value with mul-
tiple potential uses, such as linear-model-based analysis,
which is challenging with domain-specific tools.

The study has been based on the documentation from the
plant engineers, but unfortunately, there were not enough
documents on the turbine governor (TG). Future work in-
cludes the TG and thermo-fluidic system used for the opti-
mization of the heat-and-power model.
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Abstract
This paper presents the implementation of successive lin-
earization based model predictive control (SLMPC) ef-
forts through the interfacing of OpenModelica and MAT-
LAB using the OMMatlab tool. The dynamic system
(here a chemical process) and the model predictive control
(MPC) algorithm are implemented in OpenModelica and
MATLAB, respectively. The model linearization proce-
dure is carried out through OMMatlab, which is highly op-
timized in terms of run-time by using a single executable
file and adapting it at each sample time. Also, neces-
sary theories for a continuous model discretization are dis-
cussed for both nonlinear Modelica and linearized contin-
uous models. A procedure for constructing an Extended
Kalman Filter (EKF) from a continuous Modelica model
is also presented. The usability of the OpenModelica-
MATLAB interface for SLMPC is demonstrated by con-
trol of liquid levels in a tanks-in-series problem.
Keywords: Model predictive control, OpenModelica, OM-
Matlab, Extended Kalman filter.

1 Introduction
In the recent years, the Modedica language has been
widely used for modeling of systems described by dif-
ferential algebraic equations (DAEs). The object-oriented
nature of Modedica facilitates modular model construc-
tion and the use of powerful solvers as provided by com-
mercial and open source Modedica-based simulators (e.g.,
Dymola, OpenModelica (Fritzson et al. 2020), Jmodel-
ica). Some integrated features such as Optimica (Åkesson
2008) and CasAdi are also supplied for solving dynamic
optimization problems. The reader is referred to (Ruge et
al. 2014; Magnusson and Åkesson 2015) for a thorough
discussion of these topics. Moreover, model predictive
control (MPC) problems have been implemented in Open-
Modelica; see e.g., (Bachmann et al. 2012) for MPC im-
plementation of a batch reactor.

Conventional nonlinear model predictive control
(NMPC) works by predicting the future behavior of a
system and solving a dynamic optimization problem
for minimizing a performance index, e.g., tracking
error or operational cost; see, for example, (Ellis, J.
Liu, and Christofides 2017; Heidarinejad, J. Liu, and
Christofides 2013). Although using a rigorous nonlinear
model increases the prediction accuracy, it leads to
high computational expense (Zhakatayev et al. 2017)
and potential convergence issues in the optimization
routine. Successive linearization MPC (SLMPC) is an
efficient alternative to NMPC (Seki, Ooyama, and Ogawa
2002; Cannon, Ng, and Kouvaritakis 2009; Cortinovis
et al. 2014; C. Liu et al. 2015), especially in large-scale
applications. In this method, the nonlinear model of
the system is linearized successively at each sample
time, and the prediction model is updated over time to
preserve the prediction accuracy (Vrlić, Ritzberger, and
Jakubek 2020). As a result of using a linear model, the
dynamic optimization can be performed faster, favoring
SLMPC over NMPC for large-scale systems in terms of
computational expense, although the prediction accuracy
may be undermined to some extent.

Many dynamic optimization or MPC efforts using
Modelica models are reported in the literature. Franke
(2002) employed Modelica to study optimal startup of a
power plant, in which Dymola was used for generating S-
Functions that would be imported into Simulink. Gräber
et al. (2012) proposed a framework based on functional
mockup interface generated from Modelica models for im-
plementing NMPC on a vapor compression cycle. Also,
L. Imsland, P. Kittilsen, and T. Schei (2010) integrated
Dymola models into commercial software designed for
NMPC and did a case study with an offshore oil and gas
processing plant. Pandey et al. (2021a) employed OMJu-
lia (Lie et al. 2019) for stochastic MPC of solar and hy-
dropower plants described by a set of small-scale DAEs.
Pandey et al. (2021b) implemented MPC for a power grid
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system, where a small-scale model was implemented in
OpenModelica as the actual plant, and a separate model
was developed in Julia for use in the control algorithm
that included an unscented Kalman filter for the state esti-
mation. OMJulia was used for interfacing OpenModelica
with Julia. Also, when it comes to optimal control prob-
lems that require a linearized model, Jmodelica can of-
fer a tool for linearizing the nonlinear model of the plant.
Jmodelica supplies the interfacing capability with Python,
enabling it to integrate Jmodelica simulation, optimiza-
tion, and linearization features and design MPC problems
that need linearization. It is possible to interact with the
Modelica models and functional mockup units through
IPython, a command shell for the programming environ-
ment (Andersson et al. 2018). The interested readers are
referred to, e.g., ((Romero, Goldar, and Garone 2019; Pip-
pia et al. 2021; Lars Imsland, Pål Kittilsen, and T. S. Schei
2009; Jorissen, Boydens, and Helsen 2019)) for other dy-
namic optimization studies involving Modelica models.

The use of engineering software such as MATLAB for
Modelica models offers easy implementation for algo-
rithm prototyping. However, a challenge in the applica-
tion of MPC for Modelica models is the computational
cost of interfacing the Modelica software with engineer-
ing software such as MATLAB. This is particularly true
in case of SLMPC, where repeated model linearization
through Jacobian calculations is required. The computa-
tional cost can grow quickly for large-scale models, mak-
ing it prohibitively expensive to apply SLMPC or similar
algorithms through interfacing of Modelica models with
MATLAB or other engineering software. Therefore, the
procedure needs to be carried out decently ensuring that
the Jacobian calculations are undertaken in a time-efficient
manner.

In this paper, efficient implementation of SLMPC for
Modelica models in OpenModelica is addressed. In par-
ticular, the dynamic model of the system (serving as the
virtual plant) is implemented in OpenModelica. Also,
OMMatlab (OpenModelica 2021) is used to take control
of the model simulation and make an interconnection be-
tween MATLAB and the OpenModelica model, which is
transformed into an executable file. Moreover, the OM-
Matlab linearization method is enhanced to operate con-
siderably faster than its older version, making the new ver-
sion more favorable for large-scale SLMPC.

These enhancements can also be implemented for other
OpenModelica interfaces such as OMOctave, OMPython,
and OMJulia so they can support efficient prototyping
of advanced control algorithms requiring successive lin-
earization.

The rest of the paper is structured as follows. In sec-
tion 2, the general structure of the SLMPC problem is
briefly introduced. In section 3, the method of assem-
bling the discrete system model from its continuous form
is presented. Section 4 discusses the details of the linear
prediction model, the pertinent theories, and the enhance-
ments made to OMMatlab to boost the linearization pro-

cess. The state estimator design algorithm is discussed in
section 5. In section 6, the dynamic optimization problem
solved at each sample time is formulated. A case study of
the SLMPC implementation is demonstrated in section 7.
Finally, the paper is concluded in section 8.

2 Overview of Problem Blocks
As depicted in Figure 1, the problem under study includes
an often nonlinear model that represents the actual phys-
ical system (here a chemical plant). Some of the plant
variables are measured at every sample time. Since mea-
suring all the variables is impractical, a state estimator is
used to estimate the unmeasured state variables. These
values are used to initialize the prediction model, which
is a linearized form of the nonlinear model updated at
each sample time. It is also possible to increase the fre-
quency of prediction model updates by regenerating the
linear model at each step over the prediction horizon in-
stead of updating it only at the beginning of each sample
time. The optimal control inputs are calculated over the
prediction horizon by minimizing the objective function
(e.g., the cumulative tracking error). Then, the first ele-
ment of the optimal input trajectory is passed to the plant,
and the procedure is repeated in the next sample time. The
building blocks of the SLMPC are detailed in the follow-
ing subsections.

3 System Model
The plant model is represented in a continuous, nonlinear,
time-invariant state-space form as

ẋ = f (x,u) (1)
y = g(x,u) (2)

where x ∈ Rnx is the set of nx system states, u ∈ Rnu

is the vector of nu control inputs, y ∈ Rny is the vec-
tor of ny system outputs, f = [ f1, f2, f3, ..., fnx ] and g =
[g1,g2,g3, ...,gny ] are the sets of equations describing the
state evolution and outputs of the system, respectively.
OpenModelica automatically generates these functions
from a high-level, object-oriented, equation-based model
description, and can simulate the nonlinear model and
generate an executable file that will be used for the state
estimator and prediction model. The existing features of
OMMatlab allow the user to take control of the executable
file and overwrite the simulation setup and model param-
eters from MATLAB.

Equation 1 is converted to a discrete state-space form
with additive white Gaussian noise for process states and
measurements. This is done by the methodology pre-
sented in (Brembeck 2019; Brembeck, Otter, and Zim-
mer 2011), the implementation of which is adapted to
the MATLAB-OpenModelica environment. The discrete
form reads
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Figure 1. A general schematic of the MPC blocks.

xk = fk|k−1 +wk−1 (3)

fk|k−1 = xk−1 +
∫ tk

tk−1

f (x,u)dt (4)

yk = g(xk,uk)+ vk (5)
E[wk] = 0 (6)
E[vk] = 0 (7)

E[wkwT
k ] = Qk (8)

E[vkvT
k ] = Rk, (9)

where wk and vk are additive process and measurement
noises, respectively; and Qk and Rk denote the process and
measurement noise covariance matrices, respectively.

The LHS of Equation 4 is computed by integration of
the system over one sample time. In the continuous model
implemented in OpenModelica, initial state values (de-
fined in the initial equation section) are set para-
metrically so that the initial values can be overwritten and
Equation 4 can be evaluated from MATLAB at each sam-
ple time. This is illustrated in Listing 1 for an arbitrary
continuous Modelica model.

Listing 1. Continuous system model in Modelica

model List1
...
parameter Real x1_In;
parameter Real x2_In;
...
input Real u1;
input Real u2;
...
output Real y1;
output Real y2;
...
Real x1;
Real x2;
...
initial equation
x1=x1_In;
x2=x2_In;
...
equation
...

end List1;

The initial conditions xk−1 could be set from MATLAB by
the setParameters() method of OMMatlab. Similarly,
the system inputs uk−1 are specified by the setInputs()
method. Finally, the integration in Equation 4 is per-
formed over one sample time using built-in OpenModelica
solvers such as DASSL and IDA.

4 Prediction Model
The system linearization required for the prediction model
and its implementation are described in this section.

4.1 System linearization
Equation 1 and Equation 2 can be linearized around an
arbitrary operating point (xop,uop) by using the first-order
Taylor expansion as follows.

ẋ = f (xop,uop)+Ac(x− xop)+Bc(u−uop) (10)
y = g(xop,uop)+Cc(x− xop)+Dc(u−uop), (11)

where

Ac =
∂ f
∂x

=


∂ f1(x)

∂x1
· · · ∂ f1(x)

∂xnx
...

. . .
...

∂ fnx(x)
∂x1

· · · ∂ fnx(x)
∂xnx

 (12)

Similarly, Bc =
∂ f
∂u

=, Cc =
∂g
∂x

, and Dc =
∂g
∂u

.
Considering Equation 1 and Equation 2, the bias values
are

f (xop,uop) =
dx
dt

∣∣∣∣
(x,u)=(xop,uop)

(13)

g(xop,uop) = y|(x,u)=(xop,uop)
(14)

Therefore, it is possible to construct continuous linearized
models by having Ac, Bc, Cc, Dc, and the bias values.
OMMatlab can provide all these matrices along with (ẋ,
y) at any specific simulation time by the linearize()

Session 3-C: Applications of Modelica for optimization and optimal control 2

DOI
10.3384/ecp204293

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

295



and getSolutions() methods. Equation 10 and Equa-
tion 11 can then be expressed as

ẋ = Acx+Bcu+Kxc (15)
y =Ccx+Dcu+Kyc, (16)

where Kxc = ( f (xop,uop)−Acxop −Bcuop), and Kyc =
(g(xop,uop)−Ccxop −Dcuop). The continuous linearized
model can be discretized for a given sample time Ts as (see
(Zhakatayev et al. 2017; Vrlić, Ritzberger, and Jakubek
2020) for a detailed proof).

xk+1 = Adxk +Bduk +Kxd (17)
yk =Cdxk +Dduk +Kyd , (18)

in which

Ad = eAcTs (19)

Bd = A−1
c (eAcTs − I)Bc (20)

Kxd = A−1
c (eAcTs − I)Kxc (21)

and Cd =Cc, Dd = Dc, and Kyd =Kyc.

4.2 Improving OMMatlab for successive lin-
earization

Repeated linearization of a nonlinear dynamic model
was computationally inefficient in the previous OMMat-
lab distributions. For example, a single invocation of
the linearize() method for a system of DAEs with
about 1100 equations took around 420 seconds on an In-
tel Core i5 7200U CPU. This would make implementation
of SLMPC impractical as the linearization task should be
performed at every sample time. The leading cause for
this inefficiency was that the OpenModelica model had to
be recompiled each time the linearize() command was
called. The resulting linearized model had to be rebuilt to
create an XML file so that the values of matrices could be
extracted into MATLAB.

To solve this problem, OMMatlab is edited by the au-
thors so that the initial executable file can be adapted
and used in all invocations without being recompiled.
Moreover, instead of using the time-consuming pertur-
bation and finite differences for Jacobian approximation,
the built-in automatic differentiation algorithm (invoked
by the -generateSymbolicLinearization flag) is
employed for exact linearization and construction of the
model matrices (Braun, Ochel, and Bachmann 2011). The
generated linearized model is populated in a .m file, from
which the matrix values are read. With these improve-
ments, a single invocation of the linearize() command
for the same DAE system now takes only a fraction of
a second, which is a remarkable computational enhance-
ment. This improvement can benefit any application re-
quiring nonlinear Modelica model linearization through
MATLAB, including SLMPC.

5 State Estimator
The extended Kalman filter (EKF) is used for state estima-
tion. An EKF for Modelica models can be implemented in
MATLAB based on the approach presented in (Brembeck
2019). The EKF uses linearization for state and measure-
ment covariance propagation. The prediction and correc-
tion steps of the EKF for Equation 3 to Equation 5 proceed
as follows.

• Prediction:

x̂−k = fk|k−1(x
+
k−1,uk−1) (22)

Fk−1 = exp(
∂ f
∂x

|x+k−1
.Ts) (23)

P−
k = Fk−1P+

k−1FT
k−1 +Q (24)

• Correction:

Gk =
∂g
∂x

|x−k (25)

Kk = P−
k GT

k .(GkP−
k GT

k +R)−1 (26)

x̂+k = x−k +Kk(ym
k −g(x−k )) (27)

P+
k = (I −Kk.Gk).P−

k , (28)

where the − and + superscripts respectively denote the
predicted and corrected values. The EKF is initialized by
setting x̂+0 and P+

0 to arbitrary or approximate values. It
should be noted that the required Jacobian values Fk−1 and
Gk can be calculated easily by a call to the linearize()
method through OMMatlab.

6 Optimization Problem
MPC solves the following general optimization problem
at the k-th sample time.

min
r∈U

Jk(X ,r) (29)

s.t. Xk+i = h(Xk+i−1,rk+i−1), i = 1, . . . ,NHp (30)

M(X ,r)≤ 0 (31)
S(X ,r) = 0 (32)

Xk = x̂+k , (33)

where Jk is the objective function optimized over the pre-
diction horizon Hp. Note that NHp =

Hp
Ts

. The decision
variable set r is the trajectory of control inputs. Also, in
order to reduce the computational cost, the control horizon
is set as Hc <Hp, and rk+NHc

= rk+NHc+1 = · · ·= rk+NHp−1,

with NHc =
Hc
T s . The function h describes the discrete state

evolution that is used for prediction. Also, M and S are
the inequality and equality constraints, respectively, and
Xk is the estimated current state vector used to initialize
the prediction model.

The MPC objective can be a tracking index, an eco-
nomic index, or a combination of the two; see e.g., (Hei-
darinejad, J. Liu, and Christofides 2013; Ellis, J. Liu,

Application of the OpenModelica-Matlab Interface to Integrated Simulation and Successive Linearization
Based Model Predictive Control

296 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204293



Objective function 

Calculation

Discrete 

Model

Input(s) generation

using parameters

Constraint(s) 

Evaluation
Optimizer

Figure 2. Sequential dynamic optimization method.

and Christofides 2017). In this work, the dynamic opti-
mization problem is solved using the sequential method
(Chachuat 2009), where the control input trajectories are
parameterized (usually in a piece-wise constant manner),
and the dynamic model and the nonlinear optimization
problem are solved in sequence as shown in Figure 2. This
work uses the active-set optimization algorithm to solve
the nonlinear optimization problem.

7 Case Study
A tracking SLMPC is implemented for a system of three
interconnected cylindrical tanks as depicted in Figure 3.
The flow rates of the three inlet streams are considered
the control inputs. The outlet flow rates of the tanks are
the measured outputs, and the tanks’ liquid levels are re-
garded as the system states being estimated by the EKF.
The tanks are empty at the initial time, and the control
scenario is to move the tank levels to a specific set point
by adjusting the inlet flow rates. The continuous dynamic
model describing the system is as follows.

ḣ1 =
qin1 −qo1

A1
(34)

ḣ2 =
qo1 +qin2 −qo2

A2
(35)

ḣ3 =
qo2 +qin3 −qo3

A3
(36)

qo1 =Cv
√

h1 −h2 (37)

qo2 =Cv
√

h2 −h3 (38)

qo3 =Cv
√

h3 (39)

where A1, A2, and A3 are the vessel cross-section areas,
Cv is the valve coefficient; qin1, qin2, and qin3 are the volu-
metric flow rates of the inlet streams, and qo1, qo2, and qo3
are the volumetric flow rates of the outlet streams. In case
of reverse flow through the valves, the square root term in
the valve equations becomes negative, leading to a com-
plex number and solver failure. To avoid this situation and
preserve local Lipschitz continuity, the valve equations are
regularized as (Barton, Banga, and Galán 2000; Sahlodin

2022; Casella 1998)

qo1 =Cv
h1 −h2√

|h1 −h2|+ ε
(40)

qo2 =Cv
h2 −h3√

|h2 −h3|+ ε
(41)

qo3 =Cv
h3√

|h3|+ ε
, (42)

where ε > 0. Let A1 = A2 = A3 = 1m2 and Cv = 0.5. The
model nonlinearity comes from the outlet stream equa-
tions. Also, the desired set points for the tank levels are
hsp = [0.56,0.52,0.36]T . For the dynamic optimization
given in Equation 29, the following quadratic tracking ob-
jective function with control move penalization is defined.

Jk =

NHp

∑
i=1

(hk+i −hsp
k+i)

T .W1.(hk+i −hsp
k+i)+∆rT

k+i−1.W2.∆rk+i−1

(43)

The weighting factors W1 and W2 are positive-definite
matrices set as

W1 =

 1 0 0
0 1 0
0 0 1

 , W2 =

 18 0 0
0 18 0
0 0 18


Also, the following path constraints are added to avoid

reverse flow between the tanks.

NHp

∑
i=1

max(0,−qo1(k+ i))≤ δ (44)

NHp

∑
i=1

max(0,−qo2(k+ i))≤ δ , (45)

where δ > 0 is a small regularization parameter (Chachuat
2009). The system is simulated for a time span of 50
minutes with sampling time of 6 seconds. The predic-
tion and the control horizons are set to Hp = 1.5 and
Hc = 1 min, respectively. The control inputs are bounded
as 0 ≤ qin1, qin2, qin3 ≤ 0.3. Note that a discretized lin-
ear model is applied as the prediction model is updated at
each sample time.

The results of the SLMPC are presented in the sequel.
Figure 4 shows trajectories of the measured outlet flow
rates that are used to estimate the tank levels.

Figure 5 depicts the actual and estimated trajectories of
the tank levels. The initial guess for the state estimator
is ĥ+0 = [0.1, 0.1, 0.1]T , which is different than the actual
values h0 = [0, 0, 0]T . Despite this difference, the EKF
is able to track the actual state trajectories successfully.
It is also seen that the actual tank levels approach the set
points shortly after the SLMPC is executed. The optimal
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Figure 4. Measured system outputs.

control inputs are plotted in Figure 6. It is observed that
the control inputs are slightly oscillatory as a result of the
process noise.

It is worth noting that the total simulation takes only 25
minutes by the enhanced OMMatlab, while it would take
around 7 hours when employing the previous OMMatlab
versions. This proves that the linearization part is the main
bottleneck in the SLMPC procedure.

The code for the case-study presented in this
manuscript can be found on GitHub at https://
github.com/pseAUT/SLMPC_OMMatlab.

8 Conclusion
The implementation of the SLMPC algorithm using Open-
Modelica and MATLAB has been demonstrated in this
paper. The OMMatlab API is upgraded to avoid re-
peated compilation of the OpenModelica model into an
executable file at each sample time. In this way, the sys-
tem can be linearized efficiently and the model matrices
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Figure 5. Actual and estimated system states.
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Figure 6. Optimal control inputs.

can be obtained directly in a .m file, thanks to the exist-
ing OpenModelica flags that make it possible to gener-
ate the linearized model in different formats. Therefore,
the successive linearization runtime is optimized consid-
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erably. These enhancements can be implemented on other
OpenModelica interfaces such as OMOctave, OMPython,
and OMJulia to facilitate fast prototyping of control algo-
rithms that require successive linearization.
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Abstract
Predictive control can substantially improve the energy
performance of buildings during operation, but it requires
a model of the building to be implemented. Gray-box
model identification starts from a physics-based model
(white-box element) and complements it with measure-
ments from the operation of the building (black-box el-
ement). The level of detail of the original model is lim-
ited by the optimization problem that needs to be solved
when estimating its parameters. Consequently, it is com-
mon to heavily simplify building models hindering the in-
telligibility of their parameters and limiting their applica-
tion potential. This paper investigates the accuracy and
scalability of different transcription methods for parame-
ter estimation of building models. The methodology starts
from a Modelica model as an initial guess which is trans-
ferred to CasADi using the Functional Mockup Interface
to solve the parameter estimation problem. The study
demonstrates the high effectiveness of multiple shooting.
Single shooting and direct collocation could be more suit-
able for setups with faster integration times or with in-
creased granularity in the training data, respectively.
Keywords: Gray-Box modeling, CasADi, Shooting Meth-
ods, Direct Collocation, OpenModelica

1 Introduction
Commercial and domestic buildings worldwide account
for 30-45% of the global energy use (Mariano-Hernández
et al. 2021). Therefore, efficient building energy use is a
topic of growing interest. A popular strategy for building
energy management systems (BEMS) is the use of model
predictive control (MPC) (Drgoňa et al. 2020). MPC uses
a building model and an optimizer to minimize a cost
function generally comprised of two competing elements
like occupant thermal discomfort and operational cost.

Gray-box model identification is a powerful tool for ob-
taining building models for predictive control through two
input sources: prior system knowledge and operational
data which are referred to as the white and black elements
of a gray model, respectively (Bohlin 2006). This ap-
proach benefits from the advantages of both physics- and
data-based modeling by calibrating the physical model pa-
rameters with operational data extracted from the actual

building. Moreover, gray-box modeling can automatically
and systematically tune the parameters for a model while
having the reliability offered by physics (Bohlin 2006).

Prior knowledge can be introduced with well-known
equations describing physical phenomena in buildings like
heat transfer and thermal inertia. Other inputs like weather
variables and internal gains are subject to uncertainty and
need to be estimated with forecasting models. It is also
crucial to obtain accurate values for parameters such as
heat conductivities of materials, solar transmittance of the
glazing in the windows, etc. However, obtaining detailed
information on the thermal systems for the building is a
difficult and time-consuming process in practice (Yu et al.
2019). Optimization is required to estimate the parameter
values that minimize a predefined error function, which
usually leads to a non-linear and non-convex problem that
needs to be solved. Traditionally, this problem is solved by
lumping the building parameters into basic models usually
represented by a lower-order RC (resistance-capacitance)
network. Some examples include (Beneventi et al. 2012),
(Drgoňa et al. 2020) and (Saurav and Chandan 2017).
These simplifications can decrease the usability and in-
telligibility of the building model and hamper the ability
of the model to be used for fault detection and diagnostics
mechanisms in the context of predictive maintenance.

Another approach to estimate the model’s parameters is
through black-box optimizers like brute-force or genetic
algorithms. However, these methods can have scaling is-
sues when increasing the number of parameters to be esti-
mated. Since building models can have several parameters
to calibrate, traditional gradient-based optimization meth-
ods are preferred for the envisaged application. Moreover,
unlike off-line parameter estimations, efficient non-linear
problem solvers are key for the application of on-line pa-
rameter estimations such as the ones involved in adaptive
control. For these reasons, the use of efficient, gradient-
based, parameter estimation methods is crucial in order to
develop more advanced building models.

This work investigates the performance of different
transcription methods for parameter estimation of building
models by coupling two open-source toolboxes: Open-
Modelica (Fritzson et al. 2005) and CasADi (Andersson
et al. 2019). The former is a tool for modeling physi-
cal systems using the Modelica language and the latter is
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a numerical optimization and algorithmic differentiation
framework designed to solve highly complex optimization
problems. Similar workflows were adopted by (Shitahun
et al. 2013) and by (Decker 2021), but they were using
deprecated versions of the software and their focus was
not on parameter estimation of building models. Criteria
such as accuracy, scalability, convergence time, and com-
putational cost are investigated in this work. These criteria
are then used to compare all investigated methods as well
as to determine their optimal application range.

The outline of the paper is as follows: Section 2 gives
theoretical background related to this work; Section 3
elaborates on the methodology used in this work to im-
plement and compare different transcription methods for
parameter estimation; Section 4 presents the results ob-
tained from the implementation of each parameter estima-
tion method. Finally, Section 5 draws the main conclu-
sions and Section 6 suggests lines of further research.

2 Theoretical Background
2.1 Parameter Estimation Problem
The process of parameter estimation is a crucial step when
configuring a building model. The process of calibrat-
ing the parameters of a physical model can be expressed
mathematically as shown in Eqs. 11 The objective function
to be minimized f (ppp) is expressed as a (non-linear) least
squares problem by means of the Eucledian (ℓ-2) norm
for the error between the outputs from the physical model
yyy(ppp, t) and the historical measurements ŷ̂ŷy(t) within a time
horizon t ∈ [t0, tT ]. Here, the error function is squared to
achieve the sum of the squared differences. This in turn
is divided by two as a convention in order to remove con-
stants during the calculation of its derivative. The opti-
mization is subject to equality and inequality constraints
(hhh(ppp) and ggg(ppp), respectively) which are derived from the
physics and limits of the real system, represented by the
physical model. Here, the objective function as well as
the equality and inequality constraints are dependent on
the model parameter values ppp ∈ Rm, which must be tuned
to minimize the residual between the model and measure-
ments.

min
ppp

f (ppp) =
∫ tT

t0

1
2
(∥yyy(ppp, t)− ŷ̂ŷy(t)∥2)

2 dt (1a)

subject to: hhh(ppp) = 0 (1b)
ggg(ppp)≤ 0, (1c)

Parameter estimation problems for building models are
usually non-convex because of the multiplication of ther-
mal resistances and capacitances that are commonly op-
timization variables. This non-convexity dictates the im-
portance of the initial parameter guesses ppp0 with minimum

1Vectors and matrices are expressed in bold while scalars are ex-
pressed in regular text (yyy vs y).

Figure 1. Non-convex minimization problem dependence on
initial parameter guess.

and maximum values pppmin and pppmax, respectively. For the
case of a convex problem, initial parameter guesses be-
come trivial since, by definition, all local minima in a con-
vex problem are the global minimum (Wright, Nocedal, et
al. 1999). The solution of a non-convex problem is most
likely a local minimum which is accepted in practice due
to the high complexity involved in the calculation and (in
some cases) the non-physicality of a global minimum.
For this reason, accurate initial guesses for the parameter
values are paramount to obtaining a physical local mini-
mum. Figure 1 depicts the results of a bad initial guess for
an estimation problem with a single parameter. The im-
portance of an accurate initial guess becomes clear even
in this case with a single parameter for which all initial
guesses lead to different local minima, none of which are
the global minimum.

2.2 Transcription Methods
Transcription methods are responsible for discretizing the
originally continuous parameter estimation problem into a
discrete non-linear program (NLP) in the form of Eqs. 2.

min
ppp

NT

∑
i=1

1
2
(∥yyyi − ŷ̂ŷyi∥2)

2 (2a)

subject to: hi = 0 (2b)
gi ≤ 0, (2c)

for i= 1, . . . ,NT with NT being the instance at the end of
the time horizon. Once this transcription takes place, NLP
solvers are used to minimize the objective function and
output the optimal parameter values (M. P. Kelly 2015).
The transcription method used to discretize the problem is
critical to the complexity and the outcome of a parameter
estimation problem since it dictates the number of deci-
sion variables and the sparsity of the eventual NLP to be
solved. Multiple algorithms exist for this process, yet they
can all be classified into two main groups: shooting meth-
ods and collocation methods.

2.3 Shooting Methods
Shooting methods take states as decision variables and in-
tegrate over a set of intervals, approximating the function
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∫ ∫
. . .

∫f0 f̃1 f̃2 f̃NT−1 f̃NT

Figure 2. Block diagram for a single shooting transcription al-
gorithm.

dynamics along the integration path based on given con-
straints. The term shooting methods refers to their resem-
blance to the operation of a projectile deployment device
such as a cannon. In this example, the decision variables
are only known in the first instance (e.g. firing angle and
power), while the trajectory is subject to the projectile dy-
namics and physical constraints.

The simplest variation of the shooting algorithms is the
single shooting method. Single shooting works by tak-
ing only the very first state as a decision variable which
is used to determine a prediction for the following state.
Subsequently, this prediction is used for the integration
of the following state, starting a chain reaction of predic-
tions until the integration horizon is reached (Schittkowski
2002). Figure 2 shows a block diagram demonstrating the
integration process in a single shooting algorithm with fi
being decision variables and f̃i being predictions. Here,
it can be seen that for every integration step, the previous
prediction is taken as an input, generating the following
prediction until the instance NT is reached.

The main advantages of a single shooting algorithm
stem from its simplicity and the compact representation of
the eventual NLP. They are suitable for simple differential-
algebraic equations (DAE) where extremely good initial
guesses can be provided. Nevertheless, they may pose
convergence problems for complex systems because of the
need to integrate over the entire time horizon for every
iteration of the optimization (Michalik, Hannemann, and
Marquardt 2009).

Multiple shooting algorithms operate in a very similar
way to single shooting algorithms but break down the time
horizon into multiple intervals. Instead of taking a sin-
gle decision variable, multiple shooting methods take a
decision variable for every time step within the integra-
tion horizon, making a single integration over that time
step (M. P. Kelly 2015). As the segments become shorter,
the integration paths tend to become linear. Additionally,
since each step is not dependent on the previous step, each
integration can be computed in parallel, leading to shorter
integration times. Since each prediction step does not per-
fectly match the decision variable for the following seg-
ment, the difference (known as the defect) must be stated
in the constraint equations leading to larger and sparser
programs. The increase in the number of constraints can
increase the total computational time (M. Kelly 2017). A
block diagram for this process is visualized in Figure 3.
The use of single and multiple shooting methods is highly
dependent on the application case and its level of complex-
ity. Figure 4 shows an example of both shooting methods
being applied to a parameter estimation problem.

∫
stop

∫
stop . . .

∫
f0

f̃1

f1

f̃2

fNT −1

f̃NT

Figure 3. Block diagram for a multiple shooting transcription
algorithm.

Figure 4. Example for a single (top) and multiple (bottom)
shooting algorithm applied to the transcription of an error func-
tion.

2.4 Collocation Methods
The basis of collocation methods is the use of spline func-
tions made up of polynomial sequences. The motivation
is the effortless derivation and integration of these spline
functions as well as their capability to be easily expressed
in terms of coefficients (M. Kelly 2017). The integration
path followed for each segment in a direct collocation al-
gorithm is determined by two factors: the desired order for
the polynomial to be fitted and the slope of the function at
the collocation points (Bellomo et al. 2007). Depending
on the desired order for the polynomial fit n, n− 1 col-
location points must be placed within the segment. Once
these collocation points are determined, the algorithm ad-
justs the values for them such that a spline function go-
ing through the initial decision variable matches the slope
of the function at each collocation point. If, like in most
applications for collocation methods, this algorithm is ap-
plied within a multiple shooting framework, this proce-
dure is completed for multiple segments covering the en-
tire integration horizon. Similarly to multiple shooting,
this process can be realized in parallel, yielding a series of
predictions and their corresponding defects which must be
accounted for in the constraint equations of the NLP.

Two approaches are widely used with the goal of re-
ducing the defects between the predictions and decision
variables. These are referred to as mesh refinement pro-
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Figure 5. Example for a p-refinement procedure on direct col-
location for polynomial orders ranging from first (top left) to
fourth (bottom right) order.

Figure 6. Example for an h-refinement procedure on direct col-
location using second degree polynomials.

cedures, namely p- and h-refinement. A p-refinement pro-
cedure increases the order of the polynomial for each col-
location segment such that the integration path can better
follow the trajectory dynamics, ultimately resulting in a
better prediction. An h-refinement procedure reduces the
segment length such that the functions become more lin-
ear.

Figure 5 shows an example of a p-refinement procedure
with varying polynomial orders. Here, a focused view on
a single segment (k to k+ 1) is shown for polynomial or-
ders ranging from first to fourth order for a direct collo-
cation method on a function f (p). It is clear that the de-
fect decreases and the dynamics are better represented as
the polynomial order increases. Similar to Figure 5, Fig-
ure 6 shows an h-refinement procedure for varying seg-
ment lengths for a function f (p) using a second-order di-
rect collocation method. A noticeable decrease in the pre-
diction defect can be seen as the segment lengths become
smaller.

3 Methods
The workflow followed in this work is hosted in the fol-
lowing open-source repository under a BSD license:

https://gitlab.kuleuven.be/positive-energy-districts/mocaspy

The necessary steps to generate the original physics-
based model are illustrated with white blocks in Figure 7.
These white blocks of Figure 7 represent the steps han-
dling the model with true system dynamics. The original
model is reconfigured into a so-called wrapped model that
redeclares the parameters as inputs to tune its values dur-
ing the optimization. Multiple open-source Modelica li-
braries exist for building modeling that can be used to con-
figure the original building model such as IDEAS (Joris-
sen et al. 2018) and Buildings (M. Wetter et al. 2014).
OpenModelica is used to compile a Functional Mockup
Unit (FMU) to later transfer the model into CasADi.

The data collection process is illustrated by the black
blocks shown in Figure 7. In practice, the data needed
for calibration would be directly gathered from the actual
building. However, in this work, OpenModelica is also
used to emulate operational data. That is, we use the same
model to generate the data as the model that is later used
for parameter estimation. In this way, the true parameter
values are known, and the accuracy of the parameter esti-
mation process can be measured for a given deviation that
is artificially introduced. This provides a hermetic envi-
ronment for the investigation which would be unachiev-
able in a real setting. Measurements of interest comprise
weather and building variables such as the ambient tem-
perature T̂amb and the total heat input into the thermal zone
Q̂hea,coo. Finally, the recorded operative zone temperature
T̂zon is used as the target variable in Eqs. 1. The training
period tT is set to one week (604800 seconds) with a sam-
pling time ts of 30 seconds, leading to 20160 samples in
total.

Once the model FMU and the operational data are
ready, the parameter estimation problem is formulated
with the CasADi framework. This process is shown by
the gray blocks of Figure 7. CasADi’s DaeBuilder
class was recently extended to import Model Exchange
FMUs of version 2.0 (Andersson 2023 submitted). From
Eqs. 1, the parameter estimation problem is relaxed to
Eqs. 3 where a slack variable S is introduced to use soft
constraints. The objective function minimizes the Eu-
clidean norm of the error between the (virtually) measured
T̂zon and the modelled Tzon thermal zone temperatures.

min
ppp

f (ppp) =
∫ tT

t0

[(∥∥Tzon(ppp, t)− T̂zon(t)
∥∥

2

)2
+S

]
dt (3a)

subject to: ppp ≤ pppmax +S (3b)
ppp ≥ pppmin −S (3c)
SSS ≥ 0 (3d)

Parameter Estimation of Modelica Building Models Using CasADi

304 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204301



original model

wrapper

redeclared,
wrapped model

FMU file

parameter estimation
problem (CT)

DaeBuilder

gathered measurements

parameter
true values

artificial
perturbation

weather/building
data

zone recorded
temperature

parameter estimation
problem (DT)

optimal
parameters

variable
redeclaration

as initial guesses ppp0

as input data T̂amb, Q̂hea,coo

as objective
∣∣∣∣Tzon − T̂zon

∣∣∣∣2

transcription methods
single-, multiple-shooting,

direct collocation
NLP solvers

IPOPT, SQPmethod
KNITRO

white-box continuous time

black-box discrete time
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scalar/vector

Figure 7. Parameter estimation workflow. The CasADi’s DaeBuilder class is used to load the building model and to transcribe
the continuous-time (CT) parameter estimation problem into a discrete-time (DT) problem that an NLP solver can address.

In Eqs. 3, pppmax and pppmin represent the upper and lower
boundaries of the parameter vector ppp, respectively.

The parameter estimation problem must be discretized
by means of transcription methods. The Rockit framework
(Gillis et al. 2020) is used here since it is built on top of
CasADi and offers readily available formulations of dif-
ferent transcription methods. In this study, single shoot-
ing, multiple shooting, and collocation are investigated.
Multiple variations of these algorithms are implemented
to study the effect of h- and p-refinement. Upon comple-
tion of the problem transcription, the parameter estimation
problem is solved by means of an NLP solver. IPOPT is
chosen here due to its widely recognized reputation and
capabilities for large-scale optimization. It is used in a set-
ting with a limited-memory Hessian approximation. The
results are compared based on three factors: accuracy for
the parameter estimation, number of iterations, and the
computational time required for convergence. These fac-
tors determine the application range for each transcription
method based on the desired level of accuracy and avail-
able computational power.

The model SimpleRoomOneElement from the IDEAS
library is chosen as a good trade-off between the level of
detail and simplicity. This model represents a single ther-
mal zone equipped with multiple, double-paned windows

at different wall orientations (declared as corGDouPan),
and is shown in Figure 8. Additionally, the model is
equipped with a heater operating under a simple on/off
control at a given time of the day (represented by the data
table intGai). The weather data is simulated by the mod-
ule weaDat and inputted into the building thermal zone,
thermalZoneOneElement.

The parameters of the original model are redeclared
as inputs in a so-called wrapped model to enable 1)
their variability as decision variables in the CasADi
DaeBuilder object, and 2) derivative information of
model outputs. Moreover, some elements of the model
had to be bypassed with inputs obtained from a previous
simulation as the DaeBuilder class does not yet support
time events.

Three studies are considered: the estimation of a sin-
gle parameter, three parameters, and five parameters. Ta-
ble 1 shows the parameters estimated during all studies
along their units, true values pppreal , lower pppmin and upper
pppmax limits, and their initial guesses after being artificially
perturbed ppp0. Parameters that are commonly unknown,
desired and/or hard to obtain in practice are selected to
be estimated like Uwin and hcon,win,out which represent the
transmission and convective coefficients associated with
the installed windows, respectively. hcon,wall,out represents
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Figure 8. Graphical representation of SimpleRoomOneElement.mo model from IDEAS (Jorissen et al. 2018).

Table 1. Parameter values, boundaries and initial guesses for all
studies conducted.

# Params. ppp Unit pppreal pppmin pppmax ppp0

1 Uwin W/m2K 2.1 1.9 2.4 6.3

3
hcon,win,out W/m2K 20 18 22 60
hcon,wall,out W/m2K 20 18 22 60

5
hrad W/m2K 5 4 6 15
aext - 0.7 0.5 0.9 1

the convective coefficient for the exterior walls. Finally,
hrad is the coefficient of radiative heat transfer for the zone
walls, and aext represents the thermal absorption coeffi-
cient for the exterior walls. From Table 1 it can be seen
that the first study estimates the window transmission co-
efficient, the second study includes the window and exte-
rior wall convective coefficients and the final study incor-
porates hrad and aext . For all instances, the initial guesses
are shown. These are decided to be three times larger than
the actual value for the parameter, except for aext since it
is a percentage and has a maximum value of 1.

The number of steps per discretization interval M is de-
cided through a sensitivity analysis for a simple model in-
tegration with respect to the results of a reference inte-
grated with an arbitrarily high value of M = 3000 steps. A
value of M = 10 is taken as a compromise between inte-
gration error and computational demand. Table 2 contains
a detailed list of all variations conducted to compare the
transcription methods for parameter estimation. Notably,
each variation is implemented for all cases outlined in Ta-
ble 1 with one, three, and five parameters, which results in

Table 2. Conducted investigations for all considered test cases.
First, the refinement scheme is studied in detail for multiple
shooting and collocation schemes (Sections 4.1,4.2,4.3). Then,
all three transcription methods are compared for specific refine-
ment schemes (Section 4.4).

Method
Refinement Scheme Transcription methods
h (N) p (deg) h (N) p (deg)

Single Shooting - - 100 -
200

Multiple Shooting

100

-
100

-200
300

200
400

Direct Collocation

100 2, 3, 4,
100

3
200

5, 6, 7,
300

200
400 8, 9

a total of 60 optimizations being carried out.

4 Results and Discussion
All optimizations were run on an Apple M1 MacBook Air
(2020 version) with 8 GB of RAM and MacOS Ventura
13.0. A comparison between the thermal zone tempera-
tures using the perturbed initial guess values and the esti-
mated parameter values can be seen in Figure 9. All valid
estimations, i.e. those optimization runs that converged,
led to proper fitting and their solutions resulted in original
parameter values within a tolerance of 10%, in many cases
landing on the local minima at the parameter boundaries
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Figure 9. Temperature profiles of the model using the parameter
initial guesses (top) and the estimated values (bottom) compared
to the actual model temperature profile (Reference).

(see Table 1). Therefore, all achieved solutions are con-
sidered successful in terms of accuracy and the focus of
this section is on the computational demand of obtaining
these values.

4.1 Multiple Shooting h-refinement
The number of iterations and computing times for all vari-
ations to investigate h-refinement in multiple shooting are
shown in Figure 10. The first aspect to highlight is that the
multiple shooting algorithm succeeds to estimate the pa-
rameters for all cases with one, three, and five parameters.
It is evident that the multiple shooting algorithm demon-
strates remarkable suitability in the scenario of a single
estimated parameter. It is able to estimate the chosen pa-
rameter without encountering any significant challenges
despite the increasing estimation problem granularity. Its
convergence times remain significantly low compared to
the other cases with more parameters. The computational
limits when increasing the problem granularity for the
multiple shooting are reached in the cases involving three
and five estimated parameters. Upon closer examination,
it becomes apparent that the number of iterations and com-
putational time for the three-parameter case with 100 sam-
ples closely resemble those of the single-parameter case.
However, a steep increase is observed starting at the esti-
mation with 200 samples, increasing quasi-exponentially
until the iteration limit for IPOPT of 3000 iterations is
reached for the case using 400 samples. Similar behav-
ior is observed for the five-parameter case, although at a
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Figure 10. h-refinement investigation for a multiple shooting
algorithm.

much earlier point. The computational time necessary for
this scenario is approximately eight times larger than that
of the single- and two-parameter cases when using a sam-
ple size of 100. Moreover, it rapidly reaches the iteration
limit with a sample size of 200.

Considering that all estimations led to an accurate rep-
resentation of the model, it is clear that an h-refinement for
the multiple shooting algorithm is not necessary for the
envisaged application. Increasing the granularity merely
increases the computational resources required for the es-
timation without providing any additional value to the so-
lution. However, the granularity choice should be made
carefully since lower values can result in a loss of detail
which can lead to an infeasible problem statement. In-
feasible problem statements were encountered for sam-
ple sizes of 50, 85 and 90 for the single, three- and five-
parameter cases, respectively.

4.2 Direct Collocation p-refinement
After exploring the h-refinement for multiple shooting, the
impact of increasing the order for direct collocation is in-
vestigated. The sample size is set to 100, which repre-
sents the minimum value for a viable problem. Figure 11
presents the resulting number of iterations and comput-
ing times for all case studies. A slight increase in compu-
tational demand is observed for the three-parameter case
around the collocation order of 9 and a sudden increase
for the collocation order of 6, which can be qualified as an
outlier. However, there is no clear correlation between the
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Figure 11. p-refinement investigation for a direct collocation
algorithm with 100 samples.

computational resources and the order of the collocation.
As discussed in subsection 2.4, a higher collocation order
results in a more accurate fit for the objective function,
particularly for cases with lower granularity. The results
from this study suggest that the collocation order is not af-
fecting the computational strain thanks to a large enough
granularity in the problem statement. Therefore, an in-
crease in computational demand would be expected for a
case with a higher number of samples.

4.3 Direct Collocation h-refinement
Similar to the multiple shooting case, an h-refinement in-
vestigation is conducted for a direct collocation algorithm.
Here, a collocation degree of three is used based on the
results of the p-refinement investigation. The results are
shown in Figure 12. Similar patterns to those observed in
the multiple shooting case emerge with a notable differ-
ence for the single parameter case. In comparison to the
multiple shooting case, the estimation process using 400
samples takes approximately 13 times longer to converge,
indicating a significantly higher computational strain for
the direct collocation algorithm. Similar observations can
be made when comparing the three- and five-parameter
cases. While the overall trends are similar to the multiple
shooting case, it is clear that the direct collocation algo-
rithm experiences a higher computational burden. This
is particularly evident in the three-parameter case, where
the iteration limit is reached at 300 samples, compared to
400 samples in the multiple shooting case. In the five-
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Figure 12. h-refinement investigation for a direct collocation
algorithm with collocation degree of 3.

parameter case, both studies reach the iteration limit at 200
samples. However, the computational strain is higher for
direct collocation, as evidenced by the significantly longer
computational time and more than twice the number of it-
erations required in the case with 100 samples.

Again, since all successful estimations yielded identi-
cal results, it is recommended to select a sample size that
ensures proper convergence while minimizing the compu-
tational load. Excessively large sample sizes can lead to
unnecessary waiting times or, in complex scenarios such
as the five-parameter case, even convergence failure in the
estimation process.

4.4 Transcription Method Comparison
Finally, a comparison of all transcription methods applied
is carried out. Two sample sizes are investigated: one of
100 (shown in Figure 13) and another of 200 (shown in
Figure 14). Single shooting, multiple shooting, and direct
collocation with a collocation degree of three are com-
pared for each sample size when estimating one, three, and
five parameters. From examining the results in Figure 13
and Figure 14, several observations emerge.

Single Shooting This algorithm fails to converge to a
solution for the five-parameter case. In the single- and
three-parameter cases, it shows the fewest iterations re-
quired for convergence with the highest computing times
for all scenarios. This could be seen as an advantage for
a setup with more powerful computational resources. It
is worth noting that the FMI simulations triggered by the
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Figure 13. Transcription method performance comparison us-
ing 100 samples.
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Figure 14. Transcription method performance comparison us-
ing 200 samples.

DaeBuilder object took more than 20 times longer than
the calculations needed in each iteration for the optimiza-
tion. Hence, single shooting could become competitive if
the FMU integration times can be sped up.

Multiple Shooting Overall, multiple shooting shows
the best performance for all investigated transcription
methods. As shown for both sample sizes, it offers the
lowest computing times for all cases, demonstrating its
scalability potential. Moreover, when compared to its
usual counterpart, direct collocation, multiple shooting re-
quires significantly fewer iterations to achieve these fast
convergence times, particularly evident in the investiga-
tion with 100 samples. Furthermore, if the efficiency of
the FMI is improved, multiple shooting has the potential to
achieve even better performance. The advantage of mul-
tiple shooting over direct collocation is further supported
by the h-refinement investigation where multiple shooting
achieved the same level of model granularity at a much
lower computational cost. In general, multiple shooting
is able to converge to accurate solutions for all investi-
gated cases while requiring less tuning compared to single
shooting and direct collocation.

Direct Collocation Similar to multiple shooting, direct
collocation is able to converge to an optimal solution for
all investigated cases though it has a higher computational
burden. However, by comparing the results from both
sample sizes (Figs 13 and 14) a decrease in the perfor-
mance gap between both algorithms is observed. While
multiple shooting still achieves convergence with a lower
computational burden, it experiences a significant increase
in both iterations and computing time when the granular-
ity of the problem increases. This suggests that for higher
sample sizes direct collocation could outperform multiple
shooting. Additionally, direct collocation offers the high-
est level of tunability, which can be optimized for a spe-
cific application, perhaps leading to better performance.
However, this tuning process is time-consuming and re-
quires deep system knowledge. Overall, direct collocation
algorithms exhibit great potential for rapid convergence,
although meticulous fine-tuning is necessary to fully ex-
ploit their capabilities.

5 Conclusion
Predictive control can substantially enhance energy effi-
ciency in buildings. To calibrate building models with op-
erational data, efficient discretization methods are needed
for the associated parameter estimation problem. The im-
plemented methodology formulates the original building
model in Modelica and transfers the model to CasADi
through its DaeBuilder class, which relies on the Func-
tional Mockup Interface. Multiple variations of tran-
scription methods and the effect of different refinement
schemes are investigated. The study demonstrates the high
effectiveness of the multiple shooting algorithm for the en-
visaged application. Multiple shooting successfully con-
verges for all cases investigated and shows the smallest
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convergence time. Single shooting has the highest com-
puting times but requires fewer iterations to converge, so
it may also work for simpler models or setups with more
computational resources. Finally, a trend is observed to-
ward better performance in cases with increased granular-
ity for direct collocation.

6 Future Work
Although the use of the CasADi’s DaeBuilder to cal-
ibrate Modelica models shows huge potential, there are
still some challenges when following this methodology.
A large setback for the proposed workflow relates to the
fixed variability for the parameters of an FMU compiled
with OpenModelica. This requires a manual redeclaration
of all parameters to be estimated as inputs to enable their
variability in CasADi as decision variables. Furthermore,
FMU simulations are slow when compared to the time
needed in the NLP solver per iteration (approximately 20
times longer for the model used in this work) , which leads
to excessive computing times. Finally, the lack of sup-
port for time events in CasADi’s DaeBuilder required
major changes in the model to accommodate their intro-
duction as inputs, similar to the parameter variability is-
sue. The introduced methodology shows promise in cou-
pling Modelica and CasADi for optimization. However, as
shown in this work, it is still in its early stages and there
is ample room for further improvements. Joint efforts are
needed to come up with a workable solution, which will
then be illustrated on multiple applications.
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Abstract 
Green production of hydrogen and its derivatives is 

becoming a cornerstone of industry decarbonation. Apart 

from the technological development point of view, 

optimizing the overall production chains dynamically is 

essential for the competitiveness of these systems. 

In this paper, we describe how we built, validated and 

used a Modelica-based library dedicated to the simulation 

and optimization of energy process for the production of 

green molecules. Especially, models of complex media, 

salt cavity hydrogen storage and electrolysis module are 

presented. 

An example application shows that the models of the 

library are particularly handy for the modeling of a 5MW 

electrolysis module, which is used for the calibration of an 

optimization model. 

 

Keywords: green molecules, dynamic simulation, 

production optimization 

1 Introduction 

Emissions reduction of industries such as petroleum 

refining or fertilizer production is challenging. Green 

hydrogen and its derivatives such as ammonia are 

expected to play a significant role in their decarbonation 

since alternative solutions are unavailable or difficult to 

implement. Currently, low-carbon hydrogen accounts for 

less than 1% of hydrogen production, but in the Net-Zero 

Scenario of IEA by 2050, it is expected to be massively 

used (IEA, 2022). 

However, green hydrogen production is about 6 times 

more expensive than traditional hydrogen production. 

Thus, in order to reduce the specific costs, very large 

plants are planned to be built (IEA, 2022). For these 

plants, optimizing the design and more specifically the 

operation with the use of software becomes then decisive 

for cost competitiveness issues. 

Our research group is currently involved in several 
research programs devoted to the definition of optimal 

operation of production chains for green molecules. More 

specifically, these research programs aim at building 

Model Predictive Controllers (MPC) to be used in the 

Energy Management System (EMS) of such plants. In this 

context, we have been working on the development of 

accurate and efficient dynamic multi-physics models for 

which the objectives are two-fold: 

• The calibration of MPC models for the development 

of the EMS; 

• The evaluation of the EMS on a physical simulator. 

The purpose of this paper is thus to present the 

EnergyProcess library and show its usage for optimization 

models development and validation. After the 

presentation of the context and objectives in the present 

section, the rest of the paper is organized as follows: 

• Section 2 presents a review of existing Modelica 

libraries for the modelling of energy processes 

dedicated to green molecules production; 

• Section 3 introduces the core of the library with 

special focuses on the media, electrolyzer and 

storage packages; 

• Section 4 highlights an example of model validation 

and usage for optimization purposes with the 

description of a 5 MW electrolysis module; 

• Section 5 summarizes the main messages of the 

present article and gives perspectives for the 

development roadmap regarding the library. 

2 Review of existing libraries 

Various Modelica-based libraries exist for the 

modelling of chemical energy processes with some library 

specifically dedicated to the decisive impact of the 

modelling of media. The present section displays a review 

of these existing libraries for media modelling on the one 

hand (see Table 1) and chemical processes system 

modelling on the other hand (see Table 2). Criteria such 

as compatibility with the Modelica Standard Library 

(Modelica Association and contributors, 2020), open 

source accessibility, H2 systems modelling capabilities, 

and consistency with the objectives of the present library 

are discussed. 
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Table 1. Review of Media libraries 

Table 2. Review of Chemical Energy Processes libraries 

Among all the libraries, the most promising one for 

Media modelling is ExternalMedia (Casella, 2006). 

However, prohibitive calculation time, difficulties to 

generate Functional Mock Up (FMU) and limited mixture 

modelling capabilities with Coolprop (Bell et al., 2014) 

led to the decision to develop our own media package.  
Moreover, many different reasons led us to develop our 

own library of H2 components. First of all, the necessity 

to control the development, architecture as well as the 

components layout and complexity of the physics 

implemented combined with  time and intellectual 

property constraints required by clients projects were 

hardly compatible with basing our library on an existing 

one. Second, another library on District Heating (Giraud 

et al., 2015) has been developed in our laboratory based 

on similar requirements and was used as a reference in the 

development of this library to ensure compatibility for 

complex system description. Lastly, open-source 

development requires development standards (naming, 

formulations, etc.) and community work not easily 

compatible with projects time constraints. Nevertheless, 

efforts are being carried to format the library (packages 

structure, modularity, coding standards, and internal 

documentation) in order to eventually release it as open-

source. 

 

 

 

 

3 Presentation of the Library 

3.1 Overall presentation 

The CEA Energy Process library (CEPL) has been 

historically developed for hydrogen systems modelling 

following requests for the modelling of industrial systems. 

Nowadays the focus of the library is still largely on H2 

models but NH3 models (synthesis reactor, complex 

media) are being actively developed to study power-to-

green ammonia system based on an electrolyzer and a 

Haber-Bosh reactor. The CEPL, built with the software 

Dymola®, is compatible with the MSL library thus 

providing direct compatibility with another CEA library 

of models for district heating modelling named District 

Heating. (Giraud et al., 2015) The library is being actively 

developed on our internal forge using Git, therefore a 

methodology of continuous integration based on non-

regression tests using the Testing library from Dassault 

(Hammond-Scott, 2022) is being followed. 

3.2 Structure 

The library is structured on packages, similarly to the 

MSL as depicted in Figure 1. The core packages are the 

Electrolyzers (FuelCell), Storage and Media packages. 

They will be further detailed in the present paper. The 
development of the package Reactor is still on-going with 

the objective to extend the library towards other green 

molecules such as NH3. The packages Machines, 

Library Name Description Stronger points Weaker points 

MSL Media 
Media package of Modelica Standard 

Library 
Free Limited available media models 

External Media 

(Casella, 2006) 

Allows Modelica.Media compatible 

interfacing with external codes 

Compatible with MSL 
Free with access to Coolprop 

(Bell et al., 2014) 

Computationally heavy 
Limited for mixture 

Difficulties for FMU translation 

TILMedia Suite (TLK-

Thermo GmbH, 2020) 

Properties for incompressible liquids, ideal 
gases and real fluids containing a vapor 

liquid equilibrium 

Exhaustive list of pure substances 

and mixtures 

Only partly free 
Limited for mixture  

Incompatible with MSL 

MultiPhaseMixture 

Media (Windahl et al., 
2015) 

Modelica.Media compatible framework for 

thermodynamic properties including an 
external C/C++ interface  

Allows usage of C++ state-of-the-

art non-linear systems resolution 
Free 

Not maintained since 2016 

Library Name Description Stronger points Weaker points 

Transient (Andresen et 
al., 2015) 

Dedicated to coupled energy networks with 

recent versatile electrolyzer models 

(Webster and Bode, 2019) 

Large scope of models 

Models with different labeled 

levels of accuracy 

Incompatible with MSL 

Based on TILMedia thus only 

partly free 

Hybrid (IdahoLab, 2023) 
Dedicated to various integrated energy 
systems including, among others, nuclear, 

electrolysis and desalination 

Very large scope of models 
Compatible with MSL 

Free 

H2 related processes not user 
friendly  

Still on-going structural changes 

ThermoSyspro (El Hefni 

and Bouskela, 2019) 

Dedicated to power plants and energy 

systems 

Free 
Large scope and detailed models 

regarding thermal processes 

Incompatible with MSL 
No media 

Not related to H2 modelling  

Hydrogen (Dassault 
Systèmes, 2023) 

Dedicated to PEM fuel cell stacks and 
systems 

Compatible with MSL 

Efficient real gas model 
compatible with MSL (Kormann 

and Krüger, 2019) 

Not free  
Limited models scope 

Modelon FCL (Modelon, 

2023) 

Dedicated to PEM and Solid Oxide Fuel cell 

systems 

Detailed models 

Own exhaustive media library 

Not free 
Incompatible with MSL 

Limited models scope 

ThermoFluidStream 

(Zimmer et al., 2021) 

Dedicated to complex thermofluid 

architectures 

Free 

Very robust modeling due to a 
new computational scheme 

Incompatible with MSL 

Not related to H2 modelling  
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HeatExchangers, Condensers and GeneralCircuitry 

contain more traditional models oriented for use in a 

hydrogen system. Those models are similar to the MSL 

models but have been slightly modified either to increase 

computational speed or improve overall robustness. 

 
Figure 1. Structure of the EnergyProcess Library 

3.3 Focus on Media package 

The Media package is at the core of the present library. 

Media models must be numerically robust to avoid 

generating errors during dynamic simulation as well as 

fast, accurate, and capable of calculating the 

thermodynamic properties of the fluid over a wide range 

of pressures and temperatures. Models with best accuracy, 

such as models based on Helmholtz's free energy, suffer 

from slowness because they are computationally 

intensive. On the other end of the media model spectrum, 

there are fast models with few calculations but which are 

imprecise (ideal gas models). This observation is driving 

the development of new media models for CEPL.  

The models of the Media package are divided into two 

categories: Monophasic and Diphasic media. Monophasic 

models are based on SRK (Soave Redlich Kwong) 

Equation of state (Soave, 1972), SBLT (Spline Based 

Look-up Table)(Ungethüm and Hülsebusch, 2009) or 

Helmholtz models using pressure and temperature as 

explicit variables. Diphasic models for pure substance are 

based on SRK, Helmholtz and SBLT as well using 

pressure and specific enthalpy as explicit variables. 

Mixture models are the most complex of all and involve 

several models. They are either based on SRK/PSRK 

models or in-house models (mixture NH3 / H2 / N2 or 

Moist gas) based on Henry and Raoult’s laws coupled 

with correlations for the Vapour Liquid Equilibrium 

(VLE) calculation (Alesandrini et al., 1972; Reamer and 

Sage, 1959a, 1959b; Sawant et al., 2006). The media 

composing the package are represented in Figure 2. 

   
Figure 2. Media package of the library including monophasic 

and diphasic models for pure substance and mixture. 

3.4 Focus on Electrolyzers and FuelCell 

packages 

The Electrolyzers package is composed of three 

subpackages, each addressing a specific electrolyzer 

technology: PEM (Proton Exchange Membrane), SOEC 

(Solid Oxide Electrolyze cell) and Alkalin. The PEM 

subpackage has a dedicated electrolyzer model, which 

itself includes several replaceable physics package such 

as voltage, temperature, converter and mass flow models. 

The latter model structure is largely inspired by the model 

from Webster and Bode (2019). 

 
Figure 3. On the left, the electrolyzer model in the PEM 

package including the "physics" package. On the right, an 

extract of the "physics" package highlighting the voltage and 

mass flow replaceable subpackages. 

Figure 3 represents an extract of the PEM highlighting 

its “physics” package. Several voltage models are 

represented in the “physics” package ranging from 

activation loss, concentration loss and reversible potential 

up to aging model (Espinosa-López et al., 2018; Falcão 

and Pinto, 2020; Olivier et al., 2017). The aging model is 

an empirical model that takes into account the history of 

fluctuation of power output of the electrolyzer to 

determine voltage losses due to stack/cells degradation. 

The strength of this approach lies in its modularity 

allowing the user to easily change physical modules, 

insert its own or to fit parameters to match experimental 

data (as shown later in Section 4.2). The other 
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subpackages SOEC and Alkalin share this modular 

approach with different physics. 

The remaining of the main package is composed of 

auxiliary models such as deoxodryer, scrubber, lye-gas 

separation or water gas separation models to assist in the 

modelling of the balance of plant for each technology.  

The FuelCell package is very similar in structure to the 

Electrolyzers one. It incorporates PEM (Proton Exchange 

Membrane) and SOFC (Solid Oxide Fuel Cell) models 

and uses the same modular structure than the Electrolyzers 

package. 

3.5 Focus on Storage package 

The Storage package includes a compressed gas 

storage to model type I to type IV composite tank 

(thermo-hydraulic modeling). This package includes as 

well an underground, salt-cavity based, storage model 

(Gabrielli et al., 2020). The particularity of this model is 

to represent the diffusion of gas through porous rock using 

Fick’s law in a 1D model. It takes into account the 

viscosity of the gas as well as the tortuosity of the rock to 

model diffusion. Figure 4 represents a schematic view of 

the physical model. The first node is the underground 

storage cavern from/to which the gas can be 

extracted/injected. From node 1, the gas is allowed to 

diffuse to node 2 up to node n through Fick’s law. 

Equations of diffusion are fully reversible and help 

representing the latency of back diffusion during 

extraction. The effect is particularly pronounced for long 

and thin cavern that are created by lixiviation in situ. 

 
Figure 4. 1-D model of the underground gas storage. 

3.6 Other packages 

The remaining packages are composed of models used 

in the balance of plant of hydrogen system. Most of those 

models are inspired by the MSL but modified for 

computational performances or stability considerations. 

Among those models, the modular, quasi static or 

dynamic heat exchangers model using the ε-NTU model 

as well as the compressor model stands out as the most 

complex.  

4 Validation and Application 

4.1 Focus on Media package 

As discussed in section 3.3, the media package is at the 

core of the EnergyProcess Library. A wrong choice by the 

user on the selection of the media model can lead to 

problematic physical results and/or extensive CPU time 

calculations.  

Performances of the pure substance media models 

available in the EnergyProcess Library are studied on the 

classical use case of a fast filling of hydrogen tanks 

(Figure 5). The filling process consists of:  

 A hydrogen source at constant mass flow of 

0.05 kg/s.  

 A buffer (1 m3) and a discharge valve opening at 

150 Bar. 

 A rack of hydrogen tanks with a total volume of 

5 m3.  

 The hydrogen source is piloted with a hysteresis 

loop to fill up the tanks at a maximal pressure of 

750 Bar. 

Simulations of the process are performed using the 

pure substance models composing the media package:  

 Monophasic and diphasic SRK models using a 

cubic equation of state. 

 Monophasic and diphasic Helmholtz models. 

 Ideal gas model from Modelica Standard Library. 

 

Figure 5. Process of a fast filling of hydrogen tanks 

The obtained results are compared to a reference model 

from the ExternalMedia library (Table 1). Figure 6 shows 

the changes of gas pressure and gas temperature inside the 

tanks during the complete fast filling process with the 

ideal gas, monophasic SRK, monophasic Helmholtz and 

ExternalMedia hydrogen models. The CPU time with a 

Radau IIa solver required for the integration on the time 

simulation are also indicated. Classically, at high pressure 

and low temperature, ideal gas model is very imprecise in 

comparison to the three other models but it is very fast. 

ExternalMedia and Helmholtz models give similar 

physical results and CPU time calculations. This 

Presentation, Validation and Application of the EnergyProcess Library

314 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204311



observation is logical because the ExternalMedia model is 

itself based on a Helmholtz formulation from C++ 

Coolprop library. Finally, SRK model is a very good 

trade-off between CPU time calculations and physical 

results. 

 
Figure 6 : Hydrogen pressure (up) and Temperature (middle) 

inside the tanks during the fast filling process obtained with 4 

media models. Associated CPU time calculations (down). 

Table 3 gives the results for the six hydrogen models 

focusing on CPU time and the mass of hydrogen stored in 

the tanks at the end of filling process. ExternalMedia is 

used as the reference model to compare results.  

Table 3 : Comparison between six Hydrogen models during a 

fast filling process 

Media model CPU time (s) Stored H2 mass (kg) 

External Media 1.215 101 

Ideal gas 0.034 (-97 %) 145 (+44 %) 

Monophasic SRK 0.103 (-91 %) 99 (-2 %) 

Diphasic SRK 0.157 (-87 %) 99 (-2 %) 

Monophasic 

Helmholtz 
1.074 (-11 %) 101 (+ 0 %) 

Diphasic 

Helmholtz 
2.418 (+99 %) 101 (+0 %) 

4.2 5 MW PEM electrolysis module modeling 

In this section, the EnergyProcess Library is used to 

develop a non-linear dynamic model of the Ex-2125D 

electrolyzer system manufactured by Plug Power (2023). 

This 5 MW electrolyzer module is composed of:  

 Five Allabash PEM (Proton Exchange Membrane) 

stacks originally developed by GingerELX. Each 

stack is considered to be composed of 154 cells of 

1250 cm² in series operating on a nominal current of 

3750 A (current density of 3 A/cm²), a pressure of 

41 bar and a temperature of 70°C (343.15 K). NREL 

performed polarization (I-V curve) scans from 350 

to 3750 A, while maintaining cathode pressure and 

stack temperature at its nominal values (Harrison, 

2021). 

 A balance of plant including the following main 

components: two gas/water separator for the stack 

output conditioning, a feed water/cooling circuit 

composed of a heat exchanger, a water pump and 

valves for the stack temperature regulation. 

 Additionally, a deoxo-dryer system is needed to 

purify hydrogen, an AC/DC converter to supply the 

DC current of the stacks from AC source and a dry 

cooler to evacuate heat from cooling circuit. 

At first, to validate the stack model, polarization curve 

using the cell voltage calculation by Webster and Bode 

(2019) and Afshari et al. (2021) are compared to the 

NREL data (Harrison, 2021). The resulting I-V curves are 

given in Figure 7. Results shows a good match between 

both models and NREL measurements. Moreover, The 

Webster approach is simply correlated to measurements 

(RMSE = 4.6.10-3 V, 0.25 %) using a constant additional 

ohmic resistance (due to electrode, a lower membrane 

humidity or a contact resistance) for the ohmic 

overvoltage calculation. 

Then, as shown in Figure 8, the Ex-2125D electrolyzer 

system is assembled from components model of the 

EnergyProcess Library. Each component (heat 

exchanger, pump, valves, dry-cooler) is sized at the 

nominal values of 3750 A, 70°C corresponding to an 

electric power consumption of 5.9 MWe.  
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Figure 7. Polarization curves of Allabash cell from models and 

NREL data at 70°C and 41 bar 

 
Figure 8. Ex-2125D electrolyzer system: From Physical to 

virtual system with EnergyProcess Library 

The stack model includes a temperature submodel 

which implements a lumped thermal capacitance model 

and thermal losses (radiation and convection). The 

thermal capacity of the Allabash PEM stack is determined 

from geometry defined by Tiktak (2019) to be 219 kJ/K 

value.  

The control-command system consists of three valves 

to pilot:  

 The feed-in water directly as a function of the water 

consumption by electrolysis reaction in the five 

stacks. 

 The level of water in both separators. The valve is 

used to discharge the overwater level from H2/water 

separator to O2/water separator due to pressure 

difference between the anodic and cathodic circuits 

and water crossover trough the cell membranes. 

 The temperature of the stack using a bypass of a 

fraction of the flowrate of the cooling fluid in the 

cooler. 

Component models are associated with a media 

package. In-house Moist O2 (using ideal gas model for 

gas phase and constant properties for liquid water) and 

Moist H2 (using SRK model for gas phase and constant 

properties for liquid water) mixtures (see Figure 2) are 
selected for anodic and cathodic circuits. 

Simulations are performed to study dynamic or quasi-

static response of the Ex-2125D electrolyzer and study 

system performances. For example, Figure 9 gives the 

evolution of the stack temperature in response to a step of 

the electric load (trapezoid source from MSL with 5 

minutes of rising duration): 

 Using a constant opening of the bypassing valve 

of the cooler. 

 Using a PID regulator to control the opening of 

the bypassing valve as a function of the outlet 

temperature of the stacks. 

 
Figure 9.Stack temperature (Up) and module efficiency 

(Down) evolution in response to a step of the electric load with 

or without PI controller 

4.3 Use for calibration of optimization model 

With the physical model of the module, we were able 

to characterize its behavior for the entire range of current 

density and at a temperature of operation of 70°C. Figure 

10 presents the results obtained in terms of efficiency with 

details regarding the different contributors to the 

efficiency loss. With that result, a model following the 

Mixed-Integer Linear Programing formalism could be 

built by piecewise linearization as shown in Figure 11. 

This model can then be used within the high-level 

controller model of an Energy Management System 

(EMS), as shown in next Section. 
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Figure 10. Different simulated contributions to the loss of 

efficiency and final net efficiency of the module 

 
Figure 11. Piecewise fit of the part-load efficiency curve 

calculated using the EnergyProcess model 

4.4 Use as a simulator for EMS evaluation 

A complete green hydrogen production chain simulator 

was built with the use of the EnergyProcess library 

combining different modules of Section 4.1 in parallel, a 

salt cavern gas storage, a transportation pipeline and 

different compressors. This physical non-linear simulator 

was then used to evaluate the performance of a MILP-

based predictive EMS prior to field deployment. Figure 

12 explains schematically the interaction between the 

physical simulator and the EMS. The latter receives i) 

predictions of cost and H2 demand for the next 24 hours 

and ii) state-returns from the physical simulator (e.g. 

state-of-charge of the storage) and will calculate set points 

(e.g. input power to the different modules) for the next 24 

hours at a time step of e.g. 15 minutes. The set points 

calculation takes place every hour. Figure 12 also 

highlights the other use of the EnergyProcess library, 

which is the off-line calibration of MILP models (as 

explained in Section 4.2). 

 
Figure 12. Schematic of the EnergyProcess library uses as i) 

physical simulator and ii) offline calibration tool for MILP 

model 

5 Conclusion 

In this paper, we describe how we built and used the 

EnergyProcess library, a Modelica-based library 

dedicated to the simulation and optimization of energy 

process for the production of green molecules. After a 

review of existing libraries, the development of this new 

library finds its roots in our need for i) media models 

computationally light and able to represent various 

multiphasic mixtures, ii) FMU and MSL compatible 

models, iii) exhaustive component models for various 

green molecules production chains, and iv) intellectual 

property and continuous integration control.  

The structure of the library was then presented with a 

specific focus on the core packages, i.e. Media, 

Electrolyzers and Storage. The specific application of a 

5 MW PEM electrolysis module was finally addressed 

with i) the polarization curve validation for a single stack, 

ii) the dynamic performance simulation of the entire 

module, iii) the optimization model calibration of this 

module and iv) the use of a complete simulator including 

this module to characterize an Energy Management 

System (EMS). The authors do not see any limitation in 

extending the electrolyzer model to smaller scale. As for 

larger scale, a simplified version (for the sake of 

computational time) of the 5 MW model was used as a 

subsystem to simulate a 500 MW electrolyzer in one 

project. 

The development of the library is still on-going with for 

example the current modeling of ammonia synthesis 

catalytic reactor. Apart from the initial ambitions of the 

library which were to either be used for control models 

calibration or as a physical simulator to evaluate EMS, 

further uses are currently envisioned. The latter 

specifically comprises data reconciliation and surrogate 

model to be used inside the EMS. 

Although the EnergyProcess library is limited to our 

internal use for now, a wider diffusion of some 

components under an open-source license is envisioned in 

the frame of a European project. 
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Import and Export of Functional Mock-up Units in CasADi
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Abstract
This paper presents the recently added support for im-
port and export of functional mock-up units (FMUs) in
CasADi, an open-source software framework for numeri-
cal optimization. Of particular interest is the efficient cal-
culation of derivatives, especially in the context of sen-
sitivity analysis and dynamic optimization. We show
how the import interface allows for both first and second
derivatives can be efficiently and accurately calculated and
– importantly – validated for correctness. We also outline
the FMU export interface, which leverages CasADi ma-
ture and efficient support for forward and adjoint deriva-
tive calculation and C code generation. Finally, potential
future developments of the support are discussed.
Keywords: CasADi, FMI, FMU, Modelica, optimal con-
trol

1 Introduction
The work presented here is intended to be general-
purpose, but will typically include some sort of optimiza-
tion formulation with a high-fidelity simulation model ad-
hering to the FMI standard, cf. Section 1.2 below. Exam-
ples of such applications include:

• Parameter estimation applications, which may use
parametric sensitivty approaches to obtain estimates
of confidence intervals for estimated parameters

• A wide range of different optimal control formula-
tions, i.e. problems with free control trajectories to
be determined by the optimization algorithm

• Optimization-based control techniques such as (non-
linear) model predictive control (MPC), including
their deployment on embedded systems

• Steady-state optimization formulations, i.e. prob-
lems that lack time derivatives or have the time
derivatives fixed to some value (typically zero)

For more details on the implementation of such algo-
rithms and on possible applications, we refer to the vari-
ous textbooks on the topic, including (Biegler 2010) and
(Rawlings, Mayne, and Diehl 2020).

1.1 CasADi
CasADi (J. A. E. Andersson et al. 2019) is an open-source
software package for C++, Python, MATLAB and Octave.

CasADi offers a flexible approach to solve numerical opti-
mization problems in general and numerical optimal con-
trol in particular. At the lowest level, it offers all the build-
ing blocks needed to efficiency address all the problem
formulations listed above. At the core of the package is
a symbolic expression framework implementing algorith-
mic differentiation (AD) in forward and reverse (adjoint)
modes. CasADi’s symbolic expressions can contain em-
bedded function objects, which offer a standard interface
to generic, differentiable functions. These function ob-
jects can be defined in a number of ways, including by
other symbolic expressions, by systems of nonlinear equa-
tions, by initial-value problems in differential-algebraic
equations or by external function calls.

1.2 FMI
The functional mock-up interface (FMI) (Modelica Asso-
ciation 2020; Modelica Association 2023) is an open stan-
dard for exchanging information about dynamic system
models between tools. The format specifies the structure
of self-contained zip archives called functional mock-up
units (FMUs), The FMUs contain, in particular, an XML
file with static meta information and a C library for evalu-
ating model equations and their derivatives. The C library
is designed for either static linking or dynamic linking and
can be distributed either in source form or as a compiled
dynamically linked library (DLL), available in the FMU.

The FMI standard describes connections either at the
dynamic equation level, referred to as model exchange, or
on an input-output level at discrete communication time
points, referred to as co-simulation. In this work, we are
mainly concerned with the connections at the level of dy-
namic equations and references to “FMI” implicitly im-
plies FMI for model exchange.

Derivative information in FMUs

FMI 2.0 (Modelica Association 2020) specifies two types
of derivative information:

• Firstly, the FMI XML API contains information
about which output variables depend on what input
variables (dependencies attribute) and whether
this dependency is linear (dependenciesKind
attribute).

• Secondly, the FMI C API includes the routine
for calculating (forward) directional derivatives
i.e. Jacobian-times-vector products, for se-
lected subsets of the FMU inputs and outputs
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(fmi2GetDirectionalDerivative func-
tion).

Together, these two pieces of information can be used to
obtain sparse Jacobians, as outlined in Section 3.2.

In FMI 3.0 (Modelica Association 2023), where for-
ward directional derivatives are calculated using the rou-
tine fmi3GetDirectionalDerivative, the C API
is extended with the ability to calculate adjoint directional
derivatives, i.e. Jacobian-transposed times vector prod-
ucts, via the routine fmi3GetAdjointDerivative.
Furthermore, the variable dependency information in the
XML API can now be refined at runtime, with the addition
of fmi3GetVariableDependencies in the C API.

2 Other integration efforts of CasADi
and Modelica

This work does not represent the first time Modelica mod-
els has been integrated into CasADi. Indeed, it was a Mod-
elica application that motivated the start of the CasADi
project in 2009 (Ahlbrink et al. 2009). The first integration
effort, between JModelica.org and CasADi, was described
in (J. Andersson et al. 2011). That approach was based on
the FMI version 1.0, where the XML model description
had been extended with a symbolic representation of the
model equations. Later, support for export of the same
format was also added to OpenModelica (Shitahun et al.
2013).

Eventually, JModelica.org replaced the XML-based
format with a tighter integration based on a Java inter-
face generated using SWIG (Beazley 2003), an approach
which is also used in OCT, JModelica.org’s closed-source
successor code from AB Modelon. As of this writing,
the CasADi-backend of OCT represents the most mature
symbolic coupling between generic Modelica models and
CasADi.

Two additional interfaces between Modelica and
CasADi are available via the open-source Pymoca1 and
Cymoca2 packages on Github. Both these packages in-
clude native CasADi-based backends, using CasADi’s
Python and C++ APIs, respectively.

3 Importing FMUs into CasADi
CasADi 3.6 introduces the ability to import standard
FMUs, adhering to FMI version 2.0, which can be gener-
ated from Modelica or non-Modelica models. Unlike the
other efforts described in Section 2, this approach uses the
standard C API, as defined by the FMI standard, for eval-
uating model equations and any derivative information.

3.1 Postponing the creation of CasADi func-
tion objects

A fundamental difficulty with all the integration efforts de-
scribed in Section 2 is that not all Modelica expressions

1https://github.com/pymoca/pymoca
2https://github.com/jgoppert/cymoca

can be efficiently represented as CasADi expressions. In
particular, CasADi does not support arithmetics involving
string-valued expressions and expressions where the di-
mensions or sparsity patterns are unknown. There are also
fundamental differences in how flow control can be imple-
mented, e.g. if-then-else statements and for/while loops.

In the new FMI support of CasADi, we are able to
overcome these limitations by postponing the creation of
CasADi functions objects. Rather than creating a CasADi
function directly from the FMU – which is how CasADi’s
other foreign function interfaces work – the FMU is im-
ported in the form of a mutable representation of the
physical model. This mutable representation, in the form
of instances of the DaeBuilder class in CasADi, al-
lows the user to change properties, set values and per-
form certain manipulations before an immutable (state-
less) CasADi function object is finally created. The cor-
responding function objects are instances of the newly
added FmuFunction class, and upon creation saves a
snapshot of the current DaeBuilder state. Each FMU
function object can have multiple vector-valued inputs and
multiple vector-valued outputs, where the user defines the
composition of each input or output. We typically only
include the real-valued, differentable model variables that
are manipulated by the various simulation and optimiza-
tion algorithms available in CasADi. Inputs that are non-
differentiable – including string-valued and integer-valued
variables – or known to be fixed are assumed to be set
prior to the creation of FmuFunction instance. Cal-
culated quantitites of interest that are non-differentiable,
and hence cannot be used in simulation or optimization
algorithms in CasADi, can be obtained via the statistics-
functionality of the FMU function objects.

3.2 Derivative calculation
The typical use cases for FMI and/or Modelica models
within CasADi involve calculation of derivatives. This in-
cludes optimial control formulations solved with gradient-
based optimization algorithms as well as dynamic simula-
tion with sensitivity analysis.

To acommodate such use cases, the interface has been
designed to:

• Be as efficient as possible, by leveraging paralleliza-
tion and all available analytic derivative and sparsity
information

• Support for both first and second order derivatives
(even through the FMI standard only includes first
order derivatives)

• Ensure that any calculated derivative quantities can
be validated for correctness

• Ensure that the derivative calculation is predictable
and customizable from a user standpoint

In the following sections, we briefly summarize the
kinds of supported derivative information and how they
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are calculated by the interface. We will not discuss user
syntax for calculation of derivative information as it is the
same as for any other function object in CasADi. For
illustration, we will consider a set of FMU model equa-
tions that can be represented as a differentiable function
y = f (x), where x ∈ Rnx is a set of inputs or state vector
components and y ∈ Rny is a set of calculated outputs or
state derivatives.

Forward derivatives

Forward derivatives, i.e. Jacobian-times-vector prod-
ucts ∂ f (x)

∂x v for some x and v, can be calculated using
fmi2GetDirectionalDerivative in the FMI C
API (Modelica Association 2020). Alternatively, we can
estimate the same information using one of three finite dif-
ference schemes:

• Forward differences, i.e. ( f (x + hv)− f (x))/h for
some small h, with approximation error O(h)

• Central differences, i.e. ( f (x + hv) − f (x −
hv))/(2h) for some small h, with approximation er-
ror O(h2)

• A generalized, smoothness seeking, scheme using
5-point stencils, f (x − 2hv), f (x − hv), f (x), f (x +
hhv), f (x+2hv), with approximation error O(h4)

The above schemes represent different tradeoffs be-
tween accuracy and computational overhead, requiring 1,
2 and 4 additional function evaluations, respectively. For
all of the schemes, we will select a fixed, and predictable,
perturbation size h, by default 10−6. This necessitates that
the directional derivative seed v is properly scaled.

The intended purpose of the finite difference implemen-
tation is not to serve as an alternative to analytic deriva-
tives, but to validate that the provided analytic derivatives
are correct. This is achieved by, optionally, allowing a se-
lected finite difference implementation to run in a “shadow
mode”, ensuring that the two derivative estimates agree up
to some absolute and relative tolerance. This validation
also helps ensuring that the finite difference perturbation
is correctly chosen, which is important for the calculation
of second order derivatives.

Jacobians

We use CasADi’s greedy, distance-2, unidirectional algo-
rithm (Gebremedhin, Manne, and Pothen 2005) to calcu-
late large-and-sparse Jacobians, i.e. ∂ f (x)

∂x for the above
example. This approach exploits a priori knowledge of
the Jacobian sparsity pattern, which can be derived from
the variable dependency information provided in the FMI
standard. In most use cases, this technique reduces the
problem of calculating the sparse Jacobian to one of calcu-
lating a reasonably small set of forward directional deriva-
tives.

We allow this directional derivative calculation to be
performed in parallel, using either std::thread in the

C++ standard or OpenMP. We also scale derivative seeds
with nominal values of the FMU and adjust the sign of
the perturbation to respect variable bounds, when neces-
sary. By using a fixed step size scaled by the nominal
value for the derivative seeds, we ensure that the calcula-
tion becomes predictable and customizable as the user can
adjust the individual nominal values.

Adjoint derivatives
Support for adjoint derivatives, i.e. Jacobian-transpose-

times-vector products
[

∂ f (x)
∂x

]T
w for some x and w, was

added in FMI 3. As the import code, as of this writing, was
limited to FMI 2, we instead use the above Jacobian cal-
culation to calculate adjoint derivatives, i.e. we multiply
the transpose of the Jacobian, which may not be formed
explicitly, with the vector w from the right.

Note that such an approach may be significantly less ef-
ficient than using fmi3GetAdjointDerivative, as-
suming a reverse mode algorithmic differentiation is used
for the calculation. As the CasADi FMI import transitions
to FMI 3, the intention is for the existing implementation
to be used as an optional validation of the adjoint direc-
tional derivatives, provided by the FMI C API. We predict
that such validation will prove important when using the
interface for complex physical systems.

Forward-over-adjoint derivatives
The FMI standard, whether FMI 2 or FMI 3, does not
include an API for second order derivatives, i.e Hessian-
times-vector products ∂ 2[wT f (x)]

∂x2 v, for some v and w. Nev-
ertheless, we can calculate this information with accept-
able efficiency and accuracy using finite difference per-
turbations of the (analytical) adjoint derivatives. For ex-
ample, can we approximate the second derivative using
central differences:

1
2h

([
∂ f
∂x

(x+hv)
]T

w−
[

∂ f
∂x

(x−hv)
]T

w

)
, (1)

where we calculate the adjoint derivatives as described
above.

Hessians
Our main intrest for calculating forward-over-adjoint
derivatives is to obtain a large-and-sparse Hessian, i.e.
∂ 2[wT f (x)]

∂x2 for the above example. In large-scale gradient-
based optimization, knowledge of the exact Hessian can
be used to get faster and more robust convergence.

We use CasADi’s greedy, distance-2, star-coloring al-
gorithm (Gebremedhin, Manne, and Pothen 2005) to cal-
culate sparse Hessians. For this calculation, we use the
(incomplete) knowledge of the Hessian sparsity pattern
that can be extracted from the FMI XML API. In par-
ticular, we know that variables that enter linearly will be
absent from the Hessian sparsity pattern, which occurs
whenever the dependenciesKind field is set to some-
thing other than dependent.
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As for the Jacobian calculation, we allow the different
directional derivatives to be calculated in parallel, using
std::thread in the C++ standard or OpenMP.

Since the Hessian calculation relies on approximations,
it is especially important to validate the results. We do
this validation by comparing each Hessian entry with a
reference value:

• For diagonal entries of the Hessian, we compare the
result against the corresponding second order finite
difference formula, i.e. ( f (x+ hv)− 2 f (x)+ f (x−
hv))/h2.

• For off-diagonal entries of the Hessian, we compare
the result against the mirror element, which will be
calculated by a finite difference perturbation of a dif-
ferent variable.

In both cases, the validation can be done with little addi-
tional overhead and can thus be used as an on-the-fly diag-
nostics check. The main additional overhead comes from
having to disable the star-coloring algorithm to get every
Hessian element validated – avoiding to calculate mirror
elements in Hessians is a fundamental property of star-
coloring, cf. (Gebremedhin, Manne, and Pothen 2005).
Whenever the calculated value deviates significantly from
the reference value, a warning is issued, helping the user to
either resolve non-smoothness issues in the model, detect
toolchain bugs or adjust the nominal values.

4 Generalized support for ODE/DAE
integration and sensitivity analysis
in CasADi

The FMU import described in Section 3 has multiple po-
tential use cases, including simply being used for validated
Jacobians and Hessians of the model equations. Another
use case is for dynamic simulation with forward and/or
adjoint sensitivity analysis. Such an analysis is particu-
larly important if we use shooting method to reformulate
a dynamic optimization problem into a nonlinear program
(NLP). How this type of reformulations can be imple-
mented using CasADi was detailed in (J. A. E. Andersson
et al. 2019).

A key ability of CasADi is to embed solvers of initial-
value problems (IVPs) in ordinary differential equations
(ODE) or differential-algebraic equations (DAE) – which
we will refer to as integrators - into symbolic expressions
and have the framework calculate forward and adjoint sen-
sitivity analysis, including higher order, automatically and
efficiently. This support is relatively mature and has been
used in numerous applications. However, in order to use
this feature with models defined by FMUs, a number of
challenges had to be overcome:

• There was previously no support for controls in
CasADi, i.e. external inputs that change at certain
time points. While such problems could still be

solved by constructing multiple calls to integrator in-
stances with parametric inputs, this solution is par-
ticularly inefficient for FMUs as it would cause the
FMUs to be reinitialized at every control point.

• While there was already support for outputting a so-
lution at multiple time points (as opposed to just the
end time), this feature was never made to work to-
gether with the automatic sensitivity analysis. So as
in the case for controls, the solver would need to be
called repeatedly, for each segment, again causing
excessive reinitilizations.

• The implementation of the automatic forward and
adjoint sensitivity analysis only worked well for
models given as symbolic expressions. When the
model equation was a function object as is the case
here, a more limited range of derivative information
is efficiently available.

• The ODE/DAE integrators in CasADi did not scale
very well to large dimension. In particular, the struc-
ture of the forward and adjoint sensitivity equations
were insufficiently exploited.

All the above points were addressed in the major refac-
toring of the ODE/DAE integrator in CasADi 3.6. In
particular, the integrators now explicitly exploits forward
sensitivity equation structure, adjoint sensitivity equation
structure and forward-over-over adjoint sensitivity equa-
tion structure. While there may certainly be bottlenecks
left in the code, there is – to the best knowledge of the
author – no longer any fundamental limitation in CasADi
for large-scale ODE/DAE sensitivity analysis, including
for FMU models.

5 Exporting FMUs from CasADi
Another addition to CasADi 3.6 is support for exporting
FMUs from CasADi. The FMU export is done from in-
stances of DaeBuilder, a class which originates from
the original (symbolic) coupling between CasADi and
JModelica.org as described in Section 2. The FMU export
thus reuses the data structures used for the FMU import
descibed in Section 3.

As of this writing, a proof-of-concept implementation
of FMUs adhering to FMI 3.0 exists in the framework.
The implementation is based on the comprehensive sup-
port export of self-contained C code from symbolic ex-
pressions CasADi that exists in in CasADi. The gener-
ated FMUs contain support for both forward and adjoint
derivative calculation.

6 Examples and Tutorial
While parts of the FMI support in CasADi are still rudi-
mentary, the framework has been used successfully for
real-world applications, including for parameter estima-
tion with Modelica building models (Cañas et al. 2023).

Import and Export of Functional Mockup Units in CasADi

324 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204321



In the CasADi Github repository, a step-by-step Jupyter
Notebook tutorial (fmu_demo.ipynb) can be found
that demonstrates the main capabilities of the FMU im-
port described in Section 3, including:

• Compilation of FMUs from Modelica

• Loading FMUs into CasADi and creating function
objects

• Calculation of Jacobians and Hessians

• Integration and forward/adjoint sensitivity analysis

• Dynamic optimization using a direct collocation ap-
proach

For up-to-date information about this and other exam-
ples, we refer to the CasADi user guide and website.

7 Conclusions and Outlook
The intention of the FMI support in CasADi is to provide
numerically efficient and mature interfaces to FMUs, both
for import and for export. In particular, such interfaces
can enable the implementation of efficient simulation and
optimization formulations, for existing physical models
available as FMUs. These formulations can include for-
ward, adjoint and forward-over-adjoint sensitivity analysis
for the simulation problems and as well as sensitivity cal-
culation for the optimization formulations. To enable such
applications, special care has been taken to provide vali-
dation and diagnostics of provided derivative information
as well as the efficient calculation of second derivatives.

The FMU interfaces are intended to be general-purpose
and can be used for both static (steady-state) and dynamic
problem formulations. In the dynamic case, both open-
loop and closed-loop formulations are of interest.

As of this writing, the interface was still in active devel-
opment and future additions to the support will be driven
mainly by industrial and academic interest.

In the following, we list some of the main future devel-
opments the framework.

7.1 Support for FMI 3 import
FMI 3.0 is a natural fit with CasADi as it adds features
that are important to many use cases of CasADi. These
features especially include the added support for adjoint
derivatives and better Jacobian sparsity information, as
discussed in Section 1.2. The addded the support for
vector-valued variables is also important as all expressions
in CasADi are all matrix-valued.

At the time of this writing, only FMU 2 was supported
for the FMI import.

7.2 C code generation for imported FMUs
A common use case of CasADi – especially for industrial
applications – is to use the code generation support to gen-
erate self-contained C code, which can then be run on an

embedded system. This code can represent just the evalu-
ation of a function and its derivatives or a higher-level op-
eration, including the solution of an optimal control prob-
lem.

A useful extension of the FMI import would be to allow
for C code export of imported FMUs. It would for exam-
ple allow CasADi symbolic expressions to be exported to
an embedded system with static or dynamic linking to the
FMU shared libary.

It would be possible to use the C code generation of
imported FMU together with the FMU export described
in Section 5. For example, we could use the CasADi
framework to import multiple FMUs, connect them to-
gether into an aggregated system model and then export
the aggregated model as a new FMU.

7.3 Support for hybrid systems
FMI – and the Modelica modeling language – provides a
flexible modeling and execution paradigm for hybrid sys-
tems, i.e. systems with event dynamics. To allow such
models to be used within CasADi, an extension of the
framework would be needed. In particular, we may want
extend the simulation and sensitivity analysis support de-
scribed in Section 4 to also handle hybrid systems. While
handling hybrid systems in the context of dynamic opti-
mization – and in CasADi – is often not possible with the
same generality as in the context of system simulation,
several interesting problems could be addressed this way.

No explicit support for hybrid systems exists in CasADi
as of this writing, although many hybrid systems can be
reformulated and solved as multi-stage formulations. In
addition, integer valued decision variables can be handled
by using one of the interfaced solvers for mixed-integer
quadratic programs (MIQP) or mixed-integer nonlinear
programs (MINLP).
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Abstract  
Eigen decomposition of the governing equations that 

describe one-dimensional compressible flow has been 

presented. Analytical solution of the characteristics of 

the flow was derived. Simulation studies were 

conducted to support the theoretical analyses and wave 

propagation results were discussed in detail. It was 

found that acoustic effect introduced by the dynamic 

momentum led to a significant slowdown in the 

simulation and could be neglected in models without 

significant loss in accuracy for applications where 

energy transfer is of greater interest. 

 

Keywords: model reduction, characteristic speed, 
compressible flow, hyperbolic PDE, acoustic effect 

1 Introduction 

The equations that govern the motion of one-

dimensional compressible flow are the system of 

hyperbolic partial differential equations (PDEs). These 

consist of conservation laws for mass, momentum, 

and energy. Acoustic waves appear in a compressible 

flow, and pressure perturbation involves perturbation of 

density, velocity, and other parameters.  To capture the 

acoustic effect often requires very small integration 

steps when solving the governing equations, which 

significantly increases the computational cost. In 

contrast, energy transfer often involves a much slower 

time constant than other transport phenomena, and 

acoustic effect resulting from pressure perturbation is of 

minor importance. Consequently, many efforts have 

explored model reduction techniques to improve 

computational efficiency without significantly compro-

mising model integrity.  
 

One area of focus has been the simplification of the 

momentum equation since it usually does not affect the 

thermal system behavior over the time scales of interest 

in the applications where acoustic effect is not a top 

concern. Qiao and Laughman (2018) compared different 

model reduction techniques and showed that neglecting 

the phenomena on small time scales can improve 

numerical efficiency with a minimal loss in prediction 
accuracy based on simulation studies. However, the 

paper failed to present a theoretical proof to support 

their conclusions. Brasz and Koenig (1983) discussed 

the consequence of eliminating some terms in the 

original set of governing equations and found that the 

magnitude of the maximum characteristic speed was a 

key factor to limit the integration time step. 

Unfortunately, the authors did not provide detailed 

derivations to help readers fully understand the 

underlying reasoning. To fill in the gap, this paper will 

present a theoretical study for the propagation of waves 

in a fluid flowing through a channel, with an emphasis 

on applying the method of characteristics to solve the 

governing equations and elucidate the effect of dynamic 

momentum and acceleration pressure loss on the 

acoustic effect. 

 

The remainder of the paper is organized as follows. In 

Section 2, we present detailed derivations for the eigen 

decomposition of governing equations for one-

dimensional flow. In Section 3, we perform case studies 

to discuss the effect of dynamic momentum and 

acceleration pressure loss on the behavior of two-phase 

flow. Conclusions from this work are then summarized 

in Section 4. 

2 Eigen Decomposition of Governing 

Equations 

Without taking into account the gravitational force and 

axial heat conduction, the governing equations of mass, 

momentum and energy for one-dimensional flow with 

constant cross-sectional area can be written as  
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where , G, p, e, h, w, DH and 𝑞" are fluid density, mass 

flux, pressure, specific internal energy, specific enthalpy, 

wall shear stress, hydraulic diameter and heat flux, 

respectively.  
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1 and 2 is introduced here to evaluate the impact of the 

dynamic momentum term 
𝜕𝐺

𝜕𝑡
 and the acceleration 

pressure loss term 
𝜕

𝜕𝑥
(

𝐺2

𝜌
)  on the transient 

characteristics of fluid flow. Multiplying 𝐺/𝜌 on both 

sides of Eq. (2) and substituting it into Eq. (3) yields 
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In general, pressure p, specific enthalpy h and mass flux 

G are selected as dynamic states in the simulation of 

vapor compressor cycles. Using the chain rule to expand 

𝑑𝜌 = (
𝜕𝜌

𝜕𝑝
)

ℎ
𝑑𝑝 + (

𝜕𝜌

𝜕ℎ
)

𝑝
𝑑ℎ, Eq. (1), (4) and (5) can be 

written in the quasilinear form after some manipulations 
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It is evident that the conservation laws described by Eq. 

(6) are hyperbolic inhomogeneous PDEs. The 

characteristic speed of information propagation dx/dt  
can be found by solving the eigenvalue of 𝐵−1𝐴  via 

|𝜆𝐼 − 𝐵−1𝐴| = 0, where |… | indicates the determinant 

and  is the eigenvalue.  

 

However, 𝐵 is singular and does not have an inverse if 

the dynamic term in Eq. (4) is neglected, i.e., 1 = 0. 

Note that 𝐴 is always invertible regardless of the values 

of 1 and 2. Hence, Eq. (6) can be rewritten as  

 

1 1U U
A B A R

x t

− − 
+ =

 
 (7) 

 
Eq. (7) is also hyperbolic PDEs with characteristic 

speed dx/dt that is the reciprocal of the eigenvalue of 

𝐴−1𝐵, i.e., |
𝑑𝑡

𝑑𝑥
𝐼 − 𝐴−1𝐵| = 0. 

 

One can augment Eq. (6) with the total derivative of U 

 

U

B A Rt

dtI dxI U dU

x

 
    

=    
    
  

 (8) 

 

where I is a 3×3 identity matrix.  

 

It is shown below that the characteristic speeds of the 

system described by Eq. (6), dx/dt, are actually the 

roots of the determinant of the coefficient matrix of Eq. 

(8), regardless of whether B is singular or not. 

 

( )

( )

( )

1

1

3 1

3 1

3

for 0

0

for 0

for 0

0

for 0

0

dx
I B A B

dt

dt
I A B B

dx

dx
dt I B A B B

dt

dt
dx I A B A B

dx

B A dx
B A dt

dtI dxI dt

−

−

−

−


− 


= 
 − =



− 


 = 

− − =


  = = − =

 (9) 

 

With both dynamic momentum term and acceleration 

pressure loss term included in Eq. (6), i.e., 1 = 2 = 1, 

the determinant of the coefficient matrix is given by 

 

( )
2

32

2
0

dx dx
v c v dt

c dt dt

     
 = − − − =   

     

 (10) 
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where 𝑐 = √1/ (
𝜕𝜌

𝜕𝑝
+

1

𝜌

𝜕𝜌

𝜕ℎ
). It is evident that there are 

three distinct characteristics for the system 

 

, ,
dx

v c v v c
dt

= − +  (11) 

 

Next, we show that c is the speed of sound. Since the 

change in density can be determined as 𝑑𝜌 =

(
𝜕𝜌

𝜕𝑝
)

ℎ
𝑑𝑝 + (

𝜕𝜌

𝜕ℎ
)

𝑝
𝑑ℎ, one can have 

 

ps h s

h

p p h p

           
= +      

         
 (12) 

 

Using the relation 𝑑ℎ = 𝑇𝑑𝑠 +
1

𝜌
𝑑𝑝, one can obtain  

 

1

s

h

p 

 
= 

 
 (13) 

 

Substituting Eq. (13) into Eq. (12) yields 

 

1

1
s

ph

p
c

p h

 



 
= =  

     +   
   

 (14) 

 

The right-hand side of Eq. (14) is the definition of the 

speed of sound.  

 
We use the symbols {−, ◦, +} to denote these three 

eigenvalues of B-1A, i.e., v - c, v, v + c. The 

corresponding eigenvectors are 

 

( ) ( )

( )

2

2

2

2

0

2 1
, ,

2

T
h

c

c h h h
r c r

p

vv c

c

c h h
r c

p

v c

  

 

−

+





   
   
     = − + =

     
   

−   

 
 
  = +

  
 

+ 

 (15) 

 

where the coefficients are carefully chosen so that the 

characteristic variables introduced below can be in a 

simple form. 

 
Letting matrix Q be the matrix of eigenvectors, i.e., 𝑄 =
(𝑟(−)|𝑟(°)|𝑟(+)), B-1A can be diagonalized as  

 

1 1

0 0

0 0

0 0

v c

Q B AQ v

v c

− −

− 
 

= = 
 
 + 

 (16) 

  

Defining the characteristic variables W as 𝑑𝑊 =
𝑄−1𝑑𝑈, we can write Eq. (7) as 

 

1 1W W
Q B R

t x

− − 
+ =

 
 (17) 

 
Eq. (17) is equivalent to Eq. (18) - (20). 

( ) 4 1

1

w

H

q
dW dt

D c h

p

dp
dv

c









−


= = − +

−




 
 
 −
 
 
 

 

for 
𝑑𝑥

𝑑𝑡
= 𝜆(−) = 𝑣 − 𝑐 (18) 

( )

2

4 1

1H

q
dW ds dt

c D T
h

h

p






= = −


−







 

for 
𝑑𝑥

𝑑𝑡
= 𝜆(∘) = 𝑣 (19) 

( ) 4 1

1

w

H

q
dW dt

D c h

p

dp
dv

c









+


= = −

−




 
 
 +
 
 
 

 

for 
𝑑𝑥

𝑑𝑡
= 𝜆(+) = 𝑣 + 𝑐 (20) 

 

Eq. (19) denotes that entropy wave 𝑊(∘) = 𝑠  travels 

with local flow speed of v, whereas Eq. (18) and (20) 

denote that backward acoustic wave 𝑊(−) = 𝑣 − ∫
𝑑𝑝

𝜌𝑐
 

and forward acoustic wave 𝑊(+) = 𝑣 + ∫
𝑑𝑝

𝜌𝑐
 travel with 

sonic speed of c with respect of local flow speed v, as 

shown in Fig. 1. When the flow is adiabatic and inviscid 

(R = 0), Eq. (6) becomes Euler equations and three 

waves will remain constant along their respective 

characteristic curve (Doyle, 2006). However, this is 

nonphysical and cannot occur in the real world. For fluid 

flow with heat transfer, the variations in the entropy are 

only determined by the heat flux along 𝑑𝑥 =  𝑣𝑑𝑡 . 

Positive heat flux results in an increase in entropy and 

negative heat flux results in a decrease in entropy. For 

viscous flow, frictional losses always lead to the 

attenuation of both acoustic waves, as shown in Eq. (18) 

and (20). Meanwhile, Eq. (18) and (20) indicate that 

heat flux imposes opposite impact on two acoustic 
waves, because positive heat flux in the forward 
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direction is equivalent to negative heat flux in the 

backward direction.  

 

 

Figure 1.  Characteristics of the original set of governing 

equations  

 

Following the above analyses, one can compute the 

characteristic speeds of the system when acceleration 

pressure loss is neglected, i.e., 1 = 1, 2 = 0.  

 

( )
2

32

2
0

dx dx
v c dt

c dt dt

     
 − − =    

     

=  (21) 

 

It is evident that there are also three distinct 

characteristic speeds, i.e., 
𝑑𝑥

𝑑𝑡
= −𝑐, 𝑣, 𝑐 . These three 

characteristics correspond to three waves, i.e., backward 

acoustic wave 𝑊(−) = − ∫
𝑑𝑝

𝜌𝑐
, entropy wave 𝑊(∘) = 𝑠 

and forward acoustic wave 𝑊(+) = ∫
𝑑𝑝

𝜌𝑐
. Again, two 

acoustic waves travel with sonic speed c.  

 

When dynamic momentum is neglected, i.e., 1 = 0, 2 

= 1, the determinant of the coefficient matrix becomes 

 

( )
32 2

2
2 0

dx dx
v v c v dt

c dt dt

   
 − − − =  

  
=  (22) 

 

Only two distinct characteristic speeds exist in this case, 
𝑑𝑥

𝑑𝑡
=

𝑣2−𝑐2

2𝑣
, 𝑣, corresponding to a supersonic backward 

acoustic wave and a forward entropy wave. 

 

If neither dynamic momentum term nor acceleration 

pressure loss term is considered, i.e.,  1 = 2 = 0, the 

determinant of the coefficient matrix is  

 

( )
3

0
dx

v dt
dt


 

 − = 
 

=  (23) 

 

In this case, the acoustic effect is eliminated and there is 

only one characteristic speed 
𝑑𝑥

𝑑𝑡
= 𝑣, corresponding to 

the entropy wave travelling along with flow.  

CFL stability condition must hold if the FTUS (Forward 

in Time, Upwind in Space) scheme is employed to solve 

Eq. (6).  

 

max
max 1

t
C

x

 
 =


 (24) 

 

where t is the time step, x is the length interval, and 

 is the eigenvalue of the flux Jacobian (B-1A) with the 

largest absolute value (or the reciprocal of the 

eigenvalue of A-1B with the smallest absolute value). It 

is evident from Eq. (24) that the time step is restricted 

by the fastest characteristic speed. When either dynamic 

momentum term or acceleration pressure loss is taken 

into consideration, time steps need to be extremely small 

to obtain a stable solution since the fastest characteristic 

speed contains the speed of sound. In comparison, when 

neither term is included, much larger time steps can be 

taken since the CFL condition becomes 
𝑣∆𝑡

∆𝑥
≤ 1. In this 

case, v is the only characteristic speed, and it is often 

much smaller than the speed of sound c.  

3 Results and Discussions 

The finite volume method is often used to discretize the 

governing equations that describe the dynamics of fluid 

flow because it has been highly successful in 

approximating the solution of a wide range of thermal-

fluid systems and maintaining quantity conservation. In 

many of these types of models, a staggered grid scheme 

is utilized to decouple the mass and energy balance 

equations from the momentum balance equation. As a 

result, the mass and energy balances are calculated 

within the volume cells while the momentum balance is 

calculated within the flow cells, as depicted in Fig. 2.  

 

Figure 2.  Staggered grid scheme 

 

To simplify the analysis, homogeneous equilibrium 

model (HEM), which assumes liquid and vapor phases 

are in thermodynamic equilibrium and have the same 

phasic velocities, was used to calculate thermodynamic 
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properties of two-phase. As a result, Eq. (6) can be 

discretized as (Qiao et al., 2015) 

 

1/2 1/2i i i i i i

i i i

dp dh G G

p dt p dt x

  − +  −
+ =

  
 (25) 

, 1/21/2 1 1
1 2

4 w ii i i i i

i i H

dG I I p p

dt A x x D


  ++ + +− −

+ = − −
 

(26) 

( ) ( )

1/2 1
1/2 1 2

1/2 1/2 1/2 1/2 4

i i i i i
i i

i

i i i i i i i

i H

dh dp dG I I
v

dt dt dt A x

G h h G h h q

x D

  + +
+

− − + +

 −
− + + 

 

− − − 
= +



 (27) 

 

Based on the above discretized form, a dynamic model 

for one-dimensional channel flow was created in 

Modelica with inlet boundary conditions defined as 

mass flow rate and specific enthalpy and outlet 

boundary conditions as pressure and specific enthalpy, 

as depicted in Fig. 3. Please note that specific enthalpy 

at the outlet was only useful when reverse flow occurred.  

 

Four case studies were conducted, and each case 

corresponded to a combination of 1 and 2 with 

different values, i.e., Case 1 (1 = 1, 2 = 1), Case 2 (1 

= 1, 2 = 0), Case 3 (1 = 0, 2 = 1) and Case 4 (1 = 0, 

2 = 0).  The flow was assumed to be adiabatic so that 

the effect of heat transfer on wave propagation can be 

precluded. For Case 1 and 2, the flow was assumed to 

be inviscid (𝜏𝑤 = 0) since pressure could be decoupled 

from mass flux by the dynamic momentum. For Case 3 

and 4, however, frictional pressure loss between 

adjacent segments needed to be considered since 

pressure and mass flux were coupled through algebraic 

relations. Frictional pressure loss was approximated as 

follow (Laughman and Qiao, 2018)  

 

( )
2

0 0/p p m m =   (28) 

 

To perform a fair comparison between these cases, 

frictional pressure loss in the Case 3 and 4 needed to be 

very small. ∆𝑝0  and �̇�0  were chosen to be 5 Pa and 

0.005 kg/s, respectively.  

 

The flow channel was 6m long with hydraulic diameter 

of 0.01m and was divided into 50 segments with equal 

size. R-32 was the working fluid, and its properties were 

computed based on the patch-based B-spline approach 

(Laughman and Qiao, 2021). The mass flow rate and 

specific enthalpy at the source was 0.005 kg/s and 380 

kJ/kg, respectively. The pressure and specific enthalpy 

of the sink was fixed at 820 kPa and 382 kJ/kg, 
respectively. For all cases, models were initialized with 

steady-state condition and subject to a step change in the 

specific enthalpy of the source at t = 0, from 382 kJ/kg 

to 458 kJ/kg. Simulations were carried out in the 

Dymola 2023x environment (Dassault Systemes, 2023). 

With the Euler solver, smaller time steps (t < 4e-7s) 

were required to yield stable solutions for Case 1 and 2. 

For Case 3 and 4, much larger time steps could be used 

(t < 2e-5s). The results shown below were obtained 

with the DASSL solver with a tolerance of 1e-6.  

 

 
 

Figure 3.  Modelica model of channel flow with a step 

change in inlet enthalpy 

 

Fig. 4 illustrated the profiles of pressures along the flow 

channel at various time instants for Case 1. At t = 0, 

pressures were uniform everywhere. With a sudden 

increase in specific enthalpy at the inlet, two-phase flow 

with higher vapor quality entered the channel, resulting 

in an increase in pressure due to more vapor 

accumulating in the first segment. This high-pressure 

wave (it is related to the term of ∫
𝑑𝑝

𝜌𝑐
 in W(-) and W(+)) 

would travel forward with a speed of v + c along the flow 

channel, as show in Fig. 4a. At 0.032 sec, the front of 

the pressure wave reached the exit of the channel and 

the average wave speed was around 187 m/s, which was 

very close to the value of v + c. The pressure in last 

segment could not vary freely since the pressure 

boundary at the exit was fixed. At 0.04 sec, the pressure 

in the last segment increased to its maximum. Due to the 

enlarged pressure difference between the last segment 

and the channel exit, more flow left the channel and 

pressure in the last segment started to decline. 

Accordingly, the upstream pressures would be affected, 

and pressure wave would bounce back. The reflection 

behavior was similar to the reflection of any waves with 

fixed end. It was interesting to notice that the wave front 

kept its shape after reflection. As shown in Fig. 4b, at 

0.046 sec the pressure in the last segment reached to its 

minimum and corresponded to a peak of outflow. At 

around 0.08 sec, the backward wave reached the inlet of 

the channel and its average speed was about -176 m/s, 

which was very close to the value of v – c. Since the 

outflow of the first segment exceeded its inflow at this 

point, the pressure would decrease accordingly. Based 

on the behavior of wave reflection with free end, the 

pressure of the first segment could decrease to a much 
lower value than the equilibrium pressure, resulting in 

an inverted low-pressure wave. At 0.088 sec, the 
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pressure of the first segment reached its minimum and 

then pressure wave traveled forward again (Fig. 4c). At 

0.12 sec, the low-pressure wave reached the channel exit 

again and reflects with a similar shape. At 0.16 sec, the 

backward pressure wave reached the inlet of the channel 

once more (Fig. 4d). Then the pressure in the first 

segment would elevate quickly, and a high-pressure 

wave with the same phase as the initial forward wave 

built up and thus finished up a complete cycle.   
 
Fig. 5 showed the profiles of mass flow rates along the 

flow channel for Case 1. At t = 0, mass flow rate was 

equal to 5 g/s everywhere. As the pressures near the inlet 

of the channel started to build up, resulting in negative 

pressure gradients. From Eq. (26), it was easy to deduce 

that negative pressure gradients tend to accelerate the 

flow. Therefore, a mass flow wave (it is related to the 

term of v in W(-) and W(+)) that corresponded to the 

pressure wave formed and propagated forward. At 0.034 

sec, mass flow wave reached the exit of the channel (Fig. 

5a). At the same time, the reflecting backward pressure 

wave retained its negative slope at the wave front, 

resulting in further acceleration of the flow. Because the 

mass flow rate was not fixed at the exit, it was amplified 

by twice of the magnitude of the mass flow wave at 

0.0445 sec (Fig. 5b). Similarly, the mass flow wave was 

inverted at the free end and traveled back towards the 

inlet of the channel. At 0.08 sec, the high mass flow 

wave reached the inlet. Since the inverted forward 

pressure wave resulted in positive pressure gradients at 

the wave front, the fluid flow started to decelerate. The 

reflected mass flow wave kept its shape since it was 

fixed at the inlet and reached the exit once again at 0.12 

sec (Fig. 5c). At the exit, the corresponding pressure 

wave reflected with unchanged positive slopes at wave 

front, leading to further deceleration of the flow. 

Consequently, the mass flow rate at the exit declined by 

more than twice of the magnitude of the wave at 0.13 

sec. As the inverted low mass flow wave traveled 

backwards, mass flow rates behind the wave front 

oscillated around the equilibrium (Fig. 5d). At 0.16 sec, 

the wave reached the inlet of the channel. As the 

corresponding high-pressure wave started to form at this 

point, the mass flow wave finished a complete cycle.  

 

Fig. 6 depicted the profiles of entropies along the flow 

channel for Case 1. Initially, the entropy of the flow was 

1147 J/(kgK) everywhere. As a result of a sudden 

increase in specific enthalpy at the inlet, the entropy in 

the first segment increased rapidly. It can be observed 

that entropy wave traveled along with the flow and the 

wave front flattened out with time. At around 4 sec, 

entropy profile reached a new equilibrium. Different 

from pressure wave and mass flow wave, entropy wave 

traveled along with the flow at a much slower speed and 

did not bounce back at the boundaries, which 

corroborated the derivations in the previous section.   

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.  Pressure profiles along flow channel (Case 1) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.  Flow profiles along flow channel (Case 1) 

 
Figure 6.  Entropy profiles along flow channel (Case 1) 

 

The profiles of pressures, mass flow rates and entropies 

along the flow channel for Case 2 were plotted in Fig. 7 

to 9. As discussed in the previous section, merely 

neglecting the acceleration pressure loss did not lead to 

major changes in the characteristics of the flow except 

that the speeds of acoustic waves changed slightly. 

Hence, the interpretation of the results in Case 2 will be 

the same as in Case 1. 
 

Fig. 10 to 12 displayed the profiles of pressures, mass 

flow rates and entropies along the flow for Case 3. 

Although two analytical characteristics existed, i.e., 
𝑣2−𝑐2

2𝑣
, 𝑣 , the backward supersonic wave was not 

physical and did not show up in the results. Like the 

entropy wave, the mass flow wave did not exhibit any 

acoustic effect. At 3.5 sec, the wave died out and mass 

flow rates were back to their equilibrium condition. Due 

to the frictional pressure loss, the equilibrium pressure 

profile was not flat. Since the dynamic term was 

neglected, the speed of pressure propagation should be 

infinite. Overall, pressure variations were well-behaved, 

and the rippling effect at the beginning dissipated very 

quickly.  
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 7.  Flow profiles along flow channel (Case 2) 
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(b) 

 

 
(c) 

 
(d) 

Figure 8.  Pressure profiles along flow channel (Case 2) 
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Figure 9.  Entropy profiles along flow channel (Case 2) 

 

 
 

Figure 10.  Pressure profiles along flow channel (Case 3) 

 

 
 

Figure 11.  Flow profiles along flow channel (Case 3) 

 

 
 

Figure 12.  Entropy profiles along flow channel (Case 3) 

 

The profiles of pressures, mass flow rates and entropies 

along the flow channel at various time instants for Case 

4 were manifested in Fig. 13 to 15. This was the simplest 

case with only one characteristic speed. Again, entropy 

wave and mass flow wave traveled along with the fluid 

and did not reflect at the boundaries. Compared with 

Case 3, no rippling effect was observed in the pressure 

profiles.  

Comparison of simulation speed between these cases 

indicates that Case 1 was the slowest, followed by Case 

2 and then Case 3, while Case 4 was the fastest. For 15 

sec simulation, CPU time of these cases was 240 sec, 

180 sec, 7 sec and 1 sec, respectively. At the end of 

simulation, acoustic wave effect was still in place for 

both Case 1 and Case 2, whereas in Case 3 and 4 steady-

state conditions arrived at around t = 4 sec. Profiling 

showed that pressures and mass flows were the 

dominating states for Case 1 and 2, whereas pressures 

and specific enthalpies were the dominating states for 

Case 3 and 4.  

The choice of solver did not exhibit noticeable effect on 

the results as long as the solutions were stable, but the 

computational speeds could vary significantly. With the 

Euler solver, the simulation speeds were substantially 

slower than the DASSL solver. In comparison, the CPU 

time for these cases were 42894 sec, 21215 sec, 649 sec, 

and 604 sec, respectively. This indicated that the BDF 

methods were much more numerically efficient than the 

explicit fixed time step methods. 

The above analysis indicated that both dynamic 

momentum term and acceleration pressure loss term 

imposed significant impact over simulation speed and 

accuracy. In the applications where acoustic effect is not 

a great concern, these terms can be neglected in models 

to achieve much higher computational performance at 

the expense of accuracy.  
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Figure 13.  Pressure profiles along flow channel (Case 4) 

 

 
 

Figure 14.  Flow profiles along flow channel (Case 4) 

 

 
 

Figure 15.  Entropy profiles along flow channel (Case 4) 

 

4 Conclusions 

This paper explored the effect of dynamic momentum 

and acceleration pressure loss on the characteristics of 

one-dimensional compressible flow. Eigen decompo-

sition for the governing equations was shown to obtain 

their characteristic form and analytical solution for the 
wave speeds was derived. Simulation studies were 

performed to provide evidence to the theoretical 

analyses. It was found that acoustic effect arising from 

the dynamic momentum greatly affected the simulation 

speed. Meanwhile, it was shown that both dynamic 

momentum and acceleration pressure loss may be 

neglected in models to speed up simulations in 

applications where energy transfer is more important 

than momentum transfer.  
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Abstract
This paper introduces the LargeTESModelingToolkit, a
novel Modelica library for modeling and simulation of
large-scale pit and tank thermal energy storage. This first
comprehensive Modelica library in the field provides the
flexibility and tools needed to develop new storage mod-
els tailored to the desired application. It also offers re-
searchers and industrial users pre-built storage models for
simulation studies to answer the relevant questions for an
optimized design at storage and system level.

In this paper, we present the library’s key features and
structure and introduce the underlying physical and math-
ematical foundations and modeling approaches. More-
over, we discuss the validation of the models, present the
first results, and show the library’s applicability using an
exemplary simulation case study.
Keywords: Modelica library, Large-scale thermal energy
storage, Pit TES, Tank TES

1 Introduction
The integration of large-scale underground hot-water tank
and pit thermal energy storage systems offers a high po-
tential to considerably increase the share of renewable en-
ergy in future local and district energy systems. These
large-scale thermal energy storage (TES) technologies can
provide the flexibility needed to store volatile renewable
energy sources for a few days as well as on a seasonal ba-
sis, bridging the natural gap between supply and demand
(Schmidt et al. 2018). At the same time, they also offer
a high economic attractiveness for storing large amounts
of heat due to economies of scale and a certain flexibility
in site selection due to attractive underground integration
without free-standing tall structures. In contrast, the large
volumes involved lead to high investment costs, which
require fundamental planning at the component, storage,
and system level. Experimental investigations in the de-
sign phase are limited due to the size of these storage tech-
nologies and the long time periods in question. Therefore,
numerical simulations from the component to the system
level are used throughout the whole design process, from
the feasibility phase to the detailed design (Dahash, Ochs,
Janetti, et al. 2019).

To date, for large-scale tank (TTES) and pit (PTES)
thermal energy storage systems TRNSYS1 is the most
widely used simulation tool for storage and system design
questions as well as for scientific studies. For example,
an overview of past studies and the used TRNSYS models
can be found in Xiang et al. (2022).

Modelica TES models are up to now mainly focused on
free-standing models (i.e., without modeling of the sur-
rounding ground) (Leoni et al. 2020). These models are
primarily used to simulate hot water storage tanks for do-
mestic applications in small size ranges (i.e., up to a few
cubic meters) and are, for instance, included in the Model-
ica Buildings library (Wetter et al. 2014). In recent years,
dedicated TTES and PTES models have been developed
incorporating modeling of the surrounding ground. Da-
hash, Ochs, and Tosatto (2020) demonstrated a model with
cylindrical geometry and conducted a cross-comparison
with generic boundary conditions between the Model-
ica model and a model developed in COMSOL Multi-
physics2. Moreover, Reisenbichler et al. (2021) also de-
veloped a TTES model with cylindrical geometry in Mod-
elica. To assess the accuracy of the developed model,
a validation case study has been conducted by compar-
ing the simulation results with real measurement data
of a Danish PTES in Dronninglund, alongside a cross-
comparison against other numerical models. A similar
Modelica model with cylindrical geometry was developed
by Fournier (2022) and also validated against the Dron-
ninglund PTES measurement data. Recently, Kirschstein
(2022) developed a Modelica PTES model with a conical
geometry, which is available as part of the Modelica Solar
District Heating (MoSDH) library (Formhals 2022).

Modelica’s equation-based, object-oriented, and multi-
domain modeling approach inherently facilitates high
reusability, expandability and adaptability of the produced
models. Therefore, with Modelica’s features and capabil-
ities, large-scale TES modeling on the storage and system
level can be taken to the next level.

However, currently available models are still scattered,
limited in functionality and flexibility (e.g., in the choice
of geometries), focused on specific applications, or have

1https://trnsys.com/ (accessed: June 01, 2023)
2https://comsol.com/ (accessed: June 02, 2023)
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Figure 1. Overview and features of the LargeTESmtk.

not yet undergone a comprehensive validation process.
Consequently, our overall goal is to enable more effi-

cient modeling and simulation of large-scale TES in multi-
annual dynamic system and storage simulations. There-
fore, with the development of the Modelica LargeTES-
ModelingToolkit (LargeTESmtk) library, we aim to pro-
vide a comprehensive toolkit for the modeling and sim-
ulation of large-scale pit and tank TES. In addition to
an easy-to-use library with scientifically proven, pre-built
storage models for researchers and industrial users, the li-
brary is also intended to provide the foundation and tools
for the development of new storage models customized to
the wanted application.

This paper focuses on the presentation of this Model-
ica library. We start with an overview of the main fea-
tures, the implementation in Modelica, and the modeling
approaches of the main models. Then we give a brief
insight into the models’ ongoing validation process and
show the library’s application in an exemplary simulation
case study.

2 The LargeTESModelingToolkit li-
brary

This section introduces the LargeTESmtk by giving an
overview of its main features and models. Afterwards, we
describe the corresponding Modelica library structure.

2.1 Overview

Figure 1 provides an overview of the library. Displayed
in the center is the basic structure of each storage model,
consisting of the two main models for the fluid and ground
domain, surrounded by an extract of available model con-
figuration options. Along with other features, the li-
brary should provide a wide range of model configura-
tion options in terms of geometry (e.g., cylindrical, coni-
cal, or hybrid geometries), heat transfer mechanisms (e.g.,
pure convection or combined convection and radiation) or
ground properties (e.g., uniform ground or specific ground
layers) that can be tailored specifically to the wanted ap-
plication and level of detail.

Underground TTES are typically surrounded by verti-
cal retaining walls to withstand the horizontal loads (e.g.,
lateral earth pressure of the enclosing ground or hydro-
static water pressure) and have cylindrical or cuboidal ge-
ometries. PTES, on the other hand, typically have conical
or pyramidal geometries with slopped walls and hence do
not require retaining walls to accommodate the horizon-
tal loads (Pauschinger et al. 2020). Both PTES and TTES
can be either fully buried (below original ground level)
or partly buried with the excavated soil as embankments.
In addition, the integration of large-scale TTES in district
heating grids as free-standing steel tanks for mainly short-
term heat storage is widely used (Dahash, Ochs, Janetti,
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et al. 2019). As shown in Figure 1, the library provides
all the necessary building blocks to model the mentioned
storage types and geometry options.

Eventually, the LargeTESmtk library should offer the
following key features and benefits:

• High adaptability, extensibility, and reusability of the
models and sub-models

• Large portfolio of configuration options for initial
model generation and later customizations (e.g., con-
cerning geometry, ground properties, heat transfer
mechanisms)

• Adaptable level of detail, enabling an application-
oriented adjustment between accuracy and calcula-
tion performance

• Broad range of application of the models from pre-
liminary design to detailed system and storage design
studies

• Simple integration and coupling with other relevant
system components (e.g., solar thermal systems) for
holistic investigations at system level

The developed models with the LargeTESmtk are to
be applied in parameter studies, sensitivity, and techno-
economic analyses for optimized design on storage and
system level. This may include addressing important stor-
age design questions regarding the volume, geometry, in-
sulation quality of the cover, side walls, and bottom, or the
number and position of inlets and outlets (i.e., diffusers).
In addition, for instance, the investigation of long-term ef-
fects (e.g., the development of storage performance in the
first years of operation during the heat-up of the surround-
ing ground) of different system integration concepts (e.g.,
post-heating concepts via large heat pumps) or storage op-
eration strategies is possible. Finally, the developed mod-
els can be used in conjunction with appropriate case stud-
ies and methods to obtain relevant techno-economic key
performance indicators for decision-making and project
planning, such as storage efficiency, thermal losses, strati-
fication quality, investment costs, levelized cost of storage
and heat, primary energy consumption, CO2 emissions or
savings.

It is also necessary to point out current limitations of
the library models. Mainly to reduce the numerical ef-
fort, the ground domain model is restricted to axisymmet-
ric geometries. Thus, non-axisymmetric strorage geome-
tries (e.g., pyramids or cuboids) cannot be modeled di-
rectly, but are implemented by corresponding parametriza-
tions and geometry transformations. Furthermore, this ap-
proach leads to limitations in the modeling of occurring
groundwater flows.

2.2 Modelica library structure
Figure 2a shows the top-level library structure of the
LargeTESmtk. The Modelica library reflects the models

and features described in the overview in subsection 2.1.
The structure is oriented around the Modelica Standard
Library (MSL) (Modelica Association 2020) and there-
fore contains common packages such as Utilities,
Types, Icons or BaseClasses.

LargeTESmtk

UsersGuide

Examples

TankTES

PitTES

HybridTES

StorageComponents

Utilities

Types

Icons

BaseClasses

(a) Top-level structure

TankTES

CylindricalFluidDomain

TTESCylinderFreeStanding

TTESCylinderPartlyBuried

TTESCylinderFullyBuried

Validation

CuboidalFluidDomain

PitTES

ConicalFluidDomain

PTESTruncatedConePartlyBuried

PTESTruncatedConeFullyBuried

Validation

PyramidalFluidDomain

(b) Sub-packages

Figure 2. Modelica LargeTESmtk library structure.

The Examples package is intended for models demon-
strating the application of the library.
The TankTES and PitTES packages contain basic pre-
built storage models for different fluid domain geome-
tries (e.g., cylindrical or conical geometries) and construc-
tion types (free-standing, partly buried, fully buried) as
shown in Figure 2b. Also included are Validation
sub-packages providing validation examples for the indi-
vidual storage models.
The HybridTES package is intended to include storage
models for hybrid geometries (e.g., a combination of a
cylinder at the top and a truncated cone at the bottom).
The StorageComponents package contains the mod-
els from which the pre-built models are assembled and
contains various fluid and ground domain models for dif-
ferent geometries and component models for covers or
side walls. As such, this package also contains the core
components for building new storage models.

3 Methods
This section explains the main modeling approaches
of the fluid and ground domain models applied in the
LargeTESmtk. For both models, the finite difference
method (FDM) is used to solve the governing basic par-
tial differential equations (PDE). The so-called "method-
of-lines" is applied to replace the spatial derivative terms
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in the PDEs with algebraic approximations (finite differ-
ences), leading to a system of ordinary differential equa-
tions (ODE) and differential algebraic equations (DAE),
including only time-dependent functions, which can be
solved with the common ODE-solvers in Modelica-based
simulation environments (Fritzson 2015). Furthermore,
instead of deriving the corresponding finite difference for-
mulations directly from the basic PDEs, we will use the
energy balance approach here since it is considered more
intuitive (Çengel and Ghajar 2015). The energy balance
approach is based on subdividing the respective calcula-
tion domain into a sufficient number of volume elements
(control volumes) and subsequently forming energy and
mass balances for each element. Accordingly, in the mid-
dle of each volume element are the nodal points (nodes) at
which the temperatures are to be determined.

3.1 Fluid domain model

Applying the energy balance method, the fluid region is
subdivided along its axial direction into equidistant vol-
ume elements with a uniform temperature per element.
Then, the energy balances are established and the result-
ing ODEs for each element are solved. This approach is
widely used in dynamic system simulation tools and in the
literature often referred to as 1D multi-node model or ap-
proach (Untrau et al. 2023). Since we assume that the stor-
age fluid is incompressible and the storage is always fully
filled, the formation of the mass balance can be omitted
(Powell and Edgar 2013). Figure 3 shows a schematic rep-
resentation of the fluid domain modeling approach with
the respective geometrical parameters and energy flows.

Volume element 

Figure 3. Fluid domain modeling approach.

The energy balance for each volume element [n] can
be expressed as the sum of all incoming and outgoing en-
thalpy flows Ḣ and heat flow rates Q̇ equal to the change
in internal energy U or, in case of constant thermophysi-
cal properties of the storage fluid (water), the temperature

change T of the element with time t:

dU[n]

dt
= ∑

[n]
Ḣ +∑

[n]
Q̇ (1)

V[n] ·ρ · cp ·
dT[n]
dt

= ∑
[n]

Ḣ +∑
[n]

Q̇ (2)

where ρ and cp are the density and the specific heat ca-
pacity of the storage fluid.

The following equations describe the calculation of the
necessary geometrical parameters for a conical fluid do-
main geometry:

r(z) = rb +
∆z− z
tanα

(3)

A(z) = r(z)2
π (4)

V[n] =
1
3

∆z[n]π
(

r2
t[n]+ rt[n]rb[n]+ r2

b[n]

)
(5)

As[n] =
∆z[n]
sinα

π
(
rt[n]+ rb[n]

)
(6)

The top and bottom surface areas of the volume element
At[n] and Ab[n] are obtained by inserting the respective co-
ordinates zt[n] and zb[n] in Equation 4. A similar approach
can be used for other fluid domain geometries. For in-
stance, simply choosing an angle of α = 90◦ will result in
a cylindrical fluid domain.

The sum of all enthalpy flows for each volume element
is the result of the induced volume flows during charging
and discharging of the storage, where each enthalpy flow
follows the basic equation Ḣ = V̇ ·ρ · cp ·T , with the cor-
responding volume flow V̇ and temperature T :

∑
[n]

Ḣ = Ḣ[n−1]− Ḣ[n]+
(
Ḣin[n]− Ḣout[n]

)
(7)

The internal enthalpy flows Ḣ[n] and Ḣ[n−1] result from the
interaction between the adjacent upper and lower volume
elements and depend on whether a downward flow (typi-
cally during charging) or an upward flow (typically during
discharging) in the storage occurs. Additional enthalpy
flows Ḣin[n] or Ḣout[n] may occur if the respective fluid ele-
ment is also used for the external volume flows for charg-
ing and discharging the storage:

Ḣ[n] = V̇[n] ·ρ · cp ·

{
T[n] if V̇[n] > 0
T[n+1] if V̇[n] < 0

(8)

Ḣ[n−1] = V̇[n−1] ·ρ · cp ·

{
T[n−1] if V̇[n−1] > 0
T[n] if V̇[n−1] < 0

(9)

Ḣin[n] = V̇in[n] ·ρ · cp ·Tin[n] (10)

Ḣout[n] = V̇out[n] ·ρ · cp ·Tout[n] (11)

whereby Tout[n] equals T[n].
The sum of all heat flow rates of each element results

from the heat conduction between the adjacent elements,
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the heat losses to the surroundings, and a buoyancy-
induced heat flow rate that may arise:

∑
[n]

Q̇ = Q̇[n−1]− Q̇[n]− Q̇s[n]+(Q̇buo[n]) (12)

The prevailing heat flow rates due to heat conduction
between the adjacent elements Q̇[n] and Q̇[n−1] are calcu-
lated with the thermal conductivity of the storage fluid k,
the heat transfer area A, the distance between the fluid
nodes ∆z[n] and the corresponding temperature difference
∆T . The lateral heat losses Q̇s[n] are derived with the over-
all heat transfer coefficient Us[n], composed of the inner
convective heat transfer coefficient and the thermal resis-
tance of the wall, the heat transfer area As[n] and the tem-
perature difference between the fluid element T[n] and the
surrounding ground Ts,g[n]:

Q̇[n−1] = k ·
At[n]

∆z[n]
· (T[n−1]−T[n]) (13)

Q̇[n] = k ·
Ab[n]

∆z[n]
· (T[n]−T[n+1]) (14)

Q̇s[n] =Us[n] ·As[n] · (T[n]−Ts,g[n]) (15)

Similar to Q̇s[n], additional heat losses to the top Q̇t and
the bottom Q̇b occur for the first and the last fluid element.

A buoyancy model is applied to account for buoyancy-
induced natural convection in the storage when temper-
ature inversion occurs (i.e., a higher fluid layer has a
lower temperature than the layer below). Instead of the
buoyancy-induced volume flow into the adjacent fluid
layer above that occurs in reality, this volume flow is em-
ulated by adding a corresponding heat flow rate Q̇buo[n] to
the fluid element and can, for instance, be expressed as
(Wetter et al. 2014):

kbuo[n+1] =V[n+1] ·ρ · cp ·
1
τ

(16)

∆T[n] = T[n+1]−T[n] (17)

Q̇buo[n] =

{
kbuo[n+1] ·∆T 2

[n] if ∆T[n] > 0

0 if ∆T[n] ≤ 0
(18)

where kbuo is a proportionality constant since a heat flow
rate is used instead of a volume flow, and τ is a time con-
stant that determines how fast the temperature compensa-
tion between the fluid layers occurs.

The Fluid.Storage.Stratified model of the
Modelica IBPSA library (IBPSA 2018) served as the ba-
sis for the Modelica implementation of the fluid domain
model in the LargeTESmtk. However, as described above,
multiple extensions and adjustments to the model (e.g., ex-
tension to conical geometry, coupling with ground model)
were made.

3.2 Ground domain model
The basic mathematical description and the governing
equations for the ground domain model follow the partial

differential equations of two-dimensional transient heat
conduction in cylindrical coordinates with constant ther-
mophysical properties. Again, we use the energy balance
approach to derive the corresponding ordinary differential
equations for each element, which are then solved. Fig-
ure 4 shows a schematic representation of the ground do-
main modeling approach with the respective geometrical
parameters and energy flows.

Volume element 

Figure 4. Ground domain modeling approach.

The energy balance for each volume element [m,n] can
be expressed as the heat flow rates Q̇ into the element from
the top, bottom, left and right surface equal to the change
in internal energy U or, in case of constant thermophysical
properties, the temperature change T of the element with
time t:

dU[m,n]

dt
= ∑

[m,n]
Q̇ (19)(

V ·ρ · cp ·
dT
dt

)
[m,n]

=
(
Q̇t + Q̇b + Q̇l + Q̇r

)
[m,n] (20)

where ρ and cp are the density and the specific heat ca-
pacity of the ground. The volume of the individual ground
elements results from:

V[m,n] = π(r2
r[m,n]− r2

l[m,n])(zb[m,n]− zt[m,n]) (21)

with the respective geometrical parameters illustrated in
Figure 4.

The heat flow rates follow the basic equation Q̇ = G ·
∆T , where G is the thermal conductance of the ground,
the product of the thermal conductivity k and the corre-
sponding geometrical relationship, and ∆T the tempera-
ture difference between the adjacent volume element and
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the volume element under consideration:

Q̇t[m,n] = k
π(r2

r[m,n]− r2
l[m,n])

z[m,n]− z[m,n−1]
· (T[m,n−1]−T[m,n]) (22)

Q̇b[m,n] = k
π(r2

r[m,n]− r2
l[m,n])

z[m,n+1]− z[m,n]
· (T[m,n+1]−T[m,n]) (23)

Q̇l[m,n] = k
2π(zb[m,n]− zt[m,n])

ln(r[m,n]/r[m−1,n])
· (T[m−1,n]−T[m,n]) (24)

Q̇r[m,n] = k
2π(zb[m,n]− zt[m,n])

ln(r[m+1,n]/r[m,n])
· (T[m+1,n]−T[m,n]) (25)

4 Validation
We are going to present in this paper only a part and ex-
cerpts of the validation and cross-comparison studies that
have already been carried out. For details, please refer
to the respective publications mentioned below. Further-
more, not all of the studies conducted have been published
yet, but we will give a brief insight into the ongoing work.

Mainly at the beginning of the development of the mod-
els and the library itself, certain sub-models were com-
pared with analytical solutions (e.g., steady-state one-
dimensional heat conduction) and with available simi-
lar models of other Modelica libraries. These examples
are not presented here, but are included in the respective
Validation sub-packages in the Modelica library.

To validate and assess the accuracy of the developed
TTES model with a cylindrical fluid geometry, a valida-
tion case study was conducted comparing the simulation
results with real measurement data of the Danish PTES in
Dronninglund (Reisenbichler et al. 2021). Figure 5 shows
an excerpt of this study with the comparison between the
simulated and measured storage temperatures. In sum-
mary, the validation case study revealed that the storage
temperatures as well as the charged and discharged en-
ergies (with deviations in the range of 1%) could be ac-
curately represented compared to the measurement data.
Somewhat higher deviations from the measured data (in
the range of 10%) were only seen in the simulated total
thermal losses, particularly in the side and bottom ther-
mal losses. Presumably, this is due to the differences be-
tween the cylindrical model geometry and the actual pyra-
midal geometry of the real storage, despite adjusting cer-
tain model parameters to the geometry of the real storage
(e.g., assuming constant thermal conductance values of
the top, side and bottom surfaces between both geometries
and corresponding adjustment of the overall heat transfer
coefficients). This deviation in thermal losses must be
considered in detailed design studies, in particular when
the model cannot accurately represent the actual storage
geometry.

Furthermore, the cylindrical TTES model of the
LargeTESmtk was part of a cross-comparison study of
various large-scale TES models from different simulation
tools (COMSOL Multiphysics, TRNSYS, Modelica/Dy-

Figure 5. Comparison between simulated and measured storage
temperatures of the PTES in Dronninglund for the year 2015 in
daily resolution; a) at the three inlet and outlet diffuser heights;
and b) at the top, between top and middle, and middle and bot-
tom diffuser (Reisenbichler et al. 2021). In the corresponding
colored boxes, the coefficient of determination values (R2) for
the entire year are shown.

mola3 and MATLAB/Simulink4) (Ochs et al. 2022). In
this study, all models were examined in a scenario with
generic boundary conditions, in which the system was ne-
glected and emulated by a simplified charging and dis-
charging profile, and with different insulation levels (e.g.,
insulated and non-insulated). The results were compared
in terms of storage and ground temperatures, charged and
discharged energy, and thermal losses. Overall, a good
agreement between the LargeTESmtk TTES model and the
other models with respect to the compared temperatures as
well as energy values could be demonstrated.

The same study was extended to a cross-comparison
with PTES models. In addition, a similar cross-
comparison study is conducted in the course of the IEA ES
TCP Task 39 "Large Thermal Energy Storages for District
Heating"5. In both studies, the LargeTESmtk PTES model
with conical geometry is included and the results show
good agreement with the other involved models. However,
the results of both studies have not yet been published.

Further validation studies of the models from the
LargeTESmtk (including further comparisons with mea-
surement data from real TES systems) are in progress.

3https://www.3ds.com/products-services/catia/
products/dymola/ (accessed: June 09, 2023)

4https://www.mathworks.com/products/simulink.
html (accessed: June 09, 2023)

5https://iea-es.org/task-39/ (accessed: June 06, 2023)
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5 Application
A main application area of the storage models is the in-
tegration in (multi-annual) system simulations. Thereby,
the interaction of the storage together with other system
components (e.g., large heat pumps, district heating sys-
tems) is evaluated on system level. For example, the
storage models of the LargeTESmtk have already been
used in case studies of large-scale TES with volumes up
to millions of cubic meters integrated into DH systems
for storing heat from geothermal and solar thermal plants
(O’Donovan 2020).

However, in this paper, we demonstrate the applica-
tion of the library models through an exemplary sim-
ulation case study on storage level. The study com-
pares the performance of tank and pit TES with cylin-
drical and conical fluid geometry under different oper-
ation modes ranging from short-term to seasonal stor-
age operation. For this purpose, we will use the pre-
built storage models TTESCylinderFullyBuried
and PTESConeFullyBuried of the LargeTESmtk.

5.1 Case study description
As the focus is on the storage level, we neglect other sys-
tem components such as heat supply units and heat con-
sumers (e.g., the district heating system). Instead of the
system components, simplified generic charging and dis-
charging profiles are applied for the different operation
modes. Yet, the operation modes are based on real stor-
age application scenarios. The seasonal operation is based
on the application of the storage in a solar district heating
(SDH) system and the short-term operation on the appli-
cation for the optimization of a combined heat and power
(CHP) plant (Pauschinger et al. 2020).

The number of nominal storage cycles per year result-
ing from the different operation modes is specified in Ta-
ble 1. Each full storage cycle (tcycle) consists of a charging
phase tch, a storage phase (TES in the charged state) tstore,
a discharging phase tdis and an idle phase (TES in the dis-
charged state) tidle. During the charging phase, the inlet
volume flow rate V̇ch,in and temperature Tch,in at the top
diffuser and, during the discharge phase, V̇dis,in and Tdis,in
at the bottom diffuser (implemented as step functions) are
applied. Tch,in and Tdis,in are assumed to be 95 °C and
55°C, across all operation modes.

Table 2 shows the applied model parameters in terms
of storage dimensions, fluid, ground, and cover proper-
ties, and the applied heat transfer coefficients (HTC). The
thermophysical properties of the storage fluid (water) are
assumed to be constant at a temperature of 75 °C based
on the prevailing storage temperatures (Kretzschmar and
Wagner 2019). The ground properties were derived from
general values for unconsolidated rocks of gravel, sand,
and clay/silt, in both dry and water-saturated conditions
(Verein Deutscher Ingenieure 2000). Both investigated
storage types are assumed to be insulated only at the top
(with a slight extension of the insulation layer beyond the

Table 1. Investigated operation modes of the simulation case
study.

No. of nominal storage cycles per year
120 60 12 4 1

Short-term Seasonal

tch [h] 24 50 240 720 2,880
tstore [h] 12.5 23 125 375 1,500
tdis [h] 21 43 185 515 1,800
tidle [h] 15.5 30 180 580 2,580
tcycle [h] 73 146 730 2,190 8,760

V̇ch,in [m³/h] 2,200 1,100 250 90 27
V̇dis,in [m³/h] 2,200 1,100 250 90 27

storage edges), while the side walls and bottom remain
uninsulated. The applied properties of the storage cover
are based on the currently deployed cover constructions
(after their revision) of the Danish PTES in Marstal and
Dronninglund (Bobach 2020). Only convective heat trans-
fer is considered for the cover and ground surface with the
ambient air. The corresponding ambient temperatures of a
typical meteorological year (TMY) for the time period be-
tween 2015 and 2020 for a generic Central European loca-
tion (in this case, Vienna) were obtained from the PVGIS
online tool (Huld, Müller, and Gambardella 2012). Radia-
tive heat transfer mechanisms are not considered.

To ensure a quasi-stationary storage operation and to
neglect the effect of the heat-up phase, the simulation time
is five years and the results are only evaluated for the last
simulation year. Accordingly, the extent of the ground do-
main is chosen with a distance of 50 m in axial and radial
direction from the fluid domain. Thus, the ground domain
is sufficiently large so that the outer nodes remain unaf-
fected by the fluid domain and adiabatic boundary con-
ditions can be applied for the lateral and bottom ground
domain boundaries. Moreover, we shifted the simulation
start time to the beginning of May to start directly with a
charging phase for the seasonal operation. Consequently,
the ambient temperature profile is also considered with a
corresponding time shift.

5.2 Results and discussion
Various definitions of energy and exergy efficiencies (e.g.,
with or without consideration of the difference between
internal energy content or specifically for the application
on seasonal storage) are used and discussed in the liter-
ature (Dahash, Ochs, Janetti, et al. 2019; Sifnaios et al.
2022). However, mainly to give a first indication, this
study uses the simple definition of the annual storage effi-
ciency η as the annual discharged energy Qdis divided by
the annual charged energy Qch:

η =
Qdis

Qch
(26)

As identical charging and discharging profiles are contin-
uously repeated for each nominal storage cycle and the
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Figure 6. Annual storage efficiencies ranging from short-term to seasonal storage operation.

Table 2. Applied model parameters of the simulation case study.

Parameter TTES PTES

Dimensions
Volume [m³] 50,000 50,000
Top diameter [m] 42 92.5
Bottom diameter [m] 42 30.5
Height/depth [m] 36 15.5
Slope angle [°] 90 26.6
Top diffuser height [m] 35.5 15.0
Bottom diffuser height [m] 0.5 0.5

Fluid
Density [kg/m³] 974.86
Thermal conductivity [W/(m·K)] 0.66
Specific heat capacity [J/(kg·K)] 4,192
Initial temperature [°C] 10

Ground
Density [kg/m³] 2,700
Thermal conductivity [W/(m·K)] 1.2
Volume-related specific
heat capacity [kJ/(m³·K)] 2,000

Initial temperature [°C] 10

Cover
Density [kg/m³] 40
Thermal conductivity [W/(m·K)] 0.04
Specific heat capacity [J/(kg·K)] 741
Layer thickness [m] 0.3
Initial temperature [°C] 10
Insulation extension [m] 1.5

HTCs
Convective HTC
ground/cover surface [W/(m²·K)] 25

Overall HTC top [W/(m²·K)] 0.133
Overall HTC side [W/(m²·K)] 90
Overall HTC bottom [W/(m²·K)] 90

simulation time is five years, the influence of the change
in internal energy content is very small. Furthermore, this
definition of storage efficiency allows for a comparison
across all operational modes and can be interpreted sim-
ply as the ratio of energy recovered to energy stored, re-
gardless of the observation period between the longest and
shortest nominal storage cycle duration.

Figure 6 shows the resulting storage efficiencies de-
pending on the operation mode (i.e., number of nominal
storage cycles) ranging from short-term to seasonal stor-
age operation. The expected trend that a higher number of
storage cycles leads to higher storage efficiency is clearly
evident for both storage types. Thus, the short-term oper-
ation with a number of 120 nominal storage cycles shows
the highest efficiencies with values above 99%. With a
lower number of storage cycles, the storage utilization de-
creases and the actual storage phases become longer, re-
sulting in the lowest storage efficiency for the seasonal op-
eration, whereby the storage efficiency only falls below
90% starting from a number of four storage cycles. The
lowest efficiency is about 58% for the PTES case, which
is in the range of the measured storage efficiencies for the
PTES in Marstal (Sifnaios et al. 2022).

As expected, the TTES generally performs better than
the PTES. One main reason for that is the lower surface-
to-volume ratio of the cylindrical geometry compared to
the conical geometry. At high storage cycle numbers,
there is only a slight difference between the storage types
because of the short storage phases and the high storage
utilization. However, for seasonal storage operations, the
difference between TTES and PTES is considerable at
about 17%.

As the computational performance is an important fac-
tor for the applicability of the models, especially for pa-
rameter studies with numerous simulation runs, a first in-
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sight of the needed calculation time will be given here.
Since the calculation time depends on many factors (e.g.,
model discretization, number of other system components,
solver settings), detailed analyses are the subject of fur-
ther studies. The simulations required approx. 30 minutes
for each single TTES case and 45 minutes for each PTES
case6. Considering the rather long simulation time of five
years per case, these calculation times are considered to be
within an acceptable range for more extensive parameter
studies.

It is important to mention that the main purpose of this
rather small simulation case study was to show the appli-
cation of the storage models of the library. Storage pa-
rameters such as volume, height-to-diameter ratio, ground
properties or insulation level, which can have a high im-
pact on the storage efficiency, were not evaluated. How-
ever, this simulation case study can serve as a basis for
these broader parameter studies. Furthermore, with the
provided models and flexibility of the LargeTESmtk, the
study may also be extended to other storage geometries or
combined with additional system components for evalua-
tions on system level.

6 Conclusion and outlook
This study introduced the LargeTESmtk, a Modelica li-
brary for the modeling and simulation of large-scale pit
and tank TES at storage and system level. This compre-
hensive Modelica library provides pre-built storage mod-
els for multi-annual dynamic system simulations for re-
searchers and industrial users. In addition, the provided
sub-models and the wide range of model configuration
options (e.g., in terms of geometry, heat transfer mecha-
nisms, or ground properties) allow high flexibility in the
modeling process and facilitate the development of new
models specifically tailored to the desired application.

The library models are to be applied in simulation stud-
ies to address relevant storage design questions (e.g., re-
garding the proper storage geometry or insulation quality)
or to investigate different system concepts to achieve an
optimized design at storage and system level. These sim-
ulation studies also form the basis for techno-economic
evaluations to obtain the relevant key performance indica-
tors, such as storage efficiency and levelized cost of heat,
for decision-making and project planning.

The accuracy of selected library models has been shown
with excerpts from completed and ongoing validation case
studies, including measurement data of real TES, and
cross-comparison studies with other storage models. Fur-
ther studies in this regard are underway.

To demonstrate the application of the LargeTESmtk, an
exemplary simulation case study was conducted compar-
ing the performance of pit and tank TES under different
operation modes ranging from short-term to seasonal stor-

6PC specifications: Virtual machine: Windows Server 2012 R2
(Hyper-V); Intel(R) Xeon(R) CPU E5-2420 v2 @2.20GHz (5 logical
cores); 8-32 GB RAM (dynamically allocated); MS Win 10 Pro (64-bit)

age operation. As expected, the simulation case study re-
vealed that the storage efficiency drops from above 99%
for the short-term operation to around 58% for seasonal
operation for the PTES case and that TTES generally per-
forms better than the PTES. With the simulation study, the
good applicability of the models with reasonable calcula-
tion times suitable for large parameter studies was shown.
Moreover, the LargeTESmtk provides the flexibility and
models to extend the study to other storage geometries or
studies on system level.

The Modelica library is currently still undergoing a con-
tinuous development process. As shown in this paper,
many features and models are already available, but some
of the presented models and features (e.g., hybrid geome-
tries) still need to be added and subjected to validation
studies. Furthermore, it is intended to make the library
available to everyone soon. So far, Dymola has been this
library’s main development and simulation environment.
However, it is planned to test and ensure compatibility
of the library with other simulation environments such as
OpenModelica7.
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Abstract 

Integration of heat pump systems with conventional 

dishwashers or household water heaters using electric 

heaters offers a promising solution to significantly 

reduce expected energy consumption. In this study, a 

comprehensive approach was undertaken to develop 

sub-models for each component of the heat pump 

dishwasher. These sub-models were subsequently 

integrated to form a complete cycle model of the heat 

pump dishwasher. The specific components modeled 

included the compressor, evaporator, condenser, and 

capillary tube. Furthermore, an algorithm model was 

devised to ensure the proper functioning of all the 

individual models, in accordance with the operational 

principles of the dishwasher. To validate the model, the 

temperature variation within the dishwasher during the 

heating and cooling phases was compared against 

experimental data. The maximum deviation observed in 

the cabinet temperature of the dishwasher was found to 

be ±1 °C, with a corresponding deviation of 0.5 minutes 

in the cycle duration. Moreover, the maximum 

deviation in power consumption amounted to 2.4%, 

while a maximum deviation of 2.9% was noted in 

energy consumption. The results obtained from the 

model closely aligned with the experimental outcomes, 

thereby confirming its accuracy and reliability. 

Keywords: Modeling of Heat Pump System, 

Dishwasher with Heat Pump, Algorithm, Modeling 

Validation, Dynamic Model, Dymola, Modelica 

1  Introduction 

Global warming has gained international attention, 

leading to climate change with altered weather patterns, 

rising sea levels, and increased extreme weather events. 

As the world economy recovers from the pandemic, 

greenhouse gas emissions are expected to rise. To 

tackle these challenges, the United Nations has set 

Sustainable Development Goals, and the European 

Union aims to reduce domestic greenhouse gas 
emissions by at least 40% by 2030, aligning with the 

Paris Agreement's goal of limiting global temperature 

rise to below 2 °C (European Commission, 2016).  

 

 

The widespread use of household appliances such as 

washing machines, dishwashers, and refrigerators has 

resulted in significant environmental consequences due 

to their high per-unit emissions. To tackle this issue 

partially, integrating heat pump systems to household 

water heaters that employ electric heaters like 

dishwasher or washing machines presents a viable 

approach for substantially reducing energy 

consumption and mitigating the environmental impact 

associated with these appliances. To illustrate, Flück et 

al. (2017), investigated the heat pump system integrated 

in dishwashers and found out that it can lead to a 

significant reduction of up to 50% in electricity 

consumption compared to conventional electricity 

heaters. Atasoy et al. (2022) conducted a study where a 

heat pump water heater system was employed to replace 

a conventional electricity water heater for heating 4 

liters of water to 50°C. The aim was to integrate it with 

household appliances such as dishwashers. The system 

was optimized by adjusting compressor speed and air 

flow rate through the evaporator. The optimized system 

was then compared to the conventional electricity water 

heater system, revealing a 17% decrease in energy 

consumption. On the other hand, the system modeling 

provides a means to understand system behavior and 

optimize its performance. It reduces the need for 

extensive experimentation, making it a valuable tool for 

system analysis and optimization. For instance, 

Caglayan et al. (2021) developed a comprehensive 

representation of a household refrigerator using 

Modelica, encompassing the intricate details of various 

parts such as the cabinet, compressor, capillary-tube, 

and control algorithm. Another research widening this 

study was conducted by Husain et al. (2023). In the 

study, a model created for a double-door refrigerator 

with a top-mounted configuration, featuring a serial 

refrigeration system. In addition to these, Ipek et al. 

(2023) proposed a dynamic model created in Modelica 

on upright freezer of refrigerator by investigating the 

periodic door opening cases with maximum 6% 

deviation on energy consumption value.  
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In the context of dishwasher models specifically, 

Caskey et al. (2018) built a dishwasher model on 

Modelica simulating an external hot water circulation 

instead of a conventional electric heater to demonstrate 

the potential energy savings. A novel methodology for 

the development and validation of a comprehensive 

model for a heat pump dishwasher was presented in this 

paper. The study introduced by constructing a detailed 

model of the dishwasher cabinet, capturing its structural 

and thermal characteristics. Subsequently, individual 

models of all heat pump components, including the 

compressor, condenser, evaporator, and capillary tube, 

were built to create a complete cycle model. Moreover, 

an algorithm model was developed, taking into account 

the dishwasher's cycle algorithm and its impact on 

energy consumption and performance and all models 

were associated with each other. Finally, the developed 

model was validated through experimentation under 

standard conditions. By means of this, the dynamic 

model serves as a valuable way for comprehending 

system dynamics and enhancing operational efficiency. 

By minimizing the reliance on extensive 

experimentation, it emerges as a potent tool for both 

analysis and optimization of systems. 

2  System Design and Experimental 

Procedure 

The heat pump system integrated into the dishwasher, 

located within the bottom chassis volume, comprises 

four key components: compressor, condenser, capillary 

tube, evaporator and R600a is used as the refrigerant. 

The main objective of the heat pump system is to heat 

the dishwasher's washing water. Upon activation, the 

refrigerant, at high temperature and high pressure, is 

discharged from the compressor and directed towards 

the condenser. The condenser facilitates efficient heat 

transfer, creating a hot surface for the purpose of 

heating. The secondary loop of the dishwasher, 

responsible for water circulation, is interconnected with 

the condenser through the heat pump system. In other 

words, the water passes continuously through the 

condenser, where it is efficiently heated. On the other 

hand, the refrigerant exits the condenser and flows 

through the capillary tube. Within this component, the 

refrigerant undergoes a decrease in pressure and 

temperature. It then proceeds to the evaporator, which 

is situated in front of an opening at the rear of the 

bottom chassis compartment of the dishwasher. It is in 

direct contact with the environment in which the 

dishwasher is placed. Through of fans located behind it, 

air drawn from the bottom chassis compartment is 

passed over the evaporator and released into the 

environment. This process enables the evaporator to 

draw heat from the environment. 

Having absorbed heat in the evaporator, the refrigerant 

is subsequently directed back to the compressor, thus 

completing the cycle. Depending on the algorithm, the 

heat pump system remains active until the water reaches 

the desired temperature. Overall, the integration of the 

heat pump system in the dishwasher allows for efficient 

heating of the washing water, contributing to enhanced 

energy efficiency and performance. Table 1 provides 

the specific details of the dishwasher with a heat pump 

used in this study. 

Table 1. Dishwasher with heat pump details. 

Dishwasher with Heat Pump 

Dimensions (H x W x D) 818 x 598 x 550 mm 

Place Settings 16 pcs 

Water Consumption 9.9 L 

Energy Consumption 470 Wh 

Program Duration 190 min. 

Compressor Reciprocating 

Condenser Helical Tube  

Evaporator Fin and Tube 

Refrigerant R600a 

Charge Amount 30g 
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Figure 1. Schematic illustration of heat pump 

dishwasher. 
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With respect to the experimental procedure, the 

experiments are proceeded according to European 

dishwasher test standard EN 60436 (European 

Standard, 2020). Also, in order to find out system 

behavior, any number of thermocouple and two 

refrigerant high-low pressure transducers are added to 

the system. The system schematic is illustrated in 

Figure 1.  

The experiments are conducted in a testing chamber in 

which the temperature and humidity are controlled 

fairly. When the dishwasher placed reaches the 

equilibrium temperature with the chamber then, it is 

operated, and the heating is taken place only by the heat 

pump system. Temperature, pressure, power, and 

energy consumption information are collected. The 

experiment is completed when the cycle is end off at 

which the water temperature reaches predetermined 

temperature. The accuracy of experimental results can 

be influenced by errors arising from measurement 

devices and the experimental setup. To assess the error 

values associated with calculated parameters derived 

from experimental data, various approaches have been 

suggested. One such method is uncertainty analysis, 

which was pioneered by Kline and McClintock (1953). 

Experimental accuracy values for temperature, voltage, 

current, power and energy consumption calculated by 

McClintock uncertainty approach are represented in 

Table 2.  

Table 2. Uncertainties of experimental system 

Sensor Uncertainty 

Temperature ± 0.5 °C 

Voltage ± 0.25% 

Current ± 0.25% 

Power ± 0.5% 

Energy ± 0.75% 

 

3  Modeling Methodology 

To create a dynamic model of a heat pump dishwasher, 

it is essential to model each component individually. 

These modeling studies are carried out using the 

Dymola software (Dassault Systems, 2021), which uses 

the Modelica language. While the dishwasher cabinet 

and its algorithm are modeled using the object-oriented 

Modelica language, the heat pump system is modeled 

from the TIL library with specific modifications. The 

library is developed by TLK-Thermo GmbH  (2020) in 

Modelica modeling language that includes a created 

library containing various sub-libraries, such as fluid, 

gas, and refrigerant components. The complete model, 

represented by Figure 2, demonstrates the integration of 

information-carrying components within their 

respective models, establishing interconnections 

between each model for a coherent system.  

 

Figure 2. Dishwasher with heat pump model. 

The heat pump system receives inputs from the cabinet 

and outputs to the algorithm model. Through the 

algorithm model, the water is heated, resulting in the 

cabinet being warmed via the connected heat ports. The 

algorithm's outputs are then communicated to the heat 

pump model, allowing the system to be controlled and 

operated according to the algorithm's instructions. 

Furthermore, the ambient model considers the ambient 

temperature and outer convection coefficient to 

simulate the heat transfer between the cabinet and the 

external environment. In the next sections, a 

comprehensive description of each component of the 

complete cycle model is provided in detail. 

3.1  Cabinet Model 

The cabinet of a dishwasher with a heat pump is of 

utmost importance due to its significant role in heat 

losses and energy consumption. The model's primary 

aim is to accurately estimate the heat loss through the 

cabinet walls to the surrounding environment and track 

the cabinet's air temperature over time.  To reduce heat 

loss from the dishwasher's cabinet to the surroundings, 

the cabinet is constructed with multiple layers like 

insulation materials and bitumen. The heat transfer 

within the cabinet is modeled using a thermal resistance 

structure approach. Each material and component are 

divided into smaller segments to enhance the accuracy 

of the model.   

The Figure 3 depicts the thermal resistance structure of 

dishwasher front wall. In this figure, the black 

resistance structures represent heat transfer through 

conduction, while the green resistances represent heat 

transfer through convection. Specifically, the "Outer 

Convection" resistance structure simulates the heat loss 

from the dishwasher cabinet to the surrounding 

environment, while the "Bottom Volume Convection" 

convection resistance represents the heat transferred to 

the bottom chassis volume.   
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Since one of the main objectives of the model is to 

observe the temperature inside the cabinet over time, 

the heat transfer mechanism needs to be calculated in a 

time-dependent manner.  

To achieve the desired outcome, the one-dimensional 

time-dependent heat transfer equation along the wall is 

supposed to be solved. This equation is shown in 

Equation 1.  

                                 
𝜕2𝑇

𝜕𝑥2
=

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
                        (1) 

 

 

Figure 3. Thermal resistance structure of dishwasher’s 

front wall.  

A single resistance structure created in Dymola is 

demonstrated in Figure 4. This structure is used to 

construct each wall by connecting each other thermally, 

either in parallel or in series, based on the resistance 

structure created for each wall. Subsequently, 

properties such as thickness, area, density, specific heat 

capacity, and thermal conductivity are assigned to each 

resistance, depending on the material. By means of this 

approach, cabinet model was created and illustrated in 

Figure 5.  

After constructing each wall structure, in addition to the 

resistance structures, dishes and other components that 

generate thermal loads within the cabinet are created as 

lumped masses in models indicated by numbers 3 and 

4, respectively. These masses are thermally connected 

to the structure based on their materials and masses. On 
the other hand, since the heat pump system is located in 

the bottom chassis volume of the dishwasher, the 

operating conditions of the system are significantly 

influenced by this volume. This is because the 

evaporator is directly fed by the air present in this 

volume. Therefore, the bottom chassis volume is also 

modeled within the bottom wall structure and provides 

feedback to the heat pump system model through the air 

temperature represented by number 5. Finally, the heat 

port indicated by number 1 is connected to the 

algorithm model to associate the heated water with the 

dishwasher cabinet, while the heat port represented by 

number 2 is thermally connected to the ambient model 

to simulate the heat loss from the cabinet to the 

surroundings. 

To sum up, each individual resistance in the front wall 

resistance structure is represented in the model using a 

wall element. After creating the thermal resistance 

structures of all walls, like the front wall, they are 

individually created in the model using wall elements. 

Subsequently, each wall model is thermally connected 

to one another. 

 

 

Figure 4. A wall element model created in Modelica 

Standard Library.  
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Figure 5. Dishwasher Cabinet Model in Dymola.  

3.2 Algorithm Structure in Dymola 

The complex algorithm of the dishwasher is primarily 

composed of two main steps, depending on the 

predetermined temperature value and time step. For 

example, during the main wash cycle, the water heating 

step is completed when the water reaches the desired 

temperature, while the cold rinse step operates based on 

the specified duration since there is no heating or 

specific water temperature set value. These two 

fundamental steps are reflected in the model by revising 

the "Timer" and "Trigger" models available in the 

logical library of Dymola shown in Figure 6. 

The code revision allows the timer to run when the input 

is true and return false when the specified time period 

is over, providing flexibility in achieving the desired 

period independently of the simulation time. The trigger 

structure outputs a predetermined start value if the 

Boolean input is false and outputs the given input if it 

is true, enabling logical sequencing in the algorithm 

model. The water to be heated is modeled as a lumped 

mass, and different water models are used for each 

washing step.  

The heating systems are controlled using the “timer” 

and “trigger” structures and associated with the cabinet 

structure. If the algorithm model is connected to a heat 

pump system, it can use the condenser capacity as the 

water heating capacity from that model. On the other 

hand, if a conventional heating analysis is desired, the 

heater capacity in the algorithm is inputted, and the 

water is heated accordingly based on this capacity. The 

algorithm model is communicated to both the cabinet 

and the heat pump model.  

Power consumption by components such as circulation 

pump and compressor are known, allowing for dynamic 

power consumption and total energy calculation. The 

algorithm model is designed to be user-oriented by 

changing the time, temperature, and power parameter 

values out of the model, enabling simple parameter 

customization without interfering the code structure. 

 

Figure 6. Algorithm components in Modelica 

Standard Library 

3.3  Heat Pump System 

The heat pump system located in the bottom chassis of 

the dishwasher enables much more efficient heating of 

the water compared to conventional heaters. To 

optimize the efficiency, it is crucial to ensure that all 

components of the heat pump system operate under 

optimal conditions.  However, achieving this through 

experimental methods can involve significant workload 

and time. Therefore, modeling the heat pump system is 

vital, and system optimization, along with operating 

conditions, may be determined through parametric 

analysis on the model, which is much faster compared 

to experiments. In this context, each component of the 

heat pump system used in the dishwasher was 

individually modeled to create the heat pump system 

model by means of TIL Library introduced by TLK-

Thermo GmbH. 
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3.3.1  Compressor Model 

Reciprocating compressor model represented in the 

library is evaluated. The compressor is not considered 

as isentropic due to certain losses. For this reason, the 

model needs certain physical parameters simulating 

losses from the compressor. To illustrate, in order to 

simulate friction losses, friction coefficient parameters 

must be determined. They can be found by semi-

empirical approach. Proceeding to the determination of 

these parameters, to begin with, compressor 

performance tests are completed in calorimeter system 

experimentally. In this test, input parameters which are 

condensation, evaporation, subcool, superheat and 

speed are assigned according to the working conditions 

of compressor in the system. Then outputs are achieved 

as cooling capacity, power consumption, mass flow rate 

and discharge temperature depending on working 

condition.  

In parallel with this process, the compressor model 

tester is created in Modelica, therefore, input and output 

parameters are correlated with compressor model 

equations without any parameter assignation. Then the 

whole tester model is turned into FMU standardizing 

interface to be used in computer simulations to develop 

complex cyber-physical systems. Then it is imported to 

the ModelFitter (2022). Besides, the performance 

inputs and outputs obtained experimentally are 

introduced in ModelFitter. Thanks to statistical 

analysis, the physical parameters are estimated with R-

square value of 0,95. Thus, physical parameters of the 

compressor model (heat losses, friction losses and so 

on) are calibrated depending on calorimetric 

measurements. So, the compressor model can calculate 

compressor power, mass flow rate, discharge 

temperature and capacity between at certain pressure 

levels.  

3.3.2  Condenser Model 

To create condenser model, the tube model in the TIL 

library is used and it is discretized as finite volume 

cells. For heat transfer coefficient governing heat 

transfer rate, correlations are used. In single phase 

region Dittus-Boelter (1985) correlation is used. 

                    𝑁𝑢 = 0,023𝑅𝑒
4

5⁄ 𝑃𝑟
1

3⁄                     (2) 

However, for two phase, convenient correlation is not 

found in the library and literature for helical type coil 

condenser. For this reason, two phase heat transfer 

coefficient is determined experimentally from water 

side by using thermal resistance approach and LMTD 

method (see in Figure 7). To attain water side heat 

transfer coefficient Gnielinski (1976) correlation is 

used. In detail, during the calculation process, the 

condenser capacity of the heat pump system is 

determined by evaluating the enthalpy difference 

between the inlet and outlet of the refrigerant and 

multiplying it by the refrigerant flow rate. 

Subsequently, the capacity contributed by the single-

phase region is subtracted from the total capacity to 

determine the capacity associated with the two-phase 

region. The convection coefficient on the water side is 

calculated using the Gnielinski correlation with known 

values of water inlet and outlet temperature, as well as 

water flow rate. The capacities of the water and two-

phase refrigerant sides are equalized with each other 

and in this case, the two-phase heat transfer coefficient 

of refrigerant becomes the only unknown value. Also, 

the friction factor is determined based on the Moody 

diagram. The Gnielinski correlation and friction factor 

are shown in Equation 3 and 4.  

        𝑁𝑢 =
(

𝜁
8) (𝑅𝑒 − 1000)𝑃𝑟

1.07 + 12,7√𝜁
8 (𝑃𝑟

2
3⁄ − 1)

          (3) 

 

                          𝜁 = 0.184𝑅𝑒−0.2                        (4) 

On the other hand, geometrical parameters such as tube 

diameter, length and wall thickness are introduced to 

the tube model. In the cycle model obtained condenser 

capacity is considered for heating process of water. 

 

 

Figure 7. Condenser structure of dishwasher’s heat 

pump. 

3.3.3  Capillary Tube Model 

Capillary tube is also a component presented in the TIL 

library. The pressure drop in the capillary tube can be 

examined in two region, single phase and two phase. 
Since the refrigerant is in liquid phase at the inlet of 

capillary tube, pressure drop takes place linearly 
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depending on only friction. After certain point the first 

vapor bubble starts to form, and the refrigerant becomes 

two-phase state. In this region the pressure drop is non-

linear and depends on both friction and momentum 

because of continuous density change of refrigerant. 

Pressure drop characteristic is represented by Navier 

Strokes equation and the friction term can be 

determined Swamee-Jain (1976) correlation. For fully 

developed flow, one dimensional Navier Strokes 

equation is shown in Equation 5. 

                                   
𝑑𝑝

𝑑𝑥
− µ

𝑑2𝑢

𝑑𝑦2
= 0                             (5) 

To illustrate, for two-phase region it is integrated along 

the tube, and it is described as in the Equation 6. 

𝑝. 𝜋.
𝐷2

4
− (𝑝 + ∆𝑝). 𝜋.

𝐷2

4
−  𝜏𝑤 . 𝜋. 𝐷. ∆𝐿

= 𝑚. ∆𝑉 (6)
 

Also, the total pressure drop in the capillary tube is 

expressed as in the Equation 7. 

∆𝑝 = [(
𝑓

2𝐷
) ∆𝐿 +

𝜌𝑖𝑛 − 𝜌𝑜𝑢𝑡

𝜌
] .

𝐺2

𝜌
(7) 

Lastly, Swamee-Jean correlation offering explicit 

solution to determine the friction factor in the pressure 

drop equation. The Swamee-Jean correlation is given as 

in the Equation 8. 

𝑓 = [−2 log (
𝜀

𝐷⁄

3.7
+

5.74

𝑅𝑒0.9
)]

−2

(8) 

In addition, for single phase pressure drop inertia terms 

are neglected and pressure drop equation does not 

contain density change.  

3.3.4  Evaporator Model 

The heat exchanger in the form of a fin and tube 

structure, which is used as an evaporator in the system 

is also available in the TIL library similar to a tube 

structure. In this model, the Dittus-Boelter correlation 

is used when the refrigerant is in single-phase, while the 

Shah (1979) correlation shown in the Equation 9 is 

utilized for two-phase region. Additionally, for the air 

side correlation, the equation developed by Wang et al. 

(2002) specifically for the wavy fin structure is 

evaluated. Also, whole geometrical parameters such as 

number of serial and parallel tube distance, fin pitch, 

length and so on are introduced to the model depending 

on heat exchanger structure.  

    ℎ = ℎ𝑙𝑖𝑞 [(1 − 𝑥)0.8 +
3.8𝑥0.76(1 − 𝑥)0.04

𝑝𝑟
0.38

]  (9) 

 

3.4  Dishwasher with Heat Pump Model  

After individually modeling all the components of the 

heat pump system as mentioned in the previous 

sections, they are connected to each other to create a 

complete heat pump model. As seen in Figure 8, the 

compressor speed is controlled by a boundary 

condition. A tube model is used to simulate the heat 

transfer between the discharge, suction tubes and the 

surrounding environment.  

Similar to the condenser, the dynamic temperature of 

the bottom chassis volume, which is generated in the 

cabinet model and increases during the experiment, is 

associated with the tube model through a resistance. 

Similarly, the bottom chassis temperature is used as the 

suction air for the evaporator, as it strongly influences 

the operating conditions of the evaporator and thus the 

heat pump system. Additionally, boundary conditions 

such as air flow rate are defined for the air-side 

boundary associated with the evaporator. 

The behavior of the entire system is revealed through 

sensors, and the thermophysical properties of the 

refrigerant and air side are assigned using the System 

Information Manager model. 
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Figure 8. Whole heat pump model illustration in TIL Library.

4  Experimental Validation 

After building the entire model, fine-tuning processes 

were conducted through experimental testing under 

standard conditions, European dishwasher test standard 

EN 60436. The fine-tuning parameters used included 

the thermal loss parameter, which simulated heat losses 

from the condenser surface to the cabinet, and the "tube 

roughness" in the capillary tube, which was adjusted to 

match the system pressure levels. In other words, each 

component should be fine-tuned before creating whole 

model. Because the real cases have always included 

chaotic circumstances. To illustrate, while validating 

heat loss from the dishwasher cabinet, the heat transfer 

between water circulated by spray arms hitting to the 

cabinet walls and cabinet walls cannot be predicted and 

calculated. On the other hand, the capillary tube in the 

heat pump system consists of tube roughness parameter 

excepting geometrical parameters, this parameter 

should be defined by far and away to converge pressure 

levels. For this reason, the model is in need of fine-

tuning parameters like them. The fine-tuning primarily 

focused on optimizing the cabinet temperature and 

heating time. By adjusting these parameters, the 

model's accuracy and performance were improved to 

align with the experimental results. Subsequently, a 

comparative analysis was conducted between the model 

and experimental results of the base experiment, 

focusing on the temperature of the dishwashing cabinet, 

power consumption, energy consumption, and low-high 

pressure values. This assessment aimed to ascertain the     

degree of agreement between the model's predictions 

and the actual measurements obtained during the 

experimental testing. The behavior of experimental and 

simulated cabinet temperatures is illustrated in Figure 

9. Maximum experimental-simulation difference is ±1 

°C. In addition, the difference between the cycle time 

of the model and experiment is 0.5 minutes. The 

behavior of the model in the cabinet temperature is in 

line with the experimental outcomes. 

 

Figure 9. Cabinet temperature comparison. 

Figure 10 illustrates the time-dependent power 

consumption during the dishwasher cycle. The power 

consumption is primarily influenced by the compressor, 
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circulation pump, and drain pump. The circulation 

pump operates throughout most of the cycle and its 

power consumption varies depending on the algorithm-

driven spray arm positions and speeds. This variability 

leads to oscillations in power consumption. However, 

since the model calculates the average pump power 

consumption, this oscillation is not observed in the 

model. The average power consumption deviation 

during the cycle is 2.4%. 

 

Figure 10. Power consumption comparison. 

When comparing the model and experiment, it is 

observed that the model consumes more power than the 

experiment during the initial operation of the 

compressor. This difference can be attributed to the 

model's assumption of instantaneous evaporation 

temperature and the absence of accounting for the 

gradual increase in compressor speed for lubrication. In 

reality, it takes time for the refrigerant to reach the 

evaporation temperature, and the compressor gradually 

increases its speed. These factors result in a noticeable 

disparity in power consumption at the start of 

compressor operation. However, despite these 

variations, the overall trend in power consumption 

remains consistent between the model and experiment. 

The deviation in power consumption leads to a 2.9% 

difference in the overall energy consumption value. 

 

Figure 11. High- and low-pressure comparison. 

The comparison between the model and experiment in 

Figure 11 shows that the model accurately predicts 

pressure drops and compressor performance along the 

capillary tube. However, there is a maximum 

inconsistency in the condenser pressure, with a 

deviation of approximately 0.23 bar, while it is 0.1 bar 

in the evaporation side. This difference is attributed to 

the use of fixed superheat values using the compressor 

model due to calorimeter limitations, while actual 

operating conditions may vary. Despite these 

discrepancies, the model fits the data well and allows 

for parametric analysis. It is important to note that 

numerical errors can explain significant deviations in 

the high-pressure results when the compressor switches 

on and off. 

Following all validation procedures, the comparison 

between the model and experimental results for an 

entire cycle is presented in Table 3, providing the 

maximum deviations in cabinet temperature, power, 

energy, and high and low-pressure line values. 

Table 3. Validation deviation results. 

Cabinet Temperature ± 1 °C 

Cycle Time 0,5 min 

Power 2,4% 

Energy 2,9% 

High Pressure 0,23 bar 

Low Pressure 0,1 bar 

5  Conclusion 

In this study, an object-oriented modeling methodology 

using the Modelica Programming Language has been 

presented for a dishwasher with heat pump . The study 

involves creating a sub model for each component of 

the heat pump dishwasher and then integrating all the 

models to obtain a comprehensive dynamic cycle model 

for the heat pump dishwasher. The cyclic behavior of 

the dishwasher has been experimentally validated. As a 

result, the developed dynamic model is able to respond 

parametric changes, by means of this, it could be used 

for optimizing processes. A prime example of this is 

that optimization studies for component and cabinet 

insulation sizing to increase system efficiency and 

reduce experimental effort. 
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Abstract

The Modelica language is well suited to model systems
with coupled discrete and continuous dynamics. This fea-
ture is crucial, if one wants to model the flow of items
through manufacturing steps such as preparation, mount-
ing, or transport in the shop floor. The library ProcessSim-
ulation can be used to model such processes. By default,
it omits the technical details of the process steps, and fo-
cuses on the flow of material items through the process
steps. In addition to that, a base model to calculate the en-
ergy consumption in the different manufacturing steps is
provided. It can be enriched with technical details of the
components. The library can be used for the calculation
of (net) energy consumption, but also for task planning.

Keywords: process simulation, energy consumption, Mod-
elica library

1 Introduction

There are dedicated and advanced commercial tools for
plant or manufacturing simulation and beyond, such as
Tecnomatix (2023) (Siemens), FlexSim (2023) (FlexSim
Software Products, Inc.) or Arena Simulation Software
(2023) (Rockwell Automation). They base on discrete
event simulation and cover a wide range of applications.
To support modelling activities, some of these programs
also integrate sophisticated 3D visualisation. There is
also a Modelica library which can model discrete event
simulation, since it adopts the Discrete EVents System
(DEVS) formalism (Sanz, Urquia, and Dormido 2009;
Sanz, Urquia, Cellier, et al. 2012; DESLib 2023). It of-
fers a rich but complex functionality. The purpose of the
library presented here is to evaluate the capabilities of sim-
ulating processes in the factory hall by means of the Mod-
elica language with a simpler approach. It is shown that
there are applications for which this way of modelling is
sufficient. The Modelica language can cover both dis-
crete and time-continuous processes. It is suited, if ma-
chines and transport means should not only be considered
as event sequences, but can also be enriched with models
of physical processes, i.e. mechanics and electrics which
for example contribute to the consumption of energy. This
publication introduces the library and its components and
outlines two applications.

2 The Library
2.1 General
This library contains models of distinct groups to describe
material flow through processes in the factory hall. These
are

• storages to store items,

• machines to process items,

• transport devices to transport items,

• a tasks supervisor to model tasks and their precondi-
tions on machines,

• an energy meter to observe energy consumption in
the system.

The material which flows through the manufacturing
line is identified by its amount as integer quantities. This
is in contrast to the continuous material amount, which is
used in the Business Simulation Library (2023). On the
other hand, material is also not a set of single-wise iden-
tifiable items, like in DEVSlib (DEVSlib is a subpackage
of DESLib 2.0 (2023)). The Modelica language is not able
to handle the generation and disappearance at simulation
time. For that reason, DEVSlib implements an External
Object in programming language C to handle a variable
number of messages and entities. In our approach we only
count the number of items. The item flow is handled by the
definition of pairs with active and passive partners using
specific connector types. There is always one active and
one passive partner in the connection. The passive part-
ner indicates its availability (freeCapa) and free/avail-
able capacity, the active partner triggers the handOver
and defines the handed quantity (handedCapa). The ac-
tive connector is defined as follows:

connector MaterialA
"Active Material Handover"
input Boolean freeCapa;
output Boolean handOver;
input Integer capacity;
output Integer handedCapa;

end MaterialA;

The passive connector MaterialP is defined in the same
way with input and outputs exchanged. Figure 1 shows
the connectors. With the Boolean parameter handOver
the events are triggered in which one or more items are
handed over from one component to another. In this way,

DOI
10.3384/ecp204357

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

357



Figure 1. Connector pairings of the process simulation library.
There is always one active and one passive partner in the con-
nection.

the flow of material is as fast/efficient as locally (i.e. in
a sequence of two consecutive components) possible. It
should be mentioned that this modelling technique creates
a lot of events during simulation. The number of variables
which change as a consequence of these events is low, and
their values are calculated from simple equations. Hence,
the duration of a single event iteration is determined by
the solver’s performance and in general short, however
the high number of events in total might affect simulation
time.

2.2 Storages
There is a generic component named Storage which
models the storage of items, e.g. in a storage room, but
also on a wagon, or a dedicated place upfront a machine.
It can be parametrized with an initial capacity and a max-
imal capacity. The storage is passive regarding material
flow. This means it indicates its free capacity, but the pro-
cess of handing over material is triggered from the con-
nected transport device (see next section). There exists a
variant of the storage named MergeStorage. This can
be used, if a certain ratio of components of two different
types (e.g. four wheels and a chassis) has to be available
before processing the next step (e.g. transport to an as-
sembling machine). Figure 2 shows the icons.

2.3 Transport Devices
There are three types of transport devices. They share the
commonality that all of them actively trigger the loading
and unloading of items. Items are loaded if the preceding
storage has enough items to transport, and they are un-
loaded if the target has enough free capacity. Otherwise,
the transport stops.

Plain Transport
This transport device loads a parametrizable number

Figure 2. Storage and merge storage component. The number
on the icon displays the number of (merged) items which are
currently in the storage.

of items within a loadTime, transports them within
a transportTime and unloads them at a connected
target. The transport runs either up to a maximum
defined number, or indefinitely as long as there are
items to transport.

Conveyor
This transport device models a conveyor belt. It
needs processTime to transport one item from start
to target, and loads up to a parametrized maxCapa of
items (all separated by processTime/maxCapa).

Shared transport device (e.g. automated guided vehi-
cle AGV)
This device models the transport as defined in con-
nected TransportTasks. All the information about
the transport task is defined in the connected device.
This includes

• the number of items to carry

• the number the device can carry at once

• the time to load the device

• the time to transport the loaded items

• a condition when the transport task is prepared
to be run (e.g. to model that a transport task will
only be started if there is enough free capacity
in the target storage).

• a unique id

Each transport task is connected to a SharedRe-
source by a specific connector pair, in which the
shared resource receives each task’s id as well
as its status (prepared, finished), and sends the
currentTaskNr to all transport tasks.

The shared resource exists in two variants - one runs
the tasks "AS PLANNED", i.e. as defined by the
sequence of task IDs in the shared resource. The
other runs the tasks "ON DEMAND", i.e. whenever
a transport task becomes status "prepared", it will
be scheduled as the next transport task. If several
tasks become prepared at the same time, they will be
scheduled in order of increasing task id.

Figure 3 shows the icons of the transport devices. All
transport devices display the number of currently trans-
ported items. In addition to that, each transport task shows

Figure 3. Transport devices of the process simulation library.
From left to right: transport, conveyor, and shared resource with
transport task.
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in its top left corner the unique task ID, which is high-
lighted in violet if the task is currently running. The bot-
tom right corner shows the total number of items to trans-
port. The icon of the shared resource shows the ID of the
currently active transport task.

2.4 Machines
The library contains a plain Machine, which processes
items. This refers to any type of process - mounting,
drilling, packing, sawing, ... The plain machine runs down
a setupTime to prepare the machine, and a cycleTime
to process one item. It processes nMax items, then it stops.
An item is taken and processed as soon as it is available in
the connected input storage, and handed to the output stor-
age if there is free capacity. Two output variables indicate
the progress of the machine setup, and the progress
of processing the current item, respectively. A machine
is always located between two storages, one from which
the items are taken, and a second one which is filled with
items. Figure 4 shows two storages connected by a ma-
chine which processes items. The numbers displayed in
the storages and machine vary over time and show the
number of stored or processed items, respectively.

2.4.1 Machines with Tasks

Whereas this plain Machine runs only one process to its
end, there are four more advanced machine types in the
library (cf. Figure 7). They all share the following base
structure: they all are vectorized versions of the plain
Machine connected with start and target storages (config-
uration as in Figure 4). This structure is used to define and
simulate a sequence of tasks. For each of these tasks mate-
rial is taken/delivered from/to its dedicated storage. Each
task has its own parameter values for number of items,
setup time and cycle time.

The storages before and after the machine are empty,
and have to be filled/emptied by other active processes
(i.e. transport, or predecessor machine). For example, in
Figure 5, transport devices have been connected. The
passive connectors to the input and output storages have
the size n1, n2. The values of these integer param-
eters are zero by default, and grow with the number
of connected components (due to the Dialog annotation
connectorsizing=true). The machine needs the same
number of connections on both sides, an assert is thrown,
if n1<>n2. The sequence of connecting the components is
important. The first connected transports "belong" to the

Figure 4. The Machine component, connected with an input
storage and a target storage.

Figure 5. The Machine with local tasks. The example contains
three tasks on the machine, hence three input and output pro-
cesses (all transport) have been connected. The numbers on the
machine icon indicate that it currently runs task 2, in which 10
items have been processed.

first set of task parameters, and so on.
There are two additional features to highlight:

• The model of the machine with tasks contains an
array-parameter taskIDsC, with which one can de-
fine positive integer IDs for all tasks (C stands for
connected). In addition to that, there is a second pa-
rameter taskIDsO which is a reorder of the task IDs
(O = ordered). This parameter allows to change the
order of the tasks. Since the start or finalization of
tasks can depend on transport processes, a reorder-
ing could improve total process time.

• The machine has an additional connector, to which
an Operator must be connected. The machine runs
only if the operator is available. With this additional
condition shift durations or breaks can be modelled.

The machine variant with all this functionality is named
MachineWithTasks. Further variants are extensions of
this type and are explained below.

2.4.2 Machines with global tasks

If one wants to model tasks on different machines, which
can depend on each other, there is a dedicated type named
the MachineWithGlobalTasks, which is an extension
of the MachineWithTasks. A task on this machine
type will only start when all preconditioned tasks (on
the same or other machines) have finished. Therefore,
this machine type contains an outer GlobalTaskList
tasks, which parametrizes each task’s preconditions and
controls their fulfilment. To do so, the global task
list contains the number n and IDs of all tasks. It
also contains a matrix parameter to define each task’s
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preconditions[n,p], to denote up to p preceding tasks
per task. Figure 6 shows the icons of the machine and the
tasks component.

2.4.3 Machines with prefilled storages

There is a variant of the machine with tasks, which ex-
ists for both the machine with local tasks and global
tasks. At simulation start, this variant has all start-
storages in the machine filled with the capacity as de-
fined in the parameter vector nMax. The maximum ca-
pacities of the target storages are set to the same val-
ues, respectively. This machine model no longer con-
tains any (passive) material connectors. This model can
be used, if only planning the processes on the machines
is of interest. To reflect the auto-filled storages in the
types, the type names have an "SC"-suffix (for self-
contained), i.e. they are named MachineWithTasksSC
and MachineWithGlobalTasksSC, respectively.

The icons of these four variants, which are all possible
combinations of the features "local or global tasks" and
"with connectors or prefilled storages", are displayed in
Figure 7. Section 3.2 shows a small example of this func-
tionality.

2.5 Energy Meter
An additional feature of this library is the calculation of
total power and energy consumption. Most of the com-
ponents in the factory hall consume or provide power.
This is reflected in the library, all transport devices and
the machine model contain variables and equations to
calculate their power consumption. We define a global
EnergyMeter, to easily sum them up to determine the to-
tal power and energy consumption, and use the Modelica
inner/outer connection to collect all power terms from
all components. This avoids the manual connection of all
consumers or producers of power with the EnergyMeter,
which would reduce clarity on the diagram view of the
model. To facilitate the collection of power terms, the li-
brary defines an EnergyContributor, which is the base
type of the contributing components. Between all energy
contributors and the outer meter, a connection with a flow
variable is created. Each energy contributor adds its power
P to this connection automatically, the value of the energy
meter’s connector is the negative sum of all these contribu-
tions (since flow connections establish a sum-to-zero cou-
pling), hence the total power consumption is determined

Figure 6. The Machine with global tasks, and the global task
list. The machine has the same functionality as the machine
with local tasks, but it needs an outer global task list, in which
task’s preconditions can be parametrized.

local tasks global tasks

with
connec-
tors

Machine
WithTasks

MachineWith
GlobalTasks

prefilled
storages

Machine
WithTasksSC

MachineWith
GlobalTasksSC

Figure 7. Variants of machines with tasks

by the negative value of the connector. Listing 1 shows
part of the energy contributor’s and energy meter’s defini-
tion. Figure 8 shows the icon of the energy meter.

Listing 1. Modelica code snippet outlining the energy meter and
contributor

connector FlowCtr
"Flow Connector for Meters"

flow Real i "Flow Variable";
end FlowCtr;

model EnergyMeter "Energy Meter"
Real P "Power";
Real E "Energy";

protected
FlowCtr pc "Power Collector";

equation
P = - pc.i;
der(E) = P;

end Energy;

partial model EnergyContributor
"Energy Contributor"

outer EnergyMeter energyMeter;
Real P "Power

- eqn. defined by derived type";
protected
FlowCtr power;

equation
power.i=P;
connect(power, energyMeter.pc);

end EnergyContributor;

Figure 8. The Energy Meter component, displaying the total
energy consumption like an electricity meter.

It shall be mentioned that the defined connector
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FlowCtr is not conform with the requirement as stated in
the Modelica specification, section 9.3.1. (Modelica As-
sociation 2023): The connector is unbalanced, i.e. the
numbers of flow variables is not equal to the number of
variables that are neither parameter, constant, input, out-
put, or stream. According to (Olsson et al. 2008) this
prevents any model using this connector from being lo-
cally balanced. However, this request was derived for sys-
tems with multiple components of the same type. When
using the ProcessSimulation.EnergyMeter and (ex-
tended) EnergyContributors, any allowed configura-
tion contains exactly one energy meter and zero or more
energy contributors. Any such combination has a bal-
anced number of unknowns and equations. Furthermore,
the FlowCtrs pc in the meter and power in the contrib-
utor are declared as protected, which at least produces
a warning in some Modelica compilers. Here it is used to
prevent any component which is neither meter nor contrib-
utor from being connected to the power balance. Defining
the connectors as public but omitting annotations for the
Placement could have the same effect, at least in the dia-
gram view of the model.

2.6 Comparison to existing libraries
As mentioned, there are Modelica libraries which cover
applications that are also adressed by the Process Simu-
lation library (PSL): the DESLib (2023) (or DESLib 2.0
(2023)) and the Business Simulation Library (2023). In
this section, the differences are outlined. This is not meant
to be a comprehensive summary of the other libraries’
functionality, merely only supposed to help figuring out
for which application the Process Simulation library is ad-
vantageous or sufficient, or when to rely on existing li-
braries.

The Business Simulation Library (BSL) contains - be-
side many others - classes which are comparable to those
in the PSL - e.g., Oven (as a variant of a machine),
Conveyor or MaterialStock. Different to the PSL,
it uses real-valued material flow rates instead of integer
numbers of material items. This avoids events due to
handovers between components. Besides, the details of
class parametrization differ. To name a few differences:
the BSL Oven prepares batches of parametrizable size,
there are also parameters for the setup and process of the
batch, and a loading time. This is different from the PSL
Machine, with has a "batch-wise"(nMax) setup time, but
element-wise process times. The BSL Conveyor uses the
Modelica delay operator which creates a time lapse be-
tween the inflow and outflow of material. This delay is
triggered within a when sample(..) statement with a
model-wide sampling frequency which is by default 16/s,
i.e. it creates 16 time events per seconds, independent of
the flow rate. This differs from the PSL Conveyor which
creates (2 maxCapa/processTime) state events per sec-
ond.

The DEVSlib (sub-package of DESLib 2.0 (2023)) im-
plements the Parallel Discrete Event System Specification

(PDEVS) formalism (Zeigler, Prähofer, and Kim 2000),
which is powerful to describe (parallel) discrete event sys-
tems together with continuous state systems. To create
such a system, an Atomic DEVS is defined. The pack-
age provides an atomicDraft model, which implements
this Atomic DEVS, and a guide how to create own models
from a duplicate of this, to model a DEVS system. Due
to the underlying formalism the application range is big,
among the provided examples are controllers coupled to
physical systems, game of life, and a supermarket model.

In the process oriented DEVS formalism, "systems
are described from the point of view of the entities that
flow through them using the available resources" (Sanz,
Urquia, and Dormido 2009). For assembly line models
this means that it is possible to track and identify each
manufactured item during its flow through the line. This
differs from the approach in the Process Simulation li-
brary, where the manufactured items are counted as in-
teger numbers. There are applications where this is suf-
ficient, e.g. to determine the energy consumption in an
assembly line.

Furthermore, DESlib provides mechanisms to intro-
duce stochasticity into the models (by the package Ran-
domLib). As stated in (Sanz, Urquia, and Dormido 2009),
process-oriented models are usually stochastic, which is
why the generation of random numbers is necessary. Mod-
els created with the Process Simulation library are fully
deterministic, material in assembly lines or tasks on ma-
chines run as planned. In the existing library components,
random effects could modify the conveyor belt’s veloc-
ity, machine/task process times, or others, which cause de-
lays or accelerations in different manufacturing steps, and
would result in variations of total process times. Since
no systematic analysis of the random effects on the sys-
tem’s behaviour can be provided, and the result of single
simulations with random effects are hard to interpret, such
effects were not implemented in the current version. How-
ever, the result of the "deterministic" simulation provides
all information to determine mean process times or energy
consumption.

The currently available DESLib 2.0 (2023) library ver-
sion does not provide an example for an assembly line,
i.e. no class models such as machines, stocks, conveyors.
Hence a comparison of functionality or performance is not
immediately possible.

3 Examples/Use Cases
In this section, two examples which outline the different
facets of the Process Simulation library are presented.

3.1 Example 1: Energy analysis of the manu-
facturing of a three-wheeler

Figure 9 shows a screenshot of the (simplified) production
line of a three-wheeler. As several of the components are
EnergyContributors, the component inner Energy
energy is needed in the model. The contributions to the
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Figure 9. Simplified production line of a three-wheeler to illustrate the usage of the energy consumption. It contains pre-processing
of wheels, handles and chassis, followed by two mounting machines. The transports to and from the machines are by either
conveyors or plain transport (e.g. carrying). All components with a yellow box in the top right corner contribute to the overall
power and energy consumption.
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Figure 10. Power consumption of the different components of
the three-wheeler production line. Shown are only the consump-
tions of one machine, one transport and the conveyor. Besides
that the plot contains the total power and total energy consump-
tion.

power (and energy) consumptions are parametrized within
the different components. Figure 10 shows the power con-
sumption of selected components and the entire manufac-
turing line. One can see that the power consumption has
peaks of 17.8 kW, the main contribution stemming from
the machineChassis. The manufacturing of 14 three-
wheelers consumes an energy of 8.13 kWh in total.

One possibility to examine the power consumption in
more detail is to extend the elementary components with
more comprehensive models of the underlying processes.
In the example considered here, the main energy con-
tributor of Figure 9 is machineChassis. To enhance
the calculation of the power consumption for this compo-
nent, a Functional Mockup Unit (FMU) which models a
detailed manufacturing process with non-constant power
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Figure 11. Power consumption of the three-wheeler man-
ufacturing line with a detailed power modelling in the
machineChassis component in comparison to the averaged
original version. The figure shows two cycles of the machine
only.

consumption, was imported to an extended copy of the
Machine class. The original machineChassis compo-
nent is replaced by a component of the new class.

Figure 11 shows the variation of power consumption of
the modified machine in contrast to the previously con-
stant value. This affects the peak power consumption, it
reduces to 17.1 kW, but has no influence on the total en-
ergy consumption of the production line.

3.2 Example 2: Planning of tasks on machines
and shared transport devices

This second example is created sequentially to illustrate
the different machine variants, used together with other
library types.
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a) We start with the simple scenario of a single machine,
on which three tasks have to be run in sequence. We do not
care for the transport to and from the machine, we simply
assume the material is there. We want to know how long
it takes to run these tasks. The component to model this
is the MachineWithTasksSC. Table 1 shows the details
of the tasks. Figure 12 shows the diagram view of this

Task
ID

nr. of
items

cycle
time*

setup
time*

ma-
chine

precon-
ditions

1 5 45 20 1 -
2 3 15 20 1 -
3 10 12 20 1 1

4 50 2 10 2 2
5 35 3 10 2 -

(*in minutes)

Table 1. Details of the tasks in Example 2.
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Figure 12. Example 2a: One machine with a sequence of three
tasks, and a result window showing the processed items per task.

example, and a result plot with the number of processed
items. It should be mentioned that as soon as the last cycle
of a task is completed the machine switches to the next
task, hence the variable displaying the processed items per
task peaks at (nMax-1) items in each task (in the example
4, 2, 9). From the graph one can read that the three tasks
are finished after 7.5 hours.

b) Now assume there are more tasks on a second ma-
chine, and there are some preconditions. Task 3 can only
be run after task 1, task 4 only after task 2. Again, refer to
Table 1 for the task details. To model this, we have to use
the type MachineWithGlobalTasksSC, and the inner
GlobalTaskList tasks, the latter parametrizes and
controls the preconditions to the tasks. Figure 13 shows
the model.

In this example the orders of the tasks on the machines
influence the total process time. With this configuration
one could test various task orders to figure out which one
is the fastest. Technically this is done by modifying the
value of the parameter taskIDsO on each machine to de-
fine the order of the tasks. With this small number of tasks
and precondition one can find optimal solutions by choos-
ing sensitive orderings. It makes sense to run task 5 on

Figure 13. Example 2b: Two machines with five tasks in total.

machine 2 first, since task 4 has to wait for the finalization
of task 2. Furthermore, task 3 should be executed as last
one on machine 1, since tasks 1 and 2 are preconditions
to other tasks. With a small number of simulations, one
finds that the following task orders result in the same and
fastest total simulation time, which is 7.5 hours.

Machine 1 Machine 2 Total time

Variant 1 {1, 2, 3} {5, 4} 7 h 30 min
Variant 2 {2, 1, 3} {5, 4} 7 h 30 min

c) As a third step we want to consider not only
the processes on the machines, but also transport pro-
cesses to and from them. Figure 14 shows the
model. The machine types have been changed to
MachineWithGlobalTasks, and have passive material
connectors. The transports to the machines are all pro-
vided by an AGV, five transport tasks have been created.
The IDs of the transport tasks (displayed in the top left
corner of the transportTask components) are equal to
the machine tasks which follow - this is merely an (in-
tended) coincidence. Transport task 1 takes 11 minutes per
component, whereas the others are all faster (3.5 minutes).
It should be determined which transport task sequence
and machine task sequence leads to the fastest finalization
of all machine tasks. To answer this question, we anal-
yse reasonable transport task orders together with the two
fastest machine task variants. The following considera-
tions help excluding some of the 120 variants: Firstly, the
preconditions of machine tasks should be the same for the
transport tasks (this transfer of numbers works here since
we chose the same numbering, and only have transport
tasks to machines). Secondly, the order of machine tasks
should be kept in the order of transport tasks (i.e., trans-
port task 1 before 2 before 3, and 5 before 4, if to test with
machine tasks variant 1). Taking these restrictions into ac-
count there are 7 transport task orders to test for variant 1,
and 9 for variant two.

From simulation results one can read that the transport
task order {1,5,2,3,4} together with machine task variant
2 leads to the same total time to finalize all machine tasks,
which is 7.5 hours. See Figure 15. The first task (task 1)
on machine 1 is not delayed by transport task 1, since the
transport of the first item has finished before the machine
setup. Machine task 5 is delayed but is not precondition
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Figure 14. Example 2c: Two machines with five tasks, and
transport processes to and from the machine. The transport to
the machine is provided by an AGV.
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machine2.items w/o AGV
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Figure 15. Example 2 b/c: Processed items on machines 1 and 2
in the variants of the model without transport and with transport
(AGV) included.

to any other task. By the time machine task 5 has finished
on machine 2, the necessary machine task 2 on machine 1
has finished such that machine task 4 can start right away.
In total, the AGV transport does not affect the machine
task finalization for this combination, and all tasks can be
finished within an eight hour shift.

With this example the different variants of the machines
were illustrated, in combination with the usage of the
shared resource as a transport device. A combination with
other transport means, like in subsection 3.1 is also pos-
sible. Of course, for more complex scenarios finding the
optimal sequence of machine and/or transport tasks be-
comes challenging. In such cases, a dedicated optimizer
should be used, it is beyond the scope of this library.
The simulations are very fast, and a reordering is only a
reparametrization of the model. Model creation, modifi-

cation, simulation, and request of results is all possible via
a scriptable interface, which eases the connection to other
tools like optimizers.

One realization of such a task plan simulation in the
configuration as described in example 2b was developed
in the DIMOFAC project1, where the challenge was to op-
timize tasks on several machines. The information about
tasks and machines is provided in asset administration
shells (AASs). A dedicated optimization tool for task
planning (Kousi et al. 2019; Evangelou et al. 2021) reads
this information, determines candidates of task orders and
generates simulation requests for all of them. Based on
these requests, a Modelica model is created (in Simula-
tionX (2023)), which reads the task and machine specific
information from their AASs. After the simulation, met-
rics like net machine utilization or process time are re-
turned to the optimization tool, which evaluates this infor-
mation to create new simulation requests and finally iden-
tify the optimal task schedule.

4 Summary and Outlook
In this publication the ProcessSimulation library was pre-
sented. It can be used as a low-level entry point to model
material flow through a production line, to evaluate the
performance of a manufacturing system in terms of en-
ergy and machine or transport task order. The library can
be extended if needed, e.g. by multiple-merge storages,
or machines with multiple material outputs. Besides, the
consideration of random effects on the process times re-
mains an open issue. Regarding the machine types the li-
brary can flexibly be extended such that the calculation of
the energy consumption becomes more fine-grained. One
could use this to identify/reduce maximum demand loads
to the power station which provides the energy in a man-
ufacturing line, which helps to save costs. The concept
of an energy meter which monitors the consumption (or
production) of energy can be transferred to other electric-
ity net types (230V, 400V, high voltage), heat, water, or
compressed air consumption.

In 3.2, a scenario to optimize production plans was il-
lustrated. A separate optimization tool was used to deter-
mine the optimal schedule of tasks. For a closer integra-
tion to the simulation environment (SimulationX), it re-
mains future work to develop python scripts (e.g., using
dedicated libraries, such as Python MIP (Mixed-Integer
Linear Programming) Tools (2023)) for the optimization
of tasks on machines and transport devices. The neces-
sary python interface exists in SimulationX.

The modelling of the material transport between com-
ponents was realized by connectors which trigger the han-
dover immediately when material and capacity is avail-
able, and all components work with pre-planned velocity.
A remaining task is to extend this concept with signal in-
terfaces to externally control the processes - handover, sta-
tus of machines, transport/manufacturing velocities. This

1https://dimofac.eu/ (accessed on June 1, 2023)
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could be used for virtual commissioning of a manufactur-
ing line, to evaluate the reliability and robustness of con-
trol signals for the line on a simulation model of it.
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Abstract 

The latest release of the Modelica Language Specification 

version 3.6 brings several benefits to users, and this paper 

will discuss the changes and the benefits for the clearer 

parameter defaults, clearer start-value priority, selective 

model extension, and multi-lingual support. The benefits 

only occur when the features are implemented in 

Modelica tools, and to facilitate that, the paper will discuss 

the design choices when implementing the new standard 

in Dymola 2023x Refresh 1 and 3DEXPERIENCE 2023x 

FD03. 

Keywords: Modelica, model variation, initialization 

1 Introduction 

The Modelica Language, (Olsson (editor), 2023) and 

(MAP-Lang 2023), is developed by the Modelica 

Association Project MAP-Lang on GitHub, using LaTeX 

and HTML (Miller 2023). 

Modelica 3.6 adds a number of new features, 

corrections, and improvements. New major features are 

organized as Modelica Change Proposals (MCPs), 

specifically for this release: 

 Undefined modification (MCP-0009). 

 Selective Model Extension (MCP-0032). 

 Multilingual support of Modelica (MCP-0035). 

Their rationales can be found in the directory 

RationaleMCP in (MAP-Lang 2023). In the specification 

they can be found in sections 7.2.7, 7.4, and 13.6.  

An MCP must be test-implemented in at least one tool 

before being added to the specification, and the design 

documents include that experience. 

However, fully implementing, documenting, and 

testing an MCP may reveal new issues (especially  when 

done in other tools than the tools used for the test 

implementations) and may also find interesting use-cases; 

and thus the experience in this paper will add additional 

insights beyond the MCP-design. 

This paper will focus on the new major features 

(MCPs), and some of the minor features and corrections; 

especially concerning parameters (that go together with 

the MCP-0009 Undefined modification), start-value 

priority, and connection restrictions. 

Modelica 3.6 was completed on February 28th, the 

document branch built March 9th, and accepted by 

Modelica Association March 23rd, 2023. 

2 Clear setting of parameters 

2.1 Background 

MCP-0009 (Undefined modification) goes together with 

some minor improvements (and corrections) related to 

parameter values and defaults. The MCP was proposed by 

ESI (previously ITI) whereas the corrections and minor 

improvements roughly correspond to what was already 

implemented in Dymola. 

Prior to Modelica 3.6 the specification had the 

following issues: 

 Once you had set a parameter value you could only 

change it, but not remove the setting completely. 

Removing setting is useful when: 

o A model parameter has a badly chosen 

default value and there is no obvious 

generic correct value (e.g., capacitance). 

o A model parameter has a value, but it is 

desired to implicitly compute the 

parameter from an initial equation instead. 

(Note: in this case it is also necessary to set 

fixed=false.) 

 If you declared a parameter without modifying any 

of its attributes (i.e., no start-value) it was unclear 

what tools should do; whereas if you did set the 

start-value it was clear that it could be used with a 

warning. 

 And if you declared a parameter (or variable) and 

only set the min-attribute to e.g., 2 it was even less 

clear what tools should do. 

The reason for the latter two problems were that the 

default value for the start-attribute of a Real/Integer was 

0, and it was not clear whether that should be used as 

default. 

A model with all of these issues is given below: 

model M 

  parameter Integer k=1; 

  parameter Integer l(start=1) 

  parameter Integer m; 

  parameter Integer n(min=2); 

 

  Real x[:]=fill(0.0, n-1); 

end M; 

 

model M2  

  extends M; 

… 

end M2; 
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Prior to Modelica 3.6 we could not remove the default 

for k when constructing M2 and it was unclear if m should 

use a default start-value of 0 or not, and clearly using a 

default start-value of 0 for n would be problematic: by 

violating the min-restriction and generating a negative 

sized array. 

2.2 Changes 

MCP-0009 (Undefined modification) solves the first 

issue by allowing the modifier =break to remove the 

parameter setting. The other issues were solved by clearly 

specifying a priority for default values and erasing the 

default values for the start-attributes in the specification 

and instead introducing the fallback value. 

The fallback value is the value closest to “zero” that is 

consistent with any potential min and max-attribute (for a 

Boolean it is false and for a String it is ""); adding this 

restriction ensures internal consistency so that if a variable 

has a min-attribute of 2 we do not attempt to use a value 

of 0 (which solves the last issue). 

Thus Modelica 3.6 allows us to give a clear precedence 

for different values for a parameter (unless they have 

fixed=false) as follows: 

1. Value (unless Undefined). 

2. Value of the start-attribute (unless Undefined). 

3. Fallback value during check. 

The default for both the Value and the Value of the 

start-attribute is now Undefined (which means that the 

next item in the precedence list is used), and MCP-0009 

enables a user to restore them to Undefined by a 

modification of the form =break. A diagnostic is required 

when the Value is Undefined in a simulation model. 

Note that break is just for modifiers, and it is not 

possible to use it to handle other variants of Undefined. 

Thus it does not correspond to Not-A-Number in IEEE 

floating point arithmetic, the Maybe-monad in functional 

languages, or std::optional in C++ (ISO/IEC 2020). 

For a non-parameter that is used in an initial non-linear 

system of equations the starting point for the first iteration 

is: 

1. Value of the start-attribute. 

2. Fallback value. 

2.3 Implementation aspects 

Undefined modification can be fairly trivially 

implemented in the translator by treating break as a 

normal modification with the special rule that if the 

resulting modification after merging is break the setting 

of the value is just skipped. 

Supporting it in the Graphical User Interface was not 

complicated, but required care to keep existing options as 

before and clearly specify the new option. If there is a 

modifier for a parameter p like p=2 the parameter dialog 

shall support both removing the modifier giving no 

modification at this level or setting p=break. Both could 

be described in similar ways, which would not be helpful. 

The solution was to call the first “Remove modifier” (as 

earlier) and the second “Set to No Value”; where “No 

Value” was preferred over the specification word 

“Undefined” and the syntactic “break”. Obviously the user 

can also write these as modifiers in the parameter dialog. 

For backwards compatibility there is an issue, not with 

Modelica 3.5 but going back to Modelica 2.0 where a 

component could be named break and thus p=break 

could mean that p is modified to have the value of the 

parameter break. That was solved when supporting 

Modelica 2.1 by handling existing components named 

break with a warning (that was possible in Modelica 2.1 

to 3.5 since break was then only used to break inside 

loops), and prevent the creation of new components 

named break. That compatibility feature was removed 

after about 11 years (consistent with the mission plan of 

MAP-Lang where models should run for at least 10 years), 

and before Modelica 3.6 was released. 

Using the fallback value when checking a model is 

consistent with the intended use – zero, or close to zero, 

and consistent with min- and max-attributes. In practice it 

is almost always the min-attribute that introduces the 

restriction, since if a variable cannot have both signs the 

preference is to have only non-negative values (e.g., 

temperatures, array sizes) and even if further restricted the 

min-attribute is the allowed value closest to zero. 

3 Clearer precedence for start-values 

3.1 Background 

Modelica is equation based and in order to efficiently 

handle the resulting systems of equations tools have to 

make a number of choices for start-values in systems of 

equations and during initialization – this indirectly also 

influences which variables are torn out. For a general 

introduction to tearing see (Elmqvist & Otter 1994). 

Consider Modelica.Fluid.Examples.HeatingSystem: 

 
Figure 1 HeatingSystem 
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There are 4 pressure states and 5 temperature states in 

this model, and for each of them there are between 7 and 

13 different variables that are equal to the state, but have 

their own start-value. Setting all of them to the same value 

is tedious and error-prone, but partially done in this model: 

 

Pipes.DynamicPipe radiator( 
    … 
    p_a_start=110000, 
    state_a(p(start=110000)), 
    state_b(p(start=110000))) 

 

These choices matter as different choices can lead to 

different results or even no results, when reusing a 

Modelica model in a different tool, different version of the 

same tool, or even as a sub-model in a different model. 

Using the average of the values does not work (e.g., for 

this model the default temperature in the components was 

15°C and the goal was to change the hot part to 80°C – not 

to have an average of them), and having an explicit 

priority system was deemed too complicated so instead the 

idea is to prioritize the existing start-values in some logical 

way. 

The goal with that priority is both to make the choice 

more predictable (so that the same model gives the same 

choice) and controllable for users (to get the start-values 

they want). 

3.2 Start-value priority 

Modelica 3.3 introduced a priority between start-values 

with the clear goal that values set “later” (closer to the root 

of the instance hierarchy) should have precedence. This 

was based on existing heuristics in Dymola (Dassault 

Systemes 2023 section 5.8.3; Casella 2011). The rationale 

with preferring a “later” value is that if there is a problem 

the user should introduce a new start-value when using the 

component and that will naturally be seen as “later”. 

However, it was found wanting in some cases – in 

particular start-values are often bound to parameters that 

are then propagated, e.g., in the model above the start-

value for the temperature of the heater is the parameter 

T_start. The priority for such cases was based on where 

the parameter was introduced (and propagated to the start-

value) – ignoring whether the parameter was modified 

later on. In practice that often meant that multiple values 

had the same priority. 

Modelica 3.6 extended the priority to consider where 

the parameter is set (in this case T_start) to break ties in 

such cases. By only using it as a tie-breaker it adds more 

detailed priorities without modifying the priority of 

existing unambiguous cases, reducing the risk of breaking 

backwards compatibility. 

3.3 Implementation aspects 

Implementing a more detailed priority for guess-values 

was fairly straightforward (there were some existing 

special cases that had to be removed as well). And even if 

designed with backwards compatibility in mind it is also 

possible to disable the new feature in Dymola. (Having a 

standardized way of disabling the new feature was not 

considered. It would add unnecessary complexity as it is 

always possible to resolve issues in specific models by 

adding new start-values with higher priority.) 

However, even if the priority is predictable and 

controllable for users an additional requirement is that the 

choice is explainable. Thus the logging of start value 

priority was improved to provide those priorities and all 

considered start-values. In this model enabling logging 

gives: 

 

The iteration variable heater.mediums[1].T has been 

selected to have the guess value 353.15. 

 353.15, the start value of heater.mediums[1].T 

given as heater.T_start. At level 1. Original start-

value at level 2. 

 288.15, the start value of 

heater.flowModel.states[2].T given as 288.15. 

 … 

 

The place where T_start was modified gives the level, 

whereas the original start-value level is where 

heater.mediums[1].T.start was modified. Levels are 

counted up from the current model and thus a lower level 

has precedence. 

4 Selective Model Extension 

MCP-0032 introduces selective model extension as a way 

of selectively deciding what to inherit from another 

model, and uses the same keyword break as MCP-0009 

with similar considerations. 

4.1 Goal of Selective Model Extension 

The goal of selective model extension was originally to 

enable unforeseen structural variation by giving the 

possibility to exclude components and connections when 

inheriting, and doing it in a traceable and well-defined 

way, (Bürger 2019). 

It has also been found useful when the structural 

variations could be foreseen, but supporting all possible 

foreseen structural variations would create a too 

complicated model. 

Automatically generated models e.g., for Mechanical 

systems (Elmqvist et al 2009) and Fluid, is thus an 

additional use-case where a model can be reproducibly 

generated (so that the physical models always have the 

correct parameters), and then some connections 

selectively deselected and control components added. As 

an example if the previously shown HeatingSystem had 

been automatically generated from a physical model all of 

the sensors and actuator had likely been missing. Adding 

the flow-sensor would be a typical case where it is 

necessary to deselect a connection to insert a new 

component (and two new connections). 
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4.2 Implementation aspects 

4.2.1 Deselecting connections 

The original test-implementation of MCP-0032 handled 

deselections in the translator and when showing classes in 

the Graphical User Interface, but the deselections were 

written textually (despite the idea naturally being 

described in terms of changes of the diagram). 

What was missing was the User Experience of actually 

deselecting graphically. This was done by adding 

“Deselect” option to the context menu of inherited 

elements (currently with a warning), similarly as the 

“Delete” option. 

That revealed an unforeseen case – a user might first 

deselect a connection and then later deselect one of its 

endpoint components (or attempt to deselect both the 

connection and the component at the same time). That is 

an error according to the specification (since it does not 

make sense to write that textually), and can be avoided by 

adding an extra step removing redundant deselections of 

connections after any change of the deselections. 

4.2.2 Automatic connector sizing 

Applying deselections to Fluid models revealed that it 

interacted with connector sizing in unforeseen ways. 

Fluid models have arrays of connectors with automatic 

sizing (introduced in Modelica 3.1) which ensures that 

different connections to the array are treated as multiple 

independent connectors, and the array is adapted in size. 

Treating them as independent connectors allows correct 

mixing for stream-connectors (Franke et al 2009); and is 

normally not necessary in other domains. 

Note it is possible to use automatic sizing for other 

domains – one well-known use is multi-input logical 

And/Or-blocks; another use is to add parameter-attributes 

to each array element for a physical array of connectors; 

similar considerations apply in those cases. 

Before Modelica 3.6 automatic sizing always created a 

dense array of connectors, and if you removed the 

connection to an element in the middle of the array the 

array was shrunk and elements re-numbered. Note that the 

component with automatic sizing connector can be 

inherited and local connections added – but the inherited 

connections always precede them. 

However, when deselecting it is possible to remove an 

inherited connection to an element in the middle of an 

array of connections – and it is not straightforward to re-

number the remaining inherited connections. More 

importantly it is usually not desirable to re-number them, 

as the intended use of Selective Model Extension is 

usually to re-introduce another connection to the same 

connector element (after adding/removing some 

component in the path of the fluid). 

As an example look at the reusable HeatingSystem 

model, and consider deselecting the connection between 

radiator and tank to add an additional radiator. 

The new model uses deselections: 

 

model HeatingSystem2 
  extends HeatingSystem(break  

     connect(radiator.port_b, 
             tank.ports[1])); 
  Modelica.Fluid.Pipes.DynamicPipe 
                    radiator1(…); 
   … 
equation  
connect(radiator1.port_b, tank.ports[1]); 

… 
end HeatingSystem2; 

 

In the diagram we can see an additional radiator (with 

sensor and wall-components), and that the new connection 

to the tank replaces the existing one. 

 

 
Figure 2 HeatingSystem with extra radiator. 

Instead of renumbering the connections this is 

accomplished by modifying the User Experience of 

graphically connecting to a connector with automatic 

sizing to check if there are any holes due to deselected 

connections (or components) and suggest connecting to 

the missing element(s) instead of automatically adding it 

to the end and resizing the connector. 

 

4.2.3 Possible extensions 

The current selective model extension works for graphical 

objects: connections and components. 

Deselecting non-connect equations is not possible as 

equations are not named (a potential extension) and 

deselecting a component used in such equations does not 

work either. This is not entirely trivial as one problem with 

even deselecting connect-equations is that the deselection 

are by design sensitive to the exact syntax used in the 

equations; and for non-connect equations this problem 

gets worse. However, when models are structured with 

large textual equations it may be useful. Automatically de-

selecting equations would also be useful for removing e.g., 
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initial equations for de-selected components – but it may 

be possible to find another solution for that. 

Additionally even for graphical objects there are some 

possible extensions. When filtering a signal it is currently 

necessary to de-select the connection, add the filter, and 

then reconnect it on both sides. Similarly when using 

selective model extension to replace a non-replace 

component it is necessary to first deselect the component 

and then add a new component and connect it. Simplifying 

that would be possible (a tool might possibly add this 

without modifying the language). On the other hand 

making such operations too easy might risk errors – and 

could lead to under-use of replaceable component, and 

relying on replacing them in this way. 

4.2.4 Implementation variants 

The flattening in Modelica is a hierarchical tree traversal 

where modifications are propagated downwards, and the 

resulting tree is then transformed into a hybrid DAE that 

is simulated. 

The deselection is in the MCP seen as deselecting (or 

pruning) sub-trees after they have been built. That ensures 

that the deselection actually deselects something and that 

the pre-deselection elements are correct; and can also be 

implemented in a straightforward way in the translator. 

Propagating deselections downwards similarly as 

modifications and preventing them from being built does 

not easily allow similar checks, but was implemented for 

the Graphical User Interface. 

The benefit is that it allows the components to 

efficiently directly draw their graphics, instead of 

generating an intermediate graphical representation that is 

later pruned, and it also allows treating deselected 

components uniformly with normal components. A 

uniform treatment of all components in the component 

browser allows a toggle for deselecting components – to 

both show the current status and revert deselections. 

Something similar may be implemented for connections 

in the future. 

5 Connection Restrictions 

Causal connectors (with input and/or output) have 

restrictions to ensure that any input must be given a value 

- they normally imply that if there is an input component 

in the connector it must be connected exactly once from 

the outside (Olsson et al 2008); before Modelica 3.0 this 

rule only applied to entire connectors declared as input. 

Modelica 3.3 added the restriction that conditional 

physical connectors (i.e., connectors with at least one flow 

variable) must be connected if enabled. The idea was that 

if you set a Boolean parameter to enable that connector it 

would not make sense to leave it unconnected, and the 

default semantics for unconnected connectors (zero flow) 

do not always make sense. 

The intended case was the optional support connectors 

in the rotational library where many components have an 

optional support connector. The default (top part of 

diagram) is that it is disabled and instead there is an 

implicit connection to ground (giving zero position 

instead of zero flow) – but if enabled (bottom part) there 

is a new connector for the support of the component. The 

connector is marked with a red circle and the connections 

are red and dashed. 

 
Figure 3 Driveline with implicit grounding (top) and with explicit 
grounding (bottom). 

If the dashed connection to the ideal-gear is missing the 

model would simulate, but generate incorrect results (if 

the torque-generator connection to ground is missing the 

model is singular). The intent of the restriction was to 

catch such cases early and generate good diagnostics. 

However, when checking the Modelica Standard 

Library according to those semantics it was revealed that 

the situation was more complicated – in particular several 

Electrical Machine models had one Boolean parameter 

controlling multiple components including a connector, 

and in those cases leaving the connector unconnected was 

used and normal. 

 
Figure 4 Machine model with unconnected conditional connector. 

The red circle marks the single phase (“star”) connector 

of the terminalBox, it is only available in the Delta-

configuration, but as shown here it is not always 

connected. On the other hand it was known that several 

models with unconditional connectors had assertions to 

ensure that they were connected (from the outside). Note, 

there are also some causal connectors with redundant 
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assertions to check that the connectors are connected, 

those assertions can just be removed – and predate the 

improvements in Modelica 3.0. 

Thus MAP-Lang in Modelica 3.6 decided to replace the 

connection restriction based on whether the connection 

was conditional or not by an annotation indicating whether 

it must be connected, mustBeConnected, (and 

additionally one saying that it may only be connected 

once, mayOnlyConnectOnce). Both of them are given as 

a string indicating the reason – and for a conditional 

connector the restrictions are only active when it is 

conditionally active. 

In this case the optional support flange could have: 

 

Support support( 

      phi=phi_support,  

      tau=-flange.tau) if useSupport 
    "Support/housing of component" 
annotation ( 

  mustBeConnected="If the optional support 

flange is enabled it must be connected", 
Placement(transformation(extent= 

  {{-10,-110},{10,-90}}))); 

 

This ensures that the previous correct examples work, 

and if the connect was missing a specific error message is 

given, e.g. in Dymola 

The connector torque1.support was not connected from 

the outside, and it must be connected since: 

"If the optional support flange is enabled it must be 

connected" 

The mayOnlyConnectOnce can be used in 

combination with automatic sizing to ensure that there is 

only one connection to each array element. 

5.1 Implementation details 

The connection restriction in Modelica 3.3 was not 

originally implemented in Dymola, and shows that even 

seemingly obvious improvements should be fully test-

implemented before being added to the specification. 

Note that one could think of multiple possible 

interpretations of “connected”: an active connect-

statement involving that connector (used for 

mustBeConnected), or that its elements are part of a 

connection-set with additional elements (used for 

mayOnlyConnectOnce with specific restrictions for 

streams-connectors). The latter ensures that redundant 

connections are ignored, and the special rules for streams-

connectors imply that sensor components are ignored, and 

thus one can, e.g., add a temperature-sensor without 

violating the restriction. 

6 Multilingual support of Modelica 

The documentation of the Modelica Standard Library is 

only written in English, whereas many tools support 

translation of their User Experience to different natural 

languages – in order to ease the use for non-English users. 

Modelica 3.6 allows Modelica libraries (including the 

Modelica Standard Library) to provide translations 

without modifying the actual Modelica source code of the 

library; this was proposed and (test-)implemented by ESI. 

However, actually providing a localized User Experience 

requires both that the tool support using the translation and 

that the translation exists for the specific library – thus 

getting the benefit of this addition may take longer. 

 
Figure 5 Dymola parameter dialog for Sine-block. Multilingual 
support means translating the texts in blue ovals. Texts in red ovals 
are already translated as part of tool settings (currently only for 
Japanese). 

6.1 Implementation feedback 

The multilingual support in Dymola 2023x Refresh 1 is 

only partial, but it revealed two important issues to 

consider. 

The first is that a library maintainer for e.g., the 

Modelica Standard Library should update the English 

texts even if they normally work in another natural 

language. The simplest way to handle that is make it easy 

to disable the translations to keep the possibility of directly 

modifying the description and documentation in the 

library. 

The second is that the descriptions often directly and 

indirectly reference the name of components, which 

makes translation more complicated. Note that the names 

of parameters and classes are deliberately not translated 

(and the Modelica language itself also uses English 

keywords). 

Consider a parameter named “startTime”, with a 

description “Output y = offset for time < startTime”. This 

indicates two problems – first “offset” and “y” are other 

component names and should likely not be translated, and 

second that the description does not say that it is a “start 

time” (or “Time Sine Wave Starts”) since it is implied by 

its name. It is obviously possible to handle during the 

translation – but it means that it is not just a matter of 

merely directly translating the existing descriptions. 
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Additionally the existing documentation often also uses 

images for showing how the model works, including the 

names of parameters. Thus the user should at least be able 

to recognize the English parameter names. 

The partial support in Dymola is intended to give 

library authors the possibility to start providing the 

translation, and thus it is possible to generate the entire 

translation template – and use the translation of a few key 

impacting items like class and component descriptions. 

7 Conclusions 

This paper demonstrates that Modelica 3.6 has new 

powerful improvements. Dymola 2023x Refresh 1 and 

3DEXPERIENCE 2023x FD03 supports these features 

(clearer parameter defaults, clearer start-value priority, 

connection restrictions, selective model extension, and 

multi-lingual support), and other tools have also released 

or are working on support for these features – and the goal 

of this paper is to improve portability by helping other 

implementers support these features. In particular, the 

selective model extensions considerations for deselecting 

connections and automatic connector sizing; and user 

experience for undefined modification and start-value 

precedence. 
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Abstract 

This is a proposed optional extension for SSP 2.0 that 

defines how Modelica models can be referenced in SSP. 

It specifies the mapping of key Modelica concepts to SSP, 

which necessitates a few small extensions. The purpose is 

to broaden the scope of SSP to embrace the more powerful 

modeling concepts of Modelica, for environments that can 

support it. 

Keywords: Modelica, SSP, extension, standardization 

1 Introduction 

Using System Structure and Parameterization (SSP) (Mai 

et al. 2019) as the high-level architecture description 

combined with parameter sets, there is a natural desire to 

be able to reference not only FMUs but also Modelica 

component models in SSP. Modelica (Elmqvist 2014; 

MLS36 2023) offers strong modeling capabilities and 

usually yields a more efficient and accurate simulation of 

complex systems compared to component-based 

modeling with FMUs.  

Given the example in Figure 1, We see two control-

oriented blocks defined as FMUs, and then a large and 

more complex physical model with tightly-coupled 

elements that, experience has proven, are not well 

represented by interconnected FMUs. In this example, the 

hybrid driveline uses pre-defined electrical, mechanical 

and hydraulic components from Dymola’s VeSyMA 

library. Templates with replaceable components offers 

great flexibility for exploring design alternatives. Because 

of Modelica’s inherent properties with equations, acausal 

connections, etc., efficient simulation code can be 

generated without sacrificing modular flexibility. 

However, SSP has strong capabilities for combining the 

system topology with meta-data (Heinkel et al. 2022), 

multiple parameter sets, name mapping and basic 

simulation setup (Hällqvist et al. 2021). In total, it yields 

an attractive high-level package for a credible simulation 

experiment (Heinkel and Steinkirchner 2022). 

SSP is attractive for packaging interconnected simulation 

modules with parameter data into a single unit that is 

suitable for simulation. For many tools, connection of 

causal FMUs are sufficient, but as the example shows, 

structures that are more complex can be efficiently 

manipulated and simulated if SSP is extended to the 

Modelica domain. This proposal adds those capabilities, 

without adding undue complexity to tools that chose to 

forego the benefits of Modelica. The purpose of this 

proposal is to provide a minimal solution for mapping 

Modelica models into an SSP context, without any attempt 

to cover advanced Modelica concepts. 

The scope of this document is to define how components 

and connectors can be specified as Modelica models, and 

the mapping of Modelica modifiers to an SSP syntax. 

Further constraints are presented in the Discussion. 

Figure 1. SSP system description using a complex component with Modelica representation. 
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2 Identification of the new SSP format 

Within the constraints of the existing version of the SSP 

specification, it is possible to make extensions using a 

layered standard. Such a layered standard is limited to 

adding annotations and new media (MIME) types. 

Because this proposal defines additional attributes, for 

reasons discussed below, a new version number is 

required. In the intermediate period until a future 

standardization, the SSP design group has decided that 

SSDs (System Structure Descriptions) using this 

extension shall use the version number 2.0-alpha.1. 

3 Representation of components 

For SSP to support Modelica component models, the 

proposed encoding is: 

 The component source attribute contains the path 

of the Modelica model. The source URI modelica: 

designates a model in the namespace of the 

Modelica environment. 

 A media type (formerly known as a MIME type) is 

a two-part identifier for file formats and format 

contents. The media type used for Modelica is 

"text/x-modelica". 

Possibly an optional version number of the Modelica 

library should be added, to support on-demand loading. 

An example of such a Modelica component element is 

shown in Listing 1. 

4 Representation of connectors 

Modelica connectors for built-in input and output types 

are easily mapped to SSP connectors, see Table 1. Doing 

this mapping facilitates connections with FMUs and 

nested SSDs to Modelica components with fundamental 

connector types. 

Modelica Type SSP Type SSP Kind 

RealInput ssc:Real input 

RealOutput ssc:Real output 

IntegerInput ssc:Integer input 

IntegerOutput ssc:Integer output 

BooleanInput ssc:Boolean input 

BooleanOutput ssc:Boolean output 

StringInput ssc:String input 

StringOutput ssc:String output 

Table 1. Mapping of standard connector types in 

Modelica.Blocks.Interfaces to SSP. 

In SSP 2.0 we expect a richer set of types because of the 

adaption to FMI 3. This offers the opportunity to represent 

additional Modelica types, for example arrays and perhaps 

even hierarchically structured types. 

Modelica connectors of more advanced types are mapped 

the same way as Modelica component models. 

 The connector type is ssc:Binary. 

 The connector source attribute contains the full 

path of the Modelica model. 

 The media type is "text/x-modelica". 

 Acausal Modelica connector types are in SSP of 

kind="acausal". This is a generalization 

compared to SSP 1.0. 

For all connector types, the following extension is made: 

 ConnectorGeometry is amended: An optional 

attribute rotation of type xs:double may be 

specified. It should be noted that this extension is 

of general interest to SSP, regardless of Modelica 

support. 

Two such Modelica connectors are shown in Listing 2. 

5 Representation of modifiers 

Modelica modifiers are mapped to SSP parameter sets as 

follows: 

 Literal modifiers of Modelica types Real, Integer, 

Boolean and String are mapped to their 

corresponding types in SSP. 

 Other modifier expressions are mapped to 

ssv:Enumeration, with the value attribute 

containing the Modelica text of the modifier value. 

This is needed to handle expressions, which are 

common in Modelica models.  

An example of a parameter binding is shown in Listing 3. 

A more complete example is shown in Listing 4. 

6 Discussion 

After presenting the actual proposal for extension in 

Sections 3-5, some of the design choices can be discussed. 

6.1 The scope of the proposal 

If we intend to work actively with Modelica models in the 

SSP context (not only display the architecture), we can 

assume that a full Modelica environment (Brück 2023), 

and hence any needed Modelica library, is available. For 

that reason, the SSD only needs to store references to the 

Modelica models. 

Storing the model text of a component model and all 

dependent models would be a major effort (corresponding 

to “Save Total” in Dymola), but doable. If needed, a tool 

could for example store the Modelica text as an SSP 

annotation. It should be noted that this approach would 

fail for many libraries that are deployed in encrypted form, 

or use a license mechanism. 
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<ssd:Elements> 

  <ssd:Component name="sin" 

         type="text/x-modelica" source= 

  "modelica://Modelica.Blocks.Sources.Sine"> 

    <ssd:Connectors> 

       ... 

    </ssd:Connectors> 

    <ssd:ElementGeometry x2="-110" x1="-130" 

         y1="-10" y2="10"/> 

  </ssd:Component> 

</ssd:Elements> 

Listing 1. Representation of a Modelica component. 

 

 

<ssd:Connectors> 

  <ssd:Connector name="y" kind="output" 

    description="Connector of Real output 

signal"> 

    <ssc:Real/> 

    <ssd:ConnectorGeometry x="0.5" y="0.0" 

      rotation="90" /> 

  </ssd:Connector> 

  <ssd:Connector name="flange_a"  

    kind="acausal" 

    description="Flange of left shaft"> 

    <ssc:Binary mime-type="text/x-modelica" 

    

source="modelica://Modelica.Mechanics.Rotati

onal.Interfaces.Flange_b"/> 

    <ssd:ConnectorGeometry x="0" y="0.5"/> 

  </ssd:Connector> 

</ssd:Connectors> 

Listing 2. Representation of Modelica connectors. 

 

 

<ssd:ParameterBindings> 

  <ssd:ParameterBinding 

     type="application/x-ssp-parameter-set"> 

    <ssd:ParameterValues> 

      <ssv:ParameterSet 

                    name="DefaultParameters" 

                    version="1.0"> 

        <ssv:Parameters> 

          <ssv:Parameter 

             name="peak"> 

             <ssv:Real value="1.1"/> 

          </ssv:Parameter> 

          <ssv:Parameter 

             name="startTime"> 

             <ssv:Enumeration value="2*T2"/> 

          </ssv:Parameter> 

        </ssv:Parameters> 

      </ssv:ParameterSet> 

    </ssd:ParameterValues> 

  </ssd:ParameterBinding> 

</ssd:ParameterBindings> 

Listing 3. Example of a parameter biding. 

Advanced Modelica concepts such as inheritance, 

replaceable components/models, re-declarations and 

expandable connectors are intentionally left out because 

there is no natural mapping to SSP concepts. 

6.2 Tools without Modelica capabilities 

We can expect that most tools supporting SSP will not 

have capabilities to simulate Modelica models. Such tools 

can partially support SSP files that use Modelica 

components with little additional effort. The information 

to display components and their connectors, as well as 

connections, is identical. The tool must ignore what it 

cannot process, such as any component source of type 

"text/x-modelica". Simple editing operations are possible, 

assuming that the new attributes described in this 

document are ignored but maintained.  

Note that in either case, SSPs that do not include Modelica 

components are completely unchanged compared to SSP 

1.0. In that sense, this is an unobtrusive extension. 

6.3 Enumeration expressions 

The proposal to handle parameter expressions as 

enumerations can be questioned. Reusing the concept of 

enumeration values can be perceived as a creative abuse 

of the rules, but appears to fall within the constraints of 

SSP. A cleaner solution would be to introduce a new kind 

of value for this case, but that adds another incompatibility 

with SSP 1.0. A further generalization would be to use 

Modelica’s full modifier syntax, which would allow e.g. 

redeclaration. 

It has been proposed to generalize the allowed string for 

e.g. Real values to include an arbitrary expression. This is 

not a good idea because it defeats the possibility to syntax-

check purely numeric parameters sets. 

6.4 Change proposal or layered standard 

When developing a proposed extension of SSP, one is 

faced with the choice of two approaches. 

The first is to make an extension that is as close as possible 

to SSP 1.0 with minimum disruption for existing tools and 

users. SSP is designed to manage this, using the concept 

of Layered Standard that uses a general extension 

mechanism in the form of annotations. Using such 

annotations, it is possible to make a layered standard that 

can (in limited form) be processed by conforming tools 

that know nothing at all about new features. 

The second is to make an extension proposal designed to 

cleanly extend SSP 1.0 into SSP 2.0 with new concepts 

that naturally fit into SSP. In this case, we need to add 

attributes that are not present in SSP 1.0 instead of using 

annotations. Examples are the proposed rotation attribute 

and the notion of acausal connectors. The drawback is that 

tools that strictly conform to SSP 1.0 will not be able to 
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read the new format, which for that reason should be 

identified with a unique version number. 

After due consideration we have respectfully opted for the 

second approach, a non-layered extension. The key reason 

is the future growth path with a potentially wide 

application. If this feature will be a permanent part of SSP 

2.0, we want it to be “natively” integrated and not be 

implemented with annotations. If we started with a layered 

standard based on SSP 1.0, the native representation in 

SSP 2.0 would require yet another migration effort. Some 

aspects of the proposal, such as the rotation attribute for 

connectors, are not inherently tied to Modelica. 

Acknowledgements 

The author wants to thank the members of the SSP design 

group, in particular Pierre Mai, Robert Hällqvist and Peter 

Lobner, for constructive feedback on the proposal. 

References 

Brück, Dag (2023). "SSP in a Modelica Environment" in Proc. 

15th International Modelica Conference, Aachen, Germany.  

Elmqvist, Hilding (2014). "Modelica Evolution - From My 

Perspective" in Proc. 10th Modelica Conference, Lund, 

Sweden.  

Heinkel, Hans-Martin, P. R. Mai, R. Aue, J. Bou, C. Bühler, C. 

Franke and A. Puetz (2022). "SRMD format 

and classifications for metadata". 

https://gitlab.setlevel.de/open/processes_and_traceability/tr

aceability_data/-/blob/main/SETLevel_SRMD_and_classifi

cations_for_metadata.pdf. 

Heinkel, Hans-Martin and K. Steinkirchner (2022).  

"Credible Simulation Process". 

https://gitlab.setlevel.de/open/processes_and_traceability/cr

edible_simulation_process_framework/-

/blob/main/Credible-Simulation-Process-v1-2.pdf. 

Hällqvist, Robert, R. C. Munjulury, R. Braun, M. Eek and P. 

Krus (2021). "Engineering Domain Interoperability Using 

the System Structure and Parameterization (SSP) Standard" 

in Proc. of the 14th International Modelica Conference, 

Linköping, Sweden. 

Mai, Pierre R. et al. (2019). "System Structure and 

Parameterization". 

https://ssp-standard.org/publications/SSP10/SystemStructur

eAndParameterization10.pdf. 

MLS36 (2023). “Modelica – A Unified Object-Oriented 

Language for Systems Modeling, Language Specification 

Version 3.6”.
  

Modelica models in SSP

378 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204375



<?xml version="1.0" encoding="UTF-8"?> 

<ssd:SystemStructureDescription fileversion="4.0.0" generationDateAndTime="2023-08-15T14:16:21Z" 

     generationTool="Dymola by Dassault Systemes" name="CoupledClutches" version="2.0-alpha.1" > 

  <ssd:System description="Drive train with 3 coupled clutches" name="CoupledClutches"> 

    <ssd:Connectors> 

      <ssd:Connector description="Frequency to invoke clutch1" kind="parameter" name="f"> 

        <ssc:Binary mime-type="text/x-modelica" 

source="modelica://Modelica.Units.SI.Frequency"/> 

      </ssd:Connector> 

      ... 

    </ssd:Connectors> 

    <ssd:Elements> 

      <ssd:Component name="sin2" source="modelica://Modelica.Blocks.Sources.Sine" type="text/x-

modelica"> 

        <ssd:Connectors> 

          <ssd:Connector description="..." kind="output" name="y"> 

            <ssc:Real/> <ssd:ConnectorGeometry x="1.05" y="0.5"/> 

          </ssd:Connector> 

        </ssd:Connectors> 

        <ssd:ElementGeometry rotation="270" x1="-40" x2="-20" y1="30" y2="50"/> 

        <ssd:ParameterBindings> 

          <ssd:ParameterBinding type="application/x-ssp-parameter-set"> 

            <ssd:ParameterValues> 

              <ssv:ParameterSet name="DefaultParameters" version="1.0"> 

                <ssv:Parameters> 

                  <ssv:Parameter name="amplitude"> <ssv:Real value="1"/> </ssv:Parameter> 

                  <ssv:Parameter name="f"> <ssv:Enumeration value="f"/> </ssv:Parameter> 

                  <ssv:Parameter name="phase"> <ssv:Real value="1.570796326794897"/> 

                  </ssv:Parameter> 

                </ssv:Parameters> 

              </ssv:ParameterSet> 

            </ssd:ParameterValues> 

          </ssd:ParameterBinding> 

        </ssd:ParameterBindings> 

      </ssd:Component> 

      ... 

    </ssd:Elements> 

    <ssd:Connections> 

      <ssd:Connection endConnector="flange_a" endElement="J1" 

          startConnector="flange" startElement="torque"> </ssd:Connection> 

      ... 

    </ssd:Connections> 

    <ssd:ParameterBindings> 

      <ssd:ParameterBinding type="application/x-ssp-parameter-set"> 

        <ssd:ParameterValues> 

          <ssv:ParameterSet name="DefaultParameters" version="1.0"> 

            <ssv:Parameters> 

              <ssv:Parameter name="f"> <ssv:Real value="0.2"/> </ssv:Parameter> 

              <ssv:Parameter name="T2"> <ssv:Real value="0.4"/> </ssv:Parameter> 

              <ssv:Parameter name="T3"> <ssv:Real value="0.9"/> </ssv:Parameter> 

            </ssv:Parameters> 

          </ssv:ParameterSet> 

        </ssd:ParameterValues> 

      </ssd:ParameterBinding> 

    </ssd:ParameterBindings> 

    <ssd:SystemGeometry x1="-140" x2="140" y1="-100" y2="100"/> 

    <ssd:Annotations> 

      <ssc:Annotation type="com.3ds.ssp"> 

        <smmd:ModelicaMetaData> 

          <UserAnnotation key="description" value="Drive train with 3 coupled clutches"/> 

          <UserAnnotation key="name" value="CoupledClutches"/> 

          <UserAnnotation key="version" value="4.0.0"/> 

          <UserAnnotation key="versionDate" value="2020-06-04"/> 

          <UserAnnotation key="revisionId" value="6626538a2 2020-06-04 19:56:34 +0200"/> 

        </smmd:ModelicaMetaData> 

      </ssc:Annotation> 

    </ssd:Annotations> 

  </ssd:System> 

  <ssd:DefaultExperiment startTime="0" stopTime="1.5"/> 

</ssd:SystemStructureDescription> 

 

Listing 4. CoupledClutches example from MSL with certain parts removed for brevity. 
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Abstract
The FMI standard — just like any other standard — faces
the challenge of balancing generality with enabling spe-
cific use cases. Including every domain or use-case spe-
cific extension in the core standard would significantly
increase its length, making it unreadable and unimple-
mentable. To allow for extensions of the core standard
for specific use cases, the Modelica Association developed
the concept of layered standards, first in the SSP standard
and later in FMI.

This paper presents the concept of layered standards
and describes the layered standards currently under de-
velopment by the FMI Project: XCP support of FMUs,
network communication, and structured variables and n-D
lookup tables in FMI 3.0.
Keywords: FMI, layered standard, XCP, network commu-
nication, regular maps

1 Introduction
1.1 Motivation for Extension Mechanisms of

Standards
The versions 1.0 and 2.0 of the FMI standard (Blochwitz
2011) (Blochwitz 2012) already contain many optional
features, and FMI 3.0 (Junghanns 2021) has increased
their number even more. If additional optional features
were continually added to address specific use cases and
usage domains, the standard would significantly increase
in length and become unreadable and unimplementable.

1.2 Requirements
The layered standards approach is based on a hierarchi-
cal structure of standards that meet the following require-
ments:

• The core standard remains generic to ensure broad
usage and tool support.

• The extensions (layered standards) depend on the
core standard, but not vice versa. This allows for

flexible extension not only by the FMI Project but
also by other organizations, independent of the re-
lease cycle of the FMI Standard.

1.3 Extension Mechanisms for Standards
A layered standard allows specific, new use cases to be
handled, without violating the core standard, but rather
building on it. It is realized by using extension points con-
tained in the base standard, that were either already in-
tended for extension via layered standards, or can be used,
even if not originally so intended.

Some standards are generally intended to be extended
by layered standards, providing just frameworks for this
extension: For example, URIs defined in RFC-39861

(Berners-Lee, Fielding, and Masinter 2005) gain their ex-
pressive power through the extension via scheme defini-
tions, like the file or http schemes.

Other standards provide extension via layered standards
on top of a core standard that already provides a robust set
of functionality. The HTTP standard RFC-2616 (Nielsen
et al. 1999) provides the core functionality behind the web,
while allowing among others for extension via additional
headers, which have been used to provide, e.g., RFC-2965
(Montulli and Kristol 2000) for HTTP State Management
Mechanism — Cookies, or RFC-6797 (Hodges, Jackson,
and Barth 2012) for HTTP Strict Transport Security. Sim-
ilarly, the SMTP standard RFC-2821 (Klensin 2001) pro-
vides the core functionality behind email, allowing exten-
sion via additional options or services, e.g. RFC-3207
(Hoffman 2002) for STARTTLS.

And some standards can be extended via layered stan-
dards even though the base standard only contains very
limited extension points: FMI 2.0, for example, provided
annotations as a user-defined mechanism in the core XML,
and did not prohibit additional files to appear in the FMU
archive, thus allowing extension, while not necessarily

1Here and in following references to IETF standards, not always the
newest incarnation of the RFC is cited, but rather the relevant versions
from a historical perspective of layered standard development.
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having layered standards in mind. The OSI Sensor Model
Packaging (OSMP) (ASAM OSI Project 2022) specifica-
tion is an example of a layered standard that was layered
on top of FMI 2.0.

1.4 The Concept of Layered Standards in the
Modelica Association

For Modelica Association standards, the concept of lay-
ered standards was first introduced for the System Struc-
ture and Parameterization (SSP) Standard version 1.0
(MAP SSP 2019)

They can be defined and released

• by third parties, completely independent from the
Modelica Association Project (MAP),

• by third parties that are endorsed by the MAP, or

• by the MAP project itself, making them a MAP lay-
ered standard.

1.5 The Concept of Layered Standards to the
FMI Standard

In FMI, the concept of layered standards was introduced
in the version 3.0 (MAP FMI 2022b), and later backported
to FMI 2.0.4 (MAP FMI 2022a). The following specific
provisions for layered standards were made, see Figure 1:

• The ZIP structure now contains an "extra/" folder
where additional files can be placed without disturb-
ing the rest of the FMI mechanisms.

• The XML schema allows extensions to elements to
add further information, via Annotation elements.

• For both of these mechanisms the standard provides
suggested rules on naming using reverse domain no-
tation to ensure that separately defined extensions do
not clash.

• New values for matchingRule or terminalKind for
Terminals can be defined.

• Potentially, layered standards could add new func-
tions to the API of the FMU, however no rules to
avoid name clashes have yet been devised as part of
FMI 3.0.

• FMI 3.0.1 introduces a recommendation for a stan-
dardized fmi-ls-manifest.xml file that allows import-
ing tools to detect which layered standards are sup-
ported by the FMU (and which version). This way,
the additional capabilities of the FMU can be used
more easily and a list of supported layered standards
can be displayed to the user.

For FMI 3.0, the standard specifies that an FMU sup-
porting a layered standard on top of FMI 3.0 must at the
same time still be a valid FMI 3.0 FMU. This requirement
puts certain constraints on a layered standard:

Elements according to FMI 3.0
Extension points:

modelDescription.xml
binary variables
annotations

terminalsAndIcons/terminalsAndIcons.xml
/extra directory

schema for fmi-ls-manifest.xml
API functions

FMU supporting a layered standard LS-XXX

Elements or their specialization according to LS-XXX
(optional) additional API functions
/extra/org.example.ls-xxx/ directoy

fmi-ls-manifest.xml
specified additional files

Definition of new values for matchingRule or TerminaKind of Terminals
modelDescription.xml with

standardized annotations
binary variables with specified MIME type

Figure 1. An FMU supporting a layered standard LS-XXX us-
ing the extension mechanisms of FMI 3.0.

• The layered standard can add optional features to the
FMU, like additional files inside the FMU’s zip file,
or it can extend XML files where the base standard
schema allows it.

• On the other hand, the layered standard can place ad-
ditional restrictions on XML elements (e.g. only al-
low the use of certain Variable types), or mandate an
optional FMI 3.0 feature to be required.

In FMI 3.0, some new features that are "orthogonal"
to the core FMI functionality (namely TerminalsAndIcons
and BuildConfiguration), were already developed with
some features of layered standards in mind, e.g., by hav-
ing their own XML files. However, as they are of most
general interest and considered very important, it was de-
cided to include them in the core FMI standard. This has
the benefit of possibly being supported by many tools, but
the drawback that updates of these features are limited to
the release cycle of the core FMI 3.0 standard.

A layered standard could also extend beyond the core
standard, e.g., by introducing additional API functions or
side channels, or by removing limitations on the calling
sequence of API functions of the FMI state machine of a
certain FMI kind. An example would be setting states of
a Co-Simulation FMU after initialization, e.g., in order to
realize nonlinear Kalman filters.

In the next sections we will give examples of layered
standards that are currently in development by the FMI
Project and other institutions or companies.

2 Current Development of Layered
Standards for FMI by the FMI
Project

Currently three layered standards are in development by
the FMI Project. They comprise extensions to FMI that
are of general interest. Additionally, they demonstrate and
standardize how FMI 3.0 and its mechanism can be used
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for new important application domains. Furthermore, the
provision of these layered standards by the FMI Project
will promote the concept and validate the extension mech-
anisms of FMI, potentially leading to further improve-
ments.

2.1 FMI Layered Standard for XCP (LS-
XCP)

2.1.1 Motivation

XCP (Universal Measurement and Calibration Protocol
(ASAM e.V. 2017) ) is a standardized protocol used in
the automotive industry to measure variables and adapt
control parameters inside an electronic control unit (ECU)
through buses like CAN. When wrapping a virtual ECU
(vECU) into an FMU, supporting XCP-based measure-
ment and calibration is required for many simulation use
cases. Before this standardization effort, already several
tools implemented proprietary XCP support for FMUs. As
these are incompatible to each other, the need for standard-
ization became apparent.

2.1.2 Approach

The main idea is to ship an A2L file (see (ASAM e.V.
2018) ASAP2) in a standardized location inside the FMU
and to describe the capabilities of the FMU w.r.t. the XCP
protocol.

The layered standard describes two alternative imple-
mentations depending on the use case and data availability
(MAP FMI 2023b):

• The FMU implements an XCP slave which provides
access to measurement and calibration variables of
the vECU and handles the communication protocol
with the XCP master in the MCD tool. The necessary
information for an MCD tool is given in a description
file which follows the ASAM MCD-2 MC standard
(aka A2L, also ASAP2) and customarily carries the
file extension .a2l. Figure 2 shows a typical design
with an XCP service contained in the FMU.

• An external XCP slave implementation accesses the
memory of the vECU to expose the XCP proto-
col to the MCD tool. In this case, the A2L file
is still shipped with the FMU but the importer
needs to provide the XCP slave implementation.
fmi3IntermediateUpdateCallback calls or the Clocks
mechanism could be used to synchronize DAQ lists.
Figure 3 illustrates a typical design utilizing an ex-
ternal XCP service.

The following extension mechanisms to FMI are used:

• The "extra/" directory is used to provide additional
files: An fmi-ls-manifest.xml provides information
about the capabilities of the FMU and an A2L file
for each supported platform describes the memory
layout.

Appl. Software

BSW

COM Stack BSW

Appl. Software

BSW

COM Stack BSW

XCP
Slave

XCP
Slave

XCP
Master

FMU FMU
Simulator

XCP communication
separated from

simulated network

IP stack of the
host OS

Figure 2. Direct communication of XCP master and XCP slave
via the IP stack of the host OS.

Appl. Software

COM Stack BSW

BSW

Appl. Software

BSW

COM Stack BSW

XCP
Slave

XCP
Slave

XCP
Master

FMU FMU

Simulator

XCP communication
separated from

simulated network

IP stack of the
host OS

Figure 3. Communication of XCP master and external XCP
slave via the IP stack of the host OS.

• A set of (structural) parameters for the config-
uration of the XCP service is introduced, e.g., to
change the TCP port the XCP service is listening on.
FMUs that provide an XCP service should also pro-
vide these parameters that follow a specified naming
convention.

• It is specified when the XCP service should be started
and stopped in order to have an early access to the
XCP calibration parameters.

This layered standard will have no effect on the FMU
interface, nor the C-API behavior. While measurement of
FMU internal variables does not have a numeric effect on
the FMU, so called calibration does. Calibration is the tun-
ing of FMU internal parameters. Such changes will affect
the numeric behavior of the FMU. If the FMU contains
controller code, numeric stability or energy preservation
laws are of lesser concern. On the other hand, plant mod-
els offering XCP access for parameter calibration may in-
troduce surprising numerical effects in solvers that might
require proper handling, like resetting solvers with every
XCP write action.

Therefore, it is necessary to synchronize XCP variable
access (read and write) with the state of the FMU.

2.1.3 Status and Outlook

A proposal for such a layered standard is being devel-
oped on GitHub (https://github.com/modelica/fmi-ls-xcp).
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With small limitations, this layered standard can also be
used with FMI 2.0.4.

Most mechanisms have been agreed upon and first pro-
totype implementations have been realized. The cross-
check of generated FMUs has been started as of writing
this paper by companies such as dSPACE GmbH, ETAS
GmbH, PMSF IT Consulting and SYNOPSYS.

2.2 FMI Layered Standard for Network Com-
munication (LS-BUS)

2.2.1 Motivation

Simulation of modern automotive systems requires net-
work communication between vECUs. Traditional sim-
ulations according to FMI 2.0 or other formats deal either
with continuous signals or with non-standardized and pro-
prietary solutions for exchanging network messages. In
practice, such proprietary solutions often lead to interop-
erability issues when creating simulation systems with vE-
CUs provided by different suppliers.

To minimize the resulting effort, the FMI layered stan-
dard for Network Communication (MAP FMI 2023a) was
introduced. By using FMI 3.0 core standard features such
as Co-Simulation, Clocks, clocked variables and termi-
nals, the layered standard specifies a common bus in-
terface and defines how to emulate a transport layer for
several bus types in detail. While this layered standard
has been initiated with automotive use cases in mind
(with automotive network technologies such as CAN,
LIN, FlexRay, CAN FD, CAN XL and Ethernet), the used
concepts are kept general. This way the layered standard
could also be applied to other domains such as industrial
automation.

2.2.2 Approach

General concepts: The proposal on GitHub
(https://github.com/modelica/fmi-ls-bus) provides
two abstraction layers for different use cases:

• Physical signal abstraction ("high cut"): Use indi-
vidual, clocked signal variables to transport logical,
unit-based values between vECUs, ignoring trans-
port layer-specific properties. The layered standard
for this abstraction basically defines how bus signals
have to be described in the model description file.
It should be noted that creating FMUs with this ab-
straction layer typically requires a network descrip-
tion.

• Network abstraction ("low cut"): This abstraction al-
lows the implementation of virtual bus drivers within
FMUs on the level of the hardware abstraction layer.
It uses clocked binary variables to exchange bus op-
erations between FMUs based on a lightweight pro-
tocol defined by the layered standard. Bus opera-
tions are used to transmit bus messages as well as
bus events like acknowledge or error events. This en-
ables both ideal and more realistic bus simulations,

depending on the capabilities of the FMU and im-
porter. These capabilities can include timing, arbi-
tration, error handling, status monitoring and other
effects.

It is assumed that FMUs will provide only one of these
abstraction layers although it would be technically feasible
to support both.

System composition: In the simplest use case, the im-
porter does not need to provide specific bus semantics of
certain variables of an FMU; it simply forwards variable
values between two FMUs according to the FMI standard.
Such a simulation is shown in Figure 4. In this case, how-
ever, the bus simulation is idealized, i.e., effects like trans-
mission time, arbitration or any other bus-specific behav-
ior are not taken into account.

Importer
Direct Connection

FMU FMU

Figure 4. Direct communication of two FMUs, e.g., vECUs, on
a common importer.

Only if more than two FMUs should be connected to a
single network or a detailed bus simulation is desired in
the "low cut" case, a dedicated bus simulation component
is required. This bus simulation component then forwards
bus operations between multiple senders and receivers and
emulates the bus behavior. This type of communication
allows the simulation of complex bus features, such as ar-
bitration, the simulation of timing or the injection of bus
failures. The supported bus features cannot be specified
explicitly, but refer to a specific implementation of the bus
simulation component and depend on the requirements of
the bus simulation. The implementation of the bus simu-
lation component could be done either by special capabil-
ities of the importer, or by the provision of a Bus Simu-
lation FMU. See Figure 5 for the simulation with such a
Bus Simulation FMU. Here, the importer does not require
any special features for bus simulation.

It should be explicitly noted that the FMUs integrated
in the respective use case do not necessarily have to be dif-
ferent, which means that the same FMU can be integrated
across all system compositions. The interface of the FMU
to the importer is always the same, but a different subset
of the features may be used.

Used FMI 3.0 concepts: The following FMI 3.0 con-
cepts are used by this layered standard:

• FMI for Co-Simulation: The layered standard is
currently being described in the context of the Co-
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Importer

FMU FMU

Bus Simulation FMU

Figure 5. Realization of complex bus simulations by using a
Bus Simulation FMU in addition to the communicating FMUs
(e.g. vECUs).

Simulation mode, as this is best suited for the identi-
fied use cases.

• Hierarchical Terminals are used for grouping of
variables. For the "high cut", the signals are nested
hierarchically in several Terminals. The signals,
together with their associated Clocks, are grouped
based on the PDU and frame to which they belong.
In the final aggregation, all frame terminals are com-
bined in a Bus Terminal depending on their specific
bus type. Within the "low cut" two binary variables
and two Clocks are coupled into a common bus in-
terface aggregated by a Terminal.

• Clocks and clocked variables are used to synchro-
nize the exchange of network data among all FMUs
in the simulated network.

• Binary variables with a dedicated MIME-type are
used for the "low cut" to define the data exchanged
for a specific bus type such as CAN.

• In the "high cut" variant, the "extra/" directory can
optionally be used to ship network description files
such as ARXML, DBC, LDF, Fibex, or others.

Timing aspects: Clocks are used to inform the importer
about new signal values ("high cut") or binary bus oper-
ations ("low cut") to be exchanged. FMUs that want to
send out those values exactly in time can use time-based
Clocks and should support a variable communication step
size. Periodic (fixed-time) FMUs are also supported, but
in this case, multiple sends might fall into one communi-
cation step. While "high cut" signal variables will miss
all but the last value sent, in the "low cut" case, all bus
operations will be buffered in the binary variables.

Example for a "low cut" network interface: Fig-
ure 6 shows an example FMU with two binary vari-
ables Rx_Data and Tx_Data, and two Clock vari-
ables Rx_Clock and Tx_Clock that are aggregated to a
Bus Terminal. Independent of the bus feature Input
and Output represent exemplary additional FMI vari-
ables of the example FMU.

FMU
(Co-Simulation)

StepMode

EventMode

Input Output

Rx_Clock

Rx_Data
(Binary)

Tx_Data
(Binary)

Tx_Clock

Bus
Terminal

Figure 6. Example for a "low cut" Bus Terminal.

Based on this generic bus interface, an FMU can either
be connected to a bus simulation component or directly to
another FMU via an importer.

2.2.3 Status and Outlook

The first iteration primarily focuses on the basic concepts
of the layered standard and the support for simulating
CAN, CAN FD and CAN XL buses. Adding support for
Ethernet, LIN and FlexRay is planned for upcoming iter-
ations. Other bus systems from various domains can be
specified in the future as required.

2.3 FMI Layered Standard for Structuring of
Variables, Maps and Curves (LS-Struct)

2.3.1 Motivation

Grouping of variables, especially parameters: For
many use cases, grouping of several parameters is very
important. In FMI 1.0, 2.0 and 3.0, this can be partially
realized with the "structured naming convention" (MAP
FMI 2022a) which can be used, e.g., to represent array
variables and/or hierarchical structures of variable. How-
ever, FMI 1.0 and 2.0 define scalar variables only, so for
arrays this is not efficient, and generally the "structured
naming convention" is not flexible enough for many ap-
plications.

Realizing n-D lookup tables: A special case of group-
ing variables is the representation of n-D lookup tables. In
the context of the layered standard, an n-D lookup table is
a sampled representation of a function of n input variables
y = F(x1,x2,x3, . . . ,xn) sampled on the vertices of a rect-
linear grid. Such an n-D lookup table could be also called
a map from the n-dimensional domain to a codomain. In
(ASAM e.V. 2018) a 1-D lookup table is called CURVE, a
2-D lookup table is called MAP (see Figure 7), and a 3-D
lookup table is called CUBOID. 4-D and 5-D lookup tables
are called CUBE_4 and CUBE_5, respectively. Higher di-
mensional lookup tables are not defined in (ASAM e.V.
2018).

FMI 3.0 introduces array variables (optionally with
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sizes that can be changed via structural parameters). How-
ever, an n-D lookup table is more than just one array pa-
rameter but it can be represented as a combination of sev-
eral array variables.

Some tools started to implement proprietary solutions
to represent lookup tables with FMI, e.g., through vendor-
specific annotations or naming conventions, and the need
for standardization became apparent.

2.3.2 Approach

Grouping of variables: FMI 3.0 includes a mechanism
for grouping variables through the definition of Terminals
((MAP FMI 2022b). This concept was originally designed
to allow for the connection of a group of variables, typi-
cally inputs or outputs, but also for parameter propagation.
However, the semantics of Terminals are kept general, and
thus they can be used just for grouping of variables. In this
case connecting these "terminals" isn’t the main focus.

n-D lookup tables: Their representation is a specializa-
tion of the more general parameter grouping concept. An
exposed n-D lookup table within an FMU contains the fol-
lowing information:

• Domains: For each of the n dimensions of the lookup
table an array variable (typically a parameter or a
constant) with the sampling points (along this dimen-
sion) of the lookup-table must be referenced.

• Codomain: The sampled function values are stored
in this references n-dimensional array.

• Optionally, for each dimension a variable (typically
an input or a local variable) can be referenced that
represent the current operating point (along this di-
mension)

• Optionally, additional variables containing related
information can be referenced. (e.g., the interpola-
tion algorithm in between the sampling points)

It is intended to use the concept of Terminals for this
purpose by defining specific values for the terminalKind,
variableKind and matchingRule attributes. Note that, e.g.,
CombiTable1D or CombiTable2D blocks of the Modelica
standard library used within an FMU can be exposed with
this approach as well.

2.3.3 Status and Outlook

At the time of writing this paper, this layered standard is in
an early stage. Its development can be followed on GitHub
(MAP FMI 2023c).

3 Layered Standards by other Orga-
nizations and Companies

The concept of layered standards is especially suitable for
specific extensions to FMI that will not become part of
the FMI Core standard and that are not developed by the

Domain x

Dom
ain

 y

Codomain z

Input
in_x

Inp
ut

in
_y

Current
opererating

point

Figure 7. A 2-D lookup table with the current operating point

FMI Project. Thus, companies and other organizations are
encouraged to develop their own layered standards.

First drafts for such layered standards developed have
been already created, e.g., for exchangeable binary codecs
and the realization of binary variables in FMI 2.0 via string
variables (Bosch 2023).

4 Summary and Outlook
The FMI 3.0 standard is currently in a phase of rapid adop-
tion by tool vendors. However, many existing use cases
for FMI-based simulation can already be handled with
FMI 2.0. The switch to FMI 3.0 will be driven by new
use cases with new requirements, such as detailed simula-
tions of vECUs. For their realization with FMI, additional
information and extended capabilities for certain domains
are beneficial and necessary. In this paper we presented
the concept of layered standards to FMI. We expect their
broad adoption in the near future, especially after the pub-
lication of the layered standard examples currently being
created by the FMI Project. During their development the
concept of layered standards and the foreseen extension
mechanisms in FMI 3.0 have already proven very effec-
tive.
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Abstract
This paper presents a low-order aquifer thermal energy
storage (ATES) model for simulation of combined sub-
surface and above-surface energy systems. The model
is included in the Modelica IBPSA Library, which is
a free open-source library with basic models for build-
ing and district energy and control systems. The model
uses a lumped-component method, in which the transient
conductive-convective heat and mass transfer equation is
radially discretized. To verify the accuracy of the model,
we present an inter-model comparison from a simulation
test suite. Results show that the Modelica ATES model is
in good agreement, with a normalized mean bias error for
yearly variation of aquifer temperatures of 1.6×10−2 and
9×10−5 at 1 m and 10 m distance from the well.
Keywords: Aquifer thermal energy storage, Thermody-
namics, IBPSA library

1 Introduction
Buildings account for approximately 30% of global en-
ergy consumption and are responsible for a significant por-
tion of greenhouse gas emissions (IEA 2022). As popula-
tions and urbanization continue to grow, the energy de-
mands of buildings are also increasing. Hence, to limit
climate change, it is important to move away from using
fossil fuels for heating and cooling of buildings.

Thermal energy storage is a key technology to increase
renewable energy utilization. Thermal storage refers to the
temporary storage of thermal energy, which can be used
later to meet heating and cooling demands. By integrating
thermal storage into building energy systems, it is possi-
ble to shift the energy demand daily from peak hours to
off-peak hours, when energy is cheaper and often more
sustainable, or seasonally to shift heat availability from
summer to winter. This leads to significant reductions in
carbon emissions, as well as lower energy costs for build-
ing owners and occupants.

Aquifer Thermal Energy Storage (ATES) is a tech-
nology that improves sustainability of space heating and
cooling for buildings through seasonal storage of heat in
aquifers. An ATES system consists of at least two wells

which are coupled via a heat exchanger to exchange heat
with the associated building. The basic operation of an
ATES system is shown in Figure 1. In summer, cool
groundwater is extracted from one well and circulated
through the building system via heat exchangers or heat
pumps. The water, which is heated during the process, is
then injected into the other well (Dinçer et al. 2010). In
winter the process is reversed. Since all the water from
one well is re-injected into the other well, there is no net
groundwater extraction.

ATES systems are a relatively modern technology. Af-
ter engineering feasibility had been demonstrated in var-
ious projects, ATES technology was successfully estab-
lished in Europe for both heating and cooling of buildings.
Nowadays, more than 3000 ATES are implemented world-
wide with 85% of the installations in the Netherlands
and 10% in Sweden, Belgium and Denmark. Worldwide,
ATES systems transfer a total amount of heat and cold that
is estimated to exceed 2.5 TWh per year (Fleuchaus et al.
2018).

In early research studies on ATES, the focus revolved
around solving technical, geochemical, and engineering
obstacles. In subsequent years, the focus shifted towards
improving system performances including the energy use
of the above-surface plant facilities such as heat pumps,
heat exchangers and cooling machines. Their performance
is influenced by physical and chemical processes occur-
ring underground. Predicting the behavior of these pro-
cesses within a specific project often proves challeng-
ing with analytical calculations. Therefore, mathematical
modeling took a pivotal role in the research and design of
ATES systems.

Several ATES models and simulators have been pre-
sented in the literature. These are mostly developed us-
ing computational fluid dynamics software such as SHE-
MAT (Keller et al. 2020), FEFLOW (Trefry et al. 2007),
MT3DMS (Bedekar et al. 2016), MODFLOW (Hughes et
al. 2017). Such software enable an accurate prediction
of underground conditions, but they have limited capa-
bilities to integrate building simulation tools such as En-
ergyPlus, TRNSYS and Modelica, as only sophisticated
co-simulations techniques can be used. Thus, a detailed
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Figure 1. Basic working principle of an ATES system. The
terms HE and HP stand respectively for heat exchanger and heat
pump

performance analysis of an ATES connected to a build-
ing system typically requires knowledge in co-simulation,
is computationally expensive, and is time consuming
(Beernink et al. 2022; Bloemendal et al. 2018; Scalco et
al. 2022).

Despite the fact that building systems (e.g. heat pumps,
circulation pumps) dominate the primary energy use of
ATES systems, only a few studies investigated the per-
formance of ATES in conjunction with a detailed build-
ing system model. Bozkaya et al. (2018) developed a co-
simulation method that combines COMSOL, MATLAB
and TRNSYS. In this approach, COMSOL was used to
model the ATES, TRNSYS to model the building and its
heating, ventilation and air-conditioning (HVAC) system,
and MATLAB acted as mediator to exchange informa-
tion between the tools. Other studies (Kranz et al. 2013;
Drenkelfort et al. 2015) used TRNAST, an ATES model
developed for TRNSYS. The model is based on a finite-
difference method and it relies on the assumptions that
wells are thermally decoupled from each other. Tugores
et al. (2015) describe a Modelica-based ATES model inte-
grated into a district energy system model. The model was
developed using a finite-volume approach and it was val-
idated against a model simulated in COMSOL. However,
this ATES model is not publicly available.

The literature review indicates that there is a lack of
open-source, low-order ATES models that can enable fast
and accurate geothermal system simulations integrating
both above- and sub-surface system models.

This paper presents the development of an ATES model
implemented in Modelica and to be included in the Mod-
elica IBPSA Library (https://github.com/ibp
sa/modelica-ibpsa). The Modelica IBPSA Li-
brary is a free open-source library with basic models that
codify best practices for the implementation of models for
building and district energy and control systems (Wetter,
Treeck, et al. 2019). It is used as the basis of the four Mod-
elica libraries AixLib (Müller et al. 2016), Buildings (Wet-

ter, Zuo, et al. 2014), BuildingSystems (Nytsch-Geusen et
al. 2012) and IDEAS (Jorissen et al. 2018). Making avail-
able a free and open-source ATES model is expected to
accelerate the uptake of ATES-based energy system solu-
tions towards the decarbonization of the heating and cool-
ing sector.

The paper is structured as follows: Section 2 presents
the modeling approach, Section 3 presents an inter-model
comparison for a test simulation case and the paper ends
with concluding remarks.

2 Methodology
2.1 Modeling approach
To calculate aquifer temperature at different locations over
time, the model solves simplified heat and mass transfer.
The following assumptions were made to simplify the nu-
merical modeling of ATES:

• The computational domain is homogeneous, i.e., ma-
terial properties and physical parameters are constant
across the entire domain.

• The aquifer is confined by two impermeable lay-
ers. Therefore, the vertical infiltration of water is
neglected, i.e., the movement of water is only radial.

• All heat transfer is axial-symmetric, and there is no
vertical heat transfer.

• Natural ground water flow is neglected. Movement
of water is only driven by artificial pumping energy.

The model is based on the partial differential equation
(PDE) for 1D conductive-convective transient radial heat
transport in porous media

ρc
∂T
∂ t

= λ
∂ 2T
∂ r2 −uρwcw

∂T
∂ r

, (1)

where ρ is the density, c is the specific heat capacity, T
is the temperature, r is the radius, λ is the thermal con-
ductivity and u is the velocity. The subscript w indicates
water. The first term on the right hand side of (1) describes
the effect of conduction, while the second term describes
convection.

The soil and its water content are assumed to be in ther-
mal equilibrium, i.e. they can be described by the same
temperature. With this assumption, the properties of the
aquifer are calculated as a weighted average of the values
for dry soil and water

ρc = φρwcw +(1−φ)ρscs, (2)

λ = φλw +(1−φ)λs, (3)

where φ is the porosity [1] and subscript s denotes dry soil.
The geometric representation of the model is illustrated

in Figure 2. The aquifer around the well is modeled as a
radially symmetric disc.
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Figure 2. Geometric domain and discretization approach.

Figure 3. Modelica diagram of the ATES model.

2.2 Modelica implementation
The model implementation in the Modelica language
is based on a lumped-component approach as Model-
ica does not support describing PDEs (i.e., equations
that involve the derivative of variables in spatial direc-
tions). Therefore, we spatially discretized the domain
and implemented the heat transfer process in the aquifer
using a series of thermal capacitances and resistances
along the radial direction. The implementation uses
an array of HeatCapacitor and ThermalResistor
models, as shown in Figure 3. The fluid flow was
modelled by adding a series of fluid volumes, which
are connected to the thermal capacitances via heat
ports. The fluid stream was developed using the model
IBPSA.Fluid.MixingVolumes.MixingVolume. This
model represents an instantaneously mixed volume, where
potential and kinetic energy at the port are neglected.

The thermal capacitance of each cylindrical layer is

Ci = ρcVi, (4)

where Vi is the volume of the ith cylindrical layer. The
thermal resistances are calculated as

Ri =
log( rc,i

rc,i−1
)

2πλh
, (5)

where rc,i is the radius to the center of the ith cylindrical
layer, rc,i−1 is the radius to the center of the i−1th cylin-
drical layer, and h is the thickness of the aquifer.

Based on this lumped-component approach, the heat
balance for the ith cylindrical layer is

Ci
dTi

dt
=

Ti+1 −Ti

Ri+1
+

Ti−1 −Ti

Ri

+ṁwcw

{
(Ti−1 −Ti), if ṁw ≥ 0,
(Ti −Ti+1),otherwise,

(6)

where ṁw is the water mass flow rate. The first and sec-
ond term on the right hand side of (6) represent the heat
conduction to neighboring layers, while the third term rep-
resents the heat convection caused by the movement of
water.

Each cylindrical layer is spaced according to an expan-
sion coefficient. This number is used to increase the size
of the cylindrical layers from the well to the outer bound-
ary of the aquifer.

The friction losses are computed using a power law
model expressed by

ṁw = k ∆pm, (7)

where k is a flow coefficient, ∆p is the pressure difference,
and m is the flow exponent. The flow coefficient is based
on one data point of mass flow rate and pressure differ-
ence, and a given flow exponent.

3 Numerical experiments
3.1 Simulation setup
Ideally, the validation of a mathematical model would in-
clude comparison against measurements. However, mea-
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suring an ATES system, retrieving data, and analyzing
them is a complex and costly task, and we had no such data
available. Therefore, we conducted an inter-model com-
parison, using a simulation test suite developed by Mindel
et al. (2021). This test suite comprises a set of cases to
assess the thermo-hydraulic modelling capabilities of var-
ious geothermal simulators.

The comparison was carried out with respect to the test
case called "TC2 - well-test comparison". The main goal
of TC2 is to compare aquifer temperatures under a typi-
cal operation of an ATES system consisting of injection,
falloff, drawdown, and build-up. Such a sequence repre-
sents an idealized operation of a seasonal storage system.

The injection phase represents the charging period,
while the drawdown phase represents the discharge pe-
riod. Intermediate phases of falloff and build-up represent
periods of storage or inactivity. The overall operational
period is one year, and the sequence of the different phases
is the following:

1. Injection: Water is pumped at ṁw = 1 kgs−1 and Tin j
= 120°C for 120 days.

2. Falloff: Well is shut-in, ṁw = 0 kg s−1, for 60 days.

3. Drawdown: Water is pumped at ṁw = -1 kg s−1 for
120 days.

4. Build-up phase: Well is shut-in, ṁw = 0 kg s−1, for
65.25 days.

A list of relevant input parameters used for the simula-
tions are shown in Table 1.

Table 1. Simulation input specification summary.

Parameter Value Unit

Porosity 0.2 [1]
Soil density 2680 kg m−3

Soil thermal conductivity 2.8 W m−1 K−1

Soil specific heat capacity 833 J kg−1 K−1

Wellbore radius 0.1 m
Domain radius 2400 m
Domain height 200 m
Initial temperature 34 °C
Injection temperature 120 °C

For comparative purposes, temperature values were
recorded via virtual probes located at r = {1,10}[m] for
t = {0,50,100,150,200,250,310,365.25}[days].

3.2 Result comparison
Figure 4a shows the temperature vs. time comparison for
the first probe, located at r = 1 m. Overall, the simulation
results of the Modelica model (named IBPSA_Mod in the
graph) are in good agreement with the other simulators.
As stated in Mindel et al. (2021), the discrepancy between

the initial value of temperature for Tough3, MOOSE and
the other simulators is due to the different injection condi-
tions. These simulators do not use an enthalpy source-type
or a Neuman boundary condition but they use a Dirichlet
boundary condition. It can also be observed that the tool
CODE_BRIGHT presents a time delay.

Figure 4b shows the temperature vs. time comparison
for the second probe, located at r = 10 m. Also in this case,
the Modelica model provides simulation results that are
in good agreement with the other simulators. Data from
Tough3 have been omitted from Figure 4b as they largely
differ from the other tools.

Note that the test suite includes temperature compar-
isons also for probes located further away from the well
(r > 10 m). However, at such locations, only a small
numerical fluctuation can be observed, which is about
±0.01°C around the initial temperature of 34°C. There-
fore, these test cases have not been included in this work.

To quantitatively compare the simulation results, we
normalize the temperatures by their driving potential, and
use the Mean Bias Error (MBE), applied to the point-to-
point difference between the model and a reference value.
We normalized the temperatures using

θ =
T −Tmin

Tmax −Tmin
, (8)

where T is the temperature of the simulation, Tmin is equal
to the initial conditions Tmin = 34°C, and Tmax = 120°C is
the temperature at which the water is injected.

The mean bias error is

MBE =
∑

n
i=1(θm,i −θr,i)

n
, (9)

where the subscript m denotes the model value and r the
reference value. For the reference values, we used the av-
erage of all other simulators, but removed the results from
Tough3, MOOSE and CODE_BRIGHT, as they are seen
as outliers due to different boundary conditions and time
delay.

The results are shown in Table 2 and Table 3. For
the probe located at r = 1 m, the normalized MBE is
1.6×10−2, while for the probe at r = 10 m, it is 9×10−5.
Since both values are positive, it can be deduced that the
Modelica model globally over-predict the results. The
higher normalized MBE for the probe at r = 1 m is mostly
due to the fact that the simulation results of the Modelica
model lie on the high end of the temperature range across
tools.

4 Conclusions
ATES is a technology that enables seasonal storage of
thermal energy in the groundwater. Several ATES models
exist in literature, but these typically use computational
fluid dynamics software, making it difficult to analyze the
interactions between sub-surface and above-surface en-
ergy systems.

Low-order aquifer thermal energy storage model for geothermal system simulation

392 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204389



0 50 100 150 200 250 300 350
Time [days]

40

60

80

100

120

140

Te
m

pe
ra

tu
re

 [
C]

(a)

comPASS
COMSOL
PFLOTRAN
MOOSE

Nexus-CSMP
SEAWATv4
Tough3

CODE_BRIGHT
MARTHE
IBPSA_Mod

0 50 100 150 200 250 300 350
Time [days]

30

35

40

45

Te
m

pe
ra

tu
re

 [
C]

(b)

Figure 4. Temperature variation over time for the probes located at r=1 m (a) and r=10 m (b).

Table 2. Quantitative comparison for r = 1 m.

Time [d] θm θr Error

0 0 0 0
50 8.3×10−1 7.8×10−1 4.2×10−2

100 8.9×10−1 8.5×10−1 3.5×10−2

150 6.5×10−1 6.2×10−1 2.7×10−2

200 4.2×10−1 4×10−1 2×10−2

250 2.7×10−1 2.6×10−1 1.5×10−2

310 1.8×10−1 1.8×10−1 5.8×10−3

365.25 1.4×10−1 1.5×10−1 −1.4×10−2

MBE=1.6×10−2

Table 3. Quantitative comparison for r = 10 m.

Time [d] θm θr Error

0 0 0 0
50 1.2×10−3 4×10−3 2.8×10−3

100 2.2×10−2 2.4×10−2 −1.9×10−3

150 5.5×10−2 5.2×10−2 2.3×10−3

200 7.1×10−2 6.6×10−2 4.9×10−3

250 7×10−2 6.6×10−2 3.6×10−3

310 6.3×10−2 6.2×10−2 6.4×10−3

365.25 5.5×10−2 6.1×10−2 −6.4×10−3

MBE=9×10−5
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We presented the development of a simplified ATES
model to be included in the Modelica IBPSA Library. This
is expected to facilitate the design, operation and control
of ATES-based energy systems, as the ATES model can be
directly connected to above-surface energy system mod-
els, typically by use of a heat exchanger or a heat pump.

The accuracy of the model was validated by perform-
ing an inter-model comparison using results from a simu-
lation test suite. Results showed that the Modelica ATES
model can predict aquifer temperatures with a good degree
of accuracy. The normalized mean bias error at r = 1 m
and r = 10 m distance from the well was 1.6× 10−2 and
9×10−5 respectively.

Further work will focus on the validation of the model
against measurements retrieved from a real-life ATES sys-
tem. Moreover, a detailed application case study consist-
ing of a full coupling between the ATES model and build-
ing energy system model will be developed and the model
will be included in the Modelica IBPSA Library. In addi-
tion, a multi-well model will be developed to enable the
connection of multiple wells within the same ATES sys-
tem.

5 Data availability statement
The model is available from https://github.com
/ibpsa/modelica-ibpsa, commit https://gi
thub.com/ibpsa/modelica-ibpsa/commit/
84f9135e737147fee779962a3b3f33ea404796
57. The validations were performed using commit http
s://github.com/ibpsa/modelica-ibpsa/c
ommit/b073350fe7952dc70ff3f60a014f4431
ad3f5d43.
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Abstract
Dynamic thermo-hydraulic simulations of district heating
networks are an essential tool to investigate concepts for
their sustainable design and operation. The way the nu-
merous heat consumers are modeled has crucial impact on
the simulation performance. The proposed model for heat
consumers is designed to require low computational effort
by using a simplified modeling approach, avoiding state
events and limiting its dynamics, while still reproducing
their main characteristics. It is tested for a demonstra-
tion network, showing its ability to yield plausible results
throughout the whole range of operational states includ-
ing undersupply situations. The results show that the heat
consumer model itself requires little time to simulate but
significantly influences the simulation time for the district
heating network. Fast dynamics and including a bypass
in the model increase the simulation time, so that users
should sensibly choose how to use these options. Further-
more, heat consumer models triggering many state events
result in the highest computational effort.
Keywords: Modelica, District Heating Network, Heat
Consumer, Simulation Performance

1 Introduction
In light of the man-made climate crisis, a fast decarboniza-
tion of heating has to be achieved. Within this transition
of the heat sector, district heating is a recommended so-
lution, especially for densely populated areas, as it facili-
tates a combination of various renewable heat sources, ex-
cess heat usage and heat accumulators (even seasonal) and
coupling to the electricity sector to reach a economically
viable sustainable heat supply system, so called 4th gener-
ation district heating (Lund et al. 2014).

Models for dynamic thermo-hydraulic simulations of
the district heating networks (DHN) are an essential tool
within the transformation towards 4th generation DH.
Their purpose is to investigate how decentralized or fluc-
tuating renewable heat supply units and heat accumula-
tors may be integrated into DHNs (understand dynamic
effects, develop control strategies), how and to what ex-
tent the DHN itself acts as a heat storage and which side-
effects, such as pipe fatigue through temperature cycles or
hydraulic bottlenecks, new units and operating strategies
entail.

A major challenge in the simulation of DHNs is to find

a compromise between model accuracy and computational
effort. Within a DHN the heat consumers (HC) are very
numerous so that the effort for simulating them is crucial
for the overall simulation time. Moreover, the HCs have a
major impact on dynamics of mass flows and temperatures
within the network and thus determine the effort to com-
pute the fluid and temperature propagation in the pipes.

Within this contribution a HC model for simulations of
DHNs is described and evaluated. The goal of the pro-
posed HC model is to provide plausible behavior through-
out the whole range of possible operation states (including
undesirable situations, such as too low supply line temper-
atures or differential pressures) while keeping the compu-
tational effort for simulations as low as possible.

2 Simulation of DHN Using Modelica
Modelica, being an acausal multi-physics modeling lan-
guage, is generally well suited for dynamic simulations
of DHNs with their thermal and hydraulic effects and the
option of flow-reversals.

2.1 Models for DHN and HC
The Modelica Standard Library (Modelica Association
2019) provides a large number of base models (such as
the fluid-connector) and component models for thermo-
fluid systems. Moreover, van der Heijde et al. (2017) de-
veloped and validated a dynamic plug-flow pipe model,
that is freely available via the Modelica IBPSA Library
(International Building Performance Simulation Associa-
tion 2018) and which is used within other libraries with
models specialized for the simulation of DHN.

2.1.1 AixLib

AixLib is an open-source Modelica library for the simu-
lation of energy systems on building to district scale de-
veloped at RWTH Aachen University (Müller et al. 2016;
Maier et al. 2022; RWTH-EBC 2021). It extends the
Modelica IBPSA Library and has a section DistrictHeat-
ingCooling with models specialized for the simulation of
DHN.

Within this section, the library provides so called
"open-loop" models for HCs, which are similar to the HC
model presented in this contribution. The open-loop de-
sign means, that the models do not contain a fluid model
that connects flow and return line, which allows to decou-
ple the respective equation systems for fluid flow and pres-
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sures in the DHN. Stock et al. (2023) state that open-loop
models reduce the computational effort and yield valid re-
sults when the research focus is on heat distribution and
not on control of the HCs or heat sources. They success-
fully evaluate the hydraulic effects of the integration of a
waste heat source into an existing DHN at different tem-
perature levels.

The HC models determine the required mass flow based
on a heat load input and the temperatures. The return line
temperature is either a constant value or set to achieve
a constant temperature difference to the supply line. A
bypass that maintains a minimum mass flow may be in-
cluded. It is active whenever the HC mass flow would drop
below a threshold (irrespective temperatures and pres-
sures), sets the heat flow to zero and triggers state events,
whenever activated or deactivated.

2.1.2 DisHeatLib

Leitner et al. (2019) describe a method to assess the oper-
ation of coupled heat and power networks and published
their Modelica models within the library DisHeatLib
(AIT-IES 2022), which builds upon the Modelica IBPSA
Library and contains a variety of models for DHN Simu-
lations.

To model HCs, the library provides models for demand
(intended as a simple representation of a heat load) and
substation (modeling heat transfer from the network to the
HC). The substation models provide a variety of technical
configurations (with or w/o heat exchanger, optional stor-
ages, optional bypass), so that these technical options and
their behavior within a DHN can be examined. However
all HC models in DisHeatLib include control loops, fluid
models that connect supply to return line and some have a
high degree of detail as the various components are explic-
itly modeled, which results in high computational effort to
simulate a DHN with numerous HCs.

2.1.3 DHNSim

At the Department of Solar and Thermal Engineering of
the University of Kassel, Modelica models for long-term
simulation of whole DHNs have been developed within
the in-house library DHNSim. The pipe model in DHNSim
builds upon the plug-flow pipe model by van der Heijde et
al. (2017). Furthermore, the library contains models for
supply units, the HCs (described in this contribution, see
section 3) and the required environment to easily build a
consistent DHN model. Zipplies, Orozaliev, and Vajen
(2023, in press) give an overview on the structure, goals
and general implementation of the models.

2.2 Strategies for Fast Simulations of DHN
Figure 1 illustrates a general consideration of the drivers
for computational effort of DHN simulations. On the one
hand, the pipe network model results in a large system of
equations that has to be solved for each simulation step
and numerous states to integrate. Thus, it determines the
effort to calculate one simulation step. On the other hand,

the models of the supply unit and HCs will not cause much
computational effort themselves, if they are simple. How-
ever, as they determine the mass flows, temperatures and
pressures in the network (and their derivatives), they will
have a crucial impact on the number of steps that a vari-
able step size solver will have to calculate. Given this
consideration, the following subsections describe general
strategies for fast simulations of DHN that apply to the
proposed HC model, which is described in detail in sec-
tion 3.

2.2.1 Simplified Modeling Approach of HCs

The simulation of a large branched or even meshed pipe
network is a complex task that requires high computa-
tional effort. Therefore it is recommendable, or even abso-
lutely necessary, to limit the degree of detail of the models
of the supply unit and the HCs in the DHN to a minimum
extent that still leads to valid results. This applies espe-
cially to the HCs, as they are numerous and determine
the mass flows and return temperatures for the pipe net-
work. Thus, the proposed HC model does not contain de-
tailed physical models for the actual components of sub-
station and secondary side (pipes, valves, heat exchangers,
pumps, heat storage, radiators, floor heating etc). This
simplified modeling approach allows to follow the open-
loop design implemented in AixLib (see section 2.1.1).

The HC model simply uses a prescribed heat flow (or
optionally mass flow) as input and uses the actual tem-
perature in the supply line and a prescribed return line
temperature (constant value or as additional variable in-
put) to calculate the mass flow. While this seems to be a
very simple modeling task at first glance, some more de-
tails and features are needed to obtain fast, stable and valid
simulations with such a HC model. These are described in
section 3 and include major improvements compared to
the open-loop models in AixLib.

2.2.2 Avoiding Events

Simulation models may include equations or algorithms
that abruptly change the model behavior. Examples are
flow reversals (mass flow changes sign) or switching units
on and off (boolean variable changes value). Within Mod-
elica these moments are called "events" and whenever the
integration algorithm detects such an event, the integra-
tor tries to determine the exact point of time, when this
abrupt change occurs, and restarts the simulation with the
changed model behavior from this point, so that the tran-
sition from one state to the other is simulated correctly.

While this approach avoids inaccurate results or even
failures of the simulation that might occur otherwise, it
also adds computational effort to the simulation. Thus,
models should generate events only if necessary and high
numbers of events should be avoided in the use case of
long-term simulations of large DHNs.

If a variable is continuous at an event, it is pos-
sible to prevent the event using the Modelica built-
in function smooth() (Fritzson 2015). Furthermore
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Figure 1. Drivers for computational effort of DHN simulations: While the model of the pipe network dominates the effort to
calculate one step, models of the supply unit and even more of the HCs determine the number of steps, that the simulation requires.

the Modelica Standard Library provides the function
Modelica.Fluid.Utilities.regStep() to approx-
imate a step by a smooth transition, that is once contin-
uously differentiable and prevents events (Modelica As-
sociation 2019). Both functions are very useful to avoid
events in the HC model and are used in the implementa-
tion wherever applicable.

2.2.3 Limiting Dynamics of the Models

When modeling DHNs, it is useful to define which time
scale of dynamic effects is within scope and which not.
Then, the dynamics of the models can be restricted to this
time scale, so that the effects out of scope are not modeled
and simulated to avoid computational effort. In fact, pre-
venting the HC model from imposing instant changes of
mass flows is not a limitation of the model, but a realis-
tic feature, because the actuators need some time to react
to changing set-points (e.g. valve opening/closing time,
usually seconds to a few minutes).

3 Description of the Proposed Heat
Consumer Model

The implementation of the proposed HC model follows
the previous considerations to keep computational effort
for the simulation of the DHN low.

3.1 Heat Consumer Model Design
Figure 2 gives an overview on the design of the proposed
HC model. The open-loop design (more detail in sec-
tion 2.2.1) is obvious as there is no fluid model connecting
the supply line with the return line. The model is split into
a bypass and a load part, which both are modeled via a
control block that calculates set-points for mass flow (and
return temperature in the latter case) and two mass flow
sources that generate the prescribed in- and outflows. The
calculation of the mass flows is based on the input load

time series (connected via a data bus), the measured differ-
ential pressure in the load and an input value of the supply
line temperature, which is connected to the end of the sup-
ply line pipe model right before the HC to provide a valid
temperature value during zero flow periods. The differen-
tial pressure signal is also connected to the data bus for
further processing by the network’s differential pressure
control.
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Figure 2. Diagram layer of the proposed HC model.

3.2 Determining Load Mass Flow

The determination of the load mass flow
.

mload within the
load control block deserves special attention. It is calcu-
lated from the prescribed heat flow

.
Qload, the heat capacity

of water cp and the temperatures in supply TSL and return
line TRL according to equation 1.
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.
mload =

.
Qload

cp · (TSL −TRL)
(1)

However, a robust implementation of this simple equa-
tion according to the previously described goals and
strategies requires some more details.

First,
.

mload is limited to a meaningful range between 0
and a maximum mass flow m_flow_max.

Second, there may be situations, when the supply line
temperature is close to or even below the set-point return
line temperature, causing equation 1 to yield infinite or
negative values. In such cases, it can be assumed that the
set point temperature for the supply line of the secondary
side of the substation is not reached, causing the controller
and regulator of the substation to increase the primary
mass flow as much as possible. Furthermore, it is assumed
that in these situations the amount of heat extracted from
the mass flow is negligibly small. The increase in pri-
mary mass flow is modeled as a smooth transition between
normal and undersupply operation with a regStep() for-
mula, increasing the mass flow from

.
mload (calculated ac-

cording to equation 1) to m_flow_max. The prescribed
return line temperature changes to the actual supply line
temperature when the difference between flow and return
line temperature crosses zero using a smooth() operator
to avoid events.

Third, the HC model is intended to be used within a
DHN model with a differential pressure control that as-
sures a minimum differential pressure. In cases where the
heat supply unit is not able to provide sufficient differen-
tial pressure at HCs (below 90 % of the rated minimum
differential pressure), the model reduces m_flow_max
with another regStep() formula, finally reaching 0 when
the differential pressure is 0 or below. This simple and
computationally light implementation allows to detect
such pressure undersupply situations and provides insight
into which units would be affected to what extent. How-
ever, it is not a physically exact representation of the mass
flow and pressure loss conditions in such a situation. This
feature might add an algebraic loop to the model, as it in-
troduces an interdependence of differential pressure and
mass flows at the HCs. The resulting nonlinear equation
system would be solved during each time step at high com-
putational effort. This is avoided by the next feature.

Fourth, in line with section 2.2.3, the mass flow variable
has a time constant tau_m_flow. This is implemented
by introducing two mass flow variables: m_flow_fast is
calculated according to equation 1, while the mass flow
to be set in the model m_flow_set is delayed by using
the time constant tau_m_flow, as shown in listing 1 (im-
plementation adapted from Lawrence Berkeley National
Laboratory (2023, Section 3.3.4)). This feature intro-
duces state variables into the mass flow calculation, so that
the algebraic loop mentioned in the previous paragraph is
avoided.

Listing 1. Implementation of the mass flow time constant

der(m_flow_set) = (m_flow_fast-
m_flow_set) / tau_m_flow;

Finally, as an optional feature, the consumer model is
able to include a hysteresis: Whenever the prescribed heat
flow falls below the switch-off threshold,

.
mload is set to

zero until the value rises again above the switch-on thresh-
old. This feature may reduce computational effort if the
time series of the prescribed load value includes longer pe-
riods of negligibly low values: Instead of simulating them
in detail, they are omitted. However, this feature will trig-
ger events whenever the thresholds are crossed at the cost
of additional computational effort so that the simulation
time may even increase.

3.3 Determining Bypass Mass Flow

The bypass is intended to maintain a certain minimum
temperature in the supply line before the HC. To that end,
the bypass control sets the bypass mass flow depending
on this temperature: When it is high enough, the mass
flow is 0. Once the temperature approaches the set-point
temperature, that the bypass shall maintain, the mass flow
is gradually increased within a bandwidth around the set-
point temperature until it finally remains at a maximum
mass flow, if the supply line temperature is at or below the
lower end of the bandwidth. Once again, this behavior is
implemented using regStep(), as this yields a smooth
characteristic and does not trigger events.

In addition, alike in load control, the maximum bypass
mass flow is reduced in cases of pressure undersupply.

The return temperature of the bypass mass flow is sim-
ply set to the actual supply line temperature, as it is as-
sumed that no heat is extracted from this mass flow.

4 Evaluation of the Heat Consumer
Model

To evaluate the HC model concerning the results and its ef-
fects on simulation performance, a demonstration network
is modeled and simulated in Dymola using the models of
the in-house library DHNSim. The simulations are run
with the same network and heat load data for different HC
model configurations to investigate their effects on simu-
lation results and performance. Additionally, simulations
are also performed with the two open-loop demand mod-
els from AixLib.Fluid.DistrictHeatingCooling
(VarTSupplyDp and VarTSupplyDpBypass, constant
return temperature) and the most simple configuration of
DisHeatLib.Demand.Demand (constant return temper-
ature, linearized flow characteristic in the flow unit). For
the last, it was a difficult task to obtain stable operation of
the HCs due to oscillations in the internal control loops.
Table 1 gives an overview on the simulation runs and their
specifications.
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Table 1. Overview on the simulation runs

Name Specifications (HC model and other)

main DHNSim, constant return temperature, with bypass, tau_m_flow= 180 s, no hysteresis
fastDynamics alike main , but tau_m_flow= 30 s

noBypass alike main , but no bypasses
hysteresis alike main , but with hysteresis to swith load mass flow off

onePipe alike main , but pipe network contains only one pipe

AixLib AixLib open-loop demand model, constant return temperature
AixLibBypass AixLib open-loop demand model, constant return temperature, with bypass
DisHeatLib DisHeatLib demand model, constant return temperature, linearized flow characteristic
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TSL: 70 – 80 °C
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Figure 3. Layout of the demonstration network with the main parameters: Nominal heat load and constant return line temperature of
HCs (HC 1 to HC 6), supply line temperature at the supply unit and nominal diameter and length for the pipe segments. Simulations
were run for different network sizes where the network part in brackets exists 1, 3 or 9 times after the first pipe.

4.1 Demonstration Network

The basic demonstration network is a fictional, simple
DHN with one supply unit and 6 HCs. The pipe network
consists of 17 pairs of pipes (supply and return line), in-
cluding house lead-in pipes, and contains one loop to in-
troduce a certain degree of complexity (the loop results in
a non-linear system of equations for the mass flows and
pressures). The pipe closing the loop (DN 50) has been
split into two parts to obtain a temperature value in the
middle of the pipe for analysis. To analyze the effect of
different network sizes, this basic layout ("small") was re-
peated 3 times ("medium") and 9 times ("large"), branch-
ing off after the first network pipe. The layout and the
main parameters are depicted in Figure 3.

The HCs are simulated with 6 real, measured heat load
profiles from an existing DHN with a resolution of 15
min. For the "medium" and "large" simulation, the pro-
files were reused with random variations (normal distri-
bution, standard deviation 10 %), so that the peaks and

valleys do not perfectly coincide. The heat load profiles
consist of exemplary periods for high load, medium load,
low load (each three days) and an undersupply situation
(two days, with temporary drop of supply line temperature
to 50 °C). The supply line temperature at the supply unit
is set via a temperature curve between 70 - 80 °C, apart
from the undersupply situation, where the actual mea-
sured supply temperatures are used. During the simula-
tion, these values are interpolated using smooth splines
with Modelica.Blocks.Sources.CombiTimeTable.

The heat load profiles, being real measurement data,
show higher dynamics (frequent peaks and valleys) than
common synthetic heat load profiles. This is most pro-
nounced during medium and low load period at HC 5 and
HC 6, which show frequent switching between zero and
substantial load values. Furthermore, most of the load pro-
files include periods with zero load for some hours. Thus,
these heat load profiles are challenging, but yet realistic,
examples of heat load profiles that may be used in the sim-
ulation of DHNs.
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4.2 Evaluation of Simulation Results and Per-
formance

To check if the demonstration network is configured real-
istically, some general indicators are estimated from the
results of the main simulation run (low load = winter,
medium load = spring and autumn, high load = summer).
For the basic small demonstration network and the main
simulation run, the estimation yields a total annual heat
demand of 3.2 GWh/a, relative heat losses of 12 % and
a relative hydraulic energy for the circulation of 0.22 %.
Given the route length of 2.2 km, the linear heat density
is 1.3 MWh/(m a). The mass flow weighted mean temper-
atures at the supply unit are 72 °C in the supply line and
48 °C in the return line. These values are considered plau-
sible for a medium sized DHN with network temperatures
as low as possible while still supplying old buildings and
preparation of domestic hot water.

4.2.1 Comparison of General Simulation Results

In general, the simulation results of the different HC mod-
els should be similar. In the following, the results are com-
pared to the main simulation run and major differences are
reported and explained.

The total heat from the supply unit does not differ more
than 3 % compared to the main result for all models and
periods, which indicates a good agreement of the models.

During the low load period, it makes a major differ-
ence whether the HC model includes a bypass. Compared
to main, models without bypass (noBypass, AixLib and
DisHeatLib) result in about 9 % less heat losses, because
the network is not kept hot and lower return temperatures
occur. Furthermore, they yield a 20 to 30 % higher max-
imum heat flow due to mass flow peaks after the supply
line temperature had cooled down. In addition, the max-
imum pressure difference at the supply unit is 13 to 19 %
lower, due to less mass flow in the network. Accordingly,
the total hydraulic energy at supply unit is about 30 % less
than with bypasses in this period.

Furthermore during the low load period AixLibBypass
has 7 % less heat losses than main, as the constant bypass
flows are not sufficient to keep the network hot (but also
should not be tuned to the necessary value, because too
much load would be omitted then).

In the undersupply period, the AixLib models have 13 %
lower maximum pressure differences, as they assume a
constant minimum temperature difference (set to 5 K in
this case), while DHNSim models set mass flows to a max-
imum allowed value. Furthermore, the hydraulic energy is
20 to 30 % less without bypasses (noBypass, DisHeatLib)
and 60 % less for the AixLib models, due to lower mass
flows in both cases.

Another difference is that the maximum differential
pressure at the supply unit is 16 % higher for the AixLib
models during the high load period, due to a single, prob-
ably faulty, data point in the heat load profile of HC 4
(critical path), with a prescribed heat flow of 35 kW (al-

though rated to 17.5 kW). The DHNSim models limit the
mass flow to twice the nominal mass flow (parameter may
be changed to other values) which limits the heat load in
this case to 25 kW.

4.2.2 Effect of Mass Flow Time Constant

The comparison of the heat and mass flows at HC 6 for
the simulation runs main and fastDynamics in Figure 4
demonstrates, how a heat load peak is delayed and has a
reduced peak value compared to the input signal due to the
added dynamics. The smaller the value of tau_m_flow,
the more immediate is the reaction of the HC model to the
input signal. Depending on the goals and available input
data, the user of the model shall choose a sensible value
for tau_m_flow. For input time series at a resolution of
15 min to 1 h a value of 180 s has proven to be suitable in
previous simulation studies.

Figure 4 also shows, that tau_m_flow has an impact
on bypass operation. After 130 h, the heat flow signal, and
subsequently the mass flow, drops to zero. However, after
a short zero flow period, the supply line temperature (not
shown for clarity), drops below the set point of the bypass,
causing it to increase the mass flow. The bypass in fastDy-
namics reacts earlier, so that the cooled house lead-in pipe
gets flushed within less time than in main. The slower dy-
namics in main finally cause a slightly higher peak mass
flow, while in fastDynamics the slopes of the mass flow
are steeper. However both configurations maintain the re-
quired supply line temperature at the HC.

4.2.3 Bypass Behavior

Bypasses are intended to maintain a small mass flow
through HCs during zero load periods so that the sup-
ply line temperature does not drop too much. Figure 5
shows the results for temperatures and mass flows at HC
6 during a period without heat load for main, noBypass
and AixLibBypass. In main, the bypass starts to operate
once the supply line temperature approaches 65 °C. The
mass flow shows an decreasing oscillation, that is caused
by the interplay of the thermostatic control approach and
the delay due to the dwell time of the water in the house
lead-in pipe. As long as the bypass operates and the heat
load is zero, the return line temperature equals the supply
line temperature. The bypass successfully maintains the
required temperature of about 65 °C. Once the heat load
rises (at 133.5 h), the return temperature smoothly drops.

In contrast, in noBypass the mass flow is zero during
the period without heat load and the supply line tempera-
ture continuously drops. As a consequence, a mass flow
peak occurs afterwards until the supply line temperature
rises, causing steep slopes of mass flow and temperature.
Nevertheless, the implementation of the HC is robust also
without bypass, due to the limited dynamics and maxi-
mum value of mass flow and its reduction, if the differen-
tial pressure is too low. This prevents the HC model from
imposing too high mass flows after zero flow periods, that
might cause a simulation failure.
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Figure 4. Example of the effect of the mass flow time constant at HC 6.
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Figure 5. Demonstration of the bypass part of the consumer model.

AixLibBypass maintains a constant minimum mass
flow. If tuned properly, this approach succeeds to maintain
a sufficient supply line temperature. However, the bypass
is active irrespective the supply line temperature, when-
ever the load mass flow reaches the set point, as can be
seen at 134.5 h. The implementation of the return line tem-
perature is not robust (switches at an undetermined time
instant, here 131.7 h) and causes abrupt changes.

For the demonstration network, the noBypass imple-
mentation requires substantially less time to compute (see
section 4.2.6), which indicates that the reduced effort (no
state for and calculation of bypass mass flow) outweighs
the computational effort to simulate the higher dynamics
after zero flow periods. In the end, it is up to the user,
if a bypass shall be included, depending on whether it is
intended and realistic to have them.

In general, the proposed bypasses work as intended: In
the main simulation run, only HC 6 has supply line tem-
peratures below 64 °C in the three days low load period,
in total during 1 h, affecting a heat consumption of 9 kWh.
In contrast, without a bypass, at all HCs supply line tem-
peratures below 64 °C occur, with the strongest effect at
HC 6 during the low load period for 30 h and 300 kWh.

The bypass implementation of AixLib does not reduce
the duration of temperature undersupply significantly for
two reasons. First, bypass operation does not depend on
temperature but on heat load, so that in some periods the
bypass would not act, although the supply line tempera-
ture is low. Second, and more important, it was not pos-
sible to tune the bypasses of critical consumers to a value
that always maintains the supply line temperature, because
it was chosen to limit the maximum allowed bypass mass
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Figure 6. Demonstration of the effect of hysteresis at very small heat load peaks.

flow to 10 % of nominal mass flow, as too much heat load
was omitted otherwise.

4.2.4 Load Hysteresis

The hysteresis feature explained in section 3.2 affects the
behavior of the HC model when the prescribed load value
is close to zero. Figure 6 shows an example for HC 3,
comparing the results for heat and mass flows from main
and hysteresis. In the period, two very low heat load
peaks occur. The first (210.5 - 212 h) reaches values above
the hysteresis thresholds. While the main result shows a
smooth rise of heat flow following the set-point, hysteresis
has a zero heat flow until the threshold is reached (right be-
fore 211 h), followed by a steep rise of heat flow until the
required values is reached. At the falling slope, the heat
flow suddenly falls to zero, once the switch-off threshold
of the hysteresis is crossed (at 211.7 h). The second heat
load peak (212 - 213 h) never crosses the switch-on thresh-
old, so that it is completely ignored in hysteresis. The
mass flows are very similar, as they are dominated by the
bypass mass flow that is similar for both results.

This example shows, that the hysteresis approach may
avoid the calculation of negligible heat flows. However, it
imposes additional computational effort due to the events
that are triggered whenever thresholds are crossed and the
steep slopes that occur right after every switching.

4.2.5 Undersupply

The proposed HC model is designed to provide plausible
results during undersupply situations (supply temperature
and/or differential pressure too low). Figure 7 shows the
simulation results in such a period for main, noBypass and
AixLib at HC 4, which is at the end of the critical path.
The supply line temperature (upper graph) falls steadily
and approaches the return line temperature, and as a con-
sequence, the proposed HC model increases the mass flow
(lower graph) to reach the needed heat flow.

In main the first phase of undersupply starts at about
281 h when the mass flow reaches its maximum (first ver-
tical dotted line). From this point onward, the set point
heat flow is not covered.

The second phase, starting after 282 h is marked by in-
sufficient differential pressure: Due to the enormous in-
crease of mass flows in the network, pressure losses in the
pipes rise, causing high differential pressures to be pro-
vided by the heat supply unit. At a certain point, the upper
limit of differential pressure is reached so that the required
minimum differential pressure at the HC (here 0.6 bar) is
no longer maintained. As a consequence, the load model
reduces the mass flow.

Finally, after 284 h (third dotted line) the supply line
temperature even drops below the set-point return temper-
ature, so that the heat flow is zero and the return line tem-
perature equals the supply line temperature.

Once the supply line temperature rises substantially at
287 h, the required differential pressure is restored and the
HC returns to normal operation.

DisHeatLib behaves similar to main, as the flow unit in
the model limits the mass flow to a maximum value ac-
cording to the available pressure difference. The param-
eterization is derived from nominal values and results in
rather low maximum mass flows and more undersupply
than main.

The AixLib model however deals differently with the
situation: The model assumes a minimum temperature dif-
ference between flow and supply line (here 5 K), that is
used whenever the supply line temperature is low. This
implementation leads to smaller mass flows compared to
the proposed HC model and lets the model follow the set
point heat flow, so that no undersupply occurs. However,
the return temperature drops to 45 °C, and might even drop
further, which would be unrealistic if the secondary return
temperature of the actual HC would be higher than that.
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Figure 7. Demonstration of how the consumer models deal with the undersupply situation.

4.2.6 Simulation Performance

For a profound analysis of the influence of the different
implementations of HC models and network sizes on sim-
ulation performance, the CPU-time for integration is eval-
uated (mean of 3 runs, integration algorithm Dassl, tol-
erance 1× 10−4, on a machine with CPU Intel i5-4300U
@ 4x1.9 GHz, RAM 8 GB).

Small
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Medium
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Large
54 HCs

0.0

0.5

1.0

1.5

2.0

CPU-time relative to 
: 6 s 48 s 905 s

main
fastDynamics
noBypass
hysteresis
onePipe
AixLib
AixLibBypass
DisHeatLib

Figure 8. Comparison of CPU-time of the different HC models
at different network sizes. Values are shown relative to main.

Figure 8 shows the CPU-time relative to the main
model. OnePipe requires only a small fraction of CPU-

time compared to main, which proves, that the HC model
itself does not require much computational effort. How-
ever, the implementation of the HC model causes major
variations of CPU-time for the same network, with an in-
creasing importance for larger models (more than factor
3 for the large model). The models with open loop de-
sign and without bypass (noBypass and AixLib) have the
lowest and very similar CPU-times. The proposed model
main is the fastest with a bypass. FastDynamics lead to
a minor increase in CPU-time. DisHeatLib requires 30 %
and AixLibBypass 50 % more computational effort. The
hysteresis implementation causes the longest CPU-times.

The absolute values (indicated in Figure 8 as well) show
that CPU-time scales non-linear with model size, reaching
about 900 s (main) for the large demonstration network.
Assuming a linear dependence on simulated time, an an-
nual simulation would take about 8 hours, which is ac-
ceptable but substantial, which stresses the importance of
a careful design of the HC models.

The results also reveal, that both, the number of result
points and the number of events have a direct, and almost
linear impact on CPU-time: A simple linear fit of CPU-
time as a function of these two quantities yields a high
coefficient of determination of 0.72. Figure 9 shows both,
measured and fitted CPU-times for the large model.
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Figure 9. Dependence of CPU-time on number or state events
and result points for the large model (54 HCs).

The AixLib implementation and the proposed HC model
without bypass noBypass yield the fastest simulation with
a low number of state events, followed by main (with by-
passes). Increasing the dynamics of the proposed model
(fastDynamics) increases the number of steps to be calcu-
lated and subsequently the CPU-time. AixLibBypass has
a high CPU-time due to more events and an increase of
time steps, while the hysteresis triggers by far most events
and has thus highest CPU-times. Therefore, hysteresis
should be used with care, as it may substantially increase
the simulation time. DisHeatLib sticks out with almost
50 % higher CPU-time measured than according to the fit,
because it is the only HC model that does not follow the
open loop design which leads to more complex systems of
equations to be solved.

5 Conclusion
The implementation of the HC model has crucial impact
on the computational effort in DHN simulations. The pro-
posed HC model yields plausible results for the whole
range of load situations, including undersupply, and re-
quires 50 % less CPU-time than the equivalent HC model
from AixLib and 30 % less CPU-time than the most simple
demand model from DisHeatLib (without bypass). Users
of the model may choose whether their use case requires
to use the thermostatic bypass that maintains the supply
line temperature and if fast dynamics of the HC model are
needed, as both options increase CPU-time. Load hystere-
sis is not recommendable for the used load profiles, as it
triggers many state events, which causes a substantial in-
crease of simulation time.

The main weakness of the proposed HC model is the as-
sumption of a constant return temperature or temperature
difference. Future work will focus on an implementation
that is more realistic and reflects different operation states.
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Abstract
Digital twins are a powerful support tool for plant opera-
tion: they provide further understanding on ongoing phe-
nomena and allow realistic projection of the current plant
state into the future. Among other twins, EDF is devel-
oping a digital twin of the chemistry of the secondary cir-
cuits of its nuclear plants. Such a tool will give access
to the pH in any point of the circuit and in any operating
condition (e.g. partial load, power transients...), outper-
forming the current, limited, monitoring techniques. It is
expected to help operators and engineers to better monitor
the circuit (e.g. for erosion corrosion) and anticipate the
consequences on equipment of different operating strate-
gies (e.g. for amines’ injection pumps maintenance).

ThermoSysPro, the EDF R&D’s thermal-hydraulic li-
brary, is the bedrock of the tool under development. To
meet the needs of the target application, modeling of
amines convection and some related chemistry, allowing
the computation of pH, are introduced in a new version
of the library. Moreover, the presented approach aims at
proposing a general framework allowing the convection
of custom substances (i.e. easily customized by the end
user following its needs). This will open the door for a
wide range of other applications: radioactive substances,
pollution (e.g. salted water ingress coming from a heat-
exchanger leak), just to cite a few, could be modeled in
ThermoSysPro to augment the scope of the digital twins.
Keywords: Digital Twin, Secondary Chemistry, Substance
Convection, Amines, ThermoSysPro

1 Introduction
Nowadays, a increasing number of Digital Twins, virtual
copies of industrial units, are developed all over the world
and in every industries including nuclear power plants.
Physical and statistical models, fed by plant data in real
time, allow, for example:

• to investigate otherwise inaccessible phenomena, in
particular where no (or too few) measures are avail-
able;

• to diagnose safety or performance issues;

• to project the future plant state for decision making
support.

In EDF R&D, our team and its partners have worked for
several years on digital twins for thermal-hydraulic ap-
plications (see for example (Girard 2014; Corona Mesa-
Moles et al. 2019; Schwartz 2023; Gerrer and Girard
2020)), mainly supported by our Modelica library: Ther-
moSysPro (El Hefni and Bouskela 2019). The application
presented in this paper however, goes beyond the strict
thermal-hydraulic domain and concerns secondary circuit
chemistry of French nuclear power plants.

1.1 Industrial Application
The main objective of secondary chemistry is to limit var-
ious types of corrosion. By doing so, it ensures the in-
tegrity of the equipment (and boosts their lifetime) and
reduces the corrosion product source term responsible
for fouling - which leads to plant performances limita-
tion - and tube support plates clogging of steam gener-
ators - which may lead to tube instability and vibration
and its rupture; both these phenomena require expensive
treatments or component replacements. Secondary chem-
istry mainly consists in implementing appropriate chemi-
cal conditioning and pollution monitoring. It is a compro-
mise between safety, performance, environmental releases
and wastes, and operating and maintenance costs.

To identify the best compromise, it is necessary to have
an online, i.e. at different loads and during transients, view
of the chemistry at each point of the circuit. However,
currently, this is not possible by only using available mea-
sures, due to very limited measuring points or a too low
sampling frequency.

1.2 Needs for a ThermoSysPro Evolution
To go beyond the current limitations, the idea is to develop
a digital twin of the secondary chemistry, combining the
few (both in space and in time) available measures with
thermal-hydraulic and simple chemistry modeling. Simple
since for our application the main phenomena of interest
are:

• The convection, in the several components of the sec-
ondary circuit, of the conditioning amines, which are
the chemicals used to control the pH.

• The evaluation of the pH (at the desired temperature,
i.e. the fluid or the ambient one).
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Such a digital twin will provide nuclear power plant chem-
ical engineers with a complete view of the secondary cir-
cuit chemistry at any point and continuously. It will also
allow to project the impact of a specific manoeuvre on
the secondary chemistry to optimize the operation of the
plant. This paper presents the recent developments of the
ThermoSysPro library to make it able to deal with such
phenomena. These developments are enough general to
open the door for other application combining thermal-
hydraulics and convection of whatever substances of inter-
est (not just conditioning amines). The modeling approach
will be detailed in chapter 2, while chapter 3 will present
some simple application examples. The conclusions and
perspectives will be discussed in chapter 4.

2 Modeling Approach
2.1 Main Modeled Phenomena
The present application concerns the convection of a few
amines (bases) in a water biphasic circuit. However, it is
quite easy and convenient to generalize the problem so that
any kind and any number of substances can be convected
in such a circuit. Specifically, the mass balance equation
has to be respected for any substance i:

dMi
dt

= QiIN −QiOUT (1)

where Mi is the mass of the substance i in a control
volume and QiIN (respectively QiOUT ) the inlet (outlet)
mass flow rate for that substance at the boundary of the
volume.

Equation 1 supposes that there is no mass source SIN
or mass sink SOUT inside the control volume. This is a
normal assumption for thermal-hydraulic modeling where
the fluid is considered as a unique media; however, this
may not be the case when substances are taken individ-
ually: chemicals may react and mutate, i.e. a substance
may disappear and another one appear; the same hap-
pens for radioactive substances that naturally disintegrate.
Amines are chemicals and sources/sinks may exists in the
circuit, depending on the nature of the amine and on the
thermodynamic conditions. However, as a first modeling
approach, their effect is neglected.

Assumption 1 Inner sources and sinks of convected sub-
stances are out of the scope of the current work.

Knowing that the global mass balance is already re-
solved, it is also possible to use the mass concentration of
each substances Ci = Mi

M ,where M is the total mass in the
volume, instead of its mass Mi. The equation 1 becomes:

d(M ∗Ci)
dt

=CiIN ∗QIN −Ci∗QOUT

V ∗ρ ∗ Ci
dt

+Ci∗ dM
dt

=CiIN ∗QIN −Ci∗QOUT

V ∗ρ ∗ Ci
dt

+Ci∗ (QIN −QOUT ) =CiIN ∗QIN −Ci∗QOUT

(2)
where V is the constant volume of the control volume,

ρ the fluid density, QIN and QOUT the inlet and outlet to-
tal mass flow and CiIN the mass concentration of the sub-
stance i in the inlet flow.

The equation 2 can easily be adapted in case of multiple
inlets/outlets:

V ∗ρ ∗ Ci
dt

+Ci∗ (∑QINk −∑QOUTk) =

∑(CiINk ∗QINk)−∑(Ci∗QOUTk) (3)

with obvious notation.
Equation 3 make the hypothesis that the concentration

Ci is the same for all the outputs. This is generally the
case when the convected substance is homogeneously dis-
solved in the fluid. While this is a quite common assump-
tion for monophasic conditions, it is far from true in a
component where liquid and gas phases are split. A steam
dryer or a steam generator with blowdown are typical ex-
amples of component where this assumption is refuted.

In this case Ci should be split in CiGAZ and CiLIQ which
are directed to the corresponding outlet(s). Additional
equation should then be added to evaluate how the Ci en-
tering a control volume is split in gaz and liquid phase.
This depends on the nature of the substances. For amines,
the equilibrium between gas and liquid concentrations is
mainly controlled by:

• A distribution coefficient defined as the ratio of the
concentrations (in molality, mol/kg) of the species in
the vapor phase to the undissociated species in the
aqueous phase.

• An association constant governing the equilibrium,
in the aqueous phase, of the undissociated and the
dissociated species.

Besides amines, some generic substances can be con-
ceived, such as:

• A homogeneous substance who make no distinction
between gas and liquid phases. In this case Ci =
CiGAS =CiLIQ.

• A non-volatile substance who cannot pass to the gas
phase. In this case CiGAS = 0 and Ci=CiLIQ∗(1−x),
where x is the vapor quality in the control volume. 1

1It has to be noticed that, with this definition, the liquid concen-
tration tends to infinite when the vapor quality tend to 1. It corre-
sponds to the expected behaviour since the substance cannot migrate
to the gas phase and accumulate in the liquid one; however, such a sub-
stance would probably crystallize, so leaving the liquid phase, above
some threshold of liquid concentration; to take into account such a phe-
nomena, a sink should be added to the model (out of the current scope,
see Assumption 1).
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These generic substances can be used to model the convec-
tion of several substances with similar behaviour (for ex-
ample the 2.1 could be used to model salt in water). These
generic substances will be used in chapter 3 for illustration
purpose.

Within the framework of this work, the concentration
of the transported substances is supposed to be low, of
some ppm or even ppb. Such values does not impact the
thermal-hydraulic properties of the fluid, such as the den-
sity or the viscosity.

Assumption 2 The concentration of the transported sub-
stances does not impact the thermal-hydraulic properties
of the fluid.

Once the concentration of the substances (amines in this
specific case) are defined, the pH can be computed. pH is
the potential of hydrogen and it is defined as follows:

pH =−log10([H+]) (4)

[H+] being the equilibrium molar concentration in mol/L
of hydrogen ions in the solution.

Equation 4 could be rewritten as a function of [OH−]
(hydroxide ions concentration), to which the concentra-
tion of hydrogen ions is related via the self-ionization con-
stant of water, Kw:

pOH + pH =−log10(Kw) (5)

It is worth noticing that the value of Kw depends on water
temperature and pressure (see for example Marshall and
Franck (1981)).

The OH− formulation is preferred since the hydroxide
ions concentration also appears in the equations governing
the biphasic equilibrium (see above).

2.2 Code Implementation:
the ConvectedQuantities Package

One of the main objectives of this development is to ease
the reuse of the substances’ convection models: in the
framework of the target application, 4 chemical species
have to be convected (to compute the pH); more generally,
None or other sets of substances may have to be convected
in the future. For this reason, the proposed approach con-
sists in developing two subpackages, Components and
Substances.

2.2.1 The Components sub-Package

The Components package is dedicated to the mod-
eling of the convection of the substances, following
the equation 3 (module MassBalance) or its decli-
nation for heterogeneous liquid/gaseous outlet (module
MassBalance_HeterogeneousPhases).

The equations in these modules are vectorized so that
they can deal with any number of substances (general ap-
proach).

2.2.2 The Substances sub-Package
Substances have then to be vectorised too. The concen-
trations of a set of substances is store as an enumeration
as suggested by Tiller (2023) for chemicals. The other
information to be provided for each set is how the con-
centrations of each substance distribute in biphasic fluid.
Here follow the example code for None, Homogeneous
and NonVolatile substances:

Listing 1. None definition

package None
replaceable type Concentrations =

enumeration(:);

replaceable block PhasesSeparation
import ThermoSysPro.Units.SI;

input SI.Temperature T "Fluid
Temperature";

input SI.Density rho_liquidPhase "
Fluid Density";

input Real x "Title";
input Real SubC[None.Concentrations]

"Total Species Concentrations";

output Real Cl[None.Concentrations] "
Species Concentration in the
Liquid Phase";

output Real Cg[None.Concentrations] "
Species Concentration in the Gas
Phase";

equation
Cl = fill(0,size(Cl,1));
Cg = fill(0,size(Cl,1));

end PhasesSeparation;

Listing 2. Homogeneous definition

package Homogeneous "Substance with
homogeneous distribution in gas and
liquid phases"

extends None(
redeclare type Concentrations =

enumeration(substance "Gas/
Liquid homogeneous substance"),

redeclare block PhasesSeparation =
PhasesSeparation_internal);

block PhasesSeparation_internal

import ThermoSysPro.Units.SI;

input SI.Temperature T "Fluid
Temperature";

input SI.Density rho_liquidPhase "Fluid
Density";

input Real x "Title";
input Real SubC[HomogeneousSubstance.

Concentrations] "Total Species
Concentrations";

output Real Cl[HomogeneousSubstance.
Concentrations] "Species
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Concentration in the Liquid Phase";
output Real Cg[HomogeneousSubstance.

Concentrations] "Species
Concentration in the Gas Phase";

equation
Cl = SubC;
Cl = Cg;

end Homogeneous;

Listing 3. NonVolatile definition

package NonVolatile "Substance tending to
remain in liquid phase"

extends None(
redeclare type Concentrations =

enumeration(substance "Gas/Liquid
homogeneous substance"),

redeclare block PhasesSeparation =
PhasesSeparation_internal

);

block PhasesSeparation_internal

import ThermoSysPro.Units.SI;

input SI.Temperature T "Fluid
Temperature";

input SI.Density rho_liquidPhase "Fluid
Density";

input Real x "Title";
input Real SubC[NonVolatile.

Concentrations] "Total Species
Concentrations";

output Real Cl[NonVolatile.
Concentrations]

"Species Concentration in the Liquid
Phase";

output Real Cg[NonVolatile.
Concentrations]

"Species Concentration in the Gas
Phase";

equation
Cl * (1-x) = SubC;
Cg = fill(0,size(Cl,1));

end PhasesSeparation_internal;

end NonVolatile;

As with Homogeneous and NonVolatile sets (of only
one substance), any other set of substances can be defined
by extending None and redeclaring the Concentration
enumeration and PhasesSeparation according to the
characteristic of the that specific set.

2.3 Application to WaterSteam or Fluid Pack-
ages of ThermoSysPro

The code presented in the previous paragraph deals with
the convection of generic substances, but still have to be
"connected" with existing ThermoSysPro modules, which
deal with "everything else" (i.e. fluid mass balance, energy

balance, fluid properties...). Since the target application
concern chemical water conditioning, the connection have
been done to the ThermoSysPro packages2 WaterSteam
and Fluid. However, the following fundamentals for
linking ConvectedQuantities apply for other fluids/-
packages.

The general required modifications are listed hereafter:

• The replaceable definition of the convected species
(see Listing 4) is added. None is used as default so
that nothing is convected if useless (no trailing equa-
tions/variables polluting or increasing the size of the
system of equations). The size of Concentration
is 0 in this case.

• Fluid connectors are replaced with new con-
nectors which contains also a new SubC vari-
able which is defined to host the convected
Species.Concentration.

Listing 4. Definition of Convected Species

// In the d e c l a r a t i o n pa r t
replaceable package Species = ThermoSysPro.

ConvectedQuantities.Substances.None ;

Subsequent modifications depend on the nature of mod-
ule: biports (Singular and Pipe Pressure Losses, Stodola
Turbines, Control Valves, Pumps...) or volumes (or junc-
tions).

2.3.1 Biports

In this components, the convected substances concentra-
tion is transmitted from the inlet to the outlet: inlet and
outlet concentration have to be equalized.

Listing 5. Connection of input and output concentration in a
biport

// In the equat ion pa r t
C1.subC = C2.subC ;

2.3.2 Volumes

These components require the use of the additional mod-
ules developed in the ConvectedQuantities package.
In particular the MassBalance[...] module (with spe-
cific binding equations) has to be used to calculate the
distribution of the substances between the different out-
puts and to model their dynamic behaviour. An example
is given in Listing 6.

Listing 6. Connection of MassBalance to a volume

2The ThermoSysPro library is composed by several pack-
ages, needed to model any type of power plant; for ex-
ample: InstrumentationAndControl, Combustion,
ElectroMechanics and some packages dedicated to different
fluids (e.g. WaterSteam); since the version 4.0 of ThermoSysPro,
the Fluid package merges them all (e.g. oils, flues gases, refriger-
ants...).
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Figure 1. Modified Diagrams of VolumeA (left) and
SteamDryer (right). The icons corresponding to the used
MassBalance[...] components are visible.

ThermoSysPro.ConvectedQuantities.
Components.MassBalance
sub_massBalance(

redeclare package Species = Species,
n_in=2, n_out=2, #Number of inlets and

of outlets
dynamic_mass_balance=

dynamic_mass_balance,
V=V,
Qin = {Ce1.Q,Ce2.Q}, #Binding the inlet

mass flow rates
Qout = {Cs1.Q,Cs2.Q}, #Binding the inlet

mass flow rates
rho = rho)

3 Examples
3.1 Homogeneous Substances
The first simple example concerns the mixing of two water
flows with different concentrations of a single generic sub-
stance. Figure 3 shows the ThermoSysPro model, com-
posed by:

• a main water line (the horizontal one at the bottom of
the diagram, "Source A") with null concentration at
the beginning of the simulation;

• a secondary line (on the top, "Source B") that injects
water with 100 ppm of such a substance when a con-
trol valve is opened (from 5 to 11 seconds).

Figure 2 shows the resulting concentration of the water
reaching the sink: as expected, once the valve is opened
(@ 6 seconds) the concentration increases.

The increase does not end at 11 seconds (when the
valve is fully opened) because of the inertia due to the
mixing volume where a perfect mixing is assumed. For
reproduction purpose: the volume is of 100 m3, to be com-
pared to a mass flow rate of 5000 kg/s on the main line and
2716 kg/s on the secondary line.

3.2 Amines and pH
The second example is related to the target application:
the convection of amines and the evaluation of pH in
a secondary circuit. To focus on the heterogeneous be-
haviour of amines in biphasic conditions, in this example

Figure 2. Evolution of the concentration of a generic convected
substance: effect of the inertia due to a mixing volume.

a small portion of a classical secondary circuit is mod-
eled (cf. Figure 4) : the steam dryer following a high
pressure turbine (not in the model’s scope). The dryer
module separates liquid flow (going down in the dia-
gram), which feeds the preheaters (out of the scope of
the example), from gaseous flow (going right in the di-
agram), which is reheated before feeding the low pres-
sure turbine. It is then a relevant example to see test the
MassBalance_HeterogeneousPhases module.

In this application, the Concentration array is of
length 4, since 4 different amines are used:

• Ethanolamine

• Morpholine

• Ammonia

• Hydrazine

These amines are characterized by a very different be-
haviour in diphasic conditions: Ammonia concentrates
in the gaseous phase, while Hydrazine and Ethanolamine
concentrates in the liquid phase; as to Morpholine, it tends
to slightly concentrates in diphasic conditions.

In the example, arbitrary but reasonable values are set
for the concentration of the amines upstream and see how
they split in the dryer: the results are illustrated by Table
1.

[ppm] upstream liquid gas liq/gas

Ethanolamine 4 11.3 0.891 12.6
Morpholine 8 11.3 6.58 1.72
Ammonia S. 3 0.398 4.12 0.097
Hydrazine 0.2 0.609 0.025 24.5

Table 1. Concentrations of amines upstream of the dryer and in
its liquid or gaseous outlets.

Results show that Ethanolamine is almost 13 times
more concentrated in the liquid phase than in the gaseous
one; this ratio reaches 25 for Hydrazine. For Morpho-
line this effect (greater concentration in the liquid phase)
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Figure 3. Simple Example for homogeneous substances (Volume)

Figure 4. Simple Example for Amines (Steam Dryer)

is far lower while for Ammonia the opposite is true: this
amine concentrates itself in the gaseous phase (about 10
times more than in the liquid phase). These results are
consistent with the experts’ expectation (historical mea-
surements, cf. § 4) and some back-of-the-envelope verifi-
cation (hand-calculations in simplified configurations).

Concerning pH, two sensors are included in the model,
as shown in Figure 4. pH can be measured at fluid tem-
perature or at ambient temperature (in the latter case the
diphasic fluid is condensed). The results are displayed in
Table 2.

pH upstream liquid

@ Fluid T 7.71 7.71
@ Ambient T 9.86 9.89

Table 2. pH upstream and in the liquid outlet. pH is provided
at the fluid or at ambient Temperatures.

At fluid temperature, the pH upstream and in the liquid
line are the same. This corresponds to the expected be-
haviour since the pH calculation are mainly based on the
amines’ concentrations in the liquid phase, which are the
same in this two measurement points.

When the fluid is brought to ambient conditions (pres-

sure and temperature), the pH is significantly higher. In
this case, the amines’ concentrations are different in the
two measurement points: while in the liquid one there
only is liquid, in the upstream one gas is also present; it
condensate in the cooling process and mixes with the pre-
vious liquid phase. As a result, the pH values are different.

Some more quantitative and extensive tests are ongoing
(see the perspectives in the § 4) and the preliminary results
confirm the consistency of the computed values.

4 Conclusions and Perspectives
In this paper are illustrated the fundamentals of an ap-
proach to implement the convection of substances in the
thermal-hydraulic library ThermoSysPro. The target ap-
plication for these recent developments is building a dy-
namic digital twin for our power plant, with a particular
focus on the secondary chemistry. One of the main inter-
ests of using ThermoSysPro as the base thermal-hydraulic
layer is the opportunity of being able to reuse already de-
veloped thermal-hydraulic models. Thanks to the Model-
ica language it was possible to develop a generic approach,
with some basic substances hard-coded in ThermoSysPro
and easy customization for the end user: amines in the
target application; but the user can easily develop specific
set of substances (any number of simultaneous substances)
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by defining specific biphasic equilibrium. The developed
modules allow for taking into account dynamic evolution
(dilution/concentration) of substances concentration and
heterogeneous biphasic behaviour.

The next steps includes the continuation of the verifi-
cation and validation phase: in particular, the model out-
put will be compared to experimental data (pH values and
amines’ concentrations) coming from several EDF nuclear
power plants. In fact, some experimental campaigns have
been realized in the last decades and provide a pertinent
database for the validation of our models (data is not pub-
lic). The comparison between computed and measured
values will provide an estimation of the accuracy of the
digital twin.

Moreover, the modifications listed in paragraph 2.3 still
need to be applied to all the Fluid and/or WaterSteam
packages of ThermoSysPro. The developements have
been realized on Dymola (Dymola 2023); tests on other
softwares, OpenModelica in particular (Fritzson et al.
2020), have still to be performed. All this work will hope-
fully lead to a new major ThermoSysPro version which
will be made available in the GitHub repository of Ther-
moSysPro (ThermoSysPro 2023). Currently, the v4.0,
which does not include the features presented in this pa-
per, is publicly available.

Then, further studies will be dedicated to overcome
some current limitations:

• ThermoSysPro deals with flow reversal without us-
ing the stream concept (El Hefni and Bouskela
2019). The ThermoSysPro’s way of dealing with
flow reversal still has to be applied to substance con-
vection.

• As per Assumption 1, current developments do not
take into account the possible creation or destruction
of convected substances. However, such phenomena
may be of interest, for example for chemical species
who would react and mutates in other species: it is
the case of some amines in particular conditions. Ra-
dioactive disintegration is another relevant applica-
tion.

Finally, a comparison with other solutions devoted to
substance convection, such as the Modelica Standard Li-
brary, should be performed to identify potential improve-
ments for our developments.

Acknowledgements
The authors would like to thank Daniel Bouskela for his
last teachings and for his legacy.

References
Corona Mesa-Moles, Luis et al. (2019-02-01). “Robust Calibra-

tion of Complex ThermosysPro Models using Data Assimi-
lation Techniques: Application on the Secondary System of
a Pressurized Water Reactor”. In: 13th International Model-
ica Conference, pp. 553–560. URL: https : / / ep . liu . se / en /

conference- article .aspx?series=ecp&issue=157&Article_
No=56 (visited on 2023-06-08).

Dymola (2023). URL: https : / /www.3ds . com/ fr / produits - et -
services /catia /produits /dymola /avantages- cles/ (visited on
2023-06-09).

El Hefni, Baligh and Daniel Bouskela (2019). Modeling and
Simulation of Thermal Power Plants with ThermoSysPro:
A Theoretical Introduction and a Practical Guide. Cham:
Springer International Publishing. ISBN: 978-3-030-05104-4
978-3-030-05105-1. DOI: 10 . 1007 / 978 - 3 - 030 - 05105 - 1.
URL: http://link.springer.com/10.1007/978-3-030-05105-1
(visited on 2023-05-23).

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Gerrer, Claire-Eleutheriane and Sylvain Girard (2020). “Health
monitoring using statistical learning and digital twins”. In:
NAFEMS 2020.

Girard, Sylvain (2014). Physical and Statistical Models for
Steam Generator Clogging Diagnosis. SpringerBriefs in Ap-
plied Sciences and Technology. Cham: Springer International
Publishing. ISBN: 978-3-319-09320-8 978-3-319-09321-5.
DOI: 10.1007/978-3-319-09321-5. URL: https://link.springer.
com/10.1007/978-3-319-09321-5 (visited on 2023-06-08).

Marshall, William L. and E. U. Franck (1981-04). “Ion product
of water substance, 0–1000 °C, 1–10,000 bars New Interna-
tional Formulation and its background”. In: Journal of Phys-
ical and Chemical Reference Data 10.2, pp. 295–304. ISSN:
0047-2689, 1529-7845. DOI: 10.1063/1.555643. URL: https:
//pubs.aip.org/aip/jpr/article/10/2/295-304/240967 (visited
on 2023-06-09).

Schwartz, Aurélien (2023). Metroscope. URL: https : / / www .
metroscope.tech/ (visited on 2023-06-08).

ThermoSysPro (2023). GitHub. URL: https : / / github . com /
ThermoSysPro (visited on 2023-08-09).

Tiller, Michael M. (2023). Modelica by Example. Modelica by
Example. URL: https://mbe.modelica.university/ (visited on
2023-06-08).

Session 4-B: Thermodynamic and energy systems applications 3

DOI
10.3384/ecp204407

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

413



414 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204



Using the DLR Thermofluid Stream Library for Thermal
Management of Fuel Cell Systems in Aviation

Niels Weber1 Camiel Cartignij2 Dirk Zimmer1

1German Aerospace Center (DLR), Germany {niels.weber, dirk.zimmer}@dlr.de
2Eindhoven University of Technology, Netherlands c.j.g.cartignij@student.tue.nl

Abstract
For more environmental friendly aircraft, different propul-
sion systems are considered. Either fuel cell or fully elec-
trically driven aircraft come along with challenging heat
dissipation tasks. An intelligent thermal management sys-
tem is essential to prevent failures and to ensure a reliable
operation of the propulsion system. The exploration space
for appropriate cooling systems seems endless, hence it
is vital to rely on robust modeling libraries that enable
a quick design and simulation of different architectures.
The open source DLR Thermofluid Stream Library (TFS)
forms such a basis and proved to be expedient in that
sense. This paper gives an overview of a complete fuel
cell system for future aircraft that covers the most essen-
tial subsystems and is modeled solely of components con-
tained in the TFS. The focus is on different cooling sys-
tems and methods that can be quickly investigated in the
context of the overall fuel cell system throughout an entire
flight mission.
Keywords: Thermofluids, thermal management, robust
modeling, fuel cell systems, open source software, proto-
typical control

1 Introduction
In order to reduce greenhouse emissions, intensive re-
search is currently being carried out into new types of
propulsion systems for aircraft. Using fuel cells to pro-
vide the required energy to power the propellers of an
aircraft is one concept among others. Different architec-
tures were investigated for example in the DLR internal
EXACT project (EXACT – Conceptual study for future
climate-neutral flight n.d.) and one possible design of a
liquid hydrogen (LH2) driven fuel cell aircraft is shown in
Figure 1.

The idea is to integrate the fuel cell directly into the
nacelle that is mounted on the wing, with multiple na-
celles forming the total propulsion system of the aircraft.
A sketch of a possible nacelle-integrated setup is shown
in Figure 2. As the total required power is in the order of
several Megawatts and with an efficiency of modern pro-
ton exchange membrane (PEM) fuel cell stacks of approx-
imately 50%, a huge amount of heat is generated during
the process. PEM fuel cell stacks typically operate be-
tween 60°C and 90°C. Low grade heat in such tempera-

Figure 1. LH2 driven Fuel Cell Aircraft from EXACT project.

ture regions is challenging to remove due to the small tem-
perature difference to the ambient in comparison to con-
ventional combustion engines. Throughout a flight profile,
the ambient temperature can vary from 40°C at take-off to
−50°C in cruise conditions. This variation results in a
substantial increase in the temperature difference between
the fuel cell and the ambient air during a single mission.
In order to dissipate the heat at take-off conditions, a large,
heavy heat exchanger is required. Contrary, in cruise con-
ditions significantly smaller components would be suffi-
cient and most of the cooling system becomes unneces-
sary dead weight. Therefore it is beneficial to investigate
advanced and novel cooling system concepts to minimize
the impact of the cooling system on fuel consumption.

In addition to the fuel cell, there are other heat sources
that need to be cooled like the motor and the converter
of the power train or a battery. Additionally to cooling,
the fuel cell has to be supplied with a sufficient oxygen
and hydrogen flow. For optimal operation, the conditions
of the supply flows have to match very precise require-
ments regarding temperature, pressure and humidity. All
the mentioned subsystems need some sort of cooling that
can be realized in many different ways. The mechanisms
vary from simple liquid cooling to direct evaporation in
the fuel cell and vapor-compression systems. A dedicated
number of ram air channels is used as the main heat sink
for each cooling task. Using alternative heat sinks like
the LH2 supply lines are also under consideration to be
included in the overall thermal management.

This paper will give an overview on the capabilities of
the Thermofluid Stream Library (TFS) (Zimmer, Weber,
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and Meißner 2021) to model the main domains of a fuel
cell system and its subsystems. The strength of the li-
brary is the avoidance of large non-linear equation systems
when setting up thermal networks, due to a new approach
on modeling thermofluid streams. It enables an easy set up
and initialization of the system models and leads to high
robustness and performance. The library and its modeling
approach will not be further presented in this paper, de-
tailed explanations can be found in (Zimmer, Bender, and
Pollok 2018) and (Zimmer 2019). After introducing the
overall system model, the focus will be on different cool-
ing systems and methods. Common interfaces enable a
quick and easy configuration of different cooling systems
that can be tested in a mission simulation in the environ-
ment of the overall system. Nevertheless, the prototypi-
cal control design that is necessary to guide the systems
through the fast changing operating points of a flight mis-
sion are only briefly discussed in this paper. As a conclu-
sion, results of an exemplary flight mission will be com-
pared and discussed.

Figure 2. Sketch of a nacelle-integrated fuel cell propulsion sys-
tem consisting of a propeller, electric motor, converter, battery,
fuel cell stack and cooling system.

2 Fuel Cell System
The top level of the overall fuel cell system and its subsys-
tems is shown in Figure 3. It consists of a fuel cell model,
air and LH2 supply, components of the power electron-
ics and the cooling system. The ambient and boundary
conditions are provided by an environmental bus from a
flight mission block. As this paper mainly focuses on the
cooling system, the other subsystems are only briefly ex-
plained in the following.

The central heat load of the system is the fuel cell.
Our model contains the main reaction equations to con-
vert chemical energy into electrical energy. The resulting
heat load is calculated from an energy balance across the
whole fuel cell component and is essentially determined
by a fixed efficiency. The power input of the fuel cell
stack is connected to a converter and a motor. Both power
electronic components are efficiency-based models. This

means, that the fuel cell will always deliver the power that
is requested from the shaft, taking the losses of the con-
verter and the motor into account. In critical flight phases
as take-off or overshoot with very high power demand, a
battery can serve as a booster in order to relieve the fuel
cell. However, in the current state of our models, the bat-
tery is not yet included.

The air supply provides the required oxygen mass flow
to the fuel cell. Outside air is taken from a separate inlet
and is fed through a compressor and heat exchanger to
be prepared for the required conditions of the fuel cell.
Optimal operating conditions of PEM fuel cells in aircraft
were derived in a detailed study by (Schröder et al. 2021).

In our model, the supply air is controlled to a constant
temperature near stack conditions at a pressure of 1.6bar
and a relative humidity of 75 %. During a flight mission,
the optimal set points may vary depending on the flight
phase but for the sake of simplicity, they are initially kept
constant. To control the humidity, the required amount
of water is extracted from the fuel cell exhaust gas and
injected into the air supply. In practice, this task would
be carried out by a membrane humidifier. At the current
state, a combination of idealized water extractor and in-
jector models are used to fulfill this task. Integrating a
component model of a membrane humidifier is planned in
future research activities.

3 Fuel Cell Cooling System
The cooling system enables temperature control of the fuel
cell and power electronics, by rejecting heat to either the
LH2 supply or to the ambient air using a ram air channel.
To obtain optimal fuel cell efficiency, the LH2 needs to
be warmed up from its cryogenic storage temperature to
approximately the same temperature of the fuel cell itself.
This provides a heat sink, capable of absorbing approx-
imately 10% of the generated heat, without causing any
drag on the aircraft. The detailed modelling of LH2 as a
heat sink is planned to be investigated in future research
activities, however, in this paper, the focus is on using the
ambient air as the only heat sink. A potential cooling sys-
tem interface is shown in Figure 4. In this case the cooling
loops are separated and the heat from the fuel cell is re-
jected to a different ram air channel than the heat from the
power electronics. This enables an independent control of
the heat loads and increases the total cooling capacity.

For the thermal management of fuel cell systems, many
different cooling strategies can be applied. A detailed re-
view of different cooling methods for PEM fuel cells was
carried out by (Chen et al. 2021). In the following, a se-
lected variety of different cooling concepts is presented.
For each system architecture, ambient air is utilized as
heat sink. To this end, the outside air is captured and
guided through the system by a dedicated number of ram
air channels. Different kinds of heat exchangers inside the
channels reject the heat into the ram air flow. By lever-
aging the high robustness and easy usability of the TFS,
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Figure 3. Modelica model of the overall fuel cell system.

different cooling systems can be rapidly set up, compared
and optimized. For all concepts, the main objective is
to maintain a constant fuel cell operating temperature of
80°C.

3.1 Ram air channel
For all cooling systems, the common ram air channel de-
sign shown in Figure 5 is used. In this system, the valve
represents the ram air door at the intake with variable
opening, which is mainly used in cruise to control the
amount of airflow through the channel. In ground oper-
ations, the door is fully open and sufficient airflow is gen-
erated by the ram air fan. Depending on the flight phase,
the control split feeds the input signal of the controller to
either the valve or the fan to ensure sufficient cooling air-
flow. The geometry of the ram air channel is modeled by
the dynamic pressure boundaries to convert the air veloc-
ity into dynamic pressure.

As shown in Figure 4, distinct ram air cooling systems
are used for the fuel cell and the power electronics. For
the sake of simplicity, the following description of cool-
ing systems is tailored specifically to the fuel cell, while a
liquid cooling system is used for the power electronics in
each case.

3.2 Liquid Cooling
The liquid cooling system shown in Figure 6 utilizes a
single-phase medium, which directly transfers heat be-
tween the heat source and the heat exchanger within the
ram air channel. This means that the sensible heat of the
coolant is used and the heat transfer results in a tempera-
ture increase of the coolant. Typically, a mixture of deion-
ized water and propylene or ethylene glycol is used as a
coolant to lower the freezing point. This type of cooling
system is commonly used in the automotive industry for
fuel cell electric vehicles.

In this system, the pump is controlled in a way to main-
tain a constant temperature difference of the coolant across
the fuel cell, while the ram air channel controller directly
controls the temperature of the fuel cell itself. While being
simple in the design, this system possesses a fundamental
limitation, due to the relatively small temperature differ-
ence between the coolant and the ambient air at take-off
conditions. This requires a large heat exchanger in the
ram air channel, inducing significant drag and weight on
aircraft level, which is carried through the entire flight pro-
file.

3.3 Evaporative Cooling
In order to improve the efficiency of the heat exchange be-
tween the fuel cell, coolant and ram air, a phase-changing
coolant like methanol can be used. For two-phase coolants
and refrigerants, we use the media models from TILMedia
Suite (TILMedia Suite - Software package for calculating
the properties of thermophysical substances n.d.) devel-
oped by TLK Thermo GmbH. An internal wrapper was
implemented to match the interfaces of the TFS to enable
the usage of the external media models.

By evaporating methanol inside the fuel cell and by
condensing it inside the heat exchanger in the ram air
channel (condenser), heat exchanger efficiency can be im-
proved, since the much larger latent heat instead of the
sensible heat is utilized and the heat exchange occurs at
a constant temperature. The most simple version of a
system following this concept can be seen in Figure 7,
where the methanol is simply circulated by a pump. In
order to prevent damages, it is necessary to ensure that the
methanol reaches the pump in a liquid, subcooled state. If
the coolant could not completely be condensed in the ram
air channel, the phase separator after the heat exchanger
serves as a buffer element and only feeds liquid methanol
to the pump. The points 1 and 2 correspond to the operat-
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Figure 4. Modelica model of the overall cooling system. This model contains a dedicated ram air channel for the fuel cell, as well
as a separate one for the remaining power electronics. No heat rejection to hydrogen is considered in this case.
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Figure 5. Modelica model of the ram air channel, consisting of
a source, a sink, and a dynamic pressure flow section around the
valve.

ing points in the generic pressure-enthalpy diagram shown
in Figure 8. The vapor fraction at the outlet of the fuel cell
(point 2) is controlled to a constant value by controlling
the speed of the methanol pump. The limited vapor frac-
tion prevents too much evaporation of the coolant in the
fuel cell and hence avoids instabilities due to a drastic in-
crease in volume during the evaporation process. The fuel
cell temperature target is reached by controlling the ram
air channel airflow. Since the evaporation at the fuel cell
occurs at a constant temperature, this effectively results in

ramAirCha…

Pow…

Pump
Control

Ram Air
Control

Figure 6. Modelica model of the liquid cooling system.

regulating the pressure level plow to ensure sufficient heat
transfer from the fuel cell to the coolant.

An enhanced version of this system can be seen in Fig-
ure 9, where the liquid and gaseous methanol are separated
to ensure that only the gaseous methanol flows through the
condenser in the ram air channel. This means that not the
entire coolant flow has to flow through the heat exchanger
and hence it can be reduced in size and weight.

This bypass system results in the operating points 1, 2
and 3 in Figure 8. The vapor fraction at the fuel cell outlet
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Figure 7. Modelica model of the simple methanol loop.
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Figure 8. Generic pressure-enthalpy diagram applying to
methanol cycles.

is still controlled to a constant value at point 2, while the
ram air channel controller ensures that enough airflow is
supplied to fully condense the methanol, ensuring a liquid
state at the inlet of the secondary pump. The second pump
controls the temperature of the fuel cell by adjusting the
pressure level plow.

A further improvement of the cooling efficiency can
potentially be achieved by increasing the condenser in-
let temperature. To this end, the previous variant is ex-
panded by a compressor that lifts the pressure and tem-
perature before it enters the condenser, as shown in Fig-
ure 10. In take-off conditions, this can more than double
the temperature difference between the coolant and ambi-
ent air. After the heat exchanger, the methanol is subse-
quently expanded to the desired operating pressure by an
appropriate flow resistance. A direct routing to the pump
would require a high level of subcooling in the condenser
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Figure 9. Methanol cooling cycle, including a separator to di-
vide the liquid and gaseous phase.

to ensure that the methanol still enters the pump in a liquid
state after expansion. This would result in a bigger siz-
ing of the heat exchanger, hence the methanol is recircu-
lated to the phase separator. The corresponding operating
points 4, 5 and 6 in Figure 8 showcase the process of com-
pression and expansion in the cooling cycle. In this case,
the ram air channel controller ensures that a satisfactory
upper pressure level phigh is maintained, while the com-
pressor ensures the load reaches its target temperature, ef-
fectively controlling the lower pressure level plow. The
coolant pump again ensures that a desirable vapor fraction
is obtained at the fuel cell outlet.
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Figure 10. Methanol cooling cycle, including a compressor to
increase the condenser inlet methanol temperature to improve
cooling efficiency.

3.4 Vapor Compression Cooling
Besides the direct two-phase cooling in terms of evapo-
rative cooling, an indirect two-phase cooling concept us-
ing a vapor compression system (VCS) was investigated.
This system consists of two combined cycles - a conven-
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tional liquid cooling cycle and a VCS, as shown in Fig-
ure 11. The VCS consists of four main components, a
compressor, condenser, expansion valve and evaporator.
The compressor brings the refrigerant to higher pressure
and temperature to ensure heat rejection to the ambient
by condensation in the condenser. The expansion valve
subsequently expands the refrigerant to a lower pressure
and temperature to absorb heat during evaporation in the
evaporator. On the secondary side of the evaporator, the
refrigerant absorbs the heat from the liquid coolant that is
used to control the fuel cell temperature.
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Figure 11. Vapor compression cooling system, consisting of
two separate loops. The purple loop contains a purely liquid
coolant, while the orange loop utilizes a phase changing refrig-
erant.

In the present system we make use of a high temper-
ature refrigerant (HFO-1336mzz-Z) that enables a high
condensation temperature in the condenser. We assume,
that this will result in advantages with regard to the design
of the heat exchanger and the dimensioning of the ram
air duct in comparison to conventional refrigerants. The
very low global warming potential (GWP) of the refrig-
erant makes it additionally interesting for applications in
aviation. In principle, however, indirect two-phase cool-
ing can also be achieved with conventional refrigerants.
A detailed analysis of the advantages and disadvantages
in terms of dimensioning and operation is still pending.
In this system, the pump of the liquid coolant once again
ensures a constant temperature difference across the fuel
cell. The ram air channel controller keeps the upper pres-
sure level of the VCS to uphold a sufficient temperature
difference to the ambient air. The lower pressure level
and hence the evaporation temperature is controlled by the
compressor. Contrary to conventional VCS, we use the ex-
pansion valve to ensure sufficient refrigerant flow through
the cycle to maintain the fuel cell target temperature in-
stead of controlling the evaporator superheating (Micha-
lak, Emo, and Ervin 2014).

4 Aircraft and Mission Profile
Several cooling systems were tested throughout an exem-
plary flight mission for a fuel cell driven electric aircraft.
The reference architecture is derived within the DLR inter-
nal EXACT project (EXACT – Conceptual study for future
climate-neutral flight n.d.) and is shown in Figure 1. It is
a fully fuel cell driven aircraft for 70 passengers. The fuel
cells are directly integrated in the nacelle and a total num-
ber of 10 pods is distributed across the wings. The total
required shaft power of all pods combined at the corre-
sponding altitude is shown in the mission profile in Figure
12.
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Figure 12. Mission profile with altitude and total required shaft
power.

The total flight time is around 200 min and a maximum
speed of Mach = 0.55 is reached during cruise at an alti-
tude of 8840 m. The mission profile covers the main flight
phases taxi out, take-off, climb, cruise, descent, approach,
landing and taxi in. Ambient pressure and temperature
are derived from the ISA standard conditions (15 °C on
ground).

5 Simulation Results
In the following section, the results of the mission sim-
ulations will be presented. It has to be mentioned, that
this paper focuses on the functionality of the TFS and the
goal was to prove that a variety of different cooling sys-
tems with different coolant media can be quickly built up
and tested throughout a flight mission. We are not yet in
the state to make definite statements on the performance
of each cooling system. This would assume not only a
detailed sizing of each of the components but also an op-
timized control strategy. Nevertheless, we were able to
simulate all of the cooling systems described in Section 3
through the fast changing operating points of a flight mis-
sion while reaching the desired fuel cell target temperature
of 80 °C. As the systems differ in the number and arrange-
ments of the components, some common variables of the
cooling systems were compared. One important indicator
of the performance of a cooling system is the amount of
ambient air that was required to reach the fuel cell target
temperature. A high demand of ram air flow has signif-
icant impact on the total drag that is induced on aircraft
level. The airflow through the ram air channel for each
cooling system is shown in Figure 13.
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It is noticeable, that the liquid cooling system requires
significantly more ram air during the climb phase. This
is due to the previously discussed small temperature dif-
ference of the ambient to the coolant. Especially in this
flight phase, the advantages of the methanol cycles be-
come clear, as the required ram air flow is drastically re-
duced. Also the benefits of the methanol cycle with the
compressor to increase the condenser inlet temperature are
clearly visible as it requires the least ram air flow during
the climb phase. Different from our simulation, the EX-
ACT aircraft concept includes a battery that serves as a
booster in this critical flight phase and therefore could de-
crease the required power from the fuel cell. This would
result in less heat that has to be removed and hence a
smaller amount of required outside air. At the very end of
the flight mission, an increase in required ram air flow can
be observed for the VCS cooling system. This is mainly
due to inefficient control and operation of the VCS since
the set-points are not dependent on the flight phase yet.

Another indicator of the performance of the cooling
system is the power that is required by the turbomachines
and pumps of each system, including the air supply. In
Figure 14 the accumulated energy that is consumed by a
number of 10 propulsion nacelles throughout the mission
is shown for each cooling system. It has to be mentioned,
that the air supply system consists of a turbine that reg-
ulates the pressure before the air enters the fuel cell. The
turbine is mounted on the same shaft as the air compressor
to recover energy from the fluid. The power that is gener-
ated by the turbine is also taken into account in the accu-
mulated total energy. Remembering that the liquid cool-
ing system required the largest amount of ram air flow for
cooling, it seems beneficial in terms of energy consump-
tion. The systems including a compressor turn out to be
more energy consuming while requiring less ram air for
cooling.

A conventional indicator regarding energy consump-
tion and cooling efficiency is the so-called coefficient of
performance (COP) which is usually calculated for VCS
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Figure 14. Accumulated total energy demand of different cool-
ing systems during flight mission.

cooling systems. In the following, we want to have a
closer look on the VCS and its operation during the flight
mission. The COP is the ratio of the cooling power dur-
ing the evaporation Qevap process over compressor work
Wcompr:

COP =
Qevap

Wcompr
(1)

Taking a closer look on the COP of the VCS through-
out the flight mission (Figure 15), the relatively high num-
bers need some explanation. VCS systems in aviation are
usually beneficial during ground or low altitude condi-
tions, when the ambient temperature is still relatively high.
Therefore the high temperature for heat rejection into the
ram air channel can be exploited.

Most of the time during the mission, especially during
cruise, the VCS runs in a degenerated operating mode be-
cause of the very low ambient temperature. This results in
a very low compressor work, as the condensing tempera-
ture and hence the high pressure level of the VCS can be
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Figure 15. COP of VCS and total required shaft power during
flight mission.

very low compared to normal operations. Consequently,
the evaporation process takes place on a similar pressure
and temperature level as the condensation process, result-
ing in a very high COP. Additionally, the sudden drops in
the total shaft power after top of climb and in the transition
from cruise to descend are leading to very high peaks in
COP which goes up to values of a few thousands, which
means that the compressor runs on the absolute minimum.
Due to visualization reasons, the peaks are cut off in Fig-
ure 15. Those degenerated operating modes promised to
be challenging to tackle in our simulations, because it re-
sults in very low refrigerant mass flow that can lead to
instabilities. Strategies like including a bypass around the
condenser to reduce the heat transfer rate (head pressure
control) while keeping a minimum refrigerant flow are
currently under investigation.

All the presented results still have to be taken with care,
as a detailed sizing of the compressors, heat exchangers,
ducts and also the ram air channels was not yet carried out.
Anyway it still points out, that the selection of an optimal
cooling system for the thermal management of the fuel
cell is a complicated task with many influencing factors.

6 Conclusion
The objective of this work was to build up an aircraft
fuel cell system and its subsystems with components of
the TFS. The focus was on the rapid testing of different
cooling systems in the environment of the overall fuel cell
system throughout a whole flight mission. Common inter-
faces were defined that enable a quick interchangeability
of the system architectures. A prototypical control scheme
was developed for each cooling system to maintain a fuel
cell target temperature during all operating points. This
work should serve as a basis for future investigations on
the benefits and drawbacks of specific cooling architec-
tures. For more reliable statements on the performance
of different systems, a more detailed sizing of the compo-
nents as well as optimized control strategies will be sub-
ject to future research activities. This also refers to the air
and LH2 supply systems as well as the drive train that is
planned to be expanded by a battery model. In addition to
that, the water separation process, that is important for the
exhaust gas handling, is also intended to be improved by
providing a model of a membrane humidifier. Neverthe-
less, the robustness of the TFS proved to be crucial during

the development of thermal systems with such complexity.
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Abstract
This article examines the consequences of introducing a
new language construct into an equation-based language
to model infinitely fast processes. We do this by extending
the equation-based language Modelica with a special time
constant, Θ. Θ provides modelers with an additional lan-
guage construct that they can utilize both to improve the
performance of numerical integration for existing models
as well as express and simulate models that existing tools
may struggle with. In this paper we exemplify this with
two examples. The first is an artificial DAE-System using
a monotonic function; the second is an electrical circuit
with and without a parasitic capacitance.

Based on our observations, we believe that by enabling
modelers to express common idealizations using Θ we can
improve both performance and maintainability. This is the
case since it is possible to express the relevant idealiza-
tions can now be expressessd using Θ and are thereby ex-
plicitly encoded in the model.
Keywords: continuous system modeling, Modelica, mod-
eling, nonlinear systems, simulation

1 Introduction
In the context of Modeling and Simulation (M&S) a com-
monly used modeling language is the Modelica Language
which enables modelers to model complex systems using
object orientation and equations to represent various phys-
ical components. By using equations, the Modelica lan-
guage can model any domain that can be expressed using
equations. The goal of the language is to provide mod-
elers with the necessary abstractions to express complex
cyber-physical systems.

However, modeling complex cyber-physical systems
is a challenging task, and when designing such systems
modelers frequently utilize idealization techniques in or-
der to formulate models that can be simulated efficiently.
Still, as of this writing, there are some techniques common
in modeling practice that the Modelica language, and, ac-
cording to our best knowledge and mainstream equation-
based languages in general, do not support.

One such idealization technique is the method of Ar-
tificial States where the modeler extends the dynamics of

systems by introducing additional state variables and asso-
ciated equations, and in that way, reducing the complexity
of the resulting nonlinear equation system, allowing effi-
cient and reliable solving.

The use of artificial states is generally seen as malprac-
tice in the modeling community, however, Zimmer (2013)
provides recommendations concerning how M&S frame-
works, and consequently equation-based modeling lan-
guages, can be extended such that modelers may express
this idealization explicitly.

This idea is further expanded upon in (Zimmer 2014),
where he proposes an augmentation to existing equation-
based languages by introducing a new time constant, Θ.

1.1 Motivation

While the method proposed by Zimmer has been previ-
ously discussed and suggestions for implementing it have
been described in (Zimmer 2013; Zimmer 2014), it has not
yet been integrated into any mainstream equation-based
language. In this article, we investigate the method ini-
tially proposed by Zimmer empirically. Hence, we aim
to provide additional insights concerning the applicabil-
ity Θ in pratice. We do this by examining and discussing
the practical consequences of integrating these concepts
into the equation-based language Modelica and provide
details concerning how to integrate it in compilers for
equation-based languages. To illustrate the concept we use
a common modeling scenario with a nonlinear circuit and
a DAE-System that existing Modelica environments have
difficulties solving.

1.2 Organization

The remainder of this article is organized as follows: Sec-
tion 2 further expands on the background provided in the
introduction by discussing Θ and summarizing the math-
ematical background. We then provide details concern-
ing how to extend a Modelica Simulation environment by
adapting the structural transformation phases to accom-
modate this new operator in Section 3. Section 4 presents
the results using the proposed new operator, and Section
5 presents additional related work. Finally, the conclusion
is presented in Section 6.
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2 Handling infinitely fast processes in
continuous system modeling

In an equation-based language, the system of equations of
the final system that is to be simulated is derived by col-
lecting and merging the equations resulting from the com-
ponents of some model. Systems in the following form
are typical:

dx
dt

= f (x,u, p, t)

where x is the set of state variables, u is the set of alge-
braic variables, and p is a vector representing parameters
and constants. These systems consisting of both algebraic
and differential equations are called DAEs. Compilers for
equation-based languages such as Modelica translate such
systems into executable code for simulation by techniques
such as index reduction and topological sorting of the de-
pendencies between its constituent parts.

Figure 1. A sketch on how simulation code might look for a
model that contains algebraic loops.

Due to the presence of algebraic loops, such systems
may contain a nonlinear subsystem of equations and a sys-
tem of ordinary differential equations. Figure 1 illustrates
how a DAE-System might be translated by a model com-
piler. In this example, the part of the system that can
be fully causalized is denoted the Algebraic Equation
Block. Following this block is the Algebraic (Nonlinear)
Equation Block. This block represents a nonlinear sys-
tem of algebraic equations, caused by the existance of al-
gebraic loops in the underlying model. Finally, in this ex-
ample is the block of the differential equations, the State
Equation Block.

Zimmer (2014) argues that a common occurrence in
modeling practice is a system where parts of a system con-
verge faster than others and provide the following exam-
ple: 

dx
dt

= fx(x,y,u, t)

dy
dt

= fy(x,y,u, t)
(1)

In Equation 1, we assume that the process involves the
state variable x, and converges faster than the process as-
sociated with the state variable y. Here, u denotes a set of

algebraic variables. If we assume that the system in Equa-
tion 1 is stiff, and that the modeler is not interested in the
dynamics of x a possible idealization is the system defined
in Equation 2: 

0 = fx(x,y,u, t)
dy
dt

= fy(x,y,u, t)
(2)

In this case, the dynamics of the state variable x have been
removed to make the system easier to solve. However, in
this case we need to solve the nonlinear system:

0 = fx(x,y,u, t)

The modeler, Zimmer (2014), argues, has to choose be-
tween two alternatives, either a stiff model represented by
Equation 1 or a model with a possibly complex nonlin-
ear system as in Equation 2. Zimmer (2014), argues that
this selection is often made pragmatically; hence, once the
modeler selects one alternative, the choice is not explicitly
encoded in the model code. Consequently, future mod-
elers that are to maintain such a model might not know
that an idealization has been made, which arguably, makes
maintenance more difficult.

Instead, Zimmer (2014) proposes the inclusion of a uni-
versal time constant, denoted Θ for equation-based lan-
guages to make this idealization explicit. Using this ap-
proach, Equation 1 can be formulated as follows:

dx
dt
·Θ = fx(x,y,u, t)

dy
dt

= fy(x,y,u, t)
(3)

In Equation 3 the modeler explicitly expresses that
dx
dt ·Θ = fx(x,y,u, t) is an infinitely fast process. Conse-
quently, this entails that the part of the system dependent
on Θ is to be solved by means of a sub-simulation1. In
other words, if Θ is used as in Equation 3, the system
should be solved as in Equation 4. Where a sub-simulation
provides the x̂ value, by solving the differential equation
dx̂
dt = fx(x̂,y,u, t, t̂) where the state variable y, the variables
in u and the global time2 are treated as constants. Here, t̂
is the artificial time used by the sub-simulation to model it
as a infinitely fast process.

For additional details and mathematical background
concerning Θ we refer to (Zimmer 2014).

0 = fx(x̂,y,u, t)
dy
dt
·Ty = fy(x,y,u, t)

(4)

1In the article Handling infinitely fast processes in continuous sys-
tem modeling (Zimmer 2014), this is described to be solved by a con-
tinuation solver.

2The time t of the main simulation.
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model DAE_Example
Real x(start = 1.0);
Real y;
Real a;

function s
input Real a;
output Real oa;

algorithm
if (a < -1) then
oa := a/4 -3/4;

elseif (a > 1) then
oa := a/4 + 3/4;

else
oa := a;

end if;
end s;
equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a) = (10*x - s(a));

end DAE_Example;

Listing 1. A first attempt of a Modelica implementation of
Equation 5.

2.1 Example 1: A Differential Algebraic
Equation System

We turn now to a more concrete example of the previous
discussion to exemplify how Θ can be used in the context
of Modelica. Later in Section 4, we provide an example
on how Θ may be used to significantly speed up simula-
tions, and arguably, make models more maintainable by
allowing modelers to explicitly state their intent. In Zim-
mer (2013) the following system is given:

f (x,y,a, t) =



dx
dt

= y

dy
dt

=−0.1a−0.4y

dx
da

= 10x− s(a)

(5)

With the monotonic increasing function s defined as:

s(a) =


a−4−3/4 if a <−1

a/4+3/4 if (a > 1)∧¬(a <−1)
a otherwise

(6)

If we formulate a model for the system defined by
Equation 5 in the equation-based modeling language
Modelica, see Listing 1, we end up with a stiff system.
Still, if we attempt a similar idealization as described ear-
lier in this section we could do so by substituting dx

da =
10x− s(a) with 0 = 10x− s(a).

model DAE_Example2
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
0 = (10*x - s(a));

end DAE_Example2;

Listing 2. An attempted idealization of the model in Listing 1,
the function s has been omitted.

With this change we can formulate the Modelica model
in Listing 2. If we attempt to simulate this system the
state-of-the-art OpenModelica Compiler (Fritzson et al.
2020) is unable to simulate it correctly due to the result-
ing nonlinear system, unless a very small step size is se-
lected. As discussed previously, this is clearly disadvanta-
geous since it requires manual adjustments of solver set-
tings. Furthermore, this impacts simulation performance
negatively since a very small step size is needed.

(Zimmer 2013), presents a clear use case for introduc-
ing an operator called balance. The similarities to Θ

means that it may be used in place of balance, much in
the same way. If we apply Θ to Equation 5 we get the
following system:

dx
dt

= y

dy
dt

=−0.1a−0.4y

dx
da
·Θ = 10x− s(a)

− (7)

The resulting Modelica model and the associated code
generation extensions needed for Θ will be discussed in
Section 3, and the simulation resuls are presented in Sec-
tion 4.

2.2 Example 2: Nonlinear Circuit
Let us now consider a less artificial example exemplified
by using two configuration examples of an electrical cir-
cuit model.

The first example in question is a nonlinear circuit with
a few diodes. The diodes are real diodes with an ex-
ponential voltage-current characteristic, not ideal diodes
with either zero voltage or zero current. The model
Circuit1Static, see Figure 2, has a series connec-
tion between the diodes and a large resistor. The result
of this connection is a very strongly nonlinear system of
equations. In this case the nonlinearity index (Casella and
Bachmann 2021), will be >> 1. As a consequence, if
simulated by the OpenModelica Compiler (Fritzson et al.
2020) the nonlinear algebraic equation solver experiences
convergence issues, causing the master ODE integration
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Figure 2. An electrical circuit with a nonlinear system that is
difficult to solve. Model Circuit1Static.

Figure 3. An electrical circuit with a less complex non-
linear system due to the parasitic capacitance Cnl. Model
Circuit1Dynamic.

method to reduce the time step, and to eventually give up
after 0.015 seconds.

The second circuit Circuit1Dynamic, see Figure 3
solves the problem by connecting a small parasitic capaci-
tance between the diodes and the large resistor. The intro-
duction of an additional state variable to the model makes
the voltage at that node known at each time step during the
simulation, hence significantly easing the solution of the
system. Hence, by utilizing the method of artificial states,
we ensure that the simulation can proceed without issues.

To conclude, the examples in Subsection 2.1 and Sub-
section 2.2 exemplify how various idealizations might be
used in practice. Still, sometimes it might be difficult to
get the correct simulation results as exemplified in the dis-
cussion of Subsection 2.1. In other cases we can get a sys-
tem to simulate at the cost of introducing additional states.
However, and as previously discussed and argued by Zim-
mer (2014) this might be a future detriment in terms of
model maintainability. As we will see in Section 4, Θ may
be used to significantly speed up simulations in this case,
and arguably make the idealization more maintainable.

3 Implementation
In this section we present implementation details concern-
ing the introduction of Θ in a Modelica compiler.

3.1 OpenModelica.jl
We implemented the ideas presented in this paper in
OpenModelica.jl, a Julia-based Modelica Compiler (Tin-

nerholm, Pop, and Sjölund 2022). OpenModelica.jl is
written in the programming language Julia and supports
some experimental features not currently available in
mainstream Modelica Compilers. This compiler inte-
grates several Julia packages such as ModelingToolkit
(MTK) (Ma et al. 2021) and DifferentialEquations.jl
(Rackauckas and Nie 2017). The main feature of this
compiler being its modularization and extensions that in-
troduce support for Variable Structure System Modeling
for Modelica. As a part of this work a new code gener-
ator was written to export the intermediate representation
produced by MTK models to a more portable low-level
representation. Furthermore, we implemented support for
a significant subset of the Electrical Library of the Model-
ica Standard Library for this new code generator.

3.2 Extending Modelica with Θ

The typical compilation process of a compiler for an
equation-based language is to transform the provided
model into a suitable format for some solver. The general
process is described in Figure 4.

Figure 4. An illustration of a typical compiler pipeline for an
equation-based language. The frontend is similar to that of an or-
dinary compiler; it performs parsing, syntactical, and semantical
analysis of the input model. Finally, a compiler for an equation-
based language typically generates code targeting a solver such
as DASSL (Petzold 1982).

In principle introducing Θ involves only slight changes
to key parts of this process. First of all, Θ should not only
be used as a low-level operator; instead, Θ should be ap-
plicable in a non-invasive way such that the internal equa-
tions of models that it is applied to are untouched. Further-
more, Θ should be propagated and not be removed dur-
ing any optimization phase. As such, Θ should be avail-
able and taken into consideration by the various structural
transformation phases, such as sorting performed by the
compiler backend.

3.3 Preparing Code For Simulation
Zimmer (2014) provides an initial sketch for simulation
code generation when expanding an equation-based lan-
guage with Θ. In summary, the steps are as follows:

1. Treat Θ as an irreducible variable.

2. Analyze that Θ has been applied correctly.
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3. Generate code for simulation with respect to how Θ

has been applied.

To provide initial support for Θ we implemented it as a
special parameter by introducing a new reserved keyword
THETA3. By reserving a name we can via static analysis
follow the def-use chains in the frontend and abstain from
removing the parameter during the backend optimization
phases. Hence, concerning the first step, we fulfill it by
omitting certain optimization phases such as not remov-
ing simple equations that have structural dependencies
on THETA. This means that Θ remains in the system of
equations, after the sorting, matching, and index-reduction
phases are completed.

The second step entails adhering to several constraints,
Zimmer (2014) proposes the following constraints:

1. The resulting system should be successfully bal-
anced.

2. The resulting system should be successfully causal-
ized.

3. Furthermore, each variable may be expressed as a
factor of Θn where n is an integer. Moreover, Θ

may not be used as a function argument for non-
linear functions such as sin, cos. Furthermore,
the variables in dx

dt should be multiplied by Θ or
Θ0, where multiplication by Θ indicates that sub-
simulation code should be generated for that vari-
able4

These requirements were fulfilled by augmenting the
compiler backend with additional checks before proceed-
ing with simulations, however, the check concerning in-
valid usage of Θ in nonlinear functions was omitted.

3.4 Generating code for state variables de-
pending on Θ.

As previously stated, variables in dx
dt should be multiplied

by either Θ or Θ0 where the first indicates that code repre-
senting an infinitely fast process should be generated for
that part of the system. For more mathematical detail con-
cerning the code generation for this process, we refer to
(Zimmer 2014).

To exemplify the current state of our code generator let
us consider the Modelica model in Listing 1. Using the
aforementioned new parameter THETA we can augment
our code and write a new model as in Listing 3.

The structural analysis is simple for the model depicted
in Listing 3. Code for a sub-simulation is generated for

der(a) * THETA = (10*x - s(a))

3We note that this might break existing models using parameters
with the same name, however, we use it in the initial implementation
to illustrate the concept.

4Θ0 means that Θ has not been applied.

model DAE_Example_THETA
Real a;
Real x(start = 1);
Real y;
parameter Real THETA = 1.0;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a)*THETA = (10*x - s(a));

end DAE_Example_THETA;

Listing 3. A Modelica implementation of Equation 5, here the
function s is omitted.

For the main simulation, this equation is replaced with the
following nonlinear equation as described in Section 2:

0 = (10*x - s(a))

During the simulation, the sub-simulation is solved us-
ing the implicit Euler integration algorithm, providing x̂
for the main simulation. The current termination criterion
for the sub-simulation is running the artificial time t̂ from
t̂ = 0 until tcurrent

5. For a high-level description of the code
generated for the solvers, we refer to Algorithm 1 and Fig-
ure 5.

Algorithm 1 High-level description of the code generated
when translating the Modelica model in Listing 3.

function K(u)
Initialize x and y using u.
ox[1]← 10y[1]− s(x[1])

end function
function H(dy,y,u, t)

sub-simulation(u)
nonlinear-solve(k)
dy[1]← y[2]
dy[2]←−0.1x[1]−0.4y[2]

end function
function SUB-SIMULATION(u)

extract x from u.
solve da

dt = 10 · x− s(a)
Update u, provide â for the main simulation.

end function
function SIMULATION-FUNCTION

Simulate by integrating the H function.
Report results.

end function

In general, however, the structural analysis needed, may
be more involved. Consider, the electrical circuit in Fig-
ure 3, just as in Listing 3 the model is a suitable candidate

5It should be noted that a dedicated algorithm to describe the sub-
simulation is presented in (Zimmer 2013). Compared to the algorithm
suggested in (Zimmer 2013) we currently take more steps in the sub-
simulations then necessary.
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Figure 5. Graphical illustration of the simulation code generated
for a model with n non-nested subprocesses. Showing where Θ

appears in generated code, the Θ-processes supply the nonlinear
solver with initial values.

package CircuitTest
model ThetaCircuit2Dynamic
parameter Real THETA = 1.0;
extends Circuit1Static;
Capacitor Cp(C = 1e-12 * THETA);

equation
connect(Cp.n, ground.p);
connect(diode.n, Cp.p);

end ThetaCircuit2Dynamic;
end CircuitTest;

Listing 4. Modelica model showcasing how the Θ is used at
the top level of the component hierarchy. The components used
are from the Modelica Standard Library; the package paths have
been omitted.

for applying Θ. To illustrate how it can be applied to ex-
isting models without changing any equations at a lower
abstraction level consider the model depicted in Listing 4
where Θ is applied at the top level.



0 =Cp_v−R1_R_actual ·R1_i

0 = diode_i− (10−9(tmp53−1)− (10−8))diode_v
0 = D2_i+diode_i−D1_i

Cp_v
dt

=Cp_i/(10−12
Θ)

C1_v
dt

= 9999.99999999999 ·C1_i
(8)

When used as in Listing 4, the compiler initially gen-
erates the equations listed in Equation 8, then, the com-
piler starts Θ specific code generation. During this pro-
cess structural analysis is used to extract the processes that
should be run as sub-simulation from the resulting equa-
tions. This is achieved by using the following steps:

1. Construct a graph based on equation-variable depen-
dencies.

2. Extract equations were the Θ operator is used.

3. Extract the set of variables depending on Θ.

4. Return the strongly connected components of the
equation-variable dependency graph.

Figure 6. Excerpt of the dependency graph for
ThetaCircuit2Dynamic in Listing 4. The variables
that depend on Θ is marked in green, the other state is marked
in yellow.

The last step to extract the strongly connected compo-
nents uses Tarjans algorithm (Tarjan 1971). To illustrate
this process graphically we refer to Figure 6. We refer to
the algorithm in (Zimmer 2014) for a more formal descrip-
tion of the steps involved.

After the structural analysis, the compiler generates
Equation 9 for the main simulation process and Equa-
tion 10 for the sub-simulation.

0 =Cp_v−R1_R_actual ∗R1_i

0 = diode_i−10−9(tmp53−1)10−8diode_v
0 = D2_i+diode_i−D1_i

C1_v
dt

= 9999.99999999999 ·C1_i
(9)

Cp_v
dt

=Cp_i/(10−12
Θ) (10)
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4 Simulation Results
In Section 3 we discussed the practical integration of Θ

in a Modelica compiler. In this section we will present
our findings concerning concrete practical benefits of us-
ing this new construct. We do so by presenting two moti-
vating examples, the first being a description of our results
when simulating the model in Listing 3. The second ex-
ample concerns simulation speedup when simulating the
circuit depicted in Figure 3 compared to the circuit using
Θ listed in Listing 4.

4.1 Simulating the DAE_Example
As discussed previously simulating DAE_Example with-
out Θ resulted in undeseriable results, see Listing 2 both
when using OpenModelica.jl and OpenModelica.

Figure 7. Simulation result showing the oscillation of x for List-
ing 2.

Figure 8. Simulation result showing the oscillation of x after
theta has been applied.

Simulating the model using Θ as done in Listing 3 pro-
duces the correct plot; see Figure 8. As we did not have
access to the original code nor to the model simulated as
the small application example in (Zimmer 2013) the initial
values of the system were assumed to be x0 = {1,0,0} for
x, a and y respectively.

4.2 Simulating the Dynamic circuit using Θ

As previously mentioned, simulating the static circuit de-
picted in Figure 2 resulted in failure for the nonlinear
solver.

Simulating the same system using the parasitic capac-
itance as depicted in Figure 3, leads to a successful sim-
ulation, however, the nonlinear system is complicated to
solve leading to the solver having to take several time steps
to integrate the system successfully, see Figure 9 for the
plot of C1.v for this circuit.

Figure 9. Simulation of C1.v for the circuit in Figure 3 using
Rodas5.

Using the method for code generation described in Sec-
tion 3 simulation code was successfully generated for the
model in Listing 4. We validated the solution of simu-
lating the system using an infinitely fast sub-simulation
by comparing the obtained results to the original results.
There were no notable differences between the two simu-
lations, see Figure 9 and Figure 10.

Figure 10. Simulation of C1.v for the circuit model in Listing 3
using Tsit5.
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Similarly, to the DAE_Example using Θ for the cir-
cuit model permits using solvers for non-stiff problems
rather than stiff solvers such as DASSL (Petzold 1982).
In this example, we compare the results of simulating
Circuit1Dynamic using the following setup:

1. Simulating the System using the OpenModelica
Compiler with the DASSL solver.

2. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler with the Rodas5
solver6

3. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler using Θ and the Ro-
das5 solver.

4. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler using Θ with the ex-
plicit Tsit5 solver (Tsitouras 2011).

The simulations in the experiment had the absolute and
relative tolerance levels set to 1e−6. The experiment was
run on a Laptop with an AMD Ryzen 7 PRO 5850U with
Radeon Graphics and 32.0 GB internal memory, using
Microsofts Subsystem for Linux with version 5.10.102.1-
microsoft-standard-WSL2. In terms of software, the Ju-
lia version used was 1.9-RC1 and the version of Open-
Modelica was v1.21.0.

Table 1. Solver statistics when simulating the dynamic circuit
in Figure 3. CRodas refers to the simulation of the circuit without
using Θ with the Rodas5 solver. CΘRodas and CΘT SIT 5 refers to
the result of simulating the same circuit using Θ.

Statistic CRodas CΘRodas CΘT SIT 5

#Accepted Steps 109 36 39
#Rejected Steps 5 0 0
#Jacobians Created 109 36 0
#Linear Solves 912 288 0

The solver statistics for the models generated by the
OpenModelica.jl are available in Table 1. As expected,
we can see that using the Θ not only allows us to use ex-
plicit solvers such as Tsit5, it also reduces the amounts of
integration steps needed to complete the simulation.

It is interesting to also compare the results with respect
to the total simulation time for existing Modelica Compil-
ers. For this purpose, we also compared the result of run-
ning the simulation using the OpenModelica Compiler. To
benchmark the Julia code generated by OpenModelica.jl,
we used Benchmarking software (Chen and Revels 2016)
with the maximum number of samples set to 100. The
simulation time for the OpenModelica Compiler was ob-
tained by sampling the simulation statistics 10 times.

6https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/ Ac-
cessed 2023-04-25.

Table 2. Simulation Statistics comparing the simulation
of Circuit1Dynamic using the OpenModelica Compiler
(OMC), and the results of running the same model using Θ with
the Julia-based Compiler, OpenModelica.jl (shorten to OM.jl in
the table). The sample mean, median and standard deviation of
the total simulation time are denoted x̂, M̂, and σ̂ respectively.

OMC (DASSL) M̂ x̂ σ̂

41.016ms 44.2496ms 11.984ms

OM.jl (Tsit5) M̂ x̂ σ̂

13.709ms 14.801ms 1.892ms

The results are presented in Table 2; from these results,
we can see that there is a clear speedup in the experimen-
tal compiler using this method, in this case, by about 2.9
times.

5 Related Work
The techniques discussed and implemented in this paper
were proposed in Zimmer (2013) and further elaborated
upon in Zimmer (2014).

A technique similar to the extension of the Modelica
language presented in this paper is the homotopy opera-
tor. The homotopy operator was added to the Modelica
language to provide an option for more robust initializa-
tion (Sielemann et al. 2011).

Artificial time integration in the context of Partial Dif-
ferential Equations has been proposed and investigated by
Ascher, Huang, and Van Den Doel (2007).

6 Conclusions and Future Work
In this article, we have demonstrated the usefulness of in-
troducing a new construct, Θ in the equation-based lan-
guage Modelica. We integrated support for Θ in OM.jl and
we used two examples with an associated microbench-
mark to illustrate its advantages. The example presented
in Subsection 4.1 illustrates how more robust simulations
can be achieved using Θ. The second example presented
in Subsection 4.2, shows how Θ may speed up the total
simulation time in models constructed using existing stan-
dard components.

However, several open questions remain unanswered.
The first question is selecting a suitable initial step size for
the sub-simulation. Currently, if the step size is too small
the solver will need to take many steps. If it is too long, it
corresponds to more or less to solving the algebraic equi-
librium equation outright; in that case, this method will
not be used.

Furthermore, the current implementation relies on the
implicit solvers provided by the MTK-ecosystem. This is
not optimal in this case because such solvers tend to re-
port failures late, whereas in this case failures should be
reported as early as possible. Moreover, such solvers save
intermediate values resulting in unnecessary high mem-
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ory consumption furthermore it also compute them with
high precision and error control, which is not relevant in
this case, only the asymptotic result is. While using the
solvers from MTK worked for the example examined in
this paper, a specialized embedded algorithm should be
implemented instead.

An initial proposal of such an algorithm was proposed
in (Zimmer 2013). Still, we believe such an algorithm
could need further improvements. Improvements include
utilize heuristics to select a suitable initial step size. Using
an embedded subsimulation algorithm would also elimi-
nate the need to save intermediate values, hence, reducing
the memory footprint of the final simulation. As an exten-
sion to the work presented here further research should be
invested to design and implement specialized algorithms
and heuristics designed to be embedded for these pur-
poses.

In this paper, we used the circuit model
ThetaCircuit2Dynamic to illustrate how Θ could
be applied to an existing model, Circuit1Dynamic
listed in Listing 6, showing how existing models could
integrate this without changing any low-level implemen-
tation. However, we have yet to investigate how well this
new method scales when using nested sub-simulations.
Hence, we should investigate the practical effects on
larger models with more complex dependencies. This
should be done both to finetune a possible heuristic for
the initial step size of the sub simulations and gain even
more insight concerning the robustness of the method.

To conclude we have examined the consequences when
introducing a construct to an equation-based language to
express infinitely fast processes; our experiments in Sec-
tion 4 show clear net benefits of supporting Θ both in
terms of speed and accuracy for the models that we tested.
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A Models
This appendix contains the Modelica models of the cir-
cuits depicted in Figure 2, Figure 3. It also contains some
example models illustrating different ways the Θ opera-
tor can be used. In ThetaCircuit1Dynamic it is used as
a part of a low-level submodel, ThetaCapacitator and in
ThetaCircuit2Dynamic it is used in the topmost model to
enable efficient code simulation. The components used are
from the Modelica Standard Library; the package paths
have been omitted. The annotations have been omitted.

package DAE_Examples
function s
input Real a;
output Real oa;

algorithm
if (a < -1) then

oa := a/4 -3/4;
elseif (a > 1) then

oa := a/4 + 3/4;
else

oa := a;
end if;

end s;

model DAE_Example
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a) = (10*x - s(a));

end DAE_Example;

model DAE_Example2
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
0 = (10*x - s(a));

end DAE_Example2;

model DAE_Example_THETA
Real a;
Real x(start = 1);
Real y;
parameter Real THETA = 1.0;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a)*THETA = (10*x - s(a));

end DAE_Example_THETA;
end DAE_Examples;

Listing 5. The DAE Example models.

package CircuitTests
//Details and annotations are omitted
model Circuit1Static

extends Modelica.Icons.Example;
Ground ground;
StepCurrent stepCurrent(I = 1);
Capacitor C1(C(displayUnit = "uF") =

0.0001000000000000001);↪→
Resistor R1(R = 1000);
Diode D1(Ids = 1e-9, Maxexp = 40);
Diode D2(Ids = 1e-9, Maxexp = 40);
Diode D3(Ids = 1e-9, Maxexp = 40);
Diode diode(Ids = 1e-9, Maxexp = 40);

equation
connect(C1.n, ground.p);
connect(stepCurrent.p, ground.p);
connect(R1.n, ground.p);
connect(stepCurrent.n, C1.p);
connect(C1.p, D1.p);
connect(C1.p, D2.n);
connect(D2.p, D3.p);
connect(D1.n, D3.p);
connect(D3.n, diode.p);
connect(diode.n, R1.p);

end Circuit1Static;

model Circuit1Dynamic
extends Circuit1Static;
Capacitor Cnl(C (displayUnit = "F")=

1e-12);↪→
equation

connect(Cnl.n, ground.p)
connect(diode.n, Cnl.p)

end Circuit1Dynamic;

model ThetaCapacitator
extends OnePort(v(start=0));
parameter Capacitance C(start=1)

"Capacitance";↪→
parameter Real THETA;

equation
i = C*THETA*der(v);

end ThetaCapacitator;

model ThetaCircuit1Dynamic
extends Circuit1Static;
TestThetaMethod.ThetaCapacitator Cnl(C =

1e-12);↪→
equation

connect(Cnl.n, ground.p);
connect(diode.n, Cnl.p);

end ThetaCircuit1Dynamic;

model ThetaCircuit2Dynamic
parameter Real THETA = 1.0;
extends Circuit1Static;
Capacitor Cp(C = 1e-12 * THETA);

equation
connect(Cp.n, ground.p);
connect(diode.n, Cp.p);

end ThetaCircuit2Dynamic;

end CircuitTests;

Listing 6. The Circuit models discussing in Section 2.
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Abstract
The Contact Dynamics library extends the multi-body
Modelica Standard Library with contact calculation to the
environment, namely soft soil and hard obstacles. A focus
is on terramechanics, i. e. wheels driving on soft and dry
soil, and a handful of models are implemented. Addition-
ally, a Hertz contact model for hard and elastic contact,
between bodies themselves or to obstacles in the environ-
ment (e. g. rocks in the soft soil), is available as well. The
capabilities of the library have been key in the develop-
ment of rovers for planetary exploration such as the up-
coming MMX mission to the Martian moon Phobos.
Keywords: Multi-Body mechanics, Contact dynamics,
Terramechanics, Modelica library with external code

1 Introduction
When developing and analyzing off-road vehicles one of
the most important factors is contact dynamics, more pre-
cisely the resulting forces and torques of a metal wheel
driving on unprepared soft soil. This engineering branch
known as “terramechanics” has proposed numerous of
models with various levels of detail describing exactly
this. Starting from agricultural and military applications
it has also shifted in particular to rovers that explore celes-
tial bodies in situ, as comes clear from section 5.

Along the growing interest in planetary exploration, us-
age of high-fidelity modeling and simulation has also in-
creased for development and analysis of mobile robotic
systems. Modelica already provides good material for
multi-body dynamics but lacks the contact detection and
reaction calculation of wheels driving in soft soil or of
robot parts hitting obstacles or each other. To fill this gap,
the planetary exploration group at DLR’s Institute of Sys-
tem Dynamics and Control (SR) has developed a “Contact
Dynamics” library that is the subject of this text.

The text is organized as follows: section 2 reviews the-
ory of contact dynamics and software packages for Mod-
elica and other simulation environments. The first main
section starts with the library structure and ends with some
useful additions for environment and contact object gen-
eration. Details about the models themselves (idea, equa-
tions) and how they perform in simple academic examples
(verification) is subject of section 4, the second main sec-
tion. Finally, some example applications are shown in sec-

tion 5 and concluding remarks as well as an outlook to the
future are given.

All footnote links are accessed August 7, 2023.

2 State of the Art
2.1 Contact Dynamics
The mechanics of bodies in contact with each other was
first scientifically inspected by Hertz (1882). Since then,
the field of rigid, elastic contact has in principle not
(needed to) evolved much as comes clear from Flores and
Lankarani (2016) that still builds on Hertz’s work. But the
advent of computers and simulation has led to a large num-
ber of models for reaction force calculation based on the
penetration of the bodies in contact to correctly represent
the resulting speed after contact and the energy dissipated.
Another fundamental contact simulation technique based
on exchange of impulse also exists and is widely applied
in computer games, but is not pursued further here.

The detection whether two bodies are in contact or not,
has seen a few algorithms like Gilbert-Johnson-Keerthi
GJK (Gilbert et al. 1988), Polygonal Contact Model
(Hippmann 2004) (not restricted to convex shapes) or
Minkowski Portal Refinement MPR, also called Xeno-
Collide1. Usually, before the expensive contact detection
algorithm is run, the software checks whether the Axis-
Aligned Bounding Boxes AABB overlap to quickly ex-
clude object pairs definitely not in contact with each other.

The Hertz contact models, more precisely the nonlin-
ear Hunt and Crossley model as explained in Flores and
Lankarani (2016), and the MPR contact detection in the
open source implementation libccd2, are the source for
the rigid body contact dynamics in the library.

The above-mentioned contact dynamics mainly deal
with two objects colliding with each other. While this also
gives usable solutions for a cylinder rolling on a cuboid
(a wheel driving on flat soil), better solutions for a wheel
driving in soft soil are possible. This is the “terramechan-
ics” field whose modern analysis starts with the works of
M. G. Bekker and agricultural machines engineers in the
1950s and 1960s. Chapter 2 of Wong (2008) compiles the
latest knowledge at the beginning of the 21st century.

1http://xenocollide.snethen.com/
2https://github.com/danfis/libccd
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The highest level of detail in terramechanics is when
the soil is simulated as discrete particles, each represent-
ing a small pack of grains. There is expertise also on this
field at DLR SR and an in-house software partsival
(Lichtenheldt et al. 2018). It would in theory be possible
for Modelica to use partsival as external library, how-
ever this is not done (and won’t be in the near future) for
two reasons. First, discrete particles simulation requires
much computer power, therefore only single wheel scenar-
ios are possible in reasonable time. Modelica with Contact
Dynamics on the other hand focus on full rover scenarios.
Second, partsival not only simulates the particles but
also the wheel dynamics themselves, thus there is no need
to connect it to Modelica. A similar, divided, approach for
development and analysis of the Opportunity and Spirit
rovers was done with the ARTEMIS (Zhou et al. 2014) full
rover simulation and the COUPi (Johnson et al. 2015) dis-
crete particles single wheel simulations.

2.2 Contact Dynamics Simulation
Bringing together multi-body and contact dynamics has
already been done prior this work. The video game in-
dustry for example has released a dozen of physics en-
gines that among other features compute contact dynam-
ics. Emphasis there is more on visually appealing re-
sults and speed rather than on scientific accuracy and pre-
dictability of ground truth. Interestingly, the rover simu-
lator ROSTDyn (Li et al. 2013) chose to code the contact
dynamics themselves as a C++-library despite using the
Vortex3 engine that also has this capability.

Solutions for MATLAB are for example related in
Tarokh (2016) and Ding et al. (2010).

Neumayr and Otter (2017) and Neumayr and Otter
(2019) add collision detection and Hertz contact dynam-
ics to Modia3D. The elastic, rigid body contact dynam-
ics of the presented Contact Dynamics library share much
in common with this work (MPR algorithm with AABB
preprocessing, Hunt and Crossley model). However, the
Contact Dynamics library goes further in that it adds a
handful of contact models to Modelica. Next to the Hertz
contact are specialized models for the main area of appli-
cation: simulation of planetary exploration rovers, where
terramechanics can be applied advantageously.

Contact dynamics for Modelica already exist as well.
In fact, one can see the ElastoGap model of the Stan-
dard Library as a very simple contact dynamics block, as
was first tried by the authors before the advent of Con-
tact Dynamics. Two libraries that add contact calcula-
tion to the multi-body Standard Library, have been pub-
lished so far to the knowledge of the authors. Elmqvist et
al. (2015) enables Modelica for Discrete Element Method
DEM using external binaries. Oestersötebier et al. (2014)
uses only pure Modelica code to add punctual, linear and
planar contact points to bodies, again using modern ex-
tensions of Hertz theory for the resulting forces. The free

3cm-labs.com/vortex-studio/

library IdealizedContact4 released along this publication,
is no longer maintained. Loading it into the 2022 Dymola5

release and running the conversion script to the new Mod-
elica Standard makes this library still usable today.

There have been a few attempts to connect Model-
ica to physics engines. For example, Hofmann et al.
(2014) uses the collision detection capability from the
Bullet Physics6 as external C++-library, but Modelica for
multi-body dynamics and reaction force calculations. The
announced CollisionLib was not found by the authors.

In a similar way, Bardaro et al. (2017)
couples Gazebo7 to Modelica. In the
end, the aim of this work is more to in-
tegrate Modelica into the physics en-
gine than to expand Modelica’s capa-
bilities with an external library.

3 Implementation
3.1 Contact Dynamics Li-
brary Overview
The base element of the Contact Dy-
namics library is a partial model that
can be attached to any model through
a multi-body frame. This base el-
ement provides a force and torque
sensor, some standard parameters and
small utilities such as an indicator
whether a contact is present or not
(this is not the contact detection).

Extensions from the base element come in three forms.
Note that none of these blocks have mass.

• Cuboid, cylinder, sphere, rock and CAD contact
shapes: Given parameters or path to a CAD file, the
contact shape is added to the model, optionally visu-
alized and the dynamics calculated using the BBCC
or SCM contact models (or both). Primitive shapes
are simulated as such while the rock asset generator
subsection 3.2 is called to automatically create rocks
satisfying the user’s choices.

• Wheel contact shape: In addition to BBCC and
SCM, specialized wheel-soil contact models, see
subsection 4.3, can be used with this extension. The
wheel asset generator subsection 3.2 is called.

• Elevation map: It provides two essential parts to
the wheel-soil models: the geometry of the surface
and the soil properties. As such it is always added
as outer component to wheel contacts. The eleva-
tion map geometry is created using the surface asset

4github.com/oestersoetebier/IdealizedContact
53ds.com/products-services/catia/products/

dymola/
6https://pybullet.org/wordpress/
7http://gazebosim.org
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Figure 1. Examples of Wheel Generation. Left: slim with
slanted grousers, center: wide with chevron grousers, right:
wheel with convex curvature.

generator subsection 3.2, the soil properties are pa-
rameters such as density and angle of repose.

The contact models are implemented independently
from the contact elements. This ensures modularity and
flexibility of the library. Generation of the contact shapes
(cuboid, cylinder, wheel, . . . ) or loading from CAD is
separated from the force and torque calculation too.

3.2 Assets
Part of Contact Dynamics is a procedural asset generator.
This generator can generate four types of assets: wheels,
surfaces, rocks and rock distributions. The procedural
generation allows to create these assets based on a set of
parameters and a seed. Using the same inputs will pro-
vide the same output. This feature allows the recreation of
previously used assets when required.

The asset generator is a C++-library that takes the para-
metric definition of the various objects and provides two
functions: a function to generate a unique ID for the given
input and a function to generate the requested input. The
Modelica interface uses these two functions to efficiently
identify handles of already created objects and to create
new files of not found handles. First, the ID of a requested
object is generated, then the filename is defined as the
combination of a type-specific prefix and the ID. Only if
no file of this name already exists in the working directory,
the actual wavefront obj file is generated and saved in the
working directory with the desired name.

Wheels are generated based on an extensive parametric
definition, including wheel radius, wheel width and multi-
ple parameters defining the radial profile. This base shape
can be extended by adding various features, like grousers
similarly parametrized. Figure 1 shows three examples.

For surface generation, two base methods are available.
The first method generates the surface based on external
definitions like height maps or a profile in a single di-
rection. The second method, procedurally generates the
surface based on noise. See Buse et al. (2022) and Buse
(2022) for more details on the method and validation of
this noise-based terrain generation. The noise used is pro-
vided by the open source library libnoise8. These two
methods can be combined: a statically defined surface
based on a profile can be superimposed with a noise-based
one to create more complex environments. See Figure 2

8libnoise.sourceforge.net

Figure 2. Examples of Surface Generation. Left: based on
noise, center: based on a defined slope, right: combined.

Figure 3. Examples of Rock Generation. Roughness increases
from left to right.

for three examples. On top of the generation of the mesh,
the surface generator also allows convenient, resolution-
independent access to surface information. The interface
function allows access to the height and normal at given
coordinates. This feature allows smooth integration with
the contact models implemented in Modelica by providing
the necessary information to approximate the local surface
geometry into a single frame based at a given position.

Rocks are generated by deforming the surface of a
sphere based on a function combining various noise types,
see Buse (2022) for details. The inputs to this genera-
tion method are the average dimensions and two rough-
ness parameters. Figure 3 shows three rocks with increas-
ing roughness. For easier integration into a multi-body
simulation, the rock generation process also computes the
volume and center of gravity as well the rocks’ inertia.

As rocks rarely appear alone, a generator for rock distri-
butions combines information from the surface generator
and the rock generator to create natural rock distributions.
Based on a statistical distribution description, the rocks are
placed on a previously generated surface. The output is ei-
ther a single file including all rocks at their final position or
the positions and individual files for each rock. These two
options allow to either include static or dynamic rocks.

4 Contact Models in Detail
4.1 BBCC
The Body to Body Contact model implemented in C
BBCC calculates contact between two convex, rigid
shapes. It is the most versatile of all models in the library
and returns acceptable results in reasonable time. Special
objects exist for cuboids, cylinders and spheres, a wheel is
simply a cylinder with an arbitrary number of cuboids on
the rim as grousers. Otherwise, a shape defined by a CAD
file can be loaded, note however that the implementation
of the contact detection results in effectively the convex
hull being used. If wanted, collections of objects can be
summarized into one “compound” object with the same
properties but separate convex hulls. This is useful for
scenarios with many (fixed) rocks on a surface. A surface

Session 4-C: Other industrial applications, such as electric drives, power systems, aerospace, etc. 1

DOI
10.3384/ecp204433

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

435



is implemented as collection of cuboids of unit height fol-
lowing the elevation and resolution.

The core of BBCC is an external library implemented in
C that gets the position and velocity of all contact objects
from Modelica and returns the resulting contact forces and
torques on them. A dll for Windows and a shared library
so for Linux are included as Modelica resources.

The calculation happens on a few layers. During the
initialization of the simulation, a collection of objects is
created in the external library containing basic information
about the contact objects such as shape and size, elasticity
parameters and references to other object with which col-
lision is enabled. The Modelica BBCC shape saves this as
an ExternalObject for later reference.

Each time instant the following is done to each object:

1. Update the position and velocity.

2. Determine whether another object is in contact:

(a) Exclude all objects not explicitly marked as po-
tential contact counterparts.

(b) Exclude all objects whose AABBs do not over-
lap with the one of the current object.

(c) Run the libccd MPR algorithm between the
current and all other remaining objects.

3. Calculate the reaction forces and torques for all other
objects not excluded above with the current one, see
subsection 4.1 for details about the contact equations.

4. Return the sum of all forces and torques on the cur-
rent object to Modelica.

As there potentially are many BBCC objects in a simu-
lation and the order in which they’re processed can’t be
controlled in Modelica, a special synchronizer is present
at the top level of every model involving at least one
BBCC object. It contains a connector with two vari-
ables, these are intertwined through an ordinary differen-
tial equation. This ensures that first all positions updates
are sent to the external library, the contact forces are calcu-
lated only after this is done. Listing 1 shows the important
code snippets for the connector, the synchronizer, the in-
terface to the external code (BBCC) and the partial base
class BaseObject from which cuboids, cylinders etc. in
Modelica extend. This is similar to the synchronization id-
iom of Elmqvist et al. (2015). The major difference being
that the external function calls are in the individual models
(BBCC) instead of a common call in the synchronizer.

Listing 1. BBCC Synchronization

connector BBCC_ContactSynchronizer
Real update;
flow Real contact;

end BBCC_ContactSynchronizer;

model BBCC_Synchronizer
BBCC_ContactSynchronizer sync;

initial equation
sync.update = 0;

equation
der(sync.update) = sync.contact;

annotation (defaultComponentName="bbccSync"
, defaultComponentPrefixes="inner");

end BBCC_Synchronizer;

model BBCC
BBCC_ContactSynchronizer sync;
Real dummy;
(...)

equation
sync.contact = update(obj,r,v,T,w,time,

dummy); // Update pos , ve l , . . .
(force,torque) = getForce(obj,time,sync.

update); // Ca l c u l a t e f , tau
(...)

end BBCC;

partial model BaseObject
outer BBCC_Synchronizer bbccSync;
BBCC bbcc(dummy=bbccSync.dummy,...);
(...)

equation
connect(bbccSync.sync, bbcc.sync);
(...)

end BaseObject;

4.1.1 Model
The normal force on objects in contact is (Flores and
Lankarani 2016)

∥FN∥= kδ
1.5(1+dδ̇ ) (1)

d =
8
5

1−ζ

ζ δ̇ (−)
(2)

k =
4
3

√
R

0.5
(

1−ν2
1

E1
+

1−ν2
2

E2

) (3)

with penetration depth δ , relative penetration velocity δ̇

and relative impact velocity prior to contact δ̇ (−). The re-
sulting stiffness k and damping d are functions of the ob-
ject parameters coefficient of restitution harmonic mean
ζ = 2 ζ1ζ2

ζ1+ζ2
, modulus of elasticity E and Poisson num-

ber ν . R is an estimate of the effective Hertz contact ra-
dius, currently estimated as half the harmonic mean of the
longest edges of the objects in contact ( 1

R = 1
R1

+ 1
R2

). Note
also that the intuitive meaning of the coefficient of resti-
tution (ratio between pre- and post-impact velocity) is lost
in this algorithm. In general ζ ̸= δ̇ (+)

δ̇ (−) , although this rela-
tionship is at the basis of the normal force derivation.

The default tangential contact model is

∥FT∥= µ∥FN∥ tanh
(
∥vT∥

vd

)
(4)

representing the Coulomb friction regularized by the ve-
locity dead band (lower bound for velocities) parameter
vd , with µ = 2 µ1µ2

µ1+µ2
being the harmonic mean of the fric-

tion parameters of the objects in contact.
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Figure 4. BBCC Impact Verification: Cylinder against cylinder
in zero gravity

The user can provide two more parameters µs and ξ to
activate a static tangential force model after Bengisu and
Akay (Marques et al. 2016) which is stiction capable

∥FT∥=

{
∥FN∥µs − ∥FN∥µs

v2
d

(∥vT∥− vd)
2 ∀ ∥vT∥< vd

∥FN∥µ +∥FN∥(µs −µ)e−ξ (∥vT ∥−vd) ∀ ∥vT∥ ≥ vd
(5)

The torque in normal direction reads

∥τN∥= µ∥FN∥π
√

Rδ
2

tanh

(√
Rδ∥ω∥

vd

)
(6)

with the effective contact area
√

Rδ . There (currently) is
no tangential torque in BBCC.

4.1.2 Verification
This text is the first publication that goes into detail about
this contact model. Thus, this extensive verification sub-
section to prove the correctness of BBCC in academic ex-
amples and give hints about the performance in more prac-
tical applications, as those of section 5. The tests were
done on a Windows 10 computer with Dymola 2022 and
the Esdirk45a solver (tolerance 1×10−5). The param-
eters used for all contact objects are given in Table 1.

Table 1. BBCC Verification Cylinder Parameters

Description Symbol Value

Radius r 0.50 m
Height h 1.00 m
Mass m 1.00 kg
Inertia I 0.25 kgm2

Young E 4.50×105 Pa
Poisson ν 0.40
Restitution ζ 0.60
Friction µ 0.40

Definitions and results of the tests to verify BBCC:

0.0 0.2 0.4 0.6 0.8 1.0
time in s

0.0

0.1

po
si

tio
n

in
m

BBCC Sliding Unit Test

simulation
theory limit

Figure 5. BBCC Sliding Verification: Non-rolling cylinder with
initial velocity on flat plane
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Figure 6. BBCC Rolling Verification: Free to roll cylinder with
initial energy differently distributed on flat plane

• Impact: The wheel is initialized above the surface
with an initial velocity oblique to the flat surface.
Gravity is turned off and the expected outcome is that
the incidence angles match.
Figure 4 shows that the BBCC cylinder correctly
applies the rules, that the incidence angle absolute
value after impact is the same than before, that the
velocity absolute value is reduced by the ζ , within
an acceptable tolerance.
Tests in Earth gravity with ζ = 1.0 or 0.0 (full energy
conservation or dissipation) verify successfully.

• Sliding: The wheel is initialized with an initial ve-
locity tangential to the flat surface, the wheel can’t
rotate but must slide. The expected outcome is that
the motion is slowed down because of friction.
Figure 5 shows that the BBCC friction breaking of a
cylinder with initial velocity on a cuboid is correct.

• Rolling: The wheel is initialized with an initial ve-
locity tangential to the flat surface, the wheel can ro-
tate. The expected outcome is that the motion is not
slowed down (much) because of friction.
The initial translational and rotational velocities of
Figure 6 were chosen to have the same initial en-
ergy in all three cases. For the translational (blue)
respectively rotational (red) initial energy only, con-
version into matching rotational and translational ve-
locities dissipates some energy compared to the case
of equal initial energies (green). Following this, little
losses due to rolling friction are seen with the same
constant deceleration in the three cases.

• Sliding on inclined plane: The wheel is initialized
with zero initial velocity on a flat, inclined surface,
the wheel can’t rotate but must slide. The expected
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Figure 7. BBCC Sliding Verification on Inclined Plane: Non-
rolling cylinder on inclined planes, i ≤ arctan µ or i > arctan µ
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Figure 8. BBCC Spinning Verification: Cylinder with initial
normal angular velocity on flat plane, the line in the plots is di-
vided into three segments for easier understanding

outcome is that the motion is either zero (low incli-
nation) or accelerated (high inclination).
If the inclination is smaller than the corresponding
friction angle arctan µ the cylinder correctly slides
down the plane with constant velocity as visible in
the upper plot of Figure 7. This velocity is higher
than the expected vd of Equation 4 because of the
short time needed for the contact to be settled after
initialization. If the inclination is higher than the cor-
responding friction angle arctan µ the cylinder cor-
rectly slides down the plane with constant acceler-
ation as visible in the lower plot of Figure 7. The
velocity is higher than expected because of the short
time needed for the contact to be settled after initial-
ization, the acceleration though is correct.
If the cylinder can roll down the inclined plane, the
expected constant acceleration regardless whether
i ≤ arctan µ or i > arctan µ is correctly simulated.

• Spinning: The wheel is initialized with an angular

velocity normal to the flat surface. The expected out-
come is constant deceleration because of friction.
Figure 8 shows the correct almost complete energy
dissipation. As the (x,y)-trajectory in the upper plot
shows, a very little constant rest velocity remains.

The points above show the successful verification of the
contact model against academic examples within an ac-
ceptable tolerance. This doesn’t rule out unwanted behav-
ior though, e. g. when stacking cylinders on top of each
other on their mantle sides. The instability of the equilib-
rium points quickly brings the tower to fall. This effect
can also be seen in stable equilibrium, e. g. stacking of
cuboids. There, the contact points jump between corners
of the same face and the cuboids never come completely to
rest. Still, the movements remain small enough for practi-
cal time spans such that a cuboid tower doesn’t fall.

4.2 SCM
The Soil Contact Model SCM, first presented in Krenn et
al. (2008) and significantly advanced in recent years (Buse
2018; Buse 2022), aims to provide detailed terramechan-
ical modeling in a form suitable for multi-body simula-
tions. Explicitly modeling soil deformation SCM, or the
newer version FSCM (Flow based Soil Contact Model),
allows effects like ruts left behind by wheels or other per-
manent soil deformation to affect system behavior. The
SCM model is a self-contained C++-library. The interface
code contained in Contact Dynamics provides integration
with Modelica and the DLR Visualization 2 Library.

The interface to SCM is divided into two main parts,
SCM contact objects and SCM surfaces. SCM contact ob-
jects define geometries that can interface with the surface.
Each object is defined by a mesh representing the geom-
etry, position, velocity, orientation and angular velocity
determining the current pose. For each of these objects,
SCM provides the resulting reaction forces. The SCM
surface defines the regolith surface, it is a stationary ob-
ject which describes the surface geometry as well as pa-
rameters. Internally a horizontal equidistant grid is used,
and the height of each node in the grid is used to repre-
sent the geometry. The Contact Dynamics blocks of type
box, cylinder, sphere, CAD, rock and wheel represent the
SCM contact objects. As SCM always relies on a mesh
to represent the contact geometry, base meshes for a box,
cylinder and sphere were manually created and placed in
the library resources. These are then scaled to match the
desired dimensions. For more complex shapes like rock
and wheel, custom meshes can be generated, see subsec-
tion 3.2. The SCM surface is part of the elevation map
block. An example of a single-wheel driving through soft
regolith is shown in Figure 9.

SCM divides contact modeling into two functions: a
contact dynamics function and a soil update function. The
contact dynamics function is called once for each object
and timestep, it computes the reaction forces based on
the current object pose and the last known soil state. In
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Figure 9. SCM Visualization: A wheel driving through soft soil.
The grid representation of the surface is shown as wireframe.

the soil update function, the surface geometry and internal
soil states are updated based on the last known object po-
sitions. The soil deformation results in a change of node
height in the surface grid. These two functions are cou-
pled to two sampled clocks in Modelica to control the rate
at which these functions are executed independently.

To visualize the surface, a flexible surface from the
DLR Visualization 2 Library is directly integrated with the
SCM library, this allows a higher resolution compared to
an integration through Modelica. This allows the visual
representation of detailed rutting as shown in Figure 9.

4.2.1 Verification

Extensive validation of SCM is documented in (Buse
2022). In this campaign, the model’s surface defor-
mation and force prediction has been compared against
measurements taken with the Terramechanics Robotics
Locomotion Lab TROLL. This testbed allows automatic
testing of various terramechanical experiments, see (Buse
2019). Figure 10 shows data from one scenario performed
in the validation. SCM’s predicted traction, normal and
drive torque are compared with the measurements when
the wheel is moved along the trajectory captured by the
testbed. In the shown scenario, a wheel is placed on a flat
surface and then vertically loaded to 100 N. After a short
period, a movement combining a translational movement
of the robot and a wheel rotation is started. A slip ratio of
60 % is enforced during this movement, thus the transla-
tional velocity is only 40 % of what the wheel’s rotational
velocity and radius would suggest.

4.3 Terramechanical Wheel-Soil Models Di-
rectly Implemented in Modelica

These models are not general like BBCC, they are only
valid for a wheel driving in soft soil.

The wheel contact shape, see subsection 3.1, contains
a wider selection of models to calculate the contact dy-
namics than cuboids, cylinders and spheres. In contrast
to the BBCC and SCM models that extend oneFrame
multi-body interfaces, these other conditional models ex-
tend from twoFrame. The frame on the left-hand side is
used again to get the position and orientation of the wheel
and receives the reaction forces and torques. The right-
hand side frame gets no forces but is connected to the el-
evation map and is used to detect whether the wheel is
in contact, remember that contact detection is external in
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Figure 10. SCM single wheel comparison of normal force, trac-
tion force and drive torque. Terramechanics Robotics Locomo-
tion Lab measurements in orange, simulated forces and torque
when replaying the motion captured with the testbed in blue.

SCM and BBCC. Creation of elevation maps is explained
in subsection 3.2. The equations governing the models are
detailed in the following.

4.3.1 TerRA

TerRA is short for Terramechanics for Real-time
Applications and is a purely empirical, fast computing ter-
ramechanics model developed by Barthelmes (2018). The
scope of this model is to provide a model that captures
the main effects of wheel-soil interaction while still being
considerably faster than real-time to allow using it in on-
board control software. The model captures dynamic slip-
sinkage and its effects on the traction and resistance forces
while not using any spatial discretization. TerRA consists
of purely empirical relations and its parameters are not de-
rived from any physical soil properties. They thus need to
be tuned with a higher fidelity model or experimental data
with the help of an optimization algorithm.

Model One very important effect in wheel-soil interac-
tion is dynamic sinkage: A wheel sinks deeper into the
soil for higher slippage and climbs out of its ditch once
traction is sufficient to reduce slip. Typically, modeling
these effects is either done with a spatial discretization of
the ground to consider the sinkage as a position-dependent
state or by altering the normal stress or normal force with
the wheel slip. In TerRA a more explicit approach is
developed, where the overall slip is divided into a sink-
age that is effective for increasing traction and the slip-
sinkage. The difference can be more easily understood
when imagining a wheel with large grousers: If the wheel
is pushed into the soil by normal force while not rotat-
ing, the soil below the wheel is mostly compressed, which
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increases the traction potential once the wheel starts rotat-
ing. If the wheel rotates but does not move forward, the
grousers shovel the soil away, leading to sinkage of the
wheel as well, however, the soil below the wheel is re-
moved rather than compressed, which increases the trac-
tion potential much less.

In TerRA, the total sinkage is therefore composed of the
effective and the slip-sinkage

z = zeff + zs. (7)

The slip sinkage is calculated with a dynamic model from
the inward and outward dynamic sinkage as

żs = żin(ωr− vx)+ żout(zeff,zs,vx,α) (8)

where ωr− vx is the slip velocity, vx the forward velocity
and α the ground inclination. The exact relations contain
several wheel/robot, soil and model parameters that result
in a roughly exponential function that can be shaped for
different soil and wheel types.

For the traction force, a maximum shear length is cal-
culated by integrating the slip velocity over time. To con-
sider changing conditions and new, unsheared, soil com-
ing into contact, TerRA uses a special additional state that
moves along the contact patch depending on the slip vs.
forward velocities. While the standard Janosi-Hanamoto
relations assume the shear length as a wheel state, the ad-
ditional state in TerRA accounts for the fact that mainly
the soil shear length results in traction potential.

Finally, a resistance force is calculated based on passive
Earth pressure and therefore dependent on total sinkage.

Verification TerRA has several parameters that cannot
be derived directly from physical properties of the wheel
and soil. Therefore, the qualitative behavior as well as
the tunability to the high-fidelity SCM model were inves-
tigated in Barthelmes (2018). The dynamic sinkage be-
havior of SCM can be replicated with TerRA to an error
of less than 3 %, however, considerable differences remain
especially in the dynamic drawbar pull force development.

Recently, TerRA is being used as one of three models of
different fidelity for teaching a machine learning terrame-
chanics model (Fediukov et al. 2022). Within this work, a
better fitting between SCM and TerRA was achieved.

4.3.2 Other Terramechanics Models

Similar to TerRA, three other terramechanical models are
implemented directly in Modelica, these can only be used
for wheel contact shapes to a non-deformable surface.
This subsection is only a short summary, because of the
minor importance of these models in the Contact Dynam-
ics library, interested readers are referred to Lichtenheldt
et al. (2016) for a more elaborate discussion.

Two models attempt to implement Bekker’s terrame-
chanics equations following Chapter 2 in Wong (2008).
Depending on the actual approach chosen (“pure” Bekker
or Bekker-Janosi-Hanamoto) some differences in details

Figure 11. MMX Rover Point Turn Simulation on SCM Soil
with Cohesion 20 Pa and 200 Pa

and behavior are introduced, the parameters are also de-
rived differently from wheel and surface (geometry and
soil). But in the end, both are implementations directly in
Modelica to compute the reaction forces on a wheel in a
fast and easy way. Hence, precision and fidelity are low.
Still, some basic effects in academic examples (sliding on
an inclined plane) can be reproduced as expected.

A third low fidelity, “rheological”, terramechanics
model for wheel to surface contact is implemented directly
in Modelica as well. This one sees the ground as a spring-
damper system and again derives parameters from wheel
and soil properties. One interesting part of this model is
the stiction capability, which is implemented using control
logic elements: a PID-controller regulates the wheel frame
to rest as long as the stiction force is not overcome, or if
the wheel reaches a lower speed limit. The same academic
tests as in the two Bekker models can be reproduced.

5 Applications
The Contact Dynamics library was originally completely
integrated into the DLR Rover Simulation Toolkit RST
(Hellerer et al. 2017) but soon was extracted as standalone
library. Planetary exploration rovers however, remain the
main area of applications. RST essentially extends the
contact blocks with rigid bodies from the Standard Library
and adds further domains such as power and control logic.
Two examples where DLR SR has applied the Contact Dy-
namics library are detailed in the following, with an em-
phasis on the contact dynamics and how the library has
been key for these projects.

5.1 MMX
The Japan Aerospace eXploration Agency JAXA is in
the preparation of a mission to the moons of Mars with
sample return. This mission, known as Martian Moons
eXploration MMX, is carrying a rover jointly developed
by the German DLR and French CNES to explore Phobos
in situ (Ulamec et al. 2021). As detailed in Buse et al.
(2022), simulations using the Contact Dynamics library
were an integral part of the development process and will
also be important for the operations and analysis phases.

Specifically, many mission phases were simulated with
SCM for the contact of the wheels or other rover parts
to the surface and BBCC for contact to rocks or be-
tween rover parts. Phobos is not completely unknown
like comets and asteroids on first encounter, thus there are
plausible number ranges about the topography and rock
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distribution. In fact, the asset generators for rocks and
surface (subsection 3.2) were designed with these plane-
tary science data in mind. Without the Contact Dynamics
library, it would not have been possible to verify the se-
quence of movements to deploy the rover from its stowed
configuration after landing on Phobos.

Contact Dynamics is also important to estimate driving
performance. For example, Figure 11 shows the simula-
tion of a point turn (90◦ if there would be no slip) on SCM
soil with different cohesion values. Once the rover will
have driven on Phobos and returned telemetry, validation
of the contact model for milli-gravity will be undertaken.

The other contact models are not used for MMX.

5.2 Scout
DLR’s institute of SR is currently developing a small,
modular and highly agile rover for extreme terrain and
cave exploration called Scout (Lichtenheldt et al. 2021).
The team follows paradigms such as rapid control pro-
totyping and model-based development (Pignède et al.
2022), simulation plays an important role and contact dy-
namics are central to the results, justifying the term “sim-
ulation driven development”.

For example, the stiffness in the backbone was adjusted
after an extensive simulation campaign where the rover
was sent through an obstacle parcours with stairs, slopes
etc. (Pignède and Lichtenheldt 2022). The BBCC model
was used. A challenge in this activity is the huge num-
ber of objects. The nominal Scout rover consists of three
modules (cuboid contact objects) with two wheels each.
Each wheel has three spokes with an arc-like form sim-
plified to two cuboids, and a foot at the end approximated
as cylinder. This sums up to 57 contact objects for the
rover to which 38 cuboids are added of the obstacle par-
cours, see Figure 12. Here, the BBCC capability to group
objects into collections of pairs that are not tested for col-
lision, were essential to keep the simulation time reason-
able. Also, the test for overlapping axis-aligned bounding
boxes filters out many pairs before calling the computa-
tionally expensive proper collision detection.

The simulation also serves to test new software before
setting the prototype to risk. As low precision and fast
simulation is often required, one of the simple terrame-
chanics models of subsubsection 4.3.2 is used, with wheel
contact objects of appropriate parameters as feet.

6 Conclusion and Further Work
The DLR Contact Dynamics library provides various
types of contact dynamics to Modelica multi-body me-
chanics. It focuses especially on terramechanics for de-
velopment and analysis of planetary exploration rovers
but also includes two general models for contact between
rigid, elastic bodies. Generators for environment and
wheels are also included in the package. The structure
and implementation of the library permits diverse appli-
cations at various levels of detail to assist engineers in
all phases of projects from inception to post processing

of field data. It’s an integral part of the SR’s toolchain for
modeling, simulation and optimization of planetary explo-
ration rovers and beyond, projects such as the MMX and
Scout rovers much rely on Contact Dynamics.

This text has presented the library in general with more
detailed sections about previously unpublished material.
Simple models of the library are implemented directly
in Modelica, more advanced ones are included as exter-
nal code. These have been verified against ground truth
(SCM), models of higher fidelity (TerRA) or academic ex-
amples (BBCC) to ensure validity of results generated us-
ing the library. The asset generator is a feature, unique in
the Modelica world, to create random environments that
meet statistical properties automatically.

Although the library is in good use already today, some
tasks for further work remain. Currently only SCM has
been validated against ground truth, BBCC should also
go through this process. Verification of the models will
be extended to milli-gravity environment using data col-
lected by the MMX rover on Phobos. There also is poten-
tial to increase simulation speed with BBCC using multi-
threading as is already done with SCM.
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Abstract
Simulators used in teaching and education comprise a
mathematical model and a user interface that allows the
user to control model inputs and intuitively visualize the
model states and results. This paper presents web compo-
nents - that can be used to build an in-browser web sim-
ulator. The models used for the web simulators must be
written in standard Modelica language and compiled as
standard FMU (Functional mockup unit). The toolchain
version Bodylight.js 2.0 contains tools to collect FMU into
WebAssembly language, able to be executed directly by a
web browser. Bodylight.js 2.0 web components can com-
bine models, interactive animations, and charts into a rich
web documents in HTML or Markdown syntax without
any other programming or scripting. Samples show its us-
age in education, 2D and 3D graphics, virtual reality, and
connected to the hardware.
Keywords: Modelica, JavaScript, WebAssembly, in-
browser simulator, client-side simulator, e-learning, web
components

1 Introduction
Web-based simulators can be distinguished by where the
simulation computation is performed. The server-side
simulators provide a user with an interface that controls
simulation performed on a remote server, and the creation
of such a simulator needs to employ client-server tech-
nologies. On the other hand, the client-side simulator’s
user interface and simulation computation are performed
on a client’s computer. This, however, comprises several
issues that need to be addressed. First, a user may have
different types of platforms; in the past, the central plat-
form was Microsoft Windows-based system and therefore,
many simulators were distributed as an installable appli-
cations on this platform. The locally installed application
may need to be manually or semi-automatically updated
or upgraded. Nevertheless, MS Windows-based systems
are no longer significant platforms for computer or mobile
devices.

One can address many different platforms, e.g. by
virtualization using technologies such as VirtualBox,
VMWare, or containerization such as Docker, etc. How-

ever, web standards developed into mature versions, and
the vendors of contemporary web browsers cover many
platforms, including mobile phones and tablets, giving
standard HTML and JavaScript capabilities.

Mathematical models in biomedical engineering can be
expressed in different languages or technologies. One is
the Modelica language, which covers broad industry do-
mains; therefore, commercial and open-source tools are
available. Modelica is very well suited for usage in the
physiology domain and biomedical teaching, as discussed
elsewhere (Kofránek, Ježek, and Mateják 2019), though, it
is not yet widely used in physiology modeling community.

Direct solving of Modelica models in a web browser
were demonstrated, e.g., by Franke (Franke 2014). How-
ever, accurate web-based client simulation or in-browser
simulation was prototyped by Short (Short 2014) and re-
alized in the "Modelica By Example" and "Modelica Uni-
versity" by Tiller and Winkler (M. M. Tiller 2014; Winkler
and M. Tiller 2017).

This inspired our team to create an in-browser simula-
tor. We already published a technology called Bodylight.js
(Šilar, Ježek, et al. 2019) and sample web simulators, e.g.,
kidney functioning model (Šilar, Polák, et al. 2019).

The present paper describes the next evolutionary
stage of this set of open-source tools, titled Bodylight.js-
Components version 2.0. These are distributed as
framework-agnostic web components (WebComponents
2021) - i.e., custom elements enhancing the syntax of
HTML or Markdown. Further sections describe a brief
methodology for creating a web simulator from a model
source. A demo is presented with a pulsatile heart web
simulator combining buttons, sliders, interactive graph-
ics, and charts. The main aim of the methodology is to
enable creative cooperation among domain experts such
as computer graphics designers, model developers, edu-
cators, and programmers (Figure 1). Their expert work
results can be integrated with the Bodylight toolchain.

2 Methods
Modelica model must be exported as FMU. We have pre-
pared scripts to compile such output into WebAssembly
using the EMScripten SDK tools. Then the resulting JS
with embedded WebAssembly can be controlled using
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Figure 1. The main aim of the methodology is to enable creative cooperation among different domain experts such as computer
graphics designers, model developers, educators, and programmers.

FMI API calls. We have prepared the web-component
BDL-FMI that simplifies controlling and integrating it
with other simulation related tasks like drawing charts,
changing model parameters, reseting the simulation and
visualising in 2D and 3D graphics. Next subsections de-
scribes the details of each particular step.

2.1 Model to WebAssembly

Modelica model must be exported as FMU v2.0 in co-
simulation mode, including C source codes. This can be
done either with an advanced CVODE solver in (Dymola
2023) (Dassault Systemes) or only with a more straight-
forward Euler solver in OpenModelica (Fritzson and et.al.
2019). Then the FMU with included source codes of
solver can be compiled to JavaScript with embedded We-
bAssembly using Bodylight.js-FMU-Compiler1. It con-
tains scripts and configuration to utilize the emscripten
(EMScripten 2021) library.

In further text, the sample simulator uses exported
model from Physiolibrary as seen in Figure 3.

1Bodylight.js-FMU-Compiler https://github.com/
creative-connections/Bodylight.js-FMU-Compiler

Figure 3. Model of pulsatile circulation (Fernandez de Canete
et al. 2013; Kulhánek et al. 2014) in Chemical library(Matejak
et al. 2015) and Physiolibrary(Mateják et al. 2014) v 3.0 using
Modelica Standard Library v 4.0(Library 2021). This model is
used in following sample export and web simulator.

A simple web form facilitates compilation as seen in
Figure 4.

Figure 4. Bodylight FMU Compiler - web form showing pro-
cess of compiling FMU to JS packed as ZIP archive
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interactive animated 
graphics created in 
JavaScript + HTML5

BODYLIGHT.JS
T E C H NO LOG Y

generating the web 
component

Adobe
Animate

Modelica compiler

Modelica - standard equations based modeling language

Model source code 
in Modelica

C-FMU: C - Function Mock-up Unit
(source code in C language 
+ other �les according to the FMI standard )

Creating web
components with
interactive graphics

Creating a web 
component with the 
simulation model

connecting
the model
with graphics

transpiling into
JavaScript and
Web-Assembly

Figure 2. Presented web simulator creation technology is based on open web standards and available modeling standards. We
create interactive animated graphics in Adobe Animate published with CreateJS library as JavaScript controlling an HTML canvas.
Such an artifact is encapsulated as a web component. A model created in the Modelica language is exported into FMU with source
codes, following FMI 2.0 standards. Our technology then can compile the FMU with C source codes into JavaScript with embedded
WebAssembly. This artifact can then be encapsulated into another web component. Bodylight.js Components make it easier to link
the graphics web component to the model’s web component and create animated graphics like a model-controlled puppet.

2.2 Web components of Bodylight.js

Compiled FMU can be controlled using FMI API stan-
dard calls. However, Bodylight.js-Components2 contains
a set of components to simplify interactions among low-
level FMI API, some standard HTML elements, third-
party charting libraries, and 2D and 3D graphical anima-
tions.

The components are distributed as custom elements
using standard WebComponent API (WebComponents
2021). It was developed using mainly Aurelia (Aure-
liaJS 2023) framework, however, it can be used in any
contemporary web application development framework or
framework-agnostic way.

2.3 Changing user input, range web-
component

The following sample web component defines HTML
slider input and essential interaction (value change is sent
as a custom HTML Event). The attributes can determine
minimum, maximum, default value, and step by which the
slider can change its value when moved right or left (List-
ing 1, Figure 5).

2Bodylight.js-Components https://github.com/
creative-connections/Bodylight.js-Components

Listing 1. Bodylight Range Component with optional attributes
(in blue), limiting user input between 40 and 180 with a step of
1 and default value 60

<bdl-range
id="id1" title="Heart Rate"
min="40" max="180" default="60" step="1">

</bdl-range>

Figure 5. Range component rendered in a web browser

2.4 Control of simulation computation, FMI
web-component

The following sample web component instantiates FMU
from compiled JavaScript and creates standard HTML
buttons to start/stop the simulation (Listing 2). When the
simulation begins, a custom HTML event is sent to all po-
tentially listening components. In every simulation step,
a list of variable values is distributed as an array. The list
of variables is set in valuereferences attribute. The
components listed in inputs are listened to obtain inter-
actively values the user changes during simulation.

The browser’s window.requestAnimationFrame()
method is used to call a simulation step. The browser
usually calls this method up to 60 times per second to
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deliver a smooth user experience to match the refresh rate
of the window as well as the performance of the viewing
window. This call is usually paused in most browsers
when running in background tabs.

Listing 2. Declaration of Bodylight FMI Component. Instanti-
ates model of human pulsatile circulation dynamics from Phys-
iolibrary(Mateják et al. 2014). Setup output values to be only
pressure of pulmonary veins and arteries. Input is listened from
an element with id1 and changed values are set as input to
heartRate parameter which is multiplied by 1 and divided by
60 (converting ’per minute’ to ’per second’ unit expected by the
model).

<bdl-fmi id="idfmi" src="
Physiolibrary_Fluid_Examples_Fernandez

2013_PulsatileCirculation.js" fminame="
Physiolibrary_Fluid_Examples_Ferna

ndez2013_PulsatileCirculation" tolerance="
0.000001" starttime="0" fstepsize="0.01
" guid="{
a786b906-f58b-4014-8c9b-5df08bd77f4b}"
valuereferences="637534263,637534417"
valuelabels="
pulmonaryVeins.pressure,arteries.pressure
" inputs="id1,16777329,1,60"
inputlabels="heartRate.k">

</bdl-fmi>

Figure 6. FMI component rendered in a web browser.

2.5 Charting web-components
Charts can make basic visualization of the data obtained
from simulation. Bodylight.js library embeds open-source
ChartJS (ChartJS 2021) library to support basic line charts
using the component <bdl-chartjs-time>, see sam-
ple component listing in Listing 3. The component
<bdl-chartjs> supports doughnuts, pie charts, and
bar charts.
Listing 3. Bodylight Chart Component taking first one (indexed
from 0) value of output values and converts it using expression

x
133.322 − 760 thus converting from Pa to mmHg and deducting
ambient normal atmospheric pressure 760 mmHg

<bdl-chartjs-time
id="id10" width="300" height="200" fromid

="idfmi"
labels="Pressure in Aorta [mmHg]"

initialdata="" refindex="0" refvalues
="1"

convertors="x/133.322-760">
</bdl-chartjs-time>

Initially the chart is empty, however, it is connected
to the FMI component and listens to any data ob-
tained from it and draws it interactively as seen in
Figure 7. Bodylight.js-Components externally supports
time series charts made by Plotly(Plotly 2021) and Dy-
graphs(Dygraphs 2021) libraries too.

Figure 7. Chart component rendered in a web browser. This
chart contains data obtained from FMI component during simu-
lation from time 0 - 1.27s.

2.6 Interactive animation, adobe web-
components

Adobe Animate is a multimedia authoring and computer
animation program developed by Adobe Inc. Advanced
visualization can be exported following as "standardized"
open-source Javascript API (CreateJS 2023). By conven-
tion, an artist who creates interactive animation names all
animatable elements with the suffix ’_anim’ and anima-
tion states between some values e.g. between 0 to 99
which visualizes the animation state. See the following
listing (Listing 4).

Listing 4. Bodylight Animate component and components to
bind animation element with model variable

< b d l −an ima te− adob e s r c =" C a r d i a c c y c l e S t a g e . j s " name=" F a z e _ s r d c e "
f r om id =" i d f m i ">

</ bd l−an imate−adobe >
< b d l − b i n d 2 a f i n d e x =" 1 " aname=" ValveMV_anim " amin=" 99 " amax=" 0 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 2 " aname=" ValveAOV_anim " amin=" 0 " amax=" 99 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 3 " aname=" ValveTV_anim " amin=" 99 " amax=" 0 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 4 " aname=" ValvePV_anim " amin=" 0 " amax=" 99 "

fmin=" 0 " fmax=" 1 " > </ bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 5 " aname="

v e n t r i c l e s . v e n t r i c l e s T o t a l . V e n t r i c l e L e f t _ a n i m " amin=" 100 "
amax=" 0 " fmin=" 0 .00015 " fmax=" 0 .00021 " > </ bd l−b ind2a >

< b d l − b i n d 2 a f i n d e x =" 6 " aname="
v e n t r i c l e s . v e n t r i c l e s T o t a l . c h i l d r e n . 0 . V e n t r i c l e R i g h t _ a n i m "
amin=" 100 " amax=" 0 " fmin=" 0 .00012 " fmax=" 0 .00018 " > </
bd l−b ind2a >
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Figure 8. Animated component rendered in a web browser

2.7 Sample demo web simulator
All the previously defined component instances can be put
into a single HTML page as seen in the following listing:

Listing 5. index.html containing declaration and use of web
components. The aurelia.js framework was used to leverage
building the web components thus the attribute ’aurelia-app’
points out the DOM where web components can be located and
corresponding implementation is injected there

<!DOCTYPE html >
<html >

<head >
< s c r i p t s r c =" b o d y l i g h t . b u n d l e . j s " > </ s c r i p t >

</ head >
<body a u r e l i a − a p p =" webcomponents ">

< b d l − r a n g e i d =" i d 1 " . . . > < / bd l− range >
< bd l− fmi d=" i d f m i " . . . > < / bdl−fmi >
< b d l − c h a r t j s − t i m e i d =" id1 0 " . . . > < / b d l − c h a r t j s − t i m e >
< bd l−an ima te−adobe . . . > < / bd l−an imate−adobe >
< b d l − b i n d 2 a f i n d e x =" 1 " . . . > < / bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 2 " . . . > < / bd l−b ind2a >
< b d l − b i n d 2 a f i n d e x =" 3 " . . . > < / bd l−b ind2a >
. . .

</ body >
</ html >

The "index.html" must be published
along the JavaScript file containing com-
piled FMU from the Modelica model:
Physiolibrary_Fluid_Examples_Fernandez
2013_PulsatileCirculation.js, JavaScript file
containing published animation from Adobe Animate:
CardiaccycleStage.js and "bodylight.js" library
bodylight.bundle.js. However the Bodylight.js
is published as NPM package and therefore can be taken
from some content delivery network (CDN) caching NPM

packages.
The resulting application is rendered in a web browser

as seen in Figure 9.

Figure 9. Web Simulator with rendered web components. The
simulator can be started/restarted with buttons and the "heart
rate" parameter can be changed by user interactivelly while com-
putation of simulation is performed. Chart data is updated ac-
cordingly and animation is driven by the model variables.

2.8 Bodylight Editor

Optional tool Bodylight-Editor3 is distributed as a static
web page and allows a live preview of Markdown syntax
as well as Bodylight.js-Components. Additional dialogs

3Bodylight-Editor https://github.com/
creative-connections/Bodylight-Editor
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facilitate filling the component attribute values, e.g., se-
lecting input/output variables from the model and bind-
ing them into the appropriate component. The file man-
agement panel simplifies managing multipage documents
sharing models, images, and animation, and generates
multipage web simulators with shared navigation (Figure
10).

Figure 10. Bodylight Editor with the sample components above
and rendered preview.

2.9 Bodylight Virtual Machine
Bodylight.js toolchain comprises several independent
tools, some of which need non-trivial configuration.
Therefore, we have created an exemplar virtual machine
configuration for the Vagrant tool and virtualBox, to pro-
vision a standard minimal image of CENTOS Stream 9;
scripts are published as Bodylight-VirtualMachine4.

3 RESULTS
We compared the performance of model simulation trans-
lated to FMU executed natively with the implementation
of the same model translated to FMU and WebAssembly
and performed in a web browser on the same machine. We
used Chrome browser version 97.0.4692.71 with simula-
tion times of native code on the same platform (win-64)
and performed a simulation that took 6000 steps. Natively
it took an average of 9.3 s, while the simulation in the web
browser took 34.5 s (1, column ’WASM 1 step’).

simulation win64 bin WASM (1 step) WASM (3 steps)
time [s] 9.3s 34.5s 10.4s

relative [1] 1x 3.71x 1.12x

Table 1. Sample model simulation performance comparison be-
tween binary execution of FMU in win-64 and FMU translated
to WASM and performed 1 or 3 FMU step() during web browser
frame.

This difference might be explained by overhead due to
the browser screen refresh framerate. Therefore we mod-
ified the WASM code to perform 2, 3, and 4 FMU step()
calls during a frame given by the browser via requestAni-
mationFrame(). The browser allows max 60 frames per

4Bodylight-VirtualMachine https://github.com/
creative-connections/Bodylight-VirtualMachine

second when used and usually maintains a maximum—of
thirty frames to support the smooth running of other apps
and the operating system itself. Making more than three
steps within one frame gave no better value (result not
shown). Therefore in the following table, we offer times
in column ’WASM 3 steps’. Thus, it can be concluded
that the simulator’s performance in WebAssembly (when
doing multiple simulation steps during one frame) is com-
parable with native code (i.e., 1.12x or 12% slower than
native code). This result also agrees with the more com-
prehensive benchmarks of WebAssembly vs. native code
given by (Jangda et al. 2019).

We also measured the performance of the simulation
with visualisation of charts and animation. It may signif-
icantly affect performance as the visualisation can update
on each simulation step. Therefore we included config-
urable "throttle" property in order to do visual update only
by default every 100 ms.

As all computation and rendering is done in the web
browser, no interaction with a server is needed. The
web simulator can be distributed as a static or server-less
web page, e.g., using popular GitHub pages(GithubPages
2021). It can be utilized to distribute, e.g., digi-
tal appendices of scientific papers. It was already
used by (Mazumder et al. 2023) using web simulator
deployed at https://filip-jezek.github.io/
Ascites/ This way we published also first version of
e-book "The Physiology of Iron metabolism" as seen in
11.

Figure 11. Sample educational simulator of iron metabolism
simulating gene knockout of hepcidin hormone resulting in iron
overload in internal organs. It allows to enable/disable gene
knockout, set a diet to affect illness and its treatment.

The same simulator can be converted also as a native
mobile application e.g. by Apache Cordova (Apache Cor-
dova 2023) tool. A sample in Figure 12 shows the digital
textbook compiled as an Android application.
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Figure 12. Educational simulator as native Android application.

A sample in Figure 13 shows a web simulator of blood
gas exchange connected to the robotized virtual patient
mannequin and controls his breathing. The following
placed mockup of a medical device controls the extracor-
poreal membrane oxygenation (ECMO) process parame-
ters. Such parameters are inputs to the model simulator
connected via REST API, and the simulation shows direct
feedback on user input and healthcare staff intervention to
the patient state in graphs.

A sample in Figure 14 shows interactive 3D visualiza-
tion of simplified human anatomy with charts of simulated
hemodynamics. It leverages WebGL standard to visualize
3D objects and view the 3D scene. If this simulator is exe-
cuted in a browser of a virtual reality device, then WebXR
API is detected, and the simulator can be switched to an
immersive view. This was tested on Oculus Quest 2 and
MS Hololens 2.

Figure 14. Sample educational simulator in 3D using WebGL
and in immersive view for virtual reality using WebXR API. Vir-
tual patient with simplified anatomy and physiology of cardiac
hemodynamics and charts and controls are allowed to show the
effect of drug treatment interactively.

Bodylight.js-Components is delivered using an open-
source MIT License still and is still in the development
stage depending on other open-source code 5and the re-
leases can be cited via Zenodo as (Kulhanek et al. 2023).
The complete toolchain documentation and links are avail-
able https://bodylight.physiome.cz.

4 Discussion
Client-side simulation is appropriate for use cases where
one or a few simulations must be performed. This is ap-
propriate for interactive documents like educational mate-
rials, technical reports and digital appendices.

Client-side web-based simulation might not be appro-
priate for system analysis tasks like Monte-Carlo simula-
tion.

The simulation is matched per
Window.requestAnimationFrame() to the
browser performance and is paused when the browser
tab is in the background. The optimal inner FMU steps
to refresh the framerate ratio have been established for a
sample model; the optimal balance would vary though,
depending on system performance bottlenecks and model
complexity. Automatic adjustment based on the client’s
performance might be possible, but is currently not
included in the development roadmap. The Web Workers
(WebWorkers 2021) method might be more appropriate
for another type of simulation (esp. for long-term models
with higher memory demand etc.).

In the past, web-based simulators depended on non-
standard, proprietary, but widely used plugins such as
Adobe Flash player or Microsoft Silverlight. However,
as technologies become obsolete (or even blocked), many
older yet still scientifically relevant simulators cannot be
executed on most modern computers or devices without
excessive effort on virtualizing or emulating old operating
systems and environments. We hope that using standard

5Bodylight.js-Components https://github.com/
creative-connections/Bodylight.js-Components
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Figure 13. Web simulator connected to hardware mannequin of virtual patient and mockup of the medical device. It communicates
via REST API to show breathing and mockup of medical device (extracorporeal membrane oxygenator - ECMO) controls several
model parameters. User input on this hardware-in-the-loop gives direct feedback in the connected simulator and visualization of
breathing.

languages like Modelica, traditional execution models like
FMI, and standard web API to build components may sur-
vive over a decade. Web simulators built from now on can
be run in the future seamlessly.

Additionally, thanks to the widely accepted standards,
the simulators can now be executed on various devices
such as mobile phones, tablets, and virtual and augmented
reality devices with no or very low code intervention.
Bodylight.js library brings the missing piece and tools
to integrate already existing standards and technologies
between web publishing and mathematical modeling in
Modelica.
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Abstract
This paper discusses key design ideas behind the Biopro-
cess Library, BPL. The library facilitates modelling and
simulation of bioprocesses mainly for the pharmaceutical
industry. It borrows some structures from MSL Fluid and
Media but differs in central design choices. A typical ap-
plication consists of both configuration of standard com-
ponents from the library and tailor-made Modelica code
defining the application-dependent medium and biopro-
cess reactions. The guiding idea is that configuration of
components works well for defining the setup of process
equipment for a production line, while more flexibility
is needed for modelling bioprocess reactions and there-
fore equations are used. Another central design idea is
that components of equipment are centrally adapted to the
medium used. One could say that the library is param-
eterised with the application media and reaction models.
The focus of this paper is structural design aspects of the
library rather than the content.
Keywords: Bioprocess, media, reactions, formal type pa-
rameters, packages, components, equations

1 Introduction
There is a growing interest in simulation also in the bio-
pharmaceutical industry. Two major vendors of equipment
Cytiva (Bioreactor-scaling-tool 2023) and Sartorius today
offer services around their products based on using sim-
ulation. Two well-known companies are Siemens (with
gPROMS) and Dassault (with 3DEXPERIENCE) who of-
fer softwares and services in this market. The need is of-
ten a combination of mechanistic and more data-driven
modelling. In the academic area the interest in simula-
tion of biological systems has been there for decades and
illustrated by the public repositories of models (EMBL
BioModels 2023; UC San Diego BiGG Models 2023).
So far, Modelica has had very little impact in this field,
though. Important aspects of the question is discussed in
(Wiechert, Noack, and Elsheikh 2010).

Developing bioprocesses requires a combination of
knowledge from different fields like: reactor dynamics,
gas-liquid-transfer, buffer-reactions, cell metabolism, re-
combinant protein expression, degradation processes of
product proteins in the broth, impurities etc. Part of this
knowledge is well established and can be re-used, while
modeling of cell metabolism and product formation may
be more unique, and less re-useable. Further, the same re-
actor may be operated in different ways: batch, fed-batch,

continuous, perfusion etc. Various ideas of process control
are also interesting to evaluate using simulation.

Bioprocess Library tries to meet these needs of flexibil-
ity and possibility to re-use code. It has been gradually
developed over many years in-house for consultancy work
and also teaching. Examples of applications are (Axels-
son 2018; Axelsson 2019; Axelsson 2022). Examples of
integrating black-box models together with the traditional
mechanistic models has not been done yet, but can cer-
tainly be done in the framework. The architecture of the
library was outlined in (Axelsson 2021). A key design
aspect is to account for the different modelling needs for
the process configuration and the actual reactions in the
reactor. The engineered part is modelled by conveniently
configure components of the library. The biological part
requires more flexibility. Modelling of cell metabolism
and other reactions in the broth is done by writing down
the equations in a certain Modelica format.

This paper is organised as follows. An orientation of
the library is given in section 2. Section 3 focuses on the
reactor model and how library code is integrated with ap-
plication code. In section 4 a simple example of fed-batch
cultivation illustrates the structure of typical application
code. In section 5 the technique of constraint-based mod-
elling is briefly discussed and how such modelling can be
handled with the library. In section 6 different aspects of
the library design are discussed including the relation to
MSL Fluid and Media. The availability of the library is
outlined in section 7 and the paper ends in section 8 with
concluding remarks.

2 Library structure
The library has a flat hierarchy, limiting the use of partial
packages and models. In this way it is hopefully easier to
understand and later to expand. A brief orientation of the
library is first given. The next section describes the Equip-
mentLib, followed by a section on the media connectors.

2.1 Overview
The structure of Bioprocess Library is shown in Figure 1.
It includes the following packages:

• UsersGuide - Package of brief practical informa-
tion in different records, accessible from the FMU.

• Interfaces - Package of templates for liquid and
gas, and interfaces for the Reactor component
and its inner application models. It is all used in
EquipmentLib.
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Figure 1. Structure of the Bioprocess Library. The formal (type)
parameters are marked with ∗.

• Media - Package for various standard media.

• EquipmentLib - Package of models of standard
equipment using a generic medium, e.g. tanks,
pumps, reactors, sensors, filter, mixers etc for both
liquid and gas media.

• Control - Package of blocks for generating electri-
cal control signals to equipment components. They
complement and adjust blocks from MSL.

• MSL_local - Package that contains parts of MSL for
PID-control and more. In this way BPL can be used
more independent of the general MSL version of the
compiler. Currently the MSL version 3.2.2 build 3 is
used, but to be updated to MSL 4.0.0.

• TEST2_INTERNAL - Package with small test applica-
tions including configuration of equipment for batch,
fed-batch, chemostat and perfusion cultivation.

2.2 The EquipmentLib package
The EquipmentLib package has a central role in the li-
brary. Components are coded in a generic way. The pack-
age is parametrised with two general formal (package) pa-
rameters for the media:

• Liquidphase - the package for the liquid phase

• Gasphase - the package for the gas phase

and four specific formal (model) parameters for just the
component Reactor described in section 3.

To improve readability, the code sections defining base
packages and partial models are lifted out to the package
Interfaces and imported back where needed.

2.3 The media and connectors
The flow direction of both liquid and gas media are usually
well-defined in bioprocesses and reflected in the present
components. The media connectors are however undi-
rected and prepared to handle back-flow.

The LiquidCon connector code is shown below. The
GasCon connector is defined similarly.

Listing 1. LiquidCon connector

connector LiquidCon
stream Liquidphase.Concentration c;
flow Real F (unit="L/h");
Real p (unit="bar");

end LiquidCon;

The connector uses the flow concept for the flow F and
the corresponding potential is the pressure p. The concen-
tration vector c gets its size from the actual medium. The
vector c is declared as a stream variable. The density of
the liquid media is calculated when needed based on the
concentration c and here is a function in the liquid me-
dia base template that takes information of molar weights
from the actual application medium. Similar technique as
in MSL Media.

Both the inclusion of pressure p and the use of the
stream-concept for c are introduced to "future-proof" the
library, and facilitate local balancing of models, see (Ols-
son et al. 2008; Franke et al. 2009). The pressure does
not play any role in the applications so far. The pumps are
ideal in the sense that a given electrical signal gives the
desired flow rate immediately. There has not been any ob-
vious need to model back-flow either, which is the major
motivation of the undirected connector using the stream
concept (Franke et al. 2009).

The temperature has so far not been considered impor-
tant in the modelling. The temperature is usually in the
range from room temperature up to 37◦C and well con-
trolled. The cell culture produces heat due to metabolism
and at high cell concentrations and feed rate, the cooling
capacity of the reactor sets a limit. This limit is very sim-
ilar to the oxygen transfer capacity. Both set about the
same limit of rate of metabolism supported by mechanical
reactor design. The process is usually designed with some
margin to this limit, see simulations in section 4.4.
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3 The reactor component
The various reactions of the process are thought to take
place only in the Reactor component. The other equip-
ment only transports, stores, separates media species, or
mixes media from several sources. The Reactor com-
bines standard and application dependent parts in a com-
plex way. The component ReactorAir is an extension of
the Reactor to also handle gas phase.

The reactions in a typical bioreactor can be divided into
different parts. These parts are user-defined sub-models,
i.e. inner components, to the Reactor and serve as for-
mal (type) parameters:

• culture - reactions in the living cells

• broth_decay - degradation of substances and even
of the living cells in the culture broth

• pH_buffer - pH-buffer reactions in the broth

• gas_liquid_transfer - gas-liquid-transfer be-
tween the reactor broth and gas phase

An important observation is that it is the concentration of
substances that drives the rate of reactions in these differ-
ent parts. The broth concentration is the "communication
link" between them. Therefore, concentration is chosen as
an inner variable in the reactor. Similarly, gas fraction
is used as an inner variable in the extension for aerated
reactor. The different parts are naturally sub-models to the
reactor model. The reactor sub-models communicate back
to the reactor through rate-variables. These rate-variables
are normalised with respect to the biomass m[X ] of the re-
actor for reactions in the cell and with respect to liquid
reactor volume V for the others.

The corresponding code-snippet for the reactor model
is shown below. A key application dependent parameter
is nc, that stands for the number of components, or we
should say species, in the medium.

Listing 2. Reactor model equations

// Concen t ra t i on s f o r the l i q u i d phase :
for i in 1:Liquidphase.nc loop

c[i] = m[i]/V;
for j in 1:n_outlets loop

outlet[j].c[i] = c[i];
end for;
for j in 1:n_ports loop

port[j].c[i] = c[i];
end for;

end for;

// Mass−ba lance f o r the l i q u i d phase :
for i in 1:Liquidphase.nc loop

der(m[i]) = culture.q[i]*m[X]
+ broth_decay.r[i]*V
+ pH_buffer.r[i]*V
+ gas_liquid_transfer.r_to_liquid[i]*V
+ sum(actualStream(inlet[j].c[i])

*inlet[j].F for j)
+ sum(c[i]*outlet[j].F for j);

for j in 1:n_inlets loop
inlet[j].c[i] = c[i];

end for;
end for;

// L iqu i d volume of the r e a c t o r :
der(V) = sum(inlet[i].F for i)

+ sum(outlet[i].F for i);

The different sub-models are all optional and Mod-
elica provide language constructs to support use of
no_culture, no_broth_decay etc. The interface stan-
dard between the reactor and the sub-models are defined
in the package Interfaces in BPL.

4 Application code
A simple example will illustrate the structure of the ap-
plication code, adaptation of the EquipmentLib to the
application, and finally the configuration of the process
model. The model has no gas phase or broth decay, and
pH-buffer reactions are not defined either.

The mass-balance model of the example is as follows.
See for instance chapter 6 in (Hu 2020).

d(m[S])
dt

=−qS(c[S]) ·m[X ]+SinFin(t) (1)

d(m[X ])

dt
=µ(c[S]) ·m[X ] (2)

dV
dt

=Fin(t) (3)

where the specific cell growth rate µ(c[S]) and substrate
uptake qS(c[S]) are directly related through the yield Y
which is here a constant

µ(c[S]) = Y ·qS(c[S]) = Y ·qmax
S

c[S]
Ks + c[S]

(4)

The dosage of substrate Fin(t) is controlled from a
process computer according to a pre-defined exponential
scheme.

4.1 Application medium and reactions
The medium is defined by the following package.

Listing 3. Application medium

package Liquidphase2
import BPL.Interfaces.LiquidphaseBase;
extends LiquidphaseBase

(name="Standard components X and S",
nc=2);

constant Integer X=1;
constant Integer S=2;
constant Real[nc] mw (each unit="Da") =

{24.6, 180.0};
end Liquidphase2;

The reactions in the cell culture are described by the
following model, see Listing 4.
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Listing 4. Application culture

model Culture2 "Text-book culture model."
import BPL.Interfaces.ReactorInterface;
extends ReactorInterface(redeclare

package Liquidphase=Liquidphase2);
outer Liquidphase.Concentration c;
Liquidphase.Rate q;
constant Integer X = Liquidphase.X;
constant Integer S = Liquidphase.S;
parameter Real Ks (unit="g/L") = 0.1;
parameter Real qSmax (unit="g/(g*h)")=1;
parameter Real Y (unit="g/g") = 0.50;
Real mu (unit="1/h");

equation
q[X] = mu;
q[S] = -qSmax*c[S]/(c[S]+Ks);
mu = -Y*q[S];

end Culture2;

Note that the culture model relates metabolic flow rates
q[ ] to reactor concentrations c[ ] with a static function.
Even for much more complex culture models the relation
is a static function, cf equation (5) in the next section.
However, if we need to introduce dynamics in the culture
model this can be done in this framework too.

It is a possibility to structure the culture model in more
parts. This usually improves readability and can help in
the dialogue with microbiologists around this part.

4.2 Adaptation of the EquipmentLib
The adaptation of the BPL/EquipmentLib to the appli-
cation medium and culture model is done in the few lines
of code below.

Listing 5. Adaptation of EquipmentLib to the application

package Equipment
import BPL.EquipmentLib;
extends EquipmentLib(

redeclare package Liquidphase =
Liquidphase2,

Reactor(redeclare model Culture =
Culture2));

end Equipment;

Note that package Liquidphase and model Culture
are formal (type) parameters to EquipmenetLib and get
their values from the application. The concept of formal
parameters are discussed in section 4.4 (Fritzson 2015).

4.3 Configuration of the application process
The application process can now easily be configured us-
ing the adapted library. Note that for the component biore-
actor the medium component for cell concentration must
be specified and also that an inlet to the reactor is needed.
The component feedtank is an integration of a feedtank
with a pump. The component dosage scheme is taken
from BPL/Control package and has an electrical signal
connector and no adaptation needed.

The application code needs just the three sections
shown. It is possible in the package Equipment to de-
fine special tailor-made models of equipment needed for
the application that is not available in the library.

Figure 2. Simulation of fed-batch cultivation. See repository
CONF_2023_10_MODELICA15 at (BPL Applications 2023).

Listing 6. Application configuration

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
Equipment.Reactor bioreactor

(X=liquidphase.X, n_inlets=1);
Equipment.FeedSystem feedtank;
Control.DosageSchemeExp dosagescheme;

equation
connect(bioreactor.inlet[1], feedtank.

outlet);
connect(feedtank.Fsp, dosagescheme.F);

end Fedbatch;

4.4 Simulation results
The example above of fed-batch cultivation is simulated
with quite typical parameters for yeast (S. cerevisiae) cul-
tivation (by-product formation neglected), see Figure 2.

It is common to start fed-batch cultivation with a short
batch phase, as we see here. When the initial substrate is
consumed the substrate feeding is started at 4 h and fol-
lows a certain scheme. Here a well-designed exponential
feed scheme is used. Note that the substrate level is kept
low and growth rate kept constant at about half the max-
imal rate. From time 15 h and on, the feed rate is kept
constant in order to avoid challenging the reactor capacity,
but not modelled here. The capacity limit is determined by
the oxygen transfer and cooling capacity. During this time
with constant feed rate the culture continues to grow but
at a slowly decreasing rate.

5 Note on constraint-based modelling
The culture sub-model of the reactor is in many applica-
tions a static non-linear function f () relating reaction rates
q[ ] of cell metabolism and growth to reactor broth con-
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centrations c[ ]. There are nc species in the broth and rates
q[i](t) defined for each of them at time t

q[i](t) = fi(c[ j](t)), j = 1...nc (5)

The function is derived from the underlying system of
equations of reactions rates. It is quite common that the
system of steady state equations is under-determined and
therefore complemented with constraints that determine
the system. This leads to a formulation of the function
f () in an implicit way, as a solution of an optimisation
problem. It is a convenience of modelling that has some
similarity with analytical mechanics in physics.

An example showing cell growth on two substrates il-
lustrates the idea. The example is a simplified version of
yeast growing on glucose G and ethanol E. In this ex-
ample the important fact that yeast can produce ethanol is
dropped. Both substrates can be taken up and metabolise
in parallel and the cell coordinate the uptake rates to max-
imize its specific growth rate µ

µ = YGr ·qGr +YEr ·qEr (6)

under the constraint of the cells limited respiratory capac-
ity qlim

O2 see (Sonnleitner and Käppeli 1986)

kog ·qGr + koe ·qEr ≤ qlim
O2 (7)

At low substrate levels the uptakes are limited by the con-
centrations in the broth

qGr ≤αG (8)
qEr ≤βE (9)

Listing 7. Calculation of "culture" f () using linear program-
ming done with Optlang in Python

def f(G,E):
qGr=Variable(’qGr’,lb=0)
qEr=Variable(’qEr’,lb=0)

mu_max=Objective(YGr*qGr+YEr*qEr,
direction=’max’

qO2lim=Constraint(kog*qGr+koe*qEr,
ub=qO2max)

qGlim=Constraint(qGr,ub=alpha*max(0,G)
qElim=Constraint(qEr,ub=beta*max(0,E)

f.objective=mu_max
f.add(qO2lim)
f.add(qGlim)
f.add(qElim)

f.optimize()
return (f,objective.value,

f.variables.qGr.primal,
f.variables.qEr.primal)

Thus, the optimization problem (6)-(9) gives the static
function (5) that relates metabolic rates to the broth con-
centrations and describes the culture, see formulation in
the high level Python package Optlang (Jensen, Cardoso,
and Sonnenschein 2017) in Listing 7.

Figure 3. Simulation of batch cultivation with two substrates.
CONF_2023_10_MODELICA15 at (BPL Applications 2023).

Listing 8. Simulation of BPL-model of bioreactor together with
"culture" f () done with FMU and PyFMI (or FMPy) together
with Optlang in Python outlined (species index omitted)

n = t_final/t_delta
initialize c[0] and q[0]
c[1] = simulate(0, t_delta, c[0], q[0])
for i in 1:n:

q[i] = f(c[i])
c[i+1] = simulate(’cont’, c[i], q[i])

A simplified solution procedure to integrate bioreactor
simulation with optimisation of culture metabolic rates at
each time instant is based on the fact that here are two time
scales. The concentrations c[t] in the reactor broth change
slowly compared to the cell culture optimisation of reac-
tion rates q[t]. Thus, simulation a short step ∆t of the in-
tegrated process is done with reaction rates q[t] kept con-
stant and gives concentrations c[t +∆t] . Then the culture
reactions rates q[t +∆t] are updated with an optimisation
based on the concentrations c[t +∆t] etc. The procedure
is often called the "direct approach" and works well for a
class of problems. Its limitations are discussed in section
2.2 and 4.4 in (Ploch, Lieres, et al. 2020). Key steps of the
Python code are outlined in Listing 8.

In Figure 3 results from simulations using PyFMI (An-
dersson, Åkesson, and Führer 2016) are shown of batch
cultivation with the two substrates G and E. For the cul-
ture to grow at maximal rate, first G is consumed and then
E. Note that during a short period 4.7-4.9 hours both sub-
strates are consumed in parallel. This occurs since levels
of G is low and the constraint on oxygen allows some E to
be consumed, and gradually more, and G vanishes.

In this example the model can very well instead be for-
mulated in terms of a system of non-linear ODE as was
done in the original publications (Sonnleitner and Käppeli
1986).

The advantage with constraint-based modelling is that
the modelling can handle larger models and remain rel-
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atively transparent. The public model repository (EMBL
BioModels 2023) contains today about 1000 models and
20 percent of them use constraint-based modelling and
the rest use mainly ODE. The public repository (UC
San Diego BiGG Models 2023) contains about 100 large
genome scale models with thousands of reactions all mod-
elled using a constraint-based technique. The modelling
software preferred is COBRApy that is based on Optlang,
see (Ebrahim et al. 2013).

Thus, the framework presented here with BPL, FMU-
simulation of the bioprocess setup and Optlang for han-
dling constraint-based modelling of the culture, can inte-
grate the two modelling techniques, see (Axelsson 2018;
BPL Applications 2023).

It would likely be better to handle the constraint-
based modelling within Modelica. With the Modelica
extension Optimica at least the basic example above can
be simulated with ease (Axelsson 2018). Here is also
a recently developed Modelica toolbox for Differential
Algebraic Embedded Optimization (DAEO) which ad-
dress constraint-based models and seems very interesting
(Ploch, Zhao, et al. 2019; Ploch, Lieres, et al. 2020). The
drawback with a Modelica-solution is that models from
the public repositories needs to be translated to Modelica,
but can perhaps be automated.

6 Reflections on the library design
Here the BPL approach is compared with techniques of
MSL Fluid and Media and some other libraries. The first
sub-section addresses the scope of the library more clearly.
In the later half of the section more broader questions are
briefly discussed.

6.1 Limitations of the library
The focus of the Bioprocess Library is after all towards
bio-pharmaceutical processes, often involving recombi-
nant protein expression. This means that processes are
usually operated in the temperature range 20−37◦C. Fur-
ther the pressure is usually just above room pressure. The
viscosity of liquids is like water. The reactor volumes are
often up to 1000 L but occasionally 10000 L. Thus, sev-
eral properties of media accounted for in MSL Fluid and
Media are not that relevant.

If we look at biotechnology processes more broadly and
include antibiotics, enzyme-production, baker’s yeast pro-
duction, breweries, or biorefinery industry, then the reac-
tor scale may go up to 100 m3, and reactor media are more
complex and may be viscous. In this scenario MSL Fluid
and Media can be more of help. One interesting applica-
tion from biorefinery industry is (Ploch, Zhao, et al. 2019)
where Modelica is used together with MSL Fluid and Me-
dia in combination with tailor-made modelling of bioreac-
tor with a microbial culture.

6.2 Central vs local definition of media
The BPL has a structure where the medium is centrally
defined for all components in EquipmentLib. This is in

contrast to MSL Fluid where each component has an in-
dividual local definition of medium. There are certainly
pros and cons with the two approaches.

There has been an expressed wish to in some way au-
tomate the process of choice of medium to simplify and
ensure correctness of code. In the conclusion of (Franke
et al. 2009) it is stated: "The used medium has currently
to be defined for every component. It would be nicer if the
medium was defined at one source and the medium defi-
nition would then be propagated through the connection
structure."

The "propagation" of medium definition is in BPL done
using "adaptation" of package using formal (type) param-
eters, as shown in the example in section 4.2. The idea
behind using application package media as well as sub-
models of the reactor as "type formal parameters" for the
EquipmentLib package came from material in chapter
4.4 and an odd example in chapter 10.4 in (Fritzson 2015),
combined with an urge for simplicity.

6.3 Equations vs components

The BPL defines reactions with equations rather than com-
ponents. The reactions are grouped in four categories as
outlined in section 3, and seen as sub-models to the Reac-
tor component. The sub-models can be given an internal
structure of interacting sub-sub-models to enhance read-
ability and simplify modifications. Especially relevant for
culture models. It is up to the user who writes the applica-
tion code.

To introduce components for say the culture model is
difficult. Different approaches to model biochemical net-
works are discussed in (Wiechert, Noack, and Elsheikh
2010). There is a public Modelica library, BioChem
(Brugård et al. 2009), that brings component modelling to
biochemical reaction network. The possibility to integrate
BPL with BioChem has not been investigated, so far.

The focus of MSL Fluid and Media is on thermo-fluid
modelling as is clearly stated in the MSL documentation.
Thus, the focus of the library is not really on chemical re-
action processes as pointed out earlier (Baharev and Neu-
maier 2012).

6.4 Code in consultant-customer relation

In my experience of consultancy work the customer is fo-
cused on results of using simulation rather than the sim-
ulation tool itself. In this context it is important to show
and document the application code outlined in section 4.
Provided the configuration of the process using standard
components is clear and tested enough, there is little inter-
est for the details of the library. The customer is usually
satisfied to own the application code, while the consultant
owns the library. If there is an interest, the consultant can
deliver a compiled FMU and Jupyter notebooks that gen-
erate the results presented in the project.
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Figure 4. Graphical configuration of fed-batch cultivation in
OpenModelica, see Listing 9. The formal (type) parameters Liq-
uidphase and Culture of the library are not shown.

6.5 Challenges for the GUI
The library has been developed with little concern about
a graphical user interface. One reason is that the (depre-
cated) software JModelica (Åkesson et al. 2010) has been
used which lacks a GUI. Another reason is that there are
differences between different vendors design of the GUI
although the Modelica Standard Library sets an informal
standard of what GUI facilities are implemented. How-
ever, the Modelica language is richer.

The challenges to configure BPL applications graphi-
cally are the following:

1. The package BPL/EquipmentLib has two formal
(type) parameters for media: Liquidphase and
Gasphase.

2. The BPL/EquipmentLib/Reactor has four
formal (type) parameters for sub-models:
culture, broth_decay, pH_buffer, and
gas_liquid_transfer.

3. The BPL/EquipmentLib/Reactor use inner/outer
implicit connection to the sub-models listed in the
previous item. There is also a specific connection for
each sub-model back to the Reactor.

4. The BPL/EquipmentLib/Reactor has also vari-
able number of inlets and outlets and affect the icon
of the component.

A first attempt to address GUI configuration in Open-
Modelica is shown in Figure 4, cf Listing 9. We see the
model of fed-batch cultivation in section 4. Note that the
electrical connector is represented by a thin line and the
liquid phase connector with a thick filled line. For gas
phase a thick open line is used, not shown.

6.6 Library modification for different GUI
Not all Modelica implementations have a GUI that sup-
ports parametrisation of packages, although the com-
piler does. This affects the design of the package
EquipmentLib and the structure of the applications code.
One approach to solve this dilemma is to introduce a par-
allel package EquipmentLib2 where the formal (pack-
age) parameters for media as well as connector code, are
moved into each component instead. Then adaptation to

the application media is done at instantiation of the com-
ponent instead. Thus Listing 5 and Listing 6 are then com-
bined as shown in Listing 9, done by the GUI.

Listing 9. Application configuration when parametrisation of
packages are not supported by the GUI

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
EquipmentLib2.Reactor bioreactor(

redeclare package Liquidphase =
Liquidphase2,

redeclare model Culture = Culture2,
X = Liquidphase.X, n_inlets=1);

EquipmentLib2.Feedsystem feedtank(
redeclare package Liquidphase =

Liquidphase2);
Control.DosageSchemeExp dosagescheme;

equation
connect(bioreactor.inlet[1], feedtank.

outlet);
connect(feedtank.Fsp, dosagescheme.F);

end Fedbatch;

The solution in Listing 9 has a structure similar to the
MSL Fluid and Media. The drawback with this structure is
that you need to redeclare media packages for each com-
ponent. In OpenModelica this is done manually by the
user. In the software Impact from Modelon there is also a
possibility to automate this tedious and error-prone work
in the GUI, see (Modelon 2023).

An alternative approach to keep redeclaration of media
to one central place for components taken from package
EquipmentLib2, is to introduce a global formal type pa-
rameter for the application code that the components me-
dia redeclaration refer to, see Listing 10 below.

Listing 10. Application configuration when parametrisation of
packages are not supported by the GUI and global parameter for
package Liquidphase introduced to centralize user interac-
tion

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
replaceable package Liquidphase =

Liquidphase2;
EquipmentLib2.Reactor bioreactor(

redeclare package Liquidphase =
Liquidphase,

...

The approach with a global formal type parame-
ter can be found in some MSL Fluid examples, e.g.
ThreeTanks, and the technique is in fact generally
widely used. The drawback with this method is that it
requires editing of the code manually, and can not be done
with just using the (current) GUIs.

6.7 An idea for GUI improvement
The different Modelica GUI are similar and simplified
to focus on components and their interconnections. The
awareness of which package a certain component comes
from is important at the time of configuration but later of
little use. In the code view the programmer is naturally
more aware of the package a component belong to.

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

459



Figure 5. An idea to improve GUI by including access to pack-
age parameters for Equipment.

One way to make package information accessible in the
GUI is shown in Figure 5. The package Equipment is
represented by the box in the lower right corner. Click-
ing on this box shows general (type) parameters for the
package and in this case the package Liquidphase and
what that package is, and the user can change it. The code
is then re-translated. Note that clicking on the box high-
light the components in the configuration that belong to
Equipment and affected by a change. A complement
could be to in each component introduce a symbol for
what package the component come from and when clicked
the box with information of the package is shown and
the other components in the configuration from the same
package are high-lighted.

In MSL there are libraries where the need for express-
ing common properties for several components in a cen-
tral way are addressed. The technique used is to define
a central component that other components connect im-
plicitly with using inner/outer variable mechanism. In the
Fluid library the central component is called system and
in the Multibody library it is called world. When the
central component is defined on the top level it provides
application wide access and can be seen as global pa-
rameters (SystemComponent 2023). This should be com-
pared with the idea presented in this paper, namely pack-
age parametrisation using mechanism of inheritance. It
make use of the package structure and is not global pa-
rameters. The pros and cons of the different approaches
needs further analysis.

6.8 Two-level system configuration with GUI
In practice it is common to first settle the process setup and
then explore various strategies for operation and control.
However, in some contexts it can be fruitful to investigate
the interplay of process and control design.

The process setup can effectively be coded using the
procedure in section 4 and shown in Listing 11. The con-
figuration provides an openness of how operation and con-
trol should be done. The model Fedbatch_base com-
bines the feed tank with the bioreactor, but we do not in-
clude any dosage scheme. Further we equip the reactor

with an on-line sensor for measurement of substrate con-
centration.

The operation and control of the process is then con-
figured at a second level. Here we can let the process be
operated by a fixed dosage scheme of the feed rate as be-
fore, or for example investigate the use of feedback con-
trol of the feed rate around the dosage scheme based on
the on-line substrate measurement signal.

Listing 11. Application configuration fed-batch - level 1

model Fedbatch_base "Fedbatch cultivation"
Liquidphase_data liquidphase;
EquipmentLib.Reactor bioreactor(

X=liquidphase.X, n_inlets=1,
n_ports=1);

EquipmentLib.ProbeSensor sensor(
component=liquidphase.S);

EquipmentLib.Feedsystem feedtank;
Interfaces.RealInput Fsp;
Interfaces.RealOutput S_measured;

equation
connect(Fsp, feedtank.Fsp);
connect(feedtank.outlet,

bioreactor.inlet[1]);
connect(bioreactor.port[1],

sensor.probe);
connect(sensor.probe.out, S_measured);

end Fedbatch_base;

This second-level configuration of the control system
can be done using the GUI, as shown in Figure 6. Since
we on this level only deal with electrical signals here is
little difference between the GUI of different vendors, in
this respect. Further, the advantage of exploratory GUI-
configuration is more obvious than for the process setup.

Simulation during start-up of the process is shown in
Figure 7. We see mainly that the control system is stable
and keeps the substrate level at a low level close to the
set-point during the exponential growth phase. To evalu-
ate the advantage of substrate control compared to fixed
dosage schemes requires a number of simulations taking
into account variation in the initial cell concentration as
well as variation in the culture parameters, and is outside
the scope of this paper.

A two-level configuration process is natural in many sit-
uations and combine the strength of package parametrisa-

Figure 6. Application configuration fed-batch with feedback
PID-control of feed rate from substrate measurement - level 2.
The process setup is in the dash-lined box, see Listing 11.
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Figure 7. Simulation of fed-batch cultivation with substrate con-
trol from on-line substrate measurement and adjustments of the
feed rate around the fixed dosage scheme. Focus on the start-up.

tion at the process level and the flexibility of GUI at the
control system level. If you prefer, the first level config-
uration can also be done graphically. And if your Model-
ica software does not support package parametrisation you
can use the procedure described in the previous section.

6.9 The importance of FMU for the library
For bioprocess simulations it is important to let it be part
of the wider context of data analysis and detailed cellular
modelling. Therefore compilation to FMU of high quality
for further integration to Python (or Julia, Matlab) is a very
important part.

One practical aspect is that information about media
and culture etc in the Modelica model is good to have ac-
cessible from the FMU. This information is often declared
as constants. Today vendors differ about whether constant
information is available in the FMU, and OpenModelica
has not implemented this facility, just yet.

7 Availability of Bioprocess Library
The library has been used in a few industrial projects over
the years where I have been involved as consultant. It has
also been used for teaching operators. These interactions
have to some extent set the priorities made in the library
development. The name Bioprocess Library is a registered
trademark and owned by me.

I am now interested in that more people use the library
and hope to get ideas back for further development. One
possibility is to make it publicly available at GitHub. In-
formation will be given at the GitHub-page, see (BPL Ap-
plications 2023).

At GitHub I already provide FMU-compiled demo ex-
amples with Jupyter notebooks that can be downloaded,
or run from the web-browser using Google Colab virtual
machines. The focus is here on further developing usage
of simulation and post-processing using Python, by the
GitHub-community. The examples include both the text-
book culture model here, as well as models of microbial
yeast (S. cerevisiae) and mammalian cell culture (CHO)
for recombinant protein production. The cultures are run
as batch, fed-batch, continuous and perfusion. The ex-
amples include dynamics of operation, model calibration,
sensitivity analysis, design space calculation, scale-down,
regulator tuning and process optimisation.

8 Concluding remarks
The presentation has focused on structural design aspects
of the Bioprocess Library, and little on the content. Design
aspects of more general interests are:

• Part of the user configuration is done by equations in
a certain format as described in Section 3 and exem-
plified in Listing 4. The other part of the user con-
figuration is done traditionally using components, as
described in Section 4 and exemplified in Listing 6.

• The parametrisation of components with media are
done on the package level instead of on the individ-
ual component level, as described in Section 4 and
exemplified in Listing 5 and 6.

• The GUI varies between different vendors and not all
supports parametrisation on the package level. Even
for those vendors that allow GUI configuration as in
Listing 6, it is not clear how to interact with the for-
mal parameters on the package level using the GUI.

Hopefully, the library will lower the threshold to use
Modelica for simulation of bioprocesses, and the unortho-
dox design appreciated. Suggestions for including im-
portant new components to facilitate usage are welcome!
There is also a public place for developing and sharing
Jupyter notebooks addressing bioprocess questions using
simulation in combination with other tools.
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Abstract 
The free open-source Physiolibrary version 3.0 

(https://github.com/MarekMatejak/Physiolibrary) has 

transformed components from physiological domains 

such as hydraulic (cardiovascular), thermal, osmotic, and 

chemical into the Modelica Standard Library (MSL) 

concept of Fluid/Media and Chemical library. 

Components are extended to include gas transports, acids-

bases, electrolytes, nutrient delivery, and endocrines by 

simply selecting pre-made media. They can be connected 

directly (same medium) or across membranes (different 

media), allowing small physiological models to be 

integrated into more quantitative models with minimal 

effort. 

 

Keywords: physiology modelling, physiological 

simulation, quantitative physiology, physiological model, 

cardiovascular, respiratory, physiolib, physiolibrary, 

physiomodel, systems biology, medical simulation 

1 Introduction 

Earlier versions of Physiolibrary (Mateják et al. 2014) 

mainly contain components for individual domains, e.g., 

hydraulic, osmotic, chemical, and thermal resistances. 

These components were defined to implement large 

integrative models such as Physiomodel (Mateják and 

Kofránek 2015). The hydraulic domain was not suitable 

for gas transport. The osmotic domain was inaccurate and 

difficult to connect with the chemical domain of protein 

distributions and electrolytes. The first version of the 

chemical domain was controlled by concentration 

gradients instead of electrochemical potentials (Mateják 

2015). It was difficult for the user to implement obvious 

interactions between the domains. We addressed all these 

problems and proposed solutions. The result is that 

version 3.0 of Physiolibrary allows the use of standard 

Modelica Fluid Connectors (Casella et al. 2006) and 

electrochemical connectors for cross-compartment 

transport of substances (Mateják et al. 2015). Fluid 

connectors transport media such as blood, air, interstitial 

fluid, intracellular fluid. Drag-and-drop connections of 

these connectors define equations for pressures, mass 

flows, heat flows and mass fractions of substances 

between components. Electrochemical connections lead 

via free base substance forms. For example, the total mass 

fraction of carbon dioxide is represented as part of the 

composition of blood in fluid connector, but free dissolved 

carbon dioxide in blood plasma or bicarbonate in blood 

plasma are its electrochemical connectors proposed to 

model the electrochemical CO2 fluxes. Since the selected 

forms are precisely determined by the composition of the 

blood, it is not necessary to store them and pass them 

through the fluid connector. They are only expressed and 

calculated when needed. 

 

2 Methods 

2.1 SI units 

In medicine, many obscure units are still in use such as 

mmHg (millimeters of mercury), cmH2O (centimeters of 

water) for pressure, calories for energy, chemical 

equivalents for electric charge, degrees Celsius for 

temperature, and so on. Modelica allows you to define 

these as display units. This means that it is possible to 

output graphs in the selected units or even set values in 

parametric dialogs in these selected units. However, the 

variables within the model in SI units explain the 

compatibility between all components and models. Also, 

the selection of zero offset is better for use within 

connectors and state variables, since, for example, 

absolute pressure is well defined, as opposed to relative 

pressure in circuits with heterogeneous environments that 

have different pressures. To see nice pressure values, it is 

necessary to use a pressure sensor instead of looking at 

the variables of the connector “p”. Even if the user wants 

to create a small physiological model, it is much better to 

achieve these interfaces because they allow others to 

easily reuse it without modifications or adapters. 

 

2.2 State and connector variables 

For gaseous substances, volume changes with pressure 

and temperature, so it is always better to use mass and 

mass flows instead of volume and volume flows. And, of 

course, volumes can always be evaluated by including 
pressures, temperatures, and the composition of the 

medium with known masses. For the same reason, it is 

better to use mass fractions of substances instead of 
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volume fractions, concentrations, molalities, molarities, 

or even mole fractions for the compositional state of the 

medium. The molar quantities may change due to 

chemical binding (e.g., to a transporter protein), but the 

mass of the substance change only with external flows. If 

the state of the medium is known, all these quantities can 

be evaluated for output or parametric purposes. 

 

2.3 Elastic vessels 

One of the most important components in Physiolibrary 

3.0 is Fluid.ElasticVessel. It accumulates the mass of the 

medium, e.g. blood, air, lymph, interstitial fluid, 

intracellular fluid. From the accumulated mass, heat and 

substances, volume, pressure, temperature, concentrations 

and other properties of the accumulated medium are 

expressed. In addition if the user use chemical substances 

connectors, special equations are included as 

Medium.ChemicalSolution model. In this case, 

electrochemical potentials and enthalpies are expressed to 

allow passive and active transport, for example, through 

the alveolar membrane, the capillary membrane, the cell 

membrane or the CSF membrane. Electrochemical 

processes and their calculation (Mateják 2015) are from 

the chemical library (Mateják et al. 2015). Here osmotic 

transport is the result of balancing the chemical potential 

of water. Similarly, Donnan’s equilibrium (Donnan 1911) 

is the result of balancing the electrochemical potentials of 

electrolytes (Atkins and De Paula 2011) at a 

semipermeable membrane. And also, active transport or 

signal transduction can be modeled as electrochemical 

reactions involving membrane proteins. 

 

2.4 Medium 

Physiolibrary 3.0 defines examples for the following 

media: 

Water – as pure incompressible water with constant heat 

capacity without any substance inside 

Air – as an ideal gas model with oxygen, carbon dioxide, 

nitrogen and water 

Blood – as an incompressible fluid containing many 

physiological substances such as blood gases, 

electrolytes, red cells, nutrients, proteins and hormones. 

Thanks to the shift of numerical tolerances with 

predefined nominal values for each substance, the 

calculation is numerically stable, even if the ratio between 

the mass fractions of substances is 10^9 (e.g. mass 

fraction of water / mass fraction of thyrotropin). Blood 

contains equations for haemoglobin oxygen saturation, 

acid-base balance, and carbon dioxide transfers to achieve 

physiological conditions in the transport of blood gases 

under variable conditions (Mateják, Kulhánek, and 

Matoušek 2015).  

BodyFluid – as an incompressible fluid that simplifies 

other physiological fluids such as interstitial fluid, 

intracellular fluid, cerebrospinal fluid, or urine. In 

Physiolibrary 3.0 this medium represents only a 

homogeneous chemical solution without special transfers 

or binding of substances inside. 

 

3 Results 

3.1 Blood gases interface 

The library has prepared a blood medium containing the 

dissociation model of common gasses such as oxygen, 

carbon dioxide, and carbon monoxide (Siggaard-

Andersen 1971; Siggaard-Andersen and Siggaard-

Andersen 1990; SIGGAARD-ANDERSEN and 

SIGGAARD-ANDERSEN 1995). With this model, we 

can build a gas transport between air and blood. First, we 

add a component ElasticVessel from the 

Fluid.Components package. ElasticVessel is a container 

for the medium in which blood accumulates oxygen and 

carbon dioxide. It contains dynamic calculation of blood 

volume, blood temperature, blood pressure, blood 

composition and other blood properties. In the parameter 

dialog we set blood from the Media package as the 

medium in this component. This will link the equations 

and properties of the medium to the model of this 

component. As initialization we can set normal predefined 

arterial blood by setting the massFractions_start 

parameter to predefined values Blood.ArterialDefault. 

Then we check the useSubstances checkbox to enable the 

connectors with free blood substances and the complex 

model of these substances in them. The bundle of 

substance connectors is located on the left side of the icon. 

Now we can handle a freely dissolved basic chemical 

substance defined in the medium. “Free dissolved” means 

that the substance connector contains chemical potential 

and flows only for unbound molecules. And “basic" 

means that this molecule is not connected in a cluster with 

other molecules. For example, H2O molecules are 

connected by hydrogen bonds, so water in these chemical 

compounds is represented only by the chemical potential 

and molar flux of the free, unbound H2O molecules. The 

clusters and bonds can nevertheless be calculated 

internally if needed (Mateják and Kofránek 2020). 

The next component type we use in this model is 

“GasSolubility” from the “Chemical.Components” 

package. It represents the chemical processes of gas-

liquid solubility for the selected gas molecule.  

To define the air source of gas substances, we can use 

ExternalIdealGasSubstance from the Chemical.Sources 

package. Here in the listbox of the parameter dialog we 

should be able to set „O2(g)“ or "CO2(g)“ or “CO(g)”. 

Then we can define a very small partial pressure of 

oxygen (1 mmHg) together with a typical partial pressure 

of carbon dioxide (40 mmHg) and a very small partial 

pressure for carbon monoxide (1e-6 mmHg). This settings 

cause that the blood is losing the oxygen during 

simulation. 
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Figure 1. Selected Physiolibrary components: ElasticVesel, 

GasSolubility, ExternalGasSubstance, System 

 

The standard Modelica.Fluid.System component is used 

to pass on ambient pressure, temperature (37°C), and 

gravity acceleration. The parameters of this component 

are accessible throughout the model. 

After we have defined all the components of the model, 

we can connect them.  

 

 
Figure 2. Model of blood gases 

 

To see the current values of the model, it is a good practice 

to use sensors. These components do not affect other 

values of the model here, but they represent the initial 

values in the expected form. To measure the oxygen 

saturation in blood, we can use the Fraction sensor from 

the Fluid.Sensors package. As parameterization of this 

component, we need to specify the media model and the 

name of the predefined fraction function in the medium. 

 

 
 

Figure 3. Fraction sensor parameterized for measurement of 

oxygen saturation in blood 

 

We can define a similar measurement for blood oxygen 

partial pressure by using the PartialPressure component 

from the Fluid.Sensors package. During parameterization 

we have to select the state of matter and the substance 

definition in the similar way. 

The entire model with all source codes is accessible in one 

of the examples within the library as 

Fluid.Examples.BloodGasesEquilibrium. 

 

If we run a simulation of this model, we can see the 

dynamic oxygen-haemoglobin dissociation 

(Severinghaus 1979) as a relationship between oxygen 

saturation and oxygen patrial pressure in blood. 

 
Figure 4. Result of the simulation as oxygen saturation curve 

 

 

3.2 Respiratory unit 

Physiolibrary has some predefined models of organs or 

their functional units composed of components of the base 

library. One of these components is RespiratoryUnit in the 

Organs.Lungs.Components package. For gas transport 

between the air and the blood, the same basic components 

are used as in the previous model.  

 

Figure 5. RespiratoryUnit component 

The parameterization of the RespiratoryUnit is divided 

into ventilation, blood perfusion and diffusion of gases 

through the capillary and alveolar membrane. 

Ventilation parameters are based on the physiological 

characteristics of the lungs, such as functional residual 

capacity (the volume of air remaining after a normal 

passive expiration), residual volume (the volume of air 

remaining after full expiration), total capacity (the volume 

of air remaining after full inspiration), base tidal volume 

(inhaled/exhaled volume during a normal breath), total 

compliance, initial air volume, and initial air composition. 
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Perfusion settings are based on blood and vessel 

parameters such as blood model, initial blood volume, 

initial blood composition, ZeroPressureVolume 

(maximum blood volume in vessels that does not generate 

pressure), vessel compliance, and vessel conductance. 

The RespiratoryUnit can be connected to the respiratory 

muscles via chest, where a negative or even a positive 

external pressure is generated by respiratory muscles. The 

medium of this compartment can be chosen as pleural 

fluid. This compartment should have a non-zero internal 

space (lung volume) that can collapse below the relaxed 

volume. Thus, the current volume of respiratory units can 

be related to the internal space of the chest, and the 

external pressure is transmitted from the muscles to the 

lungs through the pleural cavity (where it is displaced by 

the internal space). This pattern is illustrated by the 

examples SimpleRespiration and Respiration in the 

package Fluid.Examples. 

3.3 Tissue unit 

To demonstrate oxygen consumption and carbon dioxide 

production in body tissue metabolism, we can define a 

TissueUnit. This unit does not solve hypoxic situations, 

but it can be used for normal body conditions. Here, 

oxygen consumption (e.g., 15mmol/min) and carbon 

dioxide production (e.g., 12mmol/min) are constant 

parameters during simulations propagated by 

SubstanceOutflow and SubstanceInflow components 

from the Chemical.Sources package. Blood is connected 

from systemic arteries to systemic veins via tissue 

capillaries, using typical connections for modeling the 

cardiovascular system (Kulhánek, Kofránek, and Mateják 

2014).

 

Figure 7. Diagram of simple tissue unit 

3.4 Simple respiratory-cardiovascular model 

If you combine all these principles, you can create a model 

of respiration, blood circulation and blood-gas transport. 

Non-medical users usually focus on oscillatory models, as 

presented in the examples 

MeursModel2011.HemodynamicsMeurs_flatNorm or 

Respiration in the Fluid.Examples package. However, 

precise non-oscillatory models can also be defined for 

long-term physiological simulations. Oscillation from 

breath to breath or even from heartbeat to heartbeat does 

not affect the calculated mean values that are 

physiologically significant (e.g. mean pressure, cardiac 

output, heart rate, respiratory volume, respiratory rate, 

etc.). Therefore, it is good practice in medical physiology 

to define non-oscillatory long-term cardiovascular and 

respiratory models (Hester et al. 2011). 

A non-oscillatory respiratory model can be defined by the 

same RespiratoryUnit as the oscillatory one. However, the 

connection of the respiratory tract must be defined by a 

separate air inflow and outflow. And the dead space 

should be defined in parallel connection. Similarly, the 

pulmonary shunt (where the blood of the pulmonary 

circulation does not flow through the ventilated alveoli) 

should be defined in parallel connection with the blood 

perfusion in the RespiratoryUnits. 

The non-oscillating cardiovascular model is based on non-

oscillating pumps representing the right and left heart 

delivering cardiac output to the bloodstream. 

Figure 6. Parameterization of ventilation in dialog of the RespiratoryUnit component 
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Figure 8. Respiratory-cardiovascular example 

 

 
Figure 9. Results of respiratory-cardiovascular example 

4 Discussion 

The models presented are only examples of the use of the 

library. The components of the Physiolibrary are general 

enough to be included in more specific or/and more 

complex models. Today version of the blood medium is 

designed for the transport of blood gases, but our goal is 

to make it general for the transport of physiological 

substances. Using the nominals, even hormones and 

endocrines (physiologically active substances in very low 

concentrations) can be solved numerically in the same 

way. With chemical processes such as passive and active 

transport or signal transmission, more complex models of 

tissues and organs can be defined. If we connect tissues 

and organs, we can easily create a model of the whole 

body (Mateják and Kofránek 2015). With specific bodies, 

we can virtually transplant organs from one body to 

another and so on. With the non-oscillation approach, we 

can even simulate years of life or perhaps one day even 

the whole life of an organism. 

This kind of mathematical modelling leads to virtual 

experiments that could improve experiments before using 

animals or humans. This minimalizes number of iteration 

and changes in experimental conditions, which can 

improve the quality of research and shorten research time. 

And it could also be a platform for sharing results in the 

form of well-defined and structured models. 

-   
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Abstract
This paper is presenting the design proposal of a simplified
version of the Modelica language. Base Modelica is de-
signed to serve as an intermediate representation enabling
a clean separation of front-end and back-end matters when
processing a Modelica model. Furthermore, it is designed
to allow restructuring the Modelica Language Specifica-
tion considering two parts: the basic features and the ad-
vanced language constructs.

After discussing the motivation, solution approach, and
risks, the paper is highlighting a selection of design
choices that have been made for the current pre-release
version of the language. Code examples are given to illus-
trate and highlight various aspects of the language. Open
issues, conclusions, and an outlook finalize the paper.

By attracting more tool vendors and researchers to work
with this intermediate representation the whole Modelica
community is expected to benefit from new utilities to
inspect, analyze, optimize, and process equations-based
models in general and Modelica models in particular.
Keywords: Modelica Language, intermediate representa-
tion, equation-based language, language design

1 Introduction
The Modelica language, published as v1.0 in September
1997, has been widely accepted as modeling language to
describe the behavior of cyber-physical systems. Various
tool vendors have developed and successfully marketed
simulation environments including a Modelica kernel that
is able to translate Modelica models describing mixed
continuous-discrete differential algebraic-equation system
(hybrid DAE) into highly efficient simulation code. From
the very beginning, the development of tools has been ac-
companied by the development of model libraries cover-
ing a wide spectrum of physical domains and fields of ap-
plication. The Modelica Language Specification and the
Modelica Standard Library are maintained by the non-
profit Modelica Association and are licensed under the
open source 3-clause BSD License for the Modelica As-
sociation. An ecosystem of researchers, tool vendors, li-
brary developers and users has evolved over the years and
is continuously growing.

The LLVM compiler infrastructure (Lattner and Adve
2004) has turned out to be a great success over the last
twenty years. A central part of the design is the well spec-
ified LLVM intermediate representation, which has been a
source of inspiration for also introducing a well specified
intermediate format for Modelica translation and tool in-
frastructure. Earlier, the Java Virtual Machine architecture
(Lindholm et al. 2023) has also proven intermediate lan-
guages to play a central role in the development of ecosys-
tems around a language.

1.1 State of the art
The versatile modeling language Modelica is in particu-
lar well-suited to formulate multi-physics problems start-
ing from first principles in an easily comprehensible text-
book style. The combined textual and graphical represen-
tations provide very accessible views on component, sub-
system and system level. A high level of reuse is enabled
through the concept of acausal connectors. Variants can be
managed in a convenient fashion through inheritance and
modifications to avoid code duplication, which leads to
a much-improved maintainability of model libraries and
performing simulation studies of entire system families.
The understandability of domain libraries and larger sys-
tem models hinges on designing a proper model archi-
tecture, which requires a good understanding of Model-
ica’s object-oriented programming model. High-quality
libraries are available that demonstrate how to apply pow-
erful object-oriented language constructs in a meaningful
way, along with graphics, documentation, and other us-
ability enhancements.

Modelica modeling tools support these concepts
through integrated development environments (IDE) pro-
viding multiple views on the model to navigate through
the instance hierarchy and apply modifications on differ-
ent levels of the system structure. In addition, the output
of a "so-called" flattened model is supported by common
Modelica compilers. This textual output gives an unob-
scured view of the effective set of equations as they occur
after instantiation and lowering of hierarchical models, ap-
plying replacements and other modifications. Typically,
the flat Modelica output looks like Modelica code, but it is
not a valid Modelica model that could be further processed
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by other tools. The flat Modelica output is not standard-
ized and differs between tools and can even differ between
tool versions.

For tool vendors the development of a Modelica com-
piler is a substantial investment, strongly dependent on
the availability of highly educated and knowledgeable ex-
perts in compiler construction. Especially the concept
of replaceable packages – heavily used in the media and
thermo-fluid libraries – are very involved to get perfectly
right. The OpenModelica project estimates 40 person-
years spent in the project, with 15-20 person-years for a
minimal simulation environment (excluding the graphical
user interface). Approximately 7 person-years are esti-
mated for the development of a Modelica front-end capa-
ble of parsing and lowering a Modelica model into a form
that can be printed as flat Modelica code. This lowered
model is the starting point for further model transforma-
tions, typically carried out by the so-called back-end, to-
wards an optimized target-specific simulation code.

As of today, the Modelica Association is listing 10
Modelica simulation environments. Not all of these have
their own Modelica kernel. The test coverage of available
Modelica libraries differs between the Modelica kernels.

The latest version of the Modelica Specification (Mod-
elica Association 2023) reads 300 pages (excluding the
appendix) covering basic language concepts (operators,
expressions, types, classes, arrays, functions, declara-
tions, scoping, name lookup), hybrid DAE modeling-
related aspects (equations, events, synchronous language
elements, state machines) and object-oriented respectively
component-oriented language elements (units, interfaces,
connectors, connections, stream connectors, inheritance,
overloaded operators, packages).

1.2 Problem statement
While Modelica is very powerful and easy to use, it is a
complex language. The high complexity leads to chal-
lenges on different levels.

End-users (modeling and simulation experts) and Mod-
elica library developers are confronted with:

• Compatibility issues between different Modelica
tools in part due to inconsistent interpretations of the
Modelica specification.

• Limited expressiveness of existing flat Modelica out-
puts for debugging unexpected behaviors, e.g., prior-
ity of conflicting start values, or clock partitioning.

• Lack of third-party utilities for operating on the flat
Modelica output due to lack of standard.

• Lock-in effects due to third-party utilities getting tied
to a specific Modelica tool.

Tool vendors are facing:

• High onboarding effort for new employees working
on the Modelica translator to become productive due

to interdependence of front-end and back-end mat-
ters.

• High entry barrier for non-Modelica tools to partici-
pate in the Modelica ecosystem.

• Difficulty to foresee and support all possible usages
of the language.

• Lack of a common format to settle questions about
the interpretation of the Modelica Language Specifi-
cation with other tool vendors.

The design group of the Modelica Language Specifica-
tion (MAP-Lang) is challenged by:

• Need to guarantee the consistency of a large and
complex specification.

• Hard to integrate changes or enhancements due to
many potential side effects to be considered.

• Difficulty to specify the semantics in an unambigu-
ous way.

• Risk of language innovations creating high imple-
mentation efforts.

This leads to the situation that the objective of Modelica
as a widely accepted, free and open modeling language is
threatened:

• The entry barrier for new tool vendors is very high.

• The testing effort of Modelica libraries to guaran-
tee compatibility across different tools is so high that
only a limited number of tools are fully supported.

• It is difficult to use as foundation for other standards
due the high complexity.

• A risk of vendor lock-in persists despite the commit-
ment to Modelica as an open standard.

• Poor ability to respond quickly to innovations in
competing modeling technologies.

1.3 Solution approach
We propose a standardized Base Modelica language that
could become an integral part of the Modelica Specifica-
tion. The translation of a (full) Modelica model would
then be described as a two-step process, where high-level
language constructs are first removed by lowering the
model to Base Modelica, after which the Base Modelica
semantics define the dynamic simulation behavior.

The Modelica and Base Modelica languages have a
large overlap in the syntax of expressions, functions, equa-
tions, and algorithms. These parts should be defined in
a common part of the Modelica Specification, where any
differences in requirements or semantics between (full)
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Modelica and Base Modelica are clearly marked. In ad-
dition to the common part, the high-level language con-
structs of Modelica would be described in one part, while
lower-level constructs specific to Base Modelica are de-
scribed in another.

This is similar to the approach being taken by Sys-
tem Modeling Language (SysML), which is being restruc-
tured to be an extension to the Kernel Modeling Language
(KerML) instead of a UML profile (The Object Manage-
ment Group 2023). The difference between Modelica
and SysML is that SysML will add support for domain-
specific applications through language extensions whereas
these are still included in the (full) Modelica language.

1.4 Benefits
From the perspective of the MAP-Lang, the separation of
basic language constructs (Base Modelica) from the more
high-level constructions will facilitate more efficient work
and rapid development of the two aspects of the Modelica
language and generally improve the readability and main-
tainability of the specification. Examples of how high-
level constructs are lowered to Base Modelica will help
to avoid misinterpretations. Changes applicable to Base
Modelica can be discussed and evaluated before decid-
ing how to integrate them in Modelica. A working group
with focus on the equation model and simulation seman-
tics could play a very important role in future develop-
ments of new language features such as varying-structure
systems, or integration with PDE solvers.

From a tool vendor perspective, organizing the devel-
opment work of a Modelica tool will be easier thanks to
a natural separation into front-end and back-end matters,
with the front-end taking care of the lowering the Model-
ica model to Base Modelica and the back-end transform-
ing the Base Modelica model into an executable form, e.g.,
a simulator. A standardized Base Modelica output will al-
low a much easier identification of compatibility issues
between different tools. The much simplified Base Mod-
elica language will provide an entry point for new tools to
enter the Modelica ecosystem.

These types of new tools and services could be:

• Other high-level languages or modeling tools using
Base Modelica as a target language, e.g., dedicated
control engineering tools, or symbolic math pack-
ages.

• Advanced model transformation techniques applied
on the equation level.

• Specialized tools providing advanced analysis (e.g.,
occurrence of algebraic loops, model-based fault de-
tection and isolation) and/or visualizations of equa-
tion systems (e.g., bipartite graphs).

• Extraction and injection of equations to simplify or
reduce the model for simulation speed-up.

• Platform for academic research on dynamic systems,
e.g., symbolic or numeric methods.

In the context of the publicly funded ITEA3 project
15016 EMPHYSIS (Sep. 2017 – Feb. 2021), an early pro-
totype for the exchange of equation-based models between
Modelica and non-Modelica tools has been developed.
Based on this prototype two use cases have been evalu-
ated and documented as demonstrators (EMPHYSIS Con-
sortium 2021, D7.3 and D7.4) to illustrate the benefit of
having an equation-based representation in a model-based
development workflow for embedded control and diagno-
sis functions.

The end-users and Modelica library developers will
benefit from a improved portability of their models and
libraries due to identified and resolved inconsistencies be-
tween Modelica implementations and Modelica Specifica-
tion. This will allow a more flexible usage of the available
tools. Comparison of different compiler back-ends will
be possible. In combination with the obfuscation of Base
Modelica outputs, sharing of IP-protected models will be
simplified.

Furthermore, other model exchange standards could
also benefit from a standardized Base Modelica. This is in
accordance with the Equation Code proposed as an addi-
tional model representation within the eFMI container ar-
chitecture (Lenord et al. 2021). This additional represen-
tation has been proposed for future versions of the eFMI
standard aiming to share an acausal representation of the
equation system that has served as the basis for the de-
rived algorithmic and target-specific representations. The
proposed Base Modelica with some additional restrictions
could be directly referenced by the eFMI standard to spec-
ify the additional Equation Code model representation that
would provide more flexibility and transparency in the
generation of code for embedded applications.

1.5 Potential risks
However, we also recognize that there are potential risks
that may reduce some of the benefits.

In particular:

• Modelica translators rely on heuristics for symbolic
transformations based on the structure of the Model-
ica code. Some of this structure, e.g., start-value pri-
ority, has been given a standardized representation in
Base Modelica. However there also exists structure
that will require the use of vendor-specific annota-
tions, leading to portability issues of the Base Model-
ica code. For example the alias elimination selection
may depend on whether a variable is conditional.

• Base Modelica has not been designed with interme-
diate stages of symbolic transformations in mind.
Thus its usefulness for representing those stages is
not clear.

• Despite the significant effort behind the current state
of the Base Modelica design work there is a consider-

Session 5-A: New features of the Modelica language and of FMI 2

DOI
10.3384/ecp204469

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

471



able remaining investment in separating the Model-
ica Specification along these lines. This could detract
from other evolution of the Modelica language.

Understanding the risks should make it easier to avoid the
bad consequences.

2 Selected design choices
From the intended usages of Base Modelica the following
design goals are derived:

• Simple enough to be attractive for applications that
essentially just want a simple description of variables
and equations, meaning that many of the complicated
high level constructs of Modelica are removed.

• Expressive enough to allow the high level constructs
of Modelica to be reduced to Base Modelica without
loss of semantics.

• When Base Modelica serves as an intermediate rep-
resentation of the translation of a higher level lan-
guage (such as Modelica), errors detected in Base
Modelica code shall be traceable to the original code.

• Human readable and writable, since not all usages
assume Base Modelica being produced from a higher
level language by a tool.

A selection of design choices to achieve these goals is
presented in the following subsections.

2.1 Variable naming scheme
Identifiers in Base Modelica fall into three namespaces:

• Space of mangled class names and component ref-
erences that allow mapping back to a hierarchically
structured class tree and simulation result.

• Space of reserved names for current or future use in
the Base Modelica specification.

• Space reserved for tools producing Base Modelica
code, without mapping to names in a simulation re-
sult.

For example, the following Base Modelica parameter
would appear as const.k in the simulation result:

parameter Real ’const.k’ = 1.0;

In general, the mangling scheme is more involved than just
wrapping in single quotes, but the details are omitted for
brevity.

The mangled names are always quoted identifiers
(Q-IDENT in the grammar), and since quoted identifiers
are rarely used in Modelica code, it is often easy to guess
whether a code fragment is Modelica or Base Modelica by
just looking at the names of classes and components.

2.2 Simplified grammar
Base Modelica has a grammar which has been simplified
in many ways compared to Modelica, by removing high-
level language constructs. A clear sign of this is the many
Modelica keywords that are not keywords in Base Mod-
elica, including: block, class, connect, connector
, constrainedby, each, expandable, extends, final
, flow, import, inner, operator, outer, protected,
public, redeclare, and stream. However, Base Mod-
elica also comes with syntax for lowered constructs that
do not exist in Modelica.

The top-level structure of a Base Modelica program is
given by the following piece of grammar:
base-modelica :

VERSION-HEADER
package IDENT

( decoration? class-definition ";"
| decoration? global-constant ";"
)*
decoration? model

long-class-specifier ";"
( annotation-comment ";" )?

end IDENT ";"

A very small Base Modelica model generated from full
Modelica could look like this:

Listing 1. A minimal (non-empty) Base Modelica model.

// ! base 0 . 1 . 0
package ’M’
model ’M’

parameter Real ’const.k’ = 1.0;
end ’M’;
end ’M’;

The mandatory Base Modelica version header comment
is technically necessary to tell with certainty that this is a
Base Modelica listing, and not a Modelica listing. It is
included here for completeness, but is generally omitted
in examples where it is clear from context or content that
the language is Base Modelica.

A class-definition in Base Modelica can only be
either a record definition, a function definition, or a short
class definition, and cannot contain nested class defini-
tions. Similarly, the model defined at the end cannot
contain nested class definitions, meaning that all classes
are defined in a flat structure under the top-level package
(which shall have the same name as the model inside it).

The decoration is a source location decoration for
use when the Base Modelica code has been generated from
another source, such as a Modelica model.

A notable example of syntax added for describing low-
ered constructs is the modeling of clock partitions, see sec-
tion 2.13.

2.3 Restricted modification
For any Base Modelica component declaration, modifica-
tions are required to be expressed in a way that avoids
the need for conflict resolution and complicated merging
strategies:
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• Hierarchical names are not allowed in modifiers,
meaning that all modifiers must use the nested form
with just a single identifier at each level.

• At each level, all identifiers must be unique, so that
conflicting modifications are trivially detected.

Lookup restrictions ensure that modifications in short
class definitions, record definitions, and function defini-
tions can only make use of constant expressions. Fur-
ther, these modifications are not allowed to specify differ-
ent values for different elements of an array. As a result,
a named type in Base Modelica can be represented very
compactly compared to a named type in Modelica.

When lowering a Modelica array component with a
heterogeneous modification, the modification needs to be
placed inside the Base Modelica model part, as model
component declarations is the only place where heteroge-
neous modification is allowed.

Base Modelica does not have the final keyword to in-
dicate that further modification is not allowed. For most
uses of final in Modelica, this just means that violations
of final must be detected during lowering. However, the
special case of a final modification of the start-attribute
also requires preventing that the start-attribute can be
modified at the time of simulation initialization, and will
be described in subsection 2.11.

2.4 No connect equations
Connect equations in Modelica play an important role to
enable reuse of components and build-up a component hi-
erarchy, as illustrated by the very simple example in Fig-
ure 1. The Modelica semantics already describes how
to transform connect equations into basic mathematical
equations. Hence, there is no need in Base Modelica
to keep connect equations. Furthermore it would have
been difficult to preserve the concept of connect equations,
as the lowering process to Base Modelica is removing
the hierarchy of components in terms of which the con-
nect equations are defined. This is a significant language
simplification compared to Modelica, especially when it
comes to expandable connectors.

An example of how the previously mentioned train
model is translated from Modelica, see Listing 2, to Base
Modelica is shown in Listing 3

 

wagon 

m=1e5 kg 

wagon1 

m=2e5 kg 

Figure 1. Diagram view of a Modelica model of a train.
The connect-equations are represented graphically as lines be-
tween the components.

Listing 2. Shortened Modelica listing of train model.

model Train
Locomotive locomotive;

Modelica.Mechanics.Translational.
Components.Mass wagon(L=50, m=1e5)

annotation (Placement(transformation(
extent={{-16,-12},{4,8}})));

Modelica.Mechanics.Translational.
Components.Mass wagon1(L=40, m=2e5);

equation
connect(waggon.flange_b, wagon1.flange_a)

annotation (Line(points
={{4,-2},{18,-2}}, color={0,127,0})
);

connect(locomotive.flange_b, wagon.
flange_a);

end Train;

Listing 3. Train model lowered to Base Modelica.

// ! base 0 . 1 . 0
package ’Train’
model ’Train’

parameter Real ’wagon.m’ = 100000.0 "Mass
of the sliding mass";

parameter Real ’wagon.L’ = 50 "Length of
component";

parameter Real ’wagon1.m’ = 200000.0 "
Mass of the sliding mass";

parameter Real ’wagon1.L’ = 40 "Length of
component";

Real ’wagon.s’ "Absolute position of
center of component...";

Real ’wagon.flange_a.s’ "Absolute
position of flange";

Real ’wagon.flange_a.f’ "Cut force
directed into flange";

Real ’wagon.flange_b.s’ "Absolute
position of flange";

Real ’wagon.flange_b.f’ "Cut force
directed into flange";

Real ’wagon1.s’ "Absolute position of
center of component...";

parameter Real ’locomotive.mass.m’;
parameter Real ’locomotive.m’ = 100000.0

"Mass of the sliding mass";
initial equation

’locomotive.mass.m’ = ’locomotive.m’;
equation

’wagon.flange_a.s’ = ’wagon.s’-’wagon.L’
/2;

’wagon.flange_b.s’ = ’wagon.s’+’wagon.L’
/2;

. . .
// From connec t i on s :
’locomotive.flange_b.f’+’wagon.flange_a.f

’ = 0.0;
’wagon.flange_a.s’ = ’locomotive.flange_b

.s’;
’wagon.flange_b.f’+’wagon1.flange_a.f’ =

0.0;
’wagon1.flange_a.s’ = ’wagon.flange_b.s’;

end ’Train’;
end ’Train’;

2.5 No conditional components or deselection
Conditional components in Modelica allow a limited
structural variation that complements the more flexible re-
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placeable concept. Base Modelica does not have condi-
tional components.

When lowering to Base Modelica we must thus evaluate
the condition of a conditional component, and if the con-
dition is false remove the component and any correspond-
ing connections. The reason for this is that conditional
components go together with the connection handling in
Modelica. Additionally expressions (excluding arguments
to connect) should be checked to ensure that they do not
use any conditional component before lowering, since that
check is not possible in Base Modelica.

Component and connect deselections introduced in
Modelica 3.6 are handled similarly.

2.6 No evaluation of (Base Modelica) parame-
ters

Constant and parameter variabilities are well separated in
Base Modelica. Expressions that are deemed necessary to
evaluate during Base Modelica translation are required to
be constant, implying that lowering a Modelica model of-
ten involves evaluating parameters in order to comply with
Base Modelica variability requirements. Further, Base
Modelica semantics of constant components and expres-
sions ensure that such expressions can be evaluated dur-
ing translation when needed. In particular, a pure constant
function concept is introduced to restrict the functions that
can be used in constant expressions.

As an example of not having semantics relying on the
ability to evaluate parameters during translation, a natu-
ral simplification compared to full Modelica is that a Base
Modelica if-equation is required to have the same equa-
tion count in every branch. That is, whenever a Model-
ica if-equation has unbalanced branches, lowering of the
equation must cause the if-equation conditions to be eval-
uated, so that branches breaking the balance can be elimi-
nated.

2.7 Types are constant
Types created in Base Modelica can only hold constant
properties. Since a constant property can always be eval-
uated in Base Modelica, this ensures that the internal rep-
resentation of a type in a Base Modelica tool does not re-
quire the complexity of expressions and component ref-
erences. This makes Base Modelica types much more
similar to types found in other popular programming lan-
guages, compared to (full) Modelica types. It also signif-
icantly reduces the implementation effort for a pure Base
Modelica tool compared to a full Modelica tool.

As an example of Base Modelica types being constant,
each dimension of a Base Modelica array type has a size
that is either constant or flexible, where the latter only in-
dicates the absence of a constant expression for the size
of an Integer dimension. Outside functions, component
declarations may only specify constant array sizes. In an
array equation, the array type must have constant sizes.

The constsize-expression allows expressing constant
assertions on array dimensions. In the listing below, the

OK assignment in ’h’ shows a way to assign the result of
’f’() to ’z’. The assignment below it is an error because
size(’z’) has non-constant variability due to the flexible
size of the first dimension.

Listing 4. Using the constsize-expression.

function ’f’
output Real[:, ’MyEnumType’, :] ’y’;
. . .

end ’f’;

function ’h’
protected

Real[:, ’MyEnumType’, 3] ’z’;
algorithm

’z’ := constsize(’f’(), :, size(’z’, 2),
3); /∗ OK. ∗/

’z’ := constsize(’f’(), size(’z’)); /∗
Er ro r . ∗/

end ’h’;

2.8 Variability-constrained types
Similar to Modelica, a record definition may have vari-
ability prefixes parameter or constant on the compo-
nent declarations of the record members. In Base Mod-
elica, such a type is denoted a variability-constrained
type, and needs to obey additional rules that ensure more
clarity in the semantics compared to Modelica. For ex-
ample, a function component may not be of variability-
constrained type, but is allowed to receive an argument
of variability-constrained type. A model component of
variability-constrained type is also allowed to be in solved
position of an equation or assignment, in which case the
variability-constrained members shall be disregarded as
needed to match the type of the other side of the equation
or assignment.

2.9 Short class definitions
Short class definitions in Base Modelica may not include
array dimensions. Hence, all named types in Base Model-
ica are scalar types, and when a component has array di-
mensions, all array dimensions will be present at the com-
ponent declaration.

It should be noted, however, that a record type may
contain members of array type (where the sizes must be
constant, as the component declarations are not inside a
function):

record ’R’
Real ’x’[3];

end ’R’;

2.10 Array subscripting of general expres-
sions

While Modelica only allows array subscripts as part of
the component reference syntax, Base Modelica allows
applying array subscripts to general expressions. The
only requirement is that the array subscripts are applied
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to a parenthesized expression, for instance, (x.y)[1, 2]

. The ambition is to introduce the new syntax for Model-
ica, thereby avoiding the need to introduce new expression
syntax in Base Modelica, while also making the generally
useful feature available on both language levels.

2.11 More explicit initialization
Model initialization is very explicit in Base Modelica
compared to Modelica. A notable difference compared
to Modelica is that both fixed and final in Modelica
are modeled using more elementary mechanisms in Base
Modelica.

A parameter with a declaration equation in Base Mod-
elica corresponds to a non-final fixed parameter in Mod-
elica, and it is required that the declaration equation is
solved with respect to the parameter so that it is possi-
ble to override the equation during initialization. For vari-
ables of higher variability, fixed initialization in Model-
ica is lowered to an explicit initialization equation, and
non-fixed initialization is lowered to an explicit represen-
tation of guess-values. For example, consider the follow-
ing Modelica parameter:

final parameter Real p = 4.2;

In Base Modelica, this can be represented as:
parameter Real ’p’;

initial equation
’p’ = 4.2;

To make handling of guess values explicit, there is an
implicitly declared guess value parameter guess(’x’) to
represent the guess value for ’x’. The guess value pa-
rameter may be defined by an initial equation in case it
should not be possible to override during initialization, or
using a Base Modelica parameter equation. A parame-
ter equation is a special construct that is only allowed for
guess value parameters, and in addition to expressing that
the guess value may be overridden during initialization, it
allows the guess value to be conveniently located next to
the declaration of the variable to which it belongs (without
leaving the variable declaration section of the model):
Real ’x’;
parameter equation guess(’x’) = 1.5;
Real ’y’;
parameter equation guess(’y’) = 2.5;

Guess value prioritization is made explicit in the form
of a special kind of initial equation:
initial equation

prioritize(’x’, 2);

Further, when-equations impose no constraints on the
initialization problem. Lowering a Modelica when-
equation may therefore result in explicit equations in the
initial equation section of the Base Modelica model.

One notable thing which is not explicit in Base Mod-
elica is the selection of which guess values should come
into play, or how. This requires an analysis of the initial-
ization problem equation structure that goes beyond what
the lowering of Modelica is expected to deliver.

2.12 Records and function default arguments
Function input components are allowed to have declara-
tion equations, but these are ignored. Hence, Base Model-
ica functions cannot have function default arguments. In
the same spirit, declaration equations in record types do
not define defaults of an implicit record constructor func-
tion (as they do in Modelica). Instead, the declaration
equations (which can only have constant expressions by
design) only define default modifications when the type is
used in component declarations, and then get meaning de-
pending on what modifications mean for different kinds of
component declarations. For example, a modification on
a model component declaration is equivalent to an equa-
tion in the model, whereas a modification on a function
local or output component declaration equation is used to
give initial values for the evaluation of the function body.
A modification on a function input component is ignored
similar to declaration equations, as argument values must
always be passed for all function inputs.

2.13 Explicit clock partitioning
The implicit clock partitioning carried out by tools for full
Modelica is made explicit in Base Modelica. The equa-
tions solved in a clocked sub-partition are placed in a ded-
icated subpartition construct, and the variables being
determined by the sub-partition can be determined by a
simple inspection of the equations. Listing 5 shows an
example of a Base Modelica model with clock partitions.

Listing 5. Explicit representation of clock partitions.

package ’M’
model ’M’

Real ’x’;
Real ’baseVar’, ’cVar1’, ’cVar2’, ’cVar3’

;
Real ’mixedVar1’;

equation
der(’x’) = 1;

partition
Clock ’myClock’ = Clock(1);
Clock _subClock0 =

subSample(’myClock’, 2);
Clock _subClock1 =

superSample(subSample(’myClock’, 2), 8)
;

subpartition (clock = ’myClock’)
equation

’baseVar’ = sample(’x’);

subpartition (clock = _subClock0,
solverMethod = "ImplicitEuler")

equation
der(’cVar1’) = noClock(’baseVar’);

subpartition (clock = _subClock1)
equation

’cVar2’ = noClock(’baseVar’);
’cVar3’ = noClock(’cVar1’);
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algorithm
’mixedVar1’ := ’cVar2’ + ’cVar3’;

partition
Clock _baseClock0 = Clock(1.1);
. . .

end ’M’;
end ’M’;

2.14 Source locations
The Base Modelica grammar allows code to be decorated
with source location information to enable reporting er-
rors pointing back to another source (typically, a Model-
ica model) from which the Base Modelica was produced.
Each decoration consists of the @ sign followed by an in-
teger that references some external, tool-specific, table of
source location details. As illustrated by the listing below,
decorations can be attached to expressions as well as many
other constructs.

Listing 6. Source location decorations.

package ’Decorations’
@101 model ’Decorations’

@202 Real x(@203 min = 0.0 @204);
equation

@301 if x > 0.5 then
@302 w = 1;

else
6 + w @304 = atan2(1 @305, 1);

end if;
algorithm

@306 w := 1 + (2 @303) @304;
end ’Decorations’;
end ’Decorations’;

3 Base Modelica open issues
The design of the proposed Base Modelica language is
an ongoing effort documented and discussed on GitHub
under the Modelica Change Proposal (MCP) 0031. This
paper is presenting the results after reaching the first mile-
stone of a design proposal version 0.1 including resolu-
tions of all collected issues considered crucial for a first
complete Base Modelica language. The design proposal
has been specified as a modified Modelica grammar file
along with a separate textual description of the seman-
tic differences between Base Modelica against Modelica.
This design proposal has been developed by representa-
tives from four different Modelica tool vendors and is con-
sidered mature enough for being implemented and tested
by Modelica tools.

Based on forthcoming test implementations it will be
possible to reveal and collect issues needing further atten-
tion. Some potential issues are in need of gaining expe-
rience with test implementations to pinpoint the problems
in order to decide if there really are any.

The following issues are already known:

• Reject or add support for non-constant nominal-
attribute.

• Handling of ModelicaServices.

• Handling of external functions.

• Reuse of common components.

4 Conclusions & Outlook
The selection of designs proposed in section 2 illustrate
how the complexity of the Modelica language can be sig-
nificantly reduced by removing keywords from the gram-
mar related to higher level constructs, enforcing implicit
declarations to be expressed more explicitly, and being
generally more restrictive. All this leads to a language
that is still expressive enough to capture the semantics of
a Modelica model being lowered to Base Modelica, but
much more accessible for non-Modelica tool vendors and
researchers seeking a standardized form of equation-based
mathematical models. This will enable new parties to
participate and enrich the Modelica ecosystem with new
applications and methods producing or consuming Base
Modelica.

It is clearly outlined how Base Modelica is derived by
lowering Modelica. This indicates that Base Modelica is
consistent with existing Modelica tools and applicable as
a standardized intermediate format. Only limited devel-
opment effort is expected to enhance existing Modelica
front-ends to produce a Base Modelica output and Model-
ica back-ends to consume it. This will improve the abil-
ities of tool vendors and library developers to understand
and eliminate incompatibilities between tools to the bene-
fit of the entire Modelica community.

This paper is aiming to lay the foundation for future
discussions within the Modelica community and with the
MAP-Lang in order to collect feedback to further improve
this design proposal.

In future work, we are aiming to work closely together
with tool vendors to develop prototypes to generate as well
as consume Base Modelica representations. These pro-
totypes will be an important proof of concept to reveal
shortcomings of the current design and to give realistic
estimates of the development efforts to be expected.

If this evaluation phase can be concluded with posi-
tive feedback a revised definition of the Base Modelica
language shall then be defined. Based on this version a
change proposal to refactor the Modelica Language Spec-
ification, considering Base Modelica as an integral part,
shall be worked out and submitted to the MAP-Lang.

In the long run, we are aiming to convince Modelica
and non-Modelica tool vendors to embrace Base Modelica
as a widely used standardized language for equation-based
models for many more tools and other standards to build
upon.
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Abstract
Partitioned simulation or co-simulation allows simulating
complex systems by breaking them up into smaller sub-
systems. The Functional Mock-Up Interface (FMI) en-
ables co-simulation for models based on ODEs and DAEs,
but typically not PDEs. However, only PDE-based models
are able to accurately simulate physical aspects requiring
spatial resolution, such as heat transfer or fluid-structure
interaction.

We present a preCICE-FMI runner software to inte-
grate FMUs with the open-source coupling library pre-
CICE. preCICE couples PDE-based simulation programs,
such as OpenFOAM or FEniCS, in a black-box fashion to
achieve partitioned multi-physics simulations. The runner
serves as an importer to execute any FMU and to steer the
simulation. Additionally, it calls preCICE to communicate
and coordinate with other programs. The software is writ-
ten in Python and relies on the Python package FMPy. We
showcase two example cases for the coupling of FMUs to
ODE- and PDE-based models.
Keywords: Functional Mock-Up Interface (FMI), multi-
physics, preCICE, coupling, co-simulation, FMPy, Open-
FOAM

1 Introduction
The simulation of complex, dynamic systems is an impor-
tant task in science and engineering. It includes multi-
physics simulations and the simulation of cyber-physical
systems. There are two paths to achieve such simulations,
the monolithic and the partitioned approach. In the mono-
lithic setup, one software includes all the necessary com-
putations to model the different phenomena. Contrary to
that, the partitioned approach relies on multiple indepen-
dent pieces of software. Each of these programs covers
a specific aspect of the simulation. The programs are
then coupled or co-simulated to achieve the correct out-
come. This approach allows splitting complicated systems
in smaller, simpler subsystems and re-using them in differ-
ent scenarios. Examples include climate modeling (Gross
et al. 2018), but also engineering applications such as the
modeling of wind turbines (Sprague, J. M. Jonkman, and
B. J. Jonkman 2015).

The Functional Mock-Up Interface FMI (Blochwitz et
al. 2011) follows a so-called framework approach for co-

myImporter Model2.fmuModel1.fmu

Figure 1. Co-simulation approach of the FMI standard (a frame-
work approach): The standardized FMU models are called and
coupled by an importer program. We denote the caller (exe-
cutable) with a female connector and the callee (library) with a
male connector.

simulation. The simulation models are implemented as
standardized Functional Mock-Up Units (FMUs). FMUs
are zip-archives with a pre-defined structure and content.
They contain the simulation model as library (*.dll, *.so)
and meta data about the model such as documentation
or reference results. The coupling is done by an addi-
tional program, a so-called importer (see Figure 1). The
importer loads and executes the FMUs and implements
a co-simulation algorithm to ensure communication and
data exchange between the models. This approach works
well for simple models composed of ODEs and DAEs,
but reaches its limits for more complex PDE models. The
computation of PDEs often requires legacy software pack-
ages and high-performance computing, which are in gen-
eral not compatible with the regulations for FMUs.

Model2

coupling
library

communication

Model1

adaptersolver

Figure 2. Co-simulation approach of preCICE (a library ap-
proach): The simulation programs call preCICE as a library to
perform the coupling.

preCICE (Chourdakis et al. 2022), on the other hand,
is an open-source coupling library for partitioned multi-
physics simulations. It couples PDE-based simulation
programs, such as OpenFOAM or FEniCS, in a black-
box fashion. preCICE follows a library approach for co-
simulation: The simulation programs call the coupling
(see Figure 2). The programs itself ideally remain un-
touched and connect to preCICE through an additional
software layer called adapter. Each simulation program
requires a specific adapter. Ready-to-use adapters for
many popular simulation programs exist. This setup en-
sures the re-usability of all components and a decent time-
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to-solution for new applications.
The main idea of this work is to combine both worlds:

to couple FMU models to other simulation programs via
preCICE. To this end, a new software component, the
preCICE-FMI runner is developed (see Figure 3). It acts
as an importer towards the FMU, loading and executing
the model. Additionally, the runner calls preCICE to cou-
ple the simulation to other programs and steer the simu-
lation. It allows coupling FMU models to any simulation
program in the preCICE ecosystem.

Model2

coupling
library

Model1.fmu

preCICE-FMI

Figure 3. Concept of the preCICE-FMI runner: The new soft-
ware executes the FMU and calls preCICE to couple the simula-
tion to other programs.

In order to understand how preCICE and the FMI stan-
dard can be coupled, Chapter 2 introduces the two exist-
ing software components. The chapter continues to ex-
plain the concept of the newly developed software, the
preCICE-FMI runner, its configuration and functionali-
ties. To showcase the software, Chapter 3 then describes
two example cases. First, a partitioned mass-spring oscil-
lator system is used to test the runner against an analytical
solution and an alternative Python-based implementation.
Second, a FMU model is coupled to a fluid-structure in-
teraction scenario using OpenFOAM as fluid solver and
a simple Python script as solid solver. For this scenario,
we compare against results from the literature. The final
Chapter 4 summarizes the presented ideas and reflects on
the impact of the developed software. This paper summa-
rizes and extends the master’s thesis of Willeke (2023).

The idea of coupling FMUs to PDE-based programs has
already attracted further attention. A recent tool to execute
this task is FMU4FOAM1. It couples FMUs exclusively to
the CFD program OpenFOAM. The coupling is realized
with a function object, a library that is loaded by Open-
FOAM at runtime. The function object embeds a Python
interpreter to handle the FMU. FMU4FOAM is config-
urable on runtime and can be further adapted to specific
needs due to its object-oriented structure.

We see the main advantage of the preCICE-FMI runner
in its ability to leverage the advanced coupling functional-
ities of preCICE. The coupling of FMUs is not limited to
OpenFOAM, but can be performed with any program in
the preCICE ecosystem. Different coupling schemes and
topologies are possible. Furthermore, the coupling library
implements a toolbox of coupling algorithms to ensure ro-
bust and accurate simulations.

2 Software description
Before detailing the concept, functionalities, and limita-
tions of the new runner software, we start this section with

1https://dlr-ry.github.io/FMU4FOAM/

describing the existing software components: preCICE
and FMI.

2.1 Existing software components
preCICE (Chourdakis et al. 2022) is a widely-used and
open-source coupling library for multi-physics simula-
tions. In preCICE terminology, the coupled simulation
programs are called solvers or participants. preCICE im-
plements data mapping and communication between the
solvers. The user can choose between explicit and implicit
as well as serial and parallel coupling schemes (Gatzham-
mer 2014). The coupling is not limited to two solvers, but
can be easily extended to perform multi-coupling (Bun-
gartz et al. 2015). Acceleration algorithms, such as quasi-
Newton methods (Uekermann 2016) are available to sta-
bilize and speed up implicit coupling schemes. Finally,
time interpolation allows individual solvers to use differ-
ent time step sizes. The exact numerical implementation
is out of scope here, but can be found in the cited litera-
ture. All these coupling configurations are defined in the
precice-config.xml file, a global file accessed by all partic-
ipants.

Each solver is connected to preCICE with a specific
adapter. The adapter allows the solver to access the pre-
CICE API and call the coupling. It can take many forms,
depending on the solver itself. For example, the preCICE-
OpenFOAM adapter is an OpenFOAM function object,
an indepent library, while the preCICE-FEniCS adapter is
a Python module. Adapter development is facilitated by
the language bindings of preCICE, which are available for
C/C++, Python, Fortran, Julia, and Matlab. A more exten-
sive introduction to preCICE is given in Chourdakis et al.
(2022).

The FMI standard (Blochwitz et al. 2011) defines dif-
ferent types of FMU models. They share a similar inter-
face, but implement different functionalities. Model Ex-
change FMUs hold the model equations and present them
to an external solver algorithm. Co-Simulation FMUs
hold the model equations and the solver algorithms. As
such, they can compute the next time step on their own.
Scheduled Execution FMUs were introduced with FMI v3
(Junghanns et al. 2021) and hold different model parti-
tions, which are accessed by an external scheduler. We
only consider the coupling of Co-Simulation FMUs in this
work.

The Python library FMPy2 can be used to load, exe-
cute and steer FMU models with Python. We choose to
use FMPy over other libraries such as PyFMI (Andersson,
Akesson, and Führer 2016) and fmipp due to its easy in-
stallation and usability. An overview of many further FMI
tools can be found on the FMI website3.

2.2 Concept of the preCICE-FMI runner
The preCICE-FMI runner is a new piece of software,
which connects FMI and preCICE. It uses FMPy to load

2https://fmpy.readthedocs.io/en/latest/
3https://fmi-standard.org/tools/
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and execute any FMU and preCICE to couple the simu-
lation. The concept is explained in the simplified code
in Figure 4. First, the runner script imports and initial-
izes both FMPy and preCICE (lines 1-9). This includes
loading the FMU, setting initial simulation parameters and
preparing the communication to other participants. The
main loop (lines 11-29) executes the coupled simulation.
The program reads data from preCICE (line 16) and writes
it to the FMU model (line 18). The model can now com-
pute the next time step (line 20). Afterwards, the pro-
gram reads the new results (line 22) and writes them to
preCICE (line 24). Finally, preCICE advances the simu-
lation as a whole and communicates data with other par-
ticipant (line 26). Here, preCICE also needs to know how
much the FMU model advanced in time to synchronize all
participants. This is the main simulation mechanism used
for both explicit and implicit coupling. Implicit coupling,
however, requires one more feature: the option to repeat a
time step. The solver state can be stored (line 14) and re-
set (line 29) to iterate over a time step. preCICE indicates
whether this is necessary or not (lines 12, 27). Finally,
preCICE and FMPy are terminated (lines 31-32) to close
the communication channels and release the FMU. The
software is developed on GitHub4 and documented in the
preCICE user documentation5.

2.3 Functionalities and limitations of the
preCICE-FMI runner

The ideal coupling tool should support the full function-
ality of both preCICE and FMPy. It should work with
any co-simulation FMU and should be configurable at run-
time. The software has to be well-documented and include
tests to guardrail further development. This section gives
insight into the abilities, limitations, and configuration of
v0.1 of the preCICE-FMI runner.

The software is available for preCICE v2 and compat-
ible with FMI 1, 2, and 3. It supports explicit and im-
plict coupling schemes, including acceleration. It is con-
figurable at runtime via two .json files and can be adapted
to different FMU models. Time-dependent input signals
can be set, output signals are stored as timeseries. The
tool is easy to install and comes with a regression test.

A major difference in the coupling of two PDE solvers
compared to the coupling of a PDE solver to an FMU is the
role of the mesh. For PDE-PDE coupling, the exchanged
data is spatial for both solvers and mapped accordingly.
However, many FMUs can not deal with spatially resolved
data but are designed to receive signal data. To enable the
coupling of PDE solvers to such FMUs, we use the map-
ping capabilities of preCICE: spatial data from one mesh
is mapped to a single vertex on another mesh to create sig-
nal data and vice versa.

As a result, data exchange is limited to one vertex.
Moreover, the exchange of multiple data points and gra-

4https://github.com/precice/fmi-runner
5https://precice.org/tooling-fmi-runner.html

1 import fmpy
2 import precice
3 # FMU Setup
4 fmu = fmpy.fmi3.FMU3Slave(...)
5 fmu.instantiate()
6 # preCICE Setup
7 interface = precice.Interface(...)
8 ...
9 dt = interface.initialize()

10 # main time loop
11 while interface.coupling_ongoing():
12 if interface.action_required(...):
13 # Save state (implicit coupling)
14 state_cp = fmu.getFMUstate()
15 # Get read data from preCICE
16 interface.read_vector_data(...)
17 # Set read_data in FMU
18 fmu.setFloat64(...)
19 # Compute next time step
20 fmu.doStep(t,dt)
21 # Get write_data from FMU
22 write_data = fmu.getFloat64(...)
23 # Send write_data to preCICE
24 interface.write_vector_data(...)
25 # Advance preCICE in time
26 dt = interface.advance(dt)
27 if interface.action_required(...):
28 # Load state (implicit coupling)
29 fmu.setFMUstate(state_cp)
30

31 interface.finalize()
32 fmu.terminate()

Figure 4. Concept of the FMI runner: The script utilizes the
library FMPy to execute the FMU and calls the preCICE API to
couple the simulation. For conciseness, API calls are simplified.

dient information is not yet supported. Also, no internal
errors of the FMU model are logged. Finally, the runner
software can currently only be executed in serial.

To explain the configuration of the runner, we as-
sume a FMU model Suspension.fmu, which con-
tains the model equations for a spring-damper system.
It should be coupled via preCICE to receive the vari-
able force from another participant, calculate the dis-
placement internally, and send the variable position
back. The configuration file fmi-settings.json, shown in
Figure 5, holds the settings for FMPy. The dictionary
simulation_params (lines 2-9) is used to choose the
FMU model and set the read and write variables. A
CSV file can be set to store results. The dictionaries
model_params and initial_conditions (lines
10-16) allow setting model parameters before the sim-
ulation start. Time-dependent input signals are set in
input_signals (line 17-23). In this case, the vari-
able damping_coeff is initialized with value 0.0 and
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increases to value 5.0 at t = 2.0.
To execute the coupling, the runner needs some infor-

mation on how to interact with preCICE. The file precice-
settings.json (Figure 6) points the runner to the global con-
figuration file of preCICE shared with all participants. The
following entries define which participant the runner is,
which mesh it owns, and which preCICE variables are ac-
cessed.

1 {
2 "simulation_params": {
3 "fmu_file": "../Suspension.fmu",
4 "fmu_read_data": ["force"],
5 "fmu_write_data":["position"],
6 "fmu_instance": "suspension_1",
7 "output_file": "./output.csv",
8 "output": ["position"]
9 },

10 "model_params": {
11 "apply_filter": true,
12 "spring_coeff": 65.0
13 },
14 "initial_conditions": {
15 ...
16 },
17 "input_signals": {
18 "names":["time", "damping_coef"],
19 "data": [
20 [0.0, 0.0],
21 [2.0, 5.0]
22 ]
23 }
24 }

Figure 5. Example for fmi-settings.json

1 {
2 "coupling_params": {
3 "config_file": "../config.xml",
4 "participant": "Suspension",
5 "mesh_name": "Suspension-Mesh",
6 "read_data": {"name": "Force"},
7 "write_data": {"name": "Position"}
8 }
9 }

Figure 6. Example for precice-settings.json

3 Example cases
Two example cases show the functionality of the
preCICE-FMI runner. First, the simulation of a partitioned
mass-spring oscillator system demonstrates the coupling
of two ODE systems. The obtained results are compared
to a numerical simulation in Python and an analytical so-

lution. Second, the fluid-structure interaction of a moving
cylinder is adapted to include a FMU model for control-
ling the movement and compared to reference results from
literature. The case files are available for reproduction.6

3.1 Partitioned mass-spring oscillator system
We assume an ideal mass-spring system (Schüller et al.
2022) as shown in Figure 8. Three springs k1, k12, and
k2 connect two masses m1 and m2 with each other and
two fixed walls. The variables u1 and u2 denote the posi-
tions of the masses. To create a partitioned system, spring
k12 is cut in the middle. The resulting subsystems ex-
change interface forces F1 and F2. The system is adapt-
able to perform different kinds of oscillations. We fol-
low Schüller et al. (2022) and set the spring stiffness to
k1 = k2 = 4π2N/m and k12 = 16π2N/m, while the two
masses are set to m1 = m2 = 1kg. Additionally, the initial
conditions are chosen as

u1(0) = 1 u̇1(0) = 0
u2(0) = 0 u̇2(0) = 0

This setup has the analytical solution depicted in Figure
7. The two masses oscillate with a period of TP = 1s.
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u(
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u1
u2

Figure 7. Analytical solution of the mass-spring system
(Schüller et al. 2022). The plot shows the displacements u1 and
u2 for the initial conditions u1(0) = 1, u̇1 = 0 and u2(0) = 0, u̇2 =
0.

We use this testcase to compare an FMU-based imple-
mentation executed with the preCICE-FMI runner and an
existing implementation in Python (Schüller et al. 2022).
Both implementations can be coupled to themselves or
to one another. We end up with four possible combina-
tions: runner-runner, Python-Python, runner-Python, and
Python-runner. Moreover, we compare against the analyt-
ical solution.

6https://doi.org/10.18419/darus-3549
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Figure 8. Mass-spring system: The springs k1, k12 and k2 connect the two masses m1 and m2 which have the positions u1 and u2.
The middle spring k12 is cut in half to create a partitioned setup with two subsystems that exchange interface forces F1 and F2.

Both implementations use the Newmark-β method
(Newmark 1959) with β = 1

4 and γ = 1
2 for time integra-

tion. A serial-implicit coupling with Aitken acceleration
is used. The simulation time is set to T = 5s with a time
step of ∆t = 0.005s. A more extended description is given
in Willeke (2023).

The results in Figure 9 show the trajectory of m1. No
differences are visible between all four possible combi-
nations. Furthermore, all combinations match the analyt-
ical solution well. For a more accurate comparison, the
maximum norm ‖e‖

∞
between analytical solution and nu-

meric result for u1 is calculated over all time steps. The
maximum serves as a worst-case approximation. The cal-
culated error ‖e(u1)‖∞

≈ 3.48× 10−2 is identical for the
FMU and the Python implementation up to a precision of
10−5.
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analytic
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Figure 9. Comparison of different implementations for the
mass-spring oscillator system. Velocity u̇1 is plotted over posi-
tion u1 to show the trajectory of m1. The results from a coupling
of both the runner and the Python solver to itself have no visible
differences and track the analytical solution well. The results for
the cross-combinations runner-Python and Python-runner show
no visual difference and are omitted for simplicity.

3.2 Flow around a moving cylinder
As a second example, consider the flow in a channel
around a cylinder as shown in Figure 11. The cylinder
with diameter D and mass m is not fixed in its position
y. Instead, the cylinder is mounted upon a spring-damper
system with spring stiffness k and damper coefficient d.
The flow with velocity v0 induces vortex shedding be-
hind the cylinder. This leads to varying lift forces and
results in an oscillation of the cylinder position y. This
setup has been used as a test case for numerical simula-
tions (Placzek, Sigrist, and Hamdouni 2009) and is es-
pecially interesting because experimental reference data
is available (Anagnostopoulus and Bearman 1992). The
experimentalists report lock-in effects for the cylinder os-
cillation for Reynolds numbers between 104 < Re < 126
with the highest excitation at the lower end. For our simu-
lation, we chose a Reynolds number of Re = 108.83. The
remaining system parameters are set to m = 0.03575kg,
d = 0.0043N/s and k = 69.48N/m. All are in accordance
with the referenced literature. We further adapt the case to
be able to move the root point of the spring u (Sicklinger
2014). Now, the spring force acting on the cylinder can be
actively controlled by adjusting u.

Figure 10. Coupling topology for the flow around a moving
cylinder example: Three participants are coupled in two bi-
coupling schemes. The fluid participant and the spring-damper
participant exchange lift force F and cylinder displacement y.
The spring-damper participant and the controller exchange dis-
placement y and spring root displacement u.

The goal of this setup is to couple a controller FMU to
a PDE-based simulation. The FMU holds the equations
of a Proportional-Integrative-Derivative (PID) controller
(Ang, Chong, and Li 2005). It reads the displacement of
the cylinder y and tries to minimize it by setting the root
point of the spring u.

Session 5-A: New features of the Modelica language and of FMI 2

DOI
10.3384/ecp204479

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

483



16.5D 50D

16.5D

16.5D

u
kd

m
y

D

v0

Figure 11. Case setup for flow around a moving cylinder: The object is mounted upon a spring-damper system, which allows it to
move in y-direction. The root point of the spring u can be moved to vary the force acting on the cylinder.

The spring-damper system itself is calculated in a sep-
arate Python program, while the fluid flow is computed
with the CFD program OpenFOAM. The resulting cou-
pling topology is shown in Figure 10. Two explicit bi-
coupling schemes are combined. A fitting mapping con-
figuration ensures the transition from the spatial domain
in OpenFOAM to the signal domain in the FMU.
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Figure 12. Cylinder displacement with activation of the PID
controller: The cylinder oscillates in a stable state until the con-
troller is activated at T = 40s. This reduces the displacement y
by orders of magnitude.

Figure 12 shows the simulation results obtained with a
time step of ∆t = 0.0001s. First, the controller is deacti-
vated until the cylinder has reached a state of stable oscil-
lation. The displacement has an amplitude of ŷ= 0.48mm,
which is close to the reference amplitude of ŷre f = 0.6mm.

The differences may be attributed to the explicit solver
in the spring-damper system and the explicit coupling
scheme, both of which are implicit in the reference simula-
tion. The PID controller is activated at T = 40s. The con-
trol gains are set to KP = 0.02, KI = 0.02 and KD = 0.01 to
ensure a robust transient behaviour (Sicklinger 2014). The
cylinder displacement is reduced by orders of magnitude
with a fast transition phase.

4 Conclusions
We presented the preCICE-FMI runner, a new software to
couple FMU models to PDEs. The software loads and ex-
ecutes FMU models and calls preCICE to execute the cou-
pling. It is written in Python to leverage the Python pack-
age FMPy and the preCICE Python bindings. The run-
ner software is configured with two settings files, enabling
different simulation scenarios. An easy, standard installa-
tion process lowers the entry barrier for new users. The
preCICE-FMI runner is compatible with co-simulation
FMUs of FMI versions 1, 2, and 3 and preCICE version 2.
It supports explicit and implicit coupling via preCICE, as
well as the use of acceleration methods. Time-dependent
input signals can be set for the FMU model during simu-
lation. Output signals from the FMU are stored for post-
processing.

Two example cases introduced the functionalities of the
runner software. The partitioned simulation of a mass-
spring oscillator system showed good agreement with an-
other numerical solver and an analytical solution. The
simulation of the flow around a moving cylinder was cou-
pled to a FMU-based control algorithm and showed qual-
itatively meaningful results.

The new software is focused on providing a general
coupling of co-simulation FMUs to PDE-based solvers. It
enables plug-and-play coupling to many popular solvers
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thanks to the preCICE library approach. The software is
documented on precice.org and the presented test cases
are available for reproduction. Some limitations, such as
the lack of error logging or full mesh exchange remain.

FMI is a widely used industry standard for the co-
simulation of cyber-physical systems. preCICE, on the
other hand, has a growing user base in academia and in-
dustry focused on high-fidelity multi-physics applications.
The preCICE-FMI runner connects these two communi-
ties. With our work, we hope to spark a discussion about
the specific needs of both communities to guide further
developments.
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Abstract
Functional Mockup Interface (FMI) is a standard for
exchanging simulation models described as Funcional
Mockup Units (FMUs) in a platform-agnostic way. FMUs
can be implemented as white-box or black-box models.
In the industrial context, it is common to exchange black-
box models between partners to hide intellectual property.
Using and running such models, though, is a security is-
sue as there is no way to verify and validate the content
of the models. This security issue must be addressed es-
pecially in the industrial context where security is con-
sidered high priority in general. Based on an exemplary
model exchange, possible attacks and possible counter-
measures are analyzed in this work. By using cryptog-
raphy, three different approaches to pack the additional
metadata are presented that aim at providing end-to-end
integrity checks to a black-box simulation model. To-
gether with administrative measures, this allows to define
those FMUs to be trusted and executed. For the sake of
completeness, a prototype was implemented to help with
the cryptographic processes and show the effectiveness of
the provided solution.
Keywords: Simulation, Security, FMI/FMU, Automa-
tionML, Black-Box Model, Certificate, PKI

1 Introduction
In the current design and development process of products
and goods, simulation provides a way to verify function-
ality and optimize in an early stage of development. For
the sake of reducing the involved manpower to build such
simulation models, these models are typically shared be-
tween stakeholders. Current developments like the FMI
standard show the need to provide a standardized way to
simplify model exchange. However, not all models can
and should be provided as a white-box model, e.g. there
might be restrictions on who should be able to read and
understand the model in depth.

Current practice is that FMUs are transmitted via email
or download from the vendor website. Although there
might be SSL-based security added on the point-to-point
transports, like HTTPS, these processes must be consid-
ered insecure as there is no end-to-end guarantee of the

security. The FMU stored on the web server could be
changed intentionally or by accident without notice.

One way to tackle the problem would be to use secure
data spaces where the platform itself is designed for secu-
rity, see Christoph Schlueter Langdon and Karsten Schwe-
ichhart (2022). On such a platform, access is coupled with
the trust in the corresponding entity, so within this data
space everyone can be trusted. One project to create a safe
space is Catena-X (Hedda Massoth 2022).

By closing down the models in form of black-box sim-
ulations, it is (ideally) impossible to check the model for
correctness, feasibility, and security. There might be ar-
bitrary code included in the model that will get executed
once the simulation is run. There are approaches to re-
duce the risk by e.g. running the model in an secured, im-
mutable environment (“sandboxing” the model) but this is
prone to bugs and should only serve as a last resort. In-
stead, this paper presents a method that allows to check
statically the validity of a simulation model before even
running it.

In this work, some basic tools and concepts from var-
ious domains are presented in Section 2. The underlying
problem of this paper is presented in Section 3 and some
risk analysis on possible attacks in the state of the art car-
ried out in Section 4. To tackle the issues, some abstract
considerations in Section 5 as well as some rejected con-
siderations in Section 6 are used to derive multiple differ-
ent propositions in Section 7. Finally, a proof-of-concept
prototype is presented in Section 8 and an outlooks as well
as a summary of the results is given.

2 Preliminaries
Throughout this paper, concepts from different domains
need to be combined. In this section, the basics of dif-
ferent fields are covered for later connection in Sections 5
through 7. By integrating cryptogrphical methods with
simulation models/FMUs, new benefits can be generated.

2.1 Functional Mockup Units
Functional Mockup Interface (FMI) is a standardized way
to exchange simulation models for various purposes. The
current version 3 is described in FMI V3 (2023). A single
model is called a Functional Mockup Unit (FMU).
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An FMU is technically speaking a compressed folder
with some files inside. There is for one the manifest, an
XML file describing the model. In the manifest the inputs
and outputs are specified, as well as parameters and other
options.

The actual implementation of the model logic can be
provided by means of embedded source code or a pre-
compiled library (DLL or shared object depending on the
operating system). It is also possible to have both or a
mixture of these approaches.

There are in fact three types of FMUs available: model
exchange, co-simulation, and scheduled execution. Each
type has its dedicated use case. While the co-simulation
type brings its own mathematical kernel and is run as a
dedicated process during execution, the other two types
run within the process context of the host’s simulation en-
vironment.

There exists the FMU Trust Center presented by Jo-
hannes Mezger et al. (2011). This allows to encapsulate
the FMU under consideration into its own trusted environ-
ment. By using a dedicated and secured infrastructure, the
FMUs can be encrypted during transport. Only during the
time of simulation, a decrypted version is existing. That
way, one can provide encrypted FMUs without the risk of
sharing internal knowledge.

2.2 Digital Twin and Meta Models
In typical industrial applications, there is the need for a
common description of arbitrary data in a structured way.
This allows to exchange data in generic ways and is com-
monly referenced as a digital twin (DT).

Currently, two major meta models to describe such dig-
ital twins are established: AutomationML (AML, Rainer
Drath (2021)) and the Asset Adminstration Shell (AAS,
Deutsches Institut für Normung (2019) and IEC 63278-1
(2022)). Both models have a similar goal and are inter-
changeable in terms of this paper. Thus, throughout this
publication only AML is going to be used as an exam-
ple. Similar results can be obtained with AAS with slight
modifications.

Coming from the DT context, these meta models pro-
vide a method to describe things in a portable way. By
defining common file formats the problem is reduced to
understanding the semantic of the various parts. Instead
of defining their own vocabulary, these models rely on ex-
isting descriptions. For example, simulation models can
be integrated as FMUs.

AML uses XML files and all linked files just are con-
nected using so-called external interfaces. There is how-
ever the option to embed all relevant files into a bundle
called an AutomationML container (Rainer Drath 2021).
Such an AMLX file is a zipped folder with all attachments
plus additional files to satisfy formal requirements. Ac-
cording to Rainer Drath, Markus Rentschler, and Michael
Hoffmeister (2019), both AMLX and AASX (from AAS)
files comply with the Open Packaging Conventions (OPC)
in accordance to IEC 29500 (2012).

2.3 Security
For computing systems, there exist various requirements
that a typical user assumes but that need careful planning
and engineering. In Avizienis et al. (2004) these are cate-
gorized into dependable and secure aspects.

Dependable in this context means that a system is be-
having as expected and not causing any major risks dur-
ing operation. This is mostly the same definition that we
would call a physical product functional: a freezer must
keep the goods frozen even during e.g. an outage of a half
an hour while not emitting any toxic gases to the environ-
ment.

There however is the concept of security that mainly be-
came common with digitalization. Security breaks down
to three main aspects: confidentiality (Is my data safe and
nobody can access it?), integrity (Can I trust my data or
has anyone tampered with it?), and availability (Can I ac-
cess my data anytime I want?). Typically, not all of these
goals can be achieved 100 % at the same time.

Some methods to establish these aspects of security are
hashing, asymmetric cryptography, and certificates. The
following sections will give a brief introduction for the
reader.

2.3.1 Hashing

A hash function is a cryptographic algorithm that can be
applied to data and files and that results in a determinis-
tic value, aka there must be no randomization involved
(Bart Preneel 1994). There are different hashing func-
tions commonly used also with different goals and mo-
tivations involved like SHA-1, SHA-256, BLAKE-256,
etc (Jean-Philippe Aumasson et al. 2008; Alex Biryukov,
Dumitru-Daniel Dinu, and Dmitry Khovratovich 2015;
Rajeev Sobti and G Geetha 2012; Stefan Tillich et al.
2009).

The output of such a hasing function is called a hash
and of fixed size. For example, the SHA-256 hash func-
tion uses 256 bit to represent a hash. This is true for ar-
bitrary long input data sequences, so the function cannot
be injective: multiple input streams can result in the same
hash.

This property of non-injectiveness has multiple effects.
First, hashing cannot be undone. Once a data steam has
been hashed it is no longer possible to conclude the origi-
nal data. Hashing is thus a one-way function.

In order to compare the content of files/data streams,
comparing the hashes is one typical method. One has
to keep in mind that comparing function values and de-
duce the equality of the function arguments only works
for injectve function by definition. For non-injective func-
tions, like the hashing functions, there is a (small) proba-
bility that two distinct data streams result in the same hash,
called a hash collision. Therefore, hash functions are con-
structed such that small changes in the input data (even as
small as a single bit) lead to significant changes in the re-
sulting hash value. This should reduce the probability of
small defects to get unnoticed.
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One typical use case for hashing is to establish integrity
of data. Unless there is a collision, one can identify and
reject a compromised data stream if the hash is known.

2.3.2 Asymmetric Cryptography and Keys
The RSA algorithm named after Ronald L. Rivest, Adi
Shamir, and Leonard M. Adleman (1978) is a well-known
method for asymmetric encryption and signatures. In the
meantime there were different variants developed to over-
come some shortcomings in the original version. These
modified versions serve as a backbone of the current inter-
net encryption in e.g. HTTPS, IMAPS, or other encrypted
protocols.

All cryptographical methods base on pure numbers,
thus all data is interpreted as such (big) numbers. There
are now two different operators that are typically used in
cryptography: encrypt/decrypt and sign/validate.

Assume a (big) number M that contains a message. By
using a publicly known mapping E(·), anyone can encrypt
M and will obtain Menc = E(M). The mapping however is
designed to not be reversible in a simple manner. By only
knowing Menc one cannot deduce the value of M. The
intended recipient of the message knows another mapping
D(·) that allows to decrypt the message again D(Menc) =
D(E(M)) = M. Of course, the mapping D(·) must be kept
secret.

The RSA algorithm provides an implementation of this
scheme by using big prime numbers and some properties
of integer arithmetic. The important part is that the mes-
sage Menc can be transmitted over insecure lines and its
confidentiality is guaranteed by cryptography.

When the mappings E(·) and D(·) are constructed ac-
cordingly, it is possible that they are mutual inverses

D(E(M)) = M = E(D(M)).

That means that applying both operations once will cancel
each other independently of the order of application. If the
decryption is applied on M, this is called signing and the
later encryption process verification.

The signing can only be carried out using the private
mapping D(·). This allows to create a proof that a certain
message was written by a certain person. Everyone can
verify using E(·) if the message was changed. Thus, this
method allows to ensure integrity using cryptography.

In the RSA algorithm, the mappings E and D use spe-
cially crafted numbers. These numbers are called public
(in case of E) and private (in case of D) keys. These keys
can be seen as parameters to general functions to obtain
the individual implementations of the two mappings E and
D mentioned above.

If the private mapping D(·) gets compromised (leak-
age of the private key) or the encryption method itself gets
broken, the methods do no longer work. In case of encryp-
tion, the unencrypted message might be leaked. in case of
signatures, an attacker might fake valid signatures.

For the sake of speed and memory consumption, these
methods are typically combined with other cryoptographic

methods that use symmetric cryptography. These details
are more implementation-related and do not play a signifi-
cant role for the whole process when implemented accord-
ingly. They will therefore be neglected here.

2.3.3 Certificates and PKI

In order to simplify the management of public keys to be
trusted, a new infrastructure needed to be built. A first
step is to encapsulate the public keys into another structure
to attach some meta data with them. Such a structure is
called a X.509 certificate (Sharon Boeyen et al. 2008). The
infrastructure to manage and use these certificates is called
a Public Key Infrastructure (PKI).

Each certificate contains (apart from the public key)
some additional information: there are some pieces of
technical data (like the key size) stored. Also, there are a
few human-readable strings describing the person or orga-
nization the certificate is associated with. These attributes
are defined in Sharon Boeyen et al. (2008) and contain e.g.
the country, the common name, and others. There are stan-
dardized abbreviation (CN for common name, etc). The at-
tributes are rather restricted in terms of size and type: only
64 byte of ASCII text are possible per attribute for sim-
ple fragments of information like mail addresses or host
names.

Additionally, certificates are issued by some authority.
Each certificate has exactly one issuer. Issuing a new cer-
tificate is twofold: First, all relevant data like public key,
meta data, etc is combined in a so-called certificate sign-
ing request (CSR). Next, the issuer uses his private key to
sign the CSR after checking it. The new certificate is built
from the CSR, the signature, and some unique reference
to the issuer.

This principle of issuing certificates is its strength: it al-
lows to delegate trust from a single source (so called trust
anchor) recursively. Any user can trust some authorities,
typically done by the operating system. Every service just
needs to provide a chain of certificates to such a trust an-
chor, a so called trust chain. In that way the user can trust
a public key without manually verifying the authenticity
of said public key.

One last link is missing in order to establish trust in a
thing, a connection, a name, or anything outside the cryp-
tographic environment. The trust so far is in a certificate.
For example, to obtain a certificate for a dedicated host
name, the CN of the underlying CSR must have been set
to the host name. This connects the certificate with the
host name: a HTTPS connection requires that the CN of
the signed certificate is equal to the host name. There are
extensions for more complex scenarios that allow multi-
ple host names per certificate (see subjectAltName in
Sharon Boeyen et al. (2008)) but this is out of scope for
this paper.

2.4 Intellectual Property
In Keith Eugene Maskus (2000), intellectual property is
defined as following: “Human thought is astonishingly
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creative in finding solutions to applied technical and sci-
entific problems [. . . ]. These intellectual efforts create
new technologies [. . . ], develop new products and services
[. . . ]. They result in intellectual assets [. . . ], that may have
economic value if put into use in the marketplace. Such
assets are called intellectual property to the extent they
bear recognized ownership.”

All pieces of software, tools and knowledge obtained
by a company in its productive effort is considered to be
owned by said company. The company will use these
pieces for further benefit and protect them against access
by third parties. This is intellectual property (IP).

3 Problem Formulation
Let’s assume there are two (industry) partners A and B.
One of them (A) is a vendor that sells some products. The
other one (B) is a big player that buys these and integrates
them together with dozens other products into complex
systems. In order to simplify and optimize the engineer-
ing process, A provides simulation models for the relevant
products to B. In the rest of the paper, we are focusing on
one such model.

3.1 Concerns of Model Provider
These models are generated by the staff of A and con-
tain parts of the internal knowledge of A. There could
e.g. be some fancy algorithm implemented in the con-
troller firmware of these products. The simulation model
will eventually mirror these controller features to provide
a good match of the model with the real world. Thus,
part of the simulation model would probably be the propri-
etary firmware which A considers IP. As a result, partner A
might have concerns to publish a white-box model to the
partner B. Speaking in terms of security from Section 2.3,
the partner A has a high requirement for confidentiality.

There might be additional wishes by the model provider
A. For example, a model should have a lifetime after that
it should be updated to the newest version. There might
also be companies whose business model is to sell model
hours.

3.2 Concerns of Model User
After transmitting the model to partner B over a to-be-
defined transport, there are also some other aspects to
be taken into account. At first, the model must be run-
ning in general and according to the specification. That
is mostly covered by the dependability. However, there
are also security considerations: The model might, in gen-
eral, contain malicious code that is executed on the infras-
tructure of partner B. These threads range from attaching
spamware by accident to active attacks (e.g. distribution
of ransomware by a former employee).

So, from the perspective of B there are other require-
ments.

• Integrity: The model in question should be exactly
the model of the product and not be tampered with.

Partner A

Internet

Partner B

Employee A1 Employee B1

2 4

1 5

3

Figure 1. Data flow of the simulation model with possible attack
vectors.

• Availability: The model should run anytime the part-
ner B needs to run simulations without interfering
with or blocking B’s infrastructure.

• Confidentiality: The complete simulation model,
where the model of A is integrated to, might be IP-
related from the perspective of B. No data should be
extracted using the simulation model.

3.3 General considerations
Having seen the positions of both parties one has to realize
there are multiple levels of concerns. On the administra-
tive level the partners use legal contracts to fix their mutual
responsibility and accountability. This results in (internal)
policies about what model from which partner might be
run in which context. The technical level is located below
that to ensure the correct realization of the administrative
decisions and policies. This paper focuses on the techni-
cal level on how the parties can establish trust in the ex-
changed model. Therefore, it is assumed that both parties
can be trusted and an appropriate policy is in place.

In that sense the exchange is very similar to sending
potentially malicious data like documents with macros en-
abled, DLLs/SOs, etc via email. In contrast to best prac-
tices (e.g. only opening documents with macros globally
disabled), exchanging FMUs in this way will enforce the
user to actively open such untrusted documents.

4 Attack vectors
There are multiple parties involved, thus the analysis of
possible attack vectors need to be carried out for all of
them.

Starting with the process description in Section 3, one
might follow the path of the simulation model. In Figure 1
the data exchange between the participants is depicted as
well as the possible points of attacks. The possible attacks
are numbered to simplify referencing them later.

1. The first opportunity for an attack is the user A1 who
generates the FMU on the side of A. He might will-
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ingly or accidentially add malicious code to the FMU
to be shipped.

2. The next opportunity is the infrastructure of com-
pany A. Although A1 does his best in order to ship
the FMU in a valid state, e.g. a virus on his machine
might leak into the process and thus compromise the
generated FMUs.

3. Knowing the dangers of the current time, the internet
cannot be considered a safe place. Traffic might be
transmitted over insecure channels that are not end-
to-end encrypted. This also covers simpler methods
like spoofing messages or just crawling and collect-
ing data.

4. Analogously to attack 2, the infrastructure of B could
be affected.

5. Finally, the user B1 might be responsible for the po-
tential attack similar to vector 1.

These attack vectors are not exhaustive, in fact there are
attacks possible that combine different approaches. An ex-
ample of such a combined attack would be the following:
via social engineering the attacker could gain knowledge
on A1 (attack vector 1) to get known about a common
project. Using a forged mail (attack vector 3) he tricks
B1 into opening and starting the model (attack vector 5).

For almost all possible attack vectors, there are con-
cerns for both parties A and B involved. Some cases do
not make sense, though: exposing some IP of A by A1 can
be done in various forms and does not fit in the context of
this paper. Similarly, the IT department of A will do its
best to prevent attack vector 2 to be used against A. The
same is true for vectors 4 and 5 with respect to protection
of B.

5 Abstract Solution Approaches
There are some general approaches that should be consid-
ered before the implementation can be done.

First, in order to simplify implementation effort on
both sides A and B, the FMI standard is used as a basis.
This directly addresses the requirements of the partner A
with respect to confidentiality: the FMU can contain pre-
compiled versions of the models leading almost to black-
box models. In theory, one could reverse-engineer the
binary codes and obtain knowledge. There however are
options to obfuscate and encrypt binary code until used
(Michael Klooß, Anja Lehmann, and Andy Rupp 2019;
Thomas Agrikola 2021). In order to use such methods, it
is required for the FMI standard to support such enhance-
ments officially: the official standard (FMI V3 2023) al-
lows to augment functionality by using so called layered
standards, the resulting unit must, however, still be com-
pliant to the basic standard. If the encapsulated binary

code was encrypted, this is no longer covered by the stan-
dard. The simulation environment needs to be able to de-
crypt accordingly on the fly in order to make any use of
the FMU.

The primary goal for B is to establish trust on techni-
cal level between the partners A and B. This should be
done using cryptography: a method is to be derived that
can crypographically prove the integrity of the model and
its origin (partner A). No model should be run that was
tampered with or that was broken during transport.

The most prominent issues come from attack vector 3,
potentially in combination with other ones. Apart from
that, it is typically sufficient to require trust between A and
B: by contracts and legal bindings these parties typically
consent on mutual trust. The trust of B in A1 is not needed
as A will trust A1 and hold him liable and responsible for
his actions. Also, from B’s perspective, still A is liable
for any issues. The same holds true for the trust of A in
B1. Therefore, in this work the attack vector 3 is to be
considered the primary one.

In order to prevent the model from accitential changes,
a hash of the model is generated directly after forging the
FMU by A. This hash can be delivered with the model and
checked just before the real execution of the model. The
model verification will detect changes to the model with a
very high probability (i.e. if there are no hash collisions)
and report that. It might be up to said user how to cope
with such a situation but this decision is part of the ad-
ministrative policies excluded from this paper. In fact, the
tests are just an addon to FMI and can always be overrid-
den by the simulation environment.

So, in general the hash allows to detect transmission and
storage errors between A and B. In case of a malicious
actor, the hash will only provide little help: the attacker
could simply calculate the hash of the modified FMU and
replace the original hash as well. The user will check the
(modified) FMU and compare with the faked hash. Thus,
no warning will be issued and the user might be running
the tampered FMU without further notice.

To prevent such an attack, it is necessary to establish
trust in the hash. This can be achieved by crypographical
means in the form of certificates. The vendor A creates
a valid certificate (plus its private key) before deploying
the FMU. The private key is used to sign the hash. This
certificate with the complete trust chain including the sig-
nature of the hash is delivered with the FMU.

On the user’s side (B), first, the hash is validated. To
do that, the hash of the FMU is calculated by B. If the
signature matches with the calculated hash, B has proven
that the person who created the signature had access to the
corresponding private key.

It is not required to provide a hash of the FMU in the
metadata as long as there is a croptographic signature
available. However, deploying the hash as well has the
benefit that the test of the validity can provide more de-
tailed error messages on why the validation failed. With
the hash it is possible to distinguish an accidential trans-
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mission error from an attack that might need further inves-
tigation.

This process of authentication is however not sufficient
to provide authorization to run the FMU. Here, the admin-
istrative policies as depicted in the problem formulation
need to be addressed. The question is: which entities are
to be allowed to provide trusted FMUs and how to pre-
vent other entities from pretending and faking their iden-
tity? Typically, this is done by enforcing certain rules on
the certificate chain. For example, there could be a re-
quirement that the certificate is (indirectly) signed by a
certificate with a well-known CN. If the systems are on-
line, one can use authentication using other systems, but
this is not the major point in this paper (see e.g. challenges
HTTP-01 and DNS-01 in Daniel McCarney (2017)).

In any case, the simulation environment on the infras-
tructure of B must run these tests just before the FMU gets
loaded and started. This is similar to the signing process of
system libraries in the Microsoft Windows operating sys-
tem that refuses to install unsigned libraries. These checks
are in fact a requirement for the software providers that
handle the FMUs. These providers need to add support for
appropriate steps in order to ensure security of the models,
potentially establishing an accompanying standard to the
plain FMI standard.

It is vital to understand that once the simulation envi-
ronment separates the simulation model from the security
data by checking the signatures (and only passing the sim-
ulation model on), the protection ends. For example, as-
sume that party B checked some FMU by whatever means,
decides the FMU to be secure, and stores the FMU in a
local simulation library without the security data. The at-
tack vector 1 through 3 has been ruled out so far. How-
ever, the attack vector 4 is still open: changing the FMU
in the library could easily get unnoticed. Thus, the sep-
aration should be done as late as possible to cover most
of the possible attack surface. Ideally, the check is done
right before the simulation itself is run and the first call to
a function in the FMU is carried out.

Note, that the suggested approach does only secure the
transport of the models. The execution is not affected,
which can be seen that the existing simulation cores do
not need to be altered. So, there is no protection against
online-changes to the FMU while it is running, e.g. due to
defective RAM.

The approach of using certificates also allows for the
additional feature of lifetimes of the models. All certifi-
cates have a lifetime which ends at some time. This can
be used to invalidate a model after a certain point in the fu-
ture. The checker in the software will refuse the validity of
the certificate due to an expired certificate if the lifetime of
the model has expired. This is however not cryptographi-
cally enforced.

There is no guarantee about confidentiality so far from
the perspective of A. Anyone who has access to the FMU
will be able to run the system. To prevent that, one could
use encryption on top of the provided solution. The en-

cryption is not as simple as signatures as each legitimate
user of the FMU needs a way to decrypt it with their in-
dividual private keys. One possible solution was that ven-
dor A provides a public API where any potential customer
(like e.g. B) can request an individually encrypted simu-
lation model. To do so, the potential buyer needs to au-
thenticate. Before the model is encrypted and provided,
the vendor can check if the request is authorized.

The certificate chain can be adopted to the needs of the
use case. If the vendor A provides individual certificates
for their employees, A1 would use his personal certificate
(and key) to sign the FMU certificate. This means an addi-
tional benefit of accountability: whenever a problem arises
it can be tracked down to the individual user A1 who has
signed the FMU in question. This simplifies incident anal-
ysis and provides some internal mutual protection between
A and A1.

By defining an extension to the FMI standard, one could
introduce a formal certification scheme: FMUs could be
labeled as “certified secure according to the standard”.
This could also be applied for the simulation tools to cer-
tificate that these abide some security guidelines about
when a model is considered harmful and not to be run.

6 Alternatives considered
There are a few alternatives to the abstract solutions pre-
sented above. These can be ruled out for different reasons
and the argumentation should be mentioned here, shortly.

6.1 Classical transport with cryptography
The most direct approach to this problem would be to use
state of the art mechanisms provided by the IT to establish
cryptographal security. One could use S/MIME (Blake
C. Ramsdell 1999) or GPG/PGP (Simson Garfinkel 1995)
to add end-to-end encryption to e.g. mail delivery. This
has however the drawback that the signatures are typi-
cally bound to a single person instead of the corresponding
company. Volatility in personnel will make handling hard
and error-prone.

Additionally, these approaches need manual work by
the users. While this seems only a minor burden, it adds
the risk of wrong application and user errors. In case
of problems, people might tend to avoid the system al-
together. A fully automatic solution is preferable here.

6.2 Callback in FMU
Looking at the problem from the FMI context, one straight
forward approach would be to put the security information
into the code. The user’s simulation environment could
use fmi3GetBinary to extract and check it. This will
however not serve well as the function call would already
execute code from the FMU that is (not yet) to be trusted.
So, in order to check the validity, the simulation environ-
ment must only use statically available information.

After the security has been established by other means,
there are still use cases to call a custom callback in the
FMU. This would allow to realize the already mentioned

Secure Exchange of Black-Box Simulation Models using FMI in the Industrial Context

492 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204487



business models that require the validation of a license of
the customer. So, after the initial security check, the FMU
itself could issue a check if the user (B) is to be allowed to
run the simulation and abort if not. There could be some
license fees to be paid or simply the model must only be
run on behalf of real customers. The checks could be ar-
bitrary to match with the business model of A. Currently,
different other callbacks are (mis-)used for such function-
ality, having a dedicated callback would be preferable.

6.3 Storage of hash in CN
One has to note that the attributes of a certificate are gen-
erally not potent enough to store the complete FMU. This
is true for the proposed solution as well.

Complying with the de-facto standard of storing in the
CN a unique identifier, one could try to calculate an im-
mutable identifier for an FMU using hashing. Then, this
hash could be used in the CSR to generate a certificate
with the CN set to the hash of the underlying FMU. That
way, the certificate would not just be a generic certificate
but the certificate of said FMU. In that sense, it would
avoid to use external signatures and keep all cryptography
in the PKI.

By looking at the recent hash functions SHA-512 or
BLAKE-512, these use 512 bit or 64 byte in binary form
to represent such a hash. As the attributes are only ASCII
text, the binary must be mapped into ASCII which en-
larges it further. For example, to represent the complete
hash one could use base64 encoding but will then need
88 characters (86 as the length can be considered known).
Considering that the attributes are capped at 64 charac-
ters, the hash will not fit. Consequently, one could only
use hashes with 384 bit or less.

Larger hashes provide better security in theory and
make (exploitable) hash collisions less likely. The size of
the hashes was therefore growing in the past and one has
to assume that this trend will continue. So, one must at
least consider larger hashes and cannot reject them in the
architecture of this approach.

7 Proposed Solutions
The so far described approaches are of rather abstract na-
ture. There are different ways thinkable how this could be
implemented and especially where the hash and the signa-
ture could be stored.

7.1 Adaption in a layered FMI standard
The most simple way would be to implement the hash-
ing and signing inside an extended layered FMI standard.
That way, the FMU would still be an encapsulated and
complete model that has the security features included.
The FMI standard allows to provide additional data like
static (XML) files in an appropriate folder under the top
level folder called meta. For example, one could define a
folder meta/de.eks-intec.fmi-sec that contains
further files with the required security-related data.

The trivial approach of hashing the complete FMU has
one major drawback, though. In order to zip the FMU
file, one needs the hash, leading to an chicken-and-egg
problem.

Consequently, one needs a more fine-tuned approach.
Just before packing of the FMU, all included files are
listed. The algorithm will filter out the files in the folder
meta/de.eks-intec.fmi-sec. For each file, a
hash is calculated and is stored individually with the cor-
responding (relative) filename in the hashes.xml file in
said folder. Having finalized this file, one can calculate a
hash and a signature of hashes.xml and write these into
a sibling file security.xml. The latter is augmented
by the complete certificate chain to help validating.

To check the validity of such a composed FMU, the
simulation environment has to carry out multiple steps:
first, the validity of the certificates need to be ensured (like
checking for expiry, trust, and pairwise signatures). Then,
the certificate can be used to check the validity of the
hashes.xml file. Once this is confirmed, each file in the
FMU has to be checked against the stored hashes. There
should be no additional files found, so, if that happened,
the algorithm would issue a warning or even fail validation
of the complete FMU. Once all files in the FMU have been
validated, it can be considered harmless and processed fur-
ther. In contrast to the approach in Section 7.3, this one
does not need additional tools (e.g. to read AML files).

7.2 Externally in the Network
Another option to handle the hashes, certificates, and sig-
natures would be to define one URL per FMU that will
provide all relevant information. So, the software running
the model in question would need to download the secu-
rity information from the site and check the FMU against
that.

This is possible because the URL can be pre-defined
and thus statically embedded in the FMU somehow. This
might work similar to the approach in Section 7.1. In the
open source world it is common to have for each down-
loadable file an additional file with some hash or signature
to check for download errors. In a similar fashion, one
could manage the deployment of the security-related data
of FMUs.

As the security information is generally available on-
line, this process allows also to update the certificates (re-
new it in case its lifetime should be extended past the
original end). Regular updates of short-lived certificate
enhance the overall security (Emin Topalovic et al. 2012;
Ronald L. Rivest 1998): the longer the certificates are
valid, the more time is to break the keys. Short-living
certificates and keys reset these time windows and make
breaking the keys by pure chance very unlikely.

As the vendor A has control over the certificates, it is
also possible to think of new business models. One could
pay per issued certificate, per hour of model usage, per
simulation run, or other metrics. The need to fetch a
certificate makes it rather simple to control these type of
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usage-based billing. The online approach works similar
to a physical token but without the overhead of physically
transferring it.

The drawback of this method is that the simulation en-
vironment needs to have continuous access to the certifi-
cation service. This makes it impossible to use air-gapped
systems. There could be caches included that provide a
way to store the certificate until it expires, still, the re-
newal process needs to be triggered sometime. Also the
certification provider (typically A) could anytime stop is-
suing new certificates (e.g. also due to technical issues or
bankruptcy) and the certificates as well as the simulation
models will cease to work.

7.3 Embedding in a Digital Twin
By combining technologies of different fields, one might
achieve a matching solution for most of the problems pre-
sented. Instead of embedding the data in the FMU as de-
scribed in Section 7.1, there might be already a location
present to store these additional information. According
to Roberto Minerva, Gyu Myoung Lee, and Noel Crespi
(2020) many products are in the meantime supported by
their individual DT. Using the example of AML as a de-
scription language for DTs, one has to realize that for
many use cases (not only in the context of this paper but
for general problems), on might fall back to pre-existing
solutions.

In AML, e.g. a library to import FMUs into the AML
file exists already (Olaf Graeser et al. 2011). If the vendor
A already provides a DT for his products, the FMU can
easily be added into said DT. If no DTs are yet existing,
the overhead to create such a twin is minimal.

With the AML in place, one has a clear and well-
defined outer shell. The security elements in AML need
to be modeled separately, the basic elements are certificate
chain links. One example modelling of such a DT can be
seen in Christian Wolf, Miriam Schleipen, and Georg Frey
(2023).

The benefit to use a dedicated format over extending
the FMU in 7.1 is that other modelling standards (like e.g.
SSP (SSP 2022)) can be used without change. This makes
this approach a very generic one.

For the AAS, Andre Bröring et al. (2022) present an ap-
proach that allows to prove integrity of the data. However,
the basic idea is to mimic the GIT version control system
in terms of a DT meta model. As with GIT, it is possi-
ble to rewrite the history to insert a tampered FMU unno-
ticed. The integrity of the history and trust in the FMU
can thus only be guaranteed for read-only access. Having
said that, by augmenting the suggestions with cryptogra-
phy (and migrating to AML), one would have a very sim-
ilar result to the one presented in this paper.

7.4 FMI as Open Document
The current FMI standard is very similar to the storage for-
mat described by the open document standard IEC 29500
(2012). As the open documents standard has some se-

curity features embedded, this would allow to secure the
FMUs directly. It might thus be considerable to make the
FMI fully conforming with IEC 29500 (2012), probably a
rather small change. As this would require a change in the
core FMI standard, it is neglected for this paper, though.

8 Prototype
In order to show feasibility of the proposed approach in
Section 7.3 a prototype as a proof of concept has been
implemented. This approach is a good tradeoff: it al-
lows arbitrary extensions, is attached with products more
and more, works offline, and is intentionally not back-
ward compatible (which might cause security risks by
false trust). The prototype does not carry out any real sim-
ulations but provides a way to execute and validate the
complete process as described in this paper in a minimal
environment.

The prototype has three major functions: first, in a boot-
strapping process a self-signed PKI can be generated. This
allows for local testing and understanding the concepts in-
volved. Additionally, there is the option to sign an FMU
and pack it into an AMLX file. This allows also to gener-
ate AMLX files with broken or spoofed FMUs to test the
detection. Finally, one can extract the FMU again from
the AMLX while checking the security measures.

The bootstrapping function allows to create a complete
PKI from scratch with a self-signed root certificate as CA.
Obviously, this should not be used for production but only
serves as a demonstrator of the process. For more details,
please have a look at the corresponding code and docu-
mentation (Christian Wolf 2023). This step will as well
generate multiple AMLX files in accordance to the de-
scription in Section 7.3:

nominal A fully functional FMU, correctly hashed and
signed

broken To simulate a defective file/transport, the FMU is
modified but the other metadata are copied from the
nominal case

tampered The FMU and its corresponding hash is modi-
fied in the AMLX by a targeted attack, all other meta-
data is copied over

The second step is to sign a custom FMU with the cer-
tificates as provided in the test instance. This process is
rather straight forward, as no tests are carried out. Only
the required files are read and interpreted and a valid sig-
nature is created. The process is depicted in Figure 2 as a
flow diagram.

As final step, the prototype provides a way to check any
AMLX file against a given root certificate. It allows to ex-
port the embedded FMU into a stand-alone file that can be
run in legacy FMI-3-based simulation tools. Alternatively,
it can serve as a boilerplate to implement an import feature
for productive third party simulation tools.
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Load certificate and key data from files
Read FMU data

Hash FMU and sign using certificate key

Store FMU and data in AMLX

Figure 2. Flow diagram of the signing of FMUs.

The verification process is more complex than the sign-
ing as various checks need to be carried out. The ordering
is in general of lower priority as all test must necessarily
pass.

• (optional) The hash stored in the AMLX file must
match the hash of the stored FMU.

• The certificate chain must be anchored on a user-
provided trust anchor

• The complete certificate chain must be a chain, no
branching is allowed and the chain must be in the
correct ordering. Each certificate must be signed by
the next certificate in the chain.

• Each certificate in the chain must not be expired.

• The signature must be valid

The overall process is sketched in Figure 3
Please note that the extraction process checks the cer-

tificates but after the splitting, the FMU is just a common
FMU. There are no security features attached anymore.
Changing the FMU after the export will not be detectable
anymore in a secure manner. As a minimal measure to
prevent accidential changes, a hash file is generated auto-
matically during export.

By testing the various auto-generated examples in the
first step through the checker, it is possible to see that the
demonstrator can detect the changes in the FMU and meta-
data. Only the nominal version is accepted by the proto-
type.

9 Further Work
A survey with various industry partners is carried out at
the time of writing. The goal is to identify detailed re-
quirements and wishes from both FMU providers and con-
sumers. Especially the position of the producers and their
need to protect/encrypt the models is not yet analyzed
strictly. Using this as a baseline, further improvements
should be investigated as well as the other implementa-
tions in Section 7 addressed.
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Figure 3. Flow diagram of verifying and exporting an FMU.

10 Summary
In this paper the general security problem especially for
untested, unverified, or black-box simulation models is fo-
cused. There are different attack vectors presented that
could be used to compromise the usage of shared mod-
els. Each attack vector has its individual attack surface
and risk involved.

Due to the impossibility to prevent all attacks in gen-
eral, an abstract analysis of the situation and possible gen-
eral solutions are given. There are four possible imple-
mentations shown to realize the abstract considerations.
For one of the four options a prototype has been imple-
mented to show the effectiveness of the approach as a
proof of concept.

The same approach as presented in this paper can be
used to augment combinations of FMUs: one can use
the System Structure and Parametrization standard (SSP
2022) instead of plain FMUs to be embedded.
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Abstract
CRML (the Common Requirement Modeling Language)
is a new language for the formal expression of require-
ments. The goal is to release the language as an open stan-
dard integrated into the open source modeling and simu-
lation tool OpenModelica and interoperable with the open
systems engineering standard SysMLv2. CRML allows
for the expression of requirements as multidisciplinary
spatiotemporal constraints that can be verified against sys-
tem design by co-simulating requirements models with
behavioral models. The requirements models must be eas-
ily legible and sharable between disciplines and stakehold-
ers and must capture realistic constraints on the system, in-
cluding time-dependent constraints with probabilistic cri-
teria, in recognition of the fact that no constraint can be
fulfilled at any time at any cost. The theoretical foun-
dation of the language lies on 4-valued Boolean algebra,
set theory and function theory. The coupling of the re-
quirements models to the behavioral models is obtained
through the specification of bindings, the automatic gen-
eration of Modelica code from the CRML model and
use of the FMI and SSP standards. CRML and the pro-
posed methodology is compatible with SysMLv2, form-
ing a comprehensive workflow and tool-chain encompass-
ing requirement analysis, system design and Validation
and Verification (V&V). The final objective is to facili-
tate the demonstration of correctness of system behavior
against assumptions and requirements by building a work-
flow around Model-Driven Engineering and Open Stan-
dards for automating the creation of verification simula-
tors.
Keywords: cyber-physical systems, systems engineering,
requirement modelling, systems verification, Modelica,
FMI, SSP, SysML

1 Motivations and Challenges
Large numbers of stakeholders are involved in the design
and operation of complex cyber-physical systems (CPS),
especially but not exclusively in the energy sector. When
working on a common system, stakeholders tend to ex-
press requirements from their own perspective, resulting
in a global set of constraints on the system that can be
conflicting, even contradictory. Also, to avoid questioning

the motivations of poorly-documented past design deci-
sions, new requirements are often added without question-
ing the soundness of existing ones. This results in over-
specifications, delays, and cost overruns. The search for
a common agreement between stakeholders that preserves
degrees of freedom for optimal design is always difficult
and lengthy (Azzouzi et al. 2022).

CRML (Common Requirement Modeling Language) is
a new language for the formal expression of requirements
collaboratively developed by different industrial and aca-
demic stakeholders. The goal is to release CRML as an
open standard to offer stakeholders from different do-
mains and disciplines a common language to express,
organize, negotiate, and simulate requirements in or-
der to find the best compromise that suits their needs
while complying with their mutual commitments.

This goal raises the question of expressing CPS require-
ments that are realistic, understandable, and verifiable by
and between stakeholders. More precisely, it means that
the underlying formal language and method associated
have to tackle the following challenges:

• The language should provide comprehensive de-
scriptions of all spatiotemporal assumptions and
constraints that bear on the system under study.
Constraints can be of all kinds and may vary depend-
ing on the system operating mode: physical, perfor-
mance (reliability, availability, economical. . . ), and
regulatory (safety, security, environmental, reserve
capacity for grid balancing, grid access, and priority
dispatch. . . ).

• The requirements models must be easily legible
and unambiguous. It is expected that a requirement
language common to all stakeholders regardless of
their expertise and business domain will improve the
productivity of studies. To that end, the syntax must
be close to natural language.

• CPSs exhibit strong physical aspects. Therefore,
particular attention must be paid to physical as-
pects: physical units, real-time, events, synchronism
and asynchronism, components and objects, failures,
and uncertainties. Time-dependent continuous and
discrete variables must be dealt with in a hybrid syn-
chronous and asynchronous framework. This goes
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well beyond finite automata that are the reference in
model checking (Baier and Katoen 2008).

• Verification should be automated as much as
possible all along the system lifecycle by co-
simulating requirements models with solution
models of any kind and growing complexity rang-
ing from min and max limits (that represent autho-
rized operation domains), to finite state automata
(that represent logical system operation), and to mul-
tidomain physical 0D/1D/2D/3D models (that repre-
sent detailed system physical behavior).

The verification model (Fig. 1), which tells whether
requirements are satisfied or not, consists of the re-
quirement models, the solution models (behavioral
and architectural), the observers of the solution mod-
els, and the links between observers and require-
ments, which are called “bindings”. Requirements
models with observers act as virtual sensors to detect
possible requirement violations of the solution mod-
els. Behavioral models capture the dynamic behavior
of the system in various forms (state automata, alge-
braic or differential equations), whereas architectural
models carry static information about the system.

• Probabilistic criteria must be added to require-
ments because no realistic requirement can be sat-
isfied with absolute certainty: in general, it is not
enough to specify what should happen in nominal
mode, one should also define what should happen in
the event of specific hazards and with which proba-
bility the real system will not enter in one of these
cases (i.e. how reliable the system should be). These
stochastic requirements have to be verified against
stochastic solution models. Monte Carlo techniques
could hence be used to simulate the verification mod-
els.

2 State of the Art
The current state of the art regarding the above challenges
tends to consider them separately. Consequently, there is

no integrated tool able to deal with all of them in a consis-
tent way. The main gaps concern the links between logi-
cal design, physical design, and dependability analysis as
they currently involve completely different methods and
tools: logical design uses methods such as UML (OMG
2017) and SysML (OMG 2023) based on first-order logic
that originates from the software industry. Physical de-
sign uses tools such as Modelica tools, Matlab, Simcen-
ter Amesim, etc. that deal with physical laws in the form
of DAEs (Differential-Algebraic Equations) (or block dia-
grams) and dependability analysis uses probabilistic meth-
ods.

2.1 Limitations of Requirement Modeling
Tools for CPS

Regarding the modelling of requirements no convincing
solution exists to express CPS requirements independently
from design solutions in a formal way. Current state-of-
the-art tools hence focus on expressing requirements in
natural language such as in Rational DOORS, Polarion,
etc. This comes from the fact that the existing formal re-
quirements modelling methods such as LTL (Linear Tem-
poral Logic) and CTL (Computation Tree Logic) (Baier
and Katoen 2008), timed (Alur 1999) and hybrid (Hen-
zinger 2000) automata or UML/SysML state behavioral
diagrams (OMG 2019) tend to bear on abstractions of the
system in the form of state machines, which already ex-
press a solution and hence is not appropriate to correctly
deal with CPS physical aspects. For instance, with LTL,
one can prove that a system will always or eventually pass
through a given state. Timed automata can handle real-
time, but only when the states are known in advance. This
corresponds to an idealistic view of the system that is not
for instance subject to wear or external aggression. Hence
they do not consider situations where existing states are
subject to gradual drift due to wear, or new states appear
due to unexpected events. In other words, CPS contain
finite-state machines, but they cannot as a whole be con-
sidered as finite-state machines. Other limitations could
be quoted such as:

• Lack of object-orientation: temporal constraints
cannot be (easily) associated to the system architec-
ture (i.e. its decomposition into subsystems and com-
ponents).

• Difficult mathematical syntax: although mathe-
matical syntax (and semantics) is necessary to per-
form formal proofs (model checking) or even model
simulation, it is difficult to use on a day-to-day basis
for the whole system.

Various attempts have been made to alleviate these lim-
itations, for example by extending OCL (Object Con-
straint Language) with temporal constraints, but none of
them are used convincingly in practice (Kanso and Taha
2013). Therefore, formal requirements languages are usu-
ally only used for small (sub)systems with critical safety

The Common Requirement Modeling Language

498 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204497



concerns, and they cover only the very early phases of sys-
tem design when (only) the logic of the system is investi-
gated.

The relatively new SysPhS (SysML Extension for Phys-
ical Interaction and Signal Flow Simulation) profile for
SysML (OMG 2021) provides extensions to model phys-
ical interaction and flows independently of the simulation
platform. It includes a textual syntax for mathematical ex-
pressions as well as reusable simulation elements. It also
defines translations to Modelica and Simulink. Along with
the previous approaches, SysPhS also focuses on the pre-
cise modeling of specific designs and not the specification
of a design envelope.

The new SysMLv2 language (OMG 2023) will feature
a native expression language and better modeling of re-
quirements. It provides a mechanism to bind requirements
to design artifacts to formalize them in terms of the chosen
subject. Furthermore, analysis and verification cases pro-
vide a way to model evaluation and verification steps, and
the language supports modeling spatiotemporal aspects as
well. While this is much closer to our requirements, na-
tive constructs in SysMLv2 are not designed to fully cover
aspects like the modeling of time-dependent hybrid sys-
tems, probabilistic criteria, or automated verification. The
extensibility of the language, however, provides a way for
us to make the two languages interoperable.

2.2 Why Modelica is Natively Suited for CPS
Modeling but Not for Requirements?

Modelica (Mattsson, Elmqvist, and Otter 1998) is a lan-
guage that comes with a convenient graphical interface fit
for the description of the physical real-time behavior of
CPS. However, Modelica does not allow one to express
constraints on a system when its architecture is partially
unknown (for example express a constraint on a valve,
when it is unknown how many valves will be in the final
design), and expresses the behavior of the system in the
form of DAEs (Differential-Algebraic equations) rather
than the constraints on the behavior of the system. As a
consequence Modelica is insufficient to express all that is
needed at the early design phases, especially when one
wants to specify only the acceptable envelopes without
going into realization details, so that the solution space
is refined progressively, rather than committing to a single
design decision that fits the criteria.

Graph-based design languages with their capability to
explicitly modify product topology and parametrics are
on the one hand partially able to fill this gap, but need
to be extended on the other hand by more powerful formal
methods for requirements processing, tracing and consis-
tency checking (as illustrated in Section 2.1 with SysML).

Therefore, connecting formal requirement modeling
languages such as the ones mentioned above directly to
Modelica does not solve the general problem of having a
model-based methodology that covers the whole engineer-
ing lifecycle for CPS, as such kind of solution is only valid
if the system is considered as a state-machine and for the

engineering phases past the detailed design phase (which
is somewhat contradictory).

2.3 CRML Origin and History
As previously mentioned, a Modelica model expresses the
behavior of the system but does not say for what purpose
the model is made. For instance, the model of a cooling
system features heat exchangers, but does not say anything
about the properties of the system that we want to verify,
e.g. whether the flow velocity inside the heat exchanger
stays below a given threshold. To alleviate the problem,
one of the ITEA EUROSYSLIB project (2007 – 2010)
objectives was to investigate the possibility of associat-
ing constraints that represent requirements to a Modelica
model. For the above example, that meant associating the
constraint that the flow velocity must not exceed a given
threshold to the model of a heat exchanger. The first idea
was to express this kind of constraint directly in the Mod-
elica model, for instance in a dedicated ‘constraint’ Mod-
elica section (similarly to the existing ‘equation’ and ‘al-
gorithm’ sections). However, this solution had the draw-
back to modify model components in order to handle spe-
cific constraints, which is not consistent with the generic
nature of model components. Besides, with this solution
there was no way to express something like ‘No pump in
the system must cavitate’ or ‘At least one pump in the sys-
tem must be started’, for two reasons: (1) The notion of
quantifier does not exist in Modelica, so the constraint
must be written taking into account the current topology
of the circuit (i.e. the number of pumps in the system), and
modified when the model topology is changed (i.e. when
the number of pumps changes), even if the meaning stays
the same. (2) The notion of a pump being started or not is
usually not present in the Modelica model, because it ex-
presses the physical state of the pump, not its operational
state. It becomes clear then that the requirement model
must be separated from the behavioral model. The rest
of the EUROSYSLIB project was then mainly devoted to
look at different languages for expressing the properties of
systems.

As no interesting requirement modelling language
emerged, the idea to create a new language came within
the ITEA MODRIO project (2012 – 2016) with the fol-
lowing aspects in mind: (1) the syntax must be close to
natural language, (2) the language must handle time peri-
ods and probabilistic aspects, (3) the language must han-
dle quantifiers (i.e., sets) and be object-oriented, and (4)
it should be possible to automatically generate test se-
quences from the constraints that represent assumptions
on the system. It resulted in the specification of a new lan-
guage called FORM-L (for Formal Requirement Model-
ing Language), written by EDF (Nguyen 2014). In parallel
other works emerged around the same period with rather
close similarities: TOCL (a temporal extension of OCL)
and Stimulus (Dassault Systèmes). Regarding TOCL,
there is no known implementation and it seems that there
is no ongoing effort. For Stimulus, it appears that the tool
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is more focused on debugging requirements for a partic-
ular design and express them as temporal stochastic state
machines, which is less general than FORM-L which aims
at expressing requirements that are generic and that could
be refined throughout the whole engineering cycle to eval-
uate multiple design solutions.

In 2013, FORM-L was proposed to the Modelica com-
munity (most of the Modelica community was partici-
pating in the MODRIO project, except OpenModelica),
which offered to extend Modelica with the notion of
‘blocks as functions’ and develop a new Modelica library
for the modelling of requirements (called Modelica Re-
quirements) (Otter et al. 2015). This library proved to be
unsatisfactory because the time period and the condition
to be verified were mixed within the same block. There-
fore, it was impossible to have a stable library because
of the combinatorial explosion of possibilities of associ-
ating conditions with time periods (a new block would
have to be developed each time a new case occurs, which
would be almost as frequent as when a new requirement
is written). Therefore, EDF decided to develop a new re-
quirement Modelica library called ReqSysPro that would
clearly separate time periods from conditions, so that a re-
quirement would be obtained by associating a block rep-
resenting a time period to a block representing a condi-
tion (and not having the two aspects in the same block).
The first idea was to use state machines to evaluate re-
quirements: a requirement would pass through different
states, starting from ‘Untested’ until it becomes either
‘Satisfied’ or ‘Violated’. The problem with this solution
is (1) that it was not possible to find a single state ma-
chine that would handle all possible requirements, (2) that
it was not possible to combine requirements together to
form more complex requirements such as ‘Requirement1
and Requirement2’. Then the idea came to use Boolean
logic instead and, more precisely, a 4-value Boolean logic
called ETL (Extended Temporal Language) (Bouskela and
Jardin 2018). A new version of ReqSysPro was devel-
oped successfully (the only difficulty was the handling of
time periods that needs dynamic allocation of memory)
that was able to handle the temporal and condition aspects
of FORM-L and to evaluate requirements to one of the
four values {undefined, undecided, false, true}. To handle
the other aspects (except the probabilistic aspects), it be-
came necessary to have a FORM-L compiler. A prototype
of a FORM-L compiler was developed by Inria and Sci-
works on an EDF contract with a first operational version
released in 2021. It demonstrated the feasibility of having
a FORM-L to Modelica compiler. However, the compiler
suffers from the drawback that it must be modified each
time a new function is added to FORM-L. To alleviate this
problem, the specification of a new language CRML was
released at the end of 2021 within the ITEA project EM-
BRACE (2019 – 2022). The idea was to add the notion of
functions (called operators in CRML) to be able to build
complex functions from a limited number of elementary
native functions as described in the following sections.

CRML

Operators
Types 

Classes
Objects

Sets 
Booleans

Events
Clocks

Time 
periods

Requirements

CRML function libraries

ETL FORM-L

Evaluation of requirements Functions to express requirements 

Reals
Integers
Strings

Figure 2. Architecture of the CRML language

3 The CRML Language
The language uses the concept of requirement made
of four parts as introduced in the FORM-L lan-
guage (Bouskela, Nguyen, and Jardin 2017; Nguyen
2019):

Spatial locator (WHERE): it defines the objects that are
subject to the requirement. “Spatial” means that the ob-
jects are selected by some criteria on their properties that
can be time-dependent.

Time locator (WHEN): it defines the time intervals
when the requirements should be satisfied. A time inter-
val is initiated when an event, called the opening event,
occurs, and terminated when an event, called the closing
event, occurs. An event occurs when a condition becomes
true. A time locator can be composed of multiple time
intervals that can overlap if several opening events occur
before the closing event. In the following, the term ‘time
period’ will be used as a synonym for ‘time locator’.

Condition to be fulfilled (WHAT): it is the condition to
be verified by the objects selected with the spatial locator
within the bounds of the time periods selected by the time
locator.

Probabilistic constraint (HOW_WELL): it defines a
probabilistic constraint on the condition to be fulfilled.

The general architecture of the language is given in
Fig. 2. Time periods and probabilistic constraints consti-
tute the novelty of the approach. They are required to han-
dle realistic requirements, because realistic requirements
cannot be satisfied anytime at any cost. Time periods de-
fine when requirements are in effect and the time delay
to satisfy them. Probabilistic constraints define some tol-
erance for the system to fail complying with the require-
ments. These two aspects have profound technical and
economic impact on the design and operation of the sys-
tem.

Classes, objects, sets and operators allow one to define
the system structure and the objects properties, and enable
to express generic requirements on sets of objects selected
by their properties that can depend on time. All definitions
can be stored in libraries for further reuse. There are two
operator libraries provided with the language: the FORM-
L library that implements the aspects of the FORM-L lan-
guage that are related to requirement modelling (Nguyen
2019), and the ETL library that implements the low-level
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functions for requirement evaluation (Bouskela and Jardin
2018).

In the following, we present the salient aspects of
CRML through the following example of a requirement:
“During operation, the system should always stay within
its operating domain. However, if the system fails to
stay within its operating domain, then it should not stay
outside of its operating domain for more than ten min-
utes more than three times per year, with a probability
of success of 99.99%.” First, we use a mathematical no-
tation to explain the semantics of requirements. Then,
starting from Section 3.3, we introduce the CRML syn-
tax. The full CRML specification can be found at http:
//crml-standard.org.

3.1 Clocks and Time Periods
To express formally the example, we first define two
Boolean variables. The first one called b1 is true when
the system is in operation and false otherwise. The sec-
ond called b2 is true when the system operates within its
authorized operational domain and false otherwise. They
are both external variables, which means that their values
are given by an external behavioral model.
external Boolean b1;
external Boolean b2;

We then define the time period while the system is in
operation. The time period consists of possibly multiple
time intervals that start when b1 becomes true and end
when b1 becomes false. The event b1 becoming true is
denoted by b1 ↑. The event of b1 becoming false is de-
noted by b1 ↓. Thus b1 ↓= (¬b1) ↑. There are actually
two time periods of interest to express when the system is
in operation:

P1 = [b1 ↑,b1 ↓]
P2 = [b1 ↑,b1 ↓ [
P1 includes the opening and closing events, whereas

P2 includes the opening event, but excludes the closing
event. Note that there are in general several occurrences
of b1 ↑ so that P1 and P2 are composed of multiple time
intervals. The set of occurrences of an event is called a
clock. Therefore, b1 ↑ and b1 ↓ are clocks.

In general, time periods P are sets of time intervals ∆i
that can overlap. This is denoted by P = {∆i}1≤i≤n. In the
sequel, the opening and closing events of a time interval ∆i
are resp. denoted ∆i ↑ and ∆i ↓, and the clocks of opening
and closing events of a time period P are resp. denoted P ↑
and P ↓.

3.2 Requirements and 4-valued Boolean Logic
The following expression combines condition b2 with
time period P1 to form requirement R1 which states that
b2 should be true at any time instant along P1.

R1 = ensure(b2⊗P1)
R1 is a Boolean that is true when R1 is satisfied and

false when it is not satisfied. The sign ⊗ denotes that con-
dition b2 is combined with time period P1. The precise
meaning of ⊗ and ensure will be given in the sequel.

R2 ensures that the number of failures of R1 should not
exceed 3 over a sliding time period P3 of one year, that
continuously shifts over the time period while the sys-
tem is in operation. The failures of R1 corresponds to the
events R1 ↓. P3 is modelled as a time period composed
of time intervals of one year that start at each occurrence
of R1 ↓. Note that R1 ↓ cannot occur when the system is
not in operation. The formal expression of R2 states that
if a failure occurs at time t, there should not be more than
two additional failures before t +1 year, and that this con-
dition should be ensured at any time instant t while the
system is in operation. Thus, time intervals are not con-
tinuously created, but only when they are needed to verify
the requirement (i.e., when R1 fails).

P3 = [R1 ↓,R1 ↓+1year[
R2 = ensure(((count(R1 ↓,P3)<= 3)⊗P3)⊗P2)
R3 states that if R1 is not satisfied at time instant t, then

R1 should be satisfied at t + 10 mn, unless the end of P1
occurs before t +10 mn.

R3 = ensure(((¬R1 ∧ b1) =⇒ R1 ⊗ [R1 ↓,R1 ↓
+10mn])⊗P1)

Expressions are evaluated at each time instant t. R3 is
active within P1. A new time interval is created at each
occurrence of R1 ↓ while R3 is active. The purpose of
adding ∧b1 to the precondition ¬R1∧ b1 is to avoid R3
being undecided if P1 ends before 10 mn after a failure of
R1 (the meaning of undecided is given in the sequel).

R4 is the non-probabilistic version of the final require-
ment.

R4 = R1∧R2∧R3
R5 is the final requirement that corresponds to the prob-

ability of success of R4. The probability is evaluated at
b1 ↓ (when the system is stopped). The checkAtEnd func-
tion evaluates the probabilistic condition at the end of P1
(thus at b1 ↓).

R5 = checkAtEnd((prob(R4,b1 ↓)> 99.99%)⊗P1)
The reason why the satisfaction of R5 is evaluated at

b1 ↓, and not before, is because the probability of success
of R4 is not defined before b1 ↓.

We have so far only used logical functions with some el-
ementary arithmetic to formally express the requirement.
The question now is the mathematical type of a require-
ment and the meaning of ⊗. To clarify this, let us tem-
porarily take a simpler example of a requirement R: “The
project report must be completed before the end of the
project”. Before the start of the project, the requirement
is undefined, which means that the requirement is not ap-
plicable. After the start of the project and before the end
of the project, the requirement is undecided which means
that the requirement is applicable, but its outcome is un-
certain until either the report is completed before or at the
end of the time period (thus before the deadline or just
in time), in such case the requirement is satisfied, or not
completed until the end of the time period, in such case
the requirement is not satisfied (the report is late or can-
celed). Therefore, the requirement can take any value in
the set B= {true, f alse,undecided,unde f ined}.
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The question now is whether variables of B comply
with the usual Boolean algebra. If the answer to this ques-
tion is positive, then requirements can be combined us-
ing the usual Boolean operators. It is very natural to as-
sign true to the satisfaction of a requirement, and there-
fore false to the non-satisfaction of a requirement. To find
the mathematical meaning of undecided and undefined, let
us assume that R is a logical combination of two require-
ments R1 and R2: R = R1opR2, where op is a binary
logical operation. R1 is undefined means that it is not ap-
plicable, and that its value should not affect the outcome
of the logical operation. Therefore, undefined is a neutral
element for any logical operation: R = R1opR2 = R2 for
any R2 if R1 is undefined.

R1 is undecided means it is not known whether it is true
or false. Therefore, if R1 is undecided then R = R1∧R2
is false if R2 is false and undecided if R2 is true or unde-
cided, and R = R1∨R2 is true if R2 is true and undecided
if R2 is false or undecided. The same argument applies to
find the value of ¬R: if R is undefined or undecided, then
R = ¬R. Of course, the standard Boolean algebra applies
if R1 and R2 are true or false.

It is then easy to verify that this algebra verifies the
De Morgan’s laws (such as ¬R1 ∧ ¬R2 = ¬(R1 ∨ R2))
and all other Boolean laws (including ¬(¬R) = R), ex-
cept the complements law (because R∧¬R = f alse is not
verified if R is undecided or undefined). Therefore, this
4-valued algebra can be considered as a Boolean algebra
that accommodates all standard logical operators with the
usual meaning (with some precaution regarding the com-
plements law). Then the logical implication operator is
defined as R1 =⇒ R2 ≡ ¬R1∨R2.

The main difference between the 4-valued and 2-valued
Boolean algebras is that time is taken into account with the
former: the requirement is undefined as long as the time
period it is associated with has not begun, and undecided
while inside the time period and before the decision can
be made whether it is satisfied or not. This event is called
the decision event. After the decision event, the require-
ment is true (satisfied) or false (not satisfied). Let us now
assume that the completion of the project report is mod-
eled by a Boolean C that tells whether the report has been
signed or not. Then C is a 2-valued Boolean that takes
the values true (the report is signed) or false (the report
is not signed). Obviously, at a given time instant t, the
value of the requirement R can be different from C, as R
can take the additional values undefined and undecided.
As explained before, the value of R results from a com-
bination of C with the time period P that corresponds to
the delay granted for the satisfaction of C. This is de-
noted R = C⊗P. Therefore, mathematically speaking, a
requirement is a function that associates a couple (C,P) to
R, where C is the condition of the requirement, P is the
time period of the requirement, and R is the value of the
requirement. The definition domain of this function can be
extended to conditions C that are 4-valued Booleans with-
out any difficulty. It is then possible to formally express

Events

Requirement

Boolean C

Events
P↑	and	P¯

R Boolean
C Ä PPeriodsPeriod P

Boolean

Boolean2 (true, false)

Boolean4 (true, false, 
undecided, undefined)

Classical Boolean

Result of requirement 
evaluation

Behavioral 
model

Figure 3. The requirement factory

requirements on requirements, such as if requirement R1
fails, then requirement R2 should be satisfied within a
given time delay P : R = R1∧ (¬R1 =⇒ R2⊗P). Fig.
3 summarizes how requirements are built.

We are now interested in giving a formal definition for
the value of C ⊗ P. Let us consider first a time period
P = {∆1} composed of a single time interval ∆1. The
meaning of R = C ⊗P is that the decision whether C is
satisfied or not is made as soon as possible within ∆1, i.e.,
at the decision event. The decision event for C⊗P is de-
noted δ (C,∆1). From the decision event, if C is true or
false, then C ⊗P is true or false (it cannot be undefined
or undecided) and keeps its value until the next decision
event if any. For instance, if the condition C is that the
number p of events e ↑ within ∆1 should be less than a
fixed integer n, i.e. if C ≡ (p = count(e ↑,∆1) ≤ n), then
δ (C,∆1) = (p > n) ↑ ∨∆1 ↓ where a ↑ ∨b ↑ denotes the
clock containing the occurrences of events a ↑ and b ↑:
C⊗P is false as soon as p is larger than n within ∆1, oth-
erwise C ⊗P is true at the end of ∆1. For the condition
C ≡ (p > n), the same decision event applies but the out-
come is different: C⊗P is true as soon as p is larger than
n within ∆1, otherwise C⊗P is false at the end of ∆1. Note
that because the counter starts from p = 0, while p ≤ n, C
is false but C⊗P is undecided, thus in general C⊗P ̸=C.
Note that when writing (C,∆1)= a ↑∨b ↑, there are in fact
two decision events, a ↑ and b ↑. Unless it is something de-
sirable, one must be careful that if b ↑ occurs after a ↑, the
decision over C⊗P made at a ↑ is not reversed when b ↑
occurs. If the decision over C can be made at any time in-
stant within ∆1, then δ (C,∆1) = (C∨¬C) ↑ ∨∆1 ↓ . This
is the case if C is the satisfaction of another requirement R′

(i.e., if C ≡R′): C⊗P is true or false as soon as C becomes
true or false (if the decision over the satisfaction of a re-
quirement is not reversed). If the decision over C cannot
be made before the end of ∆1, then δ (C,∆1) = ∆1 ↓.

The function checkAtEnd(C⊗P) used in the example
means that δ (C,∆1) = ∆1 ↓. ensure(C ⊗ P) means that
C must be true all along ∆1, thus that it should never be
false within ∆1. This can be expressed as ensure(C⊗P) =
(count(C ↓,∆1)<= 0)⊗P∧C⊗ [∆1 ↑,∆1 ↑]. Within P, the
value of the requirement is undecided until the condition
is not verified, in such case it turns to false and stays false,
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or until the end of P if the condition is always satisfied, in
such case it turns to true.

To evaluate C ⊗ P at time instant t, we consider two
temporal Boolean operators:

• A filter × with the following properties: a×b = b if
a is true, a×b = undecided otherwise.

• An accumulator + with the following properties:
a + b = b + a; a + a = a; unde f ined + a = a;
undecided+a= a if a is true or false; true+ f alse=
f alse;

The filter filters out all events that are not decision
events. The accumulator computes the value of C⊗P at
instant t taking into account the history of C⊗P. It ensures
that if C is false after the decision event, C⊗P will stay
false whatever the future values of C. For a fixed integer i
and P = ∆i, the value of C⊗P at t is

C ⊗ {∆i}(t) = unde f ined +
min{∆i↓,t}∫

τ=∆i↑
δ (C,∆i)(τ)×C(τ)dτ

The integral operator accumulates all values of the
Boolean integrand for all time steps dτ within ∆i until
t. For t occurring before ∆i ↑, the value of C ⊗ {∆i}
is undefined. For t occurring after ∆i ↑, the value of
C⊗{∆i} is undecided until the integrand is true or false.
This equation is generalized to a multiple time period
P = {∆i}1≤i≤n by taking the logical conjunction of all
C⊗{∆i}:

C⊗P(t) =
∧n

i=1C⊗{∆i}(t)
This equation states that the condition must be satisfied for
all time intervals of the time period. Then, provided that
for any condition C and time period P, we know how to
express δ (C,∆i), we can evaluate C⊗P, and consequently
we can evaluate any temporal CRML expression. The op-
erator ⊗ is expressed using elementary CRML temporal
operators on 4-valued Booleans that are implemented in
the ETL library using truth tables. This is why there is no
built-in operator in CRML for ⊗, and also no built-in type
for requirements. The operator ⊗ is used in high-level op-
erators such as ’while’ ’check count’, ’while’ ’ensure’ or
’while’ ’check at end’ that express different kinds of de-
cision events and constitute the FORM-L library. Such
high-level operators are used in Section 3.5. It is possible
to have user-defined types for requirements derived from
the built-in type Boolean. Types are introduced in Sec-
tion 3.3, and operators are introduced in Section 3.4. The
following sections detail these constructs with the CRML
syntax.

3.3 Types
User-defined types can be created from built-in types. For
instance, the types Requirement and Assumption can be
created from the type Boolean.

type Requirement is Boolean;
type Assumption is Boolean;

User-defined types can be used to define physical or mon-
etary units, the syntax of which is not detailed here. They
enable users to write expressions involving units such as

Pressure P is 1 bar + 1 mbar;

The value of P is computed in the unit system defined by
the type Pressure. An error is raised if the unit is wrong or
omitted.

3.4 Operators and Sets
Anything in CRML is a set or an element of a set. An el-
ement of a set has a fixed value, or a value returned by an
operator. Therefore, the CRML syntax is entirely based
on the notions of sets and functions. A CRML operator is
a standard mathematical function. Two syntaxes are pos-
sible: the traditional mathematical syntax and the natu-
ral language syntax. In the natural language syntax, the
names of user-defined operators are divided into snippets
enclosed between singe quotes, and the input arguments
are placed in front or after each snippet. Names of built-
in operators or user-defined operators in the mathematical
syntax are not enclosed within quotes. As an example,
we define two operators using the natural language syn-
tax: one that generates the set of occurrences of a Boolean
becoming true (this set is a clock), and one that defines the
logical implication operator (the keyword Template can be
used when all input and output arguments are Booleans).

Operator [ Clock ] Boolean b ’becomes true’
= Clock b;

Template b1 ’implies’ b2 = not b1 or b2;

The above operators are invoked as follows:

Clock c is b ’becomes true’;
Boolean b3 is b1 ’implies’ b2;

A CRML set is a standard mathematical set. It is pos-
sible to apply unary operators to a set. This amounts to
applying these operators to all elements of the set as fol-
lows:

Boolean {} b is { n1, n2, n3, n4 } < p;

is equivalent to

Boolean b {} is { n1 < p, n2 < p, n3 < p,
n4 < p };

In this example, the unary operator is x 7→ x < p. It is
also possible to apply a binary operator to a set:

Boolean b is and { n1 < p, n2 < p, n3 < p,
n4 < p };

is equivalent to

Boolean b is n1 < p and n2 < p and n3 < p
and n4 < p;

It is possible to construct subsets by filtering set ele-
ments depending on their properties, as defined for in-
stance in classes of objects.
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3.5 Classes and Objects
CRML is equipped with the notion of class in order
to express requirements on complex objects, which can
be physical subsystems like cooling or heating systems,
physical components like vessels, pumps or heat exchang-
ers, or abstract objects that capture generic notions. For
the sake of the example, we define the abstract class
Equipment that carries requirement R5, which is rewrit-
ten using the CRML syntax.

partial class Equipment is {
external Boolean b1;
external Boolean b2;
Integer n is 3; // De fau l t

va l ue
Time dt is 10 mn; // De fau l t va l ue
Periods P1 is [b1 ’becomes true’, b1 ’

becomes false’];
Periods P2 is [b1 ’becomes true’, b1 ’

becomes false’[;
Periods P3 is [b1 ’becomes true’ or R1 ’

becomes false’, 1 year[;
Boolean R1 is ’while’ P1 ’ensure’ b2;
Boolean R2 is ’while’ P2 ’ensure’
(’while’ P3 ’check count’ (R1 ’becomes

false’) ’<=’ n);
Boolean R3 is ’while’ P1 ’ensure’
((not R1 and b1) ’implies’ (’while’ [R1

’becomes false’,
R1 ’becomes false’ + dt] ’check’ R1));

Boolean R4 is R1 and R2 and R3;
Requirement R5 is ’while’ P1 ’check at

end’
((’probability’ (R4) ’at’ b1 ’becomes

false’) > 99.99%);
};

A partial class cannot be instantiated because it car-
ries partial information that is not sufficient to instanti-
ate objects. Class Equipment is partial because it is not
possible to provide values for b1 and b2 without having
some knowledge about the type of the equipment. How-
ever, requirement R5 will be automatically applied to all
instances of the classes derived from Equipment that are
not partial. Let us now create a new class Pump that de-
rives from class Equipment. Class Pump will inherit all
attributes of Equipment. It is however possible to redefine
(or redeclare) within class Pump the attributes of Equip-
ment that are not suitable to pumps. The operational do-
main for a pump corresponds to the non-cavitation of the
pump: pumps should never cavitate while they are in op-
eration. This can be enforced by redeclaring attribute n
to be a constant integer equal to zero in the class Pump
definition.

class Pump is {
redeclare n constant Integer n is 0;
redeclare R5 Requirement no_cavitation;

} extends Equipment;

In the above statement, requirement R5 is renamed to
no_cavitation for better legibility. Then pumps can be in-
stantiated with the statement

Pump pump is Pump ();

The following statement expresses that all pumps in the
system should never cavitate, no matter the number or
types of the pumps. The fact that class System extends
Equipment means that requirement R5 is applicable to the
system as a whole (provided that the values of b1 and b2
for the whole system can be obtained from a behavioral
model).

class System is {
Pump {} pumps;
Requirement no_cavitation is and pumps.

no_cavitation;
} extends Equipment;

In the above statement, the global no-cavitation require-
ment for all pumps in the system is obtained by taking the
logical conjunction of the no-cavitation requirement for
all individual pumps, that can be of different nature, and
do not need to be known when this statement is written.
Class extension and attribute redefinition can be used in
combination to add and refine requirements in the course
of system design. For instance, if during detailed design
the chosen type for pumps is centrifugal, and if centrifu-
gal pumps come with their own set of requirements, then
a new class DetailedSystem can be derived from the class
System that redefines the set of objects from class Pump
to be a set of objects from a new class CentrifugalPump
that extends class Pump and that carries the additional re-
quirements for centrifugal pumps.

4 Implementation of the CRML tool-
chain

Behavioural models 
(Modelica, SysML, 

FMI)

Requirements
(CRML)

Executable verification model (Modelica, FMI, C, …)

Bindings Test scenarios

Informal 
Requirements

Analysis

Simulation results

Architectural model

Binding
specification

Uses
Refers to

Figure 4. Architecture of the verification model

As illustrated in Fig. 4, the requirements are connected
to the architectural and behavioural models through bind-
ings. The compiler developed in the project translates
CRML to Modelica. This also enables the use of Func-
tional Mockup Itnerfaces (FMI) - a standard for exporting
models for co-simulation supported by many tools. This
means that any behavioural model that can be exported as
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a Functional Mockup Unit (FMU) can be connected to the
requirements model.

4.1 CRML to Modelica Compiler
The compiler consists of two parts, first a grammar is spec-
ified using ANTLR and this is used to generate a parser
for the compiler in Java. This grammar can also be used
to generate parsers for compilers in other languages and
can serve as a more formal specification of the language
syntax.

CRML model

Compile to Modelica

Mapping to predefined CRML blocks in Modelica, 
Modelica model with uninstantiated sets

Pre-compiled sets

Behavioural model

Julia support for dynamic
stryctrures, dynamic

recompilation

Simulation results

CRML predefined
functions

CRML user-
defined

functions

bindings

Compile to FMI

Co-Simulation in OMSimlator

Figure 5. Architecture of the CRML to Modelica compiler

In a second step, the generated abstract syntax tree
(AST) is then traversed to generate Modelica. Many el-
ements of the language can be translated in a straightfor-
ward way, but in this section we will focus on the main
CRML elements that require special consideration (Fig.
5).

4.1.1 4-valued Booleans

In Modelica booleans are two valued, therefore all refer-
ences to booleans and boolean operators need to be con-
verted to a special Modelica type Boolean4. To simplify,
the definitions of this type and of the fundamental logical
operators are given in a library and then calls to this library
are directly generated (Fig. 5).

import CRML.ETL.Types.Boolean4;
model Bool1

Boolean4 b0 = CRML.ETL.Types.Boolean4.
true4;

Boolean4 b1 = CRML.ETL.Types.Boolean4.
false4;

Boolean4 b2 = CRML.ETL.Types.Boolean4.
undecided;

Boolean4 b4 = CRML.Blocks.Logical4.and4(
b1,b2);

end Bool1;

4.1.2 Time dependent functions, templates and oper-
ators

Another big difference in CRML and Modelica is that
in CRML functions can be dependent on time while in
Modelica they cannot. Therefore CRML functions need
to be mapped to Modelica blocks. Built-in functions are

mapped to the predefined blocks in the CRML library and
user-defined Operators and Templates generate new Mod-
elica blocks.

For example the user defined

Template R1 ’xor’ R2 = (R1 ’or’ R2) and not
(R1 and R2);

is translated to the following Modelica snippet:

import CRML.ETL.Types.Boolean4;
model "xor"

input Boolean4 R1, R2;
output Boolean4 out;
"or" "or0"(R1 = R1,R2 = R2);

equation
out = CRML.Blocks.Logical4.and4(_or0.out,

CRML.Blocks.Logical4.not4
(CRML.Blocks.Logical4.and4(R1,R2)

));
end "xor";

And the call to the function is translated to an instanti-
ation of the corresponding block and corresponding con-
nectors. Quotation marks are used around operator names
to distinguish between user defined keywords in CRML
and Modelica keywords.

4.1.3 Sets

CRML is built around the concept of sets which are not
present in Modelica. We distinguish between event sets
that change in size throughout the execution of the pro-
gram, and object sets that are either statically specified or
calculated during the binding process.

Object sets are translated to arrays that are instantiated
during the binding. This can either be done in a semi-
automated manner or manually depending on whether the
behavioural model is in Modelica or FMI.

Since the number of events can potentially be unlim-
ited, event sets need to be mapped to dynamic structures,
also known as Variable Structured Systems that increase
in size as needed.

We have developed OpenModelica.jl (Tinnerholm et
al. 2021), a modular and extensible Modelica compiler
framework in Julia targeting ModelingToolkit.jl and sup-
porting Variable Structured Systems. We extend the Mod-
elica language with several new operators to support con-
tinuous time mode-switching and reconfiguration via re-
compilation at runtime. Our compiler supports the Mod-
elica language as well as these aforementioned extensions.

A special type, a dynamic event array is defined that
relies on the recompilation primitive to grow (or shrink
the array size at runtime). This model is extended to store
specific events.

partial model EventArray
Event events[N];
parameter Integer N=10; // s i z e
Integer i (start = 1); // index

equation
when (i = N) then

recompilation(N, N + 100);
end when;

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204497

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

505



end EventArray;

4.2 Integrating CRML with Architectural and
Behavioral Models

4.2.1 The Binding Mechanism

The most obvious way to bind variables is to fill in their
full pathnames in a connect statement. However, this re-
quires a large amount work from the user if a large number
of external variables are involved. Also, if the models that
provide the values are restructured, the pathnames must
be changed accordingly, inducing work overhead. To sim-
plify the work of binding, the idea is to prepare as much
as possible binding at the class level. Manual binding is
then done at the instance level by connecting together ob-
jects instead of variables. The final binding of individual
variables is performed automatically from the information
provided at the class and instance levels. As information
provided at the class level can be reused for any model,
the amount of manual work to be done for a given model
is on average divided by the number of objects carrying
the external variables. It is also easier to manually bind
objects than variables because objects are much easier to
spot than variables. Therefore, it always requires less ef-
fort to bind objects than variables, even in the worst case
of having no more than one external variable per object.

Figure 6. Binding output information

The output information to be produced to bind external
variables of the requirement model to variables of the be-
havioral models is given in Fig. 6. There are two kinds
of variable bindings: (1) the connections of the input vari-
ables of the observation operators instances to the vari-
ables of the behavioral models, and (2) the connections of
the output variables of the observation operators instances
to the external variables of the requirement model.

The information to be provided by the user in order to
automate binding as much as possible is given in Fig. 7. It
shows that the only information to be provided at the in-
stance level is the correspondence between the objects in
the requirement models and the objects in the behavioral
or architectural models. The only assumption that makes
this procedure possible is that the behavioral and archi-

tectural models are expressed using an object-oriented
methodology, where objects are instances of classes. No
assumption is made on the way connections between vari-
ables are expressed. Binding input and output informa-
tion can be provided in a relational database. Connections
between variables can be expressed using Modelica state-
ments for white-box Modelica behavioral models, or FMI
statements for black-box behavioral models equipped with
an FMI interface.

Figure 7. Automatic binding input information

4.2.2 Bindings to Behavioral Models
For Modelica behavioral models, the CRML model is au-
tomatically translated to a Modelica model by the CRML
compiler. If the behavioral model is a Modelica model,
then it is possible to have bindings using Modelica state-
ments. Then the verification model (cf. Fig. 1) can be au-
tomatically generated as a Modelica model from the bind-
ing output information (cf. Fig. 6) (which itself can be
automatically generated from the binding input informa-
tion).

For black box models we can use the System Structure
and Parametrization standard (SSP) to connect to models
defined in other formalisms provided they can also be ex-
ported as FMUs as illustrated in Fig. 4. SSP connec-
tions can be generated automatically or manually based
on binding specifications.

One difference with when generating bindings for
FMUs is that there is no notion of classes in FMI, only
simple types. Therefore it is impossible to automatically
calculate sets of object of a certain type and they need to
be specified manually.

4.2.3 Bindings to Architectural Models
If the architecture model is given in SysMLv2, bindings
can also be defined in SysMLv2. The idea (shown below
on a simplified example) is to use CRML as the constraint
language to formalize requirements over the attributes of
the requirements element. These attributes can be bound
to attributes of the subject in specialized requirements, es-
sentially defining the binding between variables of the ar-
chitecture and of the requirement. A compiler can then
generate observation operators and requirements models
based on this information whenever the SysML model
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is translated to a computable model for verification (e.g.
Modelica).

4.2.4 Execution of verification models
Having the requirements defined separately and bound
through a technology-agnostic syntax, means that differ-
ent approaches of verifying the requirements agains Mod-
elica or FMU models are possible. For instance proba-
bilistic requirements can be verified through Monte-Carlo
simulation, ensuring for example that failure rates are be-
low a certain threshold. Currently, test scenarios are gen-
erated by hand but in the future, generating test values
based on the behavioural envelopes specified by the re-
quirement models will also be investigated.

requirement def SpeedLimiterReq {
attribute speed : SpeedValue;
attribute limit : SpeedValue;
attribute on : Boolean;
require constraint { language "CRML" /∗

dur ing on ensure speed < l i m i t ; ∗/ }
}
requirement <r1> citySpeedLimiter :

SpeedLimiterReq {
subject vehicle : Vehicle;
attribute :>> speed = vehicle.

currentSpeed;
attribute :>> limit = 50[km/h];

}

5 The Intermediate Cooling System
Use Case

As explained in Section 1, the goal of the CRML initiative
is to support the engineering of complex CPS that are very
often over-constrained by a set of numerous (even conflict-
ing) requirements. The idea is to rely on a shared evalu-
ation toolset that helps stakeholders find the best trade-
offs and foster innovative solutions. The CRML language
and its underlying methodology make the traditional V-
model fully executable and should act as an enabler for
taking appropriate decisions at each step of engineering
projects. Inspired from (Azzouzi et al. 2022), the method-
ology should be seen as an iterative approach whose main
steps are summarized in Fig. 8.

Nuclear power plants are divided into approx. 200 sub-
systems. One of them is called the Intermediate Cooling
System (ICS). The goal of this section is to illustrate how
CRML can help justifying that the ICS properly fulfills its
missions.

Step 0: Identification of System’s Missions The ICS
missions sum up to:

• Evacuate the heat produced by a served systems
when they are in operation (served systems are aux-
iliary equipment such as the alternator or pumps);

• With the use of demineralized water (because water
flowing directly from the cold source -sea or river-
could damage equipment);

• At an acceptable availability rate (the plant must be
shut down if the ICS is unavailable).

Step 1: Formalize the System’s Environment and Its
Interfaces To fulfill its missions, the ICS should phys-
ically interact with the different served systems to be
cooled but also with (Fig. 4):

• A source of demineralized water (SED) to provide
"clean" water to the ICS;

• A source of cold water (SEN) to cool the ICS itself
(here a sea or a river);

• A drain sewer (SEK) in case of ICS leaks;

• A means to communicate with the plant operator
(OP).

Although the ICS is not a large system, it involves
9 stakeholders coming with their own data and require-
ments.

For the engineer in charge of the ICS design, this makes
his/her work even more challenging as it multiplies the in-
formation channels, the sources of potential changes dur-
ing the project and the types of verification studies he/she
needs to produce (i.e. one stakeholder being interested
only by the achievements of its own goals). Formalizing
the different constraints using CRML appears as a means
to gather all these sources of data in a more rigorous and
reproductible way than relying on a one-person expertise.
It also enables the automation of verification tasks and
hence provides more flexibility when input data changes
and design studies must be rerun to assess the impact on
the current solutions.

This formalization step should be performed for each
system (or stakeholder) in interface with the ICS. For the
sake of conciseness, let us focus on two different inter-
faces: the one between the ICS and the served system and
the one between the ICS and the cold-water source.

Contract between the ICS and the served systems
Each served system should have a physical interface with
the ICS to be cooled by its refreshed demineralized wa-
ter. In practice, there should be some physical means such
as a valve at the inlet of a heat exchanger to "activate"
cooling when necessary. In order to leave as many design
options open as possible, we set the expectations on the
served systems as follows: The cooling service should be
provided as soon as the minimum temperature is reached
(because too cold water could damage equipment). Re-
quirements being common to all served systems, they are
modelled in a generic class "Served_system" as follows:

class Served_system is {
[...]
// Miss ion : When the s e r v ed system i s

ope ra t ing , a l l the heat produced
shou ld i n s t a n t l y be evacuated by the
i c s
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Figure 8. The main steps of the CRML methodology (left) leading to a structured set of models (right)

Figure 9. Architecture model of the ICS environment

constant Real epsilon is 0.001; //
t o l e r a n c e

Boolean cool_served_system_0 is
during inOperation ensure 0 <= ics.W -

W <= epsilon
// Requirement : The se r ved system shou ld

not be supe r coo l ed by the i c s ( to
avo id thermal s t r e s s e s ) .

Boolean cool_served_system_1 is
during ics.tRW <= (tRWMin - 0.1 Celsius

) ensure not open; // 0 .1 C e l s i u s
i s a de s i gn margin ( t o l e r a n c e )

// Requirement : The se r ved system shou ld
be coo l ed by the i c s as soon as the
i c s water temperature i s above the
minimum accep tab l e .

Boolean cool_served_system_2 is
during ics.tRW >= tRWMin ensure open;};

"inOperation" is a Boolean indicating whether the
served system is operating, "W" is the power of the served
system, "tRW" is the ICS temperature, "tRWMin" is the
minimum temperature acceptable by a served system,
"open" is a Boolean stating whether the cooling service
should be provided. These requirements are then auto-

matically instantiated when the different served systems
are themselves defined and parameterized.

Contract between the ICS and the cold-water source
The ICS should have a physical interface with the cold
source such as sea or river. To avoid environmental dam-
ages on the fauna and flora, regulations are enacted by a lo-
cal authority regarding thermal effluents. Failure to com-
ply with the regulations forces the plant to be shut down.
In CRML, these requirements are modelled as follows:

class Cooling_system is {
[...]
// Requirement : When the ICS i s ope ra t ing ,

the temperature o f the co ld water
sou rce shou ld

// be below i t s a c c ep tab l e maximum (no
ove rhea t o f the sea or r i v e r ) .

Boolean coldW_ics_1 is
during not (state_stopped or

state_stopping)
ensure sen.tCW <= sen.tCWMax;

// Requirement : When the ICS i s ope ra t ing ,
the temperature i n c r e a s e o f the co ld

water sou rce shou ld
// be below i t s a c c ep tab l e maximum .
Boolean coldW_ics_2 is

during not (state_stopped or
state_stopping)

ensure tWW < (sen.tCW + sen.deltaTMax);
};

"state_stopped" and "state_stopping" are Booleans stat-
ing whether the ICS is respectively stopped or in a stop-
ping state, "tCW" is the temperature of the cold-water
source, "tCWMax" is the maximum acceptable tempera-
ture of the cold-water source, "deltaTMax" is the maxi-
mum increase of temperature of the cold-water source.

Step 2: System Design After having identified and for-
malized the different requirements and constraints, the
ICS engineer imagines some design alternatives. Fig.
10 represents one possible solution modeled in Modelica
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with the use of the open source ThermoSysPro1 library.

Figure 10. Behavioral model of the ICS

During this step, the ICS engineer could add some spe-
cific performance goals such as maintaining the circuit
temperature around a setpoint (here 17 ◦ C) to optimize
thermal transfer in heat exchangers. In CRML, this is ex-
pressed by adding the following requirement in the "Cool-
ingSystem" class:

class Cooling_system is {
[...]
// Kpi : When ope ra t ing , i c s temperature

shou ld be around 17 C e l s i u s
constant Temperature tolerance is 0.5

Celsius;
Boolean kpi_1 is
during inOperation
ensure tRW >= (17 Celsius - tolerance)

and tRW <= (17 Celsius + tolerance)
;

};

Step 3: System Verification Using the concept of bind-
ings, the ICS engineer is then able to compose the differ-
ent models to build a verification model. The purpose is
to check by simulation whether the requirements are sat-
isfied.

Fig.11 shows the simulation results obtained to monitor
the 4-valued Boolean variable "kpi_1". The green curve
is the evolution of "tRW" given by the behavioral model.
"kpi_1" is computed by the CRML model. One can easily
see that the "kpi_1" is not achieved (is false) as soon as
"tRW" goes beyond its tolerance interval.

Although this seems like quite a simple performance
target, it involves the dynamics of the system, so that pos-
sible violations of constraints are difficult to spot and in-
terpret by visual inspection of continuous curves such as
"tRW". The final verdict given by "kpi_1" alleviates this
difficulty.

1URL: https://www.thermosyspro.com/

Figure 11. Simulation results of the verification model to mon-
itor "kpi_1"

Step 4: Design Report Test reports can be customized.
Below is an example that filters the requirements associ-
ated to the served systems only.

model GlobalReports is {
// Conjunct ion o f a l l r equ i r ement s on

Served_system
Boolean globalReport_ForServedSystems is

and flatten filter
(flatten filter sriRequirements

(type element == Served_system)) (
type element == Boolean);};

6 Conclusion and Future Work
A new formal language called CRML (Common Require-
ment Modeling Language) for the modeling and simula-
tion of requirements has been presented. The goal is to
release CRML as an international standard interoperable
with other standards such as SysML, Modelica, FMI and
SSP. The purpose of CRML is to enable different stake-
holders in different disciplines in charge of the design
and operation of complex cyber-physical systems to reach
a formal common agreement in terms of contracts made
of formal constraints, so that they can successfully build,
modify and operate such systems.

The salient innovative features of the language are its
ability to capture all possible constraints on the real sys-
tem, including real-time dependent constraints comple-
mented with probabilities for failure, because no require-
ment can be fulfilled at any time at any cost (the lower
the probability for failure, the higher the cost of the sys-
tem). The language includes the possibility to structure
the system using objects as instances of classes and build
libraries of standard requirements that can be customized
when used to express constraints on particular systems. A
formal definition for the satisfaction of requirements has
been given that uses a 4-valued Boolean algebra. This
algebra provides the framework to combine requirements
together to form high-level generic constraints that can be
stored in libraries for further reuse.

Design can be verified against requirements by cou-
pling, via so-called bindings, requirements models with
behavioral models that capture the dynamic behavior of
the physical system under study. To that end, a CRML to
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Modelica compiler is being developed in the OpenModel-
ica framework that automatically produces the executable
verification models from the CRML models and the bind-
ing specifications (i.e., the way to associate the variables
to be monitored in requirements to the variables that rep-
resent the states of the physical system).

Ways to use CRML within SysML v2 are being ex-
plored. It is believed that CRML will efficiently bridge the
semantic gap between SysML and physical modeling and
simulation, so that digital twins will be more efficiently
used for the engineering and operation of cyber-physical
systems. The reason is that CRML provides a formal way
to translate functional concepts embedded in requirements
models to the various concepts (such as physical concepts)
embedded in behavioral models.

The way to use CRML for the design of a subsys-
tem of a nuclear power plant has been presented. Future
work will essentially bear on providing a graphical design
methodology that will enable designers to specify systems
without explicitly writing CRML code. Such graphical
work will also improve the understandability of CRML
by non-experts and empower the spread of CRML across
different engineering teams.
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Abstract
This article outlines a new approach of the experi-
mental open-source modeling and simulation system
Modia to simulate systems where the number of vari-
ables and equations can be changed after compila-
tion and also during simulation, without having to
re-generate and re-compile the code. Details are given
for heat transfer in an insulated rod, where the dis-
cretisation of the rod is completely hidden from the
symbolic engine. It is discussed how this approach
could also be used in a future version of Modelica
and/or FMI. Furthermore, this feature is also used in
various variants to speed up collision handling in 3D
mechanical systems. For example, by rigidly fixing
an object after it has been gripped, with or without
calculating the elastic response, and thereby dynam-
ically changing the number of degrees of freedom.
Keywords: Modia, Julia, multibody, segmented simu-
lation, heat transfer, collision handling

1 Introduction
Modia (Elmqvist et al. 2021) is an experimental, open
source modeling and simulation system to develop
new approaches to overcome the limitations of declar-
ative, equation-based modeling languages such as
Modelica (Modelica Association 2023). Modia is im-
plemented with the powerful Julia programming lan-
guage (Bezanson et al. 2017). It consists of a set of Ju-
lia packages, in particular of Modia.jl1 for equation-
based modeling à la Modelica and of Modia3D.jl2 for
modeling of multibody systems.

Neumayr and Otter (2023) extend Modia to pro-
cess so called predefined acausal components3. These
model components consist of a (usually small) set of
Modia equations in which Julia functions are called
that contain the core variables and equations of the
components. These variables and equations can ap-
pear and disappear during simulation, without re-

1https://github.com/ModiaSim/Modia.jl, v0.12.0, visited
on 2023-06-13

2https://github.com/ModiaSim/Modia3D.jl, v0.12.0, vis-
ited on 2023-06-13

3Neumayr and Otter (2023) refers to these components as
acausal built-in components. We decided to rename them to
predefined acausal components to be more descriptive.

generation and re-compilation of code and without
knowing in advance which model equations are uti-
lized during such a simulation.

In contrast to this new approach, all previous pro-
posals for systems with variable structure must either
know in advance the entire models for all modes and
switch between these models during simulation, (e.g.,
Mehlhase 2014; Mattsson, Otter, and Elmqvist 2015;
Tinnerholm, Pop, and Sjölund 2022). Or the entire
model is newly processed and code is re-generated
and re-compiled (or interpreted) whenever the equa-
tion structure is changed4, (e.g., Zimmer 2010; Tin-
nerholm, Pop, and Sjölund 2022).

In this article, the novel approach in Modia for
modeling predefined acausal components is demon-
strated with 1D heat transfer in a rod, where the
number of discretization nodes can be changed be-
fore simulation start without re-compilation. It would
also be possible to change the number of discretiza-
tion nodes during simulation.

Modia3D is a more complex predefined acausal
component. It was recently extended to cope with
variable structure systems where the number of de-
grees of freedom can change during simulation, with-
out re-compilation. The core part of this article dis-
cusses how this new feature is used to improve colli-
sion handling as an extension to the elastic response
calculation introduced in (Neumayr and Otter 2019).

Elmqvist et al. (2021, Section 2) describe the
Modia Language, and Neumayr and Otter (2023, Ap-
pendix A) provide a short overview of it. A more
detailed explanation is available in the Modia Tuto-
rial5.

2 Predefined Acausal
Components

Neumayr and Otter (2023) introduce predefined
acausal components which are based on a proposal of
Elmqvist (2022): The equations of an acausal compo-
nent are split into causal and acausal partitions. The
intuition is that the causal partition is always evalu-

4Generated compiled code maybe cached.
5https://modiasim.github.io/Modia.jl/stable/, visited

on 2023-06-13
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ated in the same order, regardless of how the compo-
nent is connected with other components. This parti-
tion is sorted, explicitly solved for the unknowns, and
implemented with one or more functions. In contrast,
sorting and solving of the acausal partition depends
on the actual connection of the component. This par-
tition is kept as a set of equations. Note that, the
figures and some text fragments used below in this
section are from Neumayr and Otter (2023)

In Neumayr and Otter (2023), various variants of
this basic approach are discussed. In particular, (a)
the variables computed in the causal partitions can ei-
ther be still visible in the equation part as proposed by
Elmqvist (2022) or (b) a large part of these variables
is hidden in the functions and do no longer appear
in the equation part. Variant (a) has the advantage,
that index reduction is still possible by differentiat-
ing the functions of the causal partitions. Variant (b)
has the advantage that the causal partition, in par-
ticular the number of its variables and equations, can
be changed after compilation and during simulation.
Variant (b) has the drawback that index reduction is
no longer possible for the causal partitions. Index re-
duction in the acausal partitions is still possible and
is sufficient in many practical cases. However, it is
not possible to use a predefined, acausal component
as an inverse model if implemented with variant (b).
In Modia and Modia3D variant (b) is used.

In Figure 1 the communication structure between
the solver, the sorted and solved equations and the
functions6 of the causal partitions are shown: The
variables of the solver (state vector x and the vector
of event indicators z) are split into an invariant and
a variant part: x = (xinv,xvar) and z = (zinv,zvar).
The dimensions of the invariant parts are fixed before
the simulation starts. The dimensions of the vari-
ant parts, which are contained in the functions of the
causal partitions, can change at events during sim-
ulation. Since xvar,zvar are communicated directly
between the functions and the solver, the symbolic
processing of the equation part of a model is not af-
fected by these variables. Therefore, these variables
can in principle be changed at event times - variables
can be added or can disappear.

This basic approach is demonstrated using the pre-
defined acausal component of Figure 2, which models
heat transfer in a rod with an insulated surface. On
the left and right sides of the rod, thermal connec-
tors a,b are present (called port_a, port_b in List-
ing 1) with potential variables aT , bT (temperatures)
and flow variables aQflow , bQflow (heat flow rates). The
partial differential equation, which mathematically
describes the heat transfer in one dimension is dis-
cretized in space by volumes Vi = ∆x ·A of equal

6These functions have a memory and are therefore no math-
ematical functions.

sorted and solved
equations

functions of
predefined acausal

components

solver
ẋ = f(x, t)
z = z(x, t)

x = (xinv,xvar)

z = (zinv,zvar)

xinv, t xvar, t

ẋinv,zinv ẋvar,zvar

Figure 1. Communication between the solver, the sorted
and solved equations, and the functions of the predefined
acausal components. The state vector x and the event in-
dicators z are split into an invariant and a variant part:
x = (xinv,xvar), z = (zinv,zvar). The variant parts consist
of the states defined and used in the causal partitions of
all predefined acausal components. The dimensions of the
invariant parts are fixed before simulation starts. The di-
mensions of the variant parts can change at events during
simulation.

T1 Ti−1 Ti Ti+1 Tna b
aT bT

aQflow
bQflow

∆x = L/n

Qflow,i = λ
A

∆x


2(aT −T1) i= 0
Ti −Ti+1 i= 1, . . . ,n−1
2(Ti − bT ) i= n

aQflow =Qflow,0

bQflow = −Qflow,n

%cA∆xṪi =Qflow,i−1 −Qflow,i i= 1, . . . ,n
Ti(t= t0) = T0

Figure 2. Space discretized partial differential equation
of one-dimensional heat transfer in a rod with an insu-
lated surface. It is defined with parameters L (length
of rod), n (number of volumes), A (area), % (density), c
(specific heat capacity), λ (thermal conductivity), T0 (ini-
tial value in each volume), states Ti (temperatures in the
center of each volume), thermal connectors a,b with po-
tential variables aT , bT (temperatures), and flow variables
aQflow , bQflow (heat flow rates).

lengths ∆x and identical areas A. In the center of
volume i, a temperature Ti is defined, leading to a
temperature vector T = [T1,T2, . . . ,Tn].

Listing 1. Simple usage of insulated rod InsulatedRod2
with one-dimensional heat-transfer. On the left side it is
connected with a fixed temperature source FixedHeatFlow
with T = 220 °C = 493.15 K, and on the right side with a
fixed heat flow source FixedHeatFlow with Qflow = 0.

using Modia
include (
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"$( Modia.path )/ models / HeatTransfer.jl ")

# Temp. source - rod - heat flow source
HeatedRod = Model(

# temperature source
fixedT = FixedTemperature |

Map(T =493.15) ,

# heat flow source ( Q_flow =0)
fixedQflow = FixedHeatFlow,

# insulated rod with 5 volumes
rod = InsulatedRod2 |

Map(L =1.0, T0 =273.15, nT =5),

# connecting the components
equations = :[

connect ( fixedT.port, rod.port_a ),
connect ( rod.port_b, fixedQflow.port )]

)

# generate and compile Julia code
heatedRod = @instantiateModel ( HeatedRod )

# change to 8 volumes and simulate model
simulate !( heatedRod, stopTime = 1e5,

merge =Map(rod = Map(n=8))

# plot temperatures
plot( heatedRod,

(" fixedT.port.T ", "rod.T"))

In Listing 1, a Modia model is shown with a prede-
fined acausal component InsulatedRod2 of the rod7.
Its left thermal connector port_a has a fixed tem-
perature source FixedTemperature. Its right thermal
connector port_b has a fixed heat-flow source Fixed-
HeatFlow with the default zero heat-flow rate. This
means that, the rod is completely insulated on the
right side and has a fixed temperature on the left
side. Note that, A|B merges model or parameters B
with model A. Command @instantiateModel(Heated-
Rod) symbolically processes this model and generates
Julia code that is translated to executable code. The
simulate! statement changes the discretization, and
thus the dimension of the temperature vector T , from
5 to 8 volumes before simulation starts without a

7This model can be found in Modia, v0.12.0, models/Heat-
Transfer.jl.

Figure 3. Plot of temperatures of heated rod model.

new translation. The plot of Figure 3 is generated
with plot(heatedRod, ...), displaying the tempera-
tures at the temperature source and in the rod vol-
umes.

Listing 2. Modia definition of InsulatedRod2 model.
include (" HeatTransfer / InsulatedRod2.jl ")

InsulatedRod2 = Model (;
# Called once before symb. processing
_buildFunction = Par( functionName =

:( buildInsulatedRod2 !)),

# Called once before new sim. segment
_initSegmentFunction =Par( functionName =

:( initSegmentInsulatedRod2 !)),

# Parameters
L = 1.0,
A = 0.0004,
rho = 7500.0,
lambda = 74.0,
c = 450.0,
T0 = 293.15,
nT = 1,

# Connectors
port_a = HeatPort,
port_b = HeatPort

)

The implementation of the InsulatedRod2 model is
shown in Listing 2. To start with, file Insulated-
Rod2.jl is included containing the definition of a Julia
struct holding the data and the local variables of the
component, as well as some Julia functions. More de-
tails are given below. A standard Modia definition of
the model is then given defining the parameters and
connectors of the component. Contrary, to a stan-
dard Modia component, no equations are present. For
simplicity, no units are used in this model and its as-
sociated functions. However, the actual implementa-
tion of the component in Modia supports units. The
component is a predefined acausal component model,
since the following special parameters are provided at
the beginning of the model, defining functions to be
used for symbolic processing and during simulation:

• _buildFunction: Before symbolic processing be-
gins, the hierarchical dictionary of the root
model to be compiled is traversed and func-
tion buildInsulatedRod2, defined from _build-
Function, is executed for each sub-model it con-
tains. This function (a) defines additional model
variables and equations that are merged with the
corresponding model and (b) returns an instance
of the Julia structure, which acts as the internal
memory of the component.

• _initSegmentFunction: This function is called by
the simulation engine before the root model is
initialized and at each FullRestart event before
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the root model is re-initialized at a new simula-
tion segment. In both cases, all local variables
of the predefined acausal component model (in-
cluding states and zero-crossing functions) must
be redefined, as well as initial values for newly
defined states.

Listing 3. _buildFunction function definition.
# Called once before symb. processing
function buildInsulatedRod2 !( model,..,ID )

model = model | Model(
# Instance of an internal struct
insRod = Var( hideResult =true),

# Dummy return argument
success = Var( hideResult =true),

equations = :[
# copy states into insRod
insRod = openInsulatedRod !(

instantiatedModel, $ID)

# equations at the boundaries
port_a.Q_flow = getGe2 ( insRod )*

( port_a.T - getT1( insRod ))
port_b.Q_flow = getGe2 ( insRod )*

( port_b.T - getTend ( insRod ))

# compute der(T)
success =

computeInsulatedRodDerivatives !(
instantiatedModel, insRod,
port_a.T, port_b.T )

]
)
return ( model, InsulatedRodStruct ())

end

In Listing 3, the implementation of function build-
InsulatedRod2 is shown. In this function, the model
instance (of the actual InsulatedRod2 component) is
merged with additional model definitions consisting
of two variables and several equations. It returns
the merged model. Additionally, the internal mem-
ory of the component is instantiated with Insulated-
RodStruct() and is also returned by buildInsulated-
Rod2!. This internal memory is later identified by the
unique identifier ID, which is specified in the function
call. Function call openInsulatedRod! in the equation
section copies the rod temperatures T from the state
vector of the simulation engine into the InsulatedRod-
Struct memory and returns a reference to it as ins-
Rod. The argument list of this function call includes
the unique identification ID of the predefined acausal
component. It is provided when buildInsulatedRod2!
is called. $ID is inside an Abstract Syntax Tree, due to
:[...] and $ inserts the actual (literal) value at this
place. In Julia terminology this is called “interpola-
tion”. The insRod reference is then used in subsequent
function calls, for example, to retrieve the value of
the first temperature node with getT1(insRod). This

value is used in an equation to calculate the heat flow
from port_a to the first internal node. Finally, com-
puteInsulatedRodDerivatives! computes the deriva-
tives of the temperatures and copies them into the
state derivative vector of the simulation engine. As
can be seen, the equation section is independent from
the number of discretization elements nT. Therefore,
the number of these discretization elements can be
changed without re-generation and re-compilation.

Listing 4. _initSegmentFunction definition.
# Called once before new sim. segment
function initSegmentInsulatedRod2 !(

m, path, ID, parameters )
insRod = get_instantiatedSubmodel (m,ID)

if isFirstInitialOfAllSegments (m)
initFirstSegmentInsulatedRod2 !(

insRod ; parameters... )
end

# Define new states and state derivat.
insRod.T_startIndex =

new_x_segmented_variable !(m,
path*".T", path*".der(T)",
insRod.T, "K")

return nothing
end

The implementation of the _initSegmentFunction
is shown in Listing 4. This function is called be-
fore a new simulation segment is initialized. The first
statement inquires the reference insRod of the inter-
nal memory of the component. Before the first simu-
lation segment, the (evaluated) parameters are stored
in insRod. Furthermore, some dependent parameters
are computed and also stored in this memory. Finally,
new_x_segmented_variable is called to define the name
of a new state, its derivative and its unit together with
the initial value of insRod.T which is the current value
of vector T. It is initialized with parameter T_init in
initFirstSegmentInsulatedRod2!. Note that, even if
the InsulatedRod2 component always uses the same
definition, the states must be newly defined for each
new simulation segment.

Listing 5. Function to compute state derivatives
# Inquire values from InsulatedRodStruct
getT1( insRod ) = insRod.T [1]
getTend ( insRod ) = insRod.T [end]
getGe2 ( insRod ) = insRod.Ge2

# = 2* lambda *A/dx

# Compute and copy state derivatives
function computeInsulatedRodDerivatives !(

m, insRod, Ta, Tb)
T = insRod.T
k = insRod.k # = lambda /(c*rho*dx*dx)
for i in 1: length (T)

insRod.der_T [i] =
k*( T_grad1 ( T,Ta,i ) -
T_grad2 ( T,Tb,i ))
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end
copy_der_x_segmented_value_to_state (m,

insRod.T_startIndex, insRod.der_T )
return true

end

In Listing 5, the most important remaining func-
tions are shown. The state derivatives are computed
and copied to the state derivative vector of the simu-
lation engine with computeInsulatedRodDerivatives!.

Listing 6. Sketch to implement InsulatedRod model as
Modelica ExternalObject.

class InsulatedRodObject
extends ExternalObject ;

function constructor
input Real L, A, rho, lambda, d, T0;
input Integer nT;
output InsulatedRodObject insRod ;
external "C" insRod =

openInsulatedRod ( L,A,rho,lambda,
d,T0,nT );

end constructor ;

function destructor
input InsulatedRodObject insRod ;
external "C"

closeInsulatedRod ( insRod );
end destructor ;

end InsulatedRodObject ;

model InsulatedRod
import H= Modelica.Thermal.HeatTransfer ;
parameter Real L;
parameter Real A;
parameter Real rho;
parameter Real lambda ;
parameter Real T0;
parameter Integer nT =1;

H.Interfaces.HeatPort_a port_a ;
H.Interfaces.HeatPort_b port_b ;

protected
InsulatedRodObject insRod =

InsulatedRodObject (
L,A,rho,lmbda,T0,nT );

Boolean success ;
equation

// equations at the boundaries
port_a.Q_flow = getGe2 ( insRod )*

( port_a.T-getT1 ( insRod ));
port_b.Q_flow = getGe2 ( insRod )*

( port_b.T-getTend ( insRod ));

// compute der(T)
success =

computeInsulatedRodDerivatives (
insRod,port_a.T,port_b.T )

end InsulatedRod ;

Note that, a similar approach could be imple-
mented in Modelica with reasonable effort: The sim-
plest implementation would be to use External Ob-
jects and add additional utility functions (Modelica
Association 2023, Section 12.9.6–12.9.7). These are

equivalent to the utility functions of Modia, e.g., to
add variables at events. These utility functions would
directly communicate with the underlying simulation
engine. If they are available, the Modia example of
the insulated rod could be implemented as outlined in
Listing 6. The main benefit would be that the number
of temperature nodes can be changed after transla-
tion and that the Modelica model consists essentially
of three scalar equations. These equations are inde-
pendent from the number of temperature nodes. The
drawback is that functions openInsulatedRod, close-
InsulatedRod, getGe2, getT1, getTend, computeInsu-
latedRodDerivatives need to be implemented in C.
Note that these would be simple C-functions. For ex-
ample, computeInsulatedRodDerivatives could be im-
plemented as shown in Listing 7.

Listing 7. C-function to compute state derivatives
int computeInsulatedRodDerivatives (

struct M *m, struct InsRod * insRod,
double Ta, double Tb) {

double * T = insRod- >T;
double * der_T = insRod- >der_T;
double k = insRod- >k;
int nT = insRod- >nT;
double k1 = insRod- >k1;

der_T [1] =
k1 *(2*( Ta-T [1]) -(T[1]-T[2]));

der_T[nT] =
k1*(T[nT-1 ]-T[nT ]-2*(T[nT]-Tb));

for (i=2; i < nT-1; ++i) {
der_T[i] =

k1*(T[i+1]-T[i]-(T[i]-T[i-1 ]));
}
copy_der_x_segmented_value_to_state (m,

insRod- > T_startIndex, der_T);
return 0;

}

The eFMI standard (Functional Mockup Interface
for embedded systems, (Lenord et al. 2021)) de-
fines an intermediate language GALEC to transform
acausal models to production code. GALEC is ba-
sically a very small subset of the Modelica language
with some extensions as needed for embedded sys-
tems. The extension also includes a simple form of
member functions. If such member functions were
supported in Modelica, the implementation of prede-
fined acausal components could be done completely in
the Modelica language and without External Objects
or C-code.

Modelica models can be exported in FMI for-
mat (Modelica Association 2022). This includes Mod-
elica models with External Objects. The FMI stan-
dard communicates the values of variables explicitly
with setter and getter function calls. In principle,
it would be possible to add another variable type to
the FMI standard, where internal variables (includ-
ing states) are communicated directly to the solver
and no longer via the setter/getter function calls. If
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such an enhancement were available, the causal par-
tition part of the Modelica model of Listing 6 could
be transformed to an FMU, where the node tempera-
tures would no longer be communicated via the FMI
setter/getter functions and would no longer be visible
in the environment in which the FMU is used. This
would have the great advantage that the number of
variables and equations can be changed during the
simulation.

3 Segmented Simulation and
Collision Handling

Modia3D is a multibody tool for 3D mechanical sys-
tems implemented as a predefined acausal component
of Modia according to section 2. Modia3D is tar-
geted for solvers with adaptive step size control to
compute results close to real physics including colli-
sion handling using the Minkowski Portal Refinement
(MPR) algorithm (Snethen 2008; Neumayr and Ot-
ter 2017) and collision response for elastic contacts
(Hertz 1896; Flores et al. 2011; Neumayr and Otter
2019). Modia3D has a very flexible and modular de-
sign pattern. It is extended (since v0.12.0) to cope
with variable structure systems where the number of
degrees of freedom (DoF) can change during simula-
tion, without re-compilation.

Modia3D offers two kinds of joints: The first kind
of joints contains Modia equation sections with in-
variant variables, including invariant states. These
invariant elements are visible for Modia and cannot
be removed or added during simulation. The inter-
face to the Modia3D functionality is designed to de-
fine differential equations only on the Modia side in
Modia equation sections, so that state constraints can
be defined and index reduction can be performed on
invariant states. The joints of the second kind de-
fine variant variables, including variant states, which
are visible only in the Modia3D predefined acausal
component. These joints can be added or removed
during simulation. For example, an Object3D has an
optional keyword fixedToParent with a default value
of true. In this case, the Object3D is rigidly con-
nected to its parent Object3D. This means it has zero

Figure 4. YouBot gripping or releasing a sphere on a
plate.

degrees of freedom. If the value is set to false, the
Object3D is allowed to move freely with respect to
its parent, meaning it has 6 degrees of freedom and
12 variant states. At events, keyword fixedToParent
can be changed from false to true and vice versa.
Neumayr and Otter (2023, Table 2) define Modia3D
actions which modify the second (variant) kind of
joints and trigger structural changes during simu-
lation, e.g., actionAttach, actionReleaseAndAttach,
actionRelease, actionDelete. The new states (joints)
added during simulation with e.g., actionRelease are
initialized based on the last known position, veloc-
ity, acceleration and rotation. All remaining states
are re-initialized with their last known values. Based
on that, the internal 3D structure is rebuilt and exe-
cuted until another action for a structural change is
triggered. This restructuring is performed with dy-
namic data structures and is extremely fast (< 1 ms).
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Figure 5. States of the sphere. They are equivalent to
the translation of the sphere center in x, y, z direction with
respect to its parent. If the sphere is freely moving, world is
its parent. States can only be displayed if they are present.
If the sphere is rigidly attached to the plate or gripper,
there are no states, and nothing is displayed. The sphere
in Scenario 4 (S4) has no states. Therefore, nothing is
displayed. The states for scenarios 2 and 3 (S2, S3) are
available and are displayed if the sphere is freely moving.
For the absolute position of the sphere center see Figure 6.
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Figure 6. Absolute position of sphere center for the 4
scenarios.

Table 1. Mean x̄ and standard deviation s of the simula-
tion time of all four scenarios (S1–S4) each for n= 12 runs
on a standard notebook8.

x̄ s

S1 7.816 s 0.123 s
S2 7.255 s 0.075 s
S3 6.863 s 0.388 s
S4 0.397 s 0.016 s

In this section, several combinations of segmented
simulation and collision handling are discussed using
a KUKA YouBot robot gripping and transporting a
sphere, see Figure 4. This robot has a 5 DoF arm and
was manufactured in the years 2010–2016. Elmqvist
et al. (2021) model the drive trains and controllers
of the robot in Modia, and the 3D mechanics with
Modia3D.

Four variants of the following transportation sce-
nario are simulated. In all these scenarios, the robot
follows the same trajectory. Initially, the cargo, e.g.,
a sphere, rests on a plate. It is gripped by the robot’s
gripper and transported upwards until it is placed
down again, where it rests on the plate until it is

8Intel(R) Core(TM) i7-9850H CPU @ 2.6 GHz, RAM 32 GB

gripped again. The states of the freely moving sphere
(see Figure 5), if available, and the absolute position
of the sphere center (see Figure 6) are displayed. The
simulation times of all four scenarios are compared in
Table 1.

Scenario 1 (S1)9: The transportation scenario is
modeled with collision handling, compare (Neumayr
and Otter 2023, Scenario 2(b)). This means, the
sphere collides with the plate, as well as with the fin-
gers of the gripper.

Scenario 2 (S2)10: The transportation scenario is
modeled with segmented simulation and collision han-
dling, see Listing 8. DoFs are added or removed dur-
ing simulation: At the beginning, the sphere is rigidly
attached to the plate. Shortly before the gripper
reaches the sphere, the sphere is released (+6 DoF)
and collides with the plate. Shortly afterwards it col-
lides with the gripper. After approximately one sec-
ond, the sphere is rigidly attached to the gripper (-6
DoF). Until the gripper is again close to the plate
to release the sphere (+6 DoF), which collides with
the plate. Collision handling remains on even if the
sphere is rigidly connected to the gripper or plate, as
collisions with other bodies can still occur.
Listing 8. Robot program of Scenario 2. Collision han-
dling is enabled by default. It can be turned off or on
again in all action commands with enableContactDetec-
tion. Scenario 3 is defined, by setting this flag to false, as
indicated in the comment lines.

function robotProgram ( actions )
addReferencePath ( actions, ...)

# 1. attach sphere to plate, -6 DoF
ActionAttach ( actions, " sphereLock ",

" robot.base.plateLock ",
# enableContactDetection = false)

# 2. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to top
# open gripper + move to plate ])

# 3. release sphere off plate, +6 DoF
# it collides with plate and gripper
ActionRelease ( actions, " sphereLock ")

# 4. gripping via collision handling
ptpJointSpace ( actions, [

# grip
# grip + transport a bit ])

# 5. attach sphere to gripper, -6 DoF
ActionAttach ( actions, " sphereLock ",

" robot.gripper.gripperLock ",
# enableContactDetection = false)

# 6. some movement of robot with sphere

9This model can be found in Modia3D, v0.12.2, test/Robot/-
ScenarioCollisionOnly.jl.
10This model can be found in Modia3D, v0.12.2, test/Seg-

mented/ScenarioSegmentedCollisionOn.jl.
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ptpJointSpace ( actions, [
# grip + move to top
# grip + transport
# grip + move near to plate
# open gripper ])

# 7. release sphere off gripper, +6 DoF
# it collides with plate
ActionRelease ( actions, " sphereLock ")

# 8. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to plate ])

# repeat step 1. - 8.
...

end

Scenario 3 (S3)11: The transportation scenario is
modeled with segmented simulation and collision han-
dling. Scenario 3 is very similar to Scenario 2, except
that collision handling is disabled when the sphere is
rigidly connected to the gripper or plate, since in this
scenario it is already known that no further collisions
will occur. This is deactivated with enableContact-
Detection = false in Listing 8. Basically, this means
that the distance calculations between each collision
pair is switched off in these phases.

Scenario 4 (S4)12: The transportation scenario is
modeled with segmented simulation only, compare
(Neumayr and Otter 2023, Scenario 2(a)) and List-
ing 9. Collision handling is switched off for this sce-
nario. This means, the sphere is rigidly attached to
the plate, when resting, and rigidly attached to the
gripper during transportation. Each time the sphere
is rigidly connected to the plate or gripper, the seg-
ment is re-initialized. Since the relative velocity and
angular velocity between the sphere and the gripper
is zero, when the sphere is attached to the gripper or
attached to the plate, the physics is correctly modeled
under the idealized assumption that gripping time is
infinitely small. Basically, this means that gripping
effects are neglected.

Listing 9. Robot program of Scenario 4.
function robotProgram ( actions )

addReferencePath ( actions, ...)

# 1. attach sphere to plate
ActionAttach ( actions, " sphereLock ",

" robot.base.plateLock ")

# 2. some movement of robot
ptpJointSpace ( actions, [

# open gripper + move to top
# open gripper + move to plate
# grip ])

11This model can be found in Modia3D, v0.12.2, test/Seg-
mented/ScenarioSegmentedCollisionOff.jl.
12This model can be found in Modia3D, v0.12.2, test/Seg-

mented/ScenarioSegmentedOnly.jl.

# 3. attach sphere to gripper
ActionAttach ( actions, " sphereLock ",

" robot.gripper.gripperLock ")

# 4. some movement of robot
ptpJointSpace ( actions, [

# grip + transport a bit
# grip + move to top
# grip + transport
# grip + move near to plate
# open gripper ])

# 5. release sphere off gripper
# attach it to plate
ActionReleaseAndAttach ( actions,

" sphereLock ", " robot.base.plateLock ")

# repeat step 2. - 5.
...

end

The simulation time of Scenario 4 is about 19 times
less than that of Scenario 1. This is because Scenario
4 (segmented simulation only) is basically a non-stiff
system where the solver can use large step sizes. In
addition, the time for reconfiguration of the multi-
body system, for gripping and releasing, is negligible.
Fine-tuning of collision handling during transporta-
tion of the gripped freight is no longer required. Fur-
thermore, any type of cargo can be transported, re-
gardless of its shape. The disadvantage is that the
details of the gripping are not modeled, but this can
be important.

Scenario 1 (collision handling only) is a stiff system
because the gripper holds the sphere by elastic con-
tact and friction forces, which change during trans-
port. Therefore, the solver must use much smaller
step sizes. One limitation of collision handling with
the MPR algorithm is that it only supports point con-
tacts. If the cargo would be a box, see (Neumayr and
Otter 2023, Scenario 3(b)), it would not be possible
to calculate a unique point contact that is continu-
ous over time, for example, because one box and one
gripper face or one box and one plate face are paral-
lel to each other during contact. All these considera-
tions lead to a compromise in modeling the gripping
and releasing of the cargo with collision handling, and
otherwise rigidly attaching the sphere to the plate or
gripper, resulting in Scenario 2 and Scenario 3.

There is not such a big difference in simulation time
for Scenarios 1,2,3, see Table 1. In all three cases,
the calculation of the elastic contact response is the
limiting factor. This effect is modeled in all these
cases. In more realistic scenarios, the approach of
Scenario 2 or 3 may pay off, if the number of collision
phases is small relative to the remaining actions.

4 Conclusion
The novel approach of variable structure systems with
Modia/Modia3D seems to be very promising. De-
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pending of the predefined acausal component and the
application one can design (extend) specific actions to
trigger new segments and re-initialize the model. In
this paper, existing Modia3D actions are extended by
enabling or disabling collision handling during simu-
lation, which speeds up the simulation and allows to
model form locked fixing of cargos. Furthermore, an
example was sketched of how the Modelica language
and the FMI standard could be enhanced to allow
the number of variables and equations to be changed
during simulation.

References
Bezanson, Jeff et al. (2017). “Julia: A fresh approach to

numerical computing”. In: SIAM review 59.1, pp. 65–98.
doi: 10.1137/141000671.

Elmqvist, Hilding (2022). Slides 7-10 of Modia – A Pro-
totyping Platform for Next Generation Modeling And
Simulation Based on Julia. Jubilee Symposium 2019: Fu-
ture Directions of System Modeling and Simulation. url:
https : / /modelica . github . io /Symposium2019/ slides /
jubilee-symposium-2019-slides-elmqvist.pdf (visited on
2022-12-04).

Elmqvist, Hilding et al. (2021). “Modia - Equation Based
Modeling and Domain Specific Algorithms”. In: 14th In-
ternational Modelica Conference, pp. 73–86. doi: 10 .
3384/ecp2118173.

Flores, Paulo et al. (2011). “On the continuous contact force
models for soft materials in multibody dynamics”. In:
Multibody system dynamics 25.3, pp. 357–375. doi: 10.
1007/s11044-010-9237-4.

Hertz, Heinrich (1896). On the contact of solids - On the
contact of rigid elastic solids and on hardness. In Mis-
cellaneous papers, MacMillan, 1896, pp. 146–183. https:
//archive .org/details/cu31924012500306, accessed on
2023-01-13.

Lenord, Oliver et al. (2021). “eFMI: An open standard for
physical models in embedded software”. In: 14th Inter-
national Modelica Conference. doi: 10.3384/ecp2118157.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist
(2015). “Multi-mode DAE systems with varying index”.
In: 11th International Modelica Conference, pp. 89–98.
doi: 10.3384/ecp1511889.

Mehlhase, Alexandra (2014). “A Python framework to
create and simulate models with variable structure in
common simulation environments”. In: Mathematical
and Computer Modelling of Dynamical Systems 20.6,
pp. 566–583. doi: 10.1080/13873954.2013.861854.

Modelica Association (2022). Functional Mock-up Interface
Specification - Version 3.0. https://fmi- standard.org/
docs/3.0/.

Modelica Association (2023). Modelica – A Unified Object-
Oriented Language for Systems Modeling, Language
Specification, Version 3.6. https : / / specification .
modelica.org/maint/3.6/MLS.pdf, accessed on 2023-
06-10.

Neumayr, Andrea and Martin Otter (2017). “Collision
Handling with Variable-step Integrators”. In: 8th Inter-
national Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. EOOLT’17. ACM, pp. 9–
18. doi: 10.1145/3158191.3158193.

Neumayr, Andrea and Martin Otter (2019). “Collision
Handling with Elastic Response Calculation and Zero-
Crossing Functions”. In: 9th International Workshop
on Equation-Based Object-Oriented Modeling Languages
and Tools. EOOLT’19. ACM, pp. 57–65. doi: 10.1145/
3365984.3365986.

Neumayr, Andrea and Martin Otter (2023). “Modelling
and Simulation of Physical Systems with Dynamically
Changing Degrees of Freedom”. In: Electronics 12.3.
issn: 2079-9292. doi: 10.3390/electronics12030500.

Snethen, Gary (2008). “Xenocollide: Complex collision
made simple”. In: Game Programming Gems 7. Course
Technology. Charles River Media, pp. 165–178. isbn:
978-1-58450-527-3.

Tinnerholm, John, Adrian Pop, and Martin Sjölund (2022).
“A Modular, Extensible, and Modelica-Standard-
Compliant OpenModelica Compiler Framework in Ju-
lia Supporting Structural Variability”. In: Electron-
ics 11.11, p. 1772. issn: 2079-9292. doi: 10 . 3390 /
electronics11111772.

Zimmer, Dirk (2010). “Equation-based modeling of
variable-structure systems”. PhD thesis. ETH Zurich.
doi: 10.3929/ethz-a-006053740.

Session 5-B: Experimental language designs and implementations related to Modelica 1

DOI
10.3384/ecp204511

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

519



520 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204



MoCITempGen: Modelica Continuous Integration Template
Generator

David Jansen Fabian Wüllhorst Sven Hinrichs Dirk Müller

Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, {david.jansen, fabian.wuellhorst, sven.hinrichs,

dmueller}@eonerc.rwth-aachen.de

Abstract
Modelica enables an object-oriented approach to model
complex systems in product development and research,
and, thus, the development of various model libraries. Li-
brary development requires collaborative development in
a team of multiple developers. A typical challenge in
collaborative development, especially in the area of open
source, is to create models of uniform quality despite
different levels of knowledge among developers. Tech-
niques, such as Continuous Integration (CI) from the field
of software development, can help to solve these chal-
lenges. However, the adaptation of CI for the area of Mod-
elica model development currently requires the manual
creation of complex templates and a high degree of man-
ual configuration. In this paper we present MoCITemp-
Gen, an open source tool for automated generation of CI
structures for Modelica. The tool is succesfully applied on
two Modelica libraries to demonstrate its functionality.
Keywords: Continuous Integration, Modelica testing

1 Introduction
With the progressive use of modeling and simulation,
both in research and in product development, ensuring
the model quality is becoming increasingly important. As
the complexity of systems continues to increase, so does
the number of model developers contributing to libraries
and individual models. The concept of open source can
partially address this problem, as the increased reach en-
ables cross-institutional and cross-company collaboration.
However, this creates communities of sometimes very dif-
ferent levels of knowledge with regard to modeling, which
further complicates compliance with uniform quality cri-
teria. In the university context, where both research as-
sistants and students work together on models, this ef-
fect is partially amplified. Continuous Integration (CI) is
a technique from software development, more precisely
from DevOps, that was first described by Grady Booch
(Booch 1991) and later defined as one of the 12 princi-
ples of extreme programming (Beck 2000). CI processes
in the context of modeling aim to assure the quality of
models. These processes include testing of the produced
code/models in a designated environment. Vasilescu et al.
reviewed 246 GitHub projects that use CI, finding that the

use of CI increases the quality of repositories in terms of
a higher number of reviewed, merged and rejected pull re-
quests (Vasilescu et al. 2015).
As Modelica models and packages are stored as ASCII-
files, the usage of git platforms like GitHub or GitLab
is strongly recommended when developing Modelica li-
braries anyway (Gall et al. 2021). Thus, the application of
CI to Modelica code is not new. For instance, the well-
known modelica-buildings (Wetter et al. 2014) library has
an extensive CI structure based on the BuildingsPy Python
library (Wetter 2019). Over the past few years, we too
have built a comprehensive CI structure for the AixLib li-
brary that partially reuses functions from BuildingsPy and
combines them with self developed functionality (Maier
et al. 2023). However, these approaches are tailored to
the corresponding libraries and their application to other
Modelica libraries is not straightforward. To overcome
this issues, we developed MoCITempGen, an open source
tool that allows to generate a complete Modelica CI struc-
ture based on a few inputs with various testing stages and
functions. With the release of the tool, we want to lower
the hurdle of applying CI structures to Modelica libraries
and thus increase the quality of open source Modelica
modeling projects in the long run.
Before describing MoCITempGen in Section 3, we review
existing CI solutions in Section 2. To demonstrate the
usage of MoCITempGen, we apply it in Section 4 to the
open-source libraries AixLib and BESMod. Subsequently,
we provide a critical discussion about the limitations of
the created CI-structure in section 5.

2 State of the Art
Following, we give an overview of common CI hosts and
infrastructures (2.1), and show which approaches and so-
lutions for applying CI to Modelica already exist (2.2).

2.1 Common CI hosts
In order to take advantage of CI, an appropriate infra-
structure must be used. In the following, we provide a
brief overview about three often used systems, how they
can be deployed, and what costs they generate.
Travis-CI1 offers a standalone CI/CD service, that can be

1https://www.travis-ci.com/
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connected to multiple platforms like GitHub. In the end
of 2020, Travis-CI stopped offering free CI-minutes and
is now only available via priced plans. Even if Travis-
CI is completely open source, there is currently no option
to self-host the service, so using it will always generate
costs.
GitHub Actions2 is a service that was launched in 2018.
It is directly integrated into GitHub and offers 2000 free
minutes of usage per month. There is also the option to
add a self-hosted runner to a repository.
GitLab-CI/CD3 was first released in 2012 and is the inbuilt
CI/CD feature of GitLab. GitLab itself can be self-hosted
without costs, and the GitLab runner can be self-hosted as
well. If self-hosting is not an option for the application,
multiple paid plans for GitLab and its runners exist.
With all self-hosted variants, the costs for providing the re-
spective hardware must, of course, be taken into account.

2.2 Available CI for Modelica
Following, we want to give a short overview about uses of
CI in context of Modelica and the tools that are developed
around it.
Rabuzin et al. introduced a CI workflow for testing Mod-
elica models via OpenModelica and Travis-CI for their
power system library OpenIPSL (Rabuzin, Baudette, and
Vanfretti 2017). Their workflow includes a checking stage
that checks the compliance with the Modelica syntax and
a model validation stage that runs the most current model
implementation against existing simulation results of the
model to verify that results have not changed.
Schoelzel et al. implemented a fine-grained unit and re-
gression test setup to solve the problem of reproducibility
in the context of Modelica models for biology using a CI
pipeline based on GitHub Actions(Schölzel et al. 2021).
Hugues et al. perform not only testing but also integrate
Continuous Deployment (CD) in their pipelines to cre-
ate digital twins in form of Modelica functional mock
ups (FMU) for cyber-physical systems in their project
TwinOps (Hugues et al. 2022).
The Buildings4 library uses an extensive approach with
a combination of Travis CI and GitHub Actions (Wetter
2019). GitHub Actions is used to run different scripts
which check HTML syntax, model order, experiment
setup, existing documentation and much more. As the
job’s runtime is short, developers get direct feedback on
their contributions. Travis CI is used to run regression
tests for different software (Dymola, OpenModelica, and
Optimica). Furthermore, library specific developments
such as the control description language or spawn of en-
ergy plus are tested. Some of these scripts are used in the
IBPSA5 and IDEAS as well. The regression results have
to be generated manually.

2https://github.com/actions
3https://docs.gitlab.com/ee/ci/
4https://github.com/lbl-srg/

modelica-buildings
5https://github.com/ibpsa/modelica-ibpsa

The Open Source Modelica Consortium (OSMC) built an
open source pipeline to test all Modelica libraries included
in their package manager6. For this purpose, all mod-
els that have an experiment stop time are simulated with
OpenModelica and the different process steps are docu-
mented and published in an HTML report.
Furthermore, the Modelica Standard Library also uses CI
processes to ensure the quality of the models.
Additionally, there are several tools that can be used in
a Modelica CI environment. These include, among oth-
ers, the BuildingsPy python package7 library, the model-
ica formating tool modelica-fmt8, the ModelicaPy python
package9, and the regression test package MoPyRegtest10.
Although these tools and their applications already
demonstrate a certain potential of CI in the context of
model development, their use is often limited to the re-
spective libraries. Even if some approaches can be reused,
this often means a manual adaptation to the own library.
From our point of view, this creates a gap that can be filled
with the development of tools that generate CI structures
adapted to one’s own library on the basis of a few input
parameters. Therefore, we present this new tool, which
we call MoCITempGen, in the following section.

3 Methodology
In the following sections, we first provide a nomenclature
about common terms in the context of CI and Modelica
for better understanding (section 3.1). After that, we pro-
vide a brief explanation about the general structure of CI
setup (section 3.2) and then describe the template creation
process (section 3.3). Finally, in section 3.4 we describe
how the developed CI processes work in detail.

3.1 CI-Nomenclature
Before we describe the template generation and the
functionality of the templates, we want to give a short
definition of the common terms for CI in the context of
Modelica for better understanding. Since MoCITempGen
is currently based on GitLab-CI, we use the names and
terms based on the definition of GitLab11. However, most
functionalities and terms of CI pipelines are similar across
the different services. Table 1 provides an overview of the
most important terms for applying CI to Modelica.

Figure 1 shows the CI-setup based on MoCITemp-
Gen12 that can be adapted to any Modelica library. The
MoCITempGen repository holds the template generation

6https://github.com/OpenModelica/
OpenModelicaLibraryTesting

7https://github.com/lbl-srg/BuildingsPy
8https://github.com/modelica-tools/

modelica-fmt
9https://github.com/ORNL-Modelica/ModelicaPy/

10https://github.com/modelica-tools/
MoPyRegtest

11https://docs.gitlab.com/ee/ci/pipelines/
12https://github.com/RWTH-EBC/MoCITempGen
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Table 1. Nomenclature for CI and Modelica terms.

Term Explanation

job Smallest part that holds definition of what to do
script Section in a job definition with actual commands to execute in a job
stage Bundles jobs for specific use case (e.g. testing) and defines the order to execute them
pipeline Top-level definition of a CI workflow
runner Receives the jobs jobs from the CI structure and executes them
variables Central definition of values to use throughout stages and jobs
artifacts Store results of jobs throughout a pipeline and after the pipeline finished
rules Define if a job should be executed or not
extends Reuse a job definition and only overwrite certain parts of it
include Command that allows to reuse the definition of a job in different pipelines
library Collection of reusable modeling components, such as models, classes and functions
package Hierarchical grouping of related components within a Modelica library
whitelist List of models that should be excluded from specific stages

tool that needs to be cloned locally and copied to the
directory of the users Modelica library once for setup.
Subsequently, the template generation will be performed.
The generation process itself will be explained in more
detail later.

3.2 Setup description

The resulting library related CI-structure of templates can
then either be placed directly inside the target Modelica
library (dashed lines) or placed outside in a separate
repository using the include command of GitLab-CI.
The way to store the templates mostly influences how
easy updates of the templates can be deployed. Storing
the templates in a separate repository is recommended
for repositories with intensive development, multiple
developers and therefore multiple branches. In such
repositories, a deployment or update of the CI templates
would otherwise require a merge of the updated templates
back into every branch, because every branch has its own
version of the templates. For smaller repositories with a
small amount of developers, storing the templates directly
with the Modelica code is acceptable as well.
The GitLab runner executes the stages and jobs defined in
the library related CI-structure using the ModelicaPyCI
package we released. This package holds the functionali-
ties which will be described in the following sections.

If the target Modelica Library repository is hosted in
GitLab, the GitLab runner directly interacts with the main
repository and the process is completed. However, any
other Git provider, like GitHub, BitBucket or AWS Code-
Commit can be used by taking advantage of the GitLab
mirroring feature. This way, the target Modelica library
is mirrored into a separate GitLab repository (dotted
objects). For GitHub and BitBucket it is also possible to
display the pipeline status in the target Modelica library
repository.

Figure 1. CI setup, scattered objects are optional, dotted objects
are only needed if not using GitLab as main repository.
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3.3 Templates Generation Process
The template generation is performed via Python using
the Python templating package Mako13. This allows the
dynamic creation of templates based on the respective
Modelica library. The generation process needs informa-
tion about the repository, whether a mirroring process is
required, whether certain models should be excluded from
the CI process, what steps and tasks should be performed,
and whether and how to include manual interaction with
the CI.
To get this information, the setup process is possible
in two ways. The first option is an interactive way,
where the setup process uses command line interaction
and checks the file structure and existing Modelica
packages based on the library structure first and cre-
ates the setup subsequently based on user inputs. The
second option is a configuration based way, where the
user fills out a .toml configuration file in advance.
The latter is more suited to apply adjustments to an
already generated CI-structure as the interactive process
creates the .toml configuration file for later adjustments.

3.4 Template Structure and Functionality
Figure 2 shows a simplified structure of the templates gen-
erated by MoCITempGen. The created template structure
consists of single template file for each stage, which are
combined in a top level gitlab-ci.yml file. Some
jobs are performed separately for every Modelica package
of the library, which can lead to redundant and duplicated
jobs and statements in the CI-structure. These redundan-
cies can be reduced by using a combination of Python to
create the GitLab templates and the extends command
in GitLab-CI/CD. Basic jobs, such as the Modelica check
of a package, only have to be defined once as a base job

13https://www.makotemplates.org/

in the Mako templates. Using for-loops, variables and the
extends command, when exporting the GitLab templates,
the individual jobs are then created for each package and
adjusted by variables for the respective package.
Using the artifact functionality, the results and outputs of
the various tasks and phases can be made available for
download or later publication to provide a more structured
view.
The complete CI-structure, if all stages are selected, is
shown in Figure 3. The script section of each job is com-
parably short, as the functionality itself is outsourced into
an additional Python library that currently comes with the
template generation repository.
Since not all phases should be executed in all scenarios,
we use the implementation of rules in GitLab-CI/CD
to set different triggers for each job. In the current CI-
structure, we use rules in three ways.

1. Trigger specific jobs based on specific commit mes-
sages. E.g. to allow the creation of reference results
through a specific commit.

2. Identify commits on special branches like develop-
ment and main. This allows to handle main and de-
velopment branches different than feature branches.

3. Identify commits on branches with existing pull re-
quest. Same as for special branches.

To exclude specific models from certain stages, we
integrated a whitelist functionality. This is useful, if the
library author is aware that some already existing models
are failing, but this should not impede the development
or integration of new models. In addition, the whitelist
functionality is necessary if the existing library contains
models from other libraries, but does not manage these
itself. In this case, errors in the source library models
should be detected and fixed within this source library
and not lead to failed tests in the extended library. If

Figure 2. Excerpt of the exported templates (simplified).
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these models are not tested, the CI runtime will also be
reduced. This is particularly relevant since the IBPSA
library represents such a library, on which four libraries
are based.
Additionally, an option exists, to allow certain stages to
fail. This may be useful if, for example, the library’s
current status with respect to style checking does not meet
the requirements, but insights into style quality are still of
interest.

3.4.1 Description of Stages

Figure 3 presents the stages of the created CI-structure.
The scattered stages hold jobs which are only executed
under special conditions, while the other jobs are executed
every time. As some jobs currently require a Dymola
installation, we added information about the compatibility
with Dymola and OpenModelica to the figure. Following,
we give a detailed description of each job and stage, its
functionality and its output.
The Regression Result stage is conditional and only
executed if a pull request is opened for this branch. The
executed jobs in this stage will create missingreference
results. This stage is beneficial because manually
creating reference results requires a Python installation
on Linux with BuildingsPy, which raises the hurdle
for creating examples with reference results, especially
for inexperienced developers. To create the reference
results, the developer only needs to add the .mos script
for the simulation model that holds information about
the model to simulate, the experiment settings, and the
variables of the models that should be taken into account

for regression testing. By comparing the existing .mos
scripts with existing regression results, the CI identifies
not existing regression results and creates them. The
resulting reference results are directly pushed to the
branch and a new CI pipeline is triggered that is based on
the updated reference results.
This automated process only creates reference results
that do not yet exist in order to avoid unwanted changes
to reference results. However, the process can also be
used to update existing reference results. To do this, the
developer can delete existing reference results. This way,
new updated reference results are generated throughout
the explained process. This semi-automatic procedure
leaves the sovereignty over the reference results with the
developers and yet simplifies the process.
The Create Whitelists stage creates whitelists if the used
library extends models of another library (e.g. AixLib
extending IBPSA). The stage is only executed, if one of
the listed commit messages in 3 is used.
Modelica uses HTML code for model documentation.
The HTML-Check stage checks the HTML code in
all Modelica files against valid HTML syntax using the
python package PyTidyLib14 and is always executed.
If the check is not successful, due to invalid HTML
syntax, a new branch will be created using an API and
an automatic repair process is performed on the existing
HTML code to fix common errors in the HTML section.
Subsequently, the check is performed again and if the
check succeeds, a merge request is created on the target
Modelica repository with the fixed HTML code. This way
there is still a manual review process, but the Modelica

14http://countergram.github.io/pytidylib/

Figure 3. Stages of the invented CI-structure, scattered stages are conditional.
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user itself does not have to deal with common issues like
unclosed HTML tags.
Next, a Style-Check stage is performed using the Model
Management library of Dymola and runs its inbuilt style
check against the whole library. The checking process
includes three types of checks: class checks, component
checks and general checks. These checks among other
things evaluate if the existing model code holds correct
documentation, descriptions and class names, but does
not perform any checks regarding model functionality. As
the Model Management can only be used by Dymola this
stage is currently limited to the usage of Dymola. The
result of the stage is a HTML-report about the quality of
the checked library that gives detailed insights about the
quality. The report is stored as an artifact which is
available for download.
Subsequently, the Modelica-Check gives detailed in-
sights about the syntactic and logical correctness of the
model code by using the check functionality of Dymola
or OpenModelica. If errors arise, these will be saved to
a log file, which is available via artifacts. The stage is
implemented for both, OpenModelica and Dymola.
The Simulate stage runs all models inside the library
which extend the Modelica.Icons.Example model. This is
useful, because a model might pass the previous checks,
but won’t simulate successful. The stage is available for
OpenModelica and Dymola.
Regression testing stage runs simulation for all models
against their existing regression results using the Build-
ingsPy.
In case of a failure in the regression tests, plots of the sim-
ulation results are created. This stage should allow a fast
identification of which model failed and why by creating
plots of the expected and the new result trajectory using
Google Charts15. The plots will be deployed directly via
an GitLab page and be posted to the GitHub pull request,
see Section 3.4.3
As some jobs, like simulation of the models or regression
testing, are computationally and time intensive, we
implemented the option to only run these jobs for models,
where the source code of the model changed throughout a
commit. By using the git diff feature, we can check
the differences between the target branch and the current
branch and identify the changed models. This function
currently does not consider inheritance and integration
of submodels in other models. This means that if a
single component that is part of multiple models changes,
only the component itself is checked, but not all models
in which it is integrated. For certain events, like the
assignment of a reviewer in a pull request, this option is
disabled and all models, even if not changed, are checked.

15https://developers.google.com/chart

3.4.2 IBPSA Library Specific

In addition to the stages shown and described, there is also
the IBPSA-Merge. This is very tailored to the existing
setup of IBPSA library and extending libraries and
therefore not shown in the general process schema. This
stage allows performing an automatic merge of the source
library IBPSA into the extending libraries like AixLib.
Therefore, the merge script delivered by BuildingsPy is
used. After the automatic merge, a conversion script is
created based on the existing conversion script of IBPSA
and the latest conversion script of the extending library.
Additionally, we add the annotation
__Dymola_LockedEditing to all IBPSA mod-
els, which allows displaying these models as locked
inside Dymola as shown in Figure 4. This is very useful
to prevent changes to Modelica models that are not part of
the extending library, which would lead to merge conflicts
when performing the next IBPSA merge.

3.4.3 Interfacing and Communication

Automating tasks like the IBPSA merge, or the creation of
reference results, can save a lot of time when maintaining
a Modelica library. But not all tasks can be completely
automated and even if a complete automation is possible,
the results need to be communicated with the library users.
To fulfill the need for communication, we use the GitHub
REST API. If using GitHub as the main repository, the
GitHub REST API allows writing messages via a bot ac-
count which give feedback and instructions. E.g. in case
of failed regression tests, the GitLab page with plots of
the simulation results will be linked to the corresponding
pull request, so that the user can directly see which mod-
els are failing and might also be able to identify why the
simulation results differ from the regression results.

4 Exemplary Application on Two Li-
braries: AixLib and BESMod

In the following sections, we provide insights into how
we implemented a working CI infrastructure at our insti-
tute (4.1) and show the application of the developed CI
infrastructure to two libraries: AixLib (4.2) and BESMod
(4.3).

Figure 4. Locked IBPSA components in AixLib library.
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Figure 5. CI-infrastructure at RWTH in Aachen.

4.1 Setup at RWTH in Aachen
The used setup at our institute in Aachen is shown in Fig-
ure 5. We have a public available GitHub organization that
hosts both later described libraries AixLib and BESMod.
Both libraries are mirrored to our university GitLab in-
stance, where we have a specific subgroup for mirrored
projects. The jobs are executed by a scalable GitLab run-
ner, provided through the GitLab runner docker image and
Kubernetes. The Runner setup is hosted on our internal
cloud service OpenStack. Both AixLib and BESMod hold
a gitlab.ci-yml file. In case of AixLib this links to
another GitLab repository, where the template structure,
created by MoCITempGen is stored in a separated branch.
This way, we can easily implement changes to the CI, by
simply updating the external repository branch of the tem-
plates. For BESMod the created templates are stored di-
rectly in the repository in the bin folder.

4.2 AixLib
The development of MoCITempGen took place on the ba-
sis of AixLib (Maier et al. 2023). A brief explanation of the
application of MoCITempGen at AixLib has already been
given in this previous paper. The template generator was
developed based on the existing CI of AixLib and general-
ized so that it can be applied to other Modelica libraries.

To show that the concept of MoCITempGen works, we
opened a demonstration pull request16 in the AixLib and
provoked the CI to perform to give two examples of how

16https://github.com/RWTH-EBC/AixLib/pull/1389

the CI works and interacts with the modeler.
The second example is a failing regression test,
that was provoked by changing the scaling fac-
tor for the heat pump model in the example
AixLib.Fluid.HeatPumps.Examples.-
HeatPump. Due to the changes to the model, the
regression test stage fails and the ebc-aixlib-bot posts a
comment into the pull request and links the GitLab page
with the plots showing the differences between existing
regression results and new results. A screenshot is shown
in Figure 6a. The second example is the creation of
new reference results. Therefore, we deleted the existing
results and pushed them to the branch. The CI notices
a missing reference result for an existing simulate and
plot .mos script and creates new results, pushes them
to the branch, and informs about the new created results
inside the pull request with a link to the GitLab page with
plots of the new reference results (see Figure 6b). Further
information about the usage of AixLibs CI can be found
in the AixLib-Wiki17.

4.3 BESMod
Contrary to the AixLib, the library BESMod is not an ex-
tension to the library IBPSA. Rather, it uses currently ex-
isting libraries, such as the IBPSA, Buildings or AixLib.
Thus, to load the BESMod in the CI, installation of these
additional requirements is necessary. GitLab-CI offers
before-scripts to execute specific commands prior to the
actual script. Before generating the CI configurations us-
ing MoCITempGen, adding an additional line for require-
ment installation to the before-script section in the .txt
template files was required. Afterwards, all features of the
CI were directly accessible and useable, even for a more
complicated setup, as is the case in BESMod. In summary,
while smaller adjustments may be necessary to a specific
library, MoCITempGen decreases the CI setup time drasti-
cally.

5 Discussion
The presented methodology was successfully applied to
two Modelica libraries. Even though the template creation
tool was developed with the goal of high flexibility, there
are currently still some requirements. These requirements
are:

1. the target Modelica library must be hosted in or mir-
rored to a GitLab repository,

2. a GitLab runner must be configured (via SaaS or by
hosting an own),

3. for jobs that need a simulation environment, either an
OpenModelica or Dymola image must be provided

4. in case of using Dymola, a Dymola license is re-
quired

The limitation to GitLab repositories can be circumvented
by using the GitLab mirroring function in section 3 which

17https://github.com/RWTH-EBC/AixLib/wiki/
GitLab-CI
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(a) New and existing results for failed regression test. (b) New regression results created by CI process.

Figure 6. Example of AixLib CI for regression testing.

allows applying the presented approach to GitHub, Bit-
Bucket or AWS CodeCommit. The required GitLab run-
ner can be self-hosted without requiring to pay any ser-
vice as described in section 2. However, the presented
version of MoCITempGen currently enforces the use of
GitLab-CI/CD in the background, which requires famil-
iarization with the GitLab-CI/CD syntax and runner in-
frastructure. Furthermore, as described in section 3, some
stages need Dymola, or at least OpenModelica. Dymola
requires a paid license. OpenModelica on the other hand
is open source and already offers public available images
on DockerHub18. But currently, not all stages are com-
patible with OpenModelica. Therefore, we are aiming to
make all stages available via OpenModelica in the future.
Additionally, there are further possibilities for improve-
ment. E.g., the outputs of the different stages are not uni-
form. Some stages output log files, others HTML-reports,
others files to download. This could be unified with a cen-
tral report, which holds all relevant information.

6 Conclusion and Outlook
This paper gives an overview of CI applications in the con-
text of Modelica and presents the tool MoCITempGen that
aims to facilitate the use of CI for authors of Modelica
libraries. The tool and the underlying methodology are
explained, and the application of the tool on two Mod-
elica libraries is shown. Even though we have applied
MoCITempGen to two libraries in the context of the build-
ing energy efficiency sector, it is also possible to apply it
to other libraries from other domains.
In order to increase the application possibilities and to sup-
port different repository architectures, we want to extend
the tool in the future. This concerns on the one hand the
support of OpenModelica in all stages, in which a simu-
lation environment is used. On the other hand, the export
format of the templates will be extended so that templates
for GitHub Actions can also be exported in the future.
This is especially useful since GitHub Actions also sup-
ports the possibility of self-hosted runners.
Furthermore, we want to increase the flexibility and main-

18https://hub.docker.com/r/openmodelica/
openmodelica/tags

tainability by separating the Python library from the tem-
plate generation tool.
Eventually, the goal is to unify the various existing ap-
proaches to CI in the context of Modelica and make them
available across use cases.
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Abstract
Membrane humidifiers are commonly used in mobile pro-
ton exchange membrane (PEM) fuel cell systems to hu-
midify the fuel cell supply air with the purpose of prevent-
ing the fuel cell membrane from drying out. In this paper,
a humidifier model based on the number of transfer units
(NTU) approach is set-up in Modelica, calibrated and val-
idated using measurements of a test rig. The mass transfer
model of our humidifier model is extended with a first or-
der transfer function to capture dynamic operation. In a
first step, the model is evaluated for steady state operat-
ing conditions. Second, the developed membrane humid-
ifier model is simulated with dynamically changing oper-
ating conditions that are typical for mobile applications.
Those simulation results are then compared to measure-
ments. The aim of our study is to evaluate the accuracy
of the humidifier model under various operating scenar-
ios. Our results indicate that the NTU model is suitable
to predict the water transfer under steady and dynamically
changing operating conditions with low deviations to mea-
surements.
Keywords: membrane humidifier, dynamic simulation,
NTU, PEM fuel cell

1 Introduction
To ensure a high efficiency and a long lifetime of a Pro-
ton Exchange Membrane (PEM) fuel cell it is necessary
to keep the membrane hydrated (Brandau, Heinke, and
Koehler 2016; Ozen, Timurkutluk, and Altinisik 2016;
Wu et al. 2020). This goal can be achieved by humid-
ifying the supply air of the fuel cell. For this purpose,
a membrane humidifier that transfers water along a con-
centration gradient from the wet fuel cell exhaust gas to
the supply air can be used (Brandau, Heinke, and Koehler
2016). Alternative humidification methods are discussed
in the literature but membrane humidifiers are considered
a well-suited solution for the humidification of PEM fuel
cells (Chen, Li, and Peng 2008). In automotive applica-
tions the operating conditions of such membrane humidi-
fiers vary dynamically. Most of the studies in the literature
focus on steady state operating conditions when assessing
membrane humidifiers, e.g. (Cahalan et al. 2017; Nguyen,
Vu, and Yu 2021; Pollak et al. 2023). A previous study

(Pollak et al. 2023) investigated the same type of humidi-
fier as discussed in our work, but focuses on detailed CFD
model that is not suitable for system simulations with tran-
sient operation due to its long calculation times. Only few
studies discuss transient operation of membrane humid-
ifiers (Chen, Li, and Peng 2008; Park, Choe, and Choi
2008; Yun et al. 2018; Vu, Nguyen, and Yu 2022). Three
of them do not compare their simulation results to experi-
mental data (Park, Choe, and Choi 2008; Yun et al. 2018;
Vu, Nguyen, and Yu 2022) and the fourth uses liquid wa-
ter instead of a wet air flow as humidity source (Chen, Li,
and Peng 2008).

The first aim of our study is to fill the existing gap of
measurement data for the validation of transient operation.
Moreover, we use our data to analyze if an NTU model
is suitable to represent the dynamic operation accurately.
Therefore, we first set up a model of a hollow fiber humid-
ifier in Modelica based on the NTU method for mass ex-
changers as proposed by Brandau et al. (Brandau, Heinke,
and Koehler 2016) and extend this approach with a first
order transfer function in the mass transfer model. The
purpose of the introduced first order transfer function is
on the one hand to describe the dynamics of mass transfer
and on the other hand to break potential non-linear sys-
tems in the mass transfer model. We use measurement
data from a test rig to calibrate and validate the model for
steady state and transient operating conditions. Further-
more, the calibration results of the model are compared
to the results of a computational fluid dynamics (CFD)
model of the same humidifier that was developed in a pre-
vious study (Pollak et al. 2023). The motivation for using
Modelica to develop the humidifier model is the possibil-
ity to describe the humidifier model in an object-oriented
way. This allows essential aspects such as the calculation
of the mass transfer coefficient or the NTU characteristic
to be described and modified as a replaceable submodel.
This results in a high flexibility of the model, while the
model code remains lean and understandable. A further
advantage is that the governing physical laws can be writ-
ten as equations in Modelica with variables whose phys-
ical units can be easily defined and checked. Moreover,
the developed humidifier model integrates well into sys-
tem simulation models with various operating conditions
like PEM fuel cell systems.
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The structure of our paper is as follows. In the follow-
ing section, the working principle and the main features
of the hollow fiber humidifier are introduced. Next, the
test rig used for the measurements is presented. The third
section discusses the modeling of the humidifier. It is fol-
lowed by a section focusing on the steady state and dy-
namic simulation results.

2 Measurement of Hollow Fiber Hu-
midifier

In this section, the general working principle of a mass
exchanger is described. Moreover, the geometry of the
investigated humidifier is introduced and its main features
are presented. Second, the configuration of the test rig and
the measured quantities are explained briefly.

2.1 Working principle

ṁPerm

ṁ'a
X⃗'a

ṁ'b
X⃗'b

ṁ''a
X⃗''a

ṁ''b
X⃗''b

a

b

β e
ff
A

Figure 1. Sketch of a general mass exchanger that transfers
mass from one stream to another. The vector X⃗ represents the
state of the fluid at the depicted locations.

In this study, the hollow fiber membrane humidifier is
investigated as special type of a mass exchanger. A sketch
showing the most important quantities of such a mass ex-
changer is depicted in Fig. 1. All inlet quantities are de-
noted by □′ whereas outlet values are marked as □′′. Typ-
ically, two mass flows enter a membrane humidifier. Both
mass flow rates are altered due to the vapor transfer taking
place inside the humidifier. Finally, two mass flows leave
the mass exchanger. The mass transfer inside the mass ex-
changer is driven by a concentration difference according
to Fick’s Law. An effective mass transfer coefficient βeffA
describes the ability of a device to transfer certain species.
The mass transfer coefficient depends on the geometry, the
used materials and the state of the depicted fluid flows (cf.
Fig. 1). In a membrane humidifier a semipermeable mem-
brane is used that poses a low resistance to water transfer
but a high resistance to the transfer of other species. De-
pending on the inlet concentrations, the mass transfer can
either occur from side A to B or from B to A. To achieve

high water transfer rates membrane humidifiers are typi-
cally operated in counter- or crossflow arrangement.

2.2 Description of the Hollow Fiber Mem-
brane Humidifier

In Fig. 2 a sketch of a hollow fiber humidifier geometry
is shown. Only 12 fibers are depicted in Fig. 2 to high-
light the geometric features and flow situation. As shown
in Fig. 2, we investigate a counterflow arrangement of
wet and dry air flows. As depicted in Figure 2, the wet air
stream flows through the fibers, whereas the dry stream
is fed to the shell. As a result of the manufacturing pro-
cess, the fibers are placed randomly inside the shell. The

lF

Dry InletDry Outlet
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u
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Potting
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dH
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Figure 2. Geometric features of the modeled hollow fiber hu-
midifier. The fibers are shown in light gray and the shell side
with white background. The humidifier operates in counterflow,
as seen in cut view A-A. A detailed view of a fiber is given in
detail view B. Adopted from (Pollak et al. 2023)

investigated humidifier is available from the company Fu-
matech (FUMATECH BWT GmbH 2019) and was inves-
tigated using a CFD model and simulation in a previous
study (Pollak et al. 2023). The material of the hollow fiber
membranes is undisclosed by the manufacturer (Pollak et
al. 2023). The relevant geometrical data of the fibers and
the housing are given in Table 1.

2.3 Description of the Test Rig
The test rig is used to investigate the mass transfer of
membrane humidifiers at various operating conditions. On
the test rig, the same boundary conditions as in the simu-
lation can be varied in their respective limits as described
for the model (see Section 2.4).
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Table 1. Parameters of the investigated hollow fiber membrane
humidifier geometry.

Quantity Symbol Unit Value

Number of fibers nF 1 488
Fiber outer diameter dF,o mm 1
Fiber inner diameter dF,i mm 0.9
Fiber length lF mm 150.8
Housing inner diameter dH mm 39.2

The water transfer is calculated using either sensor val-
ues of the dry side:

ṁH2O,dry,perm = ṁ′′
dryξ

′′
H2O,dry − ṁ′

dryξ
′
H2O,dry (1)

or using the sensors used on the wet side:

ṁH2O,wet,perm = ṁ′
wetξ

′
H2O,wet − ṁ′′

wetξ
′′
H2O,wet (2)

A steady-state operating point is only considered when the
water transfer rates of wet and dry side match within a
tolerance of 5 %. For calibration and validation of the
models, both results are averaged.

A P&ID showing the humidifier test rig can be found
in Figure 3. The sensors used in our test rig and their re-
spective uncertainties are given in Table 2. Based on those
uncertainties the error propagation is calculated according
to the guideline (Joint Committee for Guides in Metrology
(JCGM) 2008).

Air is fed to the test rig from a pressurized air storage
tank. Behind the air storage, the air flow is split into two
streams: one for the wet and one for the dry side. The
wet path simulates the exhaust gas from the fuel cell and
the dry path the air supplied to the humidifier. A control
valve at the inlet of each path is used to adjust each the
wet and dry air mass flow rates, respectively. Next, both
air streams are heated up by electrical heaters to reach
an operating temperature typical for membrane humidi-
fiers used in PEM fuel cell systems. The pressure of both
streams can be controlled individually by two valves lo-
cated at the outlet of the air paths. Vapor is fed from a
vapor storage tank through a controlled valve to achieve
the desired inlet humidity of the wet air stream. The tubes
of the vapor supply line are heated to avoid condensation,
which is required to get valid measurement results. The
availability of heaters on all tubes is important because
the humidity sensors installed can only measure water in
gaseous form and therefore condensation has to be pro-
hibited. If condensation of water occurs, the water trans-
fer rates measured on the dry and wet side deviate from
each other. Thus, the water transfer rates are continuously
checked during the measurement.

2.4 Inputs and Parameters
The water transfer in the humidifier is governed by the in-
let conditions of the wet and dry flow and the mass transfer
capability. To mimic the operation in a fuel cell system,
the following quantities can be adjusted:

• mass flow rates of both, dry and wet, streams;

• temperatures of both, dry and wet, streams;

• pressures of both, dry and wet, streams;

• relative humidity of the wet stream.

The parameter limits for the boundary conditions are
listed in Tab. 3. Since both mass flows are conditioned
to have nearly same temperature and the humidifier is iso-
lated against the environment, heat transfer is considered
to be of negligible effect.

Since the membrane permeability is not disclosed by
the manufacturer it is considered to be a calibration pa-
rameter of the humidifier model that must be identified by
a calibration process using the measurement data. This
calibration result is than compared to a fitting result of a
previous study that used a CFD model (Pollak et al. 2023).

3 NTU Membrane Humidifier Model
for System Simulations

The humidifier models discussed in this study
are set-up using the commercially available
Modelica libraries TIL, TILMedia and the
TIL3_Addon_HydrogenEnergySystems each in ver-
sion 3.13.0 (TLK-Thermo GmbH 2022). Dymola 2023x
is used as modeling and simulation environment (Dassault
Systèmes SE 2022a). A novelty of our approach is to
use a first order transfer function in the mass transfer
model. The introduction of a first order transfer function
for the permeating mass is motivated on the one hand nu-
merically and on the other hand physically. A numerical
benefit of the introduced state is that non-linear systems
can be eliminated. From a physical perspective the first
order transfer function can be used to reflect the dynamics
of the mass transfer, which is commonly disregarded in
mass exchanger models.

3.1 NTU Humidifier Model
The developed humidifier model is built upon the NTU
approach as derived by Brandau et al. (Brandau, Heinke,
and Koehler 2016) and derived from the class available
in TIL3_Addon_HydrogenEnergySystems (TLK-Thermo
GmbH 2022).

An overview of the humidifier model with its replace-
able submodels and records, the used ports and the objects
for thermophysical property calculations is displayed in
Fig. 4. The model consist of two air paths (a and b). Both
paths are separated by the membrane that is visualized as
a dashed line in Fig. 4. Path a is connected to the outside
by two connectors, Aa and Ba. Just like path a, path b has
two connections to the outside Ab and Bb. The model can
handle flow from port A to B and vice versa in both paths.
At each port a gas object is located (cf. Fig. 4) that is used
to calculate the thermophysical properties of the gas mix-
ture at the ports. In both paths a replaceable model for
the pressure drop is applied. Since no pressure drop ∆p is
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Figure 3. Piping and instrumentation diagram of the test rig used for the investigation of the water permeation in the hollow fiber
membrane humidifier at various inlet conditions (Pollak et al. 2023). Flow (F), temperature (T), moisture (M) and pressure (P)
sensors are installed. Control variables are marked by a ‘C’. Pressure difference measurements are marked with a ‘PD’.

Table 2. Used sensors and their measurement uncertainties.

Sensor Measured Quantity Output Unit Uncertainty

Vaisala HMT-337 Humidity % ±(1.5+0.015ϕ)
Omega FMA-1609A Mass flow rate g/s ±(0.008ṁ+0.00204)
Omega PXM459 Differential pressure Pa ±56
WIKA P-30 Pressure bar ±0.068
WIKA TR-40 Temperature K ±0.15+0.002(T −273.15)

Table 3. Limits of the boundary conditions for simulation and
measurement of the membrane humidifier. The values of water
mass fraction apply to the wet side only.

Parameter Minimum Maximum
Temperature 60 ◦C 80 ◦C
Pressure 1.5bar 2.0bar
Air flow rate 0.2 g/s 0.7 g/s
Water mass fraction 0.027 0.172

investigated in our study, the pressure drop is set to zero.
The same is true for the heat transfer, therefore the heat
transfer coefficient α is also set to zero. The calculation
of the overall mass transfer coefficient βeff is discussed in
Sec 3.2. In the top right of Fig. 4 a record storing the ge-
ometry information of the humidifier is depicted.

The NTU approach for mass exchangers is formulated
in analogy to the well known NTU approach for heat ex-

changers (Brandau, Heinke, and Koehler 2016). Three di-
mensionless numbers are derived from the inlet quantities
given in Fig. 1 to describe the mass transfer between two
fluid flows in the NTU model. The three dimensionless
numbers described by Brandau et al. (Brandau, Heinke,
and Koehler 2016) are the mass transfer efficiency, the ra-
tio of volume flow rates and the number of transfer units.
These three dimensionless numbers can be formulated for
the dry and wet side of the humidifier, respectively. To cal-
culate the results, only one set of the three dimensionless
numbers must be calculated and is denoted by the sub-
script a in the following. The first dimensionless number
is the mass transfer efficiency:

ηa =
c′′a,H2O − c′a,H2O

c′b,H2O − c′a,H2O
(3)

It describes the ratio of actual mass transfer to the theo-
retically possible mass transfer. Additionally, the ratio of
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Geometry

BaAa

BbAb

Figure 4. Overview of the humidifier model with submodels,
ports and objects for property calculations.

volume flow rates is required:

V FRa =
V̇ ′

a

V̇ ′
b

(4)

Finally, the Number of Transfer Units (NTU) can be de-
fined:

NTUa =
βeffA
V̇a

(5)

To achieve high mass transfer efficiencies, the humidi-
fier operates in counterflow. The following equations de-
rived by Brandau, Heinke, and Koehler (2016) are used to
calculate the mass transfer efficiency:

ηa =


NTUa

1+NTUa
, if V FRa = 1

1−exp[(V FRa−1)NTUa]
1−V FRa exp[(V FRa−1)NTUa]

, otherwise
(6)

The transferred water is than calculated based on the
mass transfer efficiency and the inlet quantities:

ṁperm,H2O = MH2Oηa(c′b,H2O − c′a,H2O)V̇
′
a (7)

In order to allow a fitting of the suggested model to tran-
sient data and to break non-linear systems, a first order
transfer function is introduced that can be selected by the
user (TLK-Thermo GmbH 2022). The mass transfer dy-
namics are caused by a combination of effects i.e. sensor
delay and the residence time of supplied water in the hu-
midifier. In our approach, the ratio of permeation rate and
the smaller air mass flow rate at a given time is introduced
as state variable:

Ξ =
ṁperm,H2O

min(ṁ′
a, ṁ′

b)
(8)

Ξstate is introduced as state variable as motivated above
to describe the dynamics of the mass transfer process de-
fined by the equation

dΞstate

dt
=

Ξ−Ξstate

τperm
(9)

The permeation rate ṁperm,H2O,state that includes the in-
troduced dynamics is than calculated using the following
equation:

ṁperm,H2O,state =

{
Ξstateṁ′

a if ṁ′
b ≥ ṁa

Ξstateṁ′
b otherwise

(10)

The advantage of using Ξstate instead of a state for the per-
meation rate ṁperm,H2O is that Ξstate is not directly linked
to the inflowing mass flow rate ṁ′

a, but takes both air mass
flow rates into account. It is linked to the smaller mass
flow rate min(ṁa, ṁb) so that the permeation rate cannot
exceed the capacity of the smaller mass flow. Thus, the
model becomes more robust. This is especially important
for dynamic changes, e.g. when one of the mass flow rates
is decreased dramatically.

If no first order transfer function is used, the following
equation holds:

ṁperm,H2O,state = ṁperm,H2O (11)

The calculated permeation rate is than introduced in the
balance equations for mass and species. Those balance
equations are formulated separately for each path. The
mass balances of both paths are connected with the per-
meation rate and read:

ṁ′′
a = ṁ′

a − ṁperm,H2O,state (12)
ṁ′′

b = ṁ′
b + ṁperm,H2O,state (13)

Furthermore, the water balances for both paths read:

ṁ′′
a,H2O = ṁ′

a,H2O − ṁperm,H2O,state (14)

ṁ′′
b,H2O = ṁ′′

b,H2O + ṁperm,H2O,state (15)

The mass transfer is accompanied by an enthalpy flow
that is calculated using the inlet states and the previously
discussed permeation rate:

Ḣperm =

{
ṁperm,H2O,state ha if c′a,H2O ≥ c′b,H2O

ṁperm,H2O,state hb otherwise
(16)

The enthalpy flow rate of the permeation flow is included
in the energy balance equation of both paths:

Ḣ ′′
a = Ḣ ′

a − Ḣperm (17)

Ḣ ′′
b = Ḣ ′

b + Ḣperm (18)

Furthermore, a heat transfer rate can be calculated in the
model, too, but is not discussed here due to the selection
of nearly isothermal operating conditions.
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3.2 Mass Transfer in the Membrane Humidi-
fier

To calculate the NTU in the presented model, the overall
mass transfer coefficient is required. The calculation of
this mass transfer coefficient takes place in a submodel,
which can easily be replaced and adapted. In general, the
effective mass transfer coefficient is the reciprocal of the
overall mass transfer resistance:

βeffA =
1

Reff
(19)

This effective mass transfer resistance can be split in three
parts that are connected in series as given in:

Reff = Rconv,wet +Rmem +Rconv,dry (20)

The first term on the right-hand side describes the convec-
tive resistance to the mass transfer in the wet flow. Sec-
ond, the membrane poses a resistance to the mass transfer.
This membrane resistance is much lower for vapor than
for other gas components. Therefore, we assume that only
vapor is transferred in the humidifier. Last, another con-
vective resistance is present on the dry side.

Both convective resistances are calculated using Sher-
wood correlations that were empirically determined in the
literature (Costello et al. 1993; Gnielinski 2010). Using
the determined Sherwood numbers, the mass transfer co-
efficients for the convective transfer can be calculated:

βi =
ShDH2O,Air

lch
(21)

For the calculation of the Sherwood number of wet air
flow inside the fibers, the well known correlations for heat
transfer in tube are adapted from Gnielinski (2010):

Shwet = [Sh3
wet,1 +0.73 +([Shwet,2 −0.7)3]1/3 (22)

Shwet,1 = 3.66 (23)

Shwet,2 = 1.615
(

ReSc
dhyd

lF

)1/3

(24)

The hydraulic diameter equals the inner diameter of a
single fiber. On the other hand, the shell side is more com-
plicated due to more complex flow phenomena. Costello
et al. (1993) proposed the following correlation that in-
cludes the packing density Φ :

Shdry = (0.53−0.58Φ)Re0.53Sc0.33 (25)

This correlation is also used by Vu, Nguyen, and Yu
(2022) to model the shell side convective mass transfer of
a hollow fiber humidifier. The packing density is defined
as ratio of shell cross sectional area to the cross sectional
area occupied by the fibers:

Φ =
nF d2

F,o

d2
H

(26)

The mass transfer resistance of the membrane is mod-
eled with a constant diffusion coefficient and the thickness
given in Tab. 1:

Rmem =
δ

DmemAmem
(27)

4 Calibration and Validation of the
Humidifier Models

In this section, the calibration and validation of the pre-
sented model using measurements of the test rig are
shown. At first, the membrane diffusion coefficient is cal-
ibrated and validated using steady state data of the humid-
ifier reflecting the range of operating conditions (cf. Tab.
3). Next, the introduced time constant of mass transfer is
calibrated using measurement data and the model with the
previously calibrated mass transfer coefficient.

4.1 Steady State Operation
The available measurement data contains two data sets.
Our first data set includes 105 steady state operating
points. For this data set the volume flow rate ratio was
kept close to one (V FR ≈ 1). The points of this first data
set are randomly split between the calibration and the val-
idation set. We use 60 % of the data for the calibration and
40 % for the validation of the model. The second data set
is used for validation only. It contains only eight points
but in contrast to the operating points the ratio of volume
flow rates differs significantly from one. With this data
set the accuracy of the NTU model when predicting wa-
ter transfer rates at operating points very different from
the calibration data is assessed. The calibration of the
model is done using the truncated Newton (TNC) opti-
mization method of the SciPy library written in Python
(Virtanen et al. 2020). For the calibration process, the
model is exported from Dymola as functional mock-up
unit (FMU) and simulated in Python using FMPy (Das-
sault Systèmes SE 2022b). The root mean square error
(RMSE) of the simulated ˆ̇mperm and measured water per-
meation rate ṁperm is used as objective function to be min-
imized:

RMSE =

√
∑

n
i=1(ṁperm,i − ˆ̇mperm,i)2

n
(28)

The objective of the fitting process is to find the mem-
brane diffusion coefficient Dmem,fit that minimizes the pre-
viously defined RMSE of the model X⃗a,b:

Dmem,fit = argmin RMSE(X⃗a,b,Dmem) (29)

Finally, the membrane diffusion coefficient for vapor
Dmem,fit = 3.63e− 7m2/s that minimizes the deviation of
simulation and measurement is found. This fitting result is
close to the value Dmem,CFD = 4.02e−7m2/s , determined
in a previous study where a smaller data set and a CFD
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Figure 5. Comparison of the calibration and validation results
of the NTU model with the steady state measurement data.

model of the same humidifier were investigated (Pollak et
al. 2023). The simulation results of the calibrated model
are shown in Fig. 5, marked by blue points. The depicted
error bars represent the measurement uncertainty of per-
meation rate calculated according to the guideline (Joint
Committee for Guides in Metrology (JCGM) 2008). For
all investigated points, the deviation of the simulation is
less than 20 % in comparison to the measurement. More-
over, the results of the validation are plotted in Fig. 5,
too. Again, the deviation of the simulation results from
the measurements is less than 20 % for the validation data.
The deviation of the simulated from the measured perme-
ation rate is less than 10 % for most operating points and
often within the range of measurement uncertainty. In Tab.
4 an overview of the RMSE is presented. From the values
shown in Tab. 4, only a small difference between calibra-
tion and validation can be identified.

Table 4. RMSE of the simulated and measured water perme-
ation rate for calibration, validation and total data.

Calibration Validation Total
RMSE in g/s 1.3242e-6 1.4036e-6 1.3560e-6

To test the capability of the NTU model to extrapolate,
another data set is used. A special feature of this data set
is that the ratio of volume flow rates is varied systemat-
ically from 0.37 to 2. To assess the model accuracy, the
mass transfer efficiency of both measurement and simula-
tion is plotted versus the NTU of the simulations in Fig. 6.
One can see that the simulation results lie directly on the
characteristic lines representing a fixed volume flow ra-
tio. On the other hand, the measurement results do not di-
rectly match the characteristic lines, which is due to devi-
ations of measurements and simulation results. Nonethe-

less, simulation results and measurements show a similar
trend. Furthermore, the relative deviation of the simulated
and measured mass transfer efficiencies is below 10 % for
all considered operating points.
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Figure 6. Comparison of simulation results and measurements
on validation data for different volume flow rate ratios. The val-
ues of the investigated V FRa are shown next to the lines.

In summary one can conclude that the developed NTU
model can accurately predict the water permeation under
various steady state operating conditions. The ability of
the NTU model to extrapolate was demonstrated by using
the NTU model that was calibrated for a V FRa ≈ 1, for a
range of 0.35 <V FRa < 2.0.

4.2 Dynamic Simulations
Another goal of our study is to evaluate if the developed
humidifier model is able to predict dynamic operation of
the humidifier accurately. For this purpose, we use data
from the test rig that was collected while switching from
one operating point to another. Therefore, most of our in-
vestigations apply to the water mass fraction feed to the
wet air inlet. To investigate the dynamics of the humidi-
fier, the water mass fraction at the wet inlet was controlled
manually to mimic a step response.

For the dynamic simulations we use time series data of
a typical measurement session as input for the humidifier
model. We extract the sensor values of the inlet quantities
of the humidifier from the measurement data, described
in Sec. 2.4, and feed those quantities to real input blocks
of the humidifier model. The membrane permeability was
kept at Dmem = 3.63e− 7m2/s, as identified in the previ-
ous section.

In a first step, the time constant for the first order delay
was calibrated manually to match the water diffusion over
a period of 24000 s. The mean absolute error (MAE) was
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used as metric to evaluate the calibration

MAE =
1
n

n

∑
i=1

|ṁperm,i − ˆ̇mperm,i| (30)

That MAE was used in the following object function:

τperm,fit = argmin MAE(X⃗a,b,τperm) (31)

A value of τperm,fit = 6.1s was identified to yield the min-
imal absolute deviations between measurement and sim-
ulation results. At this point it shall be stated, that the
dynamics of the measurements do not only originate from
the humidifier itself but also from the time constants of the
used sensors.

In Fig. 7 an exemplary step response of the water per-
meation rate caused by an abrupt decrease in the water
mass fraction at the wet inlet from ξ ′

H2O,wet = 0.083 to
ξ ′

H2O,wet = 0 is shown. All operating conditions of this
scenario are given in Tab. 5. The measurement of the per-
meation rate is shown as a blue line. To show the influence
of the introduced time constant, the humidifier model was
simulated three times with differently parameterized val-
ues of 1.0 s, 6.1 s and 20 s for the time constant. In Fig. 7,
it is obvious that a time constant of 20 s leads to a slow
response and high deviations from the measurement. Fur-
thermore, it can be observed that the green and blue line
are close to each other. A minor deviation can be found
in the last moments of the step response. In contrast, the
model parameterized with a time constant of 1.0 s reacts
too abruptly. Comparing the models to each other, one can
see that all models predict the same steady state solution
as expected and show a small deviation from the measure-
ment.

Table 5. Boundary conditions before and after step shown in
Fig. 7 used for the fitting of the time constant. Temperature and
pressure apply to both sides.

Parameter Before After
Temperature 70 ◦C 70 ◦C
Pressure 1.5bar 1.5bar
Air flow rate, dry 0.3 g/s 0.3 g/s
Air flow rate, wet 0.65 g/s 0.6 g/s
Water mass fraction, wet 0.083 0.0

For the validation of the fitted time constant the data of
another measurement session is used. Just as for calibra-
tion, a step response of the humidifier due to a change of
water mass fraction at the wet inlet is also used for vali-
dation. The operating conditions are given in Tab. 6. In
contrast to the calibration data, the focus lies on a step
to higher water mass fractions. In Fig. 8 the measured
and simulated water permeation rates are plotted over the
time. One can easily identify that the dynamics of opening
the vapor control valve are more complex than the closing
when comparing Fig. 8 and Fig. 7. In Fig. 8 a first abrupt
rise of the permeation rate is visible nearly instantly when
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Figure 7. Comparison of the simulation results of differently
parameterized NTU models with the measurement data of a step
at t = 0 s to dry conditions. The NTU models use different time
constants for the introduced first order behavior.

Table 6. Boundary conditions before and after step shown in
Fig. 8 used for the validation of the fitted model. Temperature
and pressure values apply to both sides.

Parameter Before After
Temperature 80 ◦C 80 ◦C
Pressure 2.0bar 2.0bar
Air flow rate, dry 0.4 g/s 0.4 g/s
Air flow rate, wet 0.4 g/s 0.43 g/s
Water mass fraction, wet 0.0 0.069

the vapor control valve is opened. This first rise is fol-
lowed by a plateau with a duration of about 30 s. After
this phase a less steep rise of the permeation rate is ob-
served. Opening the steam valve affects both the control
of the steam generator and storage tank as well as the con-
trol of the air supply. This is the reason for the complex
dynamics when opening the valve. Again, the results of
the three NTU models with different time constants are
shown. The measure response of the humidifier depicted
in Fig. 8 is accurately reproduced by the NTU model with
the fitted time constant. The NTU model with the lowest
time constant of 1 s shows an overshoot to the first part of
the step, whereas the rising time of the NTU model with
the highest time constant is way to long. As discussed for
the fitting results, a slight deviation of the steady state re-
sults between measurement and all simulation models can
be observed.

In summary, the developed model is suitable for dy-
namic simulations as well. It was shown that the model
is able to reproduce the dynamics of the measured data
accurately.
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Figure 8. Comparison of the simulation results of differently
parameterized NTU models with the measurement data of a step
at t = 0 s from completely dry to wet conditions. The NTU
models use different time constants for the introduced first order
behavior.

4.3 Computational Times
The presented NTU humidifier model can be used for
real-time predictions due to its fast computations result-
ing from the employed simple model structure. When the
model is packaged into FMU format the simulation takes
an average of 27.37 s computational time to simulate a full
time series of 17428 s. The mean computational time to
calculate a single time step of 1 s time is 0.00157 s. The
calculations were done on an AMD Ryzen Threadripper
1900X.

5 Conclusion and Outlook
The results of our study show that the presented NTU
model can accurately predict the water transfer occurring
inside a hollow fiber humidifier under steady state as well
as for dynamic operating. As a first result, the diffusion
coefficient of water in the membrane was determined for
the steady state operation. It was found that this fitting
result agrees well with the results from a previous study
(Pollak et al. 2023). In a next step, the model was fit-
ted to dynamic measurement data while keeping the fitted
value of the membrane diffusion coefficient. With the fit-
ted model a validation step response can be predicted ac-
curately. Furthermore, it was demonstrated that our de-
veloped model is capable of real time predictions on a
desktop computer. For future studies, the effect of a si-
multaneously occurring heat transfer is an important topic
to investigate. Another effect to be investigated in this
context is the enthalpy of ad- and desorption of water on
the membrane surfaces. Moreover, it should be assessed
whether the humidifier model is able to capture the effects

of liquid water on mass transfer as investigated by Mull
et al. (2023) , that might be present in the exhaust gas of
the fuel cell.
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Nomenclature
Abbreviations

CFD Computational Fluid Dynamics

FMU Functional Mock-up Unit

MAE Mean absolute error

PEM Proton Exchange Membrane

RMSE Root Mean Square Error

Latin Symbols

A Area, m2

c Concentration, mol/(m3)

D Diffusion coefficient, m2/s

d Diameter, m

h Specific enthalpy, W/(m2K)

Ḣ Enthalpy flow W

i Number, dimensionless

l Length, m

M Molar mass, kg/mol

n Number, dimensionless

NTU Number of transfer units, dimensionless

ṁ Mass flow rate, kg/s

p Pressure, Pa

R Mass transfer resistance, s/m3

Re Reynolds number, dimensionless

Sc Schmidt Number, dimensionless

Sh Sherwood Number, dimensionless

t Time, s

T Temperature, K

V FR Ratio of volume flow rates, dimensionless

X⃗ State vector
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Greek Symbols
β Mass transfer coefficient, m/s

δ Thickness, m

η Mass transfer efficiency dimensionless

ξ Mass fraction, kg/kg

Ξ Ratio of transferred water, kg/kg

τ Time constant, s

Φ Packing density, dimensionless

Subscript
a Side a

b Side b

ch Characteristic

conv Convective

eff Effective

fit Result of the calibration

H2O Water

hyd hydraulic

mem Membrane

perm Permeation

Superscript
□′ inlet quantity

□′′ outlet quantity
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Abstract
In power systems, sub-synchronous oscillations associ-
ated with the interaction between a mechanical rotor shaft
and electrical system can lead to equipment damage if
left unmitigated. This paper describes the development
of a scalable, multi-mass torsional shaft model and a syn-
chronous machine model that includes DC offset torque
components using Modelica. When coupled, these mod-
els can be used to perform shaft torsional studies. Two
methods of coupling the shaft with the rest of the turbine-
generator system are devised and analyzed. A single-
machine, infinite-bus test system using the torsional shaft
model and generator model developed in this paper is
proposed to observe the penetration of sub-synchronous
oscillations throughout an electrical system. The test
system is then modified to model sub-synchronous reso-
nance leading to system instability. Analysis of the mod-
els described in this paper highlights the value of the
Modelica_LinearSystems2 library in determining
the torsional mode shapes and frequencies associated with
a turbine-generator system model, which is not feasible
with most power system simulation tools.
Keywords: OpenIPSL, power systems, turbine-generator,
torsional shaft, SHAF25, GENDCO, sub-synchronous
resonance, sub-synchronous oscillations, Model-
ica_LinearSystems2

1 Background
In the power system dynamic performance analysis of a
turbine-generator system, the rotor shaft is generally rep-
resented as a single, lumped mass. While this is sufficient
for many studies, the rotor of a turbine-generator system is
much more complex. A more detailed representation em-
ploys several masses to characterize various components
along the rotor, such as the turbine blades of different pres-
sure stages, connected by shafts of varying cross-sectional
diameters. This representation can aid in understanding
the electromechanical dynamics resulting from torsional
oscillations occurring between rotor shaft segments, with
oscillations below the synchronous frequency translating
to potentially disastrous interactions between the electrical
system and mechanical rotor if unmitigated. These effects
can include sub-synchronous resonance between the gen-

erator and series capacitor compensated lines (“Reader’s
guide to subsynchronous resonance” 1992) or torsional
fatigue and material damage due to accumulated oscilla-
tions.

While the study of sub-synchronous resonance has
been of practical interest following two shaft failures at
the Mohave Generating Station in Nevada in 1970 and
1971 (Walker et al. 1975), challenges associated with
these complex dynamics continue to emerge. For ex-
ample, in July 2015, sub-synchronous oscillations orig-
inating from a wind farm in the Xinjiang Uygur Au-
tonomous Region of China excited torsional vibrations
in the shaft of a synchronous generator 300 km away.
This caused torsional stress relays to trip three large ther-
mal generation units offline and ultimately resulted in a
sudden loss of approximately 1,280 MW of power (Shi,
Nayanasiri, and Li 2020). In November 2015, torsional
vibrations along the rotor shaft of a thermal generation
unit in Ha Tinh province in Vietnam were exacerbated by
sub-synchronous resonance. The unstable oscillations re-
sulted in several cracks throughout the turbine-generator
shaft (Duc Tung, Van Dai, and Cao Quyen 2019). More
recently, in an isolated industrial area of Russia, torsional
oscillations and sub-synchronous resonance have repeat-
edly caused protection systems to shut down all operating
gas turbine generators in the area and led to widespread
outages (Ilyushin and Kulikov 2021).

Incidents such as the ones listed above indicate how im-
portant it is to be able to adequately model the behavior
of a turbine-generator rotor shaft system when investigat-
ing torsional oscillations or sub-synchronous oscillations.
While a complete continuum model of the rotor subdi-
vided into dozens of minute masses and connecting shafts
is needed to capture the entire range of torsional oscilla-
tions, it is generally sufficient to represent the rotor as a
lumped, multi-mass model if the oscillations of interest
are sub-synchronous (Ong 1998). The oscillations associ-
ated with the torsional rotor shaft can also be exacerbated
by the DC braking torque effect of the generator. When a
symmetrical fault occurs in close proximity to a generator,
the sudden disturbance has a tendency to cause the gener-
ator rotor to back swing. This effect could influence the
angular displacement of the rotor and alter the torsional
modes expressed by the rotor shaft (Shackshaft 1970).
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While sub-synchronous resonance studies are gen-
erally performed in three-phase, electromagnetic tran-
sient simulation programs, there are still some instances
in which a detailed positive sequence electrical system
model with a simplified model of the interactions be-
tween the shaft and electrical dynamics is desirable. In
these cases, a Modelica-based implementation can pro-
vide several beneficial features that are not available in
other modeling languages or simulation tools. For ex-
ample, the Modelica_LinearSystems2 Library en-
ables linearization and eigenvalue analysis of models to
verify the modal quantities of a shaft without requiring
the development of a separate model for linear analysis.
Additionally, programs such as Dymola include function-
ality to easily compare the performance of different model
implementations.

1.1 Motivation and Objectives
The Open-Instance Power System Library (OpenIPSL)
was developed in part to provide Modelica implementa-
tions of standard phasor-domain power system models for
research and teaching activities with a transparent library
development framework. With the recent release of ver-
sion 3.0.1, several models from the PSS®E Model Library
that were missing from previous versions of OpenIPSL
were added to the library (DeCastro Fernandes 2023).
However, two component models critical to shaft torsional
studies and sub-synchronous oscillation studies that are
widely used in the industry have yet to be added. These
models are a torsional shaft model with up to 25 masses,
SHAF25, and a round rotor generator with a DC offset
torque component, GENDCO. By developing Modelica im-
plementations of these models, OpenIPSL can be used to
develop power system models with richer dynamics suit-
able for investigating the effects of sub-synchronous oscil-
lations and sub-synchronous resonance. After additional
validation and testing, the models proposed in this paper
will be added to a future release of OpenIPSL.

Finally, this work addresses a significant gap in power
system dynamic modeling. According to the PSS®E Pro-
gram Operation Manual, the SHAF25 model is classi-
fied as a turbine-governor model (Siemens 2015a). It is
therefore not possible to model turbine governor dynamics
and the torsional dynamics of the SHAF25 model simul-
taneously. Neglecting the turbine governor of a system
restricts analysis of the impact of sub-synchronous reso-
nance to the rotor shaft of the turbine-generator. By using
components from OpenIPSL, the modeling approach pro-
posed in this work allows for the dynamics of turbines,
boilers, and governors to be modeled alongside the tor-
sional dynamics of the shaft.

To summarize, the objectives of this work were
to:
• Develop and validate a scalable, lumped mass tor-

sional shaft model using the Modelica modeling lan-
guage. This approach will allow for the dynamics of
the shaft to be modeled simultaneously with the the

dynamics of the turbine, boiler, and governor of the
turbine-generator system, which is not possible with
existing domain-specific tools.

• Develop and verify the behavior of a round rotor gen-
erator with quadratic saturation that includes a DC off-
set torque component.

• Demonstrate the functionality of the developed mod-
els by using an illustrative, single-machine infinite-bus
(SMIB) test system to demonstrate the penetration of
sub-synchronous resonance throughout a power grid.

1.2 Contributions and Organization
The primary contributions of this work are:

• The proposal and assessment two methods of coupling
the electrical and mechanical dynamics of a turbine
generator system.

• The development of a flexible implementation for
modeling a torsional shaft with any number of masses
that. The implementation enables the simultaneous
modeling of turbine, boiler, and governor dynamics
alongside the dynamics of the shaft.

• The implementation of a synchronous machine model
with quadratic saturation and DC offset torque com-
ponents for shaft torsional studies.

• A demonstration of the usefulness of the Model-
ica modeling language in developing power system
models capable of simulating the effects of sub-
synchronous resonance.

The remainder of the paper is organized as follows.
Sections 2 and 3 detail the process of modeling and as-
sessing two turbine-generator components respectively:
1) a scalable multi-mass torsional shaft; and 2) a round
rotor generator model with a DC offset torque compo-
nent. Section 4 demonstrates the use of these components
to develop an illustrative power system example model
to observe the penetration of sub-synchronous resonance
throughout the grid. Finally, Section 5 summarizes the
contributions of this work with concluding remarks and
outlines planned future work for the models described
throughout the paper.

2 Scalable Multi-Mass Shaft
2.1 SHAF25 Implementation Using Modelica

The SHAF25 model found in the PSS®E Model Library
(Siemens 2015b) is a lumped-mass torsional shaft model
capable of representing up to 25 masses connected by
weightless springs. Using the Modelica Standard
Library, it is straightforward to assemble shaft mod-
els for a set number of masses by connecting an alter-
nating sequence of rotational mechanical inertia and
springDamper components. However, to be able to
represent shafts with up to 25 masses, this approach
would require maintaining a library with 25 separate
shaft models. Alternatively, by using concepts from the
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ScalableTestSuite Library (Casella et al. 2015), a
single shaft model can be developed with the number of
masses on that shaft determined by a single integer pa-
rameter.

Listing 1 provides an excerpt of the text layer for the
multi-mass torsional shaft model showing its scalability.
The relevant parameters and components are all instanti-
ated as arrays, and a for loop in the equation section iter-
atively connects the components in the correct order. As
an added benefit, this scalable modeling approach allows
the model to represent a shaft with any number of masses,
effectively bypassing the 25 mass limit of the original
SHAF25 model.
Listing 1. Excerpt of text layer for the scalable multi-mass tor-
sional shaft model illustrating its scalability.

model ScalableShaft;
// Parameter d e c l a r a t i o n
parameter Integer N = 5 "Number of masses";
parameter SIunits.Inertia H[N] "Vector of p

.u. moment of inertia values";
parameter SIunits.Inertia J[N] = H.*(

SysData.S_b/wo^2);
parameter SIunits.RotationalSpringConstant

K[N-1] "Vector of stiffness
coefficients";

parameter SIunits.RotationalSpringConstant
C[N-1] = K.*p^2*(SysData.S_b/(4*wo)) "
Vector of stiffness coefficients in N-m
/rad";

parameter SIunits.RotationalDampingConstant
D[N-1] = fill(Modelica.Constants.small

, N-1) "Vector of damping constant
values in Nms/rad";

// C la s s I n s t a n t i a t i o n
Modelica.Mechanics.Rotational.Components.

Inertia inertia[N](J=J);
Modelica.Mechanics.Rotational.Components.

SpringDamper springdamper[N-1](c=C, d=D
);

Modelica.Mechanics.Rotational.Sensors.
RelAngleSensor relAngle[N];

// Model Equat ions
equation

connect(inertia[1].flange_a, flange_a);
for i in 1:(N-1) loop

connect(inertia[i].flange_b,
springdamper[i].flange_a);

connect(springdamper[i].flange_b,
inertia[i+1].flange_a);

connect(relAngle[i].flange_b, inertia[i
].flange_a);

connect(relAngle[i].flange_a, inertia[i
].flange_b);

end for;
connect(flange_b, inertia[N].flange_b);
connect(relAngle[N].flange_b, inertia[N].

flange_a);
connect(relAngle[N].flange_a, inertia[N].

flange_b);
end ScalableShaft;

In this work, and many other works in the litera-
ture, the damping coefficients of the springDamper
components connecting the masses of the shaft are

assumed to be negligible. It is generally accept-
able to assume that the damped and undamped nat-
ural frequencies of the shaft are within 0.1 Hz of
each other (anderson:1999sub-synchronous). As
such, the damping coefficients for the shaft model
shown here are all set to an arbitrarily small value,
Modelica.Constants.small.

2.2 Model Validation
To verify the behavior of the multi-mass shaft model,
eigenvalue analysis was used to observe the relative an-
gular displacement between the segments of a five mass
implementation of the component. The five mass shaft
was parameterized using data from a four pole nuclear
unit found in Section 15.1 of Prabaha Kundur’s textbook,
Power System Stability and Control (Kundur 1994). This
procedure is aided and simplified through the use of the
Modelica_LinearSystems2 library to generate a
linearized electromechanical state-space model of the tor-
sional shaft system. This library is also used to determine
the frequencies of the modes exhibited by the system.
From this model, it is straightforward to obtain an eigen-
vector matrix that describes the magnitude of the mode
shapes. The resulting mode shapes are shown in Fig-
ure 1a. For comparison and validation, Figure 1b shows
the mode shapes obtained in Power System Stability and
Control(Kundur 1994).

Figure 1. Mode shapes and frequencies obtained from a) the
Modelica implementation of a five-mass torsional shaft, and b)
the implementation found in Power System Stability and Control
(Kundur 1994).
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After normalizing each of the eigenvectors such that the
magnitude of the largest element is 1.0, the overall trajec-
tory of the mode shapes and modal frequencies of the two
implementations are nearly identical, indicating that the
Modelica multi-mass shaft implementation exhibits the
expected behavior. While there are some minor discrepan-
cies in the modal frequencies of the two implementations,
this can likely be attributed to initialization differences in
the Modelica implementation, as the states’ precise initial
values of the model from Power System Stability and Con-
trol are not known.

2.3 Coupling Mechanical Shaft Dynamics
with Electrical System Dynamics

As a purely rotational mechanical model in Modelica,
the multi-mass shaft has mechanical torque flange inputs
and outputs. The PSS®E generator models in OpenIPSL
through their extension of a baseMachine class, how-
ever, only accept real inputs for mechanical power and
field voltage. Therefore, two methods were devised to in-
terface the shaft model with the electrical system.

2.3.1 Modified Base Machine Class

The first approach to couple the mechanical and electrical
dynamics of the system involved creating a variant of the
baseMachine class included in OpenIPSL. Each of the
PSS®E generator models in OpenIPSL extends the same
baseMachine class. By altering this class to replace the
mechanical power input with a mechanical torque flange
input, the torsional shaft model can be simply connected
to the rest of the electrical system through the electrical
pin of the generator. For comparison, the icon layer of the
original base machine and the modified base machine are
shown in Figure 2.

Figure 2. Comparison of the icon layer of a) the original base
machine model from OpenIPSL, and b) the modified base ma-
chine model to accept a torque input from a torsional shaft
model.

To facilitate this connection, two mathematical equa-
tions to explicitly calculate the mechanical power input to
the generator from the mechanical torque input had to be
added to the text layer of the model.

The first equation, shown in Equation 1, converts the
per unit speed deviation of the rotor into mechanical
speed:

ωm = ωb(1+ω) (1)

where ωm is the mechanical speed of the rotor in radians
per second, ωb is the synchronous speed of the system in
radians per second, and ω is the per unit mechanical speed
deviation of the generator rotor.

The second equation, shown in Equation 2 uses this me-
chanical speed to convert the input mechanical torque into
mechanical power:

Pm =
ωmTm

Mb
, (2)

where Pm is the per unit mechanical power input to the
generator, Tm is the mechanical torque input to the gener-
ator from the torsional shaft in Newton-meters, and Mb is
the system base power in volt-amperes.

By redefining the variable for mechanical power, the
swing equation of the original baseMachine model can
be left unaltered:

2H
dω

dt
=

ωm −Dω

ω +1
−Te (3)

2.3.2 Torque-to-Mechanical Power Interface
While the previous method to couple the electrical and
mechanical dynamics of the turbine-generator system
is relatively straightforward, it would require pervasive
changes to OpenIPSL to implement, as individual models
for each generator extending the new multi-domain base
machine class would have to be developed. This would ef-
fectively require two of each generator model to be main-
tained.

An alternative approach is to create a standalone inter-
face model that accepts a mechanical torque flange input
and produces a real mechanical power output as shown in
Figure 3 (F. J. Gómez et al. 2018; Aguilera, Vanfretti, Bo-
godorova, et al. 2019; Aguilera, Vanfretti, and F. Gómez
2018).

Figure 3. Icon layer of an interface to couple the mechanical
dynamics of a torsional shaft with the electrical dynamics of a
turbine-generator system.

Using this method, the per unit speed deviation of the
rotor must be explicitly calculated by taking the derivative
of the angular position of the shaft connected to the input
of the interface:

ω =
dφ

dt
1

ωb
(4)

where ω is the per unit mechanical speed deviation of the
rotor, φ is the relative angular position of the rotor in ra-
dians, and ωb is the synchronous speed of the system in
radians per second.
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The per unit mechanical speed deviation can then be
used to calculate the mechanical speed of the rotor:

ωm = ωb(1+ω) (5)

where ωm is the mechanical speed of the rotor in radians
per second.

Finally, the mechanical speed of the rotor and torque
input to the interface can be used to determine the me-
chanical power input to the generator:

Pm =
ωmTm

Mb
(6)

where Pm is the per unit mechanical power output from the
interface, Tm is the mechanical torque input to the gener-
ator from the torsional shaft in Newton-meters, and Mb is
the system base power in volt-amperes.

2.3.3 Comparison of Implementations

For comparison, Figure 4 shows the graphical layers for
both methods of coupling the mechanical and electrical
dynamics of a turbine-generator system. Both implemen-
tations include a representation of the boiler, turbine, and
speed-governor modeled by an IEEEG1 component; an
IEEE Type 1 excitation system modeled using an IEEET1
component; and a round rotor synchronous generator with
quadratic saturation represented by a GENROU model.

To compare the efficacy of the two methods of inter-
facing the shaft model with the remainder of the turbine-
generator model, the two models were initially simulated
with an identical simulation configuration for 30 seconds
using DASSL, a variable time-step solver. As shown in
Figure 5, the error of the mechanical power input to the
generator calculated between the two implementations ap-
pears to accumulate throughout the simulation. Using
Rkfix4, a fixed step, fourth-order Runge-Kutta method
solver, however, the mechanical power plotted for both
implementations were identical, as shown in Figure 6.

Figure 4. Comparison of the graphics layer of two methods
to interface a torsional shaft model with an electrical system:
a) A modified base machine directly accepts mechanical torque
from the shaft and internally calculates mechanical power, b)
An interface accepts a mechanical torque input from the shaft
and produces a mechanical power output for the generator. Both
approaches notably allow for a turbine-governor model, repre-
sented by the IEEEG1 model, to be simulated in conjunction
with the shaft model, which is not possible with many power
system simulation tools.

Figure 5. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remain-
der of the turbine-generator model when simulated using the
DASSL solver in Dymola and the error between the two.
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Figure 6. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remainder
of the turbine-generator model when simulated using the Rkfix4
solver with an integration step size of 0.00001 s in Dymola and
the error between the two.

Generally, solutions obtained from variable-step solvers
are more accurate, as the solver dynamically adjusts the
size of the integration step size to match the speed at which
the states of the model change. Fixed-step solvers, how-
ever, maintain the same integration step-size throughout
the simulation. With a large step size, the simulation time
can be greatly reduced, however, the accuracy of solutions
may suffer as the solver cannot adjust its step size to match
the stiffness of the system.

While the two implementations are modeled using the
same equations and should therefore, in theory, produce
identical solutions. However, the integration step size
when using the DASSL solver does not vary identically for
the implementations. As such, the solutions acquired by
both implementations are not identical, as observed in Fig-
ure 5. When the same step size is enforced for both mod-
els, however, the solutions become identical, as shown in
Figure 6. While the solution results may be identical for
the two implementations, the accuracy of this solution is
not guaranteed. Figure 7 shows a plot of the mechanical
power for both implementations using an integration step
size of 0.01 seconds.

While the plots of mechanical power from implementa-
tions agree with each other, it can be inferred that they are
both inaccurate with respect to the actual result by com-
paring the resulting plot with the plots acquired from a
variable-step solver or a fixed-step solver with a very small
step size.

By enabling the Generate block timers flag in
the simulation setup dialog of Dymola, the simulation

Figure 7. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remainder
of the turbine-generator model when simulated using the Rkfix4
solver with an integration step size of 0.01 s in Dymola and the
error between the two.

time of the two implementations can be compared as
shown in Table 1. Using the Rkfix4 solver, the range
of time steps that both implementations could successfully
complete simulation for was between 0 seconds and 0.01
seconds. For each time step, it can be observed that the
modified base machine implementation is slightly more
computationally efficient. Using the variable time-step
DASSL solver results in an even greater discrepancy be-
tween the computational cost of the two implementations,
with the modified base machine method remaining the
more efficient option.

The discrepancy in simulation time between the two im-
plementations can be explained by examining the statistics
of the translation log in Dymola, shown in Figure 8.

When translating a model, Dymola uses its state vari-
ables to create differential, linear, and non-linear sys-
tems to solve. As such, models with more states gen-
erally will take longer to simulate (Fish and Harrison
2017). The number of states can be approximated by ex-
amining the Time-varying variables and Alias
variables entries of the translation statistics log (Horn
2020). Also of interest is the Continuous time
states entry of the log which indicates the overall size
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Table 1. Comparison of simulation time for two methods of cou-
pling mechanical and electrical dynamics of a turbine-governor
system using the Rkfix4 solver with various time steps and the
DASSL solver.

Solver Step Size
(s)

Coupling
Method

Simulation
Time (s)

Rkfix4

0
Base

Machine 328.835

Interface 341.871

0.0001
Base

Machine 134.925

Interface 135.096

0.01
Base

Machine 1.391

Interface 1.638

DASSL –
Base

Machine 75.946

Interface 80.161

of the model. From Figure 8 it can be observed that
the modified base machine implementation contains fewer
alias variables and continuous time states than the torque-
to-power interface implementation, corresponding with
the former’s faster simulation time.

Figure 8. Comparison of excerpts from the translation statis-
tics logs in Dymola for a) the modified base machine imple-
mentation, and b) the torque-to-power interface implementation.
Highlighted statistics affect the simulation time of the imple-
mentations.

3 GENDCO
When performing power system studies involving shaft
torsional dynamics in PSS®E, the SHAF25 torsional shaft
model must be coupled with a GENDCO generator model
(Siemens 2015c). The GENDCO model is a round rotor
generator model with quadratic saturation and DC off-
set torque components included. To model the effect of
these DC offset components, the direct- and quadrature-
axis armature-winding voltage equations of the genera-
tor were modified. The original equations used in the
GENROU model are shown in Equation 9 and Equation 10

(Baudette et al. 2018):

vd =−Raid −Ψq (7)

vq =−Raiq +Ψd (8)

where Ra is the machine armature resistance, i is the
direct- or quadrature-axis current, and Ψ is the direct- or
quadrature-axis stator flux linkage. The modified equa-
tions for the GENDCO model include the rate of change
of stator flux linkages as shown in Equation 9 and Equa-
tion 10 (Dandeno et al. 2003):

vd =−Raid −Ψq +
1

ω0

dΨd

dt
(9)

vq =−Raiq +Ψd +
1

ω0

dΨq

dt
(10)

where ω0 is the synchronous electrical speed. These equa-
tions assume that the rotor speed never deviates from the
synchronous rotor speed.

For GENROU and other generator models that ignore the
effects of DC offset components, the air-gap torque of the
generator following a disturbance will consist primarily
of a unidirectional step change caused by stator resistance
losses (Kundur 1994). For the GENDCO model, however,
an additional decaying oscillatory component represent-
ing the DC offset component of current induced in the sta-
tor by the disturbance will be present. Figure 9 illustrates
the difference in the air-gap torque response of a GENROU
generator model from OpenIPSL that neglects the rate of
change of stator flux linkages in the armature-winding
voltage equations and the GENDCO generator model that
includes them.

Figure 9. Plot comparing air-gap torque over time for identi-
cally parameterized GENROU and GENDCO models. A fault
is applied at t = 2 s for 0.15 s.

The additional oscillatory component in the air-gap
torque response of the GENDCO generator model can
also be confirmed through linear eigenvalue analy-
sis. Table 2 shows the pole pair and modal fre-
quency obtained through linear analysis using the
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Modelica_LinearSystems2 library in Dymola for
a simple test system including the GENROU generator
model. Table 3 shows the pole pairs and modal frequen-
cies for the same test system when the generator model
was changed to the GENDCO model. In comparing the two
tables, it can be observed that as a result of the DC offset
components, the GENDCO model contains an additional,
higher frequency pole while retaining the same 0.814 Hz
pole exhibited by the GENROU model.

While the GENDCO model and the inclusion of DC off-
set components is critical in obtaining the correct dynamic
characterization of any sudden changes in the electromag-
netic torque of the generator, it is important to note that
DC offset approximation effects are only valid when an-
alyzing the effects of symmetrical faults and imbalances.
Consequently, the model should only be used for studies
involving shaft torsional dynamics (Siemens 2015c).

Table 2. Pole and Modal Frequency of GENROU generator
model

Eigenvalue Frequency (Hz)

−0.26835± j5.1092 0.8143

Table 3. Poles and Modal Frequencies of GENDCO generator
model

Eigenvalue Frequency (Hz)

−0.2684± j5.1087 0.8142

−0.021085± j5605.7 892.7985

4 Example of Subsynchronus Reso-
nance Analysis

The interaction between the sub-synchronous oscillations
created by the torsional shaft of a turbine-generator system
and the rest of the electrical system can lead to equipment
failure and damage due to torsional fatigue if improperly
damped (Walker et al. 1975). As such, it is important to
be able to analyze how the resonance resulting from these
interactions can penetrate into the power system.

As a preliminary investigation into how the models de-
veloped in this paper can be applied to sub-synchronous
resonance studies, a single-machine, infinite-bus (SMIB)
test system was developed as shown in Figure 10.

The generator unit on the left hand side of the test sys-
tem in Figure 10 models a turbine-generator consisting of
a six-mass implementation of the torsional shaft model de-
scribed in Section 2 and the GENDCO model described in

Figure 10. Single-machine, infinite-bus test system used to ana-
lyze the penetration of sub-synchronous oscillations throughout
an electrical system.

Section 3. The GENCLS generator model at the far-right
of the test system is parameterized as an infinite bus, rep-
resenting the reminder of the power grid. A fault was con-
figured to be applied to the system at t = 2 seconds and
cleared at t = 2.15 seconds. The turbine-generator sys-
tem and lines were parameterized using parameters from
the IEEE first benchmark model for computer simulation
of sub-synchronous resonance (Farmer 1977). With these
parameters, the turbine-generator system is able to return
to a stable state following a disturbance. Figure 11 shows
the air-gap torque response of the GENDCO model in the
test system when the torsional shaft model is included in
the turbine-generator system and when it is omitted.

Figure 11. Plot of the air-gap torque of the test system turbine-
generator model when the torsional shaft model is omitted and
included.

The response of the two model variants of the system
are similar, with a slight discrepancy in the frequency of
the oscillations preceding and following the fault being
the primary difference. To further illustrate this differ-
ence, Figure 12 shows a detailed view of the air-gap torque
response of the test system after the turbine-generator
system has returned to a steady state after the fault was
cleared. The turbine-generator system with the shaft omit-
ted exhibits an approximately 60 Hz oscillation, corre-
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sponding with the expected behavior due to the effect of
the DC offset components. The turbine-generator system
with the shaft included contains a sum of several other os-
cillations, representing the torsional modes of the shaft.

Figure 12. Detailed view of the steady-state portion of the air-
gap torque response of the test system following a fault when
the torsional shaft is included and omitted from the turbine-
generator system.

The time constant controlling the decay of the DC off-
set torque components roughly corresponds to the net-
work resistance-to-reactance ratio as seen by the gener-
ator (Siemens 2015c). As such, if this ratio is excessively
large, the effects of sub-synchronous resonance may cause
the system to become unstable. Figure 13 compares the
bus voltage at the location of the fault in the test system
for the line parameters used in the IEEE first benchmark
model (Farmer 1977) and for arbitrary line parameters that
greatly increased the ratio of resistance-to-reactance seen
by the generator. The bus voltage response is similar for
the two sets of line parameters before and during the fault,
however, following the fault, if the resistance-to-reactance
ratio is excessively large, the oscillations following the
fault will persist as shown by the unstable case in Fig-
ure 13.

5 Conclusions and Future Work
The scalable, multi-mass torsional shaft model and the
GENDCO synchronous machine model with DC offset
torque components developed in this paper enable a flex-
ible method for performing shaft torsional studies using
Modelica. The torsional shaft model enables the ability
to model the mechanical dynamics of any number of boil-
ers, turbine pressure stages, and governor simultaneously.
Two methods for coupling the shaft model to the rest of
the turbine-generator system were explored. While mod-
ifying the OpenIPSL base machine class of the generator
model to accept a mechanical torque input was shown to
be more computationally efficient, an interface to convert
the mechanical torque from the shaft to mechanical power
input to the generator model would require less pervasive
changes to the library to maintain. When coupled with
the torsional shaft model, the GENDCO generator model

Figure 13. Plot of the bus voltage at the location the fault was
applied to when the test system was parameterized with two dif-
ferent sets of transmission line parameters.

with DC offset torque components enables modeling sud-
den changes in the electromagenetic torque of the gener-
ator more accurately for studies involving shaft torsional
dynamics. By employing these models in an SMIB power
system model, the effects of sub-synchronous oscillations
can be observed. Consequently, adequate line parameters
and lenient operating conditions for the modeled system
can be determined to limit the impact of sub-synchronous
resonance.

Future work includes validating the behavior of the
GENDCO model developed in this paper. There is cur-
rently no openly accessible PSS®E dynamic model pa-
rameter data for an existing GENDCO unit. However, if this
data was obtained, software-to-software validation could
easily be performed to confirm that the Modelica imple-
mentation of the model behaves identically to the equiva-
lent model in PSS®E. Additionally, while the IEEE first
benchmark model for the computer simulation of sub-
synchronous resonance was used to parameterize the test
system developed in Section 4, implementing the first and
second benchmark models in Modelica to further explore
the effects of sub-synchronous resonance on an electrical
system remains the subject of future work (Farmer 1977;
Farmer 1995). Finally, the torsional shaft model devel-
oped in this paper assumes negligible damping throughout
the shaft. The damping of torsional oscillations is gener-
ally very small, but difficult to predict without performing
field tests on a specific shaft (Kundur 1994). By obtain-
ing PSS®E dynamic data for an existing SHAF25 unit, the
viscous damping of each mass with respect to the rotor and
the damping between each mass could be accurately mod-
eled in the equivalent Modelica implementation. Upon the
completion of these tasks, the integration of the torsional
shaft model and GENDCO model into OpenIPSL will be
pursued.

Session 5-C: Other industrial applications, such as electric drives, power systems, aerospace, etc. 2

DOI
10.3384/ecp204541

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

549



Acknowledgements
This work was supported in part by Dominion Energy, the
National Science Foundation Award No. 2231677, and the
U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced Man-
ufacturing Office, Award No. DE-EE0009139.

The authors would like to thank Dr. Leonardo Lima of
Kestrel Power and Mr. James Feltes of Siemens PTI for
their modeling guidance.

References
Aguilera, Miguel, Luigi Vanfretti, Tetiana Bogodorova, et al.

(2019). “Coalesced gas turbine and power system modeling
and simulation using Modelica”. In: Proceedings of the Amer-
ican Modelica Confererence 2018. Vol. 154. 10. Linköping
University Electronic Press, pp. 93–102. DOI: 10 . 3384 /
ecp19157617.

Aguilera, Miguel, Luigi Vanfretti, and Francisco Gómez (2018).
“Experiences in power system multi-domain modeling and
simulation with modelica & FMI: The case of gas power
turbines and power systems”. In: 2018 Workshop on Mod-
eling and Simulation of Cyber-Physical Energy Systems
(MSCPES). IEEE, pp. 1–6.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system library—update 1.5 to “iTesla power systems
library (iPSL): A Modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Casella, Francesco et al. (2015). “Simulation of large-scale mod-
els in modelica: State of the art and future perspectives”. In:
Linköping electronic conference proceedings, pp. 459–468.

Dandeno, P et al. (2003). “IEEE guide for synchronous genera-
tor modeling practices and applications in power system sta-
bility analyses”. In: IEEE Std, pp. 1110–2002.

DeCastro Fernandes, Marcelo et al. (2023-02). “Version
[OpenIPSL 2.0.0] - [iTesla power systems library (iPSL): a
Modelica library for phasor time-domain simulations]”. In:
SoftwareX 21, p. 101277. DOI: 10.1016/j.softx.2022.101277.

Duc Tung, Doan, Le Van Dai, and Le Cao Quyen (2019). “Sub-
synchronous resonance and FACTS-novel control strategy for
its mitigation”. In: Hindawi Journal of Engineering 2019.
ISSN: 2314-4904. DOI: 10.1155/2019/2163908.

Farmer, R. G. et al. (1977). “First benchmark model for
computer simulation of subsynchronous resonance”. In:
IEEE Transactions on Power Apparatus and Systems 96.5,
pp. 1565–1572.

Farmer, R. G. et al. (1995). “Second benchmark model for com-
puter simulation of subsynchronous resonance”. In: IEEE
Trans. on Power Apparatus and Systems 104.5, pp. 1057–
1066.

Fish, Garron and Sas Harrison (2017). Introduction to the model
translation and symbolic processing. Ed. by Claytex. URL:
https://www.claytex.com/tech-blog/model-translation-and-
symbolic-manipulation/.

Gómez, Francisco J. et al. (2018). “Multi-domain semantic in-
formation and physical behavior modeling of power sys-
tems and gas turbines expanding the common information
model”. In: IEEE Access 6, pp. 72663–72674. DOI: 10.1109/
ACCESS.2018.2882311.

Horn, Nate (2020). The Dymola translation log. Ed. by Claytex.
URL: https://www.claytex.com/blog/the-dymola-translation-
log/.

Ilyushin, Pavel V. and Aleksandr L. Kulikov (2021). “On the oc-
currence of subsynchronous torsional oscillations of gas tur-
bine units in an isolated energy area with an industrial load”.
In: International Ural Conference on Electrical Power Engi-
neering.

Kundur, Prabha S. (1994). Power system stability and control.
McGraw-Hill Education.

Ong, Chee-Mun et al. (1998). Dynamic simulation of electric
machinery: using MATLAB/SIMULINK. Vol. 5. Prentice hall
PTR Upper Saddle River, NJ.

“Reader’s guide to subsynchronous resonance” (1992). In: IEEE
Transactions on Power Systems 7.1, pp. 150–157. DOI: 10 .
1109/59.141698.

Shackshaft, G. (1970). “Effect of oscillatory torques on the
movement of generator rotors”. In: Proceedings of the Insti-
tution of Electrical Engineers. Vol. 117. 10. IET, pp. 1969–
1974.

Shi, Tong, Dulika Nayanasiri, and Yunwei Li (2020). “Sub-
synchronous oscillations in wind farms – an overview study
of mechanisms and damping methods”. In: IET Renewable
Power Generation 14.19, pp. 3974–3988.

Siemens, PTI (2015a). “Program operation manual of PSS/E-
34”. In: Schenectady, NY, USA.

Siemens, PTI (2015b). “PSS/E 34 model library”. In: Siemens
PTI: Schenectady, NY, USA.

Siemens, PTI (2015c). “PSS/E 34.0 program application guide”.
In: Siemens PTI: Schenectady, NY, USA.

Walker, D.N. et al. (1975). “Results of subsynchronous reso-
nance test at Mohave”. In: IEEE Transactions on Power Ap-
paratus and Systems 94.5, pp. 1878–1889.

Modeling Components of a Turbine-Generator System for Sub-Synchronous Oscillation Studies with Modelica

550 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204541



DroneLibrary: Multi-domain Drone Modeling in Modelica

Meaghan Podlaski1 Luigi Vanfretti2 Dietmar Winkler3

1GE Research, Niskayuna, NY, United States, meaghan.podlaski@ge.com
2Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, vanfrl@rpi.edu

3Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern
Norway, Porsgrunn, Norway, dietmar.winkler@usn.no

Abstract
In the development of complex, novel electrified aerial
systems such as Unmanned Aerial Vehicles (UAVs) and
electric vertical take-off and landing (eVTOL) systems,
multi-domain modeling and simulation studies can pro-
vide indispensable insight on system design and perfor-
mance. In this paper, a Modelica library that can be used
to model multi-domain drones is introduced. This library
models a drone in the electrical, mechanical, and control
domains, with examples for applications such as battery-
power analysis, virtual reality simulation and user interac-
tion. Keywords: drone, quadcopter, eVTOL, UAV

1 Introduction
The DroneLibrary was created in response to the grow-
ing need for simulation-based studies in Unmanned Aerial
Vehicle (UAV) drone and electric vertical take-off and
landing (eVTOL) electric aircraft for Urban Air Mobil-
ity (UAM) (Doo et al. 2021). Multi-engineering do-
main, simulation-based studies are valuable in determin-
ing which design concepts and methods for eVTOL sys-
tems can best meet design requirements and specifica-
tions (Podlaski, Niemiec, et al. 2021; Podlaski, Vanfretti,
et al. 2022). There are limited opportunities for creating
and testing physical prototypes for such systems due to
time and monetary constraints. These systems also have
limitations on which physical device qualities are recorded
during testing, making well-defined reliable models valu-
able at early design stages for eVTOL systems, such as
those seen in conventional fixed-wing distributed electri-
cal propulsion physical prototype systems (Borer et al.
2016)

To bridge this gap, the authors’ prior efforts in this
area (M. Podlaski 2020; M. Podlaski 2021) have resulted
in a Modelica library that includes multi-domain models
to represent each subsystem of a quadcopter, specifically
focusing on the mechanical, electrical, and control do-
mains. This library contains examples of the quadcopter
model at multiple levels of detail under different operat-
ing conditions. The component models are developed in
a manner to easily replace them for different simulation
applications, creating replaceable models that are easy to
maintain with broad application scope.

1.1 Related Works
This library builds off of the works in (M. Podlaski 2020),
which show initial models and simulation results for the
DroneLibrary. The aerodynamic and mechanical be-
havior of these models are derived from (Bresciani 2008)
and (Luukkonen 2011).

System-level drone models created using Modelica
have previously been discussed in (Kuric, Osmic, and
Tahirovic 2017). However, these systems mainly focused
on multirotor aerial vehicle (MAV) dynamics modeling
while assuming ideal and constant power consumption.
All dynamics in this MAV Modelica model are reduced
to a single domain, linear model. In this library, non-
idealities in the electrical system are introduced.

A drone PID controller developed using Modelica is
discussed in (Ma, Li, and Nae 2016). This model as-
sumes that the drone body is rigid and symmetrical with
the force of each propeller proportional to the square of
the angular speed of the propeller. The models in the
DroneLibrary build off the ideal assumptions made in
this work by adding flexibility to accommodate different
airframe structures through the multibody mechanics.

In contrast with the aforementioned previous works
that aims in modeling system dynamic aspects of specific
drone or eVTOL systems, the work in (Coïc, Budinger,
and Delbecq 2022) targets drone sizing and trajectory op-
timization aspects. While the library proposed could be
used for these purposes too, this is out of the scope of the
present paper.

Finally, it is necessary to note that the present work
has its origin as a course project by Hao Chang in
2018 at Rensselaer Polytechnic Institute that was the ba-
sis of the start of the DroneLibrary. At that time
there were no commercial or open source libraries of-
fering the capabilities that have been now consolidated
into the DroneLibrary. To the authors’ knowledge, the
DroneLibrary is the only open source license free li-
brary with the described scope of applications. In the case
of commercial and proprietary libraries, with the release
of Dymola 2022, Dassault Systèmes included the Aviation
Systems Library (AVL), which offers a similar scope for
multi-copter and extends it to fixed wing aircraft. Simi-
larly, Claytex released a UAV Dynamics Library in 20201,

1There is limited publicly available information about these li-
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that now has a similar scope and application areas as the
AVL2. While these commercial libraries have a broader
scope, the DroneLibrary provides an open-source op-
tion that reduces the barrier of entry for drone modeling
and can be seen as a starting point before working with
these specialized libraries if the need arises.

2 Library Overview
The package structure of the DroneLibrary is shown
in Figure 1. Test cases of the quadcopter are located in
the Examples package. The Blocks package has models
used to create the controllers and input signal commands
for the quadcopter. The Electrical and Mechanical
contain models at varying levels of modeling fidelity rep-
resenting the electrical and mechanical components used
in the drone, such as motors, chassis frames, and power
sources. The Sensors package contains sensor models
used to track the drone’s location and acceleration dur-
ing flight to assist in the control. The Visualization
package utilizes the DLR Visualization library to simulate
the quadcopter in interactive virtual reality environments.
This package contains multiple examples for interacting
with the drone model via hardware-in-the-loop (HIL) us-
ing keyboard and joystick commands.

The library is dependent on the other following li-
braries:
• Modelica Standard Library, v4.0.0 (Modelica Associ-

ation 2023)
• DLR Visualization Library Professional Edition,

v1.6.0 (Hellerer, Bellmann, and Schlegel 2014), visu-
alization examples only.

• Modelica Device Drivers Library, v2.1.1 (Thiele et al.
2017), visualization examples only.

Figure 1. DroneLibrary package structure.

3 Examples
All of the components described herein are configured to
create the simple quadcopter model shown in Figures 2
and 3. Figure 2 shows the system when an ideal power
source is used, while Figure 3 shows the system with a

braries, a description of the AVL is available online at: https:
//tinyurl.com/DS-AVLib and for the UAVDL at: https://
tinyurl.com/CT-UAVDLib

2See: https://tinyurl.com/CT-UAVDLibUpgrade

battery power source. The quadcopter chassis in Figure 3
also has the frame_a1 connector that can be linked to
additional external payloads, such as a camera.

These quadcopter variants are tested in models config-
ured in the Examples package. The examples include us-
ing different input signals to control the inputs xcoord,
ycoord, and zcoord, which can be signals provided in
the DroneLibrary, Modelica Standard Library, experi-
mental data, and custom signal functions defined by the
user. The inputs for the quadcopter model can also be
left disconnected from any inputs and compiled as a Func-
tional Mock-up Unit (FMU). By selecting this option, the
model can be exported to other software tools for analysis
and simulation.

4 Electrical Models
The models for the drone’s motors and power sources are
located in the Electrical package.

4.1 Source Models
The Modelica Standard Library includes a
battery stack model that is included in the
Examples.DroneWithoutIdealPower package,
which is used when a battery model is desired.

The battery model is configured to interface with the
rest of the drone’s power system using two different power
electronic typologies. One of these topologies is shown in
Figure 4, where the battery model in the Modelica Stan-
dard Library is connected to a step-down DCDC con-
verter to provide power to the drone’s main controller unit
(MCU). The other topology in the package includes an ad-
ditional set of electrical pins to connect the battery to each
of the drivetrains.

Figure 4. Battery with DCDC converter to interface with drone
controller.

In the battery topology that connects the batteries to
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Figure 2. Quadcopter model used in example cases.

Figure 3. Complete drone model consisting of propellers, motor, controller, and chassis with battery power system. Inputs come
from x, y, and z coordinate location commanded by the user.
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each of the drivetrains, additional control to scale the volt-
age applied to the drivetrain is necessary. This is depen-
dent on the SOC of the battery as well as the signal from
the MCU. This component, PowerControl, is shown in
Figure 5.

Figure 5. Control component to scale voltage applied to drive-
train based on battery SOC and MCU signal.

4.2 Machine Models
The library contains multiple machine models at varying
degrees of modeling fidelity. The simplest representation
of the motor is defined as SimpleDCMotor, which fol-
lows Equations (1)-(3) below. This model only considers
torque τ , linear force f , motor speed ω , and current i to
control the motor with no electrical, thermal, or mechani-
cal losses considered in the model.

τ = Kτ · i (1)

Jp
dω

dt
= τ −b ·ω (2)

f = K f ·ω (3)

Most quadcopter systems use brushless DC motors
in drivetrains due to their high efficiency and power-
to-size ratio. To this end, the library includes an ex-
ample using the permanent magnet DC machine model
DC_PermanentMagnet from the Modelica Standard Li-
brary in the Examples package.

4.3 Control Modules
Each of the drivetrains in the quadcopter relies on a sig-
nal from a controller to enable flight. There are multi-
ple representations of the control module in the library
considering both the power consumption of the controller
and different sampling methods of the controller’s PID
blocks. There are five representations of the control mod-
ule:
• Discrete PID
• Discrete PID and electrical load
• Discrete PID using Synchronous Library

• Discrete PID using Synchronous Library and electrical
load

• Continuous PID
An example of the control module is shown in Fig-

ure 6, which uses an XYZ-coordinate position com-
mand, XYZ-coordinate current position GPS measure-
ment, 3-dimensional acceleration measurement, and a
one-dimensional yaw command to control the quad-
copter’s position. These signals are fed into discrete
PID blocks to determine the voltage command sent to
each drivetrain, denoted by y, y1, y2, and y3. For the
model variations that include an electrical load, the pin,
resistor, and ground components are included in the
model to represent a constant power draw.

5 Mechanical Models
The mechanical package includes the following subpack-
ages to model the quadcopter in the mechanical do-
main:
• Blades
• Propeller
• Chassis
• Rotor
• Motor

The components in the mechanical package use a
replaceable template structure, where the components
use the same base model that is parameterized for dif-
ferent quadcopters and levels of modeling fidelity. In-
side of each of these subpackages, there is a package
called Templates where the template for the component
is stored.

5.1 Blade Models
The blade models utilize the Modelica Standard Li-
brary’s multibody functionalities to link with the rest
of the system mechanically. The blade model uses a
template defined in DroneLibrary.Mechanical.
Blades.Templates, which includes the multibody
connector Input that interfaces a 3-dimensional force
and torque vector with the rest of the drivetrain.
The blade model consists of two-point body masses
representing the individual wings in the model, de-
noted as the bodyShape components in Figure 7.
Since the drone models can be animated, the blade
model utilizes the fixedShape component from the
MultiBody.Visualizers.FixedShape package
from the Modelica Standard Library. The blade model
can be configured to be animated using a .stl file
when the model is simulated, that is stored in the
A_Modelica/DroneLibrary/Resources/Images
folder of the library. The library also includes blade
models parameterized for quadcopters such as the Mavic
Air and Phantom. This entails defining the blade’s mass
m and relative distance (defined as an XYZ-coordinate)
to the quadcopter body as a point body mass as shown in
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Figure 6. Main controller unit.

Figure 7.

Figure 7. Blade model.

5.2 Propeller Models
The propeller template is shown in Figure 8. The pro-
peller model combines the motor, rotor, and blade models
using a replaceable model structure. Each propeller has a
position input from the controller and has an Airframe
mechanical connector that communicates a 3-dimensional
force and torque value with the quadcopter’s chassis.

Figure 8. Propeller model.

The propeller model can also be configured to account
for a system that has a non-ideal power source, e.g., a bat-
tery that changes voltage as it discharges. This is shown
in Figure 9, where the electrical pin connector p1 electri-
cally links the voltage and current drawn by the motor to
the quadcopter’s power source.

Figure 9. Propeller model with electrical power input.

5.3 Chassis Models
The quadcopter’s body is modeled in the chassis subpack-
age. The template of the chassis model is shown in Fig-
ure 10, which connects mechanically to each of the pro-
pellers using the frame_a connectors. Each arm of the
quadcopter’s chassis is modeled as a point body mass
bodyShape, and the centralized body of the quadcopter
is represented by the bodyCylinder and pointMass
components. The frame_a4 interface connects the quad-
copter chassis to various sensors that control the drone’s
positioning, pitch, and yaw. The chassis model is con-
figured to be animated in Figure 11, which contains a
fixedShape component that links a .stl file represent-
ing the chassis to be used in the animation of the quad-
copter.
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The chassis multibody masses follow the mathematical
model in Equation (4). Each inertia tensor can be defined
individually in this system, which reduces to Equation (5)
as defined in the Modelica Standard Library (MSL)’s
Multibody Library (Otter, Elmqvist, and Mattsson 2003).

τ = IXY Z ∗α =

IXX IXY IXZ
IY X IYY IY Z
IZX IZY IZZ

ω̇X
ω̇Y
ω̇Z

 (4)

τ =

IXX 0 0
0 IYY 0
0 0 IZZ

ω̇X
ω̇Y
ω̇Z

 (5)

Figure 10. Chassis model template.

Figure 12. Rotor model. The red box in the lower left corner of
the model represents the calculations needed to determine aero-
dynamic forces applied to the rotor.

Figure 11. Chassis model with visualization functionalities.

5.4 Rotor Models
The rotor model is represented in Figure 12, which me-
chanically links to the motor, chassis, and blades. The
multibody interfaces torque_1 and torque_2 link the
torque from the machine to the revolute. The revolute’s
speed is determined by a scaled measurement of the rela-
tive angular velocity between torque_1 and torque_2.

The aerodynamic forces are applied to the rotor us-
ing the ω2 model. Equation (6) calculates the aerody-
namic torque, aero_torque. More information about
the derivation of the simplified model can be found in
(Luukkonen 2011).

τo = (3.5×10−6)ω2 (6)

5.5 Motor Models
The motor subpackage contains two templates, DCMotor
and DCMotor_Power. These templates can be configured
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Figure 13. Motor model. The red box contains the components
used to calculate the thrust.

with any of the models from the Electrical.Motors
subpackage. The motor models receive a voltage com-
mand from the controller and link the rotor speed and
torque mechanically with the rest of the system. In
the case of the DCMotor_Power models such as the
one shown in Figure 13, the electrical pin p1 can be
connected to an external power source such as a bat-
tery model. The voltage command is scaled according
to the maximum voltage the power source provides us-
ing the Electrical.Sources.PowerControl compo-
nent. For the motor models using the DCMotor tem-
plate, the Electrical.Sources.PowerControl and
p1 components are removed to represent the electrical sys-
tem at a lower level of modeling fidelity.

In the motor models, the aerodynamic forces applied to
the quadcopter are calculated using the ω2 model. Equa-
tion (7) determines the torque applied from the motor. The
thrust provided by the motor is calculated in the compo-
nent thrust in Figure 13. The thrusts are coupled to the
motor component using the mechanical multibody con-
nector thrust. More information about the derivation of
the simplified model can be found in (Luukkonen 2011).

τh = 0.0015ω
2 (7)

6 Sensor Models
The sensors package includes models used in the quad-
copter to monitor its status and provide measurements for
control. This package contains accelerometer models, gy-
roscope models, and GPS models to track the location of
the quadcopter. Figure 14 shows the GPS sensor model,
which uses the relative position sensor from the Modelica
Standard Library to track the quadcopter’s relative posi-
tion to an origin point. It links mechanically to the quad-
copter chassis through interface frame_a and communi-
cates a three-dimensional position vector signal to the con-
troller through real output y[].

Figure 14. GPS sensor model.

Figure 15. Discrete PID block using Modelica synchronous
clocked components.

7 Other Packages
The library also contains various subpackages that provide
ancillary functionalities for simulation and analysis.

7.1 Blocks
The Blocks subpackage contains models for sources,
controls, and signal routing used in the quadcopter com-
ponents. The Sources subpackage contains two models
that can be used as XYZ-coordinate inputs to the quad-
copter. The circlePath component gives a flight com-
mand to fly the quadcopter in a circular motion and the
linePath command applies a ramp path along an axis to
fly the quadcopter in a straight line.

In the Control subpackage, there are PID transfer
function blocks that are used to model the main controller
units using both discrete and continuous controls. The
discrete PID transfer function component is shown in Fig-
ure 15, which uses the clocked components from the Mod-
elica Standard Library to model the PID controls. These
models are typically used in virtual reality applications.
The purpose of including multiple representations of the
PID control blocks is to support a broad range of simu-
lation studies and applications where different integration
and simulation methods are used.

7.2 Visualize
The Visualize package includes models that allow the
user to use visualization functionalities provided both
by the MSL and those that depend on the DLR Vi-
sualization Library (Hellerer, Bellmann, and Schlegel
2014). It provides component models for the user to
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interact in real-time with the model using functionali-
ties of the Modelica Devices Library, enabling keyboard
and joystick input. Examples that use these function-
alities can be found in Examples.Visualize. Be-
fore using the examples, see the information included in
Examples.Visualize.HowToRun.

7.3 Tests
The Tests subpackage contains test model examples for
individual subsystems in the quadcopter. These models
verify the functionality of the discrete control elements,
the command path models, and the quadcopter compo-
nents incrementally. These models can also be useful for
helping users through the debugging process when devel-
oping new models.

8 Examples
8.1 Basic Example
Several example model can be found within the package
Examples.DroneWithIdealPower. The package con-
tains a TestSystem, as shown enclosed in blue in Fig-
ure 16. The goal is to simulate the drone’s take-off and
hoovering by providing a ramp input to the z-axis refer-
ence. The figure also shows how the model can be quickly
reconfigured to analyze diverse model variants by using
the replaceable models, as illustrated in Figure 16 where
the simplest representation of the drivetrain’s machine is
chosen.

The simplest representation, i.e., when selecting
Drone_IdealMachine as shown in Figure 16, the drone
is modeled with an ideal motor and voltage source power
system. This model uses a constant voltage power source
that can draw as much current as needed to satisfy any
command applied to the motors. This means all electrical
dynamics from the battery are also neglected in the model.

The drone is simulated under ideal conditions in Fig-
ure 17 with a ramp signal applied in the Z-direction from
the ground to 5m. The drone overshoots the 5m hover-
ing height by 5.43% in this test. These results can be
compared by the user for other cases, e.g., by running the
models with the discrete PID or the discrete PID using the
synchronous components by selecting the desired model
variant as shown in Figure 16.

8.2 Battery Powered Drone Example
In the Examples.DroneWithoutIdealPower package,
the TestSystem model is configured similarly to that de-
scribed for the previous example. However, here the drone
variants/classes can be changed to study the drone’s be-
havior when using a battery power source. This model
uses a battery power source where the voltage and current
are affected by the battery’s state of charge. This means
the electrical dynamics from the battery are also included
in the model.

This model configuration also uses a DC permanent
magnet machine, using the model in Figure 13. The bat-

tery is parameterized with a nominal voltage of 12.1V
and the motor is parameterized with a nominal voltage
of 12V . This model variant considers the non-ideal be-
haviors that were neglected in the previous section. The
system is given the same 5m ramp command in the Z-
direction, with the response shown in Figure 18. Since
the simulation is only for a 10-second period, the power
consumption will have a negligible impact on the electri-
cal dynamics. The overshoot and steady-state error in the
Z-direction are 1.36% and 0.13% respectively. The lower
error and overshoot compared to the simplified case is due
to the higher damping modeled in the motors.

8.3 Example using DLR’s Visualization Li-
brary and the Modelica_DeviceDrivers Li-
brary

The drone can be simulated using HIL and virtual reality
software programs using the DLR Visualization Library.
The drone is configured for HIL simulation using the DLR
Visualization Library in Figure 193.

In the package, Examples.Visualize the model
ModuleTest_SimVis is configured to use computer key-
board arrow inputs to direct the drone’s flight path by us-
ing functionalities from the Modelica_DeviceDrivers
library. The components from DLR’s Visualization Li-
brary include camera1 and camera2 components that are
connected to the frame_a interface on the chassis to fol-
low the drone component around the environment during
the simulation. The world component defines gravity and
a reference frame to all moving components in the envi-
ronment. This world component (from the MSL) is con-
nected to shape1 (also from from DLR’s Visualization
Library), which defines the physical terrain (i.e. the scene)
that the drone is interacting with.

When the model is compiled and simulated, it appears
in the environment in Figure 20. The user can then utilize
the keyboard commands to maneuver the drone around
the environment. The drone can also be configured to be
controlled by a joystick or in other virtual reality environ-
ments, where more information can be found in (M. Pod-
laski 2021).

9 Conclusions
The DroneLibrary introduces a basis for open-source,
multi-domain drone models at varying levels of detail and
complexity. The models included in the DroneLibrary
are more complex than those in previous literature with
the capability to interface components between multiple
engineering domains. Many of these systems previously
only considered mechanical behaviors and aerodynamics,
while the DroneLibrary considers electrical dynamics
in the motors and power systems. The models in the
DroneLibrary allow for animation of the system for a

3This requires a Professional Edition license of the Visualization Li-
brary, to obtain one, see:https://visualization.ltx.de/.
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Figure 16. Examples.DroneWithIdealPower.TestSystem example model and how to modify it to use the different
available variants.

Figure 17. Drone with an ideal motor and ideal power system
XYZ position under a ramp signal input.

given input, enhancing the insight, analysis, and commu-
nication between domain specialists.

The models in the library are designed in a manner that
encourages future development, i.e., allowing to both in-
crease the complexity and the flexibility of the compo-
nent and system models. In addition, these models can
be integrated with other software using the FMI Standard
(Modelica Association 2014), especially with virtual real-
ity software and game engines such as those in (M. Pod-
laski 2021).

The library has been developed in Dymola and the
developers have successfully checked and simulated the

Figure 18. Drone with an DC permanent magnet motor and
battery XYZ position under a ramp signal input.

models. In addition, the library was also tested with Open-
Modelica where currently the models pass checks but may
not simulate.

The library has been released as open source soft-
ware under the BSD 3-Clause License and is avail-
able online at: https://github.com/ALSETLab/
Modelica-Drone-3D-FMI
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Abstract 
The Integrated Energy System (IES) enables integrated 

control and coordinated optimization of multiple energy 

flows. Due to the complexity of dynamic characteristics 

of multiple energy flows and the significant differences in 

time scales, thermodynamic problems occur during the 

operation of the system. In this paper, we propose an IES 

operation method that comprehensively considers 

thermodynamics to reduce the impact of thermal 

transmission delay (TDD) on the system's operational 

strategy, including modeling, evaluation, and scheduling 

programs. Firstly, an IES model is established to describe 

the dynamic characteristics of the energy supply network. 

Secondly, a two-stage optimization scheduling model 

considering TDD is established to reduce the impact of 

TDD on the operation decisions of IES, and the thermal 

power imbalance rate index is proposed to measure the 

impact of thermodynamics. Finally, the proposed 

method's effectiveness is validated by utilizing a 

comprehensive energy system as an example and 

implementing it on the MWORKS platform using the 

Modelica and Julia languages. 

Keywords: integrated energy system, optimal dispatch, 

heat dynamics, Modelica, Julia 

1 Introduction 

An IES integrates green and clean energy on the 

production side, couples energy conversion equipment 

with energy networks, and provides various forms of 

energy such as electricity, gas, heat/cooling to the 

consumption side, effectively reducing energy waste and 

improving energy utilization efficiency (Liu, et al., 2019; 

Song et al., 2022). Due to the different flow characteristics 

of in an IES, modeling IES is different from traditional 

energy systems. In the IES model, it is necessary to 

include modeling of the same type of energy transmission 

network (such as heat network or natural gas network) as 

well as modeling of the mutual conversion and coupling 

of heterogeneous energy sources, which increases the 

difficulty of modeling the IES (Cui, et al., 2022; Liu, et al., 

2020; Pan, et al., 2016). The authors in (Zhai, et al., 2021) 
applied the characteristic method for hyperbolic partial 

differential equation analysis to analyze the dynamic 

changes of natural gas systems in IES. The authors in 

(Chen X, et al., 2020) established an IES model that 

comprehensively considers the dynamic characteristics of 

heat and gas transmission, which can be used for 

simulation analysis of IES and the synergistic 

optimization among different energy subsystems, 

providing a basis for improving the economic and security 

of IES services. The authors in (Liu et al., 2016) defined 

the meaning of multi-energy complementarity in different 

energy networks and conducted a comprehensive analysis 

of IES containing three types of energy networks, 

including electricity, gas, and heat, to achieve a 

comprehensive modeling and simulation of the three 

energy systems. In (Wang et al., 2019) the authors were 

inspired by the individual-based modeling method in 

bacterial ecology. An individual-based modeling method 

for IES was proposed by them, which decouples the entire 

system into multiple independent individuals and utilizes 

input and output sets for each individual to achieve 

uniform interaction. 

In order to dig deeper into the dispatching value of 

electricity, heat/cooling, and gas loads on the demand side, 

plenty of research on integrated energy coordination 

control and dispatching optimization considering demand 

response has been conducted to realize the optimal 

utilization of various energy resources. In (Dou, et al., 

2020), an elastic demand side response model in the 

electric-thermal coupling system is established to 

optimize the load scheduling, showing significant effect 

in cutting down the system operating cost and improving 

the absorption capacity of PVs. A multitime scale flexible 

resources coordination optimization scheme is presented 

in (Yan, et al., 2020), which considers the smart loads’ 

participation and presents a multi-time-scale power 

dispatch model that considers coordination and interaction 

between resources and electrical loads. (Shen, et al., 2020) 

focused on regional IES and proposed a thermal-electrical 

coupling energy optimization method that includes virtual 

energy storage resources. This method effectively 

improves the matching degree between energy production 

output and user energy consumption demand, ensuring the 

economic and flexible operation of the system. In (Gu, et 

al., 2017), the thermal storage capacity of both the heating 

network and buildings is applied to participate in the 

dispatch of the IES to decrease the operational cost and 

increase the wind power consumption. Besides, the 
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flexible heating/cooling demand of buildings is also 

integrated with the flexible electrical and gas demand, to 

form an integrated demand response programs and 

participate in the energy management of energy systems, 

with the aim of improving economic performances and 

enhancing operational reliability (Wang, et al., 2017; Gu, 

et al., 2017). However, in almost all the existing 

researches, the slow heat dynamics in the heating network 

during the dispatch interval is usually simplified into a 

transient process. This simplification will result in 

considerable errors in the heat dynamics. It has not been 

investigated what impacts this simplification will bring 

about on the operation of the system and how to measure 

these impacts. Fundamentally, the heat dynamics in the 

heating network is governed by partial differential 

equations (PDE) (Jie, et al., 2012). Many numerical 

methods such as the finite difference method based on the 

characteristic path and the implicit upwind method are 

used to discretize the PDE into algebraic equations with 

proper time and spatial steps (Wang, et al., 2017).  

In summary, although there have been many advances 

in modeling, simulation, and optimization scheduling for 

IES, the dynamic transmission characteristics of the 

energy supply network are rarely considered in the 

research on optimization scheduling (Lu, et al., 2020). 

However, it has a significant impact on the operation of 

IES. Therefore, in this paper, we propose an IES operation 

method that comprehensively considers thermal dynamic, 

including modeling, evaluation, and scheduling programs. 

For the intra-day optimization scheduling of IES, we 

implemented the "operation decision-simulation 

evaluation" of IES on the same platform framework based 

on MWORKS (including Modelica and Julia). The main 

contributions of this paper are summarized as follows. 

(a) An IES model that considers network dynamics was 

developed in response to the dynamic transmission 

characteristics of the energy supply network. The 

dynamic characteristics of energy transmission in the 

network were simulated, and the possible impact of 

transmission delays on IES operational decisions was 

analyzed. 

(b) The thermal power imbalance rate was proposed as a 

metric to measure the impact of time resolution on 

IES operation. The index was calculated based on 

scheduling decisions and simulation results, and was 

used as a basis for making operational decisions. 

(c) An optimization scheduling model for IES 

considering TDD was proposed to reduce the impact 

of TDD on operational decisions. 

2 Integrated Energy System Model 

There are significant differences between different 

subsystems. Therefore, in analyzing the dynamic 
processes of the IES, mathematical models for each 

subsystem should be established. Furthermore, by 

combining these subsystem models with the coupling 

element models, equipment models and network models 

of various types can be coupled together to form a multi-

energy coupled IES model. 

2.1 Natural Gas Network Model 

The flow of natural gas in pipelines always follows the 

three laws of mass conservation equation, momentum 

conservation equation, and energy conservation equation 

(Vitaliy, et al., 2019). 

Mass conservation equation: 

    0A wA
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where A  is cross-sectional area of pipeline;  is gas 
density; w is gas flow rate. 

Momentum conservation equation: 
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where  is the friction resistance coefficient of the gas 

pipeline; D  is the inner diameter of the pipeline;   is the 
inclination angle of the pipeline. 

Energy conservation equation: 
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where Q  is heat exchange; u is internal energy; H is 

enthalpy. 

2.2 Heating Network Model 

In order to study the dynamic changes in heat transfer 

processes inside heating system pipelines, a dynamic 

model of hydraulic-thermal coupling for the heating 

pipeline is formed by coupling a thermal calculation 

model with the hydraulic calculation model of the heating 

pipeline. 

In Out

L

r

iQ
1

r

iQ  2

r

iQ 

lQ

M T
r
i nQ   

Figure 1. Physical model of pipe heat transfer. 
The variation of heat transfer in the heating network can 

be expressed as the spatiotemporal distribution of the 

temperature and mass flow rate of the hot water in the 

system. Figure1 shows the process of heat transfer along 

the axial direction and radial loss in the hot water. The 

pipeline is discretized into several units, each of which has 

three associated heat flows that determine the energy 

storage change of each unit. The radial heat transfer of 

each unit is independent and the heat is dissipated to the 

external environment through the pipe wall and insulation 
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layer. The axial flow is the connection condition of the 

radial temperature field of the entire pipe section, that is, 

the input of each unit is the output of the previous unit, 

and the output is the input of the next unit (Qiu, et al., 

2022). 

To describe the situation of considering both axial flow 

and radial heat dissipation simultaneously, a dynamic 

model of hydraulic-thermal coupling for the heating 

pipeline is established. The continuity equation and 

motion equation of pipeline flow are the same as those of 

gas pipelines, shown in Equations 1 and Equations 2, 

while the energy equation considers the radial heat 

dissipation of the pipeline on the original basis, as shown 

in Equation 4. 

 
1 1

i i r

i i i i i

d m u
m h m h Q

dt
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where m  is the mass of the cell heating medium; m  is the 

mass flow rate of the cell heat medium; r

iQ  is the radial 
heat dissipation of each unit, it can be expressed as 

, 0r i
i

all

T T
Q

R

 
                                (5) 

where ,iT   is the hot water temperature; 0T  is the ambient 

temperature; allR  represents the total thermal resistance 

between hot water and the external environment. 

2.3 Power System Load Flow Model 

Compared with gas and heating systems, the power 

system responds quickly to disturbances, generally within 

milliseconds. Therefore, this paper ignores the dynamic 

changes in power system flow. In power system flow 

simulation, the power system flow simulation model can 

be established based on the node voltage equation, and 

then the solution of various state parameters of the power 

system can be achieved.  

This article adopts a classic power flow calculation 

model, where the basic equation for power flow 

calculation is: 
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where iP is the active power of the node i; iQ  is the 

reactive power of the node i; iU


is the voltage vector of 

the node; jU


is the conjugation of node j voltage; ijY  is the 
admittance between node i and node j. 

2.4 Coupling Element Model 

Combined Heat and Power (CHP) unit is composed of 

gas turbines, waste heat boilers, internal combustion 

engines, and external combustion engines. It is a 

production method that combines heating and power 

generation, and it can produce both electricity and heat. 

The model of CHP unit can be expressed by the following 

formula. 

The mathematical model for the output power of the 
CHP unit can be expressed as: 

chp chp
load
chp,

chp

+
=

GV

P H
m
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                      (7) 

where 
chpH  is the thermal power of CHP at time  ; 

chpP  

is the electrical power of CHP at time ; load
chp,m is the mass 

flow rate of natural gas consumed by CHP; chp  is the 

efficiency of the CHP unit; GVH is the high calorific value 
of natural gas. 

 

The relationship between heat power and electrical 

power of CHP units can be expressed as: 
chp

chp chp
=

H
k

P





                                   (8) 

where chpk  is the thermoelectric ratio of the CHP unit.  

The CHP unit outputs heat to the heating system, and 

its heat output and water temperature meet the following 

requirements: 

 CHP CHP s r= pH c m T T                          (9) 

where 
sT  is the water supply temperature at the time  ; 

rT  is the return water temperature at the time  . 

3 Optimization Scheduling Model for 

IES Considering Thermal 

Transmission Delay 

Due to the multi-time scale characteristics of energy 

transmission in IES, such as electricity, gas, and heat, 

there is a delay in response to dispatch instructions. 

Compared with the power system and natural gas system, 

the heat dynamics of the heating system is a slowly 

changing process, and its response time to dispatch 

instructions is longer. In the determination of the 

operating strategy of the IES, the evolution process of heat 

dynamics cannot be ignored. In this paper, the framework 

of operation decision-making and simulation evaluation is 

adopted to study the optimization scheduling of IES. 

3.1 Optimization Scheduling Model 

The optimal dispatch of the IES aims to determine the 

short-term (typically, day-ahead) optimal output of 

devices in the system in order to minimize the cost. The 

dispatchable variables include the state and output of each 

device, the networkenergy power, and the energy power 

supplied to end users. The constraints include the 

operational constraints of the electrical power system, 

heating system, and nature gas system. 

The total operating costs during the scheduling phase of 

the IES include the costs of purchasing and selling 

electricity, the costs of purchasing gas, and the costs of 

participating in the operation and maintenance of the 

energy supply equipment during the scheduling phase. 

The objective of the optimal dispatch model of the IES is 

as follows. 
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where power

exC  is the costs of purchasing and selling 

electricity; gas

buyC  is the costs of purchasing gas; equi

omC  is the 

costs of participating in the operation and maintenance. 

The Constraints of the optimal dispatch model of the 

IES is as follows. 

Constraint on electrical power balance: 

WT PV NP CHP ex BS Load

t t t tP P P P P P P            (11) 

where LoadP  is the power system load. 

Constraint on heat power balance: 

h,CHP, h,Load

1


n

t

i

i

P P                            (12) 

where 
h,LoadP  is the thermal load. h,CHP,

t

iP is thermal power 

of CHP unit. 

Constraint on gas mass flow rate balance: 

gas pipe,in pipe,out Load

1 1

n n
t t t

i i

M M M M
 

            (13) 

where LoadM  is the natural gas load. 

In addition to satisfying the electricity, gas, and heat 

power balance constraints mentioned above, the IES 

scheduling model also needs to satisfy operational 

constraints such as energy storage device constraints, 

interconnection power transmission constraints, and CHP 

output constraints. Among these constraints, Equations 

14-16 represent the energy storage device constraints, 

Equation 17 represents the interconnection power 

transmission constraint, and Equation 18 represents the 

CHP output constraint. 
min max

BS BS BS

tS S S                              (14) 

min max

BS,ch BS,ch BS,ch

tP P P                            (15) 

min max

BS,dis BS,dis BS,dis

tP P P                            (16) 

min max

EX EX EX

tP P P                               (17) 

min max

CHP CHP CHP

tP P P                               (18) 

where 
BS

tS is battery capacity; BS,ch

tP is battery charging 

power; BS,dis

tP is battery discharge power; 
EX

tP  is the 

purchasing and selling power of the tie-line. 

3.2 Influence of Thermal Transmission Delay 

When performing optimization scheduling of an IES, 

the transmission delay of the heating pipeline often results 

in a significant time difference between our scheduling 

command response and the thermal load. In order to 

illustrate the impact of heating pipeline transmission delay 

on the day-ahead optimization scheduling of the IES, a 

simulation is performed using a specific heating pipeline 

(L=1000m, D=0.3m, m=50kg/s, T(start)=90℃) as an 

example. Three load demand changes are set for three time 

periods: ① T(t=0)=95℃, ② T(t=3600s)=80℃, ③
T(t=7200s)=90℃. The simulation model based on 

Modelica is shown in Figure 2. 

 
Figure 2. Heating pipeline simulation model. 

The simulation results are shown in Figure 3, where 

"T_in" represents the temperature of the heat source 

adjusted based on the load demand, which is numerically 

equal to the user's required water supply temperature. 

"T_out" represents the actual temperature of the hot water 

supplied to the user. From the simulation results, it can be 

seen that heat network transmission delay can have a 

serious impact on supply-demand balance. The demand of 

the heat network is mainly met through the response of the 

heat source, and there is a delay of about one hour from 

the time the heat is emitted from the heat source to the 

time it reaches the load, leading to a serious supply-

demand imbalance. Therefore, from the perspective of 

operating decision, it is necessary to consider heat 

network transmission delay in the day-ahead scheduling 

stage and control this supply-demand error within a 

certain range. 

 
Figure 3. Simulation results of a specific pipeline. 

The above results have verified the serious impact of 

heat network transmission delay. However, how to 

measure and overcome its impact has not yet been 

resolved. To address this issue, a further proposal is made 

for the heat power imbalance rate indicator and a two-

stage process method for operating strategy. 

3.3 Two-Stage Optimization Scheduling 

Process for IES Considering Thermal 

Transmission Delay 

The simulation results from the previous section 

indicate that errors in the heat power network will lead to 

a supply-demand imbalance of thermal energy in the IES 

's day-ahead optimization scheduling. Therefore, this 
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section proposes the heat power imbalance rate indicator 

to quantify the thermal dynamic errors in the operating 

strategy, reflecting the supply-demand imbalance of the 

heat network in each time period. The specific calculation 

formula is as follows: 

, ,

s l,

% ,
1 s

100%

i t i t
n

i t

i t
i

H H
H
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where ,

%

i tH is heat power balance rate index; ,

s

i tH  is the 

actual supplied thermal power of each node; ,

l

i tH  
represents the actual thermal power demand of each node. 
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Figure 4. Two-stage dispatch procedure. 

It should be noted that when the heat power imbalance 

rate exceeds the limit, it indicates that the current 

operating strategy does not meet the thermal dynamic 

control accuracy. At this point, simulation evaluation is 

needed to determine the delay amount, and then re-

evaluate the thermal load and adjust the time resolution. 

The two-stage optimization scheduling process for the 

IES based on the "operating decision-simulation 

evaluation" framework is shown in Figure 4. The Stage 1 

is the dispatch decision process and the Stage 2 is the 

posterior evaluation of the supply and demand situation of 

thermal energy. The detailed steps are as follows: 

A. Initialization stage: Based on the IES model 

established in the second section, the IES simulation 

model is built. (using MWORKS.Sysplorer) 

B. "Operating decision" stage: Based on the established 

IES operation optimization model, the operating 

decision is made to obtain the operation optimization 

results. (using MWORKS.Syslab) 

C. "Simulation evaluation" stage: The operating decision 

results are input into the IES model for simulation 

calculation, and the heat power imbalance rate 

indicator is calculated based on the simulation results. 

(using MWORKS.Syslab and MWORKS.Sysplorer) 

D. Validation stage: Determine whether the operating 

strategy meets the thermal dynamic control accuracy 

requirements. If the requirements are met, the process 

ends; otherwise, update the day-ahead thermal load 

and time resolution and proceed to step B. 

4 Case Studies 

This paper investigates a IES with an integrated 

network of electricity, gas, and heat as a case study, whose 

topology is illustrated in Figure 5. The power grid, nature 

gas network, and heat network are interconnected through 

a CHP unit. The power grid comprises 30 nodes, which 

include a wind turbine, a photovoltaic power station, a 

small nuclear power station, and a battery unit. The gas 

grid comprises 17 nodes and 16 pipelines. The heat 

network includes 20 nodes, with 10 of them serving as 

user node. 

 

Heat 
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Figure 5. Topological structure diagram of IES. 

Building upon the aforementioned work, the 

scheduling strategy and system simulation model for the 

comprehensive energy system have been implemented 

using the Modelica and Julia languages. The program was 

developed utilizing the MWORKS.Sysplorer and 

MWORKS.Syslab software tools, along with their unified 

simulation capabilities. The system model is illustrated in 

Figure 6. From the figure, it can be seen that the 

simulation model consists of two parts: a simulation 

module and an optimization module. The electric power 

system part in the simulation module is developed based 

on the Julia language, while the other models are 

developed based on the Modelica language. The 

optimization module is developed based on the Julia 

language and the Julia code is included in the Sysplorer 

model through the SyslabFunction of the MWORKS 
platform, enabling the combination of simulation and 

optimization. 
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Figure 6. IES operating decision and simulation evaluation 

model.  

Two optimization running strategies were simulated 

and compared, including a two-stage optimization 

scheduling method (TSOSM) that considers TDD and an 

optimization scheduling method (TOSM) that does not 

consider TDD. As shown in Table 1, the heat power 

imbalance, temporal resolution, and operating cost of the 

two methods were compared, and the heat power 

imbalance of TSOSM was significantly lower than that of 

TOSM, indicating a significant improvement in supply-

demand balance, and thermal comfort is greatly improved. 

This is our primary focus. The cost calculation results 

indicate that considering thermal dynamics reduces 

operating costs by approximately ¥10400, which is 

significant when viewed from an annual perspective. 

However, using TSOSM requires a higher time resolution, 

which increases computational complexity. 

Table 1. Comparison of results on heat power imbalance rate, 

time resolution, and operating cost. 

Parameter TOSM TSOSM 

△h% 9.58 0.97 

△t (min) 60 30 

Cost (103RMB¥) 4011.48 4001.08 

Figure 7 displays the heat demand of the most 

disadvantageous user node and the supply water 

temperature change curves of two methods. It can be 

clearly seen that TSOSM has a better response to the heat 

demand, while TOSM fails to meet the heat demand of 

users for a long period of time after the demand changes, 

which greatly reduces the users' thermal comfort and 

causes a very unfavorable impact. 

 

Figure 7. Temperature comparison of the most unfavorable 

nodes. 

The comparison of the day-ahead scheduling results of 

the IES using TSOSM and TOSM is shown in Figure 8. 

For tie-line, the positive values indicate purchasing 

electricity, and the negative values indicate selling 

electricity. For the batteries, the positive value represents 

discharging (releasing), and the negative value represents 

charging (storing). The output of the battery under the two 

operating strategies is almost the same. The difference 

between the output of the CHP unit is evident in both cases. 

The results indicate that considering TDD has a relatively 

small effect on the battery's output, but a significant 

impact on the CHP's output. In addition, under different 

operating strategies, the wind power, photovoltaic, and 

nuclear energy outputs are the same and equal to the 

predicted power generation. The power of the tie-line also 

varies in some periods under different operating strategies. 

In conclusion, considering TDD not only has a 

considerable impact on the thermal scheduling results, but 

also affects the power scheduling results, although the 

impact is relatively small. 

Substantially, TSOSM focuses on characterizing the 

thermal dynamic response, which leads to differences in 

the heat power injected into the heating network. 

Therefore, the scheduling results of equipment related to 

heat power (i.e., CHP units) will be directly affected. 

 
(a) Tie-line Power 

 
(b) CHP_A 

 
(c) CHP_B 
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(d) Battery 

Figure 8. Comparison of scheduling results. 

Under the framework of "operation decision-simulation 

evaluation", further analysis of the system's state can be 

conducted based on determining the operational decision, 

achieving precise control of the system, and providing a 

basis for scientific management in the intra-day 

scheduling stage. 

The supply and demand response of the power system 

is shown in Figure 9. The CHP unit, wind power 

generation, photovoltaic, nuclear energy, and battery 

jointly provide electricity for the power system. Despite 

the system's high demand for electricity, it still needs to 

purchase electricity from the main grid to meet the 

shortfall in load. Under this operational strategy, the 

supply and demand of the system are balanced, and clean 

energy such as wind and photovoltaic provide most of the 

electricity, saving the system's operational costs. In 

addition, the battery discharges during periods of high 

load (such as 9:00-11:00 and 14:00-15:00) and charges 

during periods of light load (such as 23:00-4:00), to 

achieve peak shaving and valley filling. 
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Figure 9. Supply and demand response of the power system. 

Figure 10 illustrates the temperature change curves of 

the supply and return pipes at the beginning and end of the 

heating network. As shown in the figure, the outlet 

temperatures of each supply and return pipe also change 

correspondingly with the variation of the heat load. Due 

to the influence of thermal inertia, the response time is 

about 90 minutes. Meanwhile, due to the coupling of 

hydraulic transmission and thermal transmission, there is 

a time delay of about 45 minutes between the response of 

the first pipe and the response of the fifth pipe, reflecting 

the delay characteristic of transmission, which is 

particularly important in the optimization and scheduling 

of heating systems. 

 
(a) Supply water temperature 

 

(b) Return water temperature 

Figure 10. Temperature variation curve of heating network 

supply water and return water. 

Changes in the state of the heating network can also 

trigger responses in the natural gas network, firstly 

affecting the load side, causing a rapid change in gas load, 

and then leading to the redistribution of pressure and 

transmission flow rate in each branch pipe. The mass flow 

rate changes of some sections of the natural gas network 

are shown in Figure 11, which shows that the flow rate of 

the pipe fluctuates with the load and reaches a stable state 

again after a period of time (about 10 minutes). 

 
Figure 11. Mass flow rate variation curve of natural gas 

pipeline network 

In summary，the above case verify both the necessity 

of considering heat dynamics of the heating network and 

the effectiveness of the proposed dispatch procedure. The 

simulation results show that considering thermal 

dynamics has different degrees of impact on the 

scheduling results of the power system, heating system, 

and natural gas system. Since the essence of considering 

thermal dynamics lies in correcting the heat load, the 
impact on the heating system is the greatest. However, due 

to the characteristics of multi-energy coupling in IES, the 
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impact on the heating system will also be coupled to the 

power system and natural gas system, but to a relatively 

lesser extent. 

5 Conclusions 

In this paper, we propose an IES operation optimization 

method that comprehensively considers thermal dynamics, 

including modeling, evaluation, and scheduling programs. 

The heat power imbalance rate index is introduced to 

evaluate the satisfaction level of heat demand. A two-

stage optimization scheduling model for IES considering 

transmission delay is proposed to reduce the impact of 

TDD on the system's operational strategy. Finally, the 

proposed method is validated using an IES. 

Based on theoretical analysis and simulation results, the 

following conclusions can be drawn: 

1) TSOSM can significantly mitigate the impact of 

thermal supply-demand imbalance caused by TDD, 

and improve users' thermal comfort. In addition, 

compared with the TOSM, the operating cost of 

TSOSM has been reduced. 

2) The scheduling results of TSOSM have an impact on 

the heating system, power system, and natural gas 

system. During simulation evaluation, the dynamic 

characteristics of the system were also well simulated, 

such as when the load changes, the response time of 

the heating network is about 1.5 hours, and the 

response time of the gas network is about 10 minutes. 

3) The integration of optimization scheduling of IES 

and multi-agent power flow analysis into a unified 

framework is achieved in this study. Effective 

methods and tools are provided for optimizing the 

operation and scientific management of IES. 
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Abstract 
In parallel channels of a nuclear reactor core, flow 

instability can cause a significant decrease in critical heat 

flux (CHF) or mechanical oscillation of the fuel 

components, endangering the normal operation of the 

reactor. Nuclear reactor Modeling and Analysis Platform，
NUMAP, developed based on the two-fluid six-equation 

theory and using the Modelica language, is a multi-

domain unified modeling and simulation platform for 

nuclear power plants. In this paper, a parallel dual-channel 

system model was constructed based on the NUMAP, 

referencing a high-temperature and high-pressure steam-

water two-phase thermohydraulic experimental device, to 

simulate flow instability phenomena. The comparison 

with experimental data validated the transient analysis 

ability of the NUMAP for flow instability phenomena. 

Based on this, the flow instability boundary of a parallel 

multi-channel system was calculated under the same 

operating conditions. When the number of parallel 

channels was 2, 3, and 4, the calculated flow instability 

boundary error did not exceed ±5%, verifying that a 

parallel dual-channel structure can be used to obtain the 

flow instability boundary when there are multiple parallel 

heating channels. 

Keywords: parallel channels,  flow instability, Modelica, 

NUMAP 

1 Introduction 

Flow instability refers to the phenomenon where a 

system deviates from its stable state and experiences non-

periodic drift or periodic oscillation in thermal parameters 

after being subjected to instantaneous disturbances (Xu 

2001). For systems with multiple parallel heating channels, 

flow instability may occur between the parallel channels, 

manifested as periodic flow pulsation between the heating 

channels. When flow instability occurs between parallel 

channels, it can significantly reduce the critical heat flux 

density or cause mechanical vibration of the equipment, 

thereby endangering equipment safety. 

The mechanism of flow instability is shown in 

Figure1 which shows the pressure drop and flow rate 

curve of water in a straight pipe with constant heating 

power. 

 
Figure 1. Characteristic curves of pressure drop and 

flow rate in the heating channel  

Within the entire range of mass flow rate ( M ), when 

the flow rate decreases to the point E in a flow pipeline 

with constant total heating power, two-phase flow occurs 

due to the generation of a large amount of steam, leading 

to an increase in pressure drop ( P ) in the pipeline as the 

flow rate decreases. At point D, the flow rate is small 

enough to form single-phase steam flow in the pipeline, 

and the D-O region is the pressure drop characteristic 

curve of single-phase steam. In Figure 1, we can see that 

when the differential pressure ( P ) between the inlet and 

outlet is between point D and point E, for the same 

differential pressure ( P ), there may be three flow rates 

in the channel, which may lead to flow instability. For 

parallel channels, periodic flow pulsations may occur in 

the flow rates in each channel in this situation. 

Many scholars have conducted experimental 

research on flow instability in parallel channels. Cheng et 

al. (Cheng 2018) studied the flow instability of natural 

circulation rod bundle parallel channels through 

experiments. The study mainly focused on the 

experimental phenomenon and mechanism of pressure 

drop flow instability when the stabilizer was connected to 

the upstream of the heating channel, and the effect of inlet 

subcooling and heat flux density on flow instability was 

also studied. Tang Yu et al. (Tang 2014) conducted 

experimental research on flow instability in rectangular 

parallel channels under forced circulation conditions, 

considering the effects of system pressure, mass flow rate, 

and inlet subcooling on the flow instability boundary, and 

obtained a non-dimensional relationship for flow 

instability through experimental data fitting. 

Currently, experimental methods are mainly used to 

study flow instability in parallel channels (Peng 2021; 

Zang 2014). However, experimental research has the 

disadvantages of long cycle length, limited experimental 

conditions, and inability to capture the internal 

mechanism of flow instability phenomena. Therefore, it is 

necessary to use simulation methods to simulate flow 

instability phenomena, study the flow instability 

mechanism under different operating conditions of 

parallel heating channels, and determine the flow 

instability boundary to provide a reference for 

experimental research. 

In engineering practice, one-dimensional system 

simulation programs are commonly used to simulate and 

analyze flow instability phenomena in parallel heating 

channels. Since the fluid state in parallel heating channels 

under forced circulation changes dramatically, the flow 

path is generally divided into several control volumes. 

This method reduces the complexity of the calculation 

compared to the three-dimensional numerical simulation 

method for studying the flow and temperature fields in the 

flow path, and achieves the expression of the thermal-

hydraulic characteristics of flow instability, which is 
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widely used in modeling and simulation analysis of flow 

instability (Qian 2014; Xiong 2015). Commonly used 

simulation programs are developed using Fortran, C 

language, Matlab/Simulink, or directly using nuclear 

engineering professional simulation software such as 

RELAP5, THEATRE (Xia 2011; Xing 2010). These 

programs and software use card-based modeling, and the 

modeling process lacks a graphical interface, making it 

difficult for users to obtain the composition of the system 

equipment, equipment connection relationships, and 

equipment parameter information intuitively. Graphical 

simulation software such as MMS in the United States, 

APROS in Finland, and STAR-90 in China have been 

widely used in the field of dynamic system simulation. 

Their drag-and-drop modeling and visualization of 

equipment parameters greatly reduce the workload of 

modeling, but the code of these commercial software is 

relatively closed and not conducive to users for secondary 

development according to their needs. 

Modelica is a physical modeling language that is 

object-oriented, equation-based, and uses reusable 

hierarchical component models (Zhao 2006). Its 

numerical model is open-source and visible, and is written 

in equation form, which has strong comparability with 

empirical relationships obtained from experiments and 

theoretical equations. Users can efficiently and accurately 

construct and optimize numerical models using the 

advantages of the Modelica language. The Modelica 

language supports graphical drag-and-drop modeling, 

which can correspond one-to-one between the topological 

structure design of the numerical model and the system 

schematic diagram, greatly improving the modeling 

efficiency and model readability (Zhang 2022). Based on 

the advantages of the Modelica language, Suzhou 

Tongyuan Soft & Control Technology Co., Ltd. and China 

Nuclear Power Research and Design Institute have 

constructed a two-phase thermal-hydraulic characteristic 

model architecture, established a hierarchical structure 

from the basic control equations and closed equations to 

the system model, and developed a nuclear reactor unified 

modeling and analysis platform NUMAP based on 

Modelica, which is multi-disciplinary, multi-level, and 

multi-system (Huang 2021). 

2 Two-Fluid Six-Equation Modeling 

Based on Modelica 

The thermal hydraulic model library of NUMAP is 

described using the Modelica language by two-fluid six-

equation formulation. The two-fluid six-equation model is 

a commonly used mathematical equation model for 

thermal-hydraulic system analysis of nuclear reactors, 

which can accurately simulate the mass and heat transfer 

behavior of the two-phase flow in normal and accident 

operating conditions of the nuclear reactor system. It can 
be used for nuclear reactor system design verification, 

operation simulation, safety analysis, and other scenarios. 

Based on the Modelica language, the two-fluid six-

equation model considers the different properties, flow 

rates, temperatures, and mass, energy, and momentum 

exchange between the two-phase fluids in the actual two-

phase fluid flow process。Mass, momentum, and energy 

conservation equations are established separately for the 

vapor and liquid phases. In order to make the control 

equation group closed, constitutive equations such as 

interfacial friction, interfacial heat transfer, interfacial 

mass exchange, wall friction, and wall heat transfer are 

added. 

2.1 Conservation equation model 

The  mass conservation equation of two phase： 

k k k k k
k

t t

     
+ = 

 
                            (1) 

The momentum conservation equation of two phase： 
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The thermal energy conservation equation of two phase： 
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where the following quantities and symbols appear:  

k       vapor phase  g  or  liquid  phase  f ， 

 i       interface， 
 

 

 

  

 

k

wk

volume percentage

flow rate

enthalpy value

interface mass transfer

wa

h

ll frictionF







，

，

，

，

，

 

 

 

    

    

  .

ik

a

ik

wk

interface friction

action of external force field

in

F

F

q

q

terface heat transfer

wall heat transfer

，

，

，

 

2.2 Closed constitutive equation model 

In Section 2.1, the thermal-hydraulic conservation 

equations used by NUMAP are presented. To solve these 

equations in a mathematically closed manner, sufficient 

closed constitutive equation models need to be 

supplemented, including Flow Regime Maps Model,  

Wall-to-Fluid Heat Transfer Model, Interfacial Heat 

Transfer Model, Interphase Friction Model, Wall Drag 

Model, water and steam property calculation Models, etc. 

(Rockville 2001). 

2.2.1 Flow Regime Maps Model 

Two flow-regime maps for two-phase flow are used 

in the NUMAP: a horizontal map and a vertical map for 

flow regime in pipes. 

(1) The horizontal flow regime map  
The horizontal flow regime map is for the flow 

pipeline whose elevation angle   is such that 0 45   
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degrees. The map contain Bubbly Flow, Slug Flow, 

Annular Mist Flow, Mist Flow, Horizontal Stratification 

Flow and Transition Flow pattern. 

 
Figure 2. Schematic of horizontal flow regime map with 

hatchings, indicating transition regions. 

(2) The vertical flow regime map  

The vertical flow regime map is for the flow pipeline 

whose elevation angle   is such that 45 90    degrees. 

The map contain Inverted Annular Flow, Inverted Slug 

Flow, Mist Flow, Bubbly Flow, Slug Flow, Annular mist 

Flow, Vertically Stratification Flow and Transition Flow 

pattern. 

 
Figure 3. Schematic of vertical flow regime map with 

hatchings, indicating transition regions. 

2.2.2 Wall-to-Fluid Heat Transfer Model 

the total wall heat flux ( q ) is the heat flux to the 

vapor plus the heat flux to the liquid. 

( ) ( )w reg w refq htcg T T htcf T T= − + −                       (4) 

where the following quantities and symbols appear: 

    heat transfer coefficient th cg ot gas     

    heat transfer coefficient to lihtcf quid     

 w wall temperaT ture     

  ref liquid reference tempT erature  

  reg gas reference tempeT rature    

Heat transfer coefficient htcg  and htcf  used in 

different wall convection heat transfer models are shown 

in Table 1. 

Table 1.  Wall convection heat transfer models 
Heat transfer model Correlations 

single-phase gas or liquid Dittus-Boelter, Shah, McAdams  

nucleate boiling Chen 
transition boiling Chen-Sundaram-Ozkaynak 

film boiling Bromley, Sun-Gonzales-Tien 

2.2.3 Interfacial Heat Transfer Model 

In NUMAP, the interfacial heat transfer between the 

gas and liquid phase actually involves both heat and mass 

transfer. The form used in defining the heat transfer 

correlations for superheated liquid (SHL), subcooled 

liquid (SCL), superheated gas (SHG), and subcooled gas 

(SCG) is that for a volumetric heat transfer coefficient 

(W/(m3.K)). Since heat transfer coefficients are often 

given in the form of a dimensionless parameter (usually 

Nusselt number, Nu), the volumetric heat transfer 

coefficients are coded as follows: 

p

ip gf ip gf

k
H Nua h a

L
= =                            (5) 

where the following quantities and symbols appear: 

3 (W/m K)

ipH volumetric interfacial heat transfer coefficient 

for phase p 

    

(W/ m K)pk thermal conductivity for phase p      

  (m)L characteristic length     
2 3     (m /m )gfa interfacial area per unit volume  

2 ( W/ m K)iph interfacial heat transfer coefficient for phase p     

  (        )p phase p either f for liquid for g for gas    

2.2.4 Interphase Friction Model 

The interface friction in the phasic momentum 

equations (2) is expressed in terms of phasic interfacial 

friction coefficients as： 

( - )ig g g g fF FIG v v =                                (6) 

( )if f f g fF = a FIF v - v                               (7) 

where 
igF  is the magnitude of the interfacial friction 

force per unit volume on the vapor and 
ifF  is the 

magnitude of the interfacial friction force per unit volume 

on the liquid. FIG and FIF are the phasic interfacial 

friction coefficients. 

2.2.5 Wall Friction Model 

The pressure loss of fluid flow includes wall 

frictional pressure drop, gravity pressure drop, and 

accelerated pressure drop. The wall frictional pressure 

drop is calculated by The Wall Friction Model which 

include Frictional resistance of single-phase flow and 

two-phase flow.  

(1) single-phase flow 

Darcy's formula is used for the frictional pressure 

drop of single-phase flow  
2

2

L
P f

De


 =                                   (6) 

where f  is the frictional resistance factor. 

(2) two-phase flow 

The HTFS correlation is used to calculate the two-

phase friction multipliers. This correlation was chosen 
because it is correlated to empirical data over very broad 

ranges of phasic volume fractions, phasic flow rates and 
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phasic flow regimes. The correlation has also been shown 

to give good agreement with empirical data. 

The HTFS correlation for the two-phase friction 

multiplier is expressed as: 

2

2

1
1f

C

X X
 = + +                             (7)                                

2 21g CX X = + +                              (8) 

where C is the correlation coefficient and 
2X  is the 

Lockhart-Martinelli ratio. 

In order to calculate the frictional pressure drop of 

two-phase flow ， NUMAP represents the two-phase 

pressure drop as the product of the single-phase frictional 

pressure drop and the HTFS correlation. 

2.2.6 Water and Steam Property Calculation 

Models 

In thermal hydraulic simulation software, it is 

necessary to accurately and quickly calculate all 

thermodynamic parameters of water and steam. When 

calculating the thermodynamic parameters of water and 

steam through fitting formulas, high-order polynomials 

are necessary to improve calculation accuracy, but high-

order polynomials can slow down the calculation speed 

and consume time when the number of control volume is 

large.  
In order to improve calculation accuracy and speed, 

NUMAP uses the lookup table method to solve the water 

and steam parameters, using the 1967  ASME Steam Table. 

The water vapor table consists of three tables, namely the 

steam property table (two-dimensional), the water 

property table (two-dimensional), and the saturated 

property table (one-dimensional). 

2.3 Discrete solution of equations 

The conservation equations and closed constitutive 

equations form a nonlinear equation system for solving 

thermal-hydraulic problems. In the process of solving the 

equation system, numerical methods are used to solve the 

coupled "pressure-velocity" relationship in the model. In 

the discretization process, a semi-implicit method is used, 

which was proposed by Patankar and Spalding in 1972 

and is commonly known as the SIMPLE (Semi-Implicit 

Method for Pressure Linked Equations) method, which is 

a semi-implicit method for solving the pressure coupling 

equation. The semi-implicit solution method is based on 

the coupling of velocity and pressure on a staggered grid 

(Tao 2001). 

For one-dimensional fluids, a staggered grid refers to 

storing the velocity and pressure separately on two 

different grids. The pressure is stored at the control 

volume center (node), and the velocity is stored at the 

interface between two adjacent control volumes. When 

calculating the velocity correction value, the influence of 

the velocity correction value on the adjacent interface is 

not considered, that is, the velocity correction value on the 

interface is only determined by the pressure correction 

value between adjacent control volume nodes. 

1 2

v1

p1
p2 p3

v2

3

a b

 
Figure 4. Storage of pressure and velocity. 

3 Development and engineering 

validation of a parallel channel 

system model 

3.1 Development and validation of a parallel 

dual-channel system model. 

The parallel heating dual-channel experiment was 

conducted on a high-temperature and high-pressure two-

phase thermal-hydraulic experimental device, which has a 

design pressure of 17.2 MPa, a design temperature of 

350℃, and an experimental mass flow rate range of 100-

5000 kg/(m2.s) (Wang 2021). Referring to the 

experimental platform, a parallel heating dual-channel 

system model was built based on NUMAP, and the system 

model is shown in Figure 5. 

 
Figure 5. Model of parallel heating dual-channel system. 

The way to carry out simulation calculation 

conditions is to gradually increase the heating power in a 

step-by-step manner while keeping the system pressure 

and inlet parameters unchanged. After each power 

increase, the heating power is kept constant for 2 minutes. 

When the flow instability occurs, the heating power is 

kept constant, and the quality gas rate at the channel outlet 

is recorded. Experiments and simulation calculations were 

conducted using 10 groups of uniform heating conditions 

and 16 groups of non-uniform heating conditions. The 

comparison between the simulation results and the 

experimental results is shown in Figures 6 and 7. 
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Figure 6. Calculation error of uniform heating. 

 
Figure 7. Calculation error of non-uniform heating. 

Based on the reference experimental conditions, 

simulations were carried out for the flow instability of 

uniform and non-uniform parallel heating dual-channel 

systems. The simulation results of the quality gas rate at 

the channel outlet when the flow instability occurs were 

selected and compared with the experimental values. In 

terms of calculation error, the maximum errors between 

the simulation results and the experimental results for 

uniform and non-uniform heating conditions were 18.87% 

and 15.7% respectively, which met the error requirement 

of 20% for this experimental condition; In terms of 

calculation speed, the simulation setting time for both 

uniform and non-uniform heating test cases is 400 seconds, 

and the actual average simulation time is 356 seconds,  

meeting the real-time requirements of simulation 

calculation. This indicates that the NUMAP can be used 

for simulation analysis of the transient characteristics of 

flow instability in parallel channels. 

3.2 The effect of different numbers of heating 

channels on the unstable boundary of 

parallel multi-channel flow. 

Parallel multi-channel systems exist in various 

nuclear power equipment, and their flow instability can 
lead to a significant decrease in critical heat flux (CHF) or 

mechanical oscillation of the equipment, affecting the 

normal operation of nuclear power plants. Therefore, how 

to avoid the occurrence of flow instability in parallel 

multi-channel systems during the operation of nuclear 

power plants has always been a hot research topic. After 

verifying the transient calculation capability of NUMAP 

for the flow instability of parallel heating dual-channel 

flow, this section will simulate the flow instability 

boundary of parallel multi-channel flow. 

3.3 Calculation method for flow instability 

boundary. 

Ishii (Ishii 1942) showed that the subcooling number 

Nsub and the dimensionless number of phase change Npch 

are the two most important dimensionless numbers for 

characterizing flow instability under forced circulation 

conditions. Most researchers prefer to use the Npch - Nsub 

diagram to plot the flow instability boundary and region, 

and this method is also used in this study. 

The dimensionless subcooling number Nsub and the 

dimensionless phase change number Npch and are defined 

as follows: 

fg

pch

fg f

Qv
N

Wh v
=                              (4)                                                 

sub fg

sub

fg f

h v
N

h v


=                                     (5)                                        

where the following quantities and symbols appear:  

Q         the total heating power, W. 

W         the total mass flow rate at the inlet of the channels, 

kg/s, 

fgh      the latent heat of vaporization, J/kg, 

subh  the inlet subcooling enthalpy, J/kg, 

fgv      the difference in specific volume between saturated 

vapor and liquid,m3/kg, 

fv    the specific volume of the saturated liquid phase, 

m3/kg。 

 

3.2.1 Simulation calculation of flow instability 

boundary in multi-channel flow. 

The flow instability boundary of parallel dual, triple, 

and quadruple channel systems was studied using the 

experimental conditions selected in Section 3.1. The 

typical simulation curves obtained are shown in Figures 

6-8: 
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Figure 8. Typical flow rate curve for parallel dual-channel 

system with symmetric uniform heating. 

 
Figure 9. Typical flow rate curve for parallel triple-

channel system with symmetric uniform heating. 

 
Figure 10. Typical flow rate curve for parallel quadruple-

channel system with symmetric uniform heating. 

In the simulation of parallel heating multi-channel 

system, as the heating power increases, two-phase flow of 

gas and liquid begins to appear when the outlet flow of the 

heating channel reaches saturation. As the outlet gas 

content of two-phase flow gradually increases, the flow 

rate of each channel in the parallel multi-channel system 

shows periodic flow pulsation when the outlet gas content 

reaches a certain level, which indicates the occurrence of 

flow instability, as shown in the local enlarged figures in 

Figures 8-10. 

Under different operating conditions, the values of 

the subcooling degree number Nsub and phase change 

number Npch at the point of flow instability were 

calculated for 2, 3, and 4 heating channels, and the flow 

instability boundaries of the parallel multi-channel system 

were compared based on these values  as shown in Figure 

11. It can be seen clearly from the figure that the flow 

instability boundaries are basically consistent with 

differences within ±5%. The simulation results are 

consistent with the experimental results of Wang Yanlin 

et al. (Wang 2021), indicating that when there are multiple 

parallel heating channels, adopting a parallel dual-channel 

structure can obtain the flow instability boundary. 

 
 Figure 11. Flow instability boundaries under different 

heating channel numbers 

4 Conclusion  

(1) Flow instability is one of the important research 

topics in nuclear reactor thermal safety, and simulation 

analysis can serve as an important means for conducting 

flow instability research. In this paper, a parallel dual-

channel heating model was built using the NUMAP 

developed based on Modelica language. Simulations and 

analysis of flow instability by this model were conducted. 

The simulation results met the error requirements of the 

experimental conditions, verifying the transient 

calculation and analysis ability of NUMAP for flow 

instability phenomena. 

(2) Simulation study of a parallel multi-channel 

heating model was conducted using the NUMAP. The 

values of subcooling degree number Nsub and phase 

change number Npch  at the onset of flow instability were 

calculated for 2, 3, and 4 heating channels. The difference 

of the flow instability boundary was within ±5%. This 

indicates that when there are multiple parallel heating 

channels, a parallel dual-channel structure can be used to 

obtain the flow instability boundary. 

5 prospects  

Simulation analysis software is one of the 

indispensable core technologies for Nuclear Reactor 

System research and development, and also an important 

cornerstone of Nuclear Reactor System innovation. The 

NUMAP is developed by giving full play to the 

characteristics of Modelica physical Modeling language's 
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object-oriented, equation based, reusable and 

reconfigurable hierarchical component model technology 

and its advantages in multi physical and multi-scale 

collaborative simulation。 
Compared to traditional nuclear thermal hydraulic 

software, the NUMAP developed based on Modelica 

language has the following advantages: in terms of user 

experience, the drag and drop modeling method has 

greatly improved interactivity and intuitiveness in the 

modeling process; In terms of post processing of results, 

NUMAP provides real-time monitoring of variable 

parameter processes based on data points and XY curves, 

which can clearly and intuitively obtain the variation 

patterns of parameters and the linkage relationships of 

various parameters during the simulation process; In 

terms of application, the characteristics of Modelica multi 

domain unified modeling endow NUMAP with the ability 

of joint simulation in different fields of Mechanical, 

electrical, hydraulic and control systems. It provides not 

only thermal hydraulic system model library for nuclear 

power direction simulation, but also mechanical, electrical, 

control and other multi domain model libraries. 

In the next stage, we will use Modelica language to 

continuously develop nuclear domain model libraries on 

the NUMAP, such as nuclear Nuclear reactor core model, 

pump model, steam generators model，Steam turbine  

model and other thermal hydraulic models, as well as 

nuclear instrumentation and control, mechanical and 

electrical system models. We will build NUMAP into a 

large multi discipline, multi-level and multi system 

unified modeling and simulation platform based on 

Modelica that promote high-quality research and 

development of nuclear power systems. 

 

References 

Xu Jiyun. Boiling Heat Transfer and Gas-Liquid Two-Phase 

Flow [M]. Beijing: China Atomic Energy Press, 2001. 

Cheng K, Meng T, Tian C, et al. Experimental investigation on 

flow characteristics of pressure drop oscillations in a closed 

natural circulation loop[J]. International Journal of Heat and 

Mass Transfer, 2018, 122: 1162-1171. 

Tang Y, Chen B, Xiong W, Wang Y. Experimental study on flow 

instability of the first kind of density wave in rectangular 

parallel dual-channel[J].Nuclear Power Engineering, 

2014,35(03):26-30. DOI:10.13832/j.jnpe.2014.03.0026. 

Peng C, Zan Y, Yuan D, et al. Study on flow instability of 

parallel channel flow drift[J].Nuclear Power Engineering, 

2021,42(S1):17-20.DOI:10.13832/j.jnpe.2021.S1.0017. 

Zang J, Yan X, Huang Y. Numerical simulation of flow 

instability in parallel channels with supercritical water[J]. 

Nuclear Power Engineering, 2021, 42(02): 72-76. 

DOI:10.13832/j.jnpe.2021.02.0072. 

Qian L, Ding S, Qiu S. Research on flow instability model of 

parallel rectangular channels[J]. Nuclear Power Engineering, 

2014, 35(02): 41-46. 

Xiong W, Tang Y, Chen B. Numerical simulation of flow 

instability of parallel rectangular dual-channel density wave 

based on one-dimensional drift flow model[J]. Atomic 

Energy Science and Technology, 2015, 49(11): 1989-1996. 

Xia G, Dong H, Peng M, Guo Y. Analysis of pulsation instability 

between narrow gap channels[J]. Atomic Energy Science and 

Technology, 2011, 45(09): 1034-1039. 

Xing L, Guo Y, Zeng H. Analysis of flow instability in single-

channel natural circulation based on RELAP5[J]. Atomic 

Energy Science and Technology, 2010, 44(08): 958-963. 

Zhao J, Ding J, Zhou F, et al. Modelica language and its unified 

modeling and simulation mechanism in multiple fields[C]// 

China System Simulation Society. Proceedings of the Fifth 

National Congress of the China System Simulation Society 

and the 2006 National Academic Annual Meeting. 2006: 578-

581. 

Zhang H. Graphical modeling and simulation of marine steam 

turbine based on Modelica/Mworks[J]. Mechanical and 

Electrical Equipment, 2022, 39(04): 97-102. 

DOI:10.16443/j.cnki.31-1420.2022.04.018. 

Huang Y, Zeng X, Ding J. Simulation model architecture and 

conceptual verification of two-phase thermohydraulic 

characteristics based on Modelica[J]. Nuclear Power 

Engineering, 2021, 42(01): 1-7. 

DOI:10.13832/j.jnpe.2021.01.0001. 

NuclearSafety Analysis Division. RELAP5/MOD3.3 code 

manual, volume V: User's guidelines [M]. Rockville, 

Maryland, Idaho Falls, Idaho: Nuclear Safety Analysis 

Division, Information Systems Laboratories, Inc., 2001. 

Tao W. Numerical Heat Transfer [M]. 2nd edition. Xi'an 

Jiaotong University Press, 2001, 264-275. 

Wang Y, Zhou L, Zan Y, et al. Experimental study on flow 

instability of parallel multi-channel[J]. Nuclear 

PowerEngineering,2021,42(01):15-17.DOI:10.13832/j.jnpe. 

2021.01.0015. 

Ishii. Thermal induced flow instabilities in two-phase mixtures 

in thermal equalibrium[D]. Geogia Institute of Technology, 

Mechanical, 1942. 

 

 

 

Session 5-D: Thermodynamic and energy systems applications 4

DOI
10.3384/ecp204569

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

575



576 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204



Integration of Heat Flow through Borders between Adjacent Zones
in AixLib’s Reduced-Order Model

Philip Groesdonk1,2 David Jansen3 Jacob Estevam Schmiedt1 Bernhard Hoffschmidt1,2

1Institute for Solar Research, German Aerospace Center (DLR), Germany,
{philip.groesdonk,jacob.estevamschmiedt}@dlr.de

2Chair of Solar Components, RWTH Aachen University, Germany
3Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen

University, Germany, david.jansen@eonerc.rwth-aachen.de

Abstract
For dynamically simulating the thermal behavior of a
building, the reduced-order model (ROM) implemented
in the Modelica IBPSA and AixLib libraries provides a
time-efficient calculation method based on the standard
VDI 6007-1. Additionally, the Python package TEASER
features a possilibity to fill the model parameters with
automatically generated typical and/or enriched building
data. So far, both have not been capable of modelling heat
flow through borders between thermal zones. In this con-
tribution, we present the integration of this feature into the
open-source software combination. Additional new fea-
tures include non-constant soil temperatures and a new
approach to estimate interior building elements in cases
without proper knowledge. Calculation results are pre-
sented for an exemplary application and show satisfactory
agreement with measured values. The respective code (in-
cluding the example presented here) is in the process of
being published as part of the AixLib and TEASER open-
source repositiories.
Keywords: AixLib, TEASER, building simulation,
archetype, BIM, BEM

1 Introduction
The building sector faces the need to reduce carbon emis-
sions and increase energy efficiency drastically. As a con-
sequence, building energy simulation has become an im-
portant tool to investigate the possible effects of planned
measures in single-building applications as well as to get
an overview of the building stock with limited data avail-
ability on an urban scale. Among others, Modelica li-
braries for building energy simulation have been created
in recent years. For example, important advances in open-
source libraries for these purposes have been reached in
the framework of IBPSA Project 1 and the previously
completed project IEA EBC Annex 60 (Wetter, Treeck, et
al. 2019). The library AixLib (Müller et al. 2016) is also
connected to this framework and is being continuously de-
veloped further. In this publication, we present the integra-
tion of a feature for heat flow through borders between ad-
jacent thermal zones into the so-called ReducedOrder

model (ROM) of AixLib and the complimentary Python
tool TEASER (Remmen et al. 2018). The motivation for
this work was the possibility to enrich geometrically avail-
able data of existing buildings with typical thermal proper-
ties using TEASER, thereby enabling a workflow to create
fully parameterized simulation models quickly in cases of
limited (digital) data availability. For this use case, the
feature has been previously identified as a shortcoming of
the ROM (Jansen et al. 2021).

This paper is structured as follows: Section 2 introduces
the state of the art regarding the workflow that the ROM is
usually applied in, the model concept itself, and previous
work on the topic treated here. In Section 3, we describe
the methodology for the new implementation in AixLib
and TEASER. An exemplary application and its results
are presented in Section 4. We discuss them further in
Section 5. In Section 6, we conclude the paper and give
an outlook to future work.

2 State of the Art
The foundations for this work were created by the devel-
opers of the open-source Modelica library AixLib and the
complimentary Python tool TEASER. Therefore, relevant
aspects of these tools that this publication builds up on
are introduced in the following. Additionally, this section
summarizes a previous approach to introduce heat flow be-
tween adjacent zones into the combination of the two tools
and what is recommended in this regard by the guideline
VDI 6007-1, which is the theoretical basis for the used
model.

2.1 Automatically Parameterized Modelica
Simulation Models

Figure 1 shows the workflow of TEASER to generate dy-
namic building simulation models and the corresponding
simulation results. The main strength of TEASER is the
automation of the time-consuming parameterization of the
model described in VDI 6007-1. TEASER allows creat-
ing parametric building models in Python and to transfer
them directly into a Modelica model, automating the com-
plete calculation of the relevant variables. The availability
of statistical data in TEASER enables a creation of so-

DOI
10.3384/ecp204577

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

577



Figure 1. Generation process of Modelica models using
TEASER (Remmen et al. 2018).

called archetype models with a minimal data set of input
data. In addition, detailed creation of concrete buildings is
also possible. In this case, the modeler specifies the entire
building, all thermal zones including the usage conditions
of these zones, and the assignment of the respective com-
ponents (outer walls, inner walls, windows, etc.) to them.
Each component can then be given layer structures and
materials. In this process, data enrichment can be used
at any time to enrich missing information, such as wall
structures or information about usage profiles.

2.2 AixLib’s Reduced-order Model
AixLib is an open-source Modelica library for build-
ing energy simulation based on the Modelica IBPSA Li-
brary (Wetter, Blum, and Hu 2019). It is currently (June
2023) available in version 1.3.2. AixLib contains a wide
range of models covering heating, ventilation, and air
conditioning (HVAC) equipment as well as two pack-
ages for thermal zone models with different level of detail
(HighOrder and ReducedOrder (ROM)). The latter
is relevant for this contribution. Its development is de-
scribed in detail by Lauster (2018). In the following, some
relevant aspects of the model structure and its calculation
approach are explained briefly.

The hierarchical concept of the ROM is visualized in
Figure 2. A building is represented by a Multizone
object. This object mainly serves to collect externally
defined boundary conditions, such as weather data, set-
point temperatures, and internal gains. Furthermore, it op-
tionally contains a model of an air handling unit (e.g. for
ventilation systems). Within the Multizone environ-
ment, an array of nzones ThermalZone objects is spec-
ified. The boundary conditions are passed to these ob-
jects. Each thermal zone consists of a core resistance-
capacitance (RC) module and supplementary components.

Core RC modules are available in different levels from
OneElement to FourElement. With decreasing num-
ber of elements, more building components (roof and floor
plate, in that order) are lumped into the element for ex-
terior walls. For the final step from TwoElement to
OneElement, the inner walls, i.e. solid interior masses,
are neglected. As roofs and exterior walls do not dif-
fer in their description, presenting the ThreeElement

model is sufficient here. Figure 3 shows a visually ad-
justed version of the thermal network representation by
Lauster (2018).

In the network, nodes represent temperatures. If they
are connected to capacities, a thermal mass with that tem-
perature is present. Resistances govern the heat flow be-
tween temperature nodes. Some heat flows, represented
by arrows in the figure, are prescribed boundary condi-
tions. Blue-coloured boxes are parts of the network that
may be repeated in a series connection. However, this fea-
ture is not used for the scope of this paper.

The centre-right node in the network represents the air
inside the zone with temperature ϑair. Q̇g,cv is the sum
of convective heat gains, including the convective share
of heat flow from solar gains through windows, heating
and cooling, machines, lights, and humans. Radiative
flows from the same sources are directly applied to the
different lumped elements’ surfaces. On the far side of
the elements, a fixed soil temperature ϑsoil (floor plate el-
ement) and equivalent temperatures merging convection
and both longwave and shortwave radiation (window, ex-
terior wall, and roof elements) are set. For the simula-
tion, this means that the different zones are not intercon-
nected, which reduces calculation complexity. In practice,
the TwoElement model has shown to be a good trade-
off between calculation times and accuracy (Remmen et
al. 2018). Lumping to two elements is also suggested by
VDI 6007-1 (2015-06), the standard on which the mod-
elling approach of ROM is based.

2.3 Heat Exchange with Adjacent Zones Ac-
cording to VDI 6007-1

As mentioned in Section 2.2, AixLib’s ROM so far does
not feature a possibility to model heat flow between zones.
However, the underlying standard VDI 6007-1 mentions
adjacent zones. It suggests lumping heat flow through bor-
ders to adjacent rooms with the heat flow to the exterior
using an equivalent temperature

ϑeq,NR = ϑair,NR +
Q̇rad,se,NR

αcv,se,NR ·Ase,NR
, (1)

where ϑair,NR is the air temperature in the adjacent room,
Q̇rad,se,NR is the sum of the radiant heat sources and sinks
onto the adjacent room’s wall surface Ase,NR, and αcv,se,NR
is the convective heat transfer coefficient on that surface.
ϑeq,NR is supposed to be merged into the equivalent tem-
perature calculation of the 2-element model mentioned
above.

2.4 Previous Work on the Topic
Previous efforts to include interzonal heat transfer into
the TEASER/AixLib tool chain were made in connection
with measurements at an exemplary single-family build-
ing (Gorzalka et al. 2021). Instead of following Equa-
tion 1 and introducing adjacent rooms into the equivalent
temperature, a fifth element was inserted into the ROM’s
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Figure 2. Visualization of the ROM concept with the three model levels. Numbers in the RC core indicate which elements are
added from OneElement up to the FiveElement model introduced here. Zoom in for details.
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Figure 3. Thermal network representation of the AixLib ThreeElement model according to Lauster (2018), visually adjusted.
Refer to Tables 3 and 4 for an explanation of the variables and indices.

core RC model. This fifth element and the RC elements
for exterior walls and roofs were defined as Modelica ar-
rays instead of single RC chains such that not all build-
ing parts, but only those with equal azimuth and tilt, were
lumped into one element. With this and additional mod-
ifications e.g. regarding non-constant soil temperatures, a
satisfactory agreement between the room air temperature
measurements within the example building and the results
of the simulation model was reached. In total, a largely
automated thermal modelling workflow for existing build-
ings based on drone images was demonstrated.

3 Methodology
Building up on the works presented in the previous sec-
tion, we developed a methodology to integrate heat flow
through borders between adjacent zones into the AixLib
ROM as well as its counterpart in the Python package
TEASER. This section describes both aspects.

3.1 FiveElement ROM
We initially considered three possible approaches for the
integration of heat exchange with adjacent zones into the
ROM:

1. The equivalent temperature approach described in
Section 2.3

2. The vectorized approach described in Section 2.4

3. The introduction of a fifth element without modifica-
tions to the rest of the ROM

Trying to stick as much as possible to the design prin-
ciples previously applied in the model, we ruled out op-
tion 1: Equation 1 does not fit to the implementation of
a largely simplified equivalent temperature calculation en-
tirely based on boundary conditions. Furthermore, inter-
connecting Q̇rad;se;NR from within the core ROM with the
far side of the other zone and vice-versa would result in
modelling the same building element twice, but lumped
with different other elements and therefore with different
boundary conditions. This would not only risk physically
false results, but also simulation crashes.

Option 2 would require significant changes to the core
RC model and affect the established IBPSA core library.
Additionally, the benefits of a more detailed model were
considered not worth the increase in calculation time, as
the ROM is mostly used for simplified modelling.

Option 3 seemed most promising as a consequence. In
our implementation, we keep the thermal network (shown
for three elements in Figure 3) and add a possibility to
connect multiple thermal zones, in this regard follow-
ing the vectorization idea presented by Gorzalka et al.
(2021). Each zone border element is modelled as part of
the RC model of the zone with the lower index through the
Multizone model (see Figure 2) to avoid double mod-
elling. In the adjacent zone, the heat flow is directly con-
nected to the surface area. The resulting thermal network
is shown in Figure 4. In the figure, array connections are
represented by dashed lines. The dotted line between the
interior surface nodes stands for the pairwise connection
of the nodes by resistances for radiation heat exchange.
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Figure 4. Thermal network representation for the new FiveElement implementation in AixLib, with the fifth element modelling
heat exchange with adjacent zones. Refer to Tables 3 and 4 for an explanation of the variables and indices.

Other than in the original implementation, the temper-
ature on the outer surface of the ground floor element
ϑsoil is not necessarily a constant here. It can also
be connected to a table in a file, a sine function, or the
AixLib.BoundaryConditions.GroundTemper-
ature.GroundTemperatureKusuda model that
was already a part of AixLib.

3.2 Complimentary Features in TEASER
TEASER is an integral part of the automatic model cre-
ation workflow shown in Section 2. As a consequence,
features of the ROM should also be represented there. In
this case, we added three features to TEASER: (i) a repre-
sentation of borders between adjacent zones including the
interface to the FiveElement ROM; (ii) a possibility
to adapt the boundary conditions of the exported Model-
ica model, including non-constant soil temperatures and a
partly customizable interface; and (iii) a new estimation
approach for interior thermal masses that accounts for the
newly added zone borders.

3.2.1 Zone borders

So far, TEASER has featured OuterWall, Rooftop,
GroundFloor, Window, and Door elements mod-

elling building elements between a zone and the exte-
rior. Additionally, the InnerWall, Ceiling, and
Floor elements are used to describe the vertical and
horizontal interior thermal masses for the zone. Fol-
lowing the principle for the inner elements, we intro-
duce InterzonalWall, InterzonalCeiling, and
InterzonalFloor for modelling borders to other
zones on the same floor, on a floor above, and on a floor
below respectively. Upon export to the AixLib ROM, they
are lumped to a single element per adjacent zone using the
established algorithms of TEASER. The workflow of en-
riching data of an only geometrically described building
in TEASER and exporting it to Modelica is described in
the following and visualized in Figure 5.

One of the arguably most important features of
TEASER is the availability of default layers and thermal
properties for the building elements, e.g. from the TAB-
ULA typology (Loga, Stein, and Diefenbach 2016). This
enables the user to add energetically relevant data for a
building for which only the envelope geometry was known
before. So far, all boundaries to the exterior had their
counterparts in TABULA and were mapped to default lay-
ers and U-values from that database. For inner elements,
although not covered by TABULA as such, typical el-
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Figure 5. Visualization of the data sourcing process for the
ROM used by TEASER described in Section 3.2. Numbers in
parentheses represent the number of ROM elements, e.g. “Floor
pl. (≥ 3)/exterior wall” means the ground floor is exported to a
floor plate element from ThreeElement on and is lumped to
the exterior wall element for lower-order models.

ements for each of TABULA’s building age periods are
available in TEASER, too. Lacking a proper state-of-the-
art approach, Lauster (2018) implemented an algorithm
estimating their size based on the number of floors and
usual room lengths and widths for the given use condi-
tions, assuming that the uppermost border of a zone is the
rooftop, the lowermost is the ground floor, and that each
room has one outer wall.

As they can either be borders to unconditioned zones
or to other conditioned zones, the new interzonal elements
do not have a direct counterpart in TABULA. Therefore,
depending on whether the associated thermal zones are
equally conditioned or not, we map the elements either
to the default respective outer or inner type element. Due
to the hierarchical system of TEASER, each zone border
is created for each of both zones. The resulting Python
objects are assigned equal properties. Default layer se-
quences are reversed for the border elements of uncondi-
tioned thermal zones. This is also considered when cal-
culating the RC parameters for the ROM using the asym-
metrical algorithm of VDI 6007-1. Although the creation
of two separated element objects for one physical zone
border means that care has to be taken to keep the model
consistent if changes are made after data enrichment, the
export to AixLib uses only one of the two elements due
to the RC component not being modelled in the higher-
indexed zone as visible in Figure 4.

3.2.2 Interface to the AixLib ROM

In addition to the previously existing Modelica file tem-
plates for OneElement to FourElement models, we
added a FiveElement zone parameter template cover-
ing the parameters of the new interzonal elements. The
user can choose for which pairs of zones (e.g. depending
on heating and cooling setpoints) interzonal heat transfer

should be considered. Other elements are treated as inner
elements on each side. If exporting to a ROM with less
than five elements, interzonal elements are lumped to the
exterior wall element if an unheated zone is on the other
side or to the interior wall element otherwise. The sine
model and table options for the soil temperatures were
included in all five element templates. Furthermore, we
added an option to introduce custom Multizone tem-
plates, which allows more individual boundary condition
settings like custom weather file readers, internal gains, or
setpoint tables.

3.2.3 Interior Thermal Mass Estimation

As a matter of fact, the previously available approach
to estimate the size of inner walls, floors, and ceilings
(see Section 3.2.1) does not consider interzonal elements.
Keeping it would increase the tendency of TEASER to
overestimate interior thermal masses. However, the typ-
ical length and width of a room defined by the usage as
introduced by Lauster (2018) is still the best base for the
calculation that we could find. Using the number of floors
and rooms that the zone should have depending on its area
and height, the new ’typical_minus_outer’ op-
tion in TEASER estimates the area of inner elements by
subtracting all bordering elements (considering their tilt)
from the overall surface area of the typical rooms sepa-
rately for walls, floors, and ceilings.

4 Exemplary Application and Results
With the methodology presented above, a FiveElement
model was created for the exemplary building used by
Gorzalka et al. (2021). This section presents the results
of simulating the about three weeks of time with chang-
ing heat load within the building (warm-up, approximately
constant temperature, free cooling) for which measured air
temperatures are available.

4.1 Model Setup
The exemplary building is a vacant single-family house in
Morschenich, Germany. It consists of two heated floors
interconnected with an open staircase and unheated floors
(basement and attic) below and above. Geometry and tem-
perature measurements are sourced from an actual build-
ing. The thermal properties of the building elements are
based on the best knowledge after on-site assessment for
one of the model variations (D) and typical values for
a single-family house in Western Germany built in the
1960s with windows exchanged in 1995 for the others (A
to C) with different properties of the interior masses.

For modelling, the two heated floors were considered
as a single zone. The Modelica model was created in four
different variations:

• With the purpose of assessing the influence of model
parameterization, three variations (A to C) cover the
different estimation approaches for interior thermal
masses. All building elements were given the typi-
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cal properties as mentioned above through TEASER.
With the areas for the three zones listed in Table 1,
variation A is based on the one previously imple-
mented in TEASER, variation B uses the newly im-
plemented approach, and variation C uses the known
area of the building. The attic has no inner walls, so
its interior element surface area is always 0 m2.

• For demonstrating the applicability of the model in
a real-world case, one variation (D) uses the actual
thermal properties of the building as far as they are
known from Gorzalka et al. (2021): ("[The variation]
contains the best knowledge from building plans and
on-site investigations about the walls (exterior and
interior) and the roof of the building. As the ac-
tual compositions of the building parts in contact to
soil and of the basement ceiling are unknown, it falls
back to TABULA values there.").

Table 1. Surface area of the interior elements of each zone and
source for materials and thermal properties for the four model
variations.

V. Interior element surface in m2 Material/layer

Attic Basement Main zone data source

A 0 171.15 501.52 TABULA
B 0 136.62 388.69 TABULA
C 0 81.68 265.05 TABULA
D 0 81.68 265.05 Best knowledge

For all variations, heating setpoints (to very high temper-
atures) and usage profiles (to zero) were set in such a way
that they do not influence the simulation. Instead, the mea-
sured loads of the installed heaters were defined as internal
gains. Air exchange rates were kept at the default value for
the conditioned zone. For the unconditioned zones, they
were set to 10 h-1 for the attic and 1 h-1 for the basement,
following the recommendations in Table 7 of ISO 13789
(2017-06). Table 8 in the same standard is the source
for the interior surface heat transfer coefficients of non-
vertical surfaces. They are set to 5.0 Wm−2 K−1 for up-
wards and 0.7 Wm−2 K−1 for downwards heat flow. The
default value in TEASER is 1.7 Wm−2 K−1 for both be-
cause the coefficients are constants in the ROM and the
direction of the heat flow changes over the course of a full
year.

Weather data (temperature and solar radiation) as well
as the temperature of the surfaces in contact to soil were
sourced from measurements recorded on site during the
test period.

4.2 Temperature Comparison
The model was simulated from January 18, 8:00 to March
1, 16:00 (simulation time 1497600–5155200 s, where 0 s
is the beginning of the year 2019). This left enough time

for the model to stabilize under constant weather condi-
tions (the actual building was unheated at the time) before
the comparison period starts in the evening of February 4.
Simulated temperatures and the volumetric mean of room-
wise temperature measurements are compared for the con-
ditioned zone in Figure 6 and for basement and attic in
Figure 7.

For the conditioned zone, the results show that the two
variations with automatically estimated interior surfaces
areas (A and B) fit very well to the measurement in pe-
riods without a steep increase or decrease of the tempera-
ture (February 11 to 16 and 22 to 26). Variation C with the
actual surface areas shows a tendency to overheat (Febru-
ary 7 to 12) and cool down too much (February 20 to 26).
However, given that the thermal properties of the build-
ing were taken from the typology rather than from actual
values, differences to the measured temperatures are not
relevant for an evaluation of the model.

Variation D containing the best knowledge of the actual
building shows an overall good agreement to the measured
temperatures. The root-mean-square error (RMSE) for the
hourly temperature difference between February 5, 15:00
and February 26, 24:00 is 1.13 K. Obvious deviations
occur during warm-up (too slow until February 8, slight
overheating afterwards; overall RMSE 1.51 K between
February 5, 15:00 and February 13, 11:00) and cooldown
(overall RMSE 0.90 K between February 17, 1:00 and
February 26, 24:00). In the period of approximately con-
stant temperature between February 13, 12:00 and Febru-
ary 16, 24:00, the simulated temperature is mostly overes-
timating the measured temperature to a minor degree with
an RMSE of 0.59 K.

The sensitivity to changing interior masses is also in-
teresting. Here, the reduction by 22.5% from variation
A to B has an only minor impact. The additional reduc-
tion by 31.8% (approximately the same absolute reduc-
tion) to variation C changes the model behaviour to a far
larger extent. Although this calls for further investiga-
tions into the sensitivity of the ROM, the different vari-
ations are comparable in times with dynamic loads in the
magnitude of those appearing in usual application cases,
i.e. interior temperatures of conditioned zones being kept
within a range of a few K. A similiar observation can be
made for the unconditioned zones. Here, the difference
in daily fluctuations of the basement temperature between
measured (almost no fluctuation) and all four simulated air
temperatures (about 1–5 K) might be the result of an over-
estimated air exchange rate or of the model neglecting the
vertical temperature distribution in the heated zone. For
the attic, a poor performance of variation D is apparent
between February 13 and February 18 during night times.
Possible reasons are the same as for the deviations in base-
ment temperatures. Variation C compensates these issues
by a higher-than-actual U-value (0.84 Wm−2 K−1 instead
of 0.52 Wm−2 K−1) for the interzonal ceiling.
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Figure 6. Measured and simulated mean air temperatures for the conditioned zone of the exemplary building.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Day of February 2019

0

5

10

15

20

25

A
ir
te
m
pe
ra
tu
re

in
°C

Measured
Simulated, var. A
Simulated, var. B
Simulated, var. C
Simulated, var. D

Figure 7. Measured and simulated mean air temperatures for basement (dashed lines) and attic (solid lines) of the exemplary
building.
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4.3 Comparison to TwoElement and
FourElement

To evaluate the influence of the FiveElement model
on simulation results and its impact on calculation time,
we created models for the exemplary building with two,
four, and five elements. In the TwoElement and
FourElement model, unheated zones were not in-
cluded. Instead, we replaced the borders to the attics
by a Rooftop element with reduced outer convection
and the borders to the basements by a GroundFloor
element. The temperature of the soil in contact to the
outer surface of these and the FiveElement basement’s
GroundFloor elements was set to the TEASER default
value of 13 ◦C. Results for a simulation of the test period
showed that the fit to the measured values depends heav-
ily on this soil temperature value. As a consequence, we
decided to simulate a full year under comparable condi-
tions, which is a more useful indicator for model perfor-
mance. In these full-year models, default use conditions
for residential zones were taken from TEASER, with the
following exceptions:

• No internal gains and neither heater nor cooler in the
unheated zones of the FiveElement model

• Cooling active with setpoint 25 ◦C

• Heating setpoint 20 ◦C

Table 2 shows the calculation times on a Windows note-
book (Dymola 2020x, 32-bit compiler, solver Radau, tol-
erance 1×10−4) as well as the heating and cooling energy
used for the main zone from the simulation run.

Table 2. Duration of the calculation and integrated heat-
ing and cooling power for the full-year simulations of the
TwoElement, FourElement, and FiveElement repre-
sentations of the exemplary building.

Elements Duration Heating Cooling

2 13 s 204 MWh 39 kWh
4 11 s 203 MWh 51 kWh
5 35 s 201 MWh 263 kWh

5 Discussion
The previously presented results have shown an accept-
able agreement to measured values, given the dynamic
boundary conditions and the reduced order of complex-
ity of the model. This demonstrates and verifies the abil-
ity of the ROM to model actual building operation. To
our knowledge, validating the dynamic model of the inter-
zonal heat transfer is not possible with the applicable stan-
dards. All test examples in VDI 6007-1 consider only one
room. In ANSI/ASHRAE Standard 140 (2020), the tests
relevant for the ROM are those of class I. They comprise a
test case with interzonal heat transfer (case 960). Upon

contribution of the presented model to the open-source
version of AixLib, we plan to add it in addition to the al-
ready implemented VDI 6007-1 and ASHRAE 140 cases
for single-zone applications. However, there are only an-
nual and no hourly validation results available for case
960. So, the validity of the dynamic calculations cannot
be tested.

Regarding the interior thermal masses, the results show
their importance in application cases with highly dynamic
loads. However, this is rarely the case for use cases of
the ReducedOrder model. As a consequence, the new
estimation approach for interior masses improves the con-
sistency of the overall workflow, but is most likely not es-
sential for reliable results.

Although interzonal heat transfer does not need to be
considered for the use case of urban-scale simulations,
it is very important when considering specific buildings.
The prior lack of interzonal heat transfer for the ROM was
already discussed by Jansen et al. by comparing simula-
tion results of the ROM to results of the well-established
simulation tool EnergyPlus (Jansen et al. 2021). With the
implemented changes, this shortcoming of the ROM was
solved. However, the expansion is also accompanied by an
increasing parameterization effort, since it must be known
which zones are in contact with each other via which com-
ponents. Nevertheless, this effort is put into perspective,
especially when automated approaches are used for model
creation. For example, if Building Information Modeling
(BIM) is used as a data source, the contact points of the
zones can be automatically identified and forwarded to
TEASER. The existing approach BIM2SIM1, which also
uses TEASER, can therefore use the presented changes to
create more realistic ROMs based on BIM data.

The calculation time for a full-year FiveElement
simulation showed to be three times the duration of a run
without the two unheated zones and without interzonal el-
ements (see Table 2). This shows that the added com-
plexity of connecting the zones did not increase compu-
tation effort significantly more than simulating them in
parallel, which is in line with past findings that “sim-
ulation time [...] is correlated to the number of state
variables resp. thermal capacitances” (Lauster and Müller
2019). For unknown reasons, we also did not find an in-
creased simulation time for FourElement in compari-
son to TwoElement although the number of state vari-
ables increases from 10 to 12. Regarding energy demand,
the interzonal heat transfer influenced heating and cool-
ing loads mainly in summer. In particular, replacing the
constant soil temperature by a simulated basement zone
caused a reduction of heat flows through the floor of the
main zone.

6 Conclusion
In the previous sections, we presented a new feature of the
AixLib ReducedOrder (ROM) model and its compli-

1https://github.com/BIM2SIM/bim2sim
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mentary Python tool TEASER. It is now possible to sim-
ulate heat flow through borders between adjacent zones
with the help of an additional RC component for these
building elements available in the FiveElement model
of the ROM. Furthermore, TEASER can now automat-
ically source thermal properties of these building parts
from the German TABULA typology. All contributions
to the two software tools are currently in the process of
being published open-source2.

In an exemplary application to a single-family house,
we have seen an acceptable agreement between mea-
sured and simulated air temperatures—interestingly not
only with the best knowledge of the actual building, but
also with statistical data for its age. Although this can-
not replace the test of the new ROM features with an
appropriate test case for validation, it demonstrates that
the ROM is able to simulate the highly dynamic loads to
the largely simplified single-family house, resulting in an
overall RMSE of 1.13 K.

The importance of interior masses for dynamic simula-
tion has been investigated by comparing two approaches
for the estimation of inner wall sizes and the actual in-
terior geometry of the building. The results show large
differences during highly dynamic loads, but these loads
rarely appear in the use cases of the ROM. This led to the
conclusion that inner wall sizes are mostly a question of
parameter consistency.

A modest increase in simulation time was predomi-
nantly caused by the added zones rather than by the in-
terzonal elements. Therefore, we recommend to check
which zones need to be explicitly simulated when using
the feature.

Regarding the overall workflow, the new developments
are embedded into other work regarding the BIM2SIM
approach towards an automated toolchain from BIM via
TEASER to the AixLib ROM that can create more realis-
tic ROMs based on BIM data.

Used Symbols

Table 3. List of variables.

Symbol Meaning Unit

α Heat transfer coefficient Wm−2 K−1

ϑ Temperature ◦C
A Area m2

C Thermal capacity JK−1

Q̇ Heat flow W
R Thermal resistance KW−1

2see https://github.com/RWTH-EBC/AixLib/issues/
1080 and https://github.com/RWTH-EBC/TEASER/
issues/679

Table 4. List of abbreviations in variable indices.

Index Meaning

comb Combined (convective and radiative)
cv Convective
eq Equivalent
fp Floor plate
g Gains
inf Infiltration
int Interior walls
NR Adjacent (neighbouring) room
ow Exterior (outer) wall
rad Radiative
ref Reference
rt Rooftop
se Exterior surface
si Interior surface
win Window
zb Zone border
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Abstract
A generic component-based model of an industrial elec-
trode boiler with internal control systems is presented.
A mechanistic modelling approach was taken to include
as much process and control information as possible and
to generate detailed simulation results. The model is in-
tended for qualitative studies of electrode boiler dynam-
ics in the context of district heating generation and power
grid ancillary services in collaboration with other electric
power consuming units.
An example boiler control scheme is designed and in-
cluded in the simulation model as this is paramount to the
dynamic response of the system. Simulations of standstill,
load changes, and startup from hot and cold state show that
the strictest ancillary service requirements can be fulfilled
when the boiler is kept at operating temperature.
Keywords: electrode boiler, district heating, ancillary ser-
vices

1 Introduction
Increasing penetration of renewable energy sources,
such as wind and solar power, increases the demand for
ancillary service provisions to stabilize the power grid
frequency around its nominal value, for example 50 Hz
(Energinet 2021). At the same time, district heating (DH)
production from electrical power is gaining ground as
it is becoming increasingly economically competitive
with combustion-based DH generation. Furthermore,
by including thermal energy storage, DH production
and consumption can be decoupled, thus making heat
production during times with low electric-power prices
possible.

On the DH production side, the combination of heat
pumps and electric boilers is particularly interesting
in terms of ancillary service provision. Typically, the
merit order will dispatch heat pumps before electric
boilers, as the heat pumps produce “COP times” more
thermal power than the boilers. Thus, this leaves room
for the electric boilers to increase power consumption
and for the heat pumps to reduce power consumption.
Translated to ancillary service terms, the units can provide
downward regulation and upward regulation, respectively.

In the western part of the Danish power grid — part of
the European ENTSO-E area — the ancillary services are
divided into three groups with different requirements to

response times (ENTSO-E 2018).

• Frequency Containment Reserve (FCR) which has
the fastest requirements of maximum 30 seconds
from activation to full engagement. This is typi-
cally based on the producer’s (or consumer’s) own
frequency measurement and proportional controller.

• Automatic Frequency Restoration Reserve
(aFRR) which currently has a response requirement
of 15 minutes but will be reduced to 5 minutes in
the near future (Energinet 2022). The transmission
system operator (TSO) has one balancing (PID)
controller which closes the loop around the power
imbalance and all its engaged producers/consumers
in the grid. Hence the term “automatic”.

• Manual Frequency Restoration Reserve (mFRR)
which also has a response requirement of 15 minutes
but is engaged manually — typically via the balance
responsible party (BRP).

Electric boilers are simple and compact, and offer
fast load changing abilities (Danish Energy Agency
2023). Some manufacturers promise power consumption
responses that comply with all three mentioned ancillary
service categories, e.g., (PARAT 2020). The purpose of
the work behind this paper is to qualify this promise using
a mechanistic modelling approach.

No publications on physical modelling of electric
boiler models in this context are known to the authors
of this paper. (Nielsen et al. 2016) make an economic
assessment of electric boilers in a DH production context
but do not describe the dynamic behaviour. In (Zhi et al.
2017) a (data driven) neural network model of a 20
MW electrode boiler is presented but without internal
controllers and physical phenomena.

This paper presents a dynamic component-based model
of an electrode boiler with its internal controls. Focus is
on dynamic closed-loop behaviour during standstill heat-
ing, start-up, and load changes. Although the presented
model is technically speaking a water heater, it will be
referred to as a boiler as this seems to be the common
term in the context of district heating systems.

The outcome of the work is a generic, component-based
model of an electric boiler for general studies of internal
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phenomena — not to exactly replicate the operating char-
acteristics of one specific boiler model since this would
require complete insight into the controller code from the
manufacturer. The controlled model is used to verify the
plausibility of FCR compatible responses.

2 Electrode boilers — working princi-
ple

Electrode boilers are a sub-type of electric boilers in
which the medium to be heated (water) acts as an elec-
tric resistance. Various types of electrode boilers of dif-
ferent designs are available from various manufacturers.
The type of electrode boiler presented in this work is in-
spired by Norwegian manufacturer PARAT Halvorsen AS
and is illustrated in Figure 1. It consists of two concentric
tanks — an inner/upper and an outer/lower — contain-
ing purified, conditioned water. Electrodes connected to
a medium voltage AC supply are immersed in the upper
tank, in which the water level is controlled with a valve al-
lowing to drain the upper tank to the lower tank. A pump
circulates water from the lower tank, via a DH heat ex-
changer (HX) to the upper tank. The water surrounding
the electrodes acts as an electric heating resistance and the
thermal power transferred from the electrodes to the wa-
ter is proportional to the water level. Increasing the water
level covers more of the electrode surface and lowers the
resistance between the electrodes. Water on the DH-side
of the HX removes the generated heat.

Figure 1. electrode boiler working principle (PARAT 2020).

3 Model
The boiler system model shown in Figure 2 is constructed
from components from the Modelica Standard Library
(MSL) (Modelica Association 2020) and from the in-
house developed District Heating Library presented in
section 3.1. Components include pumps, valves, a heat
exchanger, sensors, internal control, and the electrode
boiler vessel itself.

On the left side of the HX the DH pump (top) circulates
cold return water from port_a to port_b through the HX
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Figure 2. diagram view of the electrode boiler system model.

during DH production. A control valve (bottom left) and a
recirculation valve (middle left) allows zero net DH flow
even when the pump runs at its minimum speed, which
is typically around 20 %. The other pump (bottom left)
circulates DH supply water backwards through the HX
and the top-left isolation valve during standstill heating.
Both pumps have internal check valves to prevent reverse
flow when the other pump is running.

On the right side of the HX, the boiler circulation pump
circulates water through the boiler. The HX admission
and shunt valves can be utilized to maintain a fixed or
load dependent boiler inlet temperature.

Sensors and actuators are connected to busses through
an expandable connector to allow for a centralized and re-
placeable control system, separate from the process model
itself. The external bus inputs to pumps and valves are
conditional, and the setpoints can be set within these ac-
tuator components. This makes it possible to simulate the
process without any feedback control which can be useful
as an initial validation of the process. For example, setting
valve positions and pump speeds to their nominal values
brings the “steady-state” values on the system level close
to the expected nominal values. The quotation marks sug-
gest that the tank models create a marginally stable open-
loop response which does not have a steady state until they
overflow or become empty.

3.1 District Heating Library
The inhouse developed library District Heating Library
(DHL) contains a collection of components for hydronic
heating systems and is briefly presented here. Many of
the components are based on Modelica Buildings Library
(MBL) (Wetter et al. 2014) which offers free, robust and
user friendly thermo-hydraulic components. The graphi-
cal appearance is an essential feature of the DHL, and we
like the diagram view of the models to resemble process
flow and heat balance diagrams in which the key simula-
tion values are presented to the user directly in the diagram
view. Examples of this can be seen in Figure 2 where

• “Value crosses” display pressure, temperature, mass
flow rate and specific enthalpy of the corresponding
fluid stream.
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• Display units are bara, ◦C, and kJ/kg instead of Pa,
K, and J/kg

• Boolean variables are indicated with red/green
lamps, for instance if a pump is running

• Fluid stream connection lines have double width to
emphasize the main flow paths

This is also extremely useful in debugging situations
where the displayed values and Boolean states give an
easy overview in the different model layers.
Additionally, by default, component instance names are
hidden to avoid cluttering of the diagram view.

3.2 Electrode boiler model
The electrode boiler model itself is shown in Figure 3
and consists of two open tank models. The upper tank is
connected to the lower tank via a throttle valve and can
also overflow to the lower tank.

The lower tank is thermally connected to the ambient
temperature (either fixed or via a conditional heat port) to
simulate external heat loss. Using Newton’s law of cool-
ing, the thermal conductance, Gl , is calculated from a de-
sired heat loss settling time, tloss ≈ 5τloss, as

G1 =
mwcp,w

τloss
= 5 ·

mwcp,w

tloss
(1)

with the time constant, τloss, the specific heat capacity,
cp,w, and total mass of water in the boiler, mw. The heat
capacity of the metal part is not considered explicitly but
is “absorbed” in the calculated conductance. Additionally,
the two tank volumes are thermally connected by a con-
ductive heat transfer element to ensure steady-state equi-
librium temperature. The thermal conductance is arbitrar-
ily set to 5 times the conductance of the ambient heat loss
to prioritize the internal temperature equilibrium over the
external heat loss.
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Figure 3. electrode boiler model.

For the sake of simplicity, the electric circuit is mod-
elled with a constant DC source, a switch (as the main
circuit breaker, MCB), and a variable conductance. Heat
transfer from the electrodes to the water is simulated with
a variable electrical conductor from MSL. According to
Joule’s law the relationship between supply voltage, U ,

electric conductance, Ge, (the inverse of electric resis-
tance, R), and electric power dissipation in the water is

P =
U2

R
= GeU2 (2)

We assume that the conductance is proportional to the
normalized water level (0–1) and the conductivity, σ , of
the boiler water, i.e.,

Ge ∝ L ·σ (3)

The normalized level, L, is calculated as

L =
Lw − ze

Le
(4)

With the measured water level Lw, the electrode length
Le, and the elevation of the electrodes above the upper
tank bottom ze. L is limited to values between zero and
one, indicating zero to full electrode coverage.

The composition of the conditioned boiler water — and
its thermophysical properties — is only known by the
manufacturer but for the sake of simplicity we assume
that σ is proportional to the conductivity of pure water,
σw(ρ,T ), which can be calculated using equations pub-
lished by the International Association for the Properties
of Water and Steam (IAPWS 1990) and (IAPWS 2019).

σ ∝ σw(ρ,T ) (5)

The density, ρ , can be calculated from the water pressure
and temperature and combining equations (3) and (5) we
get

Ge = k ·L ·σw(ρ,T ) (6)

The fitting coefficient, k, can now be derived from equa-
tions (2) and (6), and the nominal values of power, voltage,
water level (L = 1), temperature, and pressure

k =
(

U2

P ·σw(ρ(p,T ),T )

)
nominal

(7)

As medium model, liquid incompressible water from
MBL is used. Actuators and measurements are connected
to a signal bus, implemented with an expandable connec-
tor.

3.3 Pump
The icon and diagram view of the DHL pump model
is shown in Figure 4. It is based on the MBL model
SpeedControlled_y and is augmented with condi-
tional external inputs (bus, on/off or analogue speed set-
point), temperature and pressure sensors, and optional
check valve and variable speed drive (VSD) to simulate
ramp limits, minimum speed and start/stop/coastdown be-
haviour. All relevant pump information and setpoints are
exposed on the PumpBus expandable connector which can
also be conditionally enabled.
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Figure 4. Icon and diagram view of pump model.
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Figure 5. Icon and diagram view of valve model.

3.4 Valve
The valve model in Figure 5 is based on a replace-
able MBL linear valve model and the position can be
set internally or through different external connectors
(Boolean/Real/bus).

An optional slew rate limiter can be used to simulate
the valve stroke time and optional release/interlock ex-
pressions can force opening/closing of the valve. All rele-
vant information is exposed on the ValveBus expandable
connector.

3.5 Heat exchanger
The heat exchanger model contains
a replaceable instance of the MBL
PlateHeatExchangerEffectivenessNTU. The
port placement and icon of the DHL heat exchanger can
be changed through a parameter. Figure 6 shows different
appearances of the heat exchanger model.

3.6 Tee junction
The tee junction is an extension of the MBL Junction
model with unchanged functionality. However, the graph-

Figure 6. Different appearances of the heat exchanger model.

ical annotation primitivesVisible=false was used
to omit the icon annotation of the Junction model and
redraw it in the DHL version as shown in Figure 7.

name

Figure 7. Change of icon using the primitivesVisible
annotation.

4 Control
To study the transient behaviour of the boiler during
activation of ancillary services, the internal controller
models are just as important as the models of the physical
process. Since the actual controller code is an intellectual
property of each boiler manufacturer, and thus unavail-
able to the authors of this paper, a comparative plausible
control structure is set up based on experience and on the
required controlled variables for the exemplary boiler.

The following controlled variables are defined

• Electric power consumption

• DH heat flow rate

• DH supply temperature

• Water level of the inner tank

• Maximum internal temperature

• Boiler inlet temperature

• Standstill temperature

Controllers for water conditioning (conductivity, make-
up, blowdown), pressurization, and inertization are
omitted in the context of this work.

In addition to the continuously controlled variables, the
boiler system can transit between three operating states,
described by the sequential function chart in Figure 8.

• Running — the boiler controls water level, electri-
cal power consumption (or thermal output), and DH
supply temperature.

• Stopped — pumps are stopped, controllers deacti-
vated, upper tank drained, and MCB open.

• Standstill heating — 90 ◦C DH supply water is con-
sumed to maintain an internal temperature of 60–80
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◦C, water level is controlled slightly below the elec-
trode tips to prevent arcing from water surface rip-
ples, and power consumption is approximately zero.
This enables short start-up time.

Stands�ll 
hea�ng

Stopped

Running

Figure 8. Electrode boiler state chart

The continuous and sequential controllers are organized
in one controller model as shown in Figure 2 and Figure 9.

sequentialControl

R

S

W

circulation

standstill

power

districtHeating

Figure 9. Continuous and sequential controllers.

4.1 Sequential control
The implementation of the three operating states
and six corresponding transitions, using Modelica
StateGraph (Otter et al. 2005), is shown in Figure 10.
The states are connected to the run/stop and auto/manual
signals of the relevant pumps, valves, and continuous con-
trollers in the system model. To mention a few transitions:

• Transitions to running state are enabled if

– the thermal/electrical setpoint is above the min-
imum continuous load, e.g., 0.5 MW and

– the system run command is true and
– the boiler water temperature is below the max-

imum limit

• Transitions to standstill heating state are enabled if

– the run command is true and
– the temperatures are below maximum limits

but
– the power setpoint is below minimum continu-

ous load
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Figure 10. sequential controller.

4.2 Power and level control
The power and level controllers are shown in Figure 11.
The level controller controls the water level in the upper
tank with the throttle valve. When the controller is de-
activated, the valve is opened to drain the tank to put the
boiler into an operationally safe state. A temperature lim-
iter forces the throttle valve to open if the maximum in-
ternal operating temperature is exceeded. This would be
the case if, for instance, cooling of the dissipated power
with DH return water fails. The controller manipulates
the lower output limit of the level controller since this en-
sures direct “contact” with the level controller output and
prevents integrator windup.

Figure 11. Power and level controllers.

The level setpoint is provided by the thermal or elec-
trical power controllers in a cascade configuration. If the
thermal power controller is activated, the electric power
controller is in manual mode with its output tracking the
output of the thermal power controller. The same ap-
plies to the opposite case and enables bumpless switch-
ing between the two controllers. The power and heat
flow rate setpoints are max/min limited to the minimum-
to-maximum continuous load and rate limited such that a
change from zero to maximum load takes 15 seconds (fast
enough to comply with the FCR requirements). The logic
circuitry around the controllers ensures that the power
controllers are deactivated if the level controller is deac-
tivated (or set to manual mode) or if the boiler is not in
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running state.
Each PID controller is succeeded by a control station
block — which can be used to simulate an operator in-
tervention — supplying a tracking reference value and
Boolean track signal to the controllers.

4.3 DH supply temperature control
Figure 12 shows the DH supply temperature controller.

Figure 12. DH supply temperature controller.

When the boiler is in running state and the internal
temperature is above 70 ◦C the controller is activated, and
the DH pump is started. The DH pump, control valve and
recirculation valve are controlled in a split-range configu-
ration that produces a smooth DH flow from zero to max-
imum. Figure 13 shows the pump speed and valve po-
sitions as a function of the temperature controller output
(top) and the resulting DH flow (bottom). From zero to 20
% controller output the pump runs at minimum speed (20
%) and the valves control the flow. From 20 to 100 % the
pump controls the flow.
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Figure 13. Split-range control of DH pump and valves (top) to
produce an almost linear flow (bottom).

4.4 Boiler circulation control
The boiler circulation controller, shown in Figure 14, con-
trols the boiler circulation pump speed and the boiler inlet
temperature. The pump speed setpoint is proportional to
the electric power or heat flow rate setpoint — depending
on the mode of operation. This load dependence was cho-
sen to reduce the recirculation rate and throttling loss at

low boiler load. The boiler inlet temperature is controlled
with the HX admission and shunt valves. When one is
opened, the other closes.

Figure 14. Boiler circulation control.

4.5 Standstill temperature control
The standstill temperature controller (Figure 15) controls
the internal boiler temperature during standstill to main-
tain a high electric conductivity of the boiler water and,
thus, a enables fast start-up response. When the standstill
heating state is active, the isolation valve is opened, and
the standstill pump controls the temperature in an on/off
fashion.

Isolation valve

Pump

stop

run

Standstill heating

T_boiler

117.46 °C
Speed setpoint

Figure 15. Standstill temperature controller.

5 Simulation results
Figure 16 shows the BaseCase simulation model in
which the system is simulated to steady state with nom-
inal conditions. The block to the right contains the elec-
trode boiler system (shown in Figure 2) with its internal
controllers. Setpoints are set inside the controller blocks
but can optionally be taken from the system bus — for
example when the boiler is controlled by an outer mas-
ter controller. All simulation variations (step-responses,
part load, failure conditions etc.) extend from the base
case with modified boundary conditions (setpoints etc.),
cf. Listing 1.

Listing 1. Exemplary part-load simulation.

model PartLoad "Part-load simulation"
extends BaseCase(electrodeBoiler(
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controller(power(P_set(k=5000000)))));
end PartLoad;

system

g

defaults

40.10 MW

DH_return

40.0

DH_supply

90.0

3.00 90.0

186.7 376.7

3.00 40.0

186.7 167.4

Legend

p [bara]

h [kJ/kg]

T [°C]

m [kg/s]

Figure 16. Simulation model.

The model is parameterized as a 40 MW boiler. Based
on information from (PARAT 2020) the boiler height and
diameter are set to 6 and 3 metres, respectively. Nominal
mass flow rates are calculated from nominal temperatures
and heat flow rates. Valve stroke times and pump data are
estimated from experience. The key model parameters are
summarized in table 1.

Table 1. Key model parameters.

Quantity Value

Heat flow rate 40 MJ/s
DH return temperature 40 ◦C
DH supply temperature 90 ◦C
Boiler inlet temperature 80 ◦C
Boiler outlet temperature 120 ◦C
DH mass flow rate 191 kg/s
Boiler mass flow rate 119 kg/s
Stroke time (external valves) 30 s
Stroke time (throttle valve) 5 s
Total pressure drop, boiler circuit 1.0 bar
Total pressure drop, DH circuit 0.5 bar

The following simulation results show the behaviour of
the model in different situations. The main interest is to
study internal behaviour of the boiler model and to evalu-
ate its response during activation of ancillary services. The
simulation models contains 7,366 equations, the translated
model has 89 differentiated variables, and the sizes of non-
linear systems are {4,3,2,2}. The integration time of the
presented models using DASSL is approximately 0.5 sec-
onds in Dymola 2023x Refresh 1 running on a normal lap-
top PC.

5.1 Cold start
In the first simulation the boiler system is initialized
in stopped state without standstill heating. All initial
temperatures are 20 °C and the upper tank is empty. At
five minutes, the boiler receives a start signal and an
electric power setpoint of 40 MW.

Figure 17 (top) shows the electric power consumption
and its setpoint (blue) together with the thermal power
output delivered to the DH system (red). The power
consumption takes 3–4 minutes to reach its setpoint. The
five-minute offset between the electrical and thermal
power transient is because the DH temperature controller
is not activated until the internal boiler temperature
reaches 70 ◦C.
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Figure 17. Power and level during cold start.

The middle figure shows the level setpoint (blue) and
the corresponding water level (red). The blue slope is
caused by rate limitation of the power setpoint and the
integral time of the power controller providing the level
setpoint. The ∼20 second delay of the level is a combina-
tion of

• The water level starting at −ze (electrode elevation
above the tank bottom)

• The throttle valve closing (bottom figure, blue)

• The circulation pump starting (bottom figure, red)

The fact that the throttle valve position settles on about
25 % to maintain the steady-state level suggests that the
valve sizing is a bit off. Instead, 50 % is preferable as
this would give a symmetric process gain during level
increase (valve closing) and decrease (valve opening) for
a constant pump speed.

Figure 18 (top) shows the DH supply temperature (red)
and its setpoint. The bottom figure shows the temperature
controller output (blue), the DH valves (green and
magenta), and the DH pump speed (red). When the DH
temperature controller is activated at approximately 10
minutes, the pump ramps to its minimum speed (20 %)
After another couple of minutes, the DH temperature
approaches its setpoint and the DH valves start to actively
control the supply temperature. Subsequently, as the heat
flow rate increases, the pump speed increases to keep the
temperature on its setpoint.

Figure 19 (bottom) shows the boiler inlet temperature
(red) and its setpoint (blue) which are controlled by
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Figure 18. DH supply temperature (top) and DH pump, valves
and temperature controller output (bottom).

the HX admission and shunt valves (red and green,
middle) and the boiler pump speed (blue, middle). The
temperatures of the upper (blue) and lower tank (red) are
shown in the top figure.
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Figure 19. Internal temperatures and circulation.

As expected, the electric power response, following
a cold start, is not fast enough to comply with the 30
second FCR requirements. However, it is fully capable of
fulfilling aFRR and mFRR requirements.

5.2 Standstill
The “slow” response during cold start is mainly attributed
to the relatively low electric conductivity at low tempera-
tures. Figure 20 shows the conductivity of pure water (at
5 bara) as a function of temperature.
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Figure 20. Conductivity of pure water at 5 bara as a function of
temperature.

Standstill heating is activated by setting the boiler run
command to true and the electric power setpoint to zero.
Figure 21 shows the on/off control of the boiler tempera-
ture during standstill (top, red) to a setpoint of 80 ◦C (top,
blue). The standstill pump starts when the temperature
drops below 77 ◦C and stops when the temperature reaches
83 ◦C. With tloss set to 7 days the 6 ◦C cooling (heat loss)
phase takes 4–5 hours. The bottom figure shows the stand-
still valve (red) and pump (blue), and the boiler circulation
pump (green). As the boiler temperature measurement is
located on the pipe leaving the boiler, it can only provide a
representative reading of the (uniform) boiler temperature
when water flows through it. For that reason, the boiler
circulation pump runs continuously at low speed.
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Figure 21. Standstill temperature control.

5.3 Warm start
Figure 22 shows the electric power and level responses
during a warm start (red) compared to a cold start (blue).
Now the power response is only approximately 15
seconds compared to 3–4 minutes.
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Figure 22. Power and level during warm start (red) compared to
cold start (blue).

The improvement can be explained by:

1. The water conductivity is improved by the standstill
heating preceding the warm start.

2. During standstill heating the water level is main-
tained slightly below the electrodes, whereas in
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stopped stated (cold), the upper tank is emptied. This
causes a startup penalty while the boiler circulation
pump fills up the inner tank.

5.4 Load reduction
The FCR requirements apply to both load increases and
reductions. The following figures show the simulated
response during a power setpoint reduction to minimum
stable load (0.5 MW).
Figure 23 shows the power and heat flow rate (top), the
level (middle) and throttle valve position, and circulation
pump speed (bottom). The power consumption reaches
and undershoots its setpoint within 15 seconds. The
level undershoot causes the electrodes to be unconvered,
resulting in zero power consumption. As the boiler
circulation pump speed is low at minimum power, the
water level only recovers slowly.

15.0 17.5 20.0 22.5 25.0 27.5 30.0

0

40

Time [min]

Total electric power consumption setpoint Total electric power consumption DH heat flow rate

15.0 17.5 20.0 22.5 25.0 27.5 30.0
-0.2

0.0

0.2

Time [min]

Level setpoint Level

15.0 17.5 20.0 22.5 25.0 27.5 30.0
0

1

Time [min]

Level control valve position Recirculation pump speed

Figure 23. Power and level during a load reduction.

During the load transition, the DH supply temperature
drops to 84 ◦C as shown in Figure 24 (top). The DH
pump and valves (bottom figure) are clearly not fast
enough to keep the temperature on it setpoint during a 15
s power transition and the 30 s valve stroke time should
be re-considered in an improved design.
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Figure 24. DH supply temperature drop during load reduction.

Figure 25 (top) shows the internal boiler temperatures
decreasing from 118 ◦C at 40 MW to approximately 90
◦C at 0.5 MW. At 19 minutes the controlled boiler inlet

temperature (bottom) suddenly starts deviating fromt its
setpoint. This can be explained by the 20 % minimum
speed of the DH pump, resulting in a high recirculation
rate to keep the net DH flow low.
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Figure 25. Internal boiler states during load reduction.

Figure 26 shows a part of the diagram view of the sim-
ulation. The DH recirculation results in an HX inlet tem-
perature of 87.2 ◦C. Since the boiler inlet temperature is
the mixture temperature of the boiler-side HX inlet (91.5
◦C) and outlet (88.9 ◦C) temperatures it is not possible to
reach the 80 ◦C setpoint.

Figure 26. DH recirculation causing a high boiler inlet temper-
ature.

6 Discussion
The mechanistic, component-based modelling approach
generates a lot of interesting results, not attainable with
data-driven approaches. It reveals several details of the
closed-loop behaviour which could not easily be found by
prior scrutiny.

Although the simulations show good results, improve-
ments to the model and the control strategy are always
possible.

During normal operation, level control is strictly speak-
ing unnecessary. The electric/thermal power controllers
could just as well actuate the throttle valve directly, and
this would enable a faster power control, as the controller
cascade would be omitted. However, during standstill the
level needs to be controlled slightly below the electrode
tips. This could be arranged by placing the level controller
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“in parallel” with the power and heat flow rate controllers,
switching to level control in the relevant situations.

The boiler circulation pump speed was made load-
dependent to reduce the throttling loss at low loads.
However, this results in load-dependent process gain from
throttle valve to tank level and slow process response
at low load. This could be changed, for instance, to a
mid-range control scheme in which the circulation pump
keeps the valve position around 50 %. This would give a
more symmetric level increase/decrease response.

Also, more emphasis could be given to refining the
relationship between the water properties and the conduc-
tance. This would require more insight into the chemical
part of the boiler and probably the involvement of the
boiler manufacturer.

The electric part of the model was made with a DC
circuit for simplicity. To connect the model to a power
grid model this must be extended — for example by
using AC components from libraries such as (Franke and
Wiesmann 2014) or (Baudette et al. 2018).

Finally, matching actual operating data from a real
electrode boiler, geometry, valve stroke times, pump
curves, and the detailed control scheme would have to be
replicated as this is paramount in that context.

7 Conclusion
A component-based model of an electrode boiler and its
related internal controllers was presented. It is easy to
parameterize, and simulations between zero and full load
show good agreement with expected responses. With the
presented parameters an exemplary 40 MW boiler model
complies with the FCR ancillary service requirements
both during load reduction and load increase from warm
conditions.

The simulated model provides great insight into the
process and automation details of the electrode boiler sys-
tem. It consists of several sub-components making it easy
to study its behaviour in detail. The short simulation time
makes the model suitable for integration in a larger system
simulation model.
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Abstract
Given the computationally intensive nature of heat ex-
changer simulators, utilizing a data-driven surrogate
model for efficiently computing the heat exchanger out-
puts is desirable. This study focuses on developing in-
tegrated surrogate models of heat exchangers for a vapor
compression system in Modelica. The surrogate models
are designed to serve as steady-state equivalents based on
an efficient physics-based model calibrated using refer-
ence data from a more advanced simulation model. Sub-
sequently, the calibrated model was employed to gener-
ate the training and testing data for developing Gaussian
Process (GP) and Multi-Layer Perceptron (MLP) surro-
gates. The findings indicate that GPs exhibit high accu-
racy when applied to the heat exchanger’s outputs with
smooth behavior. GPs also demonstrate excellent data ef-
ficiency compared to MLPs. In cases where the GP strug-
gles to model specific outputs effectively, MLPs are able
to capture the more complex behavior. Moreover, hyper-
parameter optimization is employed to identify optimal
MLP topologies. Finally, the fast and compact surrogate
model was integrated into the Modelica/Dymola environ-
ment. This adaptation allowed the surrogate models to be
directly combined with the physical model of the heat ex-
changer.
Keywords: Heat Exchanger, Surrogate Model, Gaussian
Process, Multi-Layer Perceptron, Hyperparameter Opti-
mization

1 Introduction
In thermal systems, amid the most common components,
heat exchangers are arguably the most challenging units
to simulate from the numerical point of view due to the
complex thermal and fluid-dynamic phenomena involved
(e.g. fluid phase changes). Different approaches exist to
model heat exchangers, but in general, the level of accu-
racy should increase with the level of detail considered in
the model.

This work explores the development of heat exchanger
surrogate models to be used within the Modelica envi-
ronment. In this sense, a flexible heat exchanger model
(Ablanque et al. 2022), adapted to simulate an air-to-

refrigerant condenser, has been used to train and evaluate
surrogate models. The specific condenser studied is part
of a vapor compression system which, in turn, is included
in an aircraft Environmental Control System (ECS).

Various neural networks and deep learning techniques
have been implemented to model different aspects of heat
exchangers. (Abbassi and Bahar 2005) use a shallow neu-
ral network to model the thermodynamics of an evapora-
tive condenser. (Romero-Méndez et al. 2016) model con-
vective heat transfer rate that occurs during the evapora-
tion of a refrigerant flow using a neural network.

In this work, surrogate models have been developed for
each target variable of the heat exchanger. Gaussian Pro-
cess (GP) regression models have been constructed for tar-
get variables exhibiting smooth behavior due to GP’s data
efficiency and strong interpolation abilities for smooth
functions. A Multi-Layer Perceptron (MLP) Neural Net-
work Model has been employed for more challenging tar-
get variables with highly non-linear behavior. To enhance
the performance of the MLP, hyperparameter optimiza-
tion on the network architecture has been conducted. The
performance of the proposed surrogate models has been
demonstrated, and the advantages of hyperparameter tun-
ing have been highlighted in the context of surrogate mod-
eling.

Finally, the fast and compact surrogate model was suc-
cessfully integrated into the Modelica/Dymola environ-
ment. This adaptation enabled the direct integration of
the surrogate models with the physical model of the heat
exchanger.

2 Heat Exchanger Model
2.1 Description
The structure implemented for the heat exchanger model
is aimed to provide high flexibility in terms of geometries,
participating fluids (i.e., liquids, gases, and two-phase re-
frigerants), and phenomenologies such as evaporation and
condensation. The model layout consists of two specific
sub-components for calculating fluid flows which are ther-
mally linked via an additional sub-component that stands
for the solid parts. Figure 1 shows the scheme for an air-
to-refrigerant condenser.
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Figure 1. Heat exchanger main structure (air-to-refrigerant con-
denser).

The calculation of the fluid flow sub-component is
based on a steady-state approach. The model discretiza-
tion distinguishes three different zones, namely, super-
heated gas, two-phase, and sub-cooled liquid, as shown
in Figure 2 for a condensation case. The aforementioned
model zones can exist or not depending on the fluid inlet
and outlet conditions so that the heat exchanger switches
between different operating modes.

Figure 2. Condenser discretization and operating modes.

The pressure drop for the whole heat exchanger is cal-
culated from a traditional approach (i.e., ṁ=K∆Pα ) where
∆P represents the pressure drop. The parameters K and α

are previously determined from reference data.
The energy conservation equation is solved considering

constant pressure and constant solid temperature. The cal-
culation is conducted sequentially from zone to zone (if

the heat calculated for the current zone is higher than the
maximum heat allowed for this zone, the calculation will
continue to the next zone. Otherwise, the calculation will
terminate in the current zone). For single-phase zones, the
heat flow rate between the fluid and the solid part Q̇single
is calculated based on an ε-NTU method (Incropera and
DeWitt 1996) in order to optimize the calculation speed
and to avoid unrealistic temperature values:

Q̇single = εC(Tsolid −Tf luid,in) (1)

where C stands for the thermal capacity ratio and ε corre-
sponds to the heat exchange effectiveness. For two-phase
zones, the heat flow rate (Q̇two) is calculated from a stan-
dard approach based on a heat transfer coefficient (α), the
temperature difference between the solid and the saturated
fluid, and the heat transfer area (A):

Q̇two = α(Tsolid −Tf luid,sat)A (2)

The calculation of the solid sub-component is based on
a transient approach. It is calculated considering a unique
solid temperature (T ), the solid mass (M), the solid mean
specific heat capacity (cp), and the heat rate transferred
with the two fluids:

Mcp
dT
dt

− Q̇ f luid,1 − Q̇ f luid,2 = 0 (3)

The complete resolution is carried out by means of
the default differential/algebraic system solver of Dy-
mola. The heat exchanger’s overall thermal response is
dynamic as it combines the steady-state approach used for
both flows with the dynamic approach considered for the
solid part. Artificial relaxations can also be applied to
the energy conservation equation of both flows to further
overcome the negative impact of the absence of dynamic
terms. The pressure drop equation is not only used to cal-
culate the mass flow rate but also to approximate the phase
saturation limits needed for the energy conservation equa-
tion.

2.2 Numerical Assessment and Tests
The current model has been developed to simulate differ-
ent types of heat exchangers included in large thermal ar-
chitectures consisting of multiple systems. Therefore, the
need to meet demanding numerical requirements was cru-
cial for its successful use in the aforementioned environ-
ments. The main requirements include robustness at ini-
tialization, robustness to any boundary conditions and/or
signal types, robustness to conduct simulations at any par-
ticular simulation set-up parameter (e.g., interval length),
the capacity of both fluids to handle null mass flow rate
as well as reversed flows, and ability to handle changes of
the expected heat flow direction. The model is a suitable
platform to generate large quantities of training data and
tests for the surrogate models due to its numerical charac-
teristics.
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2.2.1 Initialization and steady-state tests

A complete data set of cases has been generated to test
the robustness of the model during initialization and the
correct resolution for steady-state conditions. The data set
has been built-up taking into account different values for
all the boundary conditions (i.e., air and refrigerant inlet
parameters) covering the whole physical range of possi-
bilities and all its possible combinations. The data set also
takes into consideration different fluid boundary condition
types (see Figure 3) and different values for the interval
length.

Figure 3. Boundary condition types: pressure - pressure (left)
and Mass flow rate - pressure (right).

The data set consists of 1296 cases (216 cases for
each combination of boundary condition type and interval
length). The simulation stop time is set at 2000 seconds so
that the steady-state condition can be reached. The results
have shown that the model initialization is successful for
all the cases without being affected by the combination of
boundary values or the interval length value.

2.2.2 Transient tests

Similarly to the initialization studies, many tests have been
conducted to assess the model’s numerical robustness for
other crucial transient conditions. Some illustrative exam-
ples are presented. Figure 4 shows the results for a test
where both the null mass flow rate and the reversed flow
capacities are tested. This particular case corresponds to a
transient simulation where the refrigerant is operating at a
particular mode and is forced to experience flow direction
changes and null mass flow rate at different moments.

Figure 4. Null mass flow rate and reversed flow test example.

Figure 5 shows illustrative results for a test where many

boundary conditions are provided as sine signals to force
mode transitions in the heat exchanger (see Figure 1).

Figure 5. Sines signals test example.

2.2.3 Model validation

The accuracy of the condenser model has been compre-
hensively assessed. In this sense, a full set of reference
data of 4766 cases has been provided from an advanced
heat exchanger numerical model and used to compare the
predictions. The parameter used for the comparisons is
the so-called Prediction Error (PE) which characterizes
the difference between the model-predicted value and the
reference value of a particular variable. The local PE is a
percentage value, and for the heat flow, it is evaluated as
follows:

PE =
|Q̇model − Q̇re f erence|

Q̇re f erence
×100 (4)

To assess the accuracy regarding the whole data, an av-
eraged PE is used, the so-called Mean Prediction Error
(MPE), which is defined as follows:

MPE =
1
N

i=N

∑
i=1

PEi (5)

Table 1 shows the mean prediction error for the heat
flow predicted by the condenser model. The results show
good accuracy as the MPE for the whole data is 2.49 (this
value decreases significantly as the less accurate results
are not being considered).

3 Surrogate Modeling
Surrogate modeling aims to develop data-driven regres-
sion models that emulate complex systems or processes.
This compact surrogate can then be used for real-time
analysis, optimization, or prediction without the need for
resource-intensive direct simulation of the system. In
a regression problem, an input set is denoted as X =
[x1,x2, . . . ,xN ], xi ∈ Rd , where d is the dimensionality
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Table 1. Condenser model accuracy assessment (heat flow pre-
diction).

Data % MPE MaxPE std
4766 100 2.49 42.0 3.7
4671 98 2.12 15.6 2.6
4528 95 1.78 10.4 1.9
4289 90 1.43 5.8 1.2
4051 85 1.23 4.0 0.8
3575 75 0.99 2.2 0.6

of the input. A corresponding set of continuous obser-
vations is denoted as Y = [ f (x1), f (x2), . . . , f (xN)], with
f (xi) ∈ R. The goal is to construct a model that can pre-
dict the value of y := f (x∗) for an unobserved point x∗.
The prediction is denoted as ŷ. In this study, two tech-
niques are employed to build predictive models of the heat
exchanger system, namely Gaussian Processes and Multi-
Layer Perceptrons.

3.1 Gaussian Process Regression
Gaussian Process (GP) (Rasmussen and Williams 2018)
is a common data-efficient surrogate for regression prob-
lems. A GP is specified by a mean m(x) and covariance
function k(x,x′). Given pair of input sets X and its eval-
uation on the system simulations, GP can be defined as:
f (x)∼ GP(m(x),k(x,x′)).

For the choice of the kernel function, the Matérn 5/2
kernel (Handcock and Stein 1993) is used as it does not
put strong smoothness assumptions on the unknown func-
tion to be approximated (Genton 2002). The Matérn 5/2
kernel is defined as:

k
(
x,x′

)
= γ

(
1+

√
5r+

5
3

r2
)

exp(−
√

5r), (6)

r =

√√√√ d

∑
m=1

(xm − x′m)
2

l2
m

(7)

where γ is a scale parameter, and l is a lengthscale param-
eter for the kernel function.

Training the GP model involves estimating the hyper-
parameters θ̂ . In this case, θ̂ contain the parameters of
k(x,x′). Maximum Likelihood Estimation (MLE) is used
to estimate the hyperparameters:

θ̂ = argmax
θ

log p(f | X ,θ) (8)

= argmax
θ

−1
2
(
log |2πKxx|+ fT K−1

xx f
)

(9)

The predictive mean µ (X⋆) and the predictive variance
σ2 (X⋆) of a new, untested data point X∗ is calculated as:

µ (X⋆) = K⋆xK−1
xx Y (10)

σ
2 (X⋆) = K⋆⋆−K⋆xK−1

xx KT
⋆x (11)

where Kxx = k(xi,x j), K⋆x = k(x⋆i,x j), and K⋆⋆ =
k(x⋆i,x⋆ j). The predictive mean of the GP is used as
the surrogate model prediction ŷ. Moreover, the predic-
tive variance could prove beneficial for quantifying uncer-
tainty, which increases trust in the outcome and enables
decision-making, optimization, or anomaly detection.

For Gaussian process regression, the GPFlow li-
brary (G. Matthews et al. 2017) is used, and the
MLE is optimized using the Limited memory Broy-
den–Fletcher–Goldfarb–Shanno Bounded (LBFGS-B)
optimizer (C. Zhu et al. 1997).

3.2 Multi Layer Perceptron
The Multi Layer Perceptron (MLP) (Hinton 1989) is a
popular class of deep learning neural network architec-
tures used for regression tasks. While it is not as data
efficient as GP, it can capture more complex, non-linear
relationships between input and output variables. It also
scales well to the size of the data set compared to GP w.r.t.
computational complexity. MLP is a versatile choice for
surrogate modeling when a larger data set is available.

An MLP comprises an Input Layer, L Hidden Layers,
and an Output Layer. The Input Layer matches the dimen-
sionality of the input data, while the Output Layer matches
the dimensionality of the target function. Generally, an
MLP (Prince 2023) can be described as:

h1 = a [b0 +W0x]
h2 = a [b1 +W1h1]

h3 = a [b2 +W2h2]

...
hL = a [bL−1 +WL−1hL−1]

ŷ = bL +WLhL. (12)

where bl and Wl are the bias term and weight parameters
of the network at lth layer, and a, is the activation function.
Rectified Linear Unit (ReLU) (Fukushima 1969) is used
for a and defined as a(x) = max(0,x)

To find the optimal parameters (bl and Wl), the ADAM
(Kingma and Ba 2015) optimizer is used. Specifically for
this study, The base architecture of the MLP was set to
150, 100, and 50 neurons for each of the three hidden lay-
ers respectively, as illustrated in Figure 6. The Scikit-learn
machine learning library (Pedregosa et al. 2011) is used to
train the MLP surrogates.

4 Heat Exchanger Surrogate Models
Steady-state equivalent surrogate models for the heat ex-
changer have been developed and tested using data sets
derived from the physical simulator. A heat exchanger
model incorporating mass flow rate and pressure approach
was used in this case. The input-output diagram of the sur-
rogate models is illustrated in Figure 7.
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Table 2. Heat exchanger surrogate model inputs domain.

Variable Input Lower Bound Upper Bound Unit

Pa_ref Refrigerant pressure at refrigerant flow port A 150000 1800000 Pa
Pa_air Air pressure at refrigerant flow air port A 20000 110000 Pa
m_ref Refrigerant mass flow rate -0.16 0.16 kg/s
m_air Air mass flow rate -1.8 1.8 kg/s
Tin_air Air inlet temperature -20 60 °C
Hin_ref Ref. inlet enthalpy 210 490 kJ/kg

Figure 6. Architecture of the MLP used in this paper.

Figure 7. Heat exchanger surrogate model Inputs and Outputs.

Table 3. Specification of the heat exchanger surrogate.

Variable Output Unit

Pb_ref Refrigerant pressure at port B Pa
Pb_air Air pressure at port B Pa
Tout_air Air outlet temperature °C
Hout_ref Ref. outlet specific enthalpy kJ/kg
Heat Heat transferred between fluids W

4.1 Generating the data sets
Data collection for the heat exchanger surrogate models
has been performed by evaluating the physical model de-
veloped in the Modelica framework. The data sets are de-
scribed in Table 2 and 3 respectively. In total, four data
sets were prepared. The first two data sets, consisting
of 150 and 80,000 points, were drawn using the Halton
random sequence (Owen 2017). The remaining two data
sets consist of 40,000 and 100,000 random points for hy-
perparameter optimization and validation of the surrogate
model, respectively (Gramacy 2020).

5 Surrogate Modeling Results
The performance of the surrogate models is evaluated in
terms of their predictive accuracy. Furthermore, hyperpa-
rameter optimization was conducted for the Multi-Layer
Perceptron (MLP) to improve the performance of the sur-
rogate models.

5.1 Performance Comparison
Surrogate models have been developed and benchmarked
for all of the outputs of the heat exchanger. In particular,
four different surrogate model scenarios are executed to
select the surrogate model with the best performance. The
considered surrogate model scenarios are:

• MLP trained on 80,000 points (MLP-80K).

• MLP trained on 150 points (MLP-150).

• GP trained on 150 points (GP-150).

• Random Forest (RF) trained on 150 points (RF-150).

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (13)

The Root Mean Squared Error (RMSE) is used as a
metric to evaluate the surrogate models on testing data
sets of 100,000 points. The RMSE formula is presented
in equation 13. The full result of the benchmark is shown
in Table 4. The surrogate model with the lowest RMSE
is used for each output as the final surrogate mode. Al-
most all MLP-80K models have the best RMSE compared
to the other methods, except for the Pb_air output. In this
case, GP is superior to MLP. Thus, all outputs are modeled
using MLP with 80,000 data points except for Pb_air.
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Table 4. Testing Root Mean Squared Error (RMSE) of all com-
pared methods.

Output RMSE
MLP-80K MLP-150 GP-150 RF-150

Pb_ref 8.54e+3 4.55e+5 1.30e+5 5.06e+4
Pb_air 2.33e+2 7.36e+3 4.24e+1 4.14e+2
Tout_air 1.51e+0 1.26e+2 2.27e+1 3.49e+1
Hout_ref 5.20e+3 5.59e+5 8.02e+4 1.07e+5
Heat 4.52e+2 2.56e+4 8.98e+3 7.86e+3

5.2 Neural Network Hyperparameter Opti-
mization

To explore the potential of MLP models in more detail, a
hyperparameter optimization step was performed.

HyperParameter Optimization (HPO) (Yu and H. Zhu
2020; Morales-Hernández, Van Nieuwenhuyse, and Rojas
Gonzalez 2022) for the MLP has been conducted using
the Optuna framework (Akiba et al. 2019). The optimized
hyperparameters are the learning rate and the architecture:
the number of the hidden layer, the number of neurons of
the hidden layers, and the activation function. Full spec-
ification of the MLP hyperparameter search space is pre-
sented in Table 5.

Table 5. Hyperparameter search space for the HPO.

Variable Domain Type

Number of hidden layer [2, 6] Integer
Number of neurons [8, 1024] Integer
Learning rate [0.0001, 0.01] Float
Activation function {identity, tanh, Function

logistic, ReLU}

The HPO was conducted with a budget of 250 itera-
tions. The training data consisted of 80,000 points, while
the cost function was defined as the loss value on a ran-
domly sampled validation data set of 40,000 points. The
optimal hyperparameters identified through the HPO pro-
cess are presented in Table 6.

Finally, the complete comparison of the Base-MLP and
the optimal architecture found by the HPO (i.e., HPO-
MLP) is presented in Table 7. It should be noted that
the same hyperparameter setting from the previous section
(MLP-80K) was used for the Base-MLP.

6 Modelica integration of the surro-
gate models

The resulting surrogate models have been integrated in the
Modelica framework. To accomplish this, the optimal pa-
rameters obtained during training are stored as matrices
on MATLAB (’.mat’) files, as they are compatible with
the Modelica framework. For the GP model, these files
store the training data, kernel parameters, and precom-

puted terms that are independent of newly observed data
(i.e., K−1

XXY ). This speeds up the computation of predic-
tions since the expensive matrix inverse operation does not
need to be recalculated every time a new point needs to be
predicted. Additionally, for the MLP model, the result-
ing Wl and bl terms are saved, along with the activation
functions at each layer for the HPO-MLP.

Figure 8. Surrogate model adaption in Open Modelica.

The integration process utilizes OpenModelica (Fritz-
son et al. 2005) and can also be adapted to Dymola.
The command ’readRealMatrix’ imports the matrix, and
’readMatrixSize’ is used to retrieve the dimensions of the
matrices. The surrogate model prediction routine was then
implemented in Modelica using equations 10 and 12 for
GP and MLP, respectively. The adapted Modelica surro-
gate prediction function block is shown in Fig. 8 where the
six inputs required by the function are shown. The only in-
put that this function block requires is the path where the
’.mat’ file can be found.
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Figure 9. Testing the Open Modelica (OM)/Dymola adaptation.

2,500 test data points have been evaluated using the
physical model for validating the Modelica implementa-
tion. We compared the resulting Modelica outputs with
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Table 6. Multi-layer perceptron hyperparameter optimization result.

Variable N hidden layer Number of neurons Learning rate Activation function

Pb_ref 4 (1012, 252, 470, 392) 0.00119 ReLU
Tout_air 4 (410, 607, 906, 280) 0.00010 ReLU
Hout_ref 5 (752, 862, 122, 226, 221) 0.00098 ReLU
Heat 4 (895, 501, 667, 670) 0.00054 ReLU

Table 7. Root Mean Squared Error (RMSE) of Base-MLP and HPO-MLP. Ten repetitions have been conducted to validate the
robustness of the optimized model.

Surrogate Name RMSE ± Standard Deviation Improvement (%)Base-MLP HPO-MLP
Pb_ref 9.380e+03 ± 5.608e+02 7.767e+03 ± 6.671e+02 17%
Tout_air 1.518e+00 ± 1.039e-01 1.266e+00 ± 1.016e-01 16%
Hout_ref 4.977e+03 ± 3.388e+02 4.374e+03 ± 5.778e+01 12%
Heat 4.685e+02 ± 4.408e+00 4.094E+02 ± 4.741E+01 13%

the original Python code for the surrogate model predic-
tion. The results of this test are presented in Fig. 9, and
it can be seen that the outputs are exactly matching. This
generates trust to integrate the surrogate model in future
applications where the heat exchanger will be used.

7 Conclusion
A heat exchanger model implemented in Modelica and
adapted to simulate an air-to-refrigerant condenser has
been validated and used to train and evaluate different sur-
rogate models to mimic their steady-state behavior. The
surrogate models are developed using Gaussian Process
(GP) and Multi-Layer Perceptron (MLP) models. GPs are
employed to capture the linear behavior of some heat ex-
changer outputs, while MLPs are utilized to handle other
outputs with more complex, non-linear behavior. Addi-
tionally, hyperparameter optimization for the MLP archi-
tecture has been conducted, which led to significant im-
provements compared to the standard architecture. As
a proof of concept, the surrogate models were also in-
tegrated in the Modelica/Dymola environment such that
they can be directly augmented with physical models.

In this specific study, the surrogate model does not ex-
hibit a substantial improvement in calculation time com-
pared to the physical model. This limitation can be at-
tributed to the fast nature of the physical model employed
here. However, in cases with more complex physical mod-
els such as the distributed method, it will provide a large
reduction in calculation time. Nonetheless, the surrogate
model played a crucial role in ensuring calculation stabil-
ity. Some of the factors that contribute to instability in-
clude operating modes transitions, empirical and correc-
tor factor transitions, as well as thermophysical properties
near the saturation dome, among others.

Future research will concentrate on constructing tran-
sient surrogate models to represent the transient behavior
of the heat exchanger model explicitly. This can be ac-

complished by employing more suitable surrogate model-
ing techniques, such as non-stationary Gaussian Processes
or Autoregressive Models like Long Short-Term Memory
Neural Networks.
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Abstract 

5th Generation District Heating and Cooling (5GDHC) 

provides a promising pathway for decarbonising the ther-

mal sector. To quantify the synergies between heating, 

cooling, and electricity, complex thermofluid models are 

required. Modelica offers a potential solution for develop-

ing such models but despite recent research efforts, there 

is a lack of bespoke 5GDHC component models in litera-

ture. This paper addresses this gap by presenting a com-

prehensive set of Modelica models for key elements of 

5GDHC systems and their interactions: prosumers, bal-

ancing units, and hydraulic interfaces. The models com-

prise some commercial libraries. To facilitate accessibil-

ity, Functional Mock-up Units (FMU) are generated for 

these models, which can be opened by any Modelica en-

vironment using Functional Mock-up Interface (FMI). 

Component design, relevant controls, and the applicabil-

ity of Power Hardware-in-the-Loop (PHIL) setups are dis-

cussed. A theoretical use case exemplifies hardware min-

imisation, using only heat exchangers to investigate 

prosumer behaviour. The paper concludes with a discus-

sion on the potential use of these models, opportunities for 

improvement, and the need for further research and exper-

imental investigations in understanding 5GDHC systems. 

Keywords: 5th Generation District Heating and Cool-

ing, Power Hardware-in-the-Loop, Energy Systems 

1 Introduction 

Among the efforts to limit the impact of climate break-

down and rise of global temperature levels, the  decarbon-

isation of thermal networks represents a crucial challenge, 

especially while trying to maintain security of supply and 

low costs (IEA 2021). A system that is attracting increas-

ing attention is 5th Generation District Heating and Cool-

ing (5GDHC) which offers opportunities for synergies be-

tween heating and cooling loads, low temperature waste 

heat utilisation and sector coupling with the electricity 

grid through the use of heat pumps (Gjoka, Rismanchi, 

and Crawford 2023). This system utilises an ambient net-

work for meeting both heating and cooling demands with 

decentralised energy stations. They feature water source 

heat pumps, boosting the temperature for meeting heating 

or cooling needs and thus commonly referred to as 

Booster Heat Pumps (BHP), Thermal Energy Storage 

(TES) and hydraulic pumps. Since buildings are feeding 

heat/coolth into the ambient network while they are using 

coolth/heat, they are referred to as prosumers. The thermal 

and hydraulic balance is provided to the system by a bal-

ancing unit, which adds heat or coolth depending on the 

demand requirement of the network (Buffa et al. 2019). 

However, this pumping and energy unit decentralisation 

leads to a bidirectional flow regime in the network when 

heating and cooling demands are present. This may in turn 

cause thermodynamic subcycles, hydraulic misbalances 

such as “pump hunting” depending on the topology of the 

network and the transient behaviour of the network me-

dium (Angelidis et al. 2023). To capture the operational 

complexity of such systems, it is key to accurately model 

thermofluid behaviour. Detailing the hydraulic and energy 

flow interaction coupled with overarching controls is a 

challenge that fits the multi-engineering scope of the 

Modelica simulation language (Abugabbara 2021). Mod-

elica allows for accurate simulation of the system dynam-

ics including bidirectionality of flow, pressure constraints, 

flow characteristics and energy interactions between heat-

ing and cooling. It is recognised by the International En-

ergy Agency as one of the key computational tools for 

building system modelling (Wetter and Treeck 2017). 

Modelica features multiple open access libraries with val-

idated components for buildings and community heating 

and cooling energy systems, including the Buildings 

(Wetter et al. 2014) and AixLib (Mueller et al. 2016) li-

braries, summarised in one library under BESMod (Wüll-

horst et al. 2022). 

Regarding 5GDHC systems, publications have focused 

on describing modelling methodologies and subcompo-

nent development, aimed mainly at studying particular el-

ements (Blacha et al. 2019; Abugabbara, Javed, and Jo-

hansson 2022; van der Heijde et al. 2017). However, these 

studies have limitations. The developed models are not 

provided for reuse, nor include a comprehensive explana-

tion of the interplay between control regimes and 

prosumer, balancing unit, and decentralised pumping sta-

tion interaction. Furthermore, they have been mostly case-

specific, with only some Buildings library components 

providing limited insights on BHP and TES interaction 

and overarching control. Finally, prosumer interaction, 

the function of the balancing unit and the effects of decen-

tralised pumping to system performance has not been ex-

perimentally validated. This is mainly due to the large 
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number of units and hardware components required to 

study such interactions. Power Hardware-in-the-Loop 

(PHIL) provides a method for combining simulation tools 

with real hardware, interfacing through digital and ana-

logue input/output signals, that could facilitate system-

wide experiments with the use of minimal hardware. Fa-

cilitating such experiments through the provision of be-

spoke Modelica models for 5GDHC would be a step for-

ward in understanding and quantifying the complex be-

haviour of such systems. 

The aim of this paper is to present a set of comprehen-

sive Modelica models, including experimentally validated 

subcomponents from the ProHMo library1 for prosumers, 

hydraulic interface, and balancing unit to accurately sim-

ulate 5GDHC systems. The models have been developed 

to facilitate PHIL implementations, enabling experimental 

analyses of prosumer interactions in 5GDHC. A method-

ology for utilising only a heat exchanger (HEX) to repli-

cate prosumer behaviour is presented along with a discus-

sion on usability of the models using Functional Mock Up 

Interface (FMI). This feature allows the presented compo-

nents to be used in any Modelica environment or in com-

bination with Energy Management Systems (EMS) from 

other coding environments such as Python. 

The library design is discussed in section 2, with a de-

tailed investigation of the system components along with 

rule-based control strategies implemented. Section 3 in-

cludes an exemplary use case of the components for a sim-

ple 5GDHC system with two prosumers and a balancing 

unit. In section 4, the methodology for PHIL setups is dis-

cussed for experimental analysis of prosumer interaction 

or developed digital twins with minimal hardware use. 

Section 5 includes a discussion on strengths and limita-

tions of the presented models along with the areas for fur-

ther research. Finally, section 6 concludes with future use 

cases and research options.  

2 Component Design 

The development of the Modelica components is guided 

by five key guiding principles, namely usability, scalabil-

ity, accuracy, flexibility & validity (Wetter and Treeck 

2017). The prosumer and balancing unit models were 

based on equipment from the thermal Prosumer House 

Model (ProHMo) library (Zinsmeister and Perić 2022). 

The ProHMo library includes experimentally validated 

components from the Center for Combined Smart Energy 

Systems (CoSES) lab that are scalable. It is based on the 

Green city library from the commercial Modelica environ-

ment Simulation X (Zinsmeister and Perić 2022). The li-

brary uses a thermal only approach to simplify the models 

and shorten simulation time, where pressure influences 

are neglected. This simplification is valid for heating 

systems within houses (Zinsmeister and Perić 2022; 

Zinsmeister et al. 2023). 

 
1 Available online at: https://gitlab.lrz.de/energy-management-technologies-public/coses_prohmo  

To model the interaction of prosumers in a district heat-

ing network with several prosumers, it is important to rep-

resent the network in detail, including pressure losses and 

bidirectionality of flow. For this purpose, the building 

models of ProHMo are coupled with hydraulic compo-

nents through a communication interface submodel, re-

ferred to in this paper as hydraulic interface. The hydraulic 

interface serves as an accurate and comprehensive repre-

sentation of the hydraulic components within the system, 

their behaviour and interaction. It comprises intercon-

nected hydraulic elements (pumps, valves, sensors, pipes 

and elements of hydraulic resistance), facilitated by hy-

draulic connectors, and replicates all relevant elements en-

countered in real-world applications.  

Furthermore, fitting control strategies are needed for all 

components for different grid operations. In this section, 

the development of bespoke components for 5GDHC is 

presented, allowing the setup for creating digital twins, an 

example of which is shown in Figure 1. In this figure, two 

prosumers are connected with a balancing unit through a 

thermal grid. The hydraulic interfaces allow for the hy-

draulic connection of the only thermal connector models. 

The prosumer and balancing unit models, as well as the 

hydraulic interfaces, are discussed below. 

2.1 Prosumers 

The prosumer model includes energy transformation 

units, thermal stores and demands. It can represent both 

Space Heating (SH) and Space Cooling (SC) demand 

along with Domestic Hot Water (DHW). The Modelica 

model is shown in Figure 2. 

2.1.1 Model Description 

The operation of the BHP and a Direct Cooling Heat 

Exchanger (HEXDC) is the focal point in the prosumer 

component. HEXDC allows for direct utilisation of the 

coolth from the network’s cold pipe (if low enough) with-

out upscaling it via a BHP. It has been shown that their 

use in 5GDHC is instrumental to the system’s efficient op-

eration (Wirtz et al. 2021). For SH and DHW, the load is 

to be supplied mainly from the BHP with any additional 

loads supplied by an auxiliary heater (electric resistance) 

placed within the BHP unit. For heating, the energy trans-

formation units are connected in series with the TES 

which is discharged by the heat sinks. Cooling is directly 

supplied by the energy transformation units (HEXDC or 

BHP) without going through the TES. 

The BHP model is based on measurements of a com-

mercial BHP found in the CoSES lab, reproducing its ef-

ficiency and dynamics. The TES model has also been ex-

perimentally validated (Zinsmeister and Perić 2022) and 

is represented by a one dimensional stratified model, 

where the TES is split into multiple layers of constant size. 

10 temperature layers are used in the ProHMo library to 

match the number of temperature sensors in the physical 

unit in the lab. The maximum temperature, seen at level 
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10, is set to 60°C. This value satisfies both DHW supply 

and legionella avoidance requirements (Chartered Institu-

tion of Building Services Engineers (CIBSE) 2020). A hy-

draulic switch, namely a 3-Way Valve (3WV), can change 

the charging levels based on temperature in the TES. Dis-

charching for SH is from layers 5 (Flow) and 1 (Return) 

since there is a low temperature heating system (under-

floor heating) and layer 10 (Flow) and 1 (Return) for 

DHW. The discharge of the TES is modulated by a pump 

valve setup based on temperature and flow requirements 

from the heat sinks.  

The SH and SC demands are captured by adapted Green 

City library models which allow for different number of 

residents, construction characteristics, building type and 

terminal units. The default is set to new buildings with un-

derfloor heating/cooling systems which is most relevant 

for 5GDHC prosumers with heating and cooling demands 

(Angelidis et al. 2023). The flow and return temperature 

depend on the flowrate supplied by the tertiary pumps 

(variable flowrate pumps in the building) but are designed 

for 40-30°C for heating and 15-20°C for cooling. Both SH 

and SC are modulating around a temperature setpoint 

(21°C for heating and 23°C for cooling) by varying the 

request inlet flowrate. Similarly, DHW is modelled, re-

quiring a temperature of 60°C and, based on the consump-

tion, returning a cooled down water at varying flowrates. 

There is a heat exchanger between the end DHW con-

sumption and the water from the TES. DHW is dependent 

on the number of residents and can be switched off during 

Figure 2. Prosumer Modelica Model 

BHP & 

HEXDC 

TES 

DHW 

SH & SC 

Grid Connectors Control 
Signals 

3WV 

3WV 

Legend 

BU: Balancing unit        SFp: Prosumers        SFp_HI: Prosumer hydraulic interface        BU_HI: Balancing unit hydraulic interface 

Figure 1. Library components used for 5GDHC system development. 

Digital twins of CoSES prosumers 

Equipment from CoSES lab captured in 

ProHMo library used in the balancing 

unit and prosumer models. 

Hydraulic interfaces 

Hydraulic configuration of the decentral-

ised pumping system for prosumers, the 

balancing unit, and the grid. 

Operational and control philosophy 

Detailed control philosophy for all sys-

tem components accounting for bidirec-

tional flow and pressure variations. 

House 
Pump 
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cooling operation (if no DHW is required during cooling 

periods). At each time step, there can only be heating or 

cooling demands with a 3WV alternating between BHP or 

HEXDC when in cooling mode.  

2.1.2 Control Strategy 

The control strategy for modulating the BHP in heating 

mode is built around the discharging rate of the TES. The 

goal for the control is to keep a stratified TES, minimise 

the starts and stops of the BHP, keep a minimum temper-

ature of 55°C on the TES at layer 9 and maximise system 

efficiency. Based on these objectives, the control uses a 

3WV to charge the top or middle of the TES, with priority 

given to charging the top layer. To avoid on/off control 

with hysteresis (system lagging to the input signal), a 

novel control method is proposed with the modulation of 

the BHP as a function of the reference TES temperature 

layer. Equation 1 shows how the modulation factor is de-

termined by the ratio between the actual and maximum 

temperature difference for the TES temperature layer 

against set maximum and minimum values.  

𝑚𝑓 = (((max(0,min(1, (1 −
𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑇𝑠𝑢𝑝,𝑚𝑖𝑛𝑇

𝑇𝑠𝑢𝑝,𝑚𝑎𝑥𝑇 − 𝑇𝑠𝑢𝑝,𝑚𝑖𝑛𝑇
))))  (1) 

where 𝑚𝑓  is the modulation factor for the BHP, 

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the reference temperature layer, 𝑇𝑠𝑢𝑝,𝑚𝑖𝑛𝑇 is 

the minimum temperature value for the reference temper-

ature layer and 𝑇𝑠𝑢𝑝,𝑚𝑎𝑥𝑇the maximum temperature value 

for the layer. When the reference temperature is equal to 

the maximum allowed temperature, the modulation factor 

is zero. Conversely, when the temperature matches the 

minimum allowed temperature, the modulation factor is 1. 

To ensure the modulation factor stays within the bounds 

of 0 and 1, a max-min definition is applied. This approach 

accounts for cases that the temperature levels in the TES 

exceed the upper limit (e.g., on start-up). 

To maintain TES stratification, the prosumer compo-

nent utilizes two modulation factors: one for the top for 

DHW and one for the middle for SH, as shown in Figure 

3. Depending on the setting of the 3WV, the respective 

modulating factor is used, with the reference temperature 

layer set to layer 7 for charging of the top of the TES and 

layer 4 for the middle. These layers are chosen to limit 

hysteresis and the impact of water inflow to/outflow from 

the TES. 

It is seen that the higher layer modulation factor 𝑚𝑓ℎ is 

utilising a temperature band between the start and stop 

temperature setpoints, 𝑇𝑆𝑡𝑎𝑟𝑡𝐻𝑃,ℎ   and 𝑇𝑆𝑡𝑜𝑝𝐻𝑃,ℎ  respec-

tively. In a similar manner, the lower layer modulation 

factor 𝑚𝑓𝑙  is determined by a lower temperature range 

𝑇𝑆𝑡𝑎𝑟𝑡𝐻𝑃,𝑙  and 𝑇𝑆𝑡𝑜𝑝𝐻𝑃,𝑙. This control strategy allows for a 

stratified TES, maximisation of BHP operation and abid-

ing to top level minimum temperature requirements. An 

operation example for 1 day is shown in Figure 4. The dif-

ference between layer 5 and 6 occurs due to the water out-

flow from the TES for SH demands occurring at layer 5. 

 

 
Figure 3. Schematic of control methodology for BHP. 

 
Figure 4. TES operation under modulation of the BHP 

For SC, at default settings, priority is given to HEXDC 

over the BHP (in cooling mode). The choice of switching 

to the use of the BHP if the room is not cooled after a des-

ignated time (defined by the user) is also provided. 

Finally, a further control option has been added for the 

operation of the BHP. This allows for operation of the 

evaporator and/or the compressor under constant temper-

ature difference or flowrate, both of which are available 

for commercial BHP units. Depending on the operation, 

the power modulation is achieved by varying the non-

fixed variable within limits set by the user. The equations 

governing these behaviours have been modified in the 

models utilizing conditional functions ("if" statements) to 

adapt their operation accordingly. By implementing these 

adjustments, the BHP and grid inlets can be dynamically 

controlled, enabling greater flexibility in their operation. 

This adaptability allows for improved system perfor-

mance and optimization tailored to the specific use case, 

with due consideration given to external factors such as 

flowrate and temperature differences. 

2.2 Balancing unit 

The balancing unit is responsible for providing thermal 

and hydraulic balance to the network. The Modelica 
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model is captured in Figure 5 and described in the follow-

ing sections. 

 
Figure 5. Balancing Unit Modelica Model 

2.2.1 Model Description 

An Air Source Heat Pump (ASHP) is connected in se-

ries with a TES that acts as a passive interface between the 

hot and cold pipes. This setup with the TES directly con-

nected to the hot and cold pipe of the network (hot grid 

pipe at the top of the TES and cold grid pipe at the bot-

tom), provides a passive hydraulic balance, critical for the 

operational integrity of the system featuring decentralised 

pumps and energy transformation units. The TES is there-

fore suppling heat or cold depending on the energy mis-

balance. The hot grid pipe is connected to the top of the 

TES (layer 10) while the cold pipe to the bottom (layer 1), 

allowing for a stratified TES with the hot pipe temperature 

at the top (e.g., 20°C) and the cold pipe temperature at the 

bottom (e.g., 15°C). Depending on the thermal balance 

needed by the network, the TES is cooling down (during 

heating balance needed) or heating up (during cooling bal-

ance needed). The ASHP needs to keep the TES tempera-

ture within the operational limits by recharging the top or 

bottom of the TES with heat or coolth respectively. 

2.2.2 Control Strategy 

To achieve this operational strategy, the ASHP is con-

nected in series with the TES where a 3WV can change 

the TES charging levels based on mode of operation of the 

ASHP. Therefore, charging for heating uses level 9-6 for 

flow and return and level 2-5 for flow and return for cool-

ing operation. This setup allows for unidirectional flow 

through the ASHP while keeping a stratified TES without 

mixing when variations between heating to cooling dom-

inant system operation occurs. The mode of the ASHP de-

pends on the flow direction of the grid, with cooling acti-

vated when the flow leaves the bottom of the TES, and 

heating when the flow leaves from the top. 

The ASHP operation is following the same rule-based 

control for the modulation factor as the one described in 
equation (1). The operation of the balancing unit is cap-

tured in Figure 6, with an explanation of operation during 

heating and cooling dominant network operations de-

scribed in the following paragraphs. 

 
Figure 6. Balancing unit setup and connection schematic 

Like the BHP heating setup, there are two modulation 

factors for the ASHP, in this case depending on the oper-

ation mode (heating or cooling). During heating, the flow 

going through the TES is from the bottom to the top with 

the ASHP in heating mode. The heating modulation factor 

𝑚𝑓ℎ𝑒  is used which is calculated based on equation (1) 

with the upper and lower temperature bands being 

𝑇𝑆𝑡𝑎𝑟𝑡𝐻𝑃,ℎ𝑒   and 𝑇𝑆𝑡𝑜𝑝𝐻𝑃,ℎ𝑒. For cooling, flow is reversed 

in the grid, with hot water coming in at the top of the TES 

and cold one coming out at the bottom. Therefore, the 

ASHP is in cooling mode, cooling down the lower half of 

the TES. For the modulation factor during cooling 𝑚𝑓𝑐𝑜 

there is no need to subtract the ratio of the reference tem-

perature from 1 since it directly responds to the cooling 

power requirements. This operation also allows for a strat-

ified TES that can respond to dynamic changes in heat-

ing/cooling balance requirements.  

2.3 Hydraulic Interface  

The hydraulic interface is needed for the connection of 

Modelica components with thermal connectors to a sys-

tem with hydraulic connectors that can capture bidirec-

tional flow as well as pressure variations.  

The hydraulic interface can avoid utilising library com-

ponents that are only available in Simulation X, therefore 

open access Modelica standard library components are 

preferred. The functionality of the interface follows the 

methodology presented in the ProsNet library (Elizarov 

and Licklederer 2021), where the primary and secondary 

side communicate through a set of input/output signals. 

The key novelty in the approach developed in this paper, 

is the introduction of a thermal volume to represent the 

prosumer, considering thermal inertia and pressure varia-

tions of the system. Therefore, we can combine the bene-

fits of utilising thermal only connectors in the prosumer 

and balancing unit components (low computational times 
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and lower complexity) without compromising the hydrau-

lic performance of the system. At the same time, this setup 

allows for a clear separation between the thermal only 

models utilising Simulation X components that can be 

turned into Functional Mock-Up units (FMU) as dis-

cussed in Section 2.4. The hydraulic interfaces for the 

prosumer, the balancing unit, and the grid model are illus-

trated in Figure 7.  

For the prosumer hydraulic interface unit, the key inputs 

and outputs from the hydraulic interface are temperature 

[°C] and flowrate [l/min]. Signals for the set flowrate 

�̇�𝑔,𝑠𝑒𝑡 asked by the prosumer and the output temperature 

𝑇𝑝,𝑜𝑢𝑡from the prosumer are sent to a volume represent-

ing the prosumer, allowing for thermal inertia to be ac-

counted for, resulting in the temperature the grid actually 

sees from the prosumer, 𝑇𝑔,𝑜𝑢𝑡. Depending on the instan-

taneous demand mode (heating or cooling), the respective 

pump from the interface becomes active and flow is thus 

changing direction respectively. We use a PI controller to 

Figure 7. Hydraulic interfaces for prosumer and balancing unit as well as hydraulic model of the grid 
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give the setpoint u to the respective pump, considering the 

actual �̇�𝑔,𝑎𝑐𝑡 and set flowrate �̇�𝑔,𝑠𝑒𝑡. Then, �̇�𝑔,𝑎𝑐𝑡 and 𝑇𝑔,𝑖𝑛 

are fed back to the prosumer as inputs.  

For the balancing unit’s hydraulic interface, the key in-

put is the temperature from the balancing unit. The tem-

perature corresponds to the top or bottom of the TES, de-

pending on the flow direction, namely the sign of �̇�𝑔,𝑎𝑐𝑡 as 

described in Section 2.2.2. If �̇�𝑔,𝑎𝑐𝑡  is positive, which 

means there is dominant heating demands in the grid (flow 

from cold to hot port), then the hot pipe volume acts as a 

source with 𝑇𝐵𝑈,𝑜𝑢𝑡 being equal to the temperature at the 

top of the TES. 𝑇𝐵𝑈,𝑖𝑛 equal to the temperature of the cold 

pipe flows at the bottom of the TES. The opposite happens 

when there is cooling dominant operation and thus a 

negative �̇�𝑔,𝑎𝑐𝑡 , with the cold pipe volume becoming a 

source and the hot pipe volume becoming a sink.  

The pipe network, namely the grid model, comprises 

dynamic pipes, sensors and junctions to allow for the 

connection of the prosumers and the BU. The grid model 

allows for parallel connection between loads, and includes 

ports for both the hot and cold pipes.  

2.4 FMUs of Prosumers and Balancing Unit  

To further increase the usability of the model, both 

prosumer and balancing unit models are developed so that 

they can be exported to FMUs, allowing for their use 

through the FMI standard for application in all Modelica 

environments (The Modelica Association 2023). With 

FMUs for these components, an arbitrary size of network 

can be built, with varying topologies and design and oper-

ational characteristics in any Modelica environment. 

However, the benefits from using a FMU come at a cost 

of transparency and editability. The components become 

“black boxes” that have specific elements that can be ed-

ited, significantly limiting the flexibility of the models to 

change. To maximise their usability, a set of key parame-

ters have been made editable in the FMU. These follow 

the ProHMo library methodology as described in 

(Zinsmeister and Perić 2022), and include: 

• Inputs for individual control setpoints 

• Weather files 

• Consumption parameters 

• Energy generator unit capacities 

• TES dimensions 

3 Exemplary Use Case 

To showcase the usability of the produced models, a 

simple system is used. It involves a heating and cooling 

prosumer as well as a balancing unit connected through a 

grid element in parallel. This setup is the one shown in 

Figure 1, Section 2. A constant temperature difference is 

kept between the cold and the hot pipe, and the grid pipes 

are modulated based on variable flowrate. HEXDC is used 

for the cooling prosumer while the BHP for the heating 

prosumer (connected in series to the TES).  

The simulation is performed for one day, with an aim to 

observe the behaviour of the system and qualitatively ver-

ify its operation. Figure 8 displays key outputs, namely the 

temperature levels of the top and bottom layers of the BU 

TES, the temperature in the living zones of the prosumers 

as well as the temperature and flowrate values on the 

grid’s junction. 

Plot A indicates the fluctuations of the temperature lev-

els in the TES of the balancing unit, responding to heating 

and cooling requirements in the grid while keeping the up-

per (22oC) and lower (13oC) temperature limits. The 

spikes observed occur during ASHP start-up, with a mo-

mentary large intake. Plot B shows that the temperatures 

in both prosumer’s living areas are maintained at the tar-

get reference temperatures (21oC for heating and 23oC for 

cooling). Larger deviations are observed during cooling 

due to the controller setting, underfloor cooling system 

behavior and the house pump's flowrate capacity.  

Graphs C and D present temperature levels at both the 

hot and cold pipes. In plots E and F, flow halts for the 

cooling prosumer after hour 13, causing the respective 

pipe temperatures to track ambient temperatures and those 

of the segment preceding it. During the flow interruption 
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until hour 5, the balancing unit remains idle, with the TES 

temperature slightly decreasing due to energy losses. 

Overall, hydraulic and thermodynamic balances are 

kept in the system. The temperatures are maintained in the 

prosumer houses and bidirectionality of flow is captured. 

The balancing unit can operate both in heating and cooling 

mode ensuring that the top and bottom temperature levels 

are kept. It is shown that the components provide a work-

ing basis for investigations of different design cases and 

operation strategies. The next section describes how such 

designs can be validated with minimal hardware utilising 

PHIL approaches. 

4 Power Hardware-in-the-Loop 

Prosumer behaviour and interaction under different de-

sign conditions and control methodologies is one of the 

key gaps in research of 5GDHC systems. Experimentally 

validating models would require multiple BHP and build-

ings with both heating and cooling demand as well as the 

ancillary equipment (valves, pipes etc.) for developing a 

thermal network. To facilitate experimental validation of 

generated system models or the experimental assessment 

of prosumer interaction under varying control and design 

philosophies, the components are designed in such a way 

as to be able to utilise PHIL with minimal hardware re-

quirements. Figure 9 illustrates how PHIL can be used for 

experimentally simulating a prosumer with only a HEX. 

The HEX is sending metered signals to the prosumer 

simulation model for the flowrate and temperature present 

both on the primary and secondary side of the HEX. These 

are converted to standard unit values via a conversion 

module and fed to Modelica, which in turn sends back 

control signals. For the conversion & control modules, 

various software/hardware interaction methodologies are 

available. For example, the CoSES lab utilises Industrial 

Controllers for the hardware, communicating in real time 

with NI VeriStand for the conversion of logged data and 

control setpoints, as thoroughly explained in (Zinsmeister 

et al. 2023). Regarding hardware, other than the HEX, a 

heating and/or cooling unit are required to raise/drop the 

temperature for both the prosumer and grid side.   

Prosumers’ BHP and HEXDC can be emulated with a 

PHIL setup. As mentioned in Section 2.1, the prosumer 

model features a BHP and HEXDC, controlled in either 

constant flowrate or temperature difference. For the 

HEXDC operation, based on the measured flowrate and 

temperature, the set return temperature of the house 𝑇ℎ,𝑠𝑒𝑡 

is calculated based on the heating/cooling system of the 

building and the building and outdoor temperature. The 

3WV mixes water from the supply side to reach 𝑇ℎ,𝑠𝑒𝑡. A 

signal is also provided for the grid pump �̇�𝑔,𝑠𝑒𝑡 , as ex-

plained in Figure 7 found in Section 2.3. For the BHP 

emulation, the grid pump is still operated according to the 

control signal �̇�𝑔,𝑠𝑒𝑡  but the house side operates differ-

ently. The 3WV is closed, so that it doesn’t mix water 

from the supply into the return line and the pump on the 

building side is operated to supply �̇�ℎ,𝑠𝑒𝑡  to achieve the 

outlet temperature of the heat pump on the grid side. 

Further implementations are possible that follow the 

same principles as the ones mentioned above. These could 

include multiple HEX connected in series or in parallel to 

study the interaction of various prosumers. In addition, the 

balancing unit could be connected in a similar approach to 

study its characteristics. Even an entire network with mul-

tiple prosumers and balancing units could be included as 

a simulation model on the grid side which would allow for 

investigating the impact of single/multiple prosumers on 

larger grids. 

5 Discussion  

This paper presents a set of models for the development 

of 5GDHC systems. The models have been developed 

with a focus on usability, scalability, accuracy, flexibility, 

and validity. The following sections provide some insight 

on strengths and limitations as well as a discussion on po-

tential applications of the models. 

5.1 Strengths 

These components utilise validated models from the 

ProHMo library that are modular and can provide a de-

tailed representation of component operation and building 

behaviour. They provide a good rule-based control allow-

ing for BHP operation with low number of starts and stops 

for a longer component lifetime and a stratified TES. Start 

up and slew times are included as well as solutions for 

hysteresis. Computational time is kept low since we are 

using hydraulic equations only for the network, signifi-

cantly reducing the complexity of the model. The models 

are made open access and have platform independent 
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FMUs where commercial components are used. They can 

be coupled with various grid models and elements such as 

seasonal thermal storage.  

Another key benefit that is arising from these models, is 

the capacity for PHIL experimentations with minimal 

hardware to study prosumer interaction. The models can 

be used to emulate both building and BHP/HEXDC behav-

iour. Different levels of detail for PHIL experiments allow 

a detailed analysis of grid behaviour and component inter-

action with low costs, space requirements and overall 

complexity. 

5.2 Limitations 

The key limitations of the components come from the 

use of the ProHMo library. It is built in Simulation X 

which is not an open access tool. This limits the capacity 

to freely edit the components. FMU provision has been 

presented as a workaround, but it does not fully open the 

“black box” of the component and does not allow for sim-

ple drag and drop of the individual components for use on 

any Modelica environment. The prosumer and balancing 

unit component models could be integrated into other li-

braries which are using open access components, while 

keeping the methodology of their operation intact.  

The building models are focused on residential proper-

ties and may not accurately represent different consumer 

classes such as office blocks or retail properties. Moreo-

ver, the operational behaviors of the energy transfor-

mation components are tied to the units used in the CoSES 

lab, which are designed for household-scale applications. 

Consequently, when attempting to model much larger 

units or units with different technical specifications (e.g., 

refrigerants), the scalability and accuracy of the models 

may be compromised. 

5.3 Potential Applications 

The main benefit of this work is the provision of be-

spoke models and methodologies that facilitate the study-

ing and analysis of 5GDHC systems. They can act as a 

basis for the creation of research cases on the impact of 

several parameters on the overall performance of the sys-

tem. For example, they could be used to investigate dif-

ferent network topologies and the effect that network be-

haviour has on the hydraulic operation. The effect of in-

cluding different consumer classes as prosumers as well 

as the seasonal co-occurrence of their heating/cooling de-

mands could also be studied. The models could be used to 

replicate bespoke networks for industrial applications 

with given building schedules. Detailed operational strat-

egies could also be investigated, identifying the effect of 

the hydraulic setup on the creation of thermodynamic sub-

cycles and pump hunting phenomena. By developing rel-

evant network and ground models, the effect of the ground 

type on the network performance can be studied for dif-

ferent insulation levels of the pipework, with a focus on 

the capacity for thermal losses under different network 

temperature regimes, insulation series and pipe materials. 

The impact on the number and location of balancing units 

as well as the introduction of passive balancing units such 

as seasonal energy storage (e.g., aquifers) can be quanti-

fied. The level of centralisation can also be studied, by 

changing the consumption parameters, allowing for a 

deeper investigation of the thermal zoning effect and com-

bination of 4GDH with 4GDC and 5GDHC networks.  

6 Conclusions 

This paper presents a comprehensive set of Modelica 

models for the key components of 5GDHC, namely 

prosumers, balancing units, and hydraulic interfaces. 

The component design and assessment, including their 

interconnections and control strategies, have been dis-

cussed and demonstrated through an exemplary use case. 

The paper has also demonstrated the applicability of PHIL 

setups for experimental analysis of prosumer interactions 

with the use of minimal hardware requirements, exempli-

fied through a theoretical case study setup utilizing only a 

HEX to model a prosumer. 

The presented models and methodologies provide an ad-

vancement in the understanding and analysis of 5GDHC 

systems. The provision of FMU models allows for their 

utilization in various coding environments through FMI, 

promoting open access as part of the ProHMo library. 

Overall, this work contributes to the development of 

tools and methodologies for the analysis and study of 

5GDHC systems, offering potential avenues for future re-

search and application. By further refining and expanding 

the accessibility of the models, the understanding and 

adoption of 5GDHC systems can be advanced in a more 

open and collaborative manner. 
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Nomenclature 

Abbreviation Meaning 

5GDHC 5th Generation District Heating and 

Cooling 

3WV 3-Way Valve 

ASHP Air Source Heat Pump 

BHP Booster Heat Pump 

DHW Domestic Hot Water 

EMS Energy Management System 

FMI Functional Mock-Up Interface 
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Abbreviation Meaning 

FMU Functional Mock-Up Unit 

HEX Heat Exchanger 

HEXDC Direct Cooling Heat Exchanger 

PHIL Power Hardware In the Loop 

SC Space Cooling 

SH Space Heating 

TES Thermal Energy Storage 
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Status of the ClaRa Library: Detailed Transient Simulation of
Complex Energy Systems
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Abstract
This paper presents the current state of the open-source
Modelica library ClaRa, which provides its users with the
capability to proficiently tackle tasks in the disciplines of
thermal hydraulics, instrumentation and control pertaining
to power plants and other kind of energy systems. We pro-
vide a comprehensive overview of how the library has suc-
cessfully broadened its scope over the years of its devel-
opment, transcending the original focus on conventional
power plants to encompass renewable power plants, waste
heat utilization, general process plants, refrigeration cy-
cles, heat pumps and beyond. The new version, ClaRa
1.8.1, brings an exciting addition to the already impressive
suite of features - support for the utilization of various ar-
tificial intelligence models in Modelica simulation tools.
Furthermore, the authors unveil ClaRa’s ambition to serve
as a potential publication platform for third-party models
from a steadily growing community of ClaRa users. This
is underscored by several application models. Finally, we
also describe the funding scheme for maintenance of open
source ClaRa by an extended commercial version, ClaRa-
Plus.
Keywords: Energy system, ClaRa library, TransiEnt li-
brary, Thermal Separation library, Artificial Intelligence,
Waste heat, Concentrating solar, Refrigeration cycle, Heat
Pump

1 Introduction
1.1 Context of Paper
Climate change is an ongoing and pressing issue, and gov-
ernments worldwide are taking measures to promote the
use of renewable energy sources. However, as the transi-
tion to renewable energy takes time, fossil fuels like coal
and gas will continue to play a critical role in the world’s
energy mix for the foreseeable future. Despite this, the
proportion of renewable energy sources is growing sig-
nificantly, underscoring the need for accurate and reliable
simulation tools to capture the effects of this transition.
Simulation tools enable stakeholders to evaluate the im-
pact of different renewable energy options and assess the
feasibility of transitioning to a more sustainable energy
system. By leveraging simulation tools capturing the dy-
namics of the energy system, we can develop efficient and
effective strategies that balance the practicality of fossil

fuels with the long-term benefits of renewable energy.
Numerous simulation programs are being used in in-

dustry today depending on the field, application and de-
sired type of simulation. In the Modelica community,
there are several open source libraries available for in-
vestigating energy systems in detail, particularly power
plant transients such as start-up, shut down, and load
change: The ThermoPower (ThermoPower 2023) library,
being the first power plant library written in Modelica,
the ThermoSysPro (ThermoSysPro 2023) library having a
strong industry background, the TRANSFORM (TRANS-
FORM 2023) focusing on nuclear power plants and the
ClaRa (ClaRa 2023) library. ClaRa was developed by
a German research collaboration (DYNCAP/DYNSTART
2011-2019)1 of Hamburg University of Technology, TLK-
Thermo GmbH and XRG Simulation GmbH. Its first offi-
cial release of version 1.0.0 dates from March 2015 (see
(Brunnemann, Gottelt, et al. 2012; Gottelt, Wellner, et
al. 2012; Gottelt, Hoppe, and L. Nielsen 2017) for an
introduction to ClaRa and a control-related application).
The aim of ClaRa’s Development team was to create a
library that is suitable for both beginners and advanced
researchers in the field of Modelica simulation. This pa-
per serves as a companion to the ClaRa paper from 2012
(Brunnemann, Gottelt, et al. 2012), introducing several of
the most recent enhancements that have been integrated.

1.2 Outline of Paper
This manuscript is organised as follows: Section 2 sum-
marises the scope and structure of the library. In Sec-
tion 3, we present two novel features of the recent re-
lease of ClaRa 1.8.1. The first feature enables the inte-
gration of different artificial intelligence models in Mod-
elica simulation tools. The second feature includes new
models for investigating generalized thermodynamic cy-
cles, e.g. for refrigeration and heat pumps. The intro-
duction of these new models in ClaRa library expands the
range of possible applications, particularly in the area of
refrigeration and heat pumps in industries such as auto-
motive, aerospace, and buildings. In Section 4, we in-
troduce the new ClaRa Open Development Repository in-
tended for fast publishing third-party models prior to full
ClaRa integration. Two example model, a waste heat in-

1funded by the German Ministry for Economic Affairs and Energy
under reference number FKZ 03ET2009C/03ET7060D
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cinerator and parabolic solar receivers, are shown. Sec-
tion 5 describes the integration of ClaRa with other Mod-
elica libraries, specifically TransiEnt for simulating cou-
pled energy networks (TransiEnt 2023) and ThermsSepa-
ration (ThermalSeparation 2023) for process engineering.
This coupling presents a promising approach to address
contemporary energy challenges. Section 6 presents the
ClaRa funding scheme of and introduces supplementary
content offered in the commercial variant, ClaRaPlus. Fi-
nally, the Summary & Outlook can be found section 7.

2 Overview of the Library ClaRa
2.1 Scope of Library
The ClaRa is used for a broad scope of applications
and can support all project phases with dynamic simu-
lations: from the evaluation of concept variants to com-
ponent design, optimization of control technology, vir-
tual commissioning and optimization during operation.
The ClaRa is flexible and user friendly and also provides
efficient means for simplified steady state analysis (via
ClaRa.StaticCycles models which one integrates
into a dynamic model) for the calculation of consistent
initial values for states to smooth the initialisation of com-
plex thermodynamic cycles. The library follows well de-
fined model design principles including level of detail,
level of insight, naming conventions, limited inheritance
depth in comparison to the Modelica Standard library
(MSL 2023), comprehensive documentation, and more
(Brunnemann, Gottelt, et al. 2012). For detailed infor-
mation, please refer to the ClaRa documentation (ClaRa-
documentation 2023).

The initial goal of the ClaRa library was to provide
models for the analysis of complex conventional power
plants with CO2 capture in both static and dynamic op-
eration mode (DYNCAP/DYNSTART 2011-2019). Con-
sequently, ClaRa has been effectively utilized in multi-
ple projects where a number of digital twin models were
created for several lignite-fired power plants, incorporat-
ing the complete water-steam cycle, flue gas and air path,
coal mills, and a virtual representation of the control tech-
nology (H.Prausse et al. 2021), (Marcel Richter 2018),
(Brunnemann, Gottelt, et al. 2012), (Gottelt, Wellner, et
al. 2012), (Gottelt, Hoppe, and L. Nielsen 2017). In ad-
dition to its applications in coal power plants, ClaRa has
also been utilized in several commercial projects involv-
ing combined-power plants as well as captive power plants
with bubbling fluidized bed boilers, and more. Based on
the experience gained, it is evident that the established de-
sign principles have been effective. As a result, we are
now extending the accessibility of ClaRa to the commu-
nity via (ClaRa-openDevelopment 2023).

The scope of ClaRa’s applications extends today far be-
yond conventional steam power plants towards renewable
power plants, waste heat utilization, process plants, gen-
eralized thermodynamic cycles, and more. Following the
2012 ClaRa paper (Brunnemann, Gottelt, et al. 2012) that

provided an overview of the ClaRa library’s status, many
new models have been introduced together with improved
numerical robustness, initialisation and functionality of
the library. For comprehensive details, see the Revisions
in ClaRa documentation (ClaRa-documentation 2023).

Regarding the applications from ClaRa community,
various references are available. For instance, users have
leveraged ClaRa in the design of supercritical CO2 cy-
cles as a power cycle (Vojacek, Melichar, and al. 2019),
heat removal in nuclear power plants (sCO2-4-NPP 2023),
effective bulk energy storage (Kriz, Vlcek, and Frybort
2023), the design of experimental loops for the devel-
opment of gas-cooled reactors, and small modular reac-
tors cooled with molten salt (Krivsky 2020),(ClaRa User
Meeting 2019), and beyond. ClaRa’s further noteworthy
reference is its role in the Future Energy Solution (FES)
storage system, utilizing volcanic rock to store electricity
generated from renewable energy, where ClaRa played a
crucial role in modelling and analysing its performance,
see (Heyde, Schmitz, and Brunnemann 2021). Additional
applications of ClaRa are explicated in section 4.

2.2 Structure of Library

ClaRa library comes in a bundle (Table 1) of three li-
braries, ClaRa (Core), TILMedia (Thermo-physical prop-
erties) and SMArtIInt (AI).

Table 2 gives an overview of the top level con-
tent of the ClaRa library covering a diverse range of
physics with well-structured and user-friendly archi-
tecture. The library adopts a functional approach to
its structure, organizing components based on their
functionality rather than the specific medium being
modeled. As an illustration, a pipe model for vapor-liquid
equilibrium can be found within the same package,
Components.VolumesValvesFittings.Pipes,
alongside models for gas pipes.

Table 1. ClaRa bundle

TILMedia Thermo-physical properties of
incompressible liquids, ideal
gases as well as real fluids con-
taining a vapor liquid equilib-
rium.

ClaRa "The core" of the bundle sup-
plying models within the fields
of thermal hydraulics and in-
strumentation and control

SMArtIInt Support SMArtIInt (SMAr-
tIInt 2023) for usage of
(trained) TensorFlow (Ten-
sorFlow 2023) models from
within Modelica.
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Table 2. ClaRa library structure

ClaRa

UsersGuide Information on basic mod-
elling concepts, revisions,
contact, license

Examples Introducing examples showing
different levels of complexity
and library capabilities.

Basics Basic models providing fun-
damentals to all models con-
tained in ClaRa.

Components Models for turbo machines
and electrical machines,
connection pipings, heat
exchanger, mass storage and
steam separation, valves, coal
grinding, furnace, flue gas
cleaning, and sensors, i.e. "the
core of the library"

SubSystems Conceptual package contain-
ing models of increasing com-
plexity which are based on
each other

Visualisation Elements for displaying and
plotting of dynamic simulation
data.

StaticCycles Static models for the calcula-
tion of consistent initial guess
values or conceptual design
purposes

SimCenter A top level model which is
mandatory for every complex
ClaRa simulation. It provides
global settings such as the me-
dia models etc.

3 Latest Features of ClaRa
3.1 ClaRaDelay now Open Source
Since its first release the ClaRa library comes
with ClaRaDelay (ClaRaDelay 2023), an ex-
tended version of the Modelica delay operator
ModelicaReference.Operators.delay().
The latter can be used in order to read past values of an
expression from a buffer during simulation. While the
original Modelica implementation only allows reading
of a single past time value per buffer, ClaRaDelay takes
a vector of past times as input and gives a vector of
the according past values as output. This is particu-
larly useful for numerical evaluation of convolution
integrals during simulation, a feature that is used in
ClaRa’s implementation of a transmission line pipe

PipeFlowVLE_L1_TML. In order to foster application
and discussion with the Modelica community ClaRaDelay
is now available open source.

3.2 Support for Hybrid Modelling
With the ongoing advances of machine learning and the
availability of operational data there is a growing user in-
terest in using trained neural networks from within Model-
ica and ClaRa. Combining data driven and a physics based
model parts in a system model results in what is called
a ’hybrid model’: internally both parts exchange data
through an internal communication interface (’com’ see
figure 1) and share the overall model parameters and out-
side connectors. This combination offers new perspectives
for system simulation that go beyond ’traditional’ charac-
teristic fields (feed forward neural networks) or response
surfaces (recurrent neural networks): complex correla-
tions inside data can be directly derived from the data and
encoded by the network parameters. Especially for high
dimensional data fields this can be much more memory
efficient than by using conventional interpolation methods
(Chahrour and Wells 2022). Moreover neural networks
can be applied in order to increase the level of detail of-
fered by system models at low performance costs, e.g.
spatially resolved temperature profiles or velocity distri-
butions.

Figure 1. Hybrid Modeling

The Modelica library SMArtIInt (SMArtIInt 2023) ad-
dresses this issue and ships with ClaRa from version 1.8.1.
Currently it supports tensorFlow (TensorFlow 2023) mod-
els for both feed forward and recurrent neural networks
(RNN, stateful and stateless), using ClaRaDelay (Cla-
RaDelay 2023). Being open source the intention is to
further develop SMArtIInt to support more network for-
mats, architectures and Modelica tools by means of the
user community. The library was created within the
DIZPROVI (2021 - 2024) research project 2.

SMArtIInt allows the import of pre-trained neural net-
works into Modelica using external C-functions inside a
Modelica block, similarly to the tables blocks available
in the Modelica standard library. Figure 3 shows an ex-
ample for a super heater boiler section of a conventional
coal fired power plant taken from (Brunnemann, Kolter-

2funded by the German Federal Ministry of Education and Research
under reference number FKZ 03WIR0105E
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Figure 2. Usage of SMArtIInt: Left: physics based model of
a super heater. Right: diagram of the build in data based heat
transfer correlation.

mann, et al. 2022). The heat transfer Q f low between hot
flue gas and the water steam side is computed by a neural
network that was trained on measurement data. It takes
inputs from the surrounding physics based system model.
Figure 3 shows a comparison of obtained heat flow rates
from a physics based correlation (Q f low,sim) and the data
driven Q f low,sim,AI to the measurement Q f low,meas during a
load change of the plant.

Figure 3. Hybrid Modeling from (Brunnemann, Koltermann, et
al. 2022)

Hybrid models certainly offer exciting new perspectives
for system simulation. However identifying the optimal
combination of physics based and data driven model part
(see Figure 1) can be a challenging trade-off between mea-
surement data from the real plant and abstracted model
assumptions. Special care has to be taken in consistent
validity range of data driven models build into physics
based system models: firstly, the inputs may be driven
outside the trained ranges by the system dynamics, e.g.
when it comes to non-standard operation or control feed-
back loops. Secondly solvers with variable time steps can
may ask for a step that takes the inputs outside their range,
possibly causing time steps to be accepted that would be
rejected for the true correlation encoded in the data driven
model.

Additionally stateful RNNs need to be sampled at the
time interval they have bee trained with. This is unde-
sirable, as it would slow down simulations using variable
time step solvers. SMArtIInt addresses this issue by evolv-

ing the RNN inside a container in the external C-code,
hidden from the solver. If the Modelica solver proposes
a time step larger than the trained step size of the RNN,
then inside the container the RNN is evolved with input
values that are equidistantly interpolated between the cur-
rent time step and the proposed time step with the time
step compatible to the RNN.

The functionalities of SMArtIInt are currently under ac-
tive testing and research and we invite the ClaRa commu-
nity to experiment with it.

3.3 Generalized Application of Thermody-
namic Cycles

The recent release of ClaRa, which includes models for
commonly designed condensers and evaporators (a flat
tube finned HX and plate HX), enables Clara users to
model and analyse different thermodynamic cycles such
as refrigeration cycles and heat pumps.

To showcase the capabilities of ClaRa, a simple refrig-
eration cycle was modelled, consisting of a compressor, a
flat tube finned plate air-cooled condenser, separator, ex-
pansion valve, and water-heated plate evaporator/chiller
3. The results are visualized in Figure 4. Regarding nu-
merical performance, the ClaRa model is much similar to
other Modelica libraries in the field such as AirCondition-
ing (2023) or TIL (2023). These initial findings and ex-
periences demonstrate that ClaRa is capable of delivering
accurate and reliable results. This positions ClaRa as a vi-
able alternative for modelling refrigeration cycles, along-
side other Modelica libraries in that field. We invite the
community to test such applications.
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Figure 4. Refrigeration cycle with CO2 modelled in ClaRa.

4 ClaRa Open Development Reposi-
tory

The ClaRa Development team has set a new objective
to establish the ClaRa library as a potential publica-
tion platform for third-party models originating from the

3Similar model can be found in
ClaRa.Examples.VapourCycle_01
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ever-expanding ClaRa users’ community. To achieve
this, there is now a dedicated Git repository (ClaRa-
openDevelopment 2023), intended for model publication
prior to full integration into the official ClaRa library. To
ensure optimal usability, there are some minimum require-
ments to these new models: they should contain intro-
ductory functional examples, declarative comments, well
structured parameter dialogues and model diagrams as
well as a self-explanatory and consistent nomenclature,
good source code transparency and at least basic doc-
umentation. Following a comprehensive quality check
by the ClaRa development team, models and their corre-
sponding documentation can be considered for integration
into the official ClaRa release if there is sufficient user in-
terest.

To make sure everyone is protected and ClaRa can keep
growing, all contributors must sign a Contributor License
Agreement (CLA 2022). Basically, it means that contribu-
tors give the ClaRa Development team (CDT) permission
to publish their work in the ClaRa library, currently un-
der 3-clause-BSD License. In return, the CDT assures to
always make the contributions available as open source
in ClaRa. A few models have already been included in
the official release of ClaRa, thanks to contributions from
different individuals. Specifically, there are models from
(FVTR 2021) sponsored by LEAG (LEAG 2021), as well
as from the Future Energy Solution (FES) storage system
project (Heyde, Schmitz, and Brunnemann 2021).

In this chapter, we further demonstrate our objective
through the presentation of various application models
that are vital for sustainable energy solutions. The first
model focuses on waste heat incineration, highlighting
its effectiveness in harnessing valuable energy resources
while minimizing environmental impact. The second
model demonstrates the use of renewable sources, such
as solar energy, which plays a crucial role in achieving an
environmentally friendly energy mix and driving the tran-
sition towards a cleaner and more sustainable future. All
of the models shown in Section 4, as well as their basic
equations, can be found on the ClaRa Open Development
Repository (ClaRa-openDevelopment 2023).

4.1 Waste Heat Incinerator
A part of the ClaRa Open Development Repository is the
model of a grate combustion system, which was devel-
oped as part of a master’s thesis (Gulba 2019). Such grate
combustion systems find application in the incineration
of biomass and waste materials. The combustion process
within such a grate combustion system can be conceptu-
ally divided into four stages. Initially, the untreated fuel
undergoes a heating process that leads to evaporation of its
water content during the drying phase. Temperatures ex-
ceeding 300 °C result in the release of volatile components
and chemical transformations of certain fuel constituents
(pyrolysis). The ensuing gases subsequently react with
oxygen present in the flue gas. Following the pyrolysis
stage, solid carbon (coke) reacts with oxygen, leading to

the formation of CO and CO2. The remaining inert com-
ponents, such as ash and slag undergo cooling through in-
teraction with the flow of cooler incoming air.

ε

Combustion chamber 
wall model

Gasphase 1 model

Radiation model

Bedsegment model

Grate model

Gasphase 2 model

Figure 5. Modeling of the combustion chamber - representation
and spatial assignment of all submodels

The in Figure 5 shown combustion chamber is divided
into the components of grate, fuel bed, combustion cham-
ber volume, chamber walls, and radiation model. The
grate and fuel bed are discretized, consisting of multiple
individual elements that are interconnected. Figure 6 pro-
vides a schematic representation of the processes occur-
ring within the fuel bed segment. In this illustration, dark
red arrows symbolize heat transfer exclusively, while all
other arrows represent mass transfer as well as the associ-
ated energy transfer.
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pyrolysis

combustion
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gaseous phase
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gas products

heat 
convection
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Figure 6. Schematic representation of the bed segment model
with heat and material flows

The processes of evaporation and pyrolysis are en-
dothermic processes that require energy to occur. This re-
quired energy is extracted from the fuel bed, as indicated
by the representation of dark red arrows. On the other
hand, residual coke combustion is an exothermic process
that releases energy. It takes place in the presence of oxy-
gen, which must be supplied from the gas phase. Dur-
ing evaporation and pyrolysis, there is no requirement for
material transport from the gas phase to the solid phase.
Instead, gaseous products generated in these processes di-
rectly transition into the gas phase. Additionally, the ma-
terial flows transport energy in the form of heat from one
phase to another. The drying and pyrolysis models em-
ployed in the fuel bed segment model are based on (R. J.

Session 6-B: Multi-engineering modeling and simulation with free and commercial Modelica libraries

DOI
10.3384/ecp204617

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

621



Nielsen et al. 2018). On the other hand, the coke com-
bustion model and the gas phase model were developed
within the scope of the master’s thesis (Gulba 2019). Fur-
thermore, the radiation model utilized in the combustion
chamber model is based on the approach of (R. J. Nielsen
et al. 2018). The fuel model, grate model, and model of
the combustion chamber walls all consist of components
of the ClaRa library. The combustion chamber model
expands Nielsen’s model by incorporating temperature-
dependent reaction rates for both residual coke combus-
tion and pyrolysis gas combustion. This allows for the
consideration of activation energies for the different reac-
tions.

For this combustion chamber model, two different cases
are considered below. First, a start-up process and second,
a change of state in steady-state operation. For the in-
vestigation of these scenarios, both the bed and the grate
model are discretized into 10 segments. All of these seg-
ments are connected to the gas phase 1, allowing for gas
exchange between the fuel bed and the gas phase. The gas
phase 1 is also connected to gas phase 2, where additional
secondary combustion air is supplied.

The startup process of the system shows that initially,
the vaporization of the fuel primarily occurs in the three
rear segments (8, 9, 10) (Fig. 7). This is due to the exter-
nal heat supply from an auxiliary burner in these segments.
Despite the externally added heat, temperatures and thus
reaction rates remain low due to necessary drying of the
initially wet fuel in these segments. The temperature pro-
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Figure 7. Amount of water evaporated from the fuel in the indi-
vidual segments

file in Figure 8 demonstrates that combustion of the dried
fuel starts in segment 10. As heat generation increases,
the drying of the fuel and therefore the coke combustion
shifts to preceding segments. Steady state is reached af-
ter more than one hour, with fuel drying in the first four
segments and the substantial combustion occurring in seg-
ments 5 and 6. In the second scenario, the primary air
(grate air) is reduced after 2.5 hours, followed by a reduc-
tion in secondary air in the gas phase after 3 hours. These
changes initially affect the gas phase 1. Due to the lack
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Figure 8. Fuel bed temperature in the individual segments

of air, there is insufficient oxygen to convert all volatile
components (H2, CH4, CO). As a result, less energy is
released in gas phase 1. Meanwhile, more energy is re-
leased in gas phase 2 as the secondary air reacts with the
volatile components (Fig. 9). However, with the reduc-
tion of secondary air, the energy released in gas phase 2
also decreases. These changes in reaction energetics affect
the gas phase temperatures and the heat transferred to the
segments through radiation (Fig. 10). The reduced heat
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Figure 9. Energy released during the reaction in the gas phase

transfer to the front segments causes a shift in the drying
and pyrolysis process to later segments. Consequently, the
coke combustion in the bed segment is also shifted from
segments 5 and 6 to segments 6, 7, and 8. This shift is
evident in both temperature profiles and heat radiation in
the figures 8 and 10. Prior to the state change, segments
5 and 6 released heat to the gas phase. However, after the
adjustment in the air supply, segment 5 absorbs heat from
the gas phase, while segment 6 releases significantly less
heat. Conversely, segments 7 and 8 initially absorb heat
and then release the heat generated during combustion af-
ter the change in air supply.
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Figure 10. Thermal radiation between the individual segments
and the gas phase

4.2 Concentrating Solar Thermal (CST)
Power Plants

The Concentrating Solar Thermal (CST) power plants are
an important part of the ClaRa Open Development Reposi-
tory. Concentrated solar power (CSP) technologies utilize
concentrated solar radiation to heat a fluid, which drives
a heat engine to generate electricity through a generator.
The CST power plant models integrated into the ClaRa
Open Development Repository are currently based on
the principle of the directly evaporating parabolic trough
power plant. The collector model combines a tube and a
tube wall model from the ClaRa library with a parabolic
mirror model that was developed as part of a master’s the-
sis (Hoppe 2013). A collector model realized in this way
is shown in Figure 11.

h
xi h, xi

Absorber tube

Tube wall

Parabolic mirror

Mass flow sourcePressure boundary

Irradiance

Figure 11. Collector model

The parabolic mirror model calculates a heat flux to be
passed to the pipe wall from a given irradiance. Two dif-
ferent parabolic mirror models exist: a simplified and a
detailed model. The simplified model disregards the po-
sition of the sun and the orientation of the collector. It is
used to investigate short-term disturbance situations where
no fundamental changes in sun position occur. The de-
tailed parabolic mirror model considers sun position and
the orientation of the collector in its heat flux calculation
and can be used to investigate whole day operation cycles.

The collector models can be used in combination with
ClaRa’s water-steam cycle components to simulate com-

plete parabolic trough power plants such as shown in fig-
ure 12. The model of this solar thermal power plant op-
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Figure 12. Schematic CST power plant

erates according to the principle of direct evaporation and
uses water as a heat transfer medium. The collector field
consists of 6 parallel evaporator rows and 3 parallel super-
heater rows. Two different operation scenarios are inves-
tigated for the model described above.
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Figure 13. Turbine power and steam pressure at turbine inlet
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Figure 14. Tube steam quality outlet

In the first scenario, a cloud front passes over the col-
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lector field after 10 minutes, resulting in a decrease in so-
lar irradiation on each individual collector. This causes a
pressure drop at the turbine inlet, leading to a reduction in
the mechanical power output of the turbine (as shown in
Figure 13). Figure 14 illustrates the steam quality at the
outlet of each evaporator line. Initially, the steam quality
decreases due to the reduced irradiation. Consequently,
the power plant reduces the mass flow rate through the in-
dividual evaporator lines, which causes the steam quality
to rise again. Once the disruption ends after 20 minutes,
the water-steam cycle’s inertia leads to a sharp increase in
the steam quality before reaching a steady-state level once
again.
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Figure 15. Angle of inclination of the parabolic mirror and an-
gle of incidence on parabolic mirror
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Figure 16. Turbine power and steam pressure at turbine inlet

The second scenario examines how the daily cycle of
the sun affects the CST power plant. Figure 15 illus-
trates the behavior of the parabolic mirrors. The collec-
tor field is oriented parallel to the east-west axis, leading
to an incidence angle of 0° when the sun is in the south.
The parabolic mirrors are then tilted in complement to the
sun’s elevation angle. Figure 16 displays the resulting inlet
pressure and the mechanical power output of the turbine.
The detailed model is capable of simulating various loca-

tions, seasons, and orientations of the collector field, mak-
ing it possible to support analyses of expected yield.

5 Combining ClaRa with other Mod-
elica Libraries

Beside adapters to fluid components of the Modelica Stan-
dard library (MSL 2023) and the ThermoPower library
(ThermoPower 2023) ClaRa’s range of applicability is fur-
ther broadened by its integration with other Modelica li-
braries.

5.1 TransiEnt Library
The TransiEnt Modelica library (TransiEnt 2023) aims
at studying complex sector coupled energy systems on a
scale from single settlements (Schindhelm et al. 2021),
city districts (Benthin et al. 2019) or entire geographic re-
gions (Senkel et al. 2022) and was awarded as one of the
best submitted Modelica libraries at the previous Model-
ica conference (Senkel et al. 2021).

ClaRa models provide the foundation of the TransiEnt
packages for heating and gas grid through code inher-
itance in basic components such as connectors, control
volumes or components such as pipes, fans or sensors.
Moreover TransiEnt’s global model settings (SimCenter)
as well as ModelStatistics inherit code from the according
ClaRa componets. Hence TransiEnt user models contain
also code from ClaRa and there is a deep interconnection
between the two libraries. Consequently TransiEnt ships
in a bundle with ClaRa.

5.2 Thermal Separation Library
The Thermal Separation library (ThermalSeparation
2023) is an open-source Modelica library designed for
simulating thermal separation processes, including recti-
fication and absorption processes. The library primarily
focuses on simulating amine scrubbing processes, which
are utilized for capturing CO2 from flue gases emitted by
various sources such as biogas or thermal power plants.

Models of the Thermal Separation library can be cou-
pled to ClaRa-library. Adapters for linking both libraries
can be provided upon request. This enables the ClaRa
users to simulate coupled combustion + carbon capture
processes in order to understand the dynamic behaviour
or test suitable control schemes or evaluate the potential
of carbon capture and storage (CCS) strategies.

Detailed results of the coupled operation of a coal fired
power plant with post-combustion carbon capture can be
found in (Wellner, Marx-Schubach, and Schmitz 2016)
and (Marx-Schubach and Schmitz 2019).

6 The ClaRa Funding Scheme: Sus-
taining Open-Source Development

ClaRa has been and will be an open source project with
regular updates and releases. In order to make its ongo-
ing development financially sustainable it comes with an
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an extended commercial companion version called ClaRa-
Plus (ClaRaPlus 2023) since 2017.

ClaRaPlus offers access to a wider variety of models
and components that enable more advanced simulation ca-
pabilities, such as instrumentation and control very close
to modern power plants, in the ClaRa_DCS module, as
well as modelling interactions between power plants and
electric grids using the ClaRa_Grid module. Additionally,
ClaRaPlus provides advanced pump and fan models (de-
fined in all operational modes - 4 Quadrant), which en-
able the investigation of detailed start-up and shut-down
as well as abnormal operations such as pump trip, pressure
shocks, and beyond. ClaRa (ClaRaPlus 2023) provides a
detailed comparison between the two libraries and high-
lights the differences in features and capabilities offered
by ClaRa and ClaRaPlus.

Additionally, ClaRaPlus offers technical support and
maintenance services, which can be valuable for users
who require assistance with the implementation and use
of the library. Ultimately, the choice between ClaRa and
ClaRaPlus will depend on the specific needs and require-
ments of each user or organization. The ClaRaPlus is
available at (LTX Simulation GmbH 2023) and alongside
Dymola via (Dassault Systèmes 2023).

Also sponsorship (models or money) is warmly wel-
comed and greatly appreciated, as it plays a vital role in
ensuring the long-term viability of the open-source ClaRa
initiative.

7 Summary & Outlook
We are pleased to announce the latest functionalities in
ClaRa, the open-source Modelica library that continues to
push the boundaries of simulation technology.

With the recent release, users of ClaRa can now seam-
lessly integrate AI models which opens up a world of
possibilities in the realm of energy system analysis, en-
abling users to harness the power of machine learning,
deep learning, and other AI techniques to gain deeper in-
sights into complex systems. Further, the introduction of
new models in the ClaRa Open Development Repository
such as waste heat incinerator, parabolic solar receiver,
evaporators/condensers for refrigeration cycles and heat
pumps, expands the range of possible applications.

We look forward to seeing new community contribu-
tions and sponsorships in the third-party ClaRa Open De-
velopemnt Repository that unlocks new possibilities. We
are excited to continue supporting our users in their quest
for innovation across a wide range of industries, including
renewable energy, process engineering, building manage-
ment, and many others.

Currently, Dymola remains the primary development
environment for the ClaRa library. However, we are com-
mitted to ensuring its compatibility with OpenModelica
(OpenModelica 2023) and have made significant progress
in this regard thanks to the OpenModelica development
team. More than half of the examples can now run in

OpenModelica (OM-ClaRa-Suport 2023). At the mo-
ment, OpenModelica and Dymola handle symbolic ma-
nipulations differently. The current approach used in
OpenModelica leads to numerically unstable models, as
seen in cases such as discretized pipe models. We will
continue our efforts to expand this compatibility further.
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Abstract
This paper presents a new open-source modeling pack-
age in the Modelica language for particle-based silica-
sand thermal energy storage (TES) in heating applica-
tions, available at https://github.com/sbslab/
modelica-sand. Silica sand is an abundant, low-cost,
and efficient storage medium for concentrated solar power
and electricity generation. Although uncommon today,
solid particle TES could benefit building and district heat-
ing systems, particularly as building electrification and re-
newable energy penetration increases. To enable heating
system design and evaluation with sand TES, this work de-
veloped and open-source released Modelica models from
base classes through complete systems with both physical
equipment and controls. This paper first presents the new
models. Then, we demonstrate their application with a
heating plant that supplies steam for district heating, while
also providing power-to-heat grid services by storing ex-
cesses renewable electricity as thermal energy.
Keywords: District Energy, Load Shift, Modelica, Power-
to-X, Renewable Energy, Silica Sand, Thermal Storage

1 Introduction
As renewable energy penetration increases with decar-
bonization efforts, silica sand has emerged as an effective
low-cost, low-toxicity option for thermal storage of ex-
cess renewable power (Gifford, Ma, and Davenport 2020).
To date, most applications of solid sand particle thermal
energy storage (TES) replace molten-salt in concentrated
solar power (CSP) systems for long-duration energy stor-
age for electric power (Ma, Glatzmaier, and Mehos 2014;
Mahfoudi, Moummi, and Ganaoui 2014; Gomez-Garcia,
Gauthier, and Flamant 2017). For heating applications,
a test pilot site at Vatajankoski’s district heating network
in Kankaanpää, Finland adopted sand-based heat stor-
age (Polar Night Energy 2022). However, scientific re-
search on the application of sand-based TES for heating
applications is limited.

To enable wide-scale testing and evaluation of
sand-based TES for heating applications, this work
developed and open-source released equation-based,
object-oriented, multi-domain models with the Mod-
elica language at https://github.com/sbslab/
modelica-sand (Hinkelman, Milner, and Zuo 2023).

Our application domain is thermofluid and electrical sim-
ulation of building and district heating systems with silica-
sand particle-based TES in support of design, operation,
and energy analysis. Water, molten salt, and phase-
change materials are typically used for building TES heat-
ing applications (Sarbu and Sebarchievici 2018). Packed-
bed TES with rocks/pebbles or ceramic bricks also exist
where a fluid, typically air, circulates through the static
bed (Sarbu and Sebarchievici 2018). In contrast, this work
adopts fluidized particle-based TES and heat exchangers
where the packed sand particles themselves move through
the system, which to our knowledge, has not been evalu-
ated in scientific literature for heating purposes.

To address this gap, we develop computationally effi-
cient models for fluidized silica-sand particle-based TES
in heating applications. This includes a polynomial
medium model for the thermodynamics of silica sand, sev-
eral equipment, and a novel heating plant as demonstra-
tion. Further, this paper focuses on the assembly of mul-
tiple heating equipment into plants, such that sand TES
can be leveraged to provide heating for buildings or dis-
tricts. The new models introduced with this paper are
open-source (Hinkelman, Milner, and Zuo 2023). In the
following sections, we present the new models. First, sec-
tion 2 summarizes the overall package, while section 3
details the primary contents. As an example, section 4
presents the model and simulation results for a silica sand
particle-based heating plant under two control scenarios.
Lastly, conclusions are in section 5.

2 Package Overview
Following Modelica standards, model packages are as-
sembled hierarchically, as shown in Figure 1. Designed
for compatibility with the Modelica Buildings Library
(MBL) v9.0.0 (Wetter et al. 2014) and the Modelica Stan-
dard Library (MSL) v4.0.0, this small package contains 9
instantiable models – from control base classes to a com-
plete plant – and two medium models. For each of these,
there is at least one runnable validation or example model
with a pre-programmed Simulate and Plot script.

The six main-level packages are as follows. First,
Blocks contains key performance indicators for building
energy analysis, including source/site energy calculations,
operational carbon emissions, and thermal discomfort.
Then, Equipment and Media contains physical equipment
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Figure 1. Package structure.

(e.g., heat exchanger) and fluid medium models (e.g., sil-
ica sand), respectively. In Figure 1, the internal contents
for these two packages are shown. The Plants package
contains sand-based TES plants, which will be demon-
strated in section 4. Lastly, Subsystems contains sev-
eral runnable examples with assemblies of equipment and
controls, while BaseClasses contains fundamental models
that can apply to several sub-packages.

3 Model Contents
While further details for the models included with this
open-source release are in the Modelica code itself, here
we will present some of the primary contributions. Below,
we include the physics and modeling assumptions for the
sand medium, particle conveyor, and renewable respon-
sive particle heater control. Validation results for thermo-
dynamic properties of silica sand are also included. For
models not described herein, please see the documenta-
tion included within the annotation() of each respective
model (Hinkelman, Milner, and Zuo 2023).

3.1 Sand Medium
The sand medium is modeled as silica (SiO2, i.e. quartz),
which at atmospheric pressure maintains a solid state un-
til 1800◦C (Gifford, Ma, and Davenport 2020). Consist-
ing of two of the most common elements in the Earth’s
crust – silicon and oxygen – silica sand is highly abun-
dant and nontoxic. In nature, solid silica can exist in
one of seven unique crystalline structures (Huang and M.
Wang 2005), but “the bulk of silica at Earth’s surface
is stable in the form of low-temperature α-quartz with
traces of [other polymorphs]” (Davenport et al. 2020).
When heated at atmospheric pressure, quartz undergoes
a fast, reversible displacive transformation, where around

573◦C, the molecular structure of low-temperature α-
quartz shifts to high-temperature β-quartz (Davenport et
al. 2020). This transition – also known as quartz inver-
sion – is visible in silica’s specific heat during a heating
process (as depicted in Figure 2).

This model covers the solid phase of silica quartz at at-
mospheric pressure (temperatures from 298–1800K). For
heating applications, we assume the sand has constant
density and remains tightly packed in all states without
mass loss. While the complete thermodynamic formula-
tion is available in the open-source model (Hinkelman,
Milner, and Zuo 2023), we will present the details for
a critical function: specific heat. Specific heat at con-
stant pressure cp is formulated as two polynomial func-
tions with a cubic Hermite spline over the quartz inversion
temperature as

cp(T ) =

 a1T 3 +a2T 2 +a3T +a4 T ≤ 847−δ

c̃p 847−δ < T < 847+δ

b1T +b2 T ≥ 847+δ

(1)

where coefficients ai,bi are polynomial fits to the NIST
Thermochemical Tables (Chase 1998) with values given
in Table 1; T is temperature in units Kelvin; the small tem-
perature transition δ is 10−6; and c̃p is a smooth approxi-
mation for specific heat defined as a cubic Hermite spline
with end positions and first order derivatives that are con-
tinuous with the upper and lower polynomials. Other than
temperature as a function of specific entropy T (s) – which
takes on a similar form as cp(T ) with a Hermite spline
– we implemented either pure polynomials (e.g., specific
enthalpy h(T ) as cubic) or thermodynamic relationships
(e.g., internal energy u = h− p/d, where pressure p and
density d are both constant) for all remaining functions.

Table 1. Coefficients for Equation 1.

i ai bi

1 2.799 140×10−6 1.671 556×10−1

2 −5.394 235×10−3 9.804 303×102

3 4.181 354×100 –
4 −9.929 403×101 –

The medium implementation is validated with respect
to NIST Thermochemical Tables (Chase 1998). Figure 2
depicts the validation results for cp(T ) and h(T ). The co-
efficient of variation of the root mean square error was less
than 1% for all thermodynamic functions.

3.2 Particle Conveyor
Sand is moved from low to high elevations by a vertical
conveyor. Conveyors have been used in silica-sand CSP
systems and have simple physics with large maximum al-
lowable flow rates (Ma, X. Wang, et al. 2021). In this
Modelica package, the conveyor is based on a skip hoist,
which can be used to transport high density particles like
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Figure 2. Validation of silica sand medium implementation.
The molecular transition from α- to β-quartz is apparent in (a).

concrete or grain over short distances. The power con-
sumed by the hoist P is

P =
ṁgh

η
, (2)

where ṁ is the mass flow rate of the bulk sand, g is the
gravitational constant, h is the total lifted height, and η is
the conveyor efficiency.

3.3 Particle Heater Control
Typically, the particle heater is responsible for most of the
energy consumption of sand-based heating systems. As
such, the control design is paramount. Designed with this
work, the particle heater control (model diagram in Fig-
ure 3) maintains a minimum silica-sand tank temperature,
unless renewable energy is present. If the amount of re-
newable power is greater than the power required by the
heater, then the sand is heated above the nominal setpoint
up until but not exceeding a maximum value. We refer to
this design as renewable responsive control.

4 Example
As a demonstration of the new library components, we
modeled a novel sand-based heating plant for a steam-
service district heating system. In the United States, steam
is the most common heat transfer medium for district heat-
ing, representing 97% of all installations (ICF LLC and
International District Energy Association 2018). The ob-
jective of this plant is to meet the steam heating load of the
district without on-site fossil fuel consumption and power-
to-heat thermal storage response when there is a surplus
of on-site renewable energy. In addition to the new sand
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Figure 3. Modelica diagram of the renewable responsive parti-
cle heater control.

heating models presented in sections 2 and 3, this example
also uses two additional open-source libraries: the MBL
v9.0.0 (Wetter et al. 2014) and the MSL v4.0.0. The fol-
lowing sections present the system description and mod-
els, followed by the simulation results.

4.1 System Description and Model
As shown in Figure 4, this 100% electric plant provides
steam service to a district network with sand-based TES to
convert excess renewable electricity to high-quality ther-
mal energy that can be stored for later use. Inspiration for
the heating plant stems from a Brayton combined cycle
power system (Gifford, Ma, and Davenport 2020), where
silica sand is used for long-duration storage in electrical
power generation. However in this case, steam is exported
to the district for heating rather than for generating elec-
tricity in a turbine.
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Figure 4. System schematic for the sand TES heating plant.

The plant system design is as follows. This plant
contains three fluid loops: (1) a fluidized, packed-bed
sand particle loop, (2) an air loop, and (3) a water/steam
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Figure 5. Modelica diagrams of the top-level example (left) and the sand TES heating plant (right).

loop with service to end-use heating loads. On the sand
side, sand is heated electrically with a packed-bed parti-
cle heater per Ma, Gifford, et al. (2022), which was de-
signed for thermally storing off-peak electricity for later
on-peak usage. From the heater, sand is gravity fed into
the packed-bed TES, which contains an internal shell-and-
plate heat exchanger. This TES/heat exchanger design is
similar to Albrecht and Ho (2019), except the heat ex-
changer is particle-to-air rather than particle-to-sCO2 (su-
percritical carbon dioxide). From the cold sand hopper at
the TES discharge, the particle conveyor (i.e., skip hoist)
transports the sand back up to the particle heater. The air
loop transfers heat from the sand TES to an air-to-water
heat exchanger, where condensate water returned from the
district is heated to a superheated state. It is worth noting
that direct heat transfer from sand to water is theoretically
possible, but previous studies that could validate this de-
sign are lacking. Thus, the sand-air-water configuration
was selected for this first demonstration case.

The plant controls are as follows. On the sand side, the
particle heater is as described in section 3.3 with nomi-
nal and maximum temperature setpoints of 1200◦C and
1600◦C, respectively. In the results, this is called renew-
able responsive control. As a basis for comparison, we
also implement a constant setpoint control with the heater
maintaining the nominal setpoint only. The skip hoist con-
trol is on/off (on if the particle heater is on) with a constant
mass flow rate of 19.8 kg/s. Lastly, the fan is variable
speed (nominal mass flow rate of 14.6 kg/s), and it is mod-
ulated with a PI controller to maintain the steam discharge
temperature setpoint.

Figure 5 depicts the Modelica model diagrams for the
top-level simulation example and the internal blocks for
the sand TES heating plant. In the top-level simulation
example (left), the plant is tied to the electric grid and con-
tains an on-site photovoltaic (PV) array and wind turbine.

At the top-level, this site – located in Denver, Colorado,
USA – contains a 2 MW wind turbine, a 2 MW PV array,
and a 480V/3φ electric service. The heating plant (nom-
inal heating load 3.5 MW) supplies superheated steam to
a district network at 180◦C and 9.6 bar. The district de-
mand is input as a table-look up based on a typical January
heating load profile for a small university campus. Except
for the plant, this top-level example uses MBL and MSL
models. For example, all electrical components are from
Buildings.Electrical.AC.ThreePhasesBalanced. Specifi-
cally, the PV model is PVSimpleOriented.

The Modelica diagram for the sand TES heating plant
(Figure 5, right) contains the physical and control systems
depicted schematically in Figure 4. In this plant model, the
sand medium, air-water heat exchanger, particle conveyor,
and heater control are from the new sand heating pack-
age. The water/steam medium is modeled with the Stan-
dardWater model from the MSL, which implements the
commonly-adopted IF97 model (Wagner et al. 2000). Air
is modeled as Modelica.Media.Air.ReferenceAir.Air_pT,
which is a detailed dry air model based on the Helmholtz
equations of state (Lemmon et al. 2000). For the particle
heater, we adopt the MBL model HeaterCooler_u from
the Fluid package, which is an ideal heater that prescribes
the heat flow rate and is suitable for energy analysis pur-
poses. For the sand TES with internal heat exchanger, we
model this equipment using the StratifiedEnhancedInter-
nalHex from the MBL, which represents the desired ge-
ometry and general physical principles.

4.2 Results
We simulate the sand plant system for a typical winter
day with two control scenarios for the particle heater (1)
constant setpoint and (2) renewable responsive. Figure 6
shows how the temperature trajectories at the sand TES
with internal heat exchanger responded during periods
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Figure 6. Temperatures at the ports of the sand TES with in-
tegrated heat exchanger with both constant setpoint control and
renewable responsive control for the particle heater. Arrow di-
rection indicates changes from constant to responsive.

with excess renewable energy. As expected, the constant
control scenario maintains the 1200◦C inlet sand tempera-
ture during the entire simulation period. In contrast, the re-
newable responsive control uses excess renewable power
to increase the sand temperature above the nominal set-
point. This effectively stores the surplus electricity as
high-quality heat for later use (i.e., power-to-heat).

In addition to the thermal performance, Figure 7 shows
the electrical power results. This includes the power gen-
erated by renewable sources (PV and wind turbine), power
consumed by the plant, and power provide from the grid
(positive if consumed, negative if exported). Before 9:00
and after 18:00, the heating demand is high; because on-
site renewable energy production is also low during these
times, the electric grid contributes most of the electricity,
and there is negligible difference between the two control
scenarios.
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Figure 7. Power generated by renewable sources, consumed by
the plant, and provided from the grid (negative if exported), with
both constant setpoint control and renewable responsive control
for the particle heater. Arrow direction indicates changes from
constant to responsive.

In contrast, differences between the constant setpoint

and renewable responsive control occur during the mid-
dle of the day when renewable generation is high. With
the constant control scenario (dashed lines), the site ex-
ports surplus renewable energy back to the grid from ap-
proximately 10:00 to 14:00. Meanwhile, the plant elec-
trical load is relatively constant. With the renewable re-
sponsive control (solid lines), no electricity is exported to
the grid, and most of the energy demanded by the plant
is from renewable sources (from approximately 9:30 to
17:30). In brief, the renewable responsive control pro-
duced a load shifting response where excess renewable en-
ergy from peak sunlight hours stored thermal energy in the
sand for later use. This is evident by the arrows changing
direction from up (higher power consumption) two down
(lower power consumption) in Figure 7.

5 Conclusion
This paper presented new open-source Modelica mod-
els for particle-based silica-sand TES in heating appli-
cations. While most of the previous TES with fluidized
sand have been developed for CSP and electric power sys-
tems, building and district heating applications are also
viable use cases that, to date, remain largely unexplored.
To enable silica sand as a low-cost, low-toxic storage
medium for heating applications with power-to-heat grid
service capabilities, we developed several Modelica mod-
els and open-source released them in a Modelica pack-
age on GitHub (Hinkelman, Milner, and Zuo 2023). As
demonstration, we modeled a sand TES heating plant for
steam district heating applications with onsite renewable
energy (PV and wind turbine). The plant was simulated
with two control scenarios for the particle heater: a con-
stant setpoint control and a renewable responsive control.

Results indicated that the renewable responsive con-
trol increased the sand tank temperature when excess re-
newable power was present. This resulted in a load-shift
demand response, where excess electricity stored during
peak sunlight hours reduced the electricity demand from
the grid later in the day. While this paper released the
new models and provided a first demonstration case study
with promising outcomes, future work is merited before
conclusions can be drawn regarding the validity of sand
TES for heating applications. Most importantly, this work
did not compare the performance of sand TES plants with
other designs; thus the impact on financial cost, energy
consumption, and carbon emissions remain unexplored.
Future work also includes the improvement and thorough
validation of equipment models (primarily, the sand TES
with internal heat exchanger), detailed design of sand TES
for heating purposes, and wide-scale evaluation of silica
sand in this new application domain.
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Abstract
Power systems modeling and simulation are essential
to conduct studies on the electrical transmission sys-
tem and ensure its security. For this purpose, RTE, the
French Transmission System Operator (TSO), is develop-
ing Dynaωo, a hybrid Modelica/C++ open-source suite
of simulation tools for power systems. Most power sys-
tems models for Dynaωo are developed in the Modelica
language using the Dynaωo Modelica library. This pa-
per presents a full Modelica standard electrical power sys-
tem benchmark implemented using the Dynaωo library.
The IEEE 14-bus system benchmark is modeled here for
steady-state calculation, with an approach that replaces the
static load flow. Two test cases are simulated using the
OpenModelica environment showing differences in the fi-
nal steady-state result. We show flexibility in modeling
with this library where different system behaviors can be
observed and where models with different levels of details
can be replaced depending on the application: steady-state
calculation, long-term stability, or short-term stability.
Keywords: Modelica, IEEE 14-bus benchmark, power
systems simulation, steady-state calculations, Dynawo.

1 Introduction
The electrical transmission system is facing many chal-
lenges due to power electronic devices added to the system
to connect renewable energy sources and HVDC links.
Also, the control of the system is getting more complex
due to the increasing use of controllers, with both discrete
and continuous behaviors. The transmission system oper-
ator has to adapt the system to all these changes and en-
sure consumers good quality and availability of electric-
ity. The need for a simulation tool that considers all the
new dynamics introduced to the electrical system is pri-
mordial to conduct studies to face all the challenges. This
is true even for the calculation of steady states where the
different dynamics of the system can interact and influ-
ence the reached steady state. Moreover, this simulation
tool should be flexible to adapt to the quick changes in the
power system’s environment.

RTE, the French electricity Transmission System Op-
erator (TSO), is developing Dynaωo, a hybrid Modeli-
ca/C++ open-source suite of simulation tools for power

systems (Guironnet, Saugier, et al. 2018). The tools’
objective is to conduct various studies like steady-state
calculations, long and short-term stability, and short-
circuit calculations while considering the different dy-
namics on the system depending on the study (Dynawo
2023). Dynaωo uses the equation-based Modelica lan-
guage (Fritzson and Engelson 1998) for the modeling part
of power systems. Physical and acausal modeling are pos-
sible with the Modelica language, and it is an advantage
to implement the model in an understandable and usable
way. However, the solving part is separated from the mod-
eling part, a choice made to obtain a flexible simulation
tool for several applications (Guironnet, Rosière, et al.
2021). Some results of comparison of Dynaωo against
other existing tools can be found in (Marin et al. 2022).

In this paper, we show that the Modelica Dynaωo li-
brary can be used on its own, to model common electrical
transmission system test cases on Modelica modeling en-
vironments (here OpenModelica). In particular, the IEEE
14-bus system is modeled with the Dynaωo library, and
its different components are presented. The IEEE 14-bus
system is successfully implemented in the literature us-
ing other Modelica libraries like in (Adib Murad, Gómez,
and Vanfretti 2015) and (Fernandes et al. 2018), and re-
sults show that it can be simulated in Modelica simulation
environments. Also, several open-source electrical power
system libraries are available in Modelica language ((Win-
kler 2017), (Bartolini, Casella, Guironnet, et al. 2019)). In
this paper, we focus on the flexibility in modeling offered
by the Dynaωo Modelica library, with an extensive choice
for modeling depending on the purpose of the study, ei-
ther long-term or short-term simulation, and on the time
constant of the available components. Indeed, short-term
simulations use high-detail models.

Steady-state calculations are highlighted in this paper.
In particular, the DynaFlow approach that considers the
dynamics of the components for the steady-state calcula-
tion is shown to give more realistic results than classical
approaches like static load flow (Cossart et al. 2021). Sev-
eral test cases can be easily created using the Dynaωo li-
brary to observe the impact that have the different dynam-
ics of the system on the final steady state. In particular,
two test cases are performed in this paper to calculate the
final steady state after occurred events on the system. The
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first test case is a line contingency, and the second is an
increase in power consumption that activates current limit
automatons depending on their reaction time. Here, com-
ponents are modeled in a chosen detail level for the calcu-
lation of steady states.

This paper is organized as follows: section two presents
the Dynaωo Modelica library and focuses on the models
for the calculation of steady states and the physical phe-
nomenon studied. The third section focuses on the IEEE
14-bus implementation with the Dynaωo library. Two test
cases and their simulation results using the IEEE 14-bus
model are presented in the fourth section. Finally, a con-
clusion and perspectives are given in section five.

2 Dynaωo Modelica Library
The Dynaωo Modelica library comprises several models
for the same element, with different levels of details de-
pending on the application.

The main components found in the electrical transmis-
sion system are synchronous machines, lines, buses, loads,
controllers, transformers, HVDC, photovoltaics, and wind
power plants. Mainly models of machines, loads, and
controls vary depending on the study we would want to
achieve. It is important to note that, at the library level,
the models are divided by component type and not by ap-
plication purpose.

Dynaωo Modelica library (Figure 1) contains a wide
range of models to describe power systems. A combina-
tion of models with different levels of detail is possible,
and it is one of the advantages of this library that creates
flexibility to switch between component models. Multi-
ple test cases can thus be modeled, and the user can create
models without limiting to any application.

Figure 1. Dynaωo library in OpenModelica

Dynaωo library offers models to calculate steady states
while properly taking into account the interactions be-
tween continuous and discrete controllers. The approach
differs from static load flow calculation by considering the
dynamics of systems like controllers and HVDC that im-
pact the final steady state (Cossart et al. 2021). The fo-
cus will remain on the final steady-state result for voltage
and currents that should not cross threshold limits. But
with this approach, steady state is obtained through a time-
domain simulation.

Models for steady-state calculations contain the mini-
mum details needed to perform the study. Fast dynamics
are neglected, and transitory phenomena are not taken into
account in modeling since only the final steady state is im-
portant. These models are put in the DynaFlow category.
Other phenomena can be observed by replacing compo-
nents with more detailed models. DynaFlow simulations
will thus use a higher time step (e.g. few seconds) com-
pared to simulations with more detailed models consider-
ing fast dynamics (e.g. few milliseconds).

The following part presents the IEEE 14-bus system
modeled with the Modelica language (using models
from the Dynaωo library) and simulated with the Open-
Modelica environment for the calculation of steady
state. The model has been integrated within the pack-
age Examples.DynaFlow and can be found on
https://github.com/dynawo/dynawo/tree/
master/dynawo/sources/Models/Modelica/
Dynawo.

3 Implementation of IEEE 14-bus
System using Dynaωo Modelica Li-
brary

3.1 Description of the IEEE 14-Bus System

The IEEE 14-bus system (Figure 2) is a standard test case
in the power system community. It represents a simple ap-
proximation of the American Electric Power system in the
early 1960s (Kodsi and Canizares 2003). The IEEE 14-
bus test case system comprises 14 buses, 2 generators, 3
synchronous condensers, 1 shunt, 3 transformers, 17 lines,
and 11 loads.

The three transformers separate the system into two
parts with two voltage levels: 69 kV and 13.8 kV. The
lower part of the system presented in Figure 2 corresponds
to 69 kV, and the upper part corresponds to 13.8 kV.

The benchmark is modeled using the Dynaωo Model-
ica library on the OpenModelica tool (Figure 3). Since a
steady-state calculation test case is used, the chosen mod-
els for components comprise the minimum details for sim-
ulation, considering the interactions of the components for
steady-state calculations. Models of components that form
the IEEE 14-bus system are presented in the following
part.
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Figure 2. IEEE 14-bus benchmark

Figure 3. IEEE 14-bus model on OpenModelica
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3.2 Models
Power systems models are developed in the Dynaωo Mod-
elica library. The models presented in this section have the
lowest level of detail. These models can easily be replaced
with other complex models since the connections ports, in-
put, and output variables are common for each component
model. These models are used to simulate the test cases
presented in section 4. Other models are indeed available
in the library to perform other test cases.

3.2.1 Generators

On Figure 3, generator 3, 6 and 8 are synchronous
condensers. The same model is used for all the
generators and the synchronous condensers, but
the produced power of the latter is set to zero.
GeneratorPV, the model of these generators con-
taining minimum details is found within the package
Dynawo.Electrical.Machines.SignalN. An
input "signal N" described below is used in this generator
model for primary frequency regulation.

These components can adjust their reactive power QGen
to maintain the voltage U at a certain reference level URe f .
This model regulates the voltage unless the reactive power
of the generator hits its limits at QMin or QMax (Equa-
tion 1). The active power PGen is modified by the fre-
quency regulation model through the signal N variable
(Equation 2, Equation 3). PRe f is the set point active power
and PNom is the nominal active power.

QGen = QMax if maximum generation
QGen = QMin if maximum absorption
U =URe f if not

(1)

PGenRaw = PRe f +PNom ∗KGover ∗N (2)

PGen =


PMax if PGenRaw > Pmax

PMin if PGenRaw < PMin

PGenRaw if not
(3)

3.2.2 Active Power Control

For steady-state calculations, the active power control
of the generators is adjusted with a variable signal
N to balance the active power mismatch between
generation and consumption. The purpose is to reg-
ulate the frequency. All the generators are connected
to the SignalN model found within the package
Dynawo.Electrical.Controls.Frequency.
When using this model, the frequency is not explicitly
modeled. Instead, a voltage angle reference node is
set to balance the equations. All generators receive the
same signal N control, the generation power depends
on the participation percentage of each generator KGover
(Equation 2). This value is set to zero for synchronous
condensers.

3.2.3 Current Limit Control
A model CurrentLimitAutomaton (CLA)
for controlling the current of a component
is available in the library within the package
Dynawo.Electrical.Controls.Current.
This controller will open one or several components when
the current stays above a predefined threshold IMax during
a certain amount of time tlag on a monitored component
like a line or a transformer.

3.2.4 Loads
Loads are modeled as αβ restorative loads. In the
model LoadAlphaBetaRestorative found within
the package Dynawo.Electrical.Loads, the load
restoration emulates the behavior of a tap changer trans-
former that connects the load to the system and regu-
lates the voltage at its terminal (Equation 4 – Equation 7).
After an event, the load goes back to its initial active
power P and reactive power Q respecting the time constant
t f ilter unless the filtered voltage amplitude at the terminal
UFiltered is below UMin or above UMax. In these cases, the
load behaves as a classical αβ load. The variation of the
load voltage and power is not instantaneous, which im-
pacts the final steady-state value, a phenomenon not con-
sidered with static load-flow calculation. PRe f and QRe f
are the set point active and reactive power.

t f ilter ∗
UFilteredRaw

dt
=U −UFilteredRaw (4)

UFiltered =


UMax if UFilteredRaw ≥UMax

UMin if UFilteredRaw ≤UMin

UFilteredRaw if UMin ≤UFilteredRaw ≤UMax
(5)

P = PRe f

(
U

UFiltered

)α

(6)

Q = QRe f

(
U

UFiltered

)β

(7)

3.2.5 Transformers
For simplification purposes, the three-winding trans-
former of Figure 2 is modeled as a two-winding trans-
former in the IEEE 14-bus test case model as in Figure 3.

The TransformerFixedRatio model of the
Dynawo.Electrical.Transformers package
represents a two-winding transformer with a fixed ratio r
(Figure 4). This model is used for the three transformers
in the IEEE 14-bus model.

Equation 8 and Equation 9 describe the behavior of this
component with respect to conventions taken as in Fig-
ure 4.

r2V 1 = rV 2 +Z I1 (8)

I1 = r(Y V 2 − I2) (9)
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Figure 4. Transformer model

3.2.6 Lines

Lines are modeled with the model Line of the package
Dynawo.Electrical.Lines.Line. This model
represents a classical π line (Figure 5).

Figure 5. Line model

The model of the line represents the voltage drop be-
tween terminal 1 and terminal 2 (Equation 10 and Equa-
tion 11).

Z ∗ (I2 −Y V 2) =V 2 −V 1 (10)

Z ∗ (I1 −Y V 1) =V 1 −V 2 (11)

3.2.7 Shunt

A shunt model is connected to bus 9. The model ShuntB
of the package Dynawo.Electrical.Shunts
represents a shunt with constant susceptance and voltage-
dependent reactive power Q (Equation 12).

Q = BU2 (12)

3.2.8 Buses

The model Bus of the package
Dynawo.Electrical.Buses is used to model
all the buses of the system. The bus does not add any
equations to the system. It is used to connect several
components into one node.

3.2.9 Switch-Off Equations

Switch-off equations for each component are also in-
cluded in the IEEE 14-bus model. These equations have
the purpose of determining if the component is connected
to the electrical transmission system or not. These equa-
tions are put in the extended IEEE 14-bus model to enable
connecting and disconnecting lines to simulate different
test cases.

The number of switch-off signals differs from one com-
ponent to another. Loads, transformers, lines, and shunts
have two switch-off signals. Generators have three switch-
off signals. When the switch-off is activated, some values

in the disconnected model are set to zero like current I,
active power P, and reactive power Q.

4 Test Cases
In this section, two test cases are presented to highlight
the use of Dynaωo Modelica library for benchmarks like
the IEEE 14-bus system, the advantage of the DynaFlow
steady-state approach over a static load flow calculation,
and the ease of adding models and creating different test
cases to observe multiple phenomena.

Test cases are chosen in the transmission electrical grid
context, where studies focus on the state of the system af-
ter a loss of a line or a generator that may cause a variation
in voltage, current, and frequency, with values that may
become critical to the system. Controllers present in the
system react to these changes.

The first test case describes the behavior of the system
after an occurrence of a line contingency. This simula-
tion highlights the use of the library to observe commonly
studied phenomena on the electrical grid. The second test
case describes the interaction of multiple current limit au-
tomatons after an increase in load consumption. For the
second test case, two simulations are done with different
parameters, resulting in different final steady states. These
simulations highlight the importance of representing the
dynamics of the system and performing a time-domain
simulation while calculating the final steady state.

The initial data for generators and the simulation solver
needed to perform the simulation are given. Then, the re-
sults of the two test cases are presented after a DynaFlow
time-domain simulation of the model presented in the pre-
vious section.

4.1 Data

The data used corresponds to the available online data for
IEEE 14-bus system. In Table 1, initial values for the five
generators are given.

Table 1. Initial values for generators

Generator PGen (MW) QGen (Mvar) U (kV) Θ (°)

1 232.39 -16.55 73.14 0.00
2 40.00 43.56 72.11 -4.98
3 0.00 25.07 69.69 -12.73
6 0.00 12.73 14.77 -14.22
8 0.00 17.62 15.04 -13.36

4.2 Simulation Solver

The solver used in OpenModelica is Euler with a 10 s step
and a 10−6 tolerance. An additional translation flag, "–
daeMode", is added to the model. klu is chosen as a linear
solver and kinsol as a non-linear solver. The simulation
time is 200 s.
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4.3 Test Case with Line Contingency
The test case simulates a loss of a line. We are interested
in studying how the electrical transmission system will be-
have after a loss of a line and if the model describes the
phenomenon well. The line contingency between bus 1
and bus 5 occurs at time t = 100 s. In the model, the value
of the switch-off signal of the line becomes true which
causes the values of active power, reactive power, and cur-
rent to drop to zero on both line terminals. For example,
Figure 6 shows the line’s active power on terminal 1, here
given in per unit with SRe f base.

LineB1B5.P1Pu (1)

-0.2

0

0.2

0.4

0.6

0.8

1

time	(s)
0 50 100 150 200

Figure 6. Line contingency test case: Active power of the line
Bus1-Bus5 at terminal 1 in per unit (base SRe f )

The increase of the active power is immediate for gen-
erator 1 when the line is disconnected at time t = 100 s,
as seen in Figure 7. Generator 2 has a similar behavior as
generator 1. The power of the three other synchronous
condensers remains at 0. Since one line is lost, active
losses on the other lines will increase, and since the con-
sumption demand remains the same, the active power pro-
duction of generators will increase to satisfy the consump-
tion demand and thus regulate the frequency. The active
power variation is caused by the generator’s primary fre-
quency regulation, which adjusts the active power to bal-
ance power generation and consumption. The voltage an-
gles have also changed for all the generators except for
generator 1, which corresponds to the reference node. The
value of the reactive power also changes to maintain the
voltage at the same level URe f when reactive losses in-
crease on the lines. Steady-state values at the end of the
simulation are given in Table 2.

The restoration phenomenon of loads modeled in Equa-
tion 4 – Equation 7 can be observed, for example, for load
5 in Figure 8. The active power of the load (given in per
unit with SRe f base) drops after the loss of line Bus1-Bus5
since the voltage has decreased. The active power of the
load goes back to its initial value after the event.

In Table 3 and Table 4, the power flow is observed at
all the lines at the initial and final time of the simulation.
Since the line between bus 1 and bus 5 is disconnected

Gen1.PGen (MW)

232

233

234

235

236

237

time	(s)
0 50 100 150 200

Figure 7. Line contingency test case: Generator 1 active power
in MW

Table 2. Final values for generators

Generator PGen (MW) QGen (Mvar) U (kV) Θ (°)

1 236.48 -37.22 73.14 0.00
2 43.79 75.33 72.11 -7.60
3 0.00 30.08 69.69 -17.34
6 0.00 21.26 14.77 -19.43
8 0.00 19.90 15.04 -19.58

Load5.PPu (1)

0.074

0.0745

0.075

0.0755

0.076

0.0765

time	(s)
0 50 100 150 200

Figure 8. Line contingency test case: Load 5 active power in
per unit (base SRe f )

from the system, the power is distributed to all the other
lines. Then, power values of each line differ from Table 3
to Table 4. After the contingency, bus 1 is connected only
to bus 2, and all the generated power is transmitted in the
line between these two buses.

The result can be obtained with a static load flow start-
ing with the correct initial conditions: without line Bus1-
Bus5. The advantage of the DynaFlow approach is the
possibility of observing the system’s evolution in time
(like the load restoration phenomena) and the occurrence
of events that may change the final steady-state result.
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Table 3. Initial power flow values for lines

Line P1(MW ) P2(MW ) Q1(Mvar) Q2(Mvar)

Bus1-Bus2 157.05 -152.74 -20.57 27.87
Bus1-Bus5 75.71 -72.94 3.86 2.28
Bus2-Bus3 73.34 -71.01 3.59 1.60
Bus2-Bus4 56.33 -54.64 -1.50 3.01
Bus2-Bus5 41.72 -40.81 1.19 2.09
Bus3-Bus4 23.56 -23.19 -4.85 4.48
Bus4-Bus5 61.67 -61.15 -14.13 15.76
Bus6-Bus11 7.36 -7.31 3.70 -3.58
Bus6-Bus12 -7.74 7.81 -2.38 2.53
Bus6-Bus13 -17.55 17.76 -6.86 7.28
Bus7-Bus8 0 0 -17.17 17.63
Bus7-Bus9 -28.25 28.25 -5.01 5.82
Bus9-Bus10 -5.25 5.26 -4.09 4.12
Bus9-Bus14 -9.30 9.42 -3.28 3.53
Bus10-Bus11 3.77 -3.76 1.75 -1.72
Bus12-Bus13 1.59 -1.58 0.76 -0.75
Bus13-Bus14 5.62 -5.57 1.81 -1.71

Table 4. Final power flow values for lines

Line P1(MW ) P2(MW ) Q1(Mvar) Q2(Mvar)

Bus1-Bus2 236.48 -226.64 -37.22 61.44
Bus1-Bus5 0 0 0 0
Bus2-Bus3 86.87 -83.61 2.44 6.66
Bus2-Bus4 83.61 -79.89 -1.94 9.64
Bus2-Bus5 78.24 -75.04 0.69 5.42
Bus3-Bus4 10.67 -10.59 -5.50 4.43
Bus4-Bus5 24.95 -24.84 -13.08 13.41
Bus6-Bus11 6.13 -6.08 4.88 -4.77
Bus6-Bus12 -7.62 7.69 -2.56 2.71
Bus6-Bus13 -16.94 17.15 -7.48 7.88
Bus7-Bus8 0 0 -19.32 19.91
Bus7-Bus9 -29.43 29.43 -4.28 5.16
Bus9-Bus10 -6.46 6.48 -2.88 2.92
Bus9-Bus14 -10.04 10.17 -2.48 2.76
Bus10-Bus11 2.55 -2.54 2.95 -2.92
Bus12-Bus13 1.47 -1.46 0.94 -0.93
Bus13-Bus14 4.91 -4.86 2.61 -2.51

In fact, in both approaches, we are interested in the fi-
nal steady state. However, phenomena observed with Dy-
naFlow, like the interaction of multiple discrete and con-
tinuous components, can change the final result, which can
not be seen with a static load flow.

4.4 Test Case with Current Limit Automatons
In this part, values are given in per unit (p.u.). For power
values, the p.u. base is the reference apparent power SRe f .
The p.u. base is the nominal voltage at the line UNom for
voltage values. For current values, the p.u. base is de-
duced from SRe f and UNom.

The test case simulates an increase in the current due

to increased consumption of load 5 of 0.3 p.u. at t = 50 s
(Figure 9). A current limit controller is available on each
of the lines: CLAB1B2 for line Bus1-Bus2, CLAB2B5 on
line Bus2-Bus5, and CLAB1B5 on line Bus1-Bus5. In-
creasing load consumption can thus cause a line loss if we
reach the maximum allowed current IMax. In this test case,
we observe how the reaction time tlag of each controller
and the line’s maximal current IMax are important and im-
pact the final steady-state result. In fact, when one of the
controllers reacts to disconnect a component, the current
variation impacts other lines.

Load5.PPu (1)
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time	(s)
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Figure 9. Increased consumption with CLA test case: Load 5
active power in per unit (base SRe f )

In the first simulation, we take parameters for each con-
troller as in Table 5.

Table 5. Parameters of the CurrentLimitAutomaton for
case 1

Controller IMax (p.u.) tlag (s)

CLAB1B2 1.55 30
CLAB1B5 2.00 50
CLAB2B5 0.49 20

After the event at t = 50 s, the current on the lines in-
creases as seen in Figure 10. However, for line Bus1-Bus2
and line Bus2-Bus5, the current is now higher than the
allowed IMax. The controller CLAB2B5 will react after
20 s to disconnect the line Bus1-Bus2, before the con-
troller CLAB1B2 that can only interfere after 30 s. The
disconnection of line Bus2-Bus5 decreases the current of
line Bus1-Bus2, which is now below the IMax = 1.55 p.u.
The current of line Bus1-Bus5 increases but stays below
IMax = 2 p.u. The final steady state is reached after the
restoration of the loads. Here, the system can operate af-
ter the loss of the line.

If we change the reaction time of CLAB1B2 to 20 s and
the reaction time of CLAB2B5 to 30 s as in Table 6, dif-
ferent results are obtained. In this case, after the increase
of the power of load 5 at time t = 50 s, all the currents in-
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Figure 10. Increased consumption with CLA test case: Current
for lines Bus1-Bus2, Bus1-Bus5, and Bus2-Bus5 in per unit

crease. However, the controller CLAB1B2 will react be-
fore the controller CLAB2B5, and line Bus1-Bus2 is thus
disconnected at t = 70 s. The current of line Bus2-Bus5
decreases below the IMax = 0.49 p.u., and the current of
line Bus1-Bus5 increases above the IMax = 2 p.u. After
50 s (at t = 120 s), CLAB1B5 will react to decrease the
current by disconnecting line Bus1-Bus5. But this event
disconnects generator 1 since there are no more lines con-
nected. All the generated power should now come from
generator 2. The simulation fails and stops at t = 120 s.
Here, the system can not operate after the loss of the two
lines Bus1-Bus2 and Bus1-Bus5, and generator 1.

Table 6. Parameters of the CurrentLimitAutomaton for
case 2

Controller IMax (p.u.) tlag (s)

CLAB1B2 1.55 20
CLAB1B5 2.00 50
CLAB2B5 0.49 30

We conclude that the final steady state result depends
on the different controllers with different time constants
available in the system. Indeed, other parameters would
have given us other final steady states. The final steady
state calculation with the DynaFlow approach after time-
domain simulation gives realistic results of components’
interactions (like causing system failure) that cannot be
seen when performing a static load flow. In fact, it is diffi-
cult to reproduce the final steady state with one static load
flow calculation because values are not calculated in a time
domain. For instance, several initial conditions should be
taken into account to represent the reaction of each current
limit automaton. Also, no flexibility in changing the reac-
tion time is available. A time-domain simulation allows
changing parameters and testing different cases for final
steady-state calculations.

IB1B2 IB1B5 IB2B5
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Figure 11. Increased consumption with CLA test case: Current
for lines Bus1-Bus2, Bus1-Bus5, and Bus2-Bus5 in per unit

5 Conclusion and future works
The Dynaωo library is an open-source Modelica library
with an extensive choice of models that offers flexibility
in modeling depending on the desired application. Steady-
state calculations, long-term stability, short-term stability,
and short-circuit studies can be done. The library also of-
fers the flexibility of combining different models with dif-
ferent levels of detail.

In this paper, models from the Dynaωo Modelica li-
brary are presented for steady-state calculations with a
time-domain simulation approach that considers dynamic
phenomena not taken into account with static load flow.
Two different test cases are developed in this paper us-
ing the IEEE 14-bus system benchmark. Different sim-
ulations are performed, and we show that final steady-
state results depend on the different dynamics present in
the system and the parameters that can be modified eas-
ily using the library. These test cases show the impor-
tance of the approach that considers the system’s dynam-
ics. The Dynaωo Modelica library allows modeling sev-
eral test cases for different system studies and behaviors
of the system while mixing different dynamic models.

Other test cases can be developed based on the IEEE
14-bus benchmark test cases presented in this paper by
adding other controllers to the system, like phase shifters
or tap changers for transformers, with models available in
the library. Also, IEEE benchmarks with higher nodes,
like IEEE 30-bus and IEEE 57-bus systems, will be added
to the library. Benchmarks like the Nordic 32-bus system
and RVS are modeled with the Dynaωo Modelica library
and are not presented in this paper but are available on
the GitHub repository. These models are used for voltage
stability studies (long-term stability) where more detailed
component models are used. Future works for this library
include adding more detailed models and controls, for ex-
ample, renewable energy control systems, to study their
impact on the electrical transmission system.
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Abstract
Modeling of condensation is important to predicting the
amount of residual water in small channels. The residual
water that forms becomes a source of humidity for perme-
able materials such as wooden structure and insulation. A
Modelica model has been implemented that predicts the
amount of residual moisture after a period of water build
up. The model has a very low computational requirement
and runs in minutes on a desktop computer. This model
includes parameters to relate droplet physics to a control
volume. The parameters provide a macroscopic means
of varying droplet adhesion force, droplet velocity, and
drainage dynamics. Using CFD data as an example of real
world data, this model has been correlated to demonstrate
the effects of the parameters. This model enables analyti-
cal prediction of the amount of time that is needed to dry
the internal surfaces of an aircraft after flight and may be
connected to a diffusion model for permeable materials.
Keywords: condensation, Droplet Distribution

1 Introduction
Research into mathematical condensation modeling was
motivated by the author’s experience with aircraft mois-
ture management. Aircraft operators have struggled with
managing the effects of condensate since the mid-20th
century (Huber, Schuster, and Townsend 1999). Uncon-
trolled condensation leads to uncomfortable passenger ex-
periences, costly maintenance actions, and extra weight,
where every pound counts. Accumulated water in pas-
senger aircraft contributes to moisture related problems,
including structure corrosion, uncontrolled water flow, in-
creased fuel consumption, higher maintenance costs and
mold growth (Wörner et al. 2002). The insulation sys-
tems are heavily impacted by condensation. An aircraft
insulation system comprises fiberglass batting and cover
films that enclose the insulation. The insulation system
is installed around the circumference of the fuselage and
extends from the flight deck to the back of the airplane
(see figures 1 and 2). To improve and test their designs,
aircraft manufacturers invest substantially in designs and
test methods (Connell and Richardson 2022; Connell,
Carnegie, and Richardson 2020; Richardson, Imada, and
Sarinas 2021; Khashayer et al. 2019). When summed for
the whole airplane, moisture absorption into the blankets
can result in a measurable weight increase. Each pound of
moisture can translate to 0.03 pounds or more of extra fuel

consumption per flight (Lents 2021).

Figure 1. Insulation is typically installed around the circum-
ference of an aircraft monocoque adapted from (Connell and
Richardson 2022).

Air Gap

Skin

Insulation

Figure 2. A typical insulation blanket leaves a gap between the
skin and the insulation (Wörner et al. 2002).

Droplet motion is a critical aspect of condensation.
Droplet motion, particularly dropwise condensation, has
been studied since the 1930s because it was reported to
have a much higher heat transfer coefficient than film con-
densation. Although, mass transfer was not the motiva-
tion of the studies, the dominant mode of heat transfer
was the latent heat of condensation and evaporation (mass
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and heat transfer). The mass transfer rate is affected by
the density of droplets and type of condensation. Droplet
density is defined here as the number of droplets per unit
surface area. Rose et al. provide a seminal work on the
distribution of droplets on a surface (Rose and Glicksman
1973; Rose 1976), also referred to as the Rose droplet dis-
tribution curve. It was extended to low pressure ambient
environments (saturation temperature of 31°C) and repro-
duced later (Graham and Griffith 1973). These researchers
studied dropwise condensation on a vertical surface, ob-
serving droplets forming, coalescing and falling such that
under steady-state conditions a maximum droplet size was
noted. Rose and Glicksman broke up the process into
generations of droplets. Their examination of the data re-
vealed two key parameters, the fraction of available area
and the ratio of the maximum radius of a current gener-
ation of droplets to its predecessors. The paper develops
a calculation method and presents a comparison with the
test data (Rose and Glicksman 1973).

Water droplets on inclined surfaces have an internal
flow field that affects the rate at which the droplet moves.
The droplet internal flow field, adhesion forces, and sur-
face inclination angle on a hydrophilic surface have been
related by CFD simulations and experimental tests (Al-
Sharafi et al. 2020). This study determined that the shear
force term in the force balance for a water droplet is negli-
gible. The paper provides droplet geometry models and a
table of advancing and receding contact angles, each for a
variety of droplet volumes and surface inclination angles.

Condensation and management of the residual water is
an important topic to the aircraft industry (Wörner et al.
2002; Huber, Schuster, and Townsend 1999; Liu, Aizawa,
and Yoshino 2004). The current focus of the aerospace
industry on digital twins (Meyer et al. 2020; Arthur et
al. 2020), and modern cyber-physical engineering design
trends (Sztipanovits et al. 2012; Seshia et al. 2017) present
a need for models of varying fidelity with varying compu-
tational performance demands.

The topic of condensation includes both the interfacial
mass transfer (Gu, Min, and Tang 2018; Steeman et al.
2009) and the motion models for the condensate. The
dropwise condensation models typically focus on a con-
stant generation source to enable steady-state estimations
of heat transfer rates on various surfaces (Weisensee et
al. 2017; Grooten and Van Der Geld 2012). However,
there is a gap when it comes to determining the residual
moisture, or the droplets that are left after the tempera-
ture of the surface has risen above the dew point. Further-
more, many papers provide a good description of mod-
eling methods (Rose and Glicksman 1973; Graham and
Griffith 1973) but none have applied them to a Modelica
model, and few have integrated the droplet physics models
(Al-Sharafi et al. 2020; Pilat et al. 2012; Sun et al. 2020).
This paper proposes a hybrid model that uses a detailed
droplet force balance model in conjunction with the Rose
distribution curve to determine the residual moisture on
a surface. This Modelica model complements the exist-

ing work (Casella et al. 2006; Norrefeldt, Grün, and Sedl-
bauer 2012). The paper is organized as follows: section
2 describes the fundamental dropwise condensation equa-
tions, section 3 presents the Modelica implementation and
its comparison with a Star CCM+ CFD model, section 4
reports the results of an implementation of the Modelica
model that exercises all the functions the model, and sec-
tion 5 is the conclusion.

2 Dropwise Condensation Equations
The conservation equations (1, 2, 3) are applied to a con-
trol volume, which represents the total volume of water
on the surface. However, A force balance on the largest
droplet on the surface is added to the momentum equa-
tion, integrating the physics of the control volume with
that of the largest droplet on the surface. This allows the
model to initiate droplet motion when the largest droplet
reaches a critical size. It also simulates the sweeping of
other droplets in the path of the largest droplet by inte-
grating the control volume and the droplet physics.

∂ρ

∂ t
∀= ṁx + ṁx+∆x +Γ (1)

∂ρv
∂ t

∀= (ṁv)x +(ṁv)x+∆x +ζ (ηFad +Fg) (2)

∂ρh
∂ t

∀= (ṁh)x +(ṁh)x+∆x +Qplate +Qlatent (3)

Where ṁ is the liquid mass flow rate, ∀ is the total water
volume, Γis the interfacial mass transfer rate. The sub-
scripts ad and g of the force term are adhesion and gravity.
The subscripts x and x+δx indicate the upper and lower
edge of a control volume. ζ and η are parameters that
have been added to calibrate the model. ρ is density, h is
specific enthalpy, and Q is heat transfer. Qplate is the con-
ductive and convective heat transfer from the plate to the
water assuming the thickness of the largest droplet and
Qlatent applies the heat of vaporization and condensation
to the control volume.

The velocity of the water droplets is determined by the
velocity factor (v f ,4).

ṁx+∆x = m
v
v f

(4)

The condensation rate is calculated using equations 5,
6, 7, 8, and 9. A, c, p, D, α , cp, subscript inf, and sub-
script s represent area, water vapor concentration, pres-
sure, the diffusion factor, thermal diffusivity, specific heat,
fluid free stream properties, and surface. The heat trans-
fer coefficient (h) was set to 10 W

m2 degK and the diffusion

factor was set to 2.6 e-5 m2

s .hm is the mass transfer coeffi-
cient.
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Γ = hmρH2OvaporAs(cs − cin f ) (5)

hm =
h

ρaircp−air
(

D
αair

)
2
3 (6)

cs − cinf ≈
psat − pH2O,inf

pinf
(7)

Adry = As −Awet (8)

The hyberbolic tangent function is used to prevent the
evaporation function from producing a negative mass on
the surface.

As(Γ,mass) =

{
Adry, if Γ > 0
Adry

( 1+tanh(β (mass−massmin))
2

)
, else

(9)
The droplet adhesion force FAD is determined by equa-

tions 10 and 11 with advancing and receding contact an-
gles (θA and θR) for a hydrophilic surface (Al-Sharafi et
al. 2020). The variables d, γSL, γLV are the droplet diam-
eter, solid-liquid surface tension, and liquid-vapor surface
tension. θave is the average of the advancing and receding
contact angles.

FAD ≈ 24
π3 γSLd(cos(θR)− cos(θA)) (10)

cos(θave) =
γSL

γLV
(11)

The droplet distribution curve (Graham and Griffith
1973) (13) is critical to predicting the diameter of the
largest droplet on the surface as a function of total water
volume and the water droplet volume model (12).

∀=
π

24
d3

sin3θave
[2+ cosθave][1− cosθave]

2 (12)

No = 0.05d−2 (13)

∀tot = B[dmax −dmin] (14)

B =
Asπ

160
[2+ cosθave][1− cosθave]

2

sin3θave
(15)

dmax =
∀tot

B
+dmin (16)

Awet =
Asπ

40
[ln(dmax)− ln(dmin)] (17)

3 Modelica Implementation and Veri-
fication

The modelica implementation sought to take advantage of
existing Modelica Library components. The standard wa-
ter model, fluid library ports, and thermal libary compo-
nents were used as shown in figure 4. This model calcu-
lates the conservation equations for the water on the sur-
face and the surface temperature. The entire model is dis-
played in figure 3. The water state was treated as a hyber-
bolic tangent function (18) to prevent events. The temper-
ature of the water was limited to above freezing to prevent
range errors. Due to this limitation, the temperature of the
surface was used to determine the solid/liquid state of the
water. The Modelica tables contain the advancing and re-
ceding contact angles. The thermal mass represents the
mass of the plate.

The surface model includes one thermal port for con-
tact with the air in the channel, another for contact with an
exterior heat transfer source, a real input to receive the av-
erage velocity of the water flowing into the surface, a real
output to report the same velocity flowing out of the sur-
face, three fluid ports to transfer water by interfacial mass
transfer (portHorizontal) and allow water to flow from the
upper surfaces to the lower surfaces. The Modelica Li-
brary prescribed heat flow component was used to transfer
heat from the surface to the water droplets.

WS =
1+ tanh(α(T −273.15)+1)

2
(18)

The surface model was connected to a buoyant air vol-
ume (blue-green box in figure 3), which calculates the
condensation rate and transfers it across a fluid port. The
buoyant air volume applies a pressure correction to the up-
per and lower fluid ports, which acts as a motive force for
moist air to be drawn into the volume in the upper port and
ejected out the lower port when the air is being cooled.
The heat transfer port applies the convection heat trans-
fer of the channel air to the surface and the real input port
receives the dry surface area of the plate.

The Star-CCM+ CFD model used a fluid film model
that included as inputs the nucleation density (N) and the
minimum diameter radius diameter. It distributes the mass
of water on the surface into a constant number of droplets,
as specified by the nucleation density. A film begins to
flow when the calculated droplet radius exceeds the min-
imum allowed, which is set by the user. A translation
was developed to equivocate the film thickness (H), being
the fraction of the volume of water to the surface area, to
droplet diameter using the same nucleation density as the
CFD model (Equation 19). The surface was maintained
at 274◦K and the air was supplied at at 300◦K, with a ve-
locity of 1.0 m

s , a moist air mass fraction of 0.023 H2O
totalmass

and pressure of 101,326 Pa.

d =
(12H

πN

) 1
3

(19)
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Figure 3. The 1-D model for comparison with the CFD model.

Figure 4. The surface model.

Figure 5 verifies that the drainage rates in the CFD and
1-D Modelica Model were close. Figure 6 verifies that the
average film thickness was the same in both models.

The parameters ζ and v f and η were varied to study
their effect on the film thickness and water flow rate. ζ

scales the value of the force balance on a single droplet.
The velocity factor can be tuned to the average velocity
of the droplets draining off the surface. The variable η

was added to adjust the steady-state film thickness, the
steady-state droplet diameter, and the departure point of
the droplets (the moment when the water begins to drain).
The results are shown in figures 7 to 10, with parameter
values given in table 1.

The oscillatory behavior of figures 5 and 6 is caused by
the momentum equation. ζ and v f effect the frequency,
amplitude, and decay rate of the water flow rate. v f can be
constrained to an experimentally observed average droplet
velocity, leaving variation of ζ for final tuning of the
model. It is dampened by decreasing ζ . The oscillatory
behavior is a symptom of using a continuous conservation

Figure 5. A comparison of the CFD and 1-D Modelica model
water flow rates.

equation to describe a discontinuous process of droplets
growing, sliding, and growing again. Once the velocity
factor has been tuned ζ should be adjusted to ensure that
the average film thickness response approximates the ob-
served values.

Figures 7 and 8 present the effects of varying ζ . In-
creasing ζ minimizes the amount of initial water buildup
on the surface and decreases the stabilization time. Fig-
ures 9 and 10 show that an increase in η increases the
maximum steady-state volume of water that the surface
will hold. η scales the adhesion force of the consevation
equation (2).

4 Complete Model Simulation Results
The complete model simulates typical flight conditions by
applying the temperature profile of figure 12 to a temper-
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Figure 6. A comparison of the CFD and 1-D Modelica film
thickness.

Table 1. Parameter Variations

Case Index ζ v f (m) η

1 0.5 1000 0.1
2 1.0 1000 0.1
3 1.5 1000 0.1
4 0.5 10 0.1
5 1.0 10 0.1
6 1.5 10 0.1
7* 1.0 10 1.0

Figure 7. Parametric results water flow rate (cases 1 to 3).

ature boundary condition. It also exercises all the connec-
tions of the surface model. The convective heat transfer
coefficient being applied on the external side (right side,
see figure 11) of the plate is so large that it acts as an in-
finite sink, nearly reaching the boundary condition tem-
perature. The temperature profile represents a flight from
a cold to a hot location. It reflects a winter to summer

Figure 8. Parametric results water flow rate (cases 4 to 6).

Figure 9. Parametric results water flow rate (cases 5 and 7).

Figure 10. Parametric results average film thickness.

flight (across the equator). The mass of water on the sur-
face is initially liquid, freezes in flight, and thaws as the
flight arrives at the hot location. To further validate the
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Figure 11. The complete model.

component behavior, this model includes an upper gap, a
lower gap, an upper surface, and a lower surface (see fig-
ures 11 and 13). The model calculates the upper and lower
opening pressure boundary with a buoyant air column of
uniform temperature. The upper and lower openings are
modeled using a simple generic orifice from the Model-
ica Fluid library. The fixed boundary fluid source named
"waterBoundaryUpper" is only included to close the water
flow network, its flow rate is zero.

Figure 12. Realistic Temperature Profile.

The model simulates two connected sections of skin
and insulation, with moist air and water flowing from the
upper skin and air gap to the lower skin and air gap (see
figure 13). Figures 14 to 20 show the thermodynamic state
of the water, the droplet growth, and the flow rate of the
water on the surface. The following observations can be
made from figures 15 to 21: 1) the largest droplet diame-
ter will increase when the surface temperature is below the

freezing point of water beyond the critical droplet diame-
ter, 2) upon melting gravity will quickly drain the water,
3) eventually evaporation will dominate the mass transfer,
and 4) by the end of the flight the largest droplet diameter
will be significantly diminished.

Elaborating on observation 1, the critical droplet diam-
eter is reached when the gravity acting on mass of wa-
ter in droplet is greater than the adhesion force securing
the droplet to the surface. However, the model applies a
scaling factor to the adhesion force to prevent water from
draining when the surface temperature is below the freez-
ing point of water. This allows the largest diameter of the
surface to exceed the critical droplet diameter. See figures
15 and 19.

Regarding observation 2, the water drains until the crit-
ical diameter is reached. Figure 16 indicates that this oc-
curs when the diameter is 0.82 mm. Figure 20 reveals
that this happens 8.25 hours and 8.3 hours into the flight
for the upper surface and lower surfaces, respectively.

According to observation 3, evaporation is the primary
means of water removal once the critical diameter has
been reached. Figure 17 shows that most of the mass flow
of the water occurs as evaporation. A comparison of fig-
ures 20 and 21 reveals that while the peak mass flow rate
of the drainage phase is larger than the evaporation rate,
the integral of the evaporation is still larger than the inte-
gral of the drainage flow.

Finally, observation 4 exposes the limitations of the
Modelica implementation method used for this model.
The model required a minimum water mass control pa-
rameter to prevent solver instability as the surface dried.
The sudden inflection at 9.2 hours (see figures 16 and 21)
occurs because the actual mass of water on the surface is
nearing the minimum mass.

The results verify that the buoyant air volume and the
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Figure 13. The complete simulation insulation system.

Figure 14. The temperature of the upper surface and the state of
its water droplets.

Figure 15. Size of the largest droplet on each surface throughout
the flight.

surface models can be combined to represent a system of

Figure 16. Size of the largest droplet after water has melted.

Figure 17. Size of the largest droplet at the end of the flight.

Figure 18. Drainage and condensation rates on each surface
throughout the flight.

connected channels and surfaces. The model runs quickly
enough to accommodate any industrially meaningful time
scale. Though an actual industrial scale analysis of an air-
craft will include orders of magnitude more channels and
surfaces. Condensation occurs very slowly in this exam-
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Figure 19. Condensation rates while the surface is frozen.

Figure 20. A zoomed in view of the drainage phase.

Figure 21. A zoomed in view of the evaporation phase.

ple. This agrees with industry experience, that undesir-
able conditions must persist over days to present an op-
erational problem. The upper and lower surface tempera-
tures were dropped below the freezing pointss of water in
flight and are raised upon landing to exercise the evapo-
ration functionality of the model. In summary, figure 14
shows that when the model transitions from frozen to liq-
uid water without stability issues. Figure 15 demonstrates

that the model simulates all the stages of the condensation
process as expected. Figures 18 to 21 show how drainage
and evaporation relate, that drainage occurs as a short term
event while evaporation or condensation is always occur-
ring.

Having simulated the droplet motion, the model may
now be used to determine how much time is needed to
evaporate the remaining water on the surface. This allows
a more accurate prediction of the moisture load to which
the insulation is exposed. Furthermore, a diffusion model
could be applied to estimate the diffusion across the insu-
lation lining.

The model was run using the desktop version of Mode-
lon Impact (R). The solver selected was the CVode solver.
It was run on PC with 2 Intel® CoreT M i7-557U CPUs @
3.1GHz. The model took 3.3 minutes to run.

5 Conclusion
The reduced-order model described in this paper provides
a means of estimating the residual moisture on a surface,
has a very low computational requirement, and runs in
minutes. Furthermore, it has been verified by compari-
son with a CFD model. It offers an advantage over CFD
methods in that it can be easily applied to aircraft skin and
insulation moisture modeling with large time scales. The
1-D model can be used to predict the residual water con-
tent at the end of a flight using the factors ζ , η , v f . This
model will support integration with a modeling ecosystem
for product design, verification analysis, and digital twin
methods. It supports moisture management system mod-
eling for the day-to-day operation of an aircraft; i.e., the
cycle of wetting, freezing, frost growth, thawing, draining,
and drying. A standard water model that is valid below the
freezing point would have simplified this drainage model.
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Abstract
The North American Electric Reliability Corporation
(NERC) is expected to mandate model validation of power
plant equipment in the near future. This will create a need
to validate models for a large number of existing and fu-
ture power plants. Historically, model validation of syn-
chronous generators, excitation system, turbine governor,
and other power system equipment has been conducted
using diverse software platforms. As a contribution to the
power system model implementation using Modelica lan-
guage and validation against commercial tools, this work
continues to develop power system component models
and enriching the Open-Instance Power System Library
(OpenIPSL). As a part of the development of OpenIPSL
this paper describes the development of models used by
North American utilities that follow NERC modeling re-
quirements, including models of a synchronous generator,
an excitation system, a turbine and governor using Model-
ica language in Dymola. The component implementation
process is described and the validation of the models im-
plemented in Modelica against PSS®E using both a single
machine infinite bus (SMIB) and multi-machine system
models is illustrated.
Keywords: Modelica, OpenIPSL, model validation, power
systems, power grid.

1 Introduction
Precise mathematical modeling and simulation has be-
come an integral part of different engineering tasks car-
ried out by utilities and grid operators, as it aids in op-
timization of operations, planning of future expansions,
and ensuring regulatory compliance. The ongoing efforts
in de-carbonizaiton, rising energy costs, extreme climate
events (Franke and Wiesmann 2014), etc., are challenging
the resilience of power grids and may result in increased
costs and may pose potential risks of disruption if not ad-
dressed timely. To address these challenges, engineers
rely upon extensive computer simulations to understand,
design and analyze the performance of power grids un-
der diverse operating scenarios. In turn, these simulations
enable stakeholders to identify vulnerabilities, implement
improvements, and minimize risks associated with power

delivery. Reliable and accessible modeling solutions of
power system components and networks are essential for
comprehensive analysis and decision making.

There are many different software tools available for
power system modeling and simulation. The de facto
standard tools used in the industry are domain-specific
software, including PSS®E and PowerFactory, to name a
few (Laera et al. 2022) concerned with power system dy-
namics and stability, with time-scales of tens of ms to tens
of seconds. There is also software with a specific focus on
ultra-fast time-scales, such as EMTP and PSCAD for anal-
ysis of electromagnetic transients and power electronic-
based components. Despite meeting industry require-
ments and providing a vast library, there are limitations
for closed-source software such as PSS®E. These include
a lack of transparency regarding underlying algorithms
and models, limited and less flexible modeling capabili-
ties, limited simulation solver options, the requirement of
a specific skill set for its use, rigid data format and high
software cost, as well as limited community support.

To address these issues, there have been open-source
initiatives to democratize research, development and over-
all access to alternative modeling tools in this field. Van-
fretti et al. proposed the use of object-oriented equation-
based modeling language Modelica to model power sys-
tems (Vanfretti et al. 2013). This started the efforts
of the development of an open source power system li-
brary for power grid modeling and simulation consistent
with the power industry practices and requirements, now
called Open-Instance Power System Library (OpenIPSL)
(Baudette et al. 2018). It is worth to note that other past
efforts in power grid modeling with Modelica have been
summarized in (Winkler 2017), with more recent efforts
reported in (Adrien Guironnet et al. 2018) and (Bartolini,
Casella, and A. Guironnet 2019). Meanwhile, outside the
scope of power system dynamic modeling, other open-
source initiatives that offer specific solutions to other anal-
ysis needs have emerged. These include OpenDSS(Mon-
tenegro, Dugan, and Reno 2017) for power distribu-
tion analysis, GridCal1 and PyPSA (Brown, Hörsch, and
Schlachtberger 2017; Parzen et al. 2023) etc., that allow

1See: https://gridcal.readthedocs.io/en/latest/
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to perform studies focused on the solution of steady-state
problems, while also establishing a community to support
such efforts.

Outside the power grid domain, significant research ef-
forts have taken place to model various energy systems
with Modelica such as modeling of building energy sys-
tem modules (Wüllhorst, Maier, et al. 2022), Heat Venti-
lation and Air Conditioning systems (Wüllhorst, Storek, et
al. 2022), and overall modeling of buildings for energy ef-
ficiency (Wetter et al. 2014), to name a few. These efforts
show that there is tremendous potential in the Modelica
“approach" towards modeling of different facets of energy
systems. In this context, OpenIPSL aims to contribute
to this growing body of Modelica libraries providing an
open source and Modelica-based resource to address en-
ergy system needs. OpenIPSL offers different power grid
component models with specific characteristics, such as
a synchronous generator, excitation system, turbine gov-
ernor/prime mover, power system stabilizer, load models,
transformers, transmission line models, control unit, and
so on, enabling modeling of power system dynamic mod-
eling for generation, transmission and distribution systems
(Castro et al. 2023).

This work aims to expand the existing capabilities of
OpenIPSL by introducing the modeling of three new com-
ponents using Modelica language and OpenIPSL library
that are available in PSS®E and are required by the North
American Electric Reliability Corporation (NERC) for the
modeling of real-world power plants in the United States.
Targeting specific power generation facilities in the East-
ern Interconnection of the United States, new models of
generators (GENTPJ), excitation systems (ESURRY), and
prime movers (WPIDHY) that contain unique character-
istics in terms of design, response, and functionality, are
presented herein.

The specific contributions of this paper are:

• A Modelica language-based implementation of new
and representative power generators, excitation sys-
tems, and prime mover models. These models will
be included in the future release of the open-source
OpenIPSL library.
Generator (GENTPJ): A recent synchronous ma-
chine model (Birchfield et al. 2017) allowing the rep-
resentation of sub-transient saliency and containing a
much more complex saturation representation than ex-
isting models. Although being used by utilities and be-
ing available in the PSS®E software, this newer model
is not currently in the IEEE standards. This model ad-
dresses some of the limitations of widely used GEN-
ROU and GENSAL models.
Excitation System (ESURRY): This model is spe-
cialized for nuclear power plants in North American
Utilities.
Turbine Governor (WPIDHY):. This is a special-
ized model called Woodward PID Hydro Governor
(WPIDHY) for hydraulic turbines and their speed con-

trol system used by utilities in the Eastern Interconnec-
tion. It includes a hydro turbine, governor and pen-
stock representation for the modeling of hydro power
plants using Woodward governor control systems. The
model includes a nonlinear gate to power relationship
and a linearized turbine and penstock model.

• Benchmarking the developed models by comparing
the Modelica implementation results with the industry
de facto standard propriety software tool PSS®E.

• A discussion of challenges and a framework for future
development.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the Modelica implementation of the new
electrical machine, excitation system, and turbine & gov-
ernor models. Section 3 discusses the validation approach
and explains the test procedure to test each of the compo-
nents in the SMIB and multi-machine system. Section 4
describes the simulation results and discusses the valida-
tion results. Finally, Section 5 concludes the paper.

2 Modelica Implementation
In modeling power system components, it is critical to
have a comprehensive understanding of the model’s speci-
fications and conceptual framework for its derivation. This
understanding is largely domain-specific and gives a guide
in the identification of relevant equations and/or block di-
agrams that accurately describe the system’s dynamic be-
havior. Once these equations and/or block diagrams have
been identified, they can be used to construct a model in
Modelica.

One important stage in the modeling process is to deter-
mine how to initialize the model, which involves specify-
ing how the initial values of the model’s variables should
be determined. After initialization, the model should
be subjected to a software-to-software validation test, in
which it is compared to a reference result (Otter et al.
2022) to ensure that the model’s inputs and outputs are
consistent with its specifications. This test is crucial in
verifying the model’s accuracy and ensuring it behaves as
intended.

In summary, modeling a system requires a clear under-
standing of its specifications and conceptual framework,
identification of relevant equations and/or block diagrams,
construction of the model in Modelica, initialization, and
validation through software-to-software testing.

In this article, the process summarized above is ap-
plied to three components used for the modeling of power
generation systems in the Eastern Interconnection of the
US. Namely, the components are: a generator GENTPJ
(as GENTPJU1 in PSS®E), an excitation system ES-
URRY, and a turbine governor WPIDHY. The components
have been modeled using Modelica language and verified
against PSS®E. The model is presented as block diagrams
in PSS®E’s manual, which is used along with other liter-
ature to start the implementation in Modelica using de-
veloped components available in Modelica Standard Li-
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brary and OpenIPSL. These components were already de-
veloped and modeled in PSS®E.

2.1 Synchronous Machine (GENTPJ)
The Western Electricity Coordinating Council (WECC)
has historically used the GENROU model to simulate
round-rotor synchronous generators (used in steam- and
gas-turbine power plants) and the GENSAL model to
simulate salient-pole synchronous generators (used in hy-
dropower plants). In recent years, WECC has begun to
use the GENTPF model for round-rotor generators and a
modified version of the GENTPF model called GENTPJ
for salient-pole generators (Pourbeik et al. 2016). The
GENTPJ model was first developed by (J. Undrill 2012)
by introducing a new parameter Kis, which is a scalar
multiplier of total stator current. Finally, NERC issued
a “Modeling Notification(North American Electric Reli-
ability Corporation 2018),” in November 18, 2016, rec-
ommending to use the GENTPJ model for new model-
ing of salient pole generators and future (re)verification
of salient pole generator models.

Using GENTPJ, each synchronous machine is modeled
in its rotor reference frame, i.e., rotating at the speed of
the rotor. The electric source is represented by equations
of the flux behavior in orthogonal dq-axes. When the sys-
tem containing the generator model is subjected to a dis-
turbance this results in an imbalance between the power
generated and consumed, which in turn results in a speed
deviation from its synchronous reference at the machine.
Therefore, all of the machine variables are transferred to
the synchronous reference frame.

The synchronous machine is implemented using Mod-
elica in Dymola software by using the equations listed in
(Pourbeik et al. 2016; Olive 1968; J. M. Undrill 1969).
The GENTPJ model is similar to the GENROU, GEN-
SAL, and to GENTPF, except the saturation function uses
the Kis term. More details regarding the saturation func-
tion in the original 2007 and current 2012 specification are
discussed in a presentation by BC Hydro (Cui 2022). The
reader is refereed to (Zhang et al. 2015) for a discussion
on the Modelica implementation of GENROU and GEN-
SAL included in OpenIPSL. The equations that are used
to implement the GENTPJ model using Modelica and the
OpenIPSL library are listed in the Appendix. The mean-
ing of the symbols are specified to (Schulz 1975; Kundur
1994), and they are discussed in (Pourbeik et al. 2016)
and in the Modelica implementation within the annota-
tions and comments in the Appendix.

Finally, it should be noted that when Kis = 0, GENTPJ
can be used to represent the WECC Type F generator
model, GENTPF.

2.2 Excitation System (ESURRY)
The excitation system is an essential component of a
power generator, providing the necessary voltage/current
to excite the generator’s field winding. The ESURRY
model can be seen as a modified version of the IEEE Type

Figure 1. Block diagram of ESURRY from PSS®E (PTI 2017),
corrected by adding the purple arrow circled in red.

AC1A (“IEEE Recommended Practice for Excitation Sys-
tem Models for Power System Stability Studies” 2016) ex-
citation system that was developed in PSS®E, and it is
used to model the specialized excitation system in syn-
chronous machines at nuclear power plants.

The ESURRY model, as shown in Figure 1, consists
of a non-controlled rectifier and an alternator. The model
has three inputs: the generator terminal voltage, ECOMP,
generator field current, IFD, and an input for power sys-
tem stabilizer (PSS) signal, VS. The model’s output is the
exciter field voltage, EFD , which is connected to the syn-
chronous machine.

The non-controlled rectifier in the ESURRY model is
responsible for rectifying the generator’s output voltage
and producing a DC voltage that is applied to the exciter’s
field winding. The alternator generates a small AC voltage
that controls the rectifier’s firing angle.

The ESURRY model also includes an input signal to
couple a power system stabilizer (PSS), which dampens
the generator’s response to disturbances. The input sig-
nal provided by the PSS modulates the exciter’s output
voltage in response to system frequency or electrical load
changes. This exciter model is implemented in Modelica
using a block diagram, however, the implementation was
challenging as detailed information or documentation to
the different functions within the blocks were not avail-
able. During this study, a connection error was identified
in the PSS®E reference manual that is corrected in this
article with its location marked in Figure 1 in red2, and
the corrected diagram is shown in Figure 2. Note that the
initialization equations are implemented in the text layer
within the initial equation section of the model
and therefore are omitted in the Figure.

2.3 Turbine Governor (WPIDHY)
The primary frequency control of synchronous machines
is a critical function of a power plant. The governor
achieves this by adjusting the mechanical power output

2The error is a missing input signal VE used in the computation of
IN in the lower right corner of the diagram. The correction is shown as
a purple arrow, added to the diagram taken from the manual.
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Figure 2. Implementation of ESURRY in Modelica using the
OpenIPSL.

of the turbine in response to changes in electrical load or
disturbances on the system.

The WPIDHY model, as shown in Figure 3, considers
the rotor speed deviation ∆ω , electric power PELEC, and
reference power PREF as input signals. These signals are
used to determine the mechanical power PMECH to be
applied to the generator. The model uses a proportional-
integral-derivative (PID) control scheme. The PID con-
troller compares the generator’s speed with a predefined
reference and adjusts the mechanical power output to
maintain the desired frequency. Similar to ESURRY, the
Modelica implementation was carried out using a block
diagram, as shown in Figure 4. Note that the initialization
equations were implemented in the text layer within the
initial equation section of the model and there-
fore are omitted in Figure 4.

In Figure 3 after the integrator, a graph shows the re-
lationship between gate position (X − axis) and the tur-
bine governor’s corresponding output per unit (Y −axis).
Each data point signifies a unique mapping between the
gate’s position and power output. In the graph, the tur-
bine generates no power starting at the zero gate posi-
tion (MBASE = 0). As the gate opens towards its max-
imum extent (one), the turbine reaches its peak capac-
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Figure 3. Block diagram of WPIDHY from PSS®E (PTI 2017).

Figure 4. Implementation of WPIDHY in Modelica using the
OpenIPSL

ity and produces the maximum possible per unit output
(MBASE = P3). Between these two points lies a range of
gate positions and their accompanying power outputs.

The curve shows an exponential rise in power output
between the zero gate position and G1 gate position. At
Gate Position G1, the power output rises sharply before
leveling off around Gate Position G2. Beyond Gate Posi-
tion G2, minor variations in gate position yield only min-
imal gains in power output. Finally, the curve approaches
the maximum power output (MBASE = P3) as the gate ap-
proaches its whole opening (one).

This graph serves multiple analysis purposes:
• It enables analysis of the minimum gate position

needed to generate electricity G1.
• It identifies the optimal gate position for maximum

power output G2.
• It suggests appropriate gate settings based on desired

power output levels between G1 and G2.
Overall, understanding this graph is necessary for the

effective modeling of hydro turbines with non-linear gate-
to-power relationships, as in the case of WPIDHY.

3 Model Validation
3.1 Model Validation Procedure
In this paper, we followed the model validation approach
according to (Laera et al. 2022), which is summarized as
follows:
• Obtain the steady state computation results of a power

flow solution in PSS®E.
• Export the results and provide them as initial guess

values to solve the initialization problem of the cor-
responding SMIB in the Modelica-compliant software
tool.

• Define the scenario for the dynamic simulation in both
tools and run a dynamic simulation of the SMIB or
other test system in both software.
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• Choose the quantities to compare and export them in
the appropriate format to be used in another tool, for
example, CSV Compare (https://github.com/
modelica-tools/csv-compare) or funnel
(https://github.com/lbl-srg/funnel).

• Use a tool (e.g. CSV Compare or funnel) to quan-
tify the discrepancies between the simulation software
tools after defining an acceptable tolerance level.

• The validation is complete if the errors between the
quantities to compare are within the tolerance band.

• If the errors are more significant than the defined tol-
erance, then more model debugging is required.

• Compare the implemented model’s sub-component in-
puts, outputs, and states with the analogous signals
from the SMIB in PSS®E.

• Continue the iterative process until the signal differ-
ence is lower than the tolerance.

In the sequel, the model validation procedure described
above is applied to perform a software-to-software val-
idation of the models implemented in Modelica against
PSS®E using two types of test systems.

3.2 Test in SMIB Models
The Single-Machine Infinite-Bus (SMIB) model is a sim-
plified representation of a power network typically used
to analyze the interconnection of generation facilities to
the rest of the grid. The SMIB model includes one gen-
erator, one infinite bus, several transmission lines and/or
transformers. Figures 5, 6 and 7 show the implementation
of the test system, one for each of the components under
test, all of which are located on the left side of the Figures,
close to bus GEN1.

In Figures 5, 6 and 7, the infinite bus is modeled with
a GENCLS machine with constant voltage and high in-
ertia. It is connected to bus GEN2 to represent the in-
terconnection to a stiff network. In contrast, the genera-
tor connected at bus GEN1 is composed of synchronous
machine: GENTPJ in Figure 5, GENROU in Figure and
GENSAL in Figure 7. When validating ESURRY, in Fig-
ure 6, this fast static excitation system model is added to
the GENROU model. Meanwhile, to validate WPIDHY,
this turbine and governor model is added to a GENSAL
model.

To verify the simulation, the power network is per-
turbed during the simulation. To this end a three-phase-
to-ground fault is applied on bus FAULT to the models in
Figures 5, 6 and 7.

3.3 Test using a Real Power Plant Model
To further validate the developed models (GENTPJ, ES-
URRY, and WPIDHY), we perform the validation test of a
power plant composed by two generators, connected to a
similar network as used before, as shown in Figure 8. This
simple model is representative of a specific generation sta-
tion in the Eastern Interconnection of the US. According
to Figure, this test system has two generation units, each

Figure 5. Implementation of the SMIB system to test GENTPJ
in Modelica using the OpenIPSL.

Figure 6. Implementation of the SMIB system to test ESURRY
in Modelica using the OpenIPSL.

consisting of a machine, an excitation system, a turbine
governor, and a PSS. In Figure 8, the generators are con-
nected to two buses, and then through a transformer, they
are connected to the SMIB network we discussed earlier.

4 Results
To perform software-to-software validation of the newly
implemented components in Modelica, we performed
simulations in a simple SMIB network and multi-machine
test system in both Dymola and PSS®E. In all simulation
scenarios, a three-phase bus fault is applied to the FAULT
bus at t = 2s and cleared at t = 2.15s.

In the case of the unit test models in Figures 5, 6 and 7,
simulation results are shown in Figures 9, 10, and 11, re-
spectively. These results show the successful validation
of individual components that are implemented for this
work, i.e., GENTPJ, ESURRY and WPIDHY. These fig-
ures show that the Modelica implementation can produce
the same results as PSS®E. Here we can see the genera-
tor terminal voltage, exciter field voltage, and mechanical
power of the turbine governor for the models GENTPJ,
ESURRY, and WPIDHY perfectly match the PSS®E for
both steady state and dynamic response.

In the case of the real power plant model, Figures 12,
13, and 14 depict the Dymola vs. PSS®E validation re-
sults through the steady state and dynamic response of
generator terminal voltage, active, reactive power, speed
deviation, and exciter field voltage for the system in Fig-
ure. 8. Similar to the SMIB test system, the response

Session 6-C: Other industrial applications, such as electric drives, power systems, aerospace, etc. 3

DOI
10.3384/ecp204653

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

657



Figure 7. Implementation of the SMIB system to test WPIDHY
in Modelica using the OpenIPSL.

Within G1 and G2

ESURRY

WPIDHY

Figure 8. Implementation of the real world power plant model
in Modelica using the OpenIPSL.

match that of PSS®E response; however, a small mis-
match starts during the fault period. From these figures,
we can see the mismatch starts disappearing at t = 4.5s,
and after that, the dynamic response is the same in both
Dymola and PSS®E. This difference is attributed to the
differences on how the PSS®E handles the equations dur-
ing the fault event, which are unknown to the authors.

5 Conclusion and Future Work
The detailed implementation of new power system com-
ponent models used by North American utilities using
the Modelica language, the OpenIPSL, and Dymola has
been documented in this article. This paper summarizes
the Modelica implementation of three power system com-
ponents: a round rotor synchronous machine, an excita-
tion system, and a turbine & governor system. More-
over, the implemented components were tested through
using both the Dymola software and the PSS®E software
for three simple test unit power system models (i.e., the
SMIB) and multi-machine test system model representa-
tive of a power plant in the Eastern Interconnection of the

US. Finally, the simulation results obtained using Dymola
were compared against PSS®E. According to the results
discussed in this paper, the Modelica implementation of
power systems components performs similar to those of
PSS®E. These models need to be tested in various test
model setups to solve any possible issues that have not
yet appeared during this work. Future work includes per-
forming further simulation experiments to detect any re-
maining issues, performing validation and finally integrat-
ing the newly developed models into a future release of
OpenIPSL.

Acknowledgements
This material is based upon work supported in part by Do-
minion Energy, in part by the National Science Foundation
Award No. 2231677, and in part by the U.S. Department
of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Advanced Manufacturing Of-
fice, Award Number DE-EE0009139.

References
Bartolini, A., F. Casella, and A. Guironnet (2019-09). “Towards

Pan-European Power Grid Modelling in Modelica: Design
Principles and a Prototype for a Reference Power System Li-
brary”. In: Proceedings of the 13th International Modelica
Conference. Linköping Electronic Conference Proceedings
157:64. Regensburg, Germany: Modelica Association and
Linköping University Electronic Press, pp. 628–636. ISBN:
978-91-7929-027-6. DOI: 10.3384/ecp19157627.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system libraryupdate 1.5 to iTesla power systems li-
brary (iPSL): A modelica library for phasor time-domain sim-
ulations”. In: SoftwareX 7, pp. 34–36.

Birchfield, Adam B et al. (2017). Impact of Synchronous Gen-
erator Model GENTPJ on System Dynamics. URL: https : / /
adambirchfield.com/cv/gm2017_paper.pdf.

Brown, Tom, Jonas Hörsch, and David Schlachtberger (2017).
“PyPSA: Python for power system analysis”. In: arXiv
preprint arXiv:1707.09913.

Castro, Marcelo de et al. (2023). “Version [OpenIPSL 2.0.0]
- [iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21. DOI: https : / / doi . org / 10 . 1016 / j . softx . 2022 . 101277.
URL: https : / / www. sciencedirect . com / science / article / pii /
S2352711022001959.

Cui, Philip (2022). GENTPJ Model Saturation Function.
WECC MVS Meeting. URL: https : / / nerc . com / comm /
pc / nercmodelingnotifications / use % 20of % 20gentpj %
20generator%20model.pdf.

Franke, Rüdiger and Hansjürg Wiesmann (2014). “Flexible
modeling of electrical power systems–the Modelica Power-
Systems library”. In: Proceedings of the 10th International
Modelica Conference. Linköping Electronic Conference Pro-
ceedings 96:54. Lund, Sweden: Linköping University Elec-
tronic Press, pp. 515–522. ISBN: 978-91-7519-380-9. DOI:
10.3384/ecp14096515.

Guironnet, Adrien et al. (2018-10). “Towards an Open-Source
Solution using Modelica for Time-Domain Simulation of
Power Systems”. In: 2018 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe). DOI: 10 .

Modeling Specialized Electric Power Generators, Excitation Systems and Prime Movers used by North
American Utilities

658 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204653



0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

V
o

lt
a

g
e

 (
p

u
)

(a) Terminal voltage at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
p

e
e

d
 D

e
v

ia
ti

o
n

 (
p

u
)

10-3

(b) Speed deviation at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

P
o

w
e
r 

(p
u

)

(c) Active power at bus GEN1.

Figure 9. Generator terminal voltage, speed deviation, and active power of system in Figure 5.
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(b) Exciter field voltage at bus GEN1.
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Figure 10. Generator terminal voltage, exciter field voltage, and active power of system in Figure 6.
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(b) Speed deviation at bus GEN1.
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(c) Governor’s mech. power at bus GEN1.

Figure 11. Generator terminal voltage, speed deviation, and mechanical power of system in Figure 7.
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(a) Terminal voltage at Bus01.
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(b) Terminal voltage at Bus02.
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(c) Speed deviation at Bus01.

Figure 12. Terminal voltage and speed deviation system in Figure 8.
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Appendix

GENTPJ Mathematical Model

The derivation of the dynamic equations of GENTPJ are
described in detail in (Pourbeik et al. 2016), they are sum-
marized as follows.

The differential equations are,

dE ′
q

dt
=
[
E f d − (1+Sd)Eq1

] 1
T ′

do
,

dE ′
d

dt
=−(1+Sq)

Ed1

T ′
qo
,

dE ′′
q

dt
=−(1+Sd)

(
X ′

d −X ′′
d

Xd −X ′′
d

)
Eq2

T ′′
do
,

dE ′′
d

dt
=−(1+Sq)

(
X ′

q −X ′′
q

Xq −X ′′
q

)
Ed2

T ′′
qo
.

The algebraic equations for the terminal voltage in dq-
axis are given by

Vq = Eq1 +Eq2 − Iqra − Id

(
Xd −Xl

1+ sd
+Xl

)
,

Vd = Ed1 +Ed2 − Idra + Iq

(
Xq −Xl

1+Sq
+Xl

)
.

Meanwhile the auxialiry equations for the dq-axis voltage
behind the transient and sub-transient impedances are de-
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(a) Speed deviation at Bus02.
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(b) Active power at Bus01.
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(c) Active power at Bus02.

Figure 13. The system’s speed deviation and active power in Figure 8.
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(a) Reactive power at Bus01.
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(b) Reactive power at Bus02.
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(c) Field voltage at Bus02.

Figure 14. Reactive power and field voltage of system in Figure 8.

fine, for the q-axis, as

Eq1 = E ′′
q −Eq2 + Id

(
Xd −X ′′

d
1+Sd

)
,

Eq2 =

[
E ′′

q −E ′
q + Id

(
X ′

d −X ′′
d

1+Sd

)](
Xd −X ′′

d
X ′

d −X ′′
d

)
,

and for the d-axis:

Ed1 = E ′′
d −Ed2 − Iq

(
Xq −X ′′

q

1+Sq

)
,

Ed2 =

[
E ′′

d −E ′
d − Iq

(
X ′

q −X ′′
q

1+Sq

)](
Xq −X ′′

q

X ′
q −X ′′

q

)
.

Finally, the terminal voltage magnitude with leakage and
the saturation is defined as:

El =

√
(Vq + Iqra + IdXl)

2 +(Vd + Idra − IqXl)
2

Sd = fS (El) and Sq =
Xq

Xd
fs (El) .

where fs(El) saturation function introduced by quadratic
open-circuit.

GENTPJ Modelica Implementation
Listing 1 presents the Modelica implementation
of GENTPJ. Observe that in addition to depen-
dencies to the Modelica Standard Library, there

are important dependencies to the OpenIPSL. It
is worth to note that the swing equations for the
model are inherited from the base machine class
OpenIPSL.Machines.PSSE.baseMachine, and
therefore are not displayed within the listing below.

Listing 1. GENTPJ Partial Modelica Implementation

model GENTPJ "WECC Type J GENERATOR: ROUND
ROTOR WITH SATURATION ON BOTH AXES."

extends Icons.VerifiedModel;
// Import o f dependenc i e s
import Complex;
import Modelica.ComplexMath.arg;
import Modelica.ComplexMath.real;
import Modelica.ComplexMath.imag;
import Modelica.ComplexMath.abs;
import Modelica.ComplexMath.conj;
import Modelica.ComplexMath.fromPolar;
import Modelica.ComplexMath.j;
import OpenIPSL.NonElectrical.Functions.

SE;

extends BaseClasses.baseMachine(
XADIFD(start=efd0),
delta(start=delta0, fixed=true),
id(start=id0),
iq(start=iq0),
Te(start=pm0),
ud(start=ud0),
uq(start=uq0));
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//Machine parameters
parameter Types.PerUnit Xpq "q-axis

transient reactance ";
parameter Types.Time Tpq0 "q-axis

transient open-circuit time constant"
;

parameter Types.PerUnit Kis "Current
multiplier for saturation calculation
";

Types.PerUnit Epd(start=Epd0) "d-axis
voltage behind transient reactance ";

Types.PerUnit Epq(start=Epq0) "q-axis
voltage behind transient reactance ";

// Machine v a r i a b l e s t a r t v a l u e s
Types.PerUnit Eq1(start=Eq10);
Types.PerUnit Eq2(start=Eq20);
Types.PerUnit Ed1(start=Ed10);
Types.PerUnit Ed2(start=Ed20);
Types.PerUnit Xppdsat(start=Xppdsat0);
Types.PerUnit Xppqsat(start=Xppqsat0);
Types.PerUnit dsat(start=dsat0);
Types.PerUnit qsat(start=qsat0);

// State v a r i a b l e s
Types.PerUnit PSId(start=PSId0) "d-axis

flux linkage ";
Types.PerUnit PSIq(start=PSIq0) "q-axis

flux linkage ";
Types.PerUnit PSIppd(start=PSIppd0) "d-

axis subtransient flux linkage ";
Types.PerUnit PSIppq(start=PSIppq0) "q-

axis subtransient flux linkage ";
Types.PerUnit PSIpp "Air-gap flux ";
Types.PerUnit XadIfd(start=efd0) "d-axis

machine field current ";

protected
parameter Complex Zs=R_a + j*Xppqsat0 "

Equivalent impedance";
parameter Complex VT=v_0*cos(angle_0) + j

*v_0*sin(angle_0) "Complex terminal
voltage";

parameter Complex S=p0 + j*q0 "Complex
power on machine base";

parameter Complex It=real(S/VT) - j*imag(
S/VT) "Complex current, machine base"
;

parameter Complex Is=real(It + VT/Zs) + j

*imag(It + VT/Zs) "Equivalent
internal current source";

parameter Complex PSIpp0=real(Zs*Is) + j

*(imag(Zs*Is) - id0*(Xppqsat0-
Xppdsat0)) "Sub-transient flux
linkage in stator reference frame";

parameter Types.Angle ang_PSIpp0=arg(
PSIpp0) "flux angle";

parameter Types.Angle ang_It=arg(It) "
current angle";

parameter Types.Angle ang_PSIpp0andIt=
ang_PSIpp0 - ang_It "angle difference
";

parameter Types.PerUnit abs_PSIpp0=abs(
PSIpp0) "magnitude of sub-transient
flux linkage";

parameter Complex Z = R_a+j*Xl;
parameter Complex PSIag= real(VT+Z*It) +

j*(imag(VT+Z*It));
parameter Real dsat0=1+SE(

(abs(PSIag)+Kis*sqrt(id0*id0+iq0*iq0)
),

S10,
S12,
1,
1.2) "To include saturation during

initialization";
parameter Real qsat0=1+(Xq/Xd)*SE(

(abs(PSIag)+Kis*sqrt(id0*id0+iq0*iq0)
),

S10,
S12,
1,
1.2) "To include saturation during

initialization";
parameter Real a=(abs(PSIag))*dsat0;
parameter Real b=(It.re^2 + It.im^2)

^0.5*(Xppdsat0-Xq);
// I n i t i a l i z i o n r o t o r ang l e p o s i t i o n
parameter Types.Angle delta0 = ang_PSIpp0

+ atan(b*cos(ang_PSIpp0andIt)/(b*sin
(ang_PSIpp0andIt) - a)) "initial
rotor angle in radians";

parameter Complex DQ_dq=cos(delta0) - j*
sin(delta0) "Parks transformation,
from stator to rotor reference frame"
;

parameter Complex PSIpp0_dq=PSIpp0*DQ_dq
"Flux linkage in rotor reference
frame";

parameter Complex I_dq=conj(It*DQ_dq); //
"The t e r m i n a l c u r r e n t i n r o t o r
r e f e r e n c e frame "

parameter Types.PerUnit PSIppq0=imag(
PSIpp0_dq) "q-axis component of the
sub-transient flux linkage";

parameter Types.PerUnit PSIppd0=real(
PSIpp0_dq) "d-axis component of the
sub-transient flux linkage";

// I n i t i a l i z a t i o n o f c u r r e n t and v o l t a g e
components i n r o t o r r e f e r e n c e frame (
dq−axes ) .

parameter Types.PerUnit iq0=real(I_dq) "q
-axis component of initial current";

parameter Types.PerUnit id0=imag(I_dq) "d
-axis component of initial current";

parameter Types.PerUnit ud0=(-PSIq0) -
R_a*id0 "d-axis component of initial
voltage";

parameter Types.PerUnit uq0=PSId0 - R_a*
iq0 "q-axis component of initial
voltage";

// I n i t i a l i z a t i o n c u r r e n t and v o l t a g e
components i n synchronous r e f e r e n c e
frame .

parameter Types.PerUnit vr0=v_0*cos(
angle_0) "Real component of initial
terminal voltage";

parameter Types.PerUnit vi0=v_0*sin(
angle_0) "Imaginary component of
initial terminal voltage";
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parameter Types.PerUnit ir0=-CoB*(p0*vr0
+ q0*vi0)/(vr0^2 + vi0^2) "Real
component of initial armature current
(system base)";

parameter Types.PerUnit ii0=-CoB*(p0*vi0
- q0*vr0)/(vr0^2 + vi0^2) "Imaginary
component of initial armature current
(system base)";

// I n i t i a l i z a t i o n mechan ica l power and
f i e l d v o l t a g e .

parameter Types.PerUnit pm0=p0 + R_a*iq0*
iq0 + R_a*id0*id0 "Initial mechanical
power (machine base)";

parameter Types.PerUnit efd0= dsat0*Eq10
"Initial field voltage magnitude";

parameter Types.PerUnit Epq0= PSIppd0 +
id0*(Xpd-Xppd)/dsat0;

parameter Types.PerUnit Epd0= -PSIppq0 -
iq0*(Xpq-Xppq)/qsat0;

parameter Types.PerUnit Eq10= ((-1)*
PSIppd0*(Xd-Xpd) + Epq0*(Xd-Xppd))/(
Xpd-Xppd);

parameter Types.PerUnit Ed10= (PSIppq0*(
Xq-Xpq)+Epd0*(Xq-Xppq))/(Xpq-Xppq);

parameter Types.PerUnit Eq20= (PSIppd0-
Epq0+id0*((Xpd-Xppd)/dsat0))*((Xd-
Xppd)/(Xpd-Xppd));

parameter Types.PerUnit Ed20= (-PSIppq0-
Epd0-iq0*((Xpq-Xppq)/qsat0))*((Xq-
Xppq)/(Xpq-Xppq));

// I n i t i a l i z e rema in ing v a r i a b l e s :
parameter Types.PerUnit Xppdsat0=((Xppd-

Xl)/dsat0)+Xl;
parameter Types.PerUnit Xppqsat0=((Xppq-

Xl)/qsat0)+Xl;
parameter Types.PerUnit PSId0=PSIppd0 -

Xppdsat0*id0;
parameter Types.PerUnit PSIq0=PSIppq0 -

Xppqsat0*iq0;
// Constants
parameter Real CoB=M_b/S_b "Constant to

change from system base to machine
base";

initial equation
der(Epd) = 0;
der(Epq) = 0;
der(PSIppd) = 0;
der(PSIppq) = 0;

equation
// I n t e r f a c i n g outputs with the i n t e r n a l

v a r i a b l e s
XADIFD = XadIfd;
ISORCE = XadIfd;
EFD0 = efd0;
PMECH0 = pm0;
// D i f f e r e n t i a l equa t i on s
der(Epq) = (1/Tpd0)*(EFD - XadIfd);
der(Epd) = (1/Tpq0)*(-1)*qsat*Ed1;
der(PSIppd) = -(dsat)*((Xpd-Xppd)/(Xd-

Xppd))*(Eq2/Tppd0);
der(PSIppq) = (qsat)*((Xpq-Xppq)/(Xq-Xppq

))*(Ed2/Tppq0);
Te = PSId*iq - PSIq*id;
// Unsaturated a i r −gap f l u x

PSIpp = sqrt((uq+iq*R_a+id*Xl)*(uq+iq*R_a
+id*Xl)+(ud+id*R_a-iq*Xl)*(ud+id*R_a-
iq*Xl));

// Sa tu r a t i on on d−a x i s
dsat=1+SE(

((PSIpp+Kis*sqrt(id*id+iq*iq))),
S10,
S12,
1,
1.2);

// Sa tu r a t i on on q−a x i s
qsat=1+(Xq/Xd)*SE(

((PSIpp+Kis*sqrt(id*id+iq*iq))),
S10,
S12,
1,
1.2);

// A u x i l i a r y Equat ions
Eq1= ((-1)*PSIppd*(Xd-Xpd) + Epq*(Xd-Xppd

))/(Xpd-Xppd);
Ed1= (PSIppq*(Xq-Xpq)+Epd*(Xq-Xppq))/(Xpq

-Xppq);
Eq2= (PSIppd-Epq+id*((Xpd-Xppd)/dsat))*((

Xd-Xppd)/(Xpd-Xppd));
Ed2=-(Epd+PSIppq)*((Xq-Xppq)/(Xpq-Xppq))-

iq*((Xq-Xppq)/qsat);
// F i e l d Current
XadIfd = dsat*Eq1;
// Flux and sa t u r a t e d induc tance s
Xppdsat=((Xppd-Xl)/dsat)+Xl;
Xppqsat=((Xppq-Xl)/qsat)+Xl;
PSId=PSIppd - Xppdsat*id;
PSIq=PSIppq - Xppqsat*iq;
// Terminal v o l t a g e
ud = (-PSIq) - R_a*id;
uq = PSId - R_a*iq;

end GENTPJ;
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PEM Fuel Cells using Modelica

Jakob Trägner1 Steffen Heinke1 Wilhelm Tegethoff1 Jürgen Köhler1

1Institut für Thermodynamik, TU Braunschweig, Germany, {j.traegner,s.heinke, w.tegethoff,
j.koehler}@tu-braunschweig.de

Abstract
Degradation of the catalyst layer is a major challenge for
the commercialization of polymer electrolyte membrane
fuel cells (PEMFCs). Numerical modeling helps to under-
stand and analyze the degradation phenomena, to transfer
results from accelerated stress tests (ASTs) to real ap-
plications and to optimize operating conditions regarding
degradation. We implemented a typical catalyst degrada-
tion model for platinum used in literature in Modelica. A
numerical analysis shows the problem of “stiffness” for
these models, meaning the tremendous difference in time
constants. Assuming the platinum ion concentration in
the ionomer to be in quasi-equilibrium helps to reduce
the “stiffness”, increases simulation speed and numerical
robustness without any relevant inaccuracy. For a typical
AST, the simulation speed can be more than doubled end-
ing in a real-time factor of over 1,000. Thus, 500 hours of
AST can be simulated within less than 30 minutes, which
gives room for extensive analysis with the model.
Keywords: PEM Fuel Cells, Catalyst Degradation, Stiff
System, Time Constants, quasi-equilibrium

1 Introduction
Polymer electrolyte membrane fuel cells (PEMFCs) are
a promising technology which provides locally CO2-free
electrical energy. Their usage, e.g. in electric aircraft
or fuel cell electric vehicles (FCEVs) can contribute to
the announced aim of climate neutrality (European Union
2021).

PEMFCs use hydrogen at the anode and oxygen at
the cathode to produce water, electrical energy and heat
through the hydrogen oxidation reaction (HOR) and oxy-
gen reduction reaction (ORR):

H2
HOR−−−→ 2H++2e−, (1)

0.5O2 +2H++2e− ORR−−→ H2O, (2)
H2 +0.5O2 −−→ H2O. (3)

Figure 1 shows a schematic PEMFC. The HOR and
ORR take place at the catalyst layers (CLs), which are
placed on the membrane. In commercial PEMFCs, plat-
inum or platinum alloys are used as catalyst material. Be-
sides the catalyst particles, the CL consists of a porous

e−

e−
e−

e−
H+

H+

Anode Cathode
Electrolyte

H2O

H2

O2

Excess
fuel out

Fuel in Air in

Electric current

x

z
y

Unused
air, water,
and heat

Figure 1. Schematic illustration of a PEMFC (Figure based on
Proton Exchange Fuel Cell Diagram by Mattuci licensed under
CC0 1.0 Universal Public Domain Dedication)

support material, typically carbon, and the ionomer. The
latter allows the transport of protons.

Platinum is costly and its degradation is a main con-
tributor to PEMFC performance loss (Borup et al. 2020).
To reduce costs and nevertheless keep the efficiency high,
very small platinum particles in the range of nanometres
are used, which have a high surface area to mass ratio.
Those small particles are known to be less stable than
bulk material and, hence, more prone to electrochemical
platinum dissolution:

Pt←−→ Pt2++2e−. (4)

Platinum ions (Pt2+) migrate through the ionomer to
larger particles. That is why smaller particles are getting
smaller and finally completely dissolute, while larger par-
ticles are growing. The size dependency of the platinum
dissolution (Gibbs-Thomson effect) leads to the so-called
electrochemical Ostwald-Ripening (Wagner 1961; Shao-
Horn et al. 2007). The platinum surface decreases for a
constant platinum mass in the catalyst layer, since larger
particles have a lower surface to mass ratio. Figure 2
shows a schematic representation of this phenomena. The
reduced catalyst surface area leads to increased activation
losses (Zihrul et al. 2016; Bernhard et al. 2023), increased
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Figure 2. Schematic visualization of electrochemical Ostwald-Ripening. Smaller platinum particles are more prone to electro-
chemical dissolution, while platinum ions tend to re-deposit on larger particles. The increase of average particle size leads to a
decreased platinum surface and accordingly lower cell voltage and fuel cell efficiency.

oxygen transport resistances in the catalyst layer (Gres-
zler, Caulk, and Sinha 2012) and, hence, reduced cell
voltage and efficiency.

Different groups have implemented catalyst degrada-
tion models for PEMFCs. Most of them use the kinetic
model for platinum oxidation and dissolution initially pro-
posed by Darling and Meyers (2003). Bi and Fuller (2008)
and Darling and Meyers (2005) calculated the platinum
dissolution not only for one but two particle groups with
different radii which allowed to describe the reduction of
electrochemical surface area (ECSA) for the first time.
Later, Holby and Morgan (2012) calculated the platinum
dissolution for a particle size distribution (PSD) approx-
imated by several particle groups which allowed to de-
scribe the loss of ECSA more precisely. Li et al. (2015)
used a similar model approach with a 1D through-plane
(x-axis direction in figure 1) discretized CL. Schneider et
al. (2019) added other degradation mechanisms like car-
bon corrosion and cathodic dissolution, i.e. dissolution
during a reduction of potential, to the model. Jahnke
et al. (2020) coupled the degradation model with a 2D
along-the-channel (x and z-axis direction in figure 1) fuel
cell model. Other contributions came from, among oth-
ers, Rinaldo, Stumper, and Eikerling (2010), Zhang et al.
(2013), Ahluwalia, Arisetty, Peng, et al. (2014), Kregar et
al. (2019) and Prokop et al. (2019).

A lot of work was done with catalyst degradation mod-
els of the type based on Darling and Meyers (2003). How-
ever, to the best of the authors’ knowledge, we present for
the first time a numerical analysis for these kind of mod-
els and an implementation in the multi-physics modeling
language Modelica. Assuming the platinum ion concen-
tration to be in quasi-equilibrium, we propose a possibil-
ity to increase simulation speed and numerical robustness
without relevant inaccuracies.

2 Modeling of Catalyst Degradation
in PEM Fuel Cells

In the following section, the catalyst degradation model
is described briefly to allow the reader to understand the
differential equations. For the sake of simplicity, the fol-
lowing assumptions were made:

• Anodic platinum dissolution and, thus, Ostwald

ripening is the main irreversible degradation mech-
anism. Neither coalescence nor chemical dissolution
of platinum oxide is part of the model.

• Platinum ion diffusion in the membrane can be ne-
glected. Thus, no Platinum band is forming.

• Platinum oxidation can be described with a simple
one-step reaction mechanism without size effect on
platinum oxidation. Sub-surface oxide is not taken
into account. Thus, no cathodic dissolution takes
place.

• The catalyst is pure platinum and the geometric sur-
face area of the spherical particles is equal to the
ECSA.

• The CL can be described with a 0D model with a
uniform platinum ion concentration in the ionomer.
This assumption is justified due to high electric con-
ductivity (electric potential as the main stressor) and
the high ratio of catalyst surface to ionomer volume.

Platinum particles in the catalyst layers exist with dif-
ferent sizes forming a PSD, which can typically be ap-
proximated by using a log-normal distribution. Figure 3
shows the used PSD. It is approximated using 20 equidis-
tant distributed particle groups between r1 = 0.75nm and
r20 = 3.5nm, where 20 is an arbitrary compromise be-
tween accuracy and simulation speed. The average diam-
eter, standard deviation and platinum loading is based on
the data from Jahnke et al. (2020), see appendix A. All par-
ticles in one group have the same radius and they shrink or
grow due to electrochemical dissolution or re-deposition,
which is called the radial evolution approach (Holby and
Morgan 2012). The surface area of all particles can be
described with the roughness factor rf (catalyst surface
divided by geometric surface of the fuel cell) using the
platinum loading Li

Pt (platinum mass divided by geometric
surface of the fuel cell) of each particle group i:

rf = ∑
i=1

(
3

ρPtri Li
Pt

)
, (5)

Li
Pt =

4
3

πρPttCL(ri)3ni. (6)
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Figure 3. Initial PSD with continuous log-normal distribution
and discrete particle groups

The radius ri of a particle group changes due to Ostwald
ripening. The volumetric specific number of particles ni,
the platinum density ρPt and the catalyst thickness tCL stay
constant.

Platinum oxidation is assumed to follow the simple one
step reaction proposed by Darling and Meyers (2003).
Oxide coverage might dependent on the particle size.
Ahluwalia, Arisetty, Wang, et al. (2013) measured an in-
creasing coverage with particle size, while most models,
including Darling and Meyers (2003), assume the oppo-
site. That is why no dependency of the oxide coverage
θPtO on the particle size is considered and the platinum ox-
ide coverage can be described with one differential equa-
tion:

dθPtO

dt
=

RPtO

Γ
, (9)

where Γ is the number of active sites on a platinum surface
and RPtO is the reaction rate of platinum oxidation calcu-
lated according to equation 7. All parameters are listed in
table 2.

The proton concentration cH+ used in equation 7 is cal-
culated, according to Darling and Meyers (2003), using
the equivalent weight of the membrane EW, the density
of the dry ionomer ρi,dry, the molar weight of water MH2O
and its density ρH2O:

cH+ =
1

EW
ρi,dry

+
λMH2O
ρH2O

. (10)

The water content λ is calculated according to Springer,
Zawodzinski, and Gottesfeld (1991) and is only a function
of relative humidity.

At high electric potential E, platinum tends to dissolve
in the ionomer. The reaction rate for platinum dissolution
Ri

diss is calculated according to equation 8. The higher the
oxide coverage, the lower the platinum dissolution since
the oxide protects the platinum. In the model, the surface
fraction available for platinum dissolution θav is calculated
by the simple relationship θav = max(0,1− θPtO). The
dissolution leads to an increase of platinum ion concen-
tration cPt2+ in the ionomer of the catalyst layer, which is

described by the differential equation:

εi,CL
dcPt2+

dt
= 4π ∑

(
(ri)2niRi

diss
)
, (11)

where εi,CL is the ionomer volume fraction in the CL.
Small particles are more prone to dissolution, which is

described using a constant surface energy σPt:

Eeq,i
diss = Eeq,bulk

diss − σPtMPt

2riρPtF
. (12)

There seems to be a confusion about the radius depen-
dency of the equilibrium potential for platinum dissolu-
tion in literature. Since the value for σPt is taken from
Darling and Meyers (2003), their formulation is used, too.
However, one can find a factor of 2 or 3 in the numerator
in different publications (Bi and Fuller 2008; Holby and
Morgan 2012; Kaptay 2017; Jahnke et al. 2020).

The radius of the particle group i either shrinks or grows
due to the dissolution rate Rdiss, which adds another differ-
ential equation per particle group to the system of ordinary
differential equations (ODEs):

dri

dt
=
−MPt

ρPt
Ri

diss. (13)

All in all, the model has initially n+2 differential states
where n = 20 is the chosen number of initial particle
groups (see above). The translated model has no nonlinear
system to solve. Table 3 lists all differential states includ-
ing the chosen nominal value within a typical range for
that state.

Using the described radial evolution approach, smaller
particles are getting smaller until they disappear. Since
the equilibrium potential for platinum dissolution (equa-
tion 12) goes to negative infinity for a radius of zero, a
minimum valid radius rmin is defined and set to 0.45nm.
If the radius of a particle group reaches this value, an event
is triggered and the particles “disappear”. Thus, the radius
is set to zero and an integer in the trigger vector is set to
zero which deactivates the corresponding equations, i.e.
equation 12 and 13 for the that particle group.

Listing 1. Event indicating and handling

for i in 1:n_groups loop
when r[i] < r_min then
reinit(r[i], 0);
trigger[i] = 0;

end when;
end for;

Degradation phenomena are typically measured in ac-
celerated stress tests (ASTs). Such an AST is simulated
for a temperature of 80 ◦C, a relative humidity of 80 %
and an electric potential symmetrically changing within
0.5 s between a lower potential limit (LPL) of 0.6 V and
an upper potential limit (UPL) of 0.95 V in a period of
5 s. The simulation was performed with the DASSL solver
and a tolerance of 10−4. Figure 4 shows the result for a
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Table 1. Equations used to describe the reaction rates of platinum oxidation and dissolution

RPtO = kPtO

[
exp
(−ωPtOθPtO

RT

)
exp
(

αPtO,oxzPtOF
RT

(E−Eeq
PtO)

)
−θPtO

(cH+

cref

)2
exp
(−αPtO,redzPtOF

RT
(E−Eeq

PtO)

)]
(7)

Ri
diss = kdissθav

[
exp
(

αdiss,oxzdissF
RT

(
E−Eeq,i

diss

))
−
(cPt2+

cref

)
exp
(
−αdiss,redzdissF

RT

(
E−Eeq,i

diss

))]
(8)

Table 2. Parameter of the catalyst degradation model

Parameter Description Value Unit Literature

cref Reference concentration 1×10−3 molm−3 Darling and Meyers (2003)
Eeq,bulk

diss Equilibrium potential 1.188 V Darling and Meyers (2003)
Eeq

PtO Equilibrium potential 0.765 † V Darling and Meyers (2003)
EW Equivalent weight of the ionomer 1.1 kgmol−1

F Faraday constant 96,485.33 Asmol−1

kdiss Reaction constant 3×10−6 molm−2 s−1 Bi and Fuller (2008)
kPtO Reaction constant 7×10−6 molm−2 s−1 Bi and Fuller (2008)
MPt Molar mass 195×10−3 kgmol−1 Darling and Meyers (2003)

MH2O Molar mass 18.02×10−3 kgmol−1

R Molar gas constant 8.314 Jmol−1 K−1

zdiss Number of electrons 2 1 Darling and Meyers (2003)
zPtO Number of electrons 2 1 Darling and Meyers (2003)

αdiss,ox Transfer coefficient 0.5 1 Darling and Meyers (2003)
αdiss,red Transfer coefficient 0.5 1 Darling and Meyers (2003)
αPtO,ox Transfer coefficient 0.4 1 Bi and Fuller (2008)
αPtO,red Transfer coefficient 0.1 1 Bi and Fuller (2008)

Γ Number of active sites 2.18×10−5 molm−2 Darling and Meyers (2003)
εi,CL Ionomer volume fraction 0.3 1 Bi and Fuller (2008)
ρi,dry Density 2×103 kgm−3

ρPt Density 21.45×103 kgm−3 Darling and Meyers (2003)
σPt Surface energy 2.37 Jmol−1 Darling and Meyers (2003)

ωPtO Interaction parameter 30×103 Jmol−1 Darling and Meyers (2003)

† Takes into account particle size effect according to Darling and Meyers (2003) for a constant particle radius of 2nm.

Table 3. Differential states

State Unit Nom. Description

θPtO 1 1 Platinum oxide coverage
cPt2+ molm−3 10−3 Platinum ion concentration

ri m 10−9 Radius of particles in group i

simulation over 500 operating hours. In figure 4 (a), the
evolution of the radii can be seen. Smaller particles are
getting smaller and finally disappear, while larger particles
are getting larger. The color bar indicates the initial radii
of the particle groups. The electrochemical Ostwald ripen-
ing leads to a reduced catalyst surface, which is shown in
figure 4 (b) expressed as the roughness factor rf. The kinks
are due to the discretization of the PSD. After 500 h of
AST, over 70 % of the initial catalyst surface is lost. This

leads to a decrease of cell voltage and, thus, efficiency of
the fuel cell (both not part of the model).

The loss of electrochemical surface area shown in fig-
ure 4 (b) has the typical characteristic of an high initial
loss followed by a slower degradation, since the platinum
particles radii has increased. Both, qualitative curvature
and quantitative loss is comparable to the available litera-
ture mentioned in section 1. Nevertheless, for quantitative
statements the model parameters in table 2 needs to be
fitted to measurement data.

3 Numerical Analysis
The described irreversible catalyst degradation occurs
over several hundreds or thousand of hours. Thus, the
model should be much faster than real-time for its us-
age, e.g. in prognostic and health management (PHM)
or for the optimization of operating conditions regarding
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Figure 4. Simulation result for an AST over 500 hours. (a)
Radial evolution. (b) Loss of electrochemical surface area ex-
pressed as roughness factor.

lifetime. A numerical analysis of the model may help to
identify differential equations that slow down the simula-
tion and find more efficient numerical formulations.

For that purpose, the linearized state space formulation
is used:

dx
dt

= Ax+Bu, (14)

where A is the state or system matrix, B is the input ma-
trix, x is called state vector and u is called input vector
(Brenan, La Campbell, and Linda Ruth Petzold 1996).

For the described model using SI-units, the typical val-
ues of the differential states differ by several orders of
magnitude. Visualizing A could be misleading since high
absolute values are only due to the dimensions. E.g., a
change in particle radius would have a massive impact on
platinum ion concentration, since the particle radii are in
the range of 1×10−9 (m) and concentration in the range of
1×10−3 (molm−3). That is why the state space system is
normalized with respect to the nominal values ni of the
states (see table 3) and a typical height for a changing
input hi:

ẋ1
n1
...

ẋn
nn

=

 a11 . . . a1n
nn
n1

...
. . .

...
an1

n1
nn

. . . ann




x1
n1
...

xn
nn



+


b11

h1
n1

. . . b1n
hn
n1

...
. . .

...
bn1

h1
nn

. . . bnn
hn
nn




u1
h1
...

un
hn

 .

(15)

The input heights were chosen to hE = 0.1V and hT =
10K for the electrical potential and temperature at the CL,
respectively. Neither the diagonal entries of matrix A nor
the eigenvalues change due to this normalization.

The model was linearized and analyzed at typical con-
ditions, i.e. an electric potential of 0.85 V, a temperature
of 80 ◦C and a relative humidity of 80 % after reaching
quasi-equilibrium using the “full linear analysis” method
in Dymola 2023x and the Modelica_LinearSystems2 pack-
age (DLR Institute of System Dynamics and Control
2020). Note, that due to degradation and the changing
PSD no true equilibrium is reached.

Figure 5 shows a graphic visualization of the system
matrix A and input matrix B. Dark gray is associated with
a high absolute value, white are values close to zero or
zero. Positive values are additionally marked as blue.
Both matrices can be interpreted as follows: The column
marks the changing variable (differential state in A or
input in B) and the row marks the normalized change of
derivative. The higher the value (dark gray), the higher
the absolute impact of the changing variable on the state
derivative. Exemplary, all radii have a relatively high im-
pact on the derivation of the platinum ion concentration
but no impact on the oxide coverage, since the oxide cov-
erage does not depend on the particle radii (see section 2).
However, the oxide coverage has an impact on the deriva-
tion of the radii. The impact is positive for small radii
(marked as blue), since an increased oxide coverage leads
to a reduced electrochemical dissolution and, thus, to a
less negative change of particle radii (see equation 8). The
largest absolute value on the main diagonal corresponds
to the platinum ion concentration, indicating that this state
has the smallest time constant.

In matrix B, the big impact of the electrical potential
on all differential states can be seen. As expected and
later further discussed, the impact on platinum ion con-
centration and oxide coverage is much higher than on the
particle radii, since latter are changing much slower due
to degradation.

The matrix A can be used to determine the eigenvalues
λ of the system, since they are the root of

[λ I−A]x = 0 (16)

with the identity matrix I. The eigvals-method from Scipy
in python is used to determine λ .

Table 4 lists the extracted eigenvalues and time con-
stants τ . They are sorted and numbered from smallest to
largest time constant. The eigenvalues can be interpreted
as follows: Number one is associated with the platinum
ion concentration in the ionomer. Number two is asso-
ciated with the platinum oxide coverage. All others can
be interpreted as the particle radii changing due to degra-
dation. This irreversible degradation phenomena is very
slow compared to the fast changing platinum ion concen-
tration and the platinum oxide coverage. Hence, the time
constants are much higher. However, for a system ma-
trix A that is no triangular matrix, the contribution of the
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Figure 5. Visualization of the normalized matrices A and B.
Absolute values of matrix entries are used for color bar. Positive
values are marked blue.

eigenvalue to the continuous states is not unambiguously.
Since 19 out of 22 eigenvalues are positive, the linearized
system is not stable.

Table 4. Eigenvalues and time constants τ of the degradation
model with dynamic platinum ion concentration

# associated Eigenvalue τ [s]

1 cPt2+ −1.5×103 6.7×10−4

2 θPtO −1.7 6.0×10−1

3 ri 2.5×10−4 4.0×103

. . . ri . . . . . .
21 ri 2.1×10−6 4.7×105

22 ri −1.6×10−6 6.3×105

The ratio from largest to smallest eigenvalue is around
109. This large ratio indicates that the system of ODEs is
a so called “stiff system” (T. D. Bui and T. R. Bui 1979).
The problem of “stiffness” is discussed in literature for
several decades. Nevertheless, there is no clear mathemat-
ical definition of “stiffness” (Hairer and Wanner 1991). It
is typically defined as a system where explicit methods
do not work or implicit methods are tremendously better
(Curtiss and Hirschfelder 1952; Ascher and Linda R. Pet-
zold 1998). In this work, we use the ratio from largest to
smallest eigenvalue to quantify the “stiffness”.

Another way to quantify the contribution of the dif-
ferent states to the numerical effort is the analysis of the
states which dominate error or limits step size during in-
tegration. Values extracted from Dymola 2023x for the
previously described simulation (figure 4) are listed in
table 5. It can be seen that the platinum ion concentration
in the ionomer cPt2+ dominates the error and is limiting the
step size.

Table 5. Contribution of the different states to the numerical
effort

state limits step size [%] dominates error [%]

θPtO 0.03 9.07
cPt2+ 99.97 90.93
∑ri 0.00 0.00

4 Increasing Simulation Speed
The platinum ion concentration in the ionomer limits the
step size and, thus, slows down the simulation. This can
be explained with the very small time constant of the
corresponding state, c.f. table 4. It is much smaller than
the typical excitation signal, i.e. the change of temper-
ature, electrical potential or relative humidity in the CL.
Hence, we propose that it should be treated to be in quasi-
equilibrium.

The left side of equation 11 is set to zero to calculate
the platinum ion concentration in quasi-equilibrium:

0 = 4π ∑
(
(ri)2niRi

diss
)
. (17)

The explicit formulation

cPt2+ =
∑

[
(ri)2ni exp

(
αdiss,oxzdissF

RT

(
E−Eeq,i

diss

))]
∑

[
(ri)2ni

cref exp
(
−αdiss,redzdissF

RT

(
E−Eeq,i

diss

))] (18)

does not need to be implemented since Modelica can
handle implicit formulations but might help others to im-
plement it in programming languages that need explicit
formulations. Note, that diffusion of platinum ions into
the membrane (Pt-band) using Fick’s law of diffusion can
be easily integrated in equation 18. The new model uses
equation 17 instead of equation 11. Thus, the model has
n+ 1 differential states and still no nonlinear system of
equations.

Figure 6 shows a comparison between the “classic”
formulation where the platinum ion concentration is a
differential state and the new formulation where the con-
centration is analytically calculated in quasi-equilibrium.
At t = 2s, the electric potential is jumping from 0.6 V to
0.95 V and at t = 4s back to 0.6 V, c.f. figure 6 (a). Figure
6 (b) shows the increasing platinum oxide coverage. The
time constant in the sub-second range can be seen, c.f.
eigenvalue 2 in table 4. Due to platinum dissolution, the
ion concentration suddenly increases (figure 6 (c)). Only
a small deviation between the two variants can be seen,
visualizing the very small time constant for the platinum
ion concentration. The slight increase in concentration be-
tween t = 2s and t = 4s is due to irreversible degradation,
i.e. the changing PSD.

Note, that a potential jump is the scenario with the
highest deviation between both variants. Typically, the
potential is changing ramp-like within a second or more.
Nevertheless, even for the case with potential jumping
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Figure 6. Comparison between the variant with platinum ion
concentration in the ionomer as a differential state (orange) and
in quasi-equilibrium (blue). (a) shows the electric potential, (b)
shows the platinum oxide coverage (same for both variants), (c)
shows the platinum ion concentration and (d) shows the steps
sizes.

from 0.6 V to 0.95 V and vice versa every 2 s, the rf-
loss (loss of electrochemical surface area) after 500 hours
differs less than 0.1 % between both variants (not shown).

Figure 6 (d) shows the step sizes used for integration by
DASSL. It can be seen that the step size is much smaller
for the variant where platinum ion concentration is a dif-
ferential state, especially after the decreasing potential at
t = 4s. Fast and large changes in electric potential with
the “classic” formulation were also leading to situations
where the platinum ion concentration did not converge for
the minimum allowed step size. Those problems did not
occur with the new formulation.

By calculating the platinum ion concentration in the
ionomer in quasi-equilibrium it is possible to get rid of
the smallest time constant and decrease the systems “stiff-
ness”. The ratio from largest to smallest time constant
can be reduced from 9.4×108 to 1.1×106. This helps to
increase simulation speed and numerical robustness mean-
ing less problems with convergence.

To quantify the increase of simulation speed, a real-time
factor is introduced as the ratio of simulation time and
CPU-time. The higher the real-time factor, the faster the
simulation. All simulations were performed on a personal
laptop computer with an AMD Ryzen 7 PRO 4750U (Base
Clock 1.7 GHz). The CPU-time and, thus, the real-time
factor, varies due to other processes on the computer and,
since a solver with variable step size is used, on the chosen
step sizes. The chosen steps are the same for each repeated
identical simulation but can vary dramatically for differ-
ent parameters or inputs. Therefore, 1,000 Monte-Carlo
simulations are performed with different AST-profiles. A
shape-factor is randomly chosen between 0 (square wave
signal) and 1 (triangular wave). LPL is varied between
0.4 V and 0.7 V, UPL between 0.8 V and 1.2 V. The pe-
riod of 5 s is kept constant for a simulation time of 1 h.
Again, DASSL with a tolerance of 10−4 is used.

Figure 7 shows a comparison of the simulation speed
for both variants. The thickness of the violin plots indi-
cates the density of occurrence. The differences in simula-
tion speed within one variant is mainly due to the variation
of the potential profile. The variant with platinum ion
concentration in quasi-equilibrium is much faster. The
simulation time is nearly proportional to the number of F-
evaluations (not shown), i.e. evaluations of the right hand
sight (RHS) of the hybrid ODE. This indicates, again, that
larger step sizes are possible due to the quasi-equilibrium
formulation. In all 1,000 simulated cases, the variant with
platinum ion concentration in quasi-equilibrium is faster
than the dynamic variant (not shown). The average real-
time factor was more than doubled ending in a factor of
approximately 1,260. Thus, 500 hours of AST can be
simulated within 23 minutes.

5 Summary and Discussion
A fast and efficient catalyst degradation model for PEMFC
was introduced using the multi-physics modeling lan-
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Figure 7. Real-time factor, i.e. the ratio of simulated time and
CPU-time, for the variants with dynamic platinum ion concen-
tration and concentration in quasi-equilibrium. The thickness of
the violin plots indicates the density of occurrence.

guage Modelica. The model, predominantly based on
Darling and Meyers (2003), can describe platinum oxide
formation, platinum dissolution and, thus, electrochemi-
cal Ostwald ripening and the reduction of catalyst surface
area.

Using the state space formulation, the system matrix
A and the input matrix B were discussed and the eigen-
values respectively time constants were extracted. The
problem of “stiffness” for this type of degradation model
was discussed, meaning a tremendous difference in time
constants. It was shown, that the time constant for the
platinum ion concentration in the ionomer is much lower
than the typical excitation signal, i.e. the change of the in-
puts temperature and electrical potential. Calculating the
platinum ion concentration explicit in quasi-equilibrium
removes the differential state with the smallest time con-
stant, reduces “stiffness” and increases simulation speed
without creating a nonlinear system of equations or rel-
evant inaccuracies. Using the new formulation, the sim-
ulation speed could be more than doubled ending in an
average real-time factor for a typical AST of over 1,000.
Thus, 500 hours of AST can be simulated within less
than 30 minutes which allows the usage of the model for
extensive parameter studies, PHM and optimization, e.g.
regarding the operating conditions.
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A Initial Particle Size Distribution
The initial PSD (figure 3) is approximated using 20 par-
ticle groups with equidistant distributed radii between
0.75nm and 3.5nm and a log-normal distribution

ni =
n0

riσ
√

2π
exp

(
(ln(ri)−µ)2

2σ2

)
, (19)

where the parameter n0 describes the absolute amount of
platinum particles

n0 =
LPt

∑i=1
4
3 π(ri)3nitclρPt

. (20)

The parameter for the distribution ln(µ) = 1.58×10−9 m,
σ = 0.31, tcl = 20µm and LPt = 0.6mgcm−2 are taken
from Jahnke et al. (2020). The resulting geometric surface
area is 71.2m2 g−1.
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Abstract 
Powertrain performance optimization is one of main 

targets in racecar and road hypercar development. A key 

activity needed for both endothermal and electric 

powertrains is the cooling system sizing through 

simulation to make sure that the temperature limits are not 

exceeded in the most aggressive conditions minimizing or 

avoiding power derating. This article describes the 

implementation of a 1D cooling system simulation model 

integrated with a vehicle multibody model to be used in 

real time in the Dallara dynamic driving simulator with 

human driver. This activity is the result of a collaboration 

between Dallara which uses the model implemented to 

develop and optimize the cooling system architecture of 

its vehicles, and Claytex who develop the libraries used to 

generate these simulation models. The model has been 

validated through comparison with real data of an existing 

vehicle yielding a RMSE of 1.0 °C. 

Keywords: cooling system, fluids temperatures, 

powertrain, derating, real time, simulator.  

1 Introduction 

Considering the complexity of current vehicles, a holistic 

approach to analyse the interactions of vehicle dynamics, 

cooling system dynamics and human drivers in the same 

simulation can be the key to maximize the overall 

performance of a high performance car as demonstrated 

already for many years (Bouvy et al, 2012). 

These needs have led to the development of a 1D 

modular cooling system simulation model which has two 

main targets: 

- To develop for each vehicle project the cooling 

system solution which has the best trade off 

among aerodynamics, packaging, weight and 

motor power (ICE or electric) to reach the max 

vehicle performance. 

- To support the detailed vehicle performance 

analysis on the Dallara driving simulator (Figure 

1) with different boundary conditions such as 

ambient temperatures, initial oil and coolant 

temperatures, human drivers. 

 

 
Figure 1. Dallara dynamic driving simulator (top), vehicle 

model diagram (bottom) 

 

The case study illustrated in this paper refers to an ICE 

vehicle. Starting from the described architecture it can be 

modified in a user-friendly way, to develop a cooling 

system layout for electric and hybrid vehicles. 

  

2 The Library 

The Modelica libraries developed at Claytex are designed 

to be able to include significant levels of model details 

whilst retaining very robust and efficient simulation 

performance characteristics. This is done via careful and 

meticulous development strategies where it’s ensured that 

the models achieve the best possible simulation efficiency 

from full scale system models right down to component 
test level scenarios. The Claytex library contains common 

models that are used in the wide range of libraries 

developed over the past 25 years.  
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2.1 Thermofluids 

The Claytex.Fluid library (figure 2) is suited to real time 

performance for HiL (hardware in the loop) and DiL 

(driver in the loop) applications. It was first applied to 

driver in the loop models in a demonstrator in 2013 where 

the whole F1 vehicle according to the new 2014 specs was 

developed and simulated to test and address a broad range 

of questions. 

The Claytex.Fluid library is based on Modelica.Fluid 

and the Claytex.Media library is based on 

Modelica.Media with some streamlining of the models for 

specific applications and fluid types found in cooling and 

lubrication. A large part of its development is driven by 

customer requirements, especially in terms of data input 

requirements for model parameterisation. This is a 

fundamental advantage as it is therefore tailored to take in 

the datasets that are available without requiring extensive 

calibration of unknown parameters to match test data.  

Because Claytex.Fluid is compatible with 

Modelica.Fluid, this broadens the range of components 

the user has access to for building the fluids system 

models. Below is a snapshot of the top level packages 

within Claytex, Claytex.Fluid and Claytex.Media. 

The modelica libraries used to represent the vehicle model 

are also developed by Claytex. The VeSyMA – 

Motorsports library was used (Claytex). This library 

provides all the required suspension and chassis related 

components to allow the user to build a full multi-body 

suspension vehicle model based on the customisable 

VeSyMA model vehicle architecture templates (Claytex; 

Hammond-Scot et al, 2018).  In a similar way to the fluids 

and media libraries which have been described, all models 

have been designed with mathematical and numerical 

efficiency in mind whilst still capturing all the required 

details. The VeSyMA - Motorsports library is used within 

motorsports series such as Formula 1, NASCAR and 

IndyCar including driver in the loop applications and 

lends itself very well to the study presented in this paper 

(Dempsey, 2016).  

One of the key components in the modelling were the 

heat exchangers. The Heat Exchanger models take in 

tabular data from the user table of Gc values (Heat transfer 

area * heat transfer coefficient) in W/K as a function of 

the actual mass flow rates (kg/s) on the primary side and 

secondary side of the heat exchanger. This value is then 

multiplied by dT, the temperature difference between the 

primary and secondary side inlets to yield the heat flow 

between the primary and secondary fluid. 

𝐻𝐷𝑟𝑎𝑑 = 𝐴 ∙ ℎ ∙ 𝑑𝑇 

 

HDrad = radiator heat dissipation [W] 

A = heat transfer area [m2] 

h = heat transfer coefficient [W/(m2.K)] 

dT = temperature difference of inlet primary and inlet 

secondary [K] 

A∙h = f(m_flow_primary, m_flow_secondary)  
 

 

Figure 2. Claytex (left), Claytex.Fluid (middle) and Claytex.Media (right) library structure. 
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3 The Model 

Figure 4 shows the cooling system model connected to the 

vehicle model and human driver. The ICE power curve of 

the vehicle case study in this paper is affected by coolant 

and oil temperatures which are output of the cooling 

system model according to the graph reported in figure 5. 

The heat rejections and airflow across the radiators are 

function of vehicle speed, throttle and engine speed which 

are output of vehicle model.  

 

 

 

 

 

 

 

 

 

 

 

 

Coolant and oil flow rates are consequences of pumps 

head curves, instantaneous engine speed and pressure 

drops for all components  (ICE, pipes, heat exchangers). 

The fluids (coolant and oil) heat transfer and hence 

temperatures are calculated by the following equations at 

each time step. 

𝐻𝐹𝑛 = 𝐻𝑅𝐼𝐶𝐸𝑛
− 𝐻𝐷𝑟𝑎𝑑𝑛

 

 

𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡𝑛
= 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡𝑛−1 

+
𝐻𝐹𝑛 ∙ (𝑡𝑛 − 𝑡𝑛−1)

𝑇𝐶
 

 

HF = Heat Flow [W] 

HRICE = ICE Heat Rejection [W] 

TC = Thermal capacity [J/K] 

t = time [s] 

 

HF is the instantaneous difference between the heat 

rejection produced by the engine and the heat dissipation 

of the radiators. The thermal capacity [J/K] takes into 

account the total coolant volume, components (ICE, 

radiators, pipes) materials and weight. 

 

3.1 The modular architecture 

The model is composed of multiple air/coolant radiators, 

air/oil coolers and coolant/oil heat exchangers in a 

modular way allowing to study different cooling system 

configurations where coolant and oil are cooled together 

in a single loop or separately in more loops. In each loop 

air/fluid radiators and coolant/oil heat exchanger can be 

arranged in series or in parallel connection. 

In figure 6 is reported the cooling scheme of the Dallara 

ICE vehicle case study of this paper, which is composed 

by two air/coolant radiators and one coolant/oil heat 

exchanger.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. ICE power derating 

 

Figure 3. VeSyMA – Motorsports library top level 

package structure 

 

Figure 4. cooling system interactions with vehicle model and 

human driver 

 

Figure 6. Cooling system of a Dallara vehicle 
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3.2 Parameters 

The model parameters are obtained from CFD simulations 

and experimental tests: 

- The air flow ratio across the radiators is the 

output of dedicated CFD simulations which take 

into account all the vehicle geometry or wind 

tunnel test (Figure 7).  

- The ICE heat rejection is provided by the engine 

manufacturer as function of throttle and engine 

speed (Figure 8). 

- Air/coolant radiator and coolant/oil heat 

exchanger efficiency has been measured by 

experimental tests on the Dallara cooling test rig 

(Figure 9). 

Many coolant radiator specifications have been 

analysed. The chosen radiator specification is the result of 

the best trade off among air pressure drops, coolant 

pressure drops and heat dissipation which ensure the 

optimal cooling operating point for the case study. 

The thermal behaviour of an ICE is defined by its 

capacities, heat transfer and thermal conductivities as well 

as its surrounding conditions (Morawietz at Al, 2005).  

The ICE heat capacity is modeled with a lumped thermal 

element storing heat. This parameter together with the 

amounts of coolant and oil volumes plays an important 

role as it affects the thermal inertia and therefore the time 

before reaching the maximum temperature values 

(Stellato et al, 2017). 

The more coolant in the system and the higher heat 

capacity thus allowing higher vehicle accelerations for 

longer periods of time, before the available ICE power 

decreases for the derating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 7. Typical wind tunnel vehicle test physical model 

Figure 9. Dallara cooling test bench setup (left) and typical results (right)  

Figure 8. ICE power and heat rejection maps 
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3.3 Realtime Features 

The fluids models within the cooling system were set to 

run with fixed step Euler solver at a rate of 1kHz. With the 

exception of some initialization spikes, the turnaround 

time was approximately 0.1ms throughout the desktop test 

runs (figure 10).  

   The desktop runs were performed on a 2.8GHz Core 

I7 processor with SSD giving the confidence of being able 

to run on the hardware used in the PCs in the DiL setup at 

Dallara simulator which has superior characteristics. 

 

The cooling models were compiled with a mixed 

explicit/implicit Euler method with advanced inline 

integration settings using the Claytex library Real-time 

configuration functions to further enhance real time 

perfomance and model robustness. 

Such real time configuration functions also make use of 

flags described in Section 11.3.3 of the Dymola Full User 

Manual. 

It was not necessary to resort to multicore simulation 

for the entire fluids system. In fact there would be enough 

processing power capacity with the aforementioned 

processor spec to also include a full multibody suspension 

model of the vehicle and still run in real time at 1kHz and 

have a physical connector based coupling between the 

cooling system and the vehicle and powertrain systems.  

 

4 Virtual Validation 

The validation was a very important phase of this activity, 

it consisted of the following steps: 

- Implementation of a cooling system architecture 

relative to an existing vehicle. 

- Offline simulation using as inputs the measured 

vehicle speed, throttle, engine speed and ambient 

temperature recorded on the track. 

- Comparison between the simulated coolant 

temperature profile and measured coolant 

temperature profile recorded on the track. 

Figure 11 shows the comparison between the coolant 

temperature profile simulated vs real logged data. The 

maximum CoolTempDiff, defined as 

CoolantTempSimulated - CoolantTempMeasured, is 2.7 

°C, the average is 0.2 °C, RMSE is 1.0 °C. 

 

The results accuracy is considered acceptable to size a 

racecar cooling systems and also for a refined assessment 

of the global vehicle performance on the driving 

simulator.  

In an attempt to further explain the reasons for the 

discrepancy with the real data, a possible explanation lies 

in the fact that the ICE heat rejection computed in the 

simulation transients is the result of an ICE measurement 

at test bench in fully stabilized conditions. Consequently, 

the model doesn’t consider any delay between the throttle 

pedal and the heat rejection produced by the engine. 

Figure 11. Simulated coolant temperature vs real logged data, 

vehicle speed, throttle and ICE speed for the validation case 

 

 

Figure 10. image showing turnaround time of a lap 

simulation of Monza 
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This hypothesis appears confirmed by acknowledging 

that the points with higher CoolTempDiff (+2.2/+2.7 °C 

→ simulated temperature being higher than real) occur 

when ICE is in high speed (>8500) and max throttle, as 

shown in the black circles at time 95s, 190s, 340s, 400s, 

440s. 

This hypothesis appears also validated in the opposite 

direction (low ICE speed and throttle close to zero), when 

the throttle pedal releases and the ICE heat rejection 

dramatically reduces. In this second situation 

CoolTempDiff reaches the minimum values (-2.2/-2.7 °C 

→ measured being higher than simulated) exactly in those  

working points characterized by low ICE speed (<7000) 

and zero or low throttle (<10%), as shown in the purple 

circles at time 160s, 260s, 360s. 

In order to introduce the effect described above, as a 

further step of refinement, a first order filter calibrated 

according to transient test data, could be applied to the 

Heat Rejection maps. 

 

5 Results 

 The simulation model, as developed and validated, is 

currently used at Dallara to size the cooling systems and 

to analyse the vehicle performance on the driving 

simulator for different boundary conditions, human 

drivers and tracks.  

The case study under discussion concerns the global 

vehicle performance of a Dallara car simulated in the 

Driving Simulator facility, driven by a professional driver 

in Monza track (Figure 12). Three different boundary 

conditions, hereinafter referred to as “OUTINGS” (Figure 

13 and 14), are considered and below described: 

OUTING 1  

Air ambient temperature 25 °C, coolant and oil initial 

temperature 89 °C (no precooling), 10 laps. 

OUTING 2  

Air ambient temperature 35 °C, coolant and oil initial 

temperature 80 °C (precooling), 10 laps. 

OUTING 3  

Air ambient temperature 35 °C, coolant and oil initial 

temperature 89 °C (no precooling), 10 laps. 

In all the three outings the vehicle is able to run without 

derating in the first lap.  

OUTING 1 shows that when the ambient temperature 

is 25 °C the vehicle runs all the 10 laps at max ICE power 

without derating.  

OUTING 3 is the most critical case due to the higher 

ambient temperature and the initial fluids (coolant, oil) 

temperature.  

OUTING 2 shows that a precooling phase, which 

implies lower initial coolant and oil temperatures, allows 

the vehicle to run more time with higher power at high 

ambient temperature until it reaches the same stabilized 

conditions of Outing 3. 

The power derating in the stabilized laps of Outing 3 

(ambient temperature 35 °C), due the high coolant and oil 

temperatures, affects the lap time by 2.3 seconds with 

respect to a not de-rated lap. 

All the results reported are marginally affected by the 

human driver who is the same in all 3 outings, but he 

doesn’t drive always exactly in the same way. This can be 

noted in the lap 2 and 3 of outing 1, where despite the 

power derating doesn’t occour the laptime is higher than 

lap 1 and lap 10. 

The precooling considered on the initial fluids 

temperature (coolant and oil) is only 9 °C with respect to 

the case without precooling, so the consequent effect on 

vehicle performance is minimal, it can be noted analyzing 

the power profile in the lap 2. 

As a next step, two configurations (with and without 

precooling) with a larger temperature difference will be 

tested also taking into account the higher friction losses.  

Figure 12. Monza track layout and table results 

 

 

Figure 13. Main results at Monza 
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Figure 14. Speed, temperature and power profiles on the Dallara driving simulator 
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The simulation model, as it is described on this paper, 

allows to put into the equations different sizes of radiators, 

considering not only the thermal effect but also their 

different weight and vehicle aero efficiency.  

For example: a configuration with bigger radiator core 

areas (+15%) is able to improve the laptime by 0.5sec at 

an ambient temperature of 35 °C (predominant thermal 

effect because it massively reduces de-rating), but 

resulted in a 0.3sec slower lap time at an ambient 

temperature of 25 °C (predominant weight increases and 

aero efficiency reduction effects). While a configuration 

with smaller radiator core areas (-15%) resulted slower 

laps at both ambient temperatures of 25 °C (+0.4sec) and 

35  °C (+0.6 sec). 

 

6 Conclusions 

The fluids temperature management in high performance 

vehicles has a crucial impact not only on the reliability but 

also on the performance and drivability. The obvious 

answer to that would land to bigger heat exchangers 

and/or higher air flows, needed to achieve lower fluids 

(coolant, oil) temperatures. But this implies more weight, 

drag and a negative impact on packaging constraints. The 

aforementioned input conditions return a complex and 

often over constrained or multivariable problem and trade 

off. Moreover, depending on the mission of the vehicle 

and on the peculiar driving style it could be more 

interesting to emphasize the “on power” behavior 

(typically more favorite for the “track day” drivers) or the 

“handling” behavior (more important for “professional” 

drivers). The first case requiring bigger radiators targeting 

no derating, the second case requiring an overall weight 

reduction and aero efficiency optimization. 

The implemented and here described simulation model 

is useful to evaluate all these effects together to develop 

the cooling system architecture for every project targeting 

the best trade off to maximize the vehicle performance 

also accounting the driving style and drivability on a 

professional driving simulator with a real driver.   

Powertrain cooling performance is affected by many 

parameters, this simulation model is useful to analyse the 

vehicle performance in each condition of ambient 

temperature, precooling and different human drivers.  

The duty cycle analyzed for the case study is a track lap 

at maximum vehicle performance, but additional critical 

driving cycles can be studied on the simulator with the 

model developed, for example, safety car conditions, pit 

lane or race traffic and grid formation. 

The described case study focuses on the coolant and oil 

cooling system of a high performance naturally aspirated 

ICE vehicle, clearly similar or greater problems and trade 

off occur also for charge air temperature in the case of a 

turbo engine, or in the optimization of an electric 

powertrain performance (Stellato et al, 2017).  

For these reasons, the approach described in this paper, 

can be considered a good method in the optimization of 

different vehicle propulsions (ICE, HEV, BEV, FCV, …). 
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Abstract
Bidirectional DC-DC converters are vital for the integration
of batteries, for the power conversion during (dis)charge
and the battery management. Modeling of these is helpful,
especially for the design of larger, more complex systems
consisting of multiple DC-DC converters in parallel. Due
to the high switching frequencies, the simulation of DC-DC
converters is associated with increased computational time
and effort. In this paper, three models of different com-
plexity and accuracy are proposed for a bidirectional DC-
DC converter consisting of two phase-shifted half-bridges.
Two switching models, which differ mainly in the way the
MOSFETs are driven, account for the individual switching
operations and exhibit high accuracy. An averaging model
replaces the switching elements with current and voltage
sources providing the mean values. The dynamic behavior
of the models is analyzed using the step responses of the
load current. For validation, these are compared with the
theoretical transfer function. The three models are ana-
lyzed comparatively in terms of computational time and
effort. The calculation time of the averaging model has
been reduced by two thirds compared to the strictly com-
plementary switching model and by 96% relative to the
model with diode emulation mode. Recommendations for
the use of the models are given and a possible use case is
shown. Two parallel connected DC-DC converters with
load current sharing between them are simulated using the
averaging model.
Keywords: Bidirectional DC-DC Converter, Averaging
Model, Switching Model, Computational Effort, Modelica,
Half Bridge, Circuit Averaging

1 Introduction
Heterogeneous battery systems combine batteries with dif-
ferences in cell chemistry, nominal capacity, state of health,
state of charge, safe operating area and terminal voltage.
They offer advantages such as increased energy density,
improved efficiency, enhanced safety and flexibility com-
pared to homogeneous systems. Furthermore, they provide
second life batteries a further application with lower re-
quirements regarding dynamics, remaining useful capacity
and internal resistance. Due to the heterogeneity, it is chal-
lenging to ensure reliability, robustness and safety of the
system. Specific requirements arise for the control of the

Figure 1. The bidirectional, half-bridge-based DC-DC converter
is emulated by three different models of varying accuracy.

DC-DC converters: Adjustable current limits are required
and the different input voltages have to be converted to a
common DC output voltage and vice versa. The (dis)charge
current has to be limited according to the battery state and
the safe operating area in order to realize reliable simul-
taneous operation of varying batteries. The total current
is divided among the batteries depending on their state,
which reduces the burden and enables additional possibil-
ities such as state of charge balancing in active operation
without recharging or state of health balancing with the
goal of achieving a common end of life.

The model of the bidirectional DC-DC converter is valu-
able for the analysis of its behavior and performance. It
is the basis for the development of suitable control strate-
gies and enables initial tests of these in parallel operation
of several DC-DC converters. The robustness, safety and
reliability of the system can be investigated. Robustness
is defined as the stability in the presence of disturbances,
safety as the behavior in the event of a fault and reliability
as the system availability in the event of breakdown of
individual components.

In order to consider varying time scales, different ab-
straction levels are required. Three models of a bidirec-
tional, multiphase DC-DC converter based on two half-
bridges are presented (Fig. 1). The behavior of the DC-DC
converter is thereby primarily determined by the power
semiconductors and the passive components. Two switch-
ing models of the DC-DC converter are proposed for de-
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tailed analysis of the switching behavior and are suitable
for relatively short simulation duration. For the system
simulation, an averaging model is proposed which neglects
the individual switching processes. The different models
are described and compared with the calculated transfer
function of the bidirectional DC-DC converter. They are
compared in terms of computational effort and time. Two
averaging models are subsequently connected in parallel as
an exemplary use case and the load current sharing between
two DC-DC converters is simulated.

1.1 Related Work

Existing works on the simulation of DC-DC converters
also propose averaging models, while concentrating on
other aspects, i. e. parameterization of the electrical com-
ponents, reduction of the simulation time, temperature
dependency and losses or testing of control strategies. The
paper (Baumann, Weissinger, and Herzog 2019) focuses on
the system identification of inverters and proposes a novel
model of a bidirectional DC-DC converter which is valid
for different frequency ranges. Special focus is given to the
identification and parameterization of the electrical compo-
nents. In article (Navarro et al. 2020), a continuous-time
linearized model of a non-isolated bidirectional half-bridge
DC-DC converter corresponding to the state-space averag-
ing method is proposed. The key contribution hereby is the
reduction of the time complexity. In the paper (Spiliotis
et al. 2019) an electrical-thermal model of a DC-DC boost
converter is developed. It focuses on the analysis of the
temperature dependence on the losses of the converter. In
contribution (Winter et al. 2015), a simplified averaging
model of a synchronous half-bridge converter is presented,
which shows the losses and the dynamic behavior without
the need to simulate every switching process of the power
semiconductors. An averaging model of a half-bridge con-
verter, more precisely a two-stage DC-AC voltage source
converter, is proposed in (Laera et al. 2020). The key topic
is the test of different control strategies and their effects on
the model behavior. It demonstrates that averaging models
can lead to control parameters which cannot be successfully
transferred to real power electronic components.

1.2 Main contributions

Two switching models with different accuracy levels and
varying control of the MOSFETs and an averaging model of
a half-bridge based, multiphase DC-DC converter are pro-
posed. A novel model with diode emulation is developed.
The averaging model is based on the circuit averaging tech-
nique and uses equivalent circuits. Another novelty is the
possibility of efficient switching between the three pro-
posed models. Thus, the diverse behavior of the models
according to the simulation objective, e.g. testing of con-
trol strategies, can be taken into account. The simulation
especially focuses on testing the control strategies and load
sharing between DC-DC converters connected in parallel.

2 Bidirectional DC-DC Converter
A bidirectional, multiphase DC-DC converter is used for
the implementation of the power flow in (dis)charge di-
rection. Depending on the direction of the current flow,
it operates in boost or buck mode. The utilized DC-DC
converter consists of two half-bridges (Fig. 2) connected
in parallel, between which the current is symmetrically
divided. This decreases conduction losses, which in turn
has a positive effect on the thermal behavior of the com-
ponents. Additionally, it allows a larger power range with
significantly smaller devices. The two signals for driving
the half-bridges are phase-shifted by 180◦. This consider-
ably lowers the current ripple that has to be smoothed by
the output capacitance (Alharbi et al. 2019; Schuck and
Pilawa-Podgurski 2013). The LM5170 module is used for
current control, which implements the gate drivers, opera-
tional amplifiers for current control, current measurement,
and a sawtooth generator for average current mode control.
The frequency response of the current controller can be
determined by the external circuitry. The magnitude of
the setpoint current value is specified for digital setting
via a pulse width modulated signal to the pin ISETD or
for analog adjustment via a reference voltage at the pin
ISETA. The direction of the current flow is defined by
a voltage reference at the direction pin DIR. At voltages
above 2 V at the DIR pin, the converter operates in buck
mode and the current flows from the High Voltage (HV)
port to the Low Voltage (LV) side. At voltages below 1 V,
the converter operates in boost mode and the current flows
in the opposite direction. In case of any other voltage level,
the LM5170 detects an invalid command and switches off
the gate drivers for both channels.

Table 1. Component dimensioning of the two half bridges (Texas
Instruments Incorporated 2016a)

L: 4.7µH R:1mΩ

CHV: 100µF CLV:470µF

According to the two function modes buck and boost,
one of the two MOSFETs works as the main and one as the
sync MOSFET. In boost mode, the main one is the High
Side (HS) MOSFET THS, whereas in buck mode the main
one is the Low Side (LS) MOSFET TLS. The other one, in
each case, is the sync MOSFET.

They are switched complementary: When the main MOS-
FET is on, the sync one is off and vice versa. While the

THS

vG1(t)vHV

LiL

vLV

iLV

CLV

RC,LVTLS

vG2(t)

CHV

RC,HV

Figure 2. One of the two half-bridges of the multiphase DC-DC
converter under investigation. Table 1 lists the properties of the
components.
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Figure 3. Switching signals of the MOSFET in diode emula-
tion mode: If the current through the inductor reaches the value
zero, the sync MOSFET is switched off and negative currents are
avoided. (Texas Instruments Incorporated 2016a)

main MOSFET is driven, the current across the inductor
increases. The instantaneous value of the inductor current
is measured by a shunt resistor. Each channel has a real-
time zero-crossing detector to monitor the instantaneous
shunt voltage VCS. When a zero crossing of VCS is detected,
the gate drive of the sync MOSFET is turned off. In this
way, negative currents are prevented and the efficiency is
improved at low load. Figure 3 shows the main waveforms
of the described switching behavior as a function of the
inductor current. The red dashed curve shows the diode
emulated mode.

Gtheoret. =
1.0715e15+1.141e11 · s+5.584e5 · s2

2.697e13+7.061e4 · s+ s2 (1)

The models given in the following are compared with the
theoretically determined s-transfer function (Eq. (1)) ac-
cording to the data sheet (Texas Instruments Incorporated
2016b). This is a generalized, approximated transfer func-
tion which neglects the high frequency behavior. For a
first validation, this transfer function is sufficient. For fu-
ture comparisons, the defined transfer functions for the
different operating modes from a previous work (Reindl
et al. 2023 - under review[a]; Reindl et al. 2023 - under
review[b]) will be used. This previous work compared
the theoretical transfer functions with hardware measure-
ments and showed that, except for the neglection of the
high-frequency behavior, the theoretical approximations
agree with the measurements.

3 Strictly Complementary Switching
Model

The strictly complementary model reproduces the switch-
ing behavior of the MOSFET without diode emulation. It
allows a detailed analysis of the operating principle of the
circuit, taking into account the individual switching steps.
Figure 4 shows an overview of the hierarchically structured
classes. The ControlledBuckBoost model forms the
top level and unites all submodels to simulate the current-
controlled, bidirectional DC-DC converter with strictly
complementary switching of the MOSFETs. Furthermore,
the overall model can be subdivided into the physical, elec-
trical simulation of the circuit (TwoCHBuckBoost) and
its control (TwoCHController).

1

1

1

1

1

1

1

11

1

ControlledBuckBoost

TwoCHBuckBoost

ChopperBuckBoost

TwoCHController

ControllerAlgorithm Direction

Current controlled DC-DC converter with

strictly complementary switching behavior

Current controlled DC-DC converter with

strictly complementary switching behaviorTwo phase-shifted

Half-bridges

Two phase-shifted

Half-bridges

Half-bridgeHalf-bridge PID-ControllerPID-Controller Direction PIN LM5170Direction PIN LM5170

Figure 4. UML class diagram and overview of the composition
of the various subclasses of the strictly complementary switching
model ControlledBuckBoost.

44

Figure 5. The ChopperBuckBoost model forms the switch-
ing level of the physical model and represents one of the two
half-bridges.

3.1 Electrical Simulation
There are used two models ChopperBuckBoost and
TwoCHBuckBoost to represent the behavior of the cir-
cuit of the bidirectional DC-DC converter. The innermost
level is the ChopperBuckBoost model for the simula-
tion of one half-bridge (Fig. 5). The HS and LS MOSFET
are substituted by a combination of a transistor and a diode
to simulate the switching behavior.

3.1.1 ChopperBuckBoost: Description of the Half-
Bridge Model

The model has nine interfaces: The electrical connec-
tions for the power flow are realized by the four inter-
faces dc_p1, dc_p2, dc_n1 and dc_n2. With the
heatPort the thermal behavior can be observed and first
conclusions about losses can be drawn. The three logic
ports are used to control the transistors. With fire_p and
fire_n the transistors are switched. The interfaces are
logically and connected with the parameter enable, so
that the DC-DC converter can be switched on and off. The
blocks logicDelayLV and logicDelayHV are cus-
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Figure 6. Overview of the model for the bidirectional DC-DC
converter together with the interfaces.

tom developed. The block is used to delay a signal by a se-
lectable time by setting the parameter delayTime. When
an event occurs at the input port u, the variable tSwitch
is set to the actual time. The switching edge is transmit-
ted to the output y as soon as the actual time is greater
than tSwitch + delayTime. The parameter enable
allows (de)activation of the half bridge. External control
of the model is possible with the parameter extenable.
It overwrites the local settings for enable. The current
through the inductor, dimensioned according to Table 1, is
measured by the current sensor currentSensor. Using
the zeroOrderHold block, the signal is sampled with
half of the switching frequency. Thus only the average
value is obtained. The measured current value is passed on
to the real interface ILV.

Between the inductor and the electrical interface dc_p1
there is a resistor. It combines the shunt resistance and the
ohmic resistance of the inductor. The thermal connection
of the resistor is connected together with the other ones
to the heatPort. The capacitor CHV connecting the HV
side to ground is used for voltage smoothing.

3.1.2 TwoCHBuckBoost: Electrical Model of the
bidirectional DC-DC Converter

The model TwoCHBuckBoost on the next higher hier-
archy level simulates the bidirectional DC-DC converter
and combines two half bridges, i.e. two instances of the
model class ChopperBuckBoost, which replicate the
two channels and are labeled as CH1 and CH2 (Fig. 6).

The electrical connection is analogous to the one of
the half-bridge and consists of four interfaces dc_p1,
dc_p2, dc_n1 and dc_n2. At Channel 2 (CH2) only
the pin dc_n1 is connected to the other n-pins. A connec-
tion of dc_n2 would form a loop of the ground which in

turn cannot be calculated by the simulator and would lead
to an abort of the simulation. On the LV side there is used a
capacitor CLV for voltage smoothing. The interfaces ILV
of the two channels which contain the averaged current
measurement values of the inductance current are passed
to ILVCH1 and ILVCH2.

The two half bridges are controlled by phase-shifted
PWM signals: The duty cycle of the Channel 1 is defined by
the interface dutyCycleCH1. The real value is limited
between the values 0 and 1 and the signal is transferred to
the block pwmCH1. This block compares a voltage level
with a sawtooth signal or a triangle signal and generates a
complementary PWM signal from it according to Table 2.
The same model blocks are used for Channel 2. These are
identically constructed, with the only difference that the
switching signal is shifted by half a period.

3.2 Simulation of the Control
The control of the bidirectional DC-DC converter is sim-
ulated by the model TwoCHController (Fig. 7). The
model consists of the controller implemented by the model
controllerAlgorithm and the specification of the
operating mode (buck or boost) simulated by the model
Direction. In this case a PID controller with a constant
gain setting of 40 and an output limiter is used (Fig. 8). The
parameter DirectedISETA is controlled considering the
feedback of the actual current measurements provided via
measuredCurrentCHx, x ∈ 1 . . .n. If the parameter
Enable is false, the voltage output VLV/VHV is set to
a fixed value. The fixed value is only required using the
averaging model, but does not interfere with the switching
model as the MOSFETs only switch if Enable equals true.
The direction pin of the LM5170 which determines if the
DC-DC converter operates in buck or boost mode is sim-
ulated by the model Direction. The model checks if
Direction is either less than the value 1 or greater than
2 and adjusts the ISETA signal accordingly. If the value
of Direction is less than 1, ISETA is not changed. If
Direction is greater than 2, ISETA is multiplied by -1
in order to change its sign. The corrected value is set in
the output parameter DirectedISETA which is further
processed in the controller. If one of the two valid con-
ditions (Direction <1 or >2) is fulfilled the parameter
Enable is set to the value true.

3.3 Validation of the Strictly Complementary
Switching Model

The model ControlledBuckBoost simulates the be-
havior of the current-controlled DC-DC converter with

Table 2. Relation between duty cycle and the control signals of
the transistors

Duty Cycle Control fire_n Control fire_p
0 100 % 0 %

0.5 50 % 50 %
1 0 % 100 %
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strictly complementary switching behavior (Fig. 9). The
aim of this model is to achieve a high degree of accuracy
in simulating the functionality, taking into account the indi-
vidual switching processes of the MOSFETs. The channels
of the bidirectional DC-DC converter can be activated in-
dividually. For an accurate current control with two active
channels, the required setpoint current is halved ( Fig. 9).

Figure 10 shows the test setup for the validation of the
models. For validation, the DC-DC converter model is
connected via a 0.01Ω resistor to an ideal voltage source
of 12V at the LV side and via a 0.02Ω resistor to an ideal
voltage source of 24V at the HV side.

Initially, a voltage of 2V is supplied to the ISETA pin.
Between 0.01s and 0.02s the DC-DC converter operates
in boost mode and between 0.03s and 0.04s in buck mode.
The curve of the current through the inductor and the av-
eraging of it over one period (mean PWM) are compared
with the theoretical transfer function (Eq. (1)) (Fig. 11).
Only small deviations between the modeled and the theo-
retical transfer function occur. Therefore, the first jump is
analyzed in more detail (Fig. 12). The theoretical transfer
function exhibits an overshoot, but it is below the targeted
80A and corresponds to a second order behavior. The
transfer function of the model also has an overshoot and
reaches the 80A faster than the theoretical one. The av-
eraged transfer function over two periods is similar to the
original data. Only minor deviations occur and they are
within an acceptable range. The model has been success-
fully validated.

4 Switching Model with Diode Emu-
lated Mode

The switching model with diode emulation mode differs
from the strictly complementary model only slightly in the
control mode of the MOSFETs (Fig. 3). Figure 13 shows
a hierarchical overview of the submodels and can also be
divided into the simulation of the physical components and
the control.

51

Figure 7. Overview of the model TwoCHController for
modeling the entire control of the DC-DC converter.

52

Figure 8. The model controllerAlgorithm simulates the
PID-controller.

55

Figure 9. The model ControlledBuckBoost simulates the
current controlled DC-DC converter with strictly complementary
switching behavior.

Figure 10. To verify the model, in this case
ControlledBuckBoost, the step response is simu-
lated and compared with the theoretical transfer function.
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Figure 11. Comparison of the inductor current over time of
the strictly complementary switching model and the theoretical
transfer function.

Figure 12. Step reponse of the strictly complementary switching
model and the theoretical transfer function,

For the diode emulation, an additional model for
changing the current direction ( CurrentDirection-
Correction) and one for generating the control signals
of the MOSFETs (DiodeModeGen) are added.

4.1 Additional Control Models
In CurrentDirectionCorrection, the current
through the inductor is compared with the set direction. If
the current is positive or zero in relation to the mode of the
DC-DC converter, the output value is one, otherwise it is
zero. The output is further processed in DiodeModeGen.

The model DiodeModeGen uses the duty cycle, the
direction and the measured current through the inductor as
inputs to define the switching signals for the two MOSFETs.
The real signal dutyCycle is sampled over one period in
zeroOrderHold and compared to a triangle signal. The
compared signal is passed to the switches logicSwitch
and logicSwitch1 as an input. The inverse signal from
the comparison between the PWM and the rectangular
signal is passed to a logical-and block. The output signal
from currentDirectionCorrection is the second
input. The output signal of the logical-and block is one of
the inputs of the switches. The direction is a further input
of the switches in order to change between primary and
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CHBuckBoost

ChopperBuckBoost
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DiodeModeGen

TwoCHDiodeModeController

ControllerDiodeMode
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Current controlled DC-DC converter with diode

emulated switching behavior

Current controlled DC-DC converter with diode

emulated switching behavior

Input: duty cycle, direction, iLV
Output: switching signals MOSFETs

Input: duty cycle, direction, iLV
Output: switching signals MOSFETs

Figure 13. UML class diagram and overview of the composition
of the various subclasses of the switching model with diode
emulated mode ControlledBuckBoost.

Figure 14. Overview of the model CurrentDirection-
Correction for the diode emulated mode. In this case, the
switching threshold for diode emulation is 0.4 A instead of 0 A
in order to reduce the deviation.

secondary switching behavior of the respective MOSFET.
The leading signal in DiodeModeGen corresponds to the
hundredfold of the switching frequency and starts at the
beginning of the simulation.

4.2 Validation of the Switching Model with
Diode Emulation

The comparison with the theoretical transfer function
shows only minor deviations (Fig. 16). A more detailed
analysis of the step response shows that the model responds
faster and with a higher accuracy compared to the transfer
function (Fig. 17). Figure 18 shows a permanent control

65

Figure 15. The model DiodeModeGen generates the switching
signals for the MOSFETs according to the diode emulated mode
(Fig. 3).
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Figure 16. Comparison of the inductor current over time of the
switching model with diode emulated mode and the theoretical
transfer function.

Figure 17. Step response of the switching model with diode
emulated mode and the theoretical transfer function.

deviation caused by the zeroOrderHold element. This
delays the measured current by a hundredth of the period of
the switching frequency. Due to this delay, a zero crossing
is detected too late and consequently the Sync-MOSFET is
also switched off late. The deviation can be reduced by in-
creasing the sampling frequency. This, however, increases
the computational effort significantly. The jump at 0.025 s
(Fig. 18) is caused by a change at the direction pin. As the
measured current is multiplied by -1 due to the differing
polarity of the direction, the sign of the deviation changes.

Changing the switching threshold of the Sync-MOSFET
from 0 A to 0.4 A shows only a minor deviation and the
desired value of 0 A is maintained over the entire range
(Fig. 19).

5 Averaging Model
Time-invariant devices, such as switching transistors, are
very complex to simulate. They lead to a significant in-
crease in computational effort and thus limit the number of
components to be simulated simultaneously as well as the
performance. To realize, e.g. a simulation of the behavior
of a battery connected to the bidirectional DC-DC converter
over several charging processes in order to make statements
about aging processes, a suitable model is required (Sure-

Figure 18. Detailed analysis of the step response showing signif-
icant deviation of the model using diode emulated mode. There
is a deviation of approximately 0.4 V with the sign depending on
the PWM phase.

waard, Karden, and Tiller 2003). In the following, a model
is designed which neglects the single switching processes
but still reproduces the behavior of the switching model as
accurately as possible.

The accuracy is lower compared to the switching models,
but allows longer simulation duration with several compo-
nents to be simulated simultaneously.

Without taking losses into account, the averaged output
voltage in buck mode is given by:

Vav,ideal = (1−D) ·VHV (2)

D describes the duty cycle. The following applies to the
output current:

Iav,ideal = (1−D) · IL (3)

IL is the current through the inductor. In order to consider
the ohmic losses of the MOSFETs, the voltage required by
them is subtracted from the generated voltage. This results
in:

Vav,real = (1−D) ·VHV +
PV,Rds(on)LV +PV,Rds(on)HV

IL
(4)

Switching threshold    0 A
Switching threshold 0.4 A

Figure 19. Reduction of the deviation by adjusting the current
thresholds.
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Figure 20. Hierarchical overview of the classes of the averaging
model.

Figure 21. The model DutyCycleWithLosses determines
the averaged output current and voltage according to the equa-
tions (3) and (4). DutyVoltage corresponds to Vav,real and
DutyCurrent to Iav,ideal

Assuming that the two MOSFETs are identical, the equation
can be simplified to:

Vav,real = (2−D) ·VHV +2 · IL ·Rds,on (5)

The averaging model is also hierarchical and is divided
accordingly into physical and control simulation (Fig. 20).

5.1 Physical Simulation
At the lowest level of the physical simulation, the av-
eraged output currents and voltages are determined in
the model DutyCycleWithLosses as a function of
the input voltage or inductor current, the set duty cycle
and the power losses of the MOSFETs (Fig. 21). The
block add exchanges the DutyCycle so that the be-
havior of the averaging model corresponds to the one of
the switching model. The corrected duty cycle is used
together with the measured current and voltage to de-
termine the averaged values, which are passed by the
pins DutyVoltage and DutyCurrent to the model
CHBuckBoostAveraged.

39

Figure 22. The model CHBuckBoostAveraged is the aver-
aging model of one of the two half bridges. The MOSFETs are
replaced by current and voltage sources which provide the aver-
age values.

In this model, the MOSFETs are replaced by current and
voltage sources which provide the average values (out-
puts DutyCycleWithLosses). Consequently, the in-
ductor is charged by the voltage source signalVoltage
and discharged via the current source signalCurrent.
Since there are no ripples in the circuit, no smoothing ca-
pacitors are required. Another significant difference to the
switching models (Fig. 5) is that the measured current is
delayed via a first order proportional time element instead
of a zeroOrderHold element. The reason for this is
that it is interpreted as a switching element and thus delays
the measured value used in the control algorithm.

5.2 Simulation of the Control

The controller blocks are almost identical to those of the
switching variants, only the operating mode of the DC-DC
converter via the Direction pin is not determined. The
additional model CHCompensation adjust the ISETA
signal depending of the activated channels. The parameters
EnableCH1 and EnableCH2 are the boolean inputs. If
both channels are activated, the signal ISETA is halved
other it is passed on without change.

5.3 Validation of the Averaging Model

A first comparison between the transfer function and the
averaging model shows barely any deviations (Fig. 23). A
more detailed comparison shows that the averaging model
reacts faster to the jump, but takes longer to compensate
the control deviation (Fig. 24). After 0.013 s (Fig. 24)
the averaging model reaches the set point of 80 A, while
the transfer function has a permanent control deviation of
0.0075 A. One possible reason for the remaining deviation
could be that the theoretical transfer function is also an
approximation.
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6 Comparison of the Models
For the comparison between the models, the simulation pro-
cesses (Fig. 10) are performed and the results are compared
in terms of the computational time and effort. The simu-
lations are executed on an Intel i5-4690K with 3.5 GHz.
The experiment is performed at the same interval length
of 2E-7 s and the tolerance of 1E-7 s in each case. The
high resolution is required for the accuracy of the model
with diode emulation mode. As expected, the averaging
model is the one with the shortest computation time and
only requires 3.83 s (Fig. 25). The strictly complemen-
tary switching model takes 13.71 s and the one with diode
emulation mode 107.91 s. For the latter, a difference can
be seen between the test conditions. If no zero crossings
occur (Fig. 25: between the simulation time 0.01 s and app.
0.02 s) , the performance of the model is significantly better
compared to the segments with zero crossings and diode
emulation (Fig. 25: between the simulation time 0 and
0.01 s). The averaging model requires only 3.5% computa-
tion time of the duration of the model with diode emulation
and less than a third (27.9%) of the computation time of the
strictly complementary switching model. The computation
time depends on the equations to be calculated. The diode
emulated model requires the most equations with 503370
in total. The strictly complementary switching model uses
25963 equations and the averaging one only 7 equations.

This comparison shows, that the averaging model sig-
nificantly reduces the computational effort and time. As
long as individual switching processes are not relevant,
the averaging model is the preferred choice. The strictly
complementary switching model can be used if only the
rippling signal is necessary, If information about the exact
switching processes of the MOSFETs is required, the diode
emulated model has to be selected.

7 Parallel Connection of two DC-DC
Converters with Load Distribution

As an exemplary use case, the load sharing between two
DC-DC converters connected in parallel is simulated. The

Averaging Model
Transfer Function

Figure 23. Comparison of the inductor current over time of the
averaging model and the theoretical transfer function.

Averaging Model
Transfer Function

Figure 24. Step response of the averaging model and the theoret-
ical transfer function.

Diode Emulated Switching Model
Complementary Switching Model
Averaging Model
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Figure 25. Comparison of the required computation time in
relation to the simulation progress of the three proposed models.

averaging model with a PI controller is used (Fig. 26). The
load sharing is realized in this case for a first test via the
two gain blocks. These divide the drive signal between the
two DC-DC converters by 70% and 30%.

The result in Figure 27 shows that the load current is
distributed as demanded. The set point of 80 A is reached
1.51 ms later compared to Figure 24. The reason for this is
the used PI controller. Parallel connections of the switch-
ing models show the same behavior and therefore are not
shown.

8 Conclusion and Outlook
Three different models of varying complexity have been
proposed to simulate bidirectional DC-DC converters. Two
switching models reproduce the individual switching oper-
ations and thus provides high accuracy. They differ essen-
tially in driving mode, one of which switches the MOSFETs
in a strictly complementary manner while the other one
uses diode mode emulation. The strictly complementary
switching model emulates current ripples and is suitable
for simulation durations up to a few seconds. The model
with diode mode emulation switches off the MOSFETs at
currents lower than zero. This model is only suitable for
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Figure 26. Possible use case of the averaging model: sim-
ulation of load sharing between two DC-DC converters con-
nected in parallel, where one (controlledBiChopper1)
consumes 30 percent of the charging current and the other one
(controlledBiChopper) 70 percent.

Total charge current 
70% of the current
30% of the current

Figure 27. Step response of the parallel connection of two DC-
DC converters with load current sharing using the averaging
models.

simulations for less than one second, as the model requires
high accuracy to provide precise values. For longer simu-
lation durations, an averaging model was proposed. Here,
the switching components are replaced with the average
values. The model shows clear advantages in terms of
computational effort and calculation time, but offers lower
accuracy. All three models were successfully validated by
comparisons with the theoretical transfer function. The
proposed models are the basis for more extensive system
simulations. Especially the averaging model offers the
possibility to realize longer simulation durations.

In future work, a more detailed consideration of the
losses is planned. Separate heat ports for the individual
components will be added to analyze the individual losses.
Another extension is to make the load sharing between the

DC-DC converters changeable during the simulation. The
transfer functions of the DC-DC converter were defined
in previous work. These will also be integrated into the
simulation environment and compared with the averaging
models in terms of computational effort and accuracy.
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Abstract 
This paper describes a method to resolve a potential 

inconsistency when employing redundant dynamic 

thermofluid states for modeling of vapor compression 

cycles.  Following a brief introduction regarding the 

motivation and use of redundant thermofluid states, a 

series of test models ranging from simple component 

models to complex system models are developed to 

illustrate the potential inconsistency with Air 

Conditioning Library.  Based on observations of the 

simulation results from these test models, a method for 

ensuring consistency is proposed and implemented.  The 

method is then demonstrated on the test suite and 

evaluated for effectiveness, robustness, and 

computational efficiency.    

Keywords: thermofluid modeling, vapor compression 

cycles, two phase systems, thermodynamics, state 

selection  

 

1 Introduction 

State selection is a key element of thermofluid modeling.  

Selecting appropriate dynamic states, or independent 

thermodynamic variables, is critical for ensuring robust, 

accurate, and computationally efficient models 

(Tummescheit 2002).  In particular, the following 

considerations are often made when considering state 

choices for thermofluid models: 

• Thermodynamic considerations to allow full 

phase identification over the operating regime for 

the fluid (i.e. single phase, multi-phase, etc.) 

• State compatibility with medium model 

implementation (i.e. choosing states such that 

medium model can be evaluated explicitly from 

states as much as possible to avoid unnecessary 

nonlinear systems) 

• Formulation for conservation laws explicitly in 

state variables (either manually or by Modelica 

compiler) 

• Initialization structure to avoid unnecessary 

nonlinear systems  

• Initialization ease (i.e. typical values specified by 

the user to describe initial state of system 

including the use of intensive or extensive 

variables) 

Given the importance of state selection and the tight 

integration with the medium model implementation, there 

has been significant focus on state selection and on the 

development of compatible media packages in the design 

of the Modelica.Fluid package (Franke 2009) and in 

various commercial thermofluid libraries.  For example, 

Modelica.Fluid indicates that it is compatible with 

medium models that have T, (p,T), (p,h), (T,X), (p,T,X) 

or (p,h,X) as independent variables while other state 

variables are possible but would require initialization 

changes [T is temperature, p is pressure, h is specific 

enthalpy, and X is a mass fraction vector]. For two-phase 

systems, the standard state choice is (p,h) or (p,h,X) since 

temperature cannot always be used to uniquely identify 

the fluid state in the two-phase region.     

Mass conservation as denoted by the system charge in 

vapor compression cycles is a challenge in modeling two-

phase systems due to the sharp nonlinearities in 

thermodynamic properties, especially at the saturated 

liquid phase boundary.  While charge conservation can 

prove to be numerically challenging, it is an important part 

of the modeling since variations in charge can produce 

unphysical responses from the system model, both in 

steady state and dynamically.  Variations in pressures, 

flowrates, temperatures, heat flow, and key control values 

such as superheat and subcool due to modeling-induced 

charge variations can cause not only unphysical results but 

also computational degradation due to the additional 

unphysical dynamics.  Since a key use case for dynamic 

models of vapor compression cycles is to develop the 

system and optimize system charge for operation, these 

sorts of charge issues are especially problematic from an 

engineering standpoint.   
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   Excellent work in this area has shown that the use of 

redundant thermofluid states can greatly improve mass 

conservation in vapor compression cycle modeling 

(Laughman 2015).  This paper is a follow-up to that work 

and describes a method to resolve a potential 

inconsistency that can result when employing the 

redundant dynamic state approach.  Following a brief 

introduction of the redundant state approach, the results of 

the potential inconsistency are shown via a series of test 

models ranging from simple component tests to complex 

system models using Air Conditioning Library.  Based on 

observations of the simulation results from these test 

models, a method for ensuring consistency is proposed 

and implemented.  The method is then demonstrated on 

the test suite and evaluated for effectiveness, robustness, 

and computational efficiency.    

2 Redundant Thermofluid States 

This section provides a high-level overview of the 

motivation for the use of redundant thermofluid states and 

also describes the potential inconsistency.  For a full 

treatment of the problem, including the derivation of the 

systems of equations, the interested reader is referred to 

previous work (Laughman 2015). 

   Using the standard assumptions for two phase 

thermofluid systems (one dimensional flow, 

thermodynamic equilibrium, homogeneous two-phase 

flow), conservation of mass and energy for a fixed control 

volume result in ODEs in terms of the following 

derivatives: 

��
�� = � ��

��  
(1) 

��
�� = � ���	


��  
(2) 

where V is the volume, M is the volume mass, ρ is the 

density, U is the total internal energy, and u is the specific 

internal energy.  These thermodynamic derivatives are 

then related to the mass, enthalpy, and heat flow into and 

out of the thermodynamic volume to provide the complete 

set of ODEs that must be integrated.  Using different 

thermodynamic relationships (Thorade 2013), these 

derivatives can be written explicitly in different state 

variables.  As discussed previously, the standard choice 

for two phase thermofluid systems is (p, h).  With 

Equations (1) and (2) rewritten as ODEs in terms of p and 

h, p and h are integrated via the solver and thus are error 

controlled by the solver tolerance.  Thermodynamic 

relationships can then be used to calculate other variables 

such as density ρ(p, h).    

   In the standard approach with p and h as state variables, 

there is no explicit error control on the density ρ(p, h).    

Figure 1 shows the p-h diagram for the common 

refrigerant R1234yf with isotherms for temperature and 

lines of constant specific volume 1/ρ. Note that the sharp 

change in density at the liquid phase boundary.  The 

density isochor increases in slope at the liquid phase 

boundary, becoming nearly vertical as the pressures are 

reduced below approximately 6 bar. This nonlinear 

behavior is especially challenging for numerical 

integrators and necessitates high precision on the 

integration of p and h to ensure that the calculated density 

and thus the mass are accurate. The reasons for this 

behavior are both that in the low-pressure liquid region, 

density has a weak dependency on pressure, and therefore 

there is large sensitivity in the solving of pressure time-

derivative from the density and internal energy 

derivatives, and secondly the density partial derivatives 

with respect to p and h involved in that solution are 

discontinuous at the saturated liquid line. In general, 

precision can be increased by tightening integrator 

tolerances. In heat pump operation at cold ambients, it is 

not uncommon for the vapor cycle to operate with the 

high-pressure side in the range of 4-8 bar.  Depending on 

the level of subcooling in the system, the condenser outlet 

condition and the high-pressure part of the system up to 

the expansion valve could have state points that reside just 

at the liquid phase boundary.  These volumes are critical 

for charge conservation, as the accumulated error in the 

integration of p and h can lead to large errors in density 

and thus changes in system charge.  

 

Figure 1. p-h diagram for R1234yf 

   As proposed in previous work (Laughman 2015), 

adding density as a redundant state can greatly reduce or 

even eliminate charge conservation issues.  With density 

as a state, density is also error-controlled by the integrator.  

The authors propose the following additional equation: 

�ℎ
�� = �ℎ

��
�

 �
�� + �ℎ

���
�

 ��
��  

(3) 

Equation (3) can be combined with the formulated 

equations from Equations (1) and (2) to provide the set of 

ODEs that can be integrated for the state variables p, h, 

and ρ.  This approach has the benefit of keeping the 

standard state variables p and h and thus allowing medium 
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models explicit in p and h (such as the Spline-Based Table 

Look-Up (SBTL) medium implementations in Air 

Conditioning Library which have demonstrated 

significant improvements in computational speed, 

especially when combined with analytic Jacobians (Li 

2018; Li 2020)) to continue to be used even with the 

redundant density state. 

   In a subsequent publication (Laughman 2017), the 

authors acknowledge the potential inconsistency in the 

redundant state approach: 

While this approach in theory relaxes the constraint 

forcing the state variable being integrated to be equal to 

the computation of the specific enthalpy as a function of 

the other state variables, for example, h(P, ρ), simulations 

presented later in the paper provide evidence that these 

deviations are small in practice. 

Though clearly true in the simulations presented in the 

cited publication (Laughman 2017), the authors of this 

work have observed these inconsistencies and their 

manifestation in system charge issues as described in the 

following section.  

3 Simulations with Inconsistency 

As outlined in Section 2, there is a potential inconsistency 

that can result from the redundant state approach.  This 

section describes a series of models that demonstrate the 

impact of this inconsistency between the dynamic states.  

These models are built using Air Conditioning Library 

(Modelon 2023) and simulated with Dymola (Dassault 

Systemes 2023). 

3.1 Single Volume Test  

Since it can be difficult to put models in the state to 

demonstrate the inconsistency, it is valuable to have 

simple models that can be easily manipulated, either via 

initialization and/or via dynamics, and whose correct 

results are clearly understood.  Figure 2 shows a model of 

a fixed volume with a trapezoidal heat input.  The model 

is initialized such that the volume state is right at the liquid 

phase boundary (denoted by the blue circle on the p-h 

diagram) as this state is extremely sensitive due to the 

sharp changes in density at the liquid phase boundary.  

The heat input is manipulated such that the volume state 

repeatedly just enters the two-phase region and then 

leaves again (into the liquid region) as heat is added and 

the pressure increases.  Since there is no mass flow into or 

out of the volume, the correct physical result is that the 

mass is constant, and the fluid state should move along a 

constant density line. Since we repeatedly add and remove 

the same amount of heat, all thermodynamic states should 

also return to their initial values between each full heating 

and cooling cycle. 

   

 

Figure 2. Fixed volume test with heat input 

   In Air Conditioning Library, users can select different 

state choices at the top level of the model via the 

systemACL record.  The option for the redundant (p, ρ, h) 

states is enabled for these simulations.  Simulations are 

run with the SBTL 1234yf medium model in Air 

Conditioning Library with a relative tolerance of 1e-7.  

Figure 3 shows simulation results from the fixed volume 

test.  The top plot shows the refrigerant mass in the control 

volume which is constant as expected when the density is 

an integrated state.  However, the second plot shows that 

the density state in the volume is not equal to the density 

ρ(p, h).   Thus, there is an inconsistency between the 

integrated states ρ, p, and h. The third and fourth plots 

show the pressure and specific enthalpy, indicating that 

they do not return to their initial values after many heat 

injections and extraction cycles as they should. 
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Figure 3. Simulation results from fixed volume test. System mass 

(top), inconsistent values for density from integrated density state 

and ρ(p, h) (second figure), volume pressure (third figure), and 

volume enthalpy (bottom). 

3.2 Two Volumes and Flow Model Test 

One issue that was reported a few times by users of Air 

Conditioning Library when using redundant states (p, d, 

h) is the appearance of negative density values. Negative 

density is clearly an inaccurate result and often followed 

by simulation crashes. A hypothesis is that these negative 

values are caused by inconsistent redundant states along 

these lines: 

1. Consider a simple system of two control volumes 

connected by an orifice model. 

2. An inconsistency in pressure in one of the 

volumes will induce a mass flow rate from one 

volume to the other. 

3. In a standard (p, h) state model a numerical 

inaccuracy in pressure would cause a change in 

density too, as density is just an algebraic 

function of p & h, and the mass flow would 

proceed until the pressures of the two volumes 

are equal again. 

4. In a redundant state model though, it can be 

imagined that a low-density volume has a sudden 

inaccurate increase in pressure, driving a mass 

flow out of the volume. In the redundant state 

model, that inaccuracy does not cause the density 

to increase, but the mass flow out of the volume 

will cause the density state to decrease from the 

accurate value. Therefore, it is postulated that 

inconsistent redundant states can indirectly cause 

(locally) incorrect densities via the flow models 

(momentum balances) of the system although 

density is under solver error control, and in some 

situations reach negative values if sufficiently 

high flow rates out from an already low-density 

volume is induced by the inconsistency. 

 

To verify the above idea and potential solutions, the 

authors attempted, and successfully reproduced negative 

density in a relatively simple model, shown in Figure 4. 

This model includes the same fixed volume with repeated 

forced heat injection and rejection and is further 

connected via an orifice model to another adiabatic, fixed 

volume, and that is in turn also connected via another 

orifice model to a fixed pressure reservoir. The two 

connected volumes allow representation of the effect of 

mass flow rate induced by inaccurate pressure appearing 

in the system, and the fixed pressure reservoir prevents the 

pressure level from going far too high or low. 

Additionally, the heat flow rate to the first volume is 

controlled, such that in the event of numerical inaccuracy 

causing the volume to deviate from the vicinity of the 

sensitive saturated liquid line, heating will be adjusted to 

bring the volume state back there again. The idea is to 

trigger as much state inconsistency as possible and let it 

accumulate over many heat cycles.  

 

 
Figure 4. Negative density reproducer model 

Simulating this model indeed resulted in build-up of state 

inconsistency, eventually reaching negative density in the 

adiabatic volume, followed by a simulation crash. 
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Figure 5. Negative density reproducer results. Relative error in 

density state and density from p & h states in non-adiabatic 

volume (top), adiabatic volume (middle). Densities in both 

volumes at the end of simulation (bottom). 

Figure 5 show the gradual build-up of state inconsistency, 

illustrated by the relative difference between the density 

state variable and density computed as a medium property 

function evaluation from pressure and enthalpy dynamic 

states in each volume. The total system mass cannot be 

used to evaluate consistency here because the model is not 

a closed system. Toward the end of the simulation, the 

density dynamic state in the adiabatic volume also shows 

a negative value for some time followed by sign changes 

in both density states and then simulation crash. 

 

4 Method for Consistent Redundant 

Dynamic States 

4.1 Method Overview 

Given the possibility for inconsistency between the 

redundant states and the observation of this inconsistency 

in test models, a method for ensuring consistency between 

the redundant states is proposed.  This method attempts to 

solve the redundant state inconsistency problem via 

computation of the density from the (p, h) dynamic states 

and comparison with the density dynamic state. This 

comparison is done for every control volume in the system 

and continuously throughout the transient simulation. If 

the deviation exceeds a certain allowed relative error 

(which can be set via a model parameter), the pressure 

state is corrected such that the three states are consistent 

again. This correction is done using the Modelica reinit 

operator and thus happens momentarily in an event which 

is triggered when the inconsistency is large enough. For 

simplicity, the new pressure value is taken as a medium 

property function of pressure from density and 

temperature, where temperature is as function of pressure 

and enthalpy. This approach is a simple alternative 

because the medium package already has equation of state 

implemented as a function with these inputs. 

4.2 Variants Tested 

There are multiple possible variants to formulate the 

inconsistency criterion. The criterion can be specified as 

tolerance on any of the three state variables and compared 

to the same property computed from the other two. The 

authors currently have only tested a consistency criterion 

for density. 

   There are also different possible choices of what or 

which state(s) to re-initialize and how to compute the state 

to re-initialize to. It was tested to reinitialize enthalpy 

instead of pressure, but this approach was not at all 

equally successful. Pressure seems to be the state with 

most inaccuracy in the low-pressure liquid region and thus 

could explain why it works better to initialize it. 

   Lastly, a good value must be found for the maximum 

allowed relative error of checked state (density in this 

case). Too tight tolerance may give very frequent re-

initializations, reducing simulation performance due to 

large number of events, and too loose tolerance may fail 

to keep the states sufficiently consistent to mitigate the 

original issues. 

 

4.3 Further Improvement 

In the initial testing of the reinit approach, the authors 
observed promising results for maximum relative error in 

the range of 1e-3 – 1e-4, but for tighter tolerances, 

observed unexpected results trending towards those of the 

original redundant states model without consistency 

check and correction. After some investigation the authors 

found that this behavior was a result of the simple 

calculation of the corrected pressure as a function of ρ and 

T. Since the consistency check uses the medium density 

from pressure and enthalpy function and reinit used the 

pressure from density and temperature function, a small 

inconsistency between those two functions could cause 

the re-initialized pressure not to fulfill the consistency 

criterion.  In this case the simulation proceeds with no 

further correction, unless by chance the states become 

consistent again. Accurate equation of state for two-phase 

fluid properties are only explicit for one causality, 

meaning that one of the two functions used in the 

detection and correction of inconsistent states will include 
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iteration. Therefore, they will only be consistent to a 

certain numerical tolerance that is part of the medium 

property model (and not related to ODE solver tolerance 

or the newly introduced maximum allowed density error 

parameter), and the reinit method needed to be improved 

to guarantee that after the reinit the three dynamic states 

are consistent according to the criterion introduced. 

   To achieve this response, the authors compute the 

potential new pressure as before but then the convergence 

criterion is evaluated. If the convergence criterion is 

fulfilled, the corrected pressure is taken as the new value 

for pressure state as before. If the criterion is not fulfilled, 

Brent iteration of pressure is employed until a new 

pressure is found such that density computed from p and 

h is within allowed tolerance. With this improvement to 

the method, the authors observed the expected trend of 

ever better consistency for smaller maximum allowed 

inconsistency, and computed absolute relative density 

error was never greater than the given allowed tolerance. 

 

5 Simulations with Consistent 

Redundant States 

This section provides results from the test suite from 

Section 3 using the method described in Section 4 to 

ensure consistency between the redundant dynamic states. 

 

5.1 Single Volume Test  

The single volume test shown in Figure 2 was evaluated 

to understand the impact of the density relative error 

tolerance.  Pressure correction at density relative error of 

1e-3, 1e-4 and 1e-5 was compared to the original results 

with uncorrected redundant states.  Figure 6 shows huge 

error without any correction while the results are clearly 

staying within allowed error at different settings. Smaller 

allowed error can be seen increasing the frequency of 

corrections. Figure 7 shows density from (p, h) states. For 

the fixed volume in this test, a constant density is the 

correct result here. All corrected variants are much better 

than the uncorrected. For this particular model, CPU time 

does not vary much depending on tolerance here, and 
uncorrected is faster, likely because in such a simple 

model, inconsistency doesn’t lead to expensive artificial 

transients. 

 

 
 
Figure 6. Density relative error for uncorrected redundant states 

(top) and with maximum allowed error 1e-3 (2nd plot), 1e-4 (3rd 

plot) and densities at 1e-5 (4th plot) 
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Figure 7. Density for uncorrected redundant states (top) and with 

maximum allowed error 1e-3 (2nd plot blue), 1e-4 (2nd plot red) 

and 1e-5 (2nd plot green). CPU times 3rd plot, event count 4th plot. 

5.2 Two Volumes and Flow Model Test 

The test shown in Figure 4 for negative density was 

evaluated to assess the original method and the improved 

method discussed in Section 4.3.  Figure 8 shows the 

original method for state correction without Brent 

fallback.  The relative error goes outside the maximum 

allowed error of 1e-3 at green circles. 

   Figure 9 shows results from the same model with the 

improved reinit and Brent iteration fallback.  With this 

improved approach, the density error always stays within 

the tolerance.  Figure 10 shows the volume densities. With 

the improved correction, volume densities are never close 

to zero.  As can be observed, the corrections get very 

frequent toward the end. This result is likely due to 

unreasonable experiment setup with a high amount of heat 

injected. 

 

 

 
Figure 8. State correction without Brent fallback. Density relative 

error in first heated volume (top) and second volume (bottom). 

 

 

 
Figure 9. State correction with Brent fallback, Density relative 

error in first heated volume (top) and second volume (bottom). 
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Figure 10. Volume densities 

5.3 Complex System Models 

This section illustrates results from complex vapor cycle 

system models.  Figure 11 is an example system model 

from Air Conditioning Library using (p, ρ, h) states  

(AirConditioning.Examples.TXVCycleOnOff_pdh). 

Figure 12 compares results from the uncorrected 

redundant states with the method for ensuring state 

consistency.  Note that this model does not have a large 

issue with mass conservation.  However, employing the 

method for state consistency even with a 1e-3 tolerance 

for density inconsistency improves mass conservation 

significantly. The CPU time cost is low. The computed 

total system mass shown here is based on density from p 

& h function calculations. Observing the charge as per 

density states shows nearly perfect preservation. 

 

Figure 11. Air Conditioning Library example using (p, ρ, h) states 

 

 

Figure 12. Air Conditioning Library example model with 

uncorrected redundant states (blue) and with maximum allowed 

error 1e-3 (red). System mass 1st plot, CPU times 2nd plot, event 

count 3rd plot. 

   The method for state consistency was also evaluated on 

a complex customer model (note that this model cannot be 

shown graphically as it is customer proprietary).  This 

model uses R1234yf SBTL and has 505 (p, h) states.  It 

was run using CVODE at a tolerance of 1e-7.  The original 

results with the uncorrected redundant states are shown in 

Figure 13.  The results show a significant mass defect and 

are thus problematic. 

   Figure 14 show results from the same model now set to 

use (p, ρ, h) states (591 states in total) and employing the 

method for correction of the redundant states with a 

tolerance for density of 1e-3. The figure shows results 

from the initial method for correction (blue) and improved 

with Brent (red). Both methods preserve mass much better 

than p, h (note reported total mass is computed from the p 

& h states). Note that the improved correction shows no 

CPU time penalty when compared with uncorrected (p, h) 

states. 
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Figure 13. Customer vapor cycle system model with uncorrected 

redundant states. System mass 1st plot, CPU time 2nd plot, event 

count 3rd plot. 

 

Figure 14. Customer vapor cycle system model with maximum 

allowed error 1e-3. System mass 1st plot, CPU time 2nd plot, event 

count 3rd plot. 

Figure 15 shows results with a tightened density error 

tolerance of 1e-4.  The initial reinit approach (blue) is 

compared with the improved approach with Brent (red).  

Here it can be observed that mass defects from correction 

are not successfully corrected to a consistent state with the 

initial method.  The improved method is faster and more 

accurate. The CPU time is still roughly on par with 

uncorrected (p, h) states for the improved correction. 

 

Figure 15. Customer vapor cycle system model with maximum 

allowed error 1e-4. System mass 1st plot, CPU time 2nd plot, event 

count 3rd plot. 

Figure 16 shows results with a further tightened density 

error tolerance of 1e-5.  The initial reinit approach (blue) 

is compared with the improved approach with Brent (red).   

The initial method at this setting demonstrates worse 

preservation than only (p, h) as states. This response is 

probably because the correction is mostly dysfunctional 

due to running in an inconsistent state, and somehow the 

added density states introduce some additional inaccuracy 

when exerted to mass flows caused by pressure state 

inaccuracy.  The improved correction performs well. Mass 

is very well preserved, and relative density error never 

exceeds 1e-5. There is a CPU time penalty versus only (p, 

h) as states of approximately 25%. 

 

Figure 16. Customer vapor cycle system model with maximum 

allowed error 1e-5. System mass 1st plot, CPU time 2nd plot, event 

count 3rd plot. 
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6 Conclusions 

This paper describes a method to resolve a potential 

inconsistency when employing redundant dynamic 

thermofluid states for modeling of vapor compression 

systems.  While the impact of redundant thermofluid 

states is generally positive in terms of mass conservation 

and even CPU time, it is possible to observe 

inconsistencies in the separately integrated states as 

shown in this work.  These inconsistencies could manifest 

not only as mass loss but also as incorrect pressure and 

enthalpy in the system as shown in the simulation results 

from both simple and complex models.  These 

inconsistencies can certainly affect the engineering utility 

of these models if not resolved.  A method is proposed and 

implemented to resolve any inconsistencies as detected 

during the transient simulation.  This method has been 

tested on models that demonstrated inconsistencies and 

shows promising results in terms of consistent results and 

computational impact.  These changes have been 

implemented in Air Conditioning Library 1.26 to ensure 

that users who employ the redundant state option will not 

only preserve charge but also will see consistency 

between the density, pressure, and enthalpy states. 
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Abstract
The calibration of models against measurement data is im-
portant to ensure model dynamics that are close to its real-
world system. Derivative-free minimizing methods can be
used for any model calibration regardless of continuous
differentiability requirements, and find a (local) minimum
in a reasonable number of iteration steps.

A user-friendly, python-based calibration Dash app to
use with the cloud-based Modelica platform Modelon Im-
pact is introduced. Basic calibration setup is done through
the GUI of the app and graphical feedback (i.e. plots) is
provided.

Two example calibrations are shown: A mechanical Fu-
ruta pendulum that only uses Modelica Standard Library
components is calibrated against real-world measurement
data, and a low-fidelity heat exchanger testbench model
that uses Modelon’s Air Conditioning Library is calibrated
against a corresponding high-fidelity model.
Keywords: calibration, Modelon Impact, Dash, Nelder-
Mead, Modelica, Air Conditioning Library, optimization

1 Motivation
Physical modeling can be used to optimize existing sys-
tems, predict the behaviour of a system under different
boundary conditions, or design new systems.

When working with a system that exists in the real
world, it is important that the system model shows the
same dynamic behavior as the existing, real-world system
with reasonable accuracy. This requires model calibration
of relevant system parameters using real-world measure-
ment data.

When working on the detailed design of a complex
component, it is common to use testbenches with a high-
fidelity model. The finalized model is then integrated in a
larger system model. Often, this requires to switch from
a high-fidelity to a low-fidelity model to allow for rea-
sonable computation times. The uncalibrated low-fidelity
model can behave differently from the high-fidelity model.
Therefore, it is required to calibrate the low-fidelity model
using high-fidelity model simulation data.

2 Optimization
Following Olsson, Mattsson, and Elmqvist (2006), we can
mathematically describe the general problem with a num-
ber of measured/simulated inputs vi, outputs wi, and a re-

lation between them

wi = m(p,vi) (1)

where m() describes our model function, and p describes
system parameters. The goal of the optimization problem
is to minimize the residuals by finding the optimal set of
parameters p:

ri(p) = m(p,vi)−wi (2)

Typically, we are interested in more than one residual.
Therefore, we can weight and combine all of the residuals
into one scalar to be minimized:

f (p) = ∑
i

kir2
i (p) (3)

where ki is a weighting factor. Note that here the least
squares formulation is used. The choice of good weight-
ing factors is difficult. Finding good weighting factors has
to be done with the problem formulation in mind and a
good understanding of the underlying equations. It is also
possible to formulate it using the square root or even cus-
tom error functions. Our optimization problem can then
be represented as

f (popt)≤ f (p) (4)

with f as our objective function, and popt as the optimal
set of parameters. In this case, p can be the set of all possi-
ble design parameters and therefore the equation describes
the global optimum. This is typically unfeasible to solve
for. In the following, it is assumed to solve for a local
optimum.

There are different methods and approaches to find the
optimal solution for the problem at hand.

Normally, a sensitvity analysis is carried out prelimi-
nary to a calibration. This will not be discussed here.

In the following subsections, three optimization meth-
ods are described.

2.1 Parameter Sweep
A parameter sweep is a simple method where simulations
are run repeatedly with a range of different parameter val-
ues. The batch of simulation results (outputs) can then be
compared to the target data (inputs). Using a compare al-
gorithm or visualization tools, parameters can be picked.
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Since each simulation run with a set of parameters is in-
dependent from the others, each can be run completely in
parallel. This method does not pose any model restrictions
in terms of continuity, differentiability and/or events.

As picking the set of parameters is not based on an op-
timization algorithm, it is unlikely to find an optimal solu-
tion within a reasonable number of iteration steps.

2.2 Advanced Methods
For the advanced methods, picking a set of parameters fol-
lows a certain pattern. Typically, after a few initializing
simulation runs, the next set of parameters is picked based
on previous results and/or on (local) derivatives. Whether
derivatives are used or not has different implications for
the model architecture and end applications. This iterative
process continues until a termination condition is met, e.g.
the difference of the objective function results from con-
secutive simulation runs falls below a threshold.

In general, it is recommended to give bounds to the sys-
tem parameters. Otherwise, it is possible to find a mathe-
matically optimal solution which is unphyscial (e.g. neg-
ative joint friction) or economically not feasible (e.g. heat
exchanger with the size of a space ship). Since the min-
imization can be sensitive to the choice of initial param-
eter sets, it is common to run the optimization method of
choice several times with different initial parameters.

2.2.1 Derivative-free Methods

Derivative-free methods involve algorithms that work
without using derivatives. The methods can be catego-
rized depending on the type of method and shape of ob-
jective function. For an extensive overview see Larson,
Menickelly, and Wild (2019).

A prominent example is the Nelder-Mead method
(Nelder and Mead 1965) which uses n+ 1 test points ar-
ranged as a simplex for an optimization problem with n
parameters. By reflection, expansion, inner contraction
and shrinkage of the simplex (see Figure 1), a local min-
imum can be found. For a description with an example

Figure 1. Nelder-Mead simplex operations: original simplex,
reflection, expansion, inner contraction, and shrinkage (Larson,
Menickelly, and Wild 2019).

implementation in C see Press et al. (1992).
Other examples of derivative-free optimization meth-

ods are the Powell method (see Powell (1964)) and the
further developed COBYLA method (see Powell (1994)).

Since the objective function is not required to be contin-
uous and differentiable, derivative-free optimization meth-

ods can be applied to any function. This is especially use-
ful for complex models in Modelica that involve model
discontinuities (such as media phase changes) or events.
As opposed to the parameter sweep, with these methods
it is more likely to find a (local) optimal solution with a
limited number of iteration steps. Depending on the used
algorithm, parts of the implementation can be parallelized,
e.g. the calls to the objective function within one iteration
of the Nelder-Mead algorithm.

For (two times) continuously differentiable objective
functions, these methods can be inefficient to find the (lo-
cal) minimum.

2.2.2 Derivative-based Methods

Derivative-based methods involve algorithms that use
derivatives of the objective function. This means our un-
derlying system model needs to be continuously differen-
tiable or have even stricter requirements. Depending on
the used method it might also be necessary to explicitly
give the derivative in form of the Jacobian as an extra in-
put.

This sub-category of optimization methods can for ex-
ample be used for techno-economic assessments of well
formulated system models (Köppen et al. 2022). Since our
focus is the calibration of general mechanical and thermal
applications, regardless of differentiability and continuity,
further explanation of derivative-based methods is left out.

2.3 Existing Frameworks
In this subsection, some existing frameworks are intro-
duced. One of them has been tested with the thermal ap-
plication described below. The others serve as a reference
for an interested reader to test and compare.

All of the introduced frameworks use functional mock-
up units (FMU) and work in a python environment. This
makes the user independent from Modelica tools, but is
as a stand-alone workflow less integrated in the modeling
process.

ModestPy

ModestPy (see Arendt et al. (2018)) is a discontinued
open-source python package for parameter estimation
in FMUs. Available algorithms are genetic algorithm,
(legacy) single-process genetic algorithm, pattern search
and some SciPy solvers. These methods can be used in a
sequence within the framework, which makes it a power-
ful framework. It outputs several plots that help to analyze
the results and parameter interdependencies. The whole
package is command line based and changes to the setup
are done in the python code. There is no direct graphical
interface.

For an inexperienced user, the framework can be dif-
ficult to use even for simple applications. Without the
knowledge of the different algorithms and how to effec-
tively use them sequentially, this framework can be too
complicated.
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EstimationPy

Similarly to ModestPy, EstimationPy (see EstimationPy
(2023)) is a Python package for the estimation of state
and parameters of dynamic systems that conform to FMI
standard. It uses the packages NumPy and SciPy for
the computation , is compatible with Pandas DataFrames
and DataSeries and relies on PyFMI and Assimulo to run
the model simulations. It goes beyond typical calibration
problems, such as model-based fault detection. It also
gives the user the option to use Kalman filter to solve
state estimation problems. The whole package is com-
mand line based and changes to the setup are done in the
python code. There is no direct graphical interface.

For an inexperienced user, the package can be difficult
to use even for simple applications.

AixCaliBuHA

AixCaliBuHA (see Wüllhorst et al. (2022)) is a framework
that aims at automatizing the process of calibrating models
used in Building and HVAC simulations. As opposed to
the aforementioned python packages, this framework has
a focus on calibrating models. It includes the capability to
perform a sensitivity analysis and several visualization op-
tions that help to analyze the results. For the optimization
method, it is possible to choose between SciPy’s differ-
ential evolution method, SciPy’s minimize methods, and
dlib’s minimize (implemented in C++). The whole pack-
age is command line based and changes to the setup are
done in the python code. There is no direct graphical in-
terface.

For an inexperienced user, the package can be difficult
to use even for simple applications.

This framework was tested with the thermal application
described here and delivered reasonable results.

3 Technical setup
In the following, the general calibration setup for two dif-
ferent models - one mechanical and one thermal - is out-
lined. The model specific setup is described in section
section 4.

On the modeling side, the cloud-based platform
Modelon Impact is used. It is not necessary to manually
convert the model into a FMU. There are no specific
requirements to the model itself. A python-based
dashboard app created in Dash (https://dash.plotly.com)
connects to Modelon Impact using the Impact Python
Client (https://github.com/modelon-community/impact-
client-python). The dashboard uses the client to set up
the workspace, get and set parameter values and compile
and run the model. Dash is low-code frameowrk to build
data apps in Python. The used optimization algorithm is
the Nelder-Mead algorithm that is one method included
in scipy.optimize.minimize. Note that it is also
possible to use the Powell or Cobyla method from the
same python module or differential_evolution, as
these are derivative-free methods as well. The underlying

objective function is constructed as the sum of the
squared error over the time window for the calibration. A
simplified graph of the base setup can be seen in Figure 2.

Figure 2. Simplified graph of software setup.

4 Applications
The calibration app is structured with three tabs: Model,
Measurement, and Calibration.

The Model tab is used to pick a workspace that is stored
in the user’s Modelon Impact account, and the model of
interest inside that workspace. The picked model is then
to be compiled and simulated for an adjustable stop time.
For verification, model variables can be plotted.

The Measurement tab is used to load in the measure-
ment data. Allowed formats are .mat and .csv. For ver-
ification, the data can be plotted.

The Calibration tab is used for the actual calibration
process. Model variables of interest (output wi as in sec-
tion 2) are assigned manually to the corresponding mea-
surement variable (input vi as in section 2). The vari-
ables can be weighted (weight ki in section 2). The rel-
evant system parameters (p in section 2) are picked and
the bounds can be assigned as well as a nominal value
which serves as start value. It is possible to pick mul-
tiple system parameters for a single calibration. In the
following examples, only two parameters are picked for
each application. Note that with each extra parameter, the
number of iteration steps will increase and thus can be-
come unfeasible to solve the calibration within a reason-
able amount of time. The calibration time interval can
be picked and finally the calibration algorithm is started.
When the calibration is finished, a plot shows the nominal
model variables, measurement variables and the calibrated
model variables. The nominal and calibrated simulation
run results are stored in the model in Modelon Impact.

4.1 Mechanical
A real-world furuta pendulum is modeled in Modelica.
For the model to show the same behavior as the real-world
system a calibration is necessary.

The Furuta pendulum consists of an arm rotating in the
horizontal plane and a pendulum which is free to rotate
in the vertical plane. The construction has two degrees
of freedom, the angle of the arm, ϕ , and the angle of the
pendulum, θ . The real-world system is shown in Figure 3.

The corresponding Modelica model is modeled using
Modelica Standard Library components only. The rev-
olute joint armJoint is connected to the world com-
ponent and the horizontal arm, and allows rotational
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Figure 3. Photograph of Furuta pendulum.

movement in the global y-axis. Another revolute joint,
pendulumJoint, connects the horizontal arm with the
vertical pendulum, and allows rotational movement in the
local x-axis. Both revolute joints are connected through
their axis flange to a bearing friction component to allow
friction modeling. The model can be seen in Figure 4.

Figure 4. Modelica model of Furuta pendulum.

Experimental data of the real-world pendulum is used
for the calibration (input vi as in section 2). Variables of
interest are arm angle ϕ , and the pendulum angle θ .

Correspondingly, model variables of interest (output
wi as in section 2) are the angle of the arm joint

Figure 5. Furuta calibration setup in the calibration app’s GUI.

armJoint.phi, and the angle of the pendulum joint
pendulumJoint.phi. Both variables are weighted
equally with factor 1.

The parameters of interest for the calibration pro-
cess are the bearing friction coefficient for the arm
joint armFriction, and the bearing friction coeffi-
cient for the pendulum joint pendulumFriction. For
armFriction, we use 0.012 as nominal value, and for
pendulumFriction we use 0.002 as nominal value. For
both parameters, we set the bounds as 0 and 0.9.

Calibration time interval is set from approximately 0 to
35 seconds.

An overview of all the settings in the calibration app
can be seen in Figure 5.

It took 27 iteration steps to find a local minimum at

armFriction= 0.010125 (5)
pendulumFriction= 0.00117 (6)

Figure 6 and Figure 7 respectively show the the arm angle
and the pendulum angle over time for the experimental
data, and the nominal and calibrated case of the model.

In comparison to the uncalibrated model, we can
see that the result of the calibrated model is in good
agreement with the experimental data. The value of the
objective function has decreased from 1.645 ·102 to 2.729.
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Figure 6. Arm angle over time curves of experimental data
(green), and nominal (blue) and calibrated case (orange) for sys-
tem model.

Figure 7. Pendulum angle over time curves of experimental data
(purple), and nominal (red) and calibrated case (light blue) for
system model.

4.2 Thermal
A heat exchanger was designed as a high-fidelity model.
This heat exchanger is now to be used in a complex system
model requiring fast respond times. This requires a com-
putationally less expensive model, a low-fidelity model.
For the low-fidelity model to show the same behavior as
the high-fidelity model, a calibration is necessary.

In our example, we are using a testbench model for mi-
crotube heat exchanger models from Modelon’s Air Con-
ditioning Library (see Figure 8). A testbench is a type of

Figure 8. Testbench model for a microtube heat exchanger
model using Modelon’s Air Conditioning Library.

model that focuses on a single complex component. Ade-
quate boundary conditions in the form of sources and sinks
are connected to complex model that is to be tested. In this

case, a heat exchanger is connected to a source and sink
for the air and refrigerant side respectively. Except for the
air sink, each source and sink is connected to a ramp signal
for each variable. Since we are interested in the dynamic
behavior, the boundary conditions (i.e. all ramp signals)
are configured to change within 170 seconds starting with
the first boundary condition after 60 seconds.

The low-fidelity heat exchanger testbench model ex-
tends the testbench model for the high-fidelity heat ex-
changer. The difference between the two testbench mod-
els is the pressure correlation of the refrigerant side
in the heat exchanger model. The high-fidelity model
uses PlossCommon, which is a Reynolds-based two-
phase pressure loss model for laminar and turbulent
flow based on Friedel (1979). The low-fidelity model
uses DensityProfilePressureLossHX, which is a
distributed pressure loss model for two-phase fluids using
a density profile.

Measurement data (input vi in section 2) is gener-
ated from the high-fidelity testbench model. Variables
of interest are the pressure drop on the refrigerant side
dp_ref, and the total heat flow on the refrigerant side
Qdot_refTotal. Correspondingly, low-fidelity model
variables of interest (output wi in section 2) are the same:
Pressure drop on the refrigerant side dp_ref, and the total
heat flow on the refrigerant side Qdot_refTotal. Both
variables are weighted equally with factor 1. Note that
with the given problem, we could also give the pressure
drop a higher weighting factor as the heat flow.

The parameters of interest for the calibration process
are four calibration factors for the corresponding correla-
tion equations:

1. CF_RefHT, for heat transfer correlation on refriger-
ant side.

2. CF_AirHT, for heat transfer correlation on air side.

3. CF_Refdp, for pressure loss correlation on refriger-
ant side.

4. CF_Airdp, for pressure loss correlation on air side.

A preliminary investigation showed that only the calibra-
tion factors for the refrigerant side are relevant for this par-
ticular case. This makes sense, as we are changing the
pressure loss correlation only on the refrigerant side, and
our variables of interest are on the refrigerant side. For
both parameters, we use 1.0 as nominal value. We set the
bounds to 0.1 and 5.

Calibration time interval is set from approximately 50
to 200 seconds. This is to not capture the initial transient,
and to allow enough time for the system to reach a steady-
state before the ramp signal steps are activated.

An overview of all the settings in the calibration app
can be seen in Figure 9.
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Figure 9. Heat exchanger calibration setup in the calibration app’s GUI.

Figure 10. Pressure drop over time curves for high-fidelity
model (green), and nominal (blue) and calibrated case (orange)
for low-fidelity model.

It took 117 iteration steps to find a local minimum at

CF_RefHT= 3.139 (7)
CF_Refdp= 1.422 (8)

Figure 10 and Figure 11 respectively show the pressure
drop and total heat flow over time for the high-fidelity
model, and the nominal and calibrated case of the low-
fidelity model.

In comparison to the uncalibrated model, we can see
that the result of the calibrated low-fidelity model is closer
to the results of the high-fidelity model. The value of the
objective function has decreased from 1.495 ·109 to 4.029 ·
107.

However, it is also visible that the calibrated low-
fidelity model parameterization requires more optimiza-
tion. Including other system parameters can help to find
a parameterization that follows the results of the high-
fidelity model more closely. The underlying correlation of
the low-fidelity model uses 4 extra parameters (pressure,
enthalpy, mass flow, pressure drop) that can be adjusted to
match the steady-state solution of the high-fidelity model.

Figure 11. Heat transfer over time curves for high-fidelity
model (purple), and nominal (red) and calibrated case (light
blue) for low-fidelity model.

This way, the nominal solution is closer to the high-fidelity
solution and potentially less iteration steps are required to
get a more optimized solution.

In a further step, different start values could be picked
and/or different minimizing methods (i.e. Cobyla or Pow-
ell) could be picked, to verify whether a global minimum
within the bounds was found. These next steps are not
discussed here.

5 Conclusion
Derivative-free minimization methods are a good way to
calibrate system models, as these methods do not set strict
requirements on the model architecture and find a (local)
optimal solution in a reasonable number of iteration steps.
To verify that an optimal solution is found with little com-
putational effort, it is recommended to do a sensitivity
analysis, run several calibration runs with different start
values and use different minimization methods, such as
Nelder-Mead, Powell, and Cobyla.

Using a Dash app and scipy.optimize.minimize,
it is possible for a user with limited knowledge to cal-
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ibrate Modelica models against measured or simulation
data with the Nelder-Mead method. This can be used inde-
pendently from the physics domain. The reliability of the
results can be improved by implementing an automization
and parallelization of the calibration runs with different
start values and minimization methods.
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Abstract 

System Structure and Parameterization (SSP) is a tool 

independent standard to define complete systems. Dymola 

now supports import and export of SSP files; this paper 

describes how the SSP support was implemented and 

discusses some of the constraints and unavoidable 

compromises. 

Keywords: Modelica, SSP, implementation 

1 SSP and supporting processes 

System Structure and Parameterization (Mai 2019), 

known as SSP, is a tool independent standard to define 

complete systems. In a typical use of SSP, the system 

description consists of several interconnected Functional 

Mockup Units (FMUs), nested system descriptions, and 

their parameterizations and other related data, as shown in 

Figure 1. 

 

Figure 1. Top-level system comprising two FMUs and 

a drivetrain subsystem described hierarchically. 

SSP is suitable for representing simple model structure 

with additional support for parameter sets and (some) 

simulation setup. However, SSP was designed to meet 

several needs: 

 SSP for designing a simulation structure. 

Components are described with its inputs and 

outputs and its required parameters, but no 
behavior. 

 SSP as a template for implementation, based on the 

interfaces and parameters defined in the previous 

step. 

 SSP as central parameterization description and 

database (Hällqvist et al. 2021). Several data sets 

can be defined and documented in a portable 

manner. 

 SSP as a ready-to simulate system description. This 

is the main use we envision in our environment. 

 SSP for reuse of system structure during different 

phases of development, for example, an SSP 

defined originally for software-in-the-loop can also 

be reused for hardware-in-the-loop testing. 

A key objective is that the SSP files can be transferred 

between multiple environments for architecture 

specification, detailed design and model implementation, 

or post-processing analysis. A demonstrator using such a 

multi-tool workflow was developed by ProSTEP ivip 

Smart System Engineering (Rude et al. 2021), as shown 

in Figure 2. For this application, several tools were used 

in a collaborative manner: Dymola (Dassault Systèmes 

2019; Elmqvist 2014), easySSP (eXXcellent 2022), 

PMSF FMI Bench (Mai 2023) and Tracy (Vettermann 

2021). 

 

 

Figure 2. Traceability workflow using SSP from 

ProSTEP ivip Smart System Engineering. 

SSP is commonly stored as a zip-file containing several 

files and a hierarchy of directories. A simplified view of 

the SSP structure is given in Figure 3. 
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Figure 3. Simplified structure of the SSP file. 

SSP is open for any extensions using standardized or 

vendor-specific annotations and directories with addi-

tional meta-data. Under the catch-phrase “Credible 

Decision Process” (CDP), the SSP community has 

expressed great interest in adding standardized meta-data. 

The SET Level project has developed a process 

framework for integrating simulation into the develop-

ment and validation of system models (Heinkel and 

Steinkirchner 2022a; Heinkel and Steinkirchner 2022b). 

The process supporting CDP is shown in Figure 4. 

 

Figure 4. SET Level credible decision process. 

An extensive Simulation Resource Meta Data (SRMD) 

file format was defined to store meta-data for simulation 

resources as well as meta-data for models, tools, maps and 

scenarios, and simulation tasks (Heinkel et al. 2022c). 

Similar approaches are LOTAR (LOTAR International 

2023), MIC (IRT SystemX 2020) and MoSSEC 

(MoSSEC Project 2021), each shaped by the needs of their 

respective communities. 

It is worth noting that SSP does not specify any 

simulation semantics, although you can argue that one is 

implied because much of the definition is based on FMI 

and the interconnection structure. However, including 

components of other types (e.g. Modelica) is within the 

scope of SSP. 

SSP is developed as a project in the Modelica 

Association (MAP-SSP). The first version of the SSP 

standard was published in March 2019 (Mai 2019), and 
progress is now made to align SSP 2.0 with the FMI 3.0 

specification. 

Several tools supporting SSP are now emerging; the 

remainder of this paper describes how SSP support was 

implemented in Dymola and discusses some of the 

constraints and unavoidable compromises. A detailed 

comparison with other Modelica tools could not be made 

due to Dassault Systèmes policies. 

2 Mapping SSP to Modelica 

Dymola is a development and simulation environment for 

Modelica models, with support for importing Functional 

Mockup Units (FMUs) and running simulations. This 

means that much of the support needed for SSP “comes 

for free”, the remaining task being to map SSP structures 

to Modelica models in a sensible way. The mapping is 

summarized in Figure 5. 

 

Figure 5. Mapping SSP key elements to Modelica 

2.1 Package as container for all artifacts 

The first design choice was that everything imported from 

an SSP would be collected in a single Modelica package 

in order to prevent contamination of the namespace. 

The package name is derived from the SSP name, and 

certain SSP documentation is stored as package docu-

mentation. 

2.2 System Structure Description (SSD) 

The top-level system, i.e. the SystemStructure.ssd 

file, is converted to a Modelica model, including the 

internal component, connector and connection structure. 

A restriction at present is that Dymola only supports one 

top-level SSD. 

Embedded systems in the form of nested SSDs are 

also imported as locally defined models, and the 

corresponding component is created in the top-level 

model. 

2.3 Functional Mockup Unit (FMU) 

All FMUs embedded in the SSP file are imported into the 

enclosing package. This import relies entirely on the 

available FMU import capabilities of Dymola to create a 

Modelica wrapper model, which means that any 

combination of ME and CS, or FMI version is supported. 

The FMU import processes the port definitions of the 

FMU and creates the corresponding Modelica connectors. 

Zip File Folders

FMUs

Connection 
structure

Parameters

Dictionary

Other 
resources

Tables

Meta-data
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For that reason, any connector definitions defined in the 

corresponding SSP component are resolutely discarded; 

the FMU ports are used instead. 

2.4 Parameters and connectors 

SSDs can have both parameters and connector definitions. 

They are mapped to the closest matching Modelica type. 

For example, a connector of type ssc:Real and kind 

“input” is represented by the MSL type RealInput. 

Units in the SSD are applied to the Modelica model 

without any checking until the model is translated in 

Dymola. 

The Binary type is used as a special case to represent 

more complex Modelica types (see below), but in the 

general case represent a problem for a Modelica 

environment. There is no natural mapping to an 

anonymous array of bytes; this is an unsolved problem 

that SSP shares with FMI. 

2.5 Parameter sets 

One of the strong points of SSP is that it combines 

simulation models with parameter sets, stored in one or 

more SSV-files. There are also optional mapping files 

(SSM) that allows parameters to mapped to model 

variables with different names, and in that process 

perform linear transformations for e.g. unit conversion. 

In Dymola, we apply a common Modelica idiom to 

parameter sets. For each parameter set, we create a new 

model that extends from the main model defined in the 

SSP, and then we provide the parameters as a modifiers in 

the extends-clause. This process allows us to keep the 

natural structure of the SSP file in a manner that maps 

naturally to Modelica. It also allows further parameter 

changes by inheritance. 

2.6 Documentation and meta-data 

The question of simulation quality, from measurement 

data via modeling assumption to simulation setup, has 

received considerable attention. As a result, the Credible 

Simulation Process (Heinkel and Steinkirchner 2022a) is 

applied to SSP. A key aspect of CSP is the ability to store 

meta-data in the form of key-value pairs, following 

standardized templates defined by organizations or 

corporations. 

Dymola extracts meta-data stored in the proposed 

Simulation Resource Meta Data (SRMD) format and 

converts it to model annotations that are displayed and 

edited as part of the documentation. 

2.7 Simulation setup 

SSP does not have any simulation semantics in itself, 

although possibly something can be derived from the 

underlying reliance on FMU components. The simulation 

setup in SSP is conversely restricted to simulation start 

and stop times. 

Dymola has the capability to store a more extensive 

“experiment” annotation in Modelica models, and that 

information is shared in SSPs by the use of a proprietary 

SSP annotation (lacking further standardization). 

3 Example of an imported SSP 

Using a simple SSP example, the XML code with many 

details omitted is shown in Listing 1. 

<?xml version="1.0" encoding="UTF-8"?> 

<ssd:SystemStructureDescription > 

  <ssd:System name="Example"> 

    <ssd:Connectors> 

      <ssd:Connector name="pos" 

         kind="output" /> 

    </ssd:Connectors> 

    <ssd:Elements> 

      <ssd:Component name="stimulus" 

        type= 

          "application/x-fmu-sharedlibrary" 

        source= 

          "resources/StimulusFMU.fmu"> 

        <ssd:Connectors> 

          <ssd:Connector name="y" 

             kind="output"> 

             <ssc:Real/> 

             <ssd:ConnectorGeometry ... /> 

          </ssd:Connector> 

        </ssd:Connectors> 

        <ssd:ElementGeometry ... /> 

      </ssd:Component> 

      <ssd:Component name="controller" .. /> 

      <ssd:Component name="drivetrain" .. /> 

    </ssd:Elements> 

    <ssd:Connections> 

      <ssd:Connection  

         endElement="controller" 

         endConnector="ref" 

         startConnector="y" 

         startElement="stimulus"> 

         <ssd:ConnectionGeometry ... /> 

      </ssd:Connection> 

      <ssd:Connection ... /> 

      <ssd:Connection ... /> 

      <ssd:Connection ... /> 

    </ssd:Connections> 

    <ssd:SystemGeometry ... /> 

  </ssd:System> 

  <ssd:DefaultExperiment stopTime="4" /> 

</ssd:SystemStructureDescription> 

Listing 1. Simple SSP example. 

The representation of parameters in SSP is currently 

subject to discussion; see also (Brück 2023). 

Importing the SSP file with three FMUs, the gene-

rated Modelica model is displayed as Figure 6. 

 

Figure 6. Diagram of SSP file imported into Dymola. 
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The generated Modelica code, with graphical annotations 

removed for clarity is shown in Listing 2. 

model Example "Model for position servo" 

  // Connectors 

  Modelica.Blocks.Interfaces.RealOutput 

      pos annotation (...); 

  // Components 

  parameter Real k(value=200) 

      "Gain of controller"; 

  parameter Modelica.Units.SI.Time 

      T(value=10) 

      "Time constant of controller (T>0)"; 

  parameter Modelica.Units.SI.Radius 

      r(value=0.5) "Radius of load"; 

  parameter Modelica.Units.SI.Mass 

      m(value=80)  "Mass of load"; 

  StimulusFMU_fmu stimulus 

      annotation (...); 

  ControllerFMU_fmu controller 

      annotation (...); 

  DrivetrainFMU_fmu drivetrain 

      annotation (...); 

equation  

  // Connections 

  connect(stimulus.y, controller.ref) 

      annotation (...); 

  connect(controller.y, drivetrain.u) 

      annotation (...); 

  connect(drivetrain.pos, controller.pos) 

      annotation (...); 

  connect(drivetrain.pos, pos) 

      annotation (...); 

  annotation (experiment(StopTime=4)); 

end Example; 

Listing 2. Generated Modelica code after import. 

If the SSP file contains parameter sets (SSV and 

optionally SSM files), then additional Modelica models 

are created that provide parameter settings, see Listing 3. 

model HighGain "Servo with high gain" 

  extends Example(k=400, T=12); 

end HighGain; 

Listing 3. Applied parameter set. 

It is worth noting that Dymola creates a Modelica wrapper 

model for each imported FMU. These models are however 

no different for FMUs in SSP-files from other imported 

FMUs. 

4 Mapping Modelica to SSP 

Being a modeling and simulation environment for 

Modelica, Dymola has to support model export to SSP. 

4.1 Models with FMUs 

The most straightforward use case is a top-level Modelica 

model populated with interconnected FMUs as 

components. This kind of structure can be exported to a 

standard SSP file under the assumption that you only use 

types that can be expressed in SSP. For example, 

Modelica.Blocks.Interfaces.RealInput and RealOutput 

can be mapped to ssc:Real with kind=”input” and 

“output” respectively. FMUs are copied from wherever 

they are located into the SSP file’s resource directory. 

Similarly, local variables and parameters of built-in 

types, connections and description string have 

corresponding attributes in SSP. More advanced concepts 

such as inheritance (extends) and model templates 

(replaceable/redeclare) cannot be represented. 

4.2 Need for annotations 

SSP has a general escape mechanism called “annotations” 

that allows a tool to store arbitrary information with a 

proprietary encoding. Each annotation is tagged by the 

tools, e.g. com.3ds.dymola. 

Dymola uses such annotations to store model 

documentation, the full experiment (simulation) setup, 

commands and standardized Modelica figure annotations. 

It is worth noting that the only simulation setup attributes 

defined in SSP are start and stop times. 

Dymola can store model meta-data (key-value pairs, 

in user-defined groups). Most meta-data are stored in SSP 

annotations, the exception being meta-data groups being 

identified as being in SRMD format. Such SRMD meta-

data is stored in separate SRMD files in the SSP extra 

directory. 

Graphical annotations in Modelica models are not 

stored in SSP. The possibility to store the entire model text 

as an annotation is not used by Dymola. 

4.3 Native Modelica models 

A natural extension (in a Modelica tool) is the possibility 

to use Modelica components in addition to FMUs and 

export it as an SSP file. Such an extension would increase 

the expressive power of SSP, for example by connecting 

physical connectors such as mechanical flanges or fluid 

pipes. 

SSP was designed with such openness in mind, 

although the specification only mentions FMI by name 

and provides a restricted set of types appropriated from 

FMI. A noteworthy point is that SSP does not define any 

simulation semantics, this follows implicitly from the 

semantic meaning of connecting its components. 

Dymola supports an extended SSP format that has 

been proposed as part of SSP 2.0 (Brück 2023). The 

proposal aims to be a practical compromise with the 

following key properties: 

 Components and connectors can have native 

Modelica types, such as a rotational inertia. We 

have chosen to represent them with SSP’s Binary 

type as a generalization of the concept. 

 Acausal connectors have been added (in addition 

to in, out and inout). 

 Parameter values can be arbitrary expressions. 
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 Modelica components use references to Modelica 

types; the Modelica models themselves are not 

stored in the SSP file. 

It is hoped that the community can gain experience of 

using Modelica components in SSP and that it eventually 

lead to adaption by SSP. 

4.4 Round tripping 

In this context, round tripping means the ability to read 

and write between internal and external data formats 

without any loss of information. A stricter sense of the 

term would require an identical external representation. 

Dymola is only partially successful in this respect. 

Overall structure and simulation behavior is very well 

preserved, which can be expected as FMUs are copied in 

and out. 

The read-edit-store cycle for SSPs is not so well 

developed and will need improvement in the future. In 

particular, annotations from other tools may be lost during 

editing. 

5 Conclusions 

Reasonable, although not complete, support for SSP has 

been implemented in Dymola. It takes advantage of earlier 

functionality for e.g. importing FMUs, hence is able to 

map most SSP concepts to Modelica models. 

The development effort is entirely guided by 

practicality, with the aim of providing high-quality 

simulation capabilities to SSP. The degree of success has 

to be judged by its users. 
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Abstract
Nowadays, the digitalization of large-scale railway infras-
tructure systems is a major trend, which helps to reduce
the life-cycle costs of the railway transportation. For
this purpose, the Digital Twin (DT) technology can be
used to interoperate different digital data and models, be-
longing to the railway infrastructure system, in a virtual
platform for predictive maintenance, diagnostics and con-
dition monitoring in the railway sector. However, the
simulation models of the infrastructure system are tool-
dependent, lack ease-of-use and platform compatibility.
Therefore, we have to customise them in order to make
them more representative and then integrate easily and
tool-independently into the DT platform. For this pur-
pose, we propose to use the Functional Mock-up Interface
(FMI) and System Structure Parameterization (SSP) tech-
nologies as open interface standards between the models
and software tools. In this work, we demonstrate the ap-
plication of the FMI and SSP standards separately for two
use cases, which include a multibody simulation (MBS)
model of a railway vehicle and residual life time (RLT)
calculation of a steel bridge.
Keywords: FMI, FMU, SSP, Model Integration, Digital
Twin, Railway Digitalization

1 Introduction
In recent decades, the railway sector has made a signif-
icant contribution to both local and long-distance public
and freight transport. The holistic, large-scale railway in-
frastructure system has played a major role in this. The
system is very complex and consists of different subsys-
tems such as railway vehicle, track, turnout, tunnel and
bridge. These are to be controlled, maintained, moni-
tored, diagnosed and visualized, which is complex and
time-consuming. Therefore, the whole system has to be
easy to control and simply presented to the train operators
and infrastructure managers for their operational, super-
vision and maintenance tasks while expanding life cycle
time and reducing costs at the same time. This is cer-

tainly possible if the system can be used in a user-friendly
and interactive virtual environment. Nowadays, the DT
technology is foreseen as a suitable method to digitalize
the railway system, as it is already applied in different
kinds of systems in many sectors such as automotive, air-
craft, etc., incl. the railway infrastructure. For example,
(Kaewunruen, AbdelHadi, et al. 2022) proposed to use it
for efficient maintenance, resilience and sustainability of
railway bridge infrastructures. (Hamarat, Papaelias, and
Kaewunruen 2022) also used it to analyze and simulate
fatigue damage in railway turnouts. Unfortunately, there
are difficulties in applying the railway infrastructure sys-
tem to a DT platform by using different subsystem assets,
adapters and interfaces, which is even more sophisticated
when considering the proper communication and interac-
tion of the assets with each other. As (Ahmadi et al. 2021)
mentioned, uncertainties of measured system parameters
and variables due to external factors (e.g. noise, weather),
abnormalities caused by time-frame mismatches between
system and model, and incomplete system interpretation,
understanding and not 100% reliability of the DT are the
overall challenges to overcome while operationally imple-
menting the DT platform.

In order to overcome the difficulty of asset integration
mentioned above, first, we propose to use the FMI stan-
dard, which helps us to adopt simulation models of differ-
ent railway infrastructure subsystems, to make them easy
to use, tool independent, platform compatible and suit-
able for intellectual property (IP) protection. FMI is an
open standard, providing an interface between dynamic
simulation models and various software tools, and is al-
ready supported by more than 170 tools. The models are
supposed to be packed into the Functional Mock-up Unit
(FMU), which is the simulation unit of the FMI consist-
ing of a model description file (xml), implementation in
source and/or binaries, additional data and functionality.
(https://fmi-standard.org/)

For this work, the second standard interface we propose
to use is SSP. It consists of one or more FMUs, transfer-
able parameter description formats such as system struc-
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ture definition (.SSD), signal directories (.SSB), parameter
values (.SSV), parameter mapping (.SSM), all as packed
in System Structure Package (.SSP) (Pierre R. Mai 2018).
Many industrial and academic members also contribute to
the SSP standard. The technology helps to keep and inter-
operate different FMUs, belonging to a physical system,
together with parameter mapping, storage and exchange
in a whole SSP-file. (https://ssp-standard.org/)

Models and data of different railway infrastructure sub-
systems need to interoperate with each other properly,
which is a very complex and elaborate task to handle. Fi-
nally, we need to ensure user control and visual represen-
tation of the railway infrastructure under consideration of
user-friendliness and user-interactivity. Therefore we will
integrate these models and data into a DT platform, called
R4F Platform and proposed by (Zhou, Dumss, et al. 2022).

In addition to building the FMI- and SSP-based inter-
faces between the models and the platform, we need to
design and optimize the entire integration process of the
platform, which helps us to achieve the right visual out-
put and enhance the user control. For this work, we use
Jenkins pipelines for the continuous integration (CI) of
these models. Jenkins is used, because it is open-source,
time-saving, user-friendly, tool-independent and provides
many plugins (cf. (Mysari and Bejgam 2020)). Besides, it
shows durable, pausable, versatile characteristics and its
workflow is code-based (https://www.jenkins.io/
doc/book/pipeline/). In addition, we use a pipeline
auto-generation technology, which is able to automati-
cally and dynamically generate the Jenkins pipeline from
a graph data-model containing different model charac-
teristics by using a graph database management system
(DBMS), which helps us to store, version and manipulate
pipeline graphs used to auto-generate CI pipelines, in the
platform (see (Reiterer, Schiffer, and Benedikt 2022) for
more details on the implementation). This also helps to
reduce the configuration effort of the pipeline workflow
by eliminating the need to write pipeline code for each
change that may be applied. Most importantly, the auto-
generation technology helps to maintain and manage the
reusability, traceability, parameter changes and data struc-
ture applicability of different use cases, making them even
more understandable to the end user.

This paper aims to show how to seamlessly integrate
models into the R4F Platform by using both the FMI and
SSP standards as a model integration methodology. In this
work, first section 2 shows examples of related research on
DT for railways and the application of the standards. In
section 3, we explain the proposed model standardisation
and simulation approaches to integrate the models into the
platform in detail. In section 4, we describe the FMU and
SSP export, simulation process and result comparison of
the aforementioned two use cases as a demonstration of
the two approaches. In section 5, we show the proposed
integration process, which helps to realize the complete
model integration in the platform. Finally, in section 6,
we present the conclusion and outlook of this work.

2 Related Work
2.1 Digital Twin for Railways
Using a DT has the potential to supervise and regulate
a physical system in real time, leading to enhanced sys-
tem performance, decreased maintenance expenditures,
and enhanced safety. In the railway industry, DT can
be applied to multiple areas such as predictive mainte-
nance, fault diagnosis, dynamic analysis, and condition
monitoring. This technology incorporates data from mul-
tiple sources, including sensors, cameras, and historical
records, to create a unified platform capable of modeling
and simulating the physical system.

In 2018, (Kaewunruen and Xu 2018) investigated a DT-
aided Building Information Modelling (BIM) application
that was used to adopt a 3D model of a station building
and transform it into a 6D building information model for
planning, design and operational purposes. During their
research, they identified some limitations and risks of the
BIM adoption such as the lack of a model standard, IP is-
sues (copyright, data privacy), relatively high project costs
and lack of model accuracy due to inaccurate modeling
and data entry control, high model complexity and inac-
curate design data. These drawbacks need to be consid-
ered and overcome when implementing a DT application.
After that (Kaewunruen and Lian 2019) established and
developed a 6D BIM of a railway turnout system by us-
ing the DT technology to enhance information flow, vi-
sualized maintenance, cost estimation and collaboration
among different stakeholders in terms of life cycle man-
agement, for railway turnout systems. These insights can
benefit engineers, project managers, technicians, and se-
nior management.

(S. Zhang et al. 2021) created a framework for DT-
assisted fault diagnostics and real-time health monitoring
of railway point machines. However they focus on a single
subsystem of the railway infrastructure, from which mod-
els and data of different subsystems are to be integrated
into the DT appropriately to make the DT system more
comprehensive. (Zhou, Dumss, et al. 2022) also proposed
to continuously integrate the models and data from differ-
ent railway subsystems into the conceptual model-based
R4F Platform, which represents the fully connected and
digital version of the holistic railway infrastructure sys-
tem with a 6-layer system architecture. This work aims
to enhance the model integration process occurring in the
platform as mentioned before.

2.2 Functional Mock-up Interface (FMI)
The FMI standard came up first in 2010 as a new
open-source interface standard for Model Exchange
(ME) 1.0 (https://fmi-standard.org/assets/
releases/FMI_for_ModelExchange_v1.0.pdf) to
export different dymamic system models by generating
C-code either in source or binary form (Balakirsky et al.
2010). After that, (Bastian et al. 2011) proposed to use the
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FMI for Co-Simulation (CS), consisting of co-simulation
interface and description schema, to simulate coupled
subsystems time-dependently. After that (Blockwitz
et al. 2012) introduced the FMI 2.0 providing further
features such as combination and unification of both
ME and CS interfaces in one document (modelDescrip-
tion.xml), enhancement of the interface variables and
their classification (causality & variability, parameter
tuning during simulation), saving and restoring the FMU
state, improved dependency description by using an
element called ModelStructure, Jacobian matrices (e.g.
for implicit integration methods or FMU linearization)
and improved unit definitions. In 2014, (Bertsch, Ahle,
and Schulmeister 2014) evaluated the FMI technology
by using the FMU Compliance Checker and FMI Cross
Checking methods to further improve the maturity of
FMI-based simulations. They also found the technology
very promising for sharing different simulation models
between different stakeholders in collaboration with
OEMs (Original Equipment Manufacturers) from an
industrial perspective.

(Thule et al. 2018) used the FMI standard for their
work, where they implied the high potential of the
technology to co-simulate different simulation models
with an FMI-suitable tool. Besides, (Pieper and Ober-
maisser 2018) suggested applying the FMI method to
the Software-in-the-Loop simulation via the Internet or
LANs, which is used to test networked railway systems, to
provide an interface for the simulation supported by many
different tools. In this way they were able to increase the
tool-independency of the simulation, which is also one
of the main reasons for using the standard for this work.
Furthermore, (Hartmann 2020) managed to co-simulate a
couple of two subsystems (a physical barge and crane),
implemented in a DT system, by using the FMI method-
ology. He also found the results very promising due to
their high accuracy although further validation of the re-
sults in a real-life environment and the development of a
real-time DT co-simulation are needed in the future. In
addition, (Golightly et al. 2022) used FMI to design a rail
multi-model for rail decarbonisation. They also suggested
using the technology to overcome IP issues due to differ-
ent software tools, models and skills, although there are
some limitations such as limited modelling quality, vali-
dation of results and lack of comparison between multi-
modelling and single model.

Based on the aforementioned research, the FMI
methodology shows a great potential for adopting differ-
ent simulation models for co-simulation in a DT platform.
Therefore, this work aims to apply the technology to dif-
ferent models of the railway subsystems such as the rail-
way vehicle or railway steel bridge belonging to the two
use cases for their integration into the R4F Platform.

2.3 System Structure and Parameterization
(SSP)

The SSP standard was first presented at the 1st Japanese
Modelica Conference 2016 (https://ssp-standard.
org/literature/) as a standardized format to connect
a network of components such as FMUs, to store and ap-
ply their parameters to these components, and also to en-
sure protection of the IP of these parameters. (Ochel et
al. 2019) developed an application called OMSimulator to
parameterize, compose and exchange FMI-based models
for both co-simulation and model exchange by using the
SSP technology in the application. As another example,
(Hällqvist et al. 2021) used the SSP standard for parameter
specifications and exchange between different simulation
and geometric models interoperating in an aircraft vehicle
system and therefore found it very promising to develop
their automated simulation method.

For this work, we also consider the SSP technol-
ogy promising for the further development of the co-
simulation of one or more railway subsystem FMUs with
additional supported parameter description sets. There-
fore, this research paper aims to demonstrate the method-
ology by packaging all the FMU and parameter files into
one file, belonging to each of the two use cases. The one
file will then be used for its FMU-based simulation as in-
tegrated into the R4F Platform.

3 Methodology
In this section, first, we describe the approach followed to
design and optimize the interface between the model and
R4F Platform by using both the FMI and SSP standards
(see Figure 1). Secondly, we explain the path we followed
to realize the simulation of the FMI- and SSP-standardized
model in the platform in Figure 2, which helps to demon-
strate both previously mentioned use cases for the railway
digitalization in this work.

3.1 Model Standardisation Approach
On the left side of Figure 1, we specify the available
models belonging to the various railway infrastructure
subsystems as the first step. These models consist
of default input parameters, simulation algorithm and
output channels, which are connected to each other,
ready to be simulated and visually demonstrated by the
default software tool of the model. In the next step,
they are formatted into the FMU either with solver
(FMI for Co-Simulation) or without (FMI for Model
Exchange), which is possible by using suitable FMI tools
(https://fmi-standard.org/tools/). This makes
FMI-standardised models more tool-independent, easier
to use and more platform-compatible, because the end
user doesn’t need to open the model’s default software
tool for simulation, but can easily redirect the FMU file
anywhere else and then bring it into simulation inside the
R4F Platform. The FMU file consists of a required model
description XML file, which describes the model (incl. the
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registered inputs and outputs), an optional binaries folder,
including file(s) for operating system (OS) compatibility
of the FMU, an optional sources folder with all C-sources
used for FMU compilation and linking, and an optional
resources folder with resources needed by the FMU to
read data from model specific files during initialization
((https://fmi-standard.org/assets/releases/
FMI_for_ModelExchange_and_CoSimulation_v2.
0.pdf), p. 66). As the last step, the FMU is packed
into the SSP format, which can be exported by a limited
number of tools, most of which are already commercial
(https://ssp-standard.org/tools/). The SSP file
consists of one or more FMUs representing all the simu-
lation models of the railway infrastructure system, which
shows a way to interoperate the models with each other
by using one file in the platform. The SSP also includes
the SSD and SSV files, which are important to describe,
easily exchange, keep input and output parameters and
apply them into the FMU(s). In addition, we create an
extra folder in the SSP file, where we separately upload
additional necessary input data sets and simulated results.
The reason for keeping these input data sets separate
is to keep all the input data modular and reusable, thus
reducing data complexity. This also helps the end user to
easily find what they want to see and set up as input. The
simulated results, which are the model simulation results
from the default software tool, are also needed to confirm
the reliability of the SSP simulation by comparing them
with the SSP simulation results. All these aspects of
the SSP mentioned above are essential for integrating
the models into the R4F Platform in terms of easy and
platform-independent configuration, mapped description,
backup storage and IP protection of the parameters for
this work.

Figure 1. Model standardisation approach.

3.2 Model Simulation Approach
Figure 2 shows how we implement the simulation pro-
cess of the SSP-standardized model in the R4F Platform.
The SSP file of the model consists of the FMU file(s),
the SSV file for input parameterization, simulated results,
additional input data sets and the SSD file with the pre-
registered output channels needed for result analysis, val-
idation and visualization to the end user.

Figure 2. Model simulation approach.

After putting the SSP file into the platform, we provide
a simulation code script, which can extract the FMU file
from the SSP one, and all the data belonging to the FMU
from the additional input data sets and simulated results
with an input call function after executing it. After that,
the code execution can put the FMU into simulation with
an FMU simulator, then extract outputs from the simu-
lation with an output call function, and finally generate
all the outputs with an output generator in the platform.
Surely, the functional components of the script should
have the necessary software tool, packages and libraries,
which can be provided from their official web pages or
publicly available repositories freely as found out for this
research work before. In the R4F Platform, the simulation
code script can be executed by the Jenkins pipeline tech-
nology as we tested with the two previously mentioned
use cases before, which is the key success of this work
to integrate the models of different railway infrastructure
subsystems into the platform.

The final step is to obtain the results of the entire sim-
ulation in order to analyse, validate and finally visualise
them in the platform for the end user. First, the results
of the SSP simulation are compared with the simulated
results, generated from the simulation in the default soft-
ware tool, in a plot (Validated Results). Second, the re-
sults to be visualized are converted into JavaScript Object
Notation (JSON) format for visualization to the end user,
as this open standard file format, with its human-readable
key-value paired data structure, is well suited to the visu-
alization part of the R4F platform. Finally, the results can
be generated in different file formats (e.g. CSV, JSON,
XML...), which the end user can analyze in different well-
structured data types such as tables, arrays, lists, etc.

However, there are some challenges to be faced, namely
dependencies and limitations, that we need to consider
for the SSP simulation in the platform. For example,
valid commercial license servers, Virtual Private Network
(VPN) in some cases, OS-dependency of the FMU file and
some open-source tools with necessary libraries and pack-
ages need to be connected and provided in the platform
to make this kind of simulation successful. Therefore, it
is essential have knowledge and experience of the model
simulation process, data management, software installa-
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tion, configuration and license management. Furthermore,
the importance of dealing with IT-specific problems (e.g.
system crashes, unsuccessful command executions) can-
not be denied as we have realized specifically for this re-
search.

4 Use Case Examples
In this section, first, we define the two use cases: 1)
RLT calculation of a steel bridge and 2) MBS model of
a railway vehicle. Second, we explain the conversion of
their models into the FMU- and SSP-formats in detail.
Then we demonstrate the simulation process of their SSP-
standardized models in the R4F Platform. Lastly, we com-
pare their SSP-simulation results and results provided by
their default simulation tool with some plotted figures for
validation purposes.

4.1 Use Case 1: Residual Life Time Calcula-
tion of a Steel Bridge

The use case demonstrates the life time and damage sum
calculation of a steel bridge by using a Python simula-
tion model with its input files containing demo data such
as train data, influence lines, bridge positions and detail
categories. For this work, the whole asset of the use
case was provided by AIT - Austrian Institute of Tech-
nology GmbH. Validation of the structural life time with
respect to fatigue failure is done for five different de-
tails of the designed bridge, visually shown by address-
ing their positions with points in Figure 3, which is pro-
vided by VRVis Zentrum für Virtual Reality und Visual-
isierung Forschungs-GmbH. Each of the detail positions
is assigned a detail category representing the cyclic stress
∆σc in N/mm² corresponding to 2∗106 load cycles of the
fatigue strength curve as given in EN1993-1-9. Detail cat-
egories and the X, Y and Z coordinates of the detail posi-
tions are given in Table 1.

Table 1. Detail categories and positions of the steel bridge.

Detail Category
[N/mm2] X Y Z

Detail1 80 0,057 0,306 -0,332
Detail2 80 0,009 0,265 -0,174
Detail3 36 0 0,32 0,56
Detail4 90 0 0 -0,332
Detail5 90 17,107 -0,088 0,866

In this section, first, we explain how the FMU and
SSP formats are exported from the whole Python simu-
lation model of the RLT calculation algorithm. Second,
we demonstrate the entire simulation process of the use
case using the model simulation approach mentioned be-
fore. Lastly, we compare the Python- and SSP-simulation
results of the use case to each other by showing two dia-
grams for the result validation.

4.1.1 FMU Export

As the first step, we need to understand the Python simu-
lation model consisting of different mathematical formu-
las with all its simulator, input and output components
and bindings. After successfully testing the model sim-
ulation, we need to pack the model into the FMU for-
mat for co-simulation, which is possible by using the
pythonfmu package (Hatledal, H. Zhang, and Collonval
2020). The next step is to prepare the model in a dif-
ferent Python code including all the formulas, input, out-
put call functions and output generators in a pre-defined
and imported pythonfmu class called FMI2Slave (https:
//pypi.org/project/pythonfmu/). Lastly, we ex-
ecute a pythonfmu build command calling the prepared
code to get the FMU format of the RLT calculation algo-
rithm. In the FMU file, two different dll files in the bina-

Figure 3. The steel bridge with highlighted detail points.
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ries folder are found, which shows the OS-compatibility
of the file in two different OSs (Linux & Windows).

4.1.2 SSP Export
After achieving the FMU file, we need to pack the FMU
file into the SSP format to bring it into the R4F Platform
as a complete model package with parameter descrip-
tion. For this purpose, we use the Model.CONNECTTM,
a commercial system integration tool provided by AVL
List GmbH, because the tool can import FMU(s) for co-
simulation and export SSP including the FMU(s). The
SSP file also contains one SSD file describing and reserv-
ing all the registered parameters incl. inputs and outputs
from the FMU-packaging process of the model.

4.1.3 Simulation Process
Figure 4 demonstrates the entire simulation process of the
use case in a virtual machine, a prototype of the R4F Plat-
form, due to the model simulation approach. First, we
convert the prepared Python code with pythonfmu into the
FMU format and lastly we achieve the SSP format of the
model as mentioned in the previous subsection. From the
SSP file, the FMU file is extracted and then simulated by
running a simulation code script, which we wrote in the
open-source Python programming language. Most impor-
tantly, the language supports the FMU-simulation for the
use case by using the Python library called fmpy (https:
//pypi.org/project/FMPy/), which includes input
and output call functions. In the use case of this work,
the simulation code is actually the integrated version of the
Python simulation of the prepared code included at the be-
ginning. Moreover, we use a 2D-graphics package called
matplotlib (Hunter 2007) in the simulation code to create
static, interactive and publication quality plots. Addition-
ally, we apply json and csv packages to the code to gener-
ate output in CSV and JSON formats after the simulation
code script is executed by running the Jenkins pipeline.
As outputs, the simulation gives out two plots from the
matplotlib for result validation, CSV and JSON files for
result analysis, and eventual visualization to the end user
after reading all the provided CSV input files and Python-
calculated life times and damage sums, which are the sim-
ulation results of the Python simulation model provided at
the beginning.

Figure 4. Simulation process of the RLT bridge.

4.1.4 Comparison Analysis for Result Validation

Figure 5 shows two plots, where the results of both
Python- and SSP-simulations (life times and damage
sums) are compared to each other due to the five defined
detail categories.

As realized from the result consistency between the
Python- and SSP-simulation in Figure 5, the SSP-
simulation works properly and is suitable to be integrated
into the R4F Platform.

4.2 Use Case 2: Multibody Simulation of a
Railway Vehicle

The use case demonstrates the drive of a railway vehicle
on a track. For this work, we use a generalized MBS
model of the vehicle, which is parameterized, based on
the Manchester Benchmark (Iwnicki 1999) and provided
by Virtual Vehicle Research GmbH (ViF). We analyze the
model in Simpack version 2022x, a commercial software
tool from Dassault Systèmes, that provides a reliable way
of understanding the dynamic behaviour of the railway ve-
hicle due to the interaction between the vehicle and track.
In the interaction, the irregularities of the track geome-
try, causing dynamics forces on the vehicle and track, are
certainly to be taken into account in the MBS, because
the track irregularities can lead to potential wheel damage
and, in severe cases, derailments.

In this section, first, we explain the FMU- and SSP-
export of the model due to the model standardization ap-
proach mentioned before with necessary methods, tools,
inputs and outputs. After that, we describe the simulation
process of the SSP-standardized model in a figure and fi-
nally compare its results with the Simpack simulation out-
puts resulted from the same input parameters.

4.2.1 FMU Export

After understanding and testing the whole simulation pro-
cess of the MBS vehicle in Simpack, we need to define
the necessary input parameters and output channels used
for the FMU export. In the case of this work, first, we
set up the track irregularities previously. Second, we de-
fine four different scenario parameters to realize a curved
/ straight vehicle drive with / without passengers for the
input parameterization: 1) Track curve radius; 2) Track
superelevation; 3) Additional mass (passenger+luggage);
4) Vehicle speed (constant). Besides, eight output chan-
nels of the vertical deflection of the primary spring (4 for
each one of the two bogies) and one of track position are
registered to the MBS model, because they are used for
fatigue life calculation of the primary spring and therefore
shown in a graph. Then we can directly obtain the FMU
format of the model, including the Simpack solver, by us-
ing the Simpack tool. For this work, we export the MBS
model into FMI 2.0 for Co-Simulation, which is the latest
FMI version supported by the Simpack 2022x. Further-
more, we discovered that the FMU file is dependent on
the OS, where the Simpack 2022x was installed and the
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Figure 5. Simulation result comparison based on demo data of the RLT bridge.

file was exported from the tool before. It means that the
file has only one dll file, working for the one OS, in the bi-
naries folder. Therefore, the OS of the R4F Platform must
definitively be taken into account to realize the simulation
of the model in the platform.

4.2.2 SSP Export

After creating the FMU format of the MBS model, we
need to convert it into the SSP format and then simulate it
in the R4F Platform. For the task of this work, we use the
same tool Model.CONNECTTM.

4.2.3 Simulation Process

After achieving the SSP-standardized model, it is simu-
lated by running the Jenkins pipeline in the platform in a
proper way. Therefore, we need to build, design and opti-
mize the simulation process of the model based on the pro-
posed model simulation approach mentioned above. After
that, we need to adapt the whole process to the platform.

In Figure 6, we describe the considered simulation pro-
cess of the MBS model with useful software, interfaces,
file formats, software packages, adapters, inputs and out-
puts in the virtual machine. First, the FMU file in the SSP
is read by a simulation code script after the FMU- and
SSP-export of the MBS model. We wrote the script in
the open-source Python language as the one in the previ-
ously mentioned use case. We apply the fmpy package
for the FMU-simulation of the use case in the script as
well. In addition, we use a Python library called bs4 in the
code script, because it helps to call inputs directly from the
SSV of the SSP file, where the end user can see and con-
figure the clearly shown input parameters before starting
the model simulation. Besides, like in the previously men-
tioned use case, we propose to use the matplotlib, json and
csv packages in the script as output generators, which en-
able to create JSON file(s) for visualization, CSV for anal-
ysis and 2D-plot(s) to validate the SSP simulation with the
Simpack simulated data, extracted from the previous Sim-
pack simulation of the MBS model, in CSV and/or TXT
format. Additionally, we use the Command Line Interface
(CLI) technology to allow the end user to enter their in-
puts directly into the CLI window for demonstration pur-

poses as an alternative to the input parameterization with
the SSV file mentioned before.

Figure 6. Simulation process of the MBS vehicle.

Furthermore, to overcome difficulties and limitations
such as the connection to an available Simpack license
server (either with VPN or without), OS-dependency of
the FMU and internet availability in the simulation pro-
cess, we installed and implemented the Simpack tool, a
VPN service provider (e.g. OpenConnect tool) and an ad-
ditional license server file, checked by the Simpack server
to verify the licensing, in the platform.

4.2.4 Comparison Analysis for Result Validation

After running the simulation of the SSP-standardized
model in the platform, we need to compare the Simpack-
and SSP-simulation results to each other to validate the
functionality of the SSP file in the proposed simulation
process. In Figure 7, we show the vertical deflection of
one primary spring, extracted from one of the previously
mentioned output channels, due to the track position of
the railway vehicle, which is loaded (passengers+luggage)
and driven with a constant speed of 120 km/h on a tangent
track without superelevation (straight drive) as an exam-
ple.

As realized from the result consistency between the
Simpack- and SSP-simulation in Figure 7, the SSP-
simulation works properly and is suitable to be integrated
into the R4F Platform.
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Figure 7. Simulation result comparison of the MBS vehicle.

5 Proposed Integration Process
Figure 8 shows the proposed integration process to be ap-
plied to the R4F Platform, which helps to manage and
maintain the communication, interaction of the FMI- and
SSP-standardized railway infrastructure models, provided
from the Asset Provider, their final visual representation
and enhanced user control for the end user properly. First,
to continuously integrate the models in the platform, we
propose to use the Jenkins pipeline technology in this re-
search paper as mentioned before. Second, we will apply a
version control system to the platform to manage the con-
figuration, storage, exchange and archiving of necessary
files and source codes related to the two use cases (SSP
file, simulation code script, input & output files, pipeline
code) in a software repository collaboratively. Besides, we
discovered the Source Code Management (SCM) system
in the Jenkins pipeline, which helps the pipeline to extract
the updated sources from the repository. The reversed pro-
cess is also possible by pushing the new output files back
to the repository for result analysis as done by executing

particular useful commands in the pipeline code before.
Furthermore, we will use the pipeline auto-generation
technology with a graph DBMS in the platform as men-
tioned previously (see (Reiterer, Schiffer, and Benedikt
2022) for example). In this research work, we created and
configured a Jenkins pipeline, then described and modeled
its workflow by developing a simple control script and a
pipeline graph for testing purposes. Lastly, a visualization
prototype is under development which demonstrates visu-
alization and interaction techniques for the R4F Platform
according to the use cases. It will allow users to set sim-
ulation input parameters and explore simulation results.
This is done using a combination of linked views like 2D
charts, 3D views, maps, and specially designed visualiza-
tions for exploring simulation results in a spatio-temporal
context.

As we experienced in the model integration process of
the two previously mentioned use cases before, there are
some dependencies and limitations such as license server,
VPN, internet and OS-dependency to overcome for the ac-
complishment of the integration process in the R4F Plat-
form. For this research work, the Asset Provider exports
the FMI format from various tools (e.g. pythonfmu, Sim-
pack), SSP format directly from the Model.CONNECTTM

tool and essential Python packages from the Python tool
other than providing the railway submodels to the plat-
form. Besides, we surely need to do some internal config-
urations in the platform such as connecting the platform to
a license server (e.g. Simpack license server), providing
the OS, internet WiFi and/or Ethernet for wireless/wired
network connection, 5G for mobile broadband network
connection with relatively high internet speed and VPN
service client for the license server connection in some
cases.

Figure 8. Proposed integration process.
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6 Conclusion and Outlook
On the basis of the relatively precise result consistencies
shown in the two use cases, the FMI- and SSP- standards
are promising to be applied to different railway submodels
for their integration into the platform. As experienced in
this work, the FMI technology is a potentially useful inter-
face standard supported by many different tools to adapt
the models to the platform in terms of tool-independency,
platform-compatibility and ease-of-use (portable as file).
Moreover, the SSP-package of the models shows great
benefits to enhance the IP protection, clear description,
storage and exchange of different parameters belonging
to the models. In addition, the SSP simulation of both use
cases is carried out by executing the Jenkins pipeline in-
teracted with a software repository belonging to a version
control system, which also shows high potential in adap-
tiveness of the simulation to the R4F Platform.

Of course, there are more challenges to overcome to
fully realize the model integration and interoperation in
the platform. In the future, different use cases should in-
teroperate with each other and be further described by us-
ing the FMI and SSP technologies. For example, a sur-
rogate model (machine learning with the MBS model),
proposed by (Zhou, Meierhofer, et al. 2023) to reduce
the computational effort of the traditional MBS, is go-
ing to be applied to the platform by using both sug-
gested interface standards. Additionally, an anti-slip con-
trol system is planned to be integrated into the platform
as co-simulated with the MBS model to be able to co-
accelerate and co-brake the railway vehicle. Finally, the
proposed integration process is going to be further de-
veloped and optimized in a virtual machine by using
containerization, container orchestration and deployment
technologies, which assist to integrate and deploy the
FMI-standardized models and their belonging data con-
tinuously, time- and energy-sustainably as a major benefit
in future.
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Abstract
Operating energy grids with a high share of renewable en-
ergy sources (RES) requires system reconfiguration as a
response to environmental condition changes. To under-
stand them better, simulations are needed and Modelica is
an excellent choice for that. Energy grids with event-based
reconfigurations are an instance of variable structure sys-
tems (VSS). However, the full support of VSS in Mod-
elica is challenging and topic of ongoing research. Petri
nets (PNs) offer a formalism for modeling VSS. The ca-
pability to simulate PNs in Modelica gives an opportunity
to model VSS in Modelica. This paper presents an ap-
proach to utilize PNs in Modelica for modeling variable
structure energy grids. Therefore, we introduce energetic
Petri nets, a special type of PNs and an experimental li-
brary called PNRG for PN-based energy system modeling
is presented. Furthermore, possibilities and limits of mod-
eling VSS energy grids are discussed and an outlook how
to develop this technique is provided.
Keywords: Energy Grids, Sector Coupling, Variable
Structure Systems, Context-oriented Programming, Petri
Nets

1 Introduction
The climate change forces societies to radically change
the way of providing energy to their residents. Energy
grids with a high share of renewable energy sources (RES)
have to handle high fluctuations between the production
and consumption of different energy media. To mitigate
the negative effects and optimize the energy efficiency, so
called sector coupling is investigated. This principle de-
scribes the combination of different energy systems. For
example, electrical, gas and heat systems are coupled so
that an oversupply of one energy medium can compen-
sate the lack of another one. Sector coupling is nowadays
broadly discussed in science, as (Fridgen et al. 2020) de-
scribes. However, the complexity of systems grows with
an increased sector coupling and therefore modeling of en-
ergy grids gets even more important. With Modelica, there
is a widely used modeling language which is well suited
to simulate such complex systems.

The Modelica library TransiEnt (Senkel et al. 2021) is
an excellent choice to simulate exactly this type of energy

systems (Heckel et al. 2022). It provides a magnificent
level of detail and includes many components which are
needed for realistic energy grid simulations. However,
TransiEnt only works with the Dymola environment for
now.

Another problem with simulating energy grids with a
high share of RES and sector coupling is the missing
possibility to fully describe and simulate so called vari-
able structure systems (VSS) in Modelica. While Specific
types of VSS can be simulated, mostly basic definitions as
in (Utkin 1977), some more advanced VSS types start to
cause problems (Tinnerholm 2022). For example, when
the number of equations or variables is varying.

While Modelica simulations based on PNs are also
limited in the way of simulating VSS with dynamically
changing equations or varying numbers of variables and
components, they allow to describe the variability of mod-
els and their state transitions. To make component based
modeling using PNs accessible in Modelica, a special type
of PNs, energetic PNs will be defined. They are also nec-
essary to realize instantaneous effects on PN components
within the energetic Petri net after local changes. These
energetic Petri nets will be used to implement a Model-
ica package which allows to model VSS energy grids. In
the following, two example models using this package are
presented and it will be shown, that VSS can be modeled
with that.

1.1 Variable Structure Energy Grids
The power supply of RES power plants is highly depended
on the availability of natural energy sources like sun and
wind energy. Therefore ensuring a reliable power supply
from renewable energy sources requires a focus not only
on sunny and windy days but also on cloudy days with
low wind conditions, particularly when operating power
grids with a high share of RES. Various storage sys-
tems are discussed to be used for mitigating these effects.
As (Alhamali et al. 2016) show, there are a lot of possi-
ble solutions with different advantages and disadvantages.
All storage systems need additional infrastructure which
might be expensive. In some cases the location does not
allow to install specific plants.

Another way to react to supply or demand changes is
to activate and deactivate producers or consumers during
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operation time. Additionally, special grid designs can im-
prove the resilience of power grids. (Liu et al. 2022) pro-
vides a general overview of so called micro grids (MGs)
to stabilize larger power grids. The investigation of such
designs is an interesting objective for research. When
simulating the variability of such power grids, structural
changes must be performed during the simulation’s run
time.

1.2 Variable Structure Systems in Modelica
Systems with a variable structure are quite natural. For
example, opening windows when the air quality is bad or
covering windows when it is too sunny outside are such
structural changes of a room system. Therefore, it is not
surprising that VSS are studied for a long time as (Utkin
1977) already recognises in 1977. However, mathemati-
cally these VSS are not easy to describe. Especially for
modeling there is a lot of ongoing research in this field.
Some theoretical background is provided by (Benveniste
et al. 2019).

For Modelica there is a significant interest in increas-
ing the possibilities for VSS modeling. Different ap-
proaches to simulate VSS in Modelica have been investi-
gated and proposed, e.g. MOSILAB (Nytsch-Geusen et al.
2005), MoVasE (Esperon, Mehlhase, and Karbe 2015) and
DySMo (Mehlhase 2015). Also, other solutions are pro-
posed like the modeling language Sol introduced by (Zim-
mer 2010). However, all these approaches realized VSS in
Modelica only partly or implemented VSS only in a sub-
set of Modelica. Recently, (Tinnerholm, Pop, Sjölund, et
al. 2020) presented an approach to make the modeling of
VSS available in Modelica using a new compiler based
on the Julia programming language which is discussed in
detail in (Tinnerholm, Pop, and Sjölund 2022).

While investigating VSS, two aspects need to be con-
sidered. The studied system must be described clearly.
This means not only the components itself have to be de-
fined well but also how these components behave in dif-
ferent states of the system. The other aspect is the con-
trolling of the systems states. In complex systems a lot of
conditions can occur under which state transitions shall be
performed. But not only the definition of these rules can
become very complicated. Also the approval of a correctly
working state control is an important but complex topic it-
self. A secure formalization of these state transitions must
therefore be defined. So called PNs are an excellent choice
for systems with a large and complex state space.

1.3 Petri Nets
PNs were firstly described by Carl Adam Petri in his PhD
thesis (Petri 1962) but got extensively expanded after-
wards. The following definition of a basic Petri net is
given in (Murata 1989).

Definition 1.1 (Petri Net). A Petri net is a graph defined
by the 5-tuple PN = (P,T,F,W,M0) with the following
definitions:

p1

p2

p3 p4t1 t2

 2 2

 1  2

 2  4

(a) inital marking

p1

p2

p3 p4t1 t2

 2 2

 1  2

 2  4

(b) after firing

Figure 1. An example of a simple discrete Petri net. (a) shows
the inital state of the PN and (b) the state after the first firing
which is also the final state.

1. P = {p1, p2, ..., pm},m ∈ N is a finite set of places

2. T = {t1, t2, ..., tn},n ∈ N is a finite set of transitions

3. F ⊆ (P×T )∪ (T ×U) is a set of arcs

4. W : F −→ N>0 is a weight function

5. M0 : P −→ N is the initial marking

6. P∩T = /0

7. P∪T ̸= /0

This definition results in a directed graph composed of
places and transitions which are connected with arcs. Ev-
ery place p has a number of tokens M(p) ∈ N and every
arc has a weight w, here denoted as win when it points to a
transition and wout when it points to a place. How the PN
works is explained with the help of Figure 1.

A transition t fires if W (pi, t) ≤ M(pi) for all places pi
which are connected to the transition via the arcs with the
weights win,i. In Figure 1 transition t1 has two input places
p1 and p2. The weight of the arc between p1 and t1 is
W (p1, t1) = 2 while the weight for p2 and t1 is W (p2, t1) =
1. Since M(p1) = 3 ≥ 2 =W (p1, t1) and N(p2) = 3 ≥ 1 =
(p2, t1) the transition fires. Transition t2 can not fire since
M(p3) = 1 < 2 =W (p3, t2) which is the weight of the arc
between p3 and t2. The arc weights define the number of
tokens which are taken from the input places and given to
the output places. Therefore, both p1 and p2 now have
1 token and since the output weight of t1 is W (t2, p3) =
2, the place p3 has now 3 tokens. Since M(p1) = 1 <
2 =W (p1, t1) and M(p2) = 1 < 2 =W (p2, t2), neither the
firing condition of t1 nor t2 is fulfilled after the first firing
so that there will be no further firing. The PN is in its final
state.

There are many extensions to these basic discrete Petri
nets. Here, only some notable extensions are mentioned.
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The introduction of inhibitor arcs, firstly described in
(Agerwala 1974) is simple yet powerful. They allow to
check if a token number is smaller than a specific thresh-
old, and enable firing in this case without consuming to-
kens. Originally this threshold was 1 and therefore in-
hibitor arcs were used to check if places are empty. How-
ever inhibitor arcs can also be used with thresholds > 1.
Test arcs (David and Alla 2008) allow to check if a token
number is larger than a specific threshold and they enable
the firing of transitions without consuming tokens. They
can be used to prioritize transitions and therefore avoid
conflicts when two transitions have the same input place.

Another important extension are continuous Petri nets
(David and Alla 1987). For those the tokens are real num-
bers. Their transition firing is not described by discrete
token transport but continuous flows. Therefore, those are
a limit case of discrete PNs with token numbers ≫ arc
weights (David and Alla 2008). How this type of PNs
works is explained by the following example. A contin-
uous Petri net consisting of a continuous place p1 with
no input arc, an initial token number of M(p1) = 2 and
an output arc which connects p1 to a transition t1 with
W (p1, t1) = 4 would behave the following way. The to-
ken number of p1 would decrease with an constant rate of
4 1

s until the token number is 0. So the number of tokens
at the time t is given as the equation M(p1, t) = −4t + 2
for t < 0.5s and afterwards M(p1) = 0. These Petri nets
are powerful since they can represent systems of ordinary
differential equations.

Petri nets containing discrete and continuous places
and transitions are called hybrid petri nets. The model-
ing possibilities with Petri nets are significantly enhanced
with these hybrid PNs since continuous systems like fluids
flowing in a pipe system can be modeled with such PNs.

In Modelica, the open-source library PNLib (Proß and
Bachmann 2012) can be used for integrating PNs for mod-
eling systems. PNLib implements the basic discrete PNs
as well as the test and inhibtor arcs extension, continuous
Petri nets and other special transitions types.

1.4 Petri Nets and Variable Structure Systems
Why are those automata interesting for studying VSS?
Petri nets can be used as state machines what is well de-
scribed in (David and Alla 2008) but PNs are much more
powerful. They can define many sub-states in parallel and
how these affect each other. Additionally there are numer-
ous verification methods to investigate the Petri net prop-
erties like reachability or liveness. An overview for some
of these model checking approaches is given in (Wolf
2019). Therefore, PNs are interesting for controlling the
state transitions of VSS.

However, this is not the only connection between VSSs
and Petri nets. In (Mai et al. 2018), so called adaptive
Petri nets were introduced. In these adaptive PNs, sub-
nets can be activated and deactivated based on the mark-
ing of the PN. Therefore, the Petri net itself is a variable
structure system where the state transition controlling is

integrated in the system itself. Furthermore, (Mai et al.
2018) presents an algorithm to flatten adaptive Petri nets
to basic PNs with inhibitor arcs.

In (David and Alla 2008) several application examples
for modeling based on Petri nets are described, such as gas
storage systems or a four-stroke engine. Examples for PN-
based modeling in Modelica are presented in (Proß and
Bachmann 2012).

For the goal of enabling the expression of VSS in Mod-
elica, the application of Petri nets appears to be a promis-
ing approach. In the following, a way to use PNs for mod-
eling power grids will be presented.

2 Energy Grid modeling and Ener-
getic Petri Nets

p1 p2t1

 PS
~ ~

~ ~
 PS  P1  P1  P2

t2
p3

(a) Example of a simplified PN representing an energetic
flow.

p1 p2t1

 PS
~ ~

~ ~
 PS  P1  P1  P2

t2
p3

Energy Source Energy Converter Energy Storage

E

(b) Possible interpretation of the different parts of the en-
ergetic Petri net.

Figure 2. An example of a simple energetic Petri net. Energetic
places and transitions are denoted with a “~”. Transitions and
places without a “~” are continuous transitions and places.

The modeling of VSS energy grids is not possible in
Modelica when using large physical models. Therefore,
a method reducing the modeling to a problem accessible
in Modelica is needed. An alternative approach based on
Petri nets is capable of doing this and is presented in the
following.

Modeling electrical grids with Petri nets was investi-
gated for example in (Lu et al. 2016). However, these
modeling techniques lack user friendliness and do not con-
tain sector coupling. The component based modeling in
Modelica would help to increase the usability of this mod-
eling method. To study the usage of Petri nets for the com-
ponent based modeling of VSS power grids, a simplified
base model is used which just takes the power generation
and consumption into account. This means other proper-
ties like phase angles or the frequency that are also cru-
cial for the grid stability are neglected in this approach.
However, the main goal of the model discussed here is to
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validate the assumption, that it is possible to model VSS
using Petri nets.

Modeling the power generation and consumption leads
to the idea to model the flow of energy through the power
grid. Since in continuous Petri nets arc weights repre-
sent the derivative of the place tokens, the natural choice
for PN representations for energy and power are the fol-
lowing: The tokens in places represent stored energy and
therefore, the transition arcs will represent the electrical
power of components.

However, energy can not be stored in every case. So
during modeling, it is important to make sure that energy
is not stored in places where it should not be stored. To en-
sure this, two possible solutions can be implemented. The
first method is to realize all grid components in a single
transition whenever energy is not allowed to be stored in-
between, instead of creating one transition for every grid
component with places between the transitions. This is
very disadvantageous, e.g. for component-based model-
ing or when a sub-net needs to be activated adaptively.
Therefore, it is preferable to define so called energetic
Petri nets that cover the needs of energetic flow modeling
by definition.

Definition 2.1 (Energetic Petri Net). An energetic Petri
net is a hybrid Petri net with inhibitor arcs and:

1. Energetic places PE with N ∈N>0 input and M ∈N>0
output arcs, that behave like continuous places with:

N

∑
i=1

win,i =
M

∑
j=1

wout, j (1)

2. Energetic transitions TE with K ∈ N>0 input and
L ∈N>0 output arcs that behave like continuous tran-
sitions with:

∀ j : wout, j = f (win,1, . . . ,win,K) (2)

and
K

∑
i=1

win,i ≤
L

∑
j=1

wout, j (3)

for normal arcs and no restriction for inhibitor or test
arcs.

This definition ensures three properties. At first, the
mentioned flow in places where no energy should be
stored is given. Also, energy can not be produced but only
converted with loss due to the efficiencies of the compo-
nents. For dynamic simulations it is also important to not
only have constant weights but weights that can change
over time. A definition for such PNs was already in-
troduced in 1978 by (Valk 1978). These self-modifying
PNs allow to represent more complex ordinary differen-
tial equation systems with PNs using the token numbers
of places as arc weights. In combination with equation
2 this leads to a Petri nets where the change of an arc

weight leads to instantaneous changes of weights in fol-
lowing arcs within the energetic PN.

How can these Petri nets be used to model energy
flows? As shown in Figure 2, power sources like wind
or solar energy can be modeled as continuous transitions
without input arcs and varying weights of the output arcs.
The output arc weight should be the source power PS.
Since these natural energy sources cannot be stored di-
rectly, the source transition is connected to an energetic
place which instantaneously transfers the energy to an en-
ergetic transition which can represent simplified power
plants converting the energy to electrical energy using a
physical equation P1 = f (PS). The last place is an ordinary
continuous one and can be interpreted as an ideal energy
storage.

Figure 3. Structure of the PNRG package.

3 PNRG Library – Petri Net based
Renewable Energy Grids

For a user-friendly and reusable modeling, the differ-
ent sub-nets representing components of the energy grid
should be programmed as Modelica models that can be
connected accordingly. Therefore, a package based on the
PNlib Petri nets was developed for component-wise mod-
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Figure 4. Example of an PNlib implementation of an AND gate.
A token number of 1 represents true and a token number of 0
represents false.

eling of different energy grids. However, the package is
still in an experimental state. In this section we will briefly
introduce the main aspects of this package.

Figure 3 shows the structure of the PNRG package. Ex-
amples for specific Models are photovoltaic power plants,
wind power plants, electricity consumers, electrolysers,
batteries, transformers and logic components like AND
gates. To implement the energetic places and transitions,
the continuous place and transition models from PNlib
were modified.

3.1 Control Layer

Figure 5. Example for different logical elements based on Petri
nets. A simple PNlib Petri net, a module to convert boolean
expressions to logical inputs and a clock are connected to an
integer controller using an AND gate.

As described in 1.4, the first application of PNs for VSS
is the control of state transitions. For switching PNRG
components on and off, logical interfaces are defined.
These logical interfaces have a combination of test and
inhibitor arcs as input and output. Both of these arcs are
needed to express logical expressions satisfactorily. This
allows to build logical gates. Exemplary, an implementa-
tion of an AND gate built using PNlib Petri nets is shown
in Figure 4.

In principle, every PNlib place connected to test and
inhibitor arcs can be used for these logical interfaces. Ad-

ditionally, a periodical clock and a module that converts
a boolean expression to a logical input are implemented.
Another handy component is a module called integer con-
troller. This module can be used for incrementally increas-
ing or reducing an integer number by activation the respec-
tive logical input. This can be used, for example, if the
number of active wind turbines should be variable during
simulation time. The application layer components that
can be activated or deactivated have logical inputs as in-
terfaces to realize this functionality. An example for such
an activation or deactivation is the charging or discharg-
ing of a battery which can be both stopped and reactivated
depending of the current power supply and demand.

Figure 5 shows an example for the usage of these con-
trol layer components. Here, an integer controller is con-
trolled by a clock for decreasing its number and it is in-
creased when place 2 has a token number of 1 and for two
variables A and B, the requirement A > B is fulfilled.

In principle, controlling via the definition of rules can
also be done with standard Modelica Boolean Blocks.
However, in some cases it might be desirable to only use
Petri nets in the model, e.g. for verification. Then it is
helpful to use the components provides by PNRG.

3.2 Application Layer

Figure 6. The implementation of a battery. the upper interfaces
are the logical inputs that control the charging and discharging.
The energy storage is modelled as a place. The Petri net at the
bottom is a inner control net that indicates the state of charging.

To model energy grids, typical components like power
plants, storage systems or consumers are implemented
with Petri nets. In the following, some basic implemen-
tations are presented.

In the most simplified way, components like photo-
voltaic (PV) power plants can be treated as an energy con-
verter abstracted as a transition. The solar power Pin can
be read in from a file and fed into a Petri net transition
output. Using energetic PNs, a model that fulfills con-
straints of an energetic flow can be ensured and separated
into components. The PV power plant can then be mod-
eled as a transition with the input weight:
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win = Pin (4)

and the output weight:

wout = Pin ·A ·η (5)

where A is the area of the PV panels and η is its effi-
ciency. The angle between panel and sun or the temper-
ature of the plant is neglected here but could be added in
principle. The transitions output will then be connected
to an energetic place. Afterwards consumers or storage
systems could be connected to the energetic PN, where
energy can be stored in normal continuous places.

With this implementation, the activation and deactiva-
tion of components can be achieved by blocking transi-
tions with inhibitor and test arcs so that they are not able
to forward energy. An example for a battery with charging
and discharging that can be activated is shown in figure 6.

Simplifications that are applied are a constant charging
and discharging power of batteries and the ignoring of en-
ergy losses during charging, discharging and storing of the
energy. Also, power grids are assumed to have no energy
losses. Wind turbines are idealized and do not include in-
ertia effects.

Figure 7. Simple example of an energy grid modeled with
PNRG.
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Figure 8. The power of the sun for 100 m2, a PV power plant
with 250 m2 are and an effiency of 0.25 as well as a consumer as
shown in Figure 7.

A simple example without VSS is shown in Figure 7.
The grid consists of a PV power plant, a transformer, a
distribution power grid and a consumer. The solar radia-
tion power per area and the consumed power are read in
from files. These values are artificially chosen but shall be
used for demonstration purposes. The PV power plant has
an area of A = 250m2 and an efficiency of η = 0.25. The

results are shown in Figure 8. It can be seen that the power
of the PV plant follows the course of the solar power. Also
it is clearly visible that the power supply exceeds the de-
mand from t = 2h to t = 9h and can not fulfill it after
t = 10h.

4 Modeling VSS Energy Grids with
Energetic Petri Nets

To study how VSS can be modeled with PNRG, two ex-
amples were investigated. Both examples include condi-
tional charging and discharging of a battery and a variable
number of active wind turbines. The second example also
contains instances of conditional connections.

4.1 Example 1 – Adaptive Activation of Wind
Turbines and Battery Charging and Dis-
charging

Control Layer

Application Layer

Figure 9. Example of an VSS energy grid modeled with PNRG
in Modelica. The battery is charged only if enough power can
be supplied from the wind and solar power plants. To control
the difference between power supply and demand, additionally
the number of active wind turbines can be controlled and the
discharging of the battery can be activated.

The first example is shown in Figure 9. The grid con-
tains wind power plants and PV power plants, a battery as
a storage system and two consumers. The control layer is
shown in Figure 9 marked with a red rectangle. It contains
the file inputs and the rules that control the variability of
the system. These rules are defined as following:

If the power supply is larger than the demand of the
consumers, then:

1. Activate the battery charging if charging power
would not overload the power supply.

2. If it is still too high, deactivate wind turbines.

If the power supply gets smaller than the demand of the
consumers, then:

1. Reactivate wind turbines.

2. If all turbines are active, discharge the battery.

The number of active wind power plants is controlled
with the integer controller. These rules should lead to a
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Figure 10. The upper plot shows the power supply and demand for the simple VSS grid from Figure 9. The background is colored
according to the difference between power supply and demand. The plot shows that the rules lead to the desired grid behavior
and prove that VSS can be modeled in this case. The lower plot shows the number of active wind turbines. In the two bars at the
bottom, the red color shows if the battery charging and discharging is active.

system, where it is tried to have an power supply larger
than the consumption but the supply should not exceed
the demand unnecessarily.

The resulting curves for power supply and demand are
shown in Figure 10. The background is colored blue if the
demand is smaller than the supply and it is red otherwise.
The lower part in Figure 10 shows if the battery is charging
or discharging indicated by a red bar. It also shows the
number of active wind turbines.

Figure 10 shows that at the moment when the power
supply covers the demand and the charging power of the
battery at t = 5h, the battery start to charge. Since the
power supply is still rising, the wind turbines are deacti-
vated successively. At around t = 10h the power demand
starts to rise above the supply so a wind turbine is reacti-
vated but again deactivated at t = 13h when the power de-
mand decreases. After about 14h the available wind and
solar energy decreases significantly so despite reactivat-
ing all wind turbines step by step, the power demand can
not be covered. So the battery charging is deactivated at
t = 15h and since this is not enough the discharging of the
battery starts. A short natural energy peak from t = 20h
and t = 22h stops the discharging for a short period. At
the beginning of the simulation, the discharging is inactive
despite a shortage of the power supply because the battery
is initialized empty and therefore cannot discharge.

In conclusion, the result confirms that the system be-

haves like desired and that the rules change the system
accordingly. This also proves that VSS can be modeled
using Petri nets for this case.

4.2 Example 2 – Conditional Connections
After example 1 showed that PNs can model VSS in Mod-
elica, a more complex model shall be investigated now. As
shown in Figure 11 the system consists of two grids. Both
of them are similar to the model presented in example 1
but only one consumer is connected to each of the grids.
Also, the number of wind turbines and the PV area is dif-
ferent. However, the main difference is that one of the PV
power plants is not statically connected to the upper dis-
tribution grid but dynamically connectable to one of both
grids during run time.

The implemented rules for the batteries and the number
of active wind power plants is basically the same as in ex-
ample 1. Some modifications are done to avoid conflicts
for the different state of the conditional connection. The
upper PV power plant will always be connected to the dis-
tribution grid, with the smaller difference between supply
and demand. In this difference, the power supply of the
PV power plant itself is not included.

In Figure 12 the results of the simulation are shown. As
expected the PV power plant will be connected to the grid
with a smaller difference between supply and demand.
While the supply can not cover the demand for both grids,
the PV power plant is reconnected from the lower to the
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Figure 11. Example for a more complex VSS energy grid. A
conditional connection can connect a solar energy park to either
the upper or the lower distribution grid. The charging and dis-
charging of the battery as well as the controlling of the number
of active wind turbines is controlled like in example 1 but ad-
justed to work with the conditional connection.

upper grid at t = 1h because at this moment the lack of
power is higher. The actual positive affects can be seen
from t = 4h where for the upper grid the supply can cover
the demand by itself and the lower grid which is connected
to the PV power plant can only cover its demand because
of the connection. Here the connection even leads to an
activation of the battery charging.

It should be noted, that a clear definition of rules is
very important for the success of such simulations. In-
consistencies will lead to crashes of the simulation. Es-
pecially for complex systems where multiple components
affect each others activation and deactivation rules, it can
get very difficult to define these rules sufficiently well.

5 Conclusion
This paper presented an approach to model VSS energy
grids in Modelica based on Petri nets. While the imple-
mentation is still experimental and the technical compo-
nents are simplified, it was shown that Petri nets are suit-
able for modeling systems with a variable structure that
changes during simulation time in Modelica. To demon-
strate this, two examples for energy grids with different
VSS types were presented. These two examples showed
that different VSS can be modeled with PNs. Both mod-

els behaved like expected due to the defined rules for state
transitions.

To ensure that the used Petri nets keep properties of the
flow of energy while enabling component-based models,
so called energetic places and transitions were defined.
Based on the PNlib Modelica library, these special Petri
nets were implemented to create a library called PNRG
that can be used to model VSS energy grids.

However, the capabilities of modeling VSS are limited.
While activating or deactivating components is possible,
adding variables, objects or components dynamically in
run time is currently not possible.

6 Outlook
Although the presented examples showed that Petri nets
can be used to model VSS, a lot of work has to be done
for excellent energy grid modelling using Petri nets. In
the first place, the realism of the implementations for dif-
ferent components should be increased. For example, ad-
ditional effects influencing the charging and discharging
powers of the batteries could be implemented. One ap-
proach could be to use existing models and libraries for
these detailed calculations. Also, more parameters should
be implemented to increase the realism of the modeling.
Implementing parameters like voltages, phase angles and
frequencies are needed to verify how stable the simulated
energy grids under state transitions are.

As described in the introduction, one of the motivations
for studying VSS is to simulate sector coupling systems.
Therefore a logical next step would be to implement and
study components like electrolysers, gas power plants or
gas and heat consumers.

Also an advanced formalism to define the state transi-
tions to avoid conflicts is an interesting subject for further
investigations. Especially for the control sub-net, verifi-
cation methods that are defined for Petri Nets could be
studied to avoid conflicts. (Svadova and Hanzálek 2004)
presents a method for generating reachability graphs for
hybrid Petri nets that is also applied in (Lu et al. 2016)
for the analysis of the micro grid models. Therefore, this
might be one approach for an analysis tool for the here
described grids.

In the end, the results from this approach need to be
verified with other energy grid simulation models, which
are not based on Petri nets. This comparison is important,
not only to evaluate how realistic the single components
work but also to validate the realism of the whole grid.
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Figure 12. Simulation output for the second example. The upper plot shows the power supply and demand for the upper distribution
grid from Figure 11, the second plot for the lower grid. The background is colored according to if the PV power plant is connected
to the respective grid. The lower plot shows the number of active wind turbines. In the four bars at the bottom, the red color shows
if the battery charging and discharging is active.
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Abstract
To contribute to carbon neutrality, energy efficiency mea-
sures in existing factories must be evaluated holistically,
considering not only production and technical building
equipment but also the building itself. In this study, a
package is introduced as part of a simulation library which
aims to identify integrated energy efficiency measures.
The package enables the user to simulate building related
efficiency measures independently or combined with ma-
chines and technical building equipment. Special focus
is placed on the efficiency measure hereafter referred to
as enclosure, which designates a thermally activated con-
struction around a number of machines to facilitate the
capturing of waste heat emitted to the ambient air. A com-
parison with measured data shows a good agreement of the
return temperature for stationary conditions. Furthermore
an application example for the package is given.
Keywords: building stock, refurbishment, TABS, industrial
buildings, energy system optimization

1 Introduction
The goal of the European Green Deal adopted in 2019
is to achieve carbon neutrality in Europe by 2050 (Bun-
desministerium für wirtschaftliche Zusammenarbeit und
Entwicklung 2023). Buildings alone account for 40% of
the global energy consumption (Nejat et al. 2015) and
thereby significantly contribute to the global greenhouse
gas emissions. Reducing energy consumption and using
greener energy sources for the building operation is there-
fore crucial to achieve lower overall carbon emissions.
Industrial buildings are no exception, but pose a special
challenge because of the different industrial processes that
take place in them. The need for the integration of build-
ing simulation into the planning procedure to assess en-
ergy saving potentials as well as non-energy benefits like
thermal comfort is frequently addressed in the literature
(e.g. by Gourlis and Kovacic (2017) and Bleicher et al.
(2014)). Weeber, Ghisi, and Sauer (2018) propose a pro-
cedure model how to integrate energy building simula-
tion in the assessment of energy efficiency measures in
factories, using IDA-ICE as building simulation software.
They also emphasize that although computer simulations
are considered a valuable tool among architects and civil
engineers, they are still underrepresented in planning pro-
cesses. Smolek et al. (2018) explain this by too much
complexity and too high costs of the building design tools

for the purpose of industrial energy management. They
address this problem by developing a building model con-
sisting of manageable cubes.

Maier et al. (2021) describe the holistic approach fol-
lowed by the ETA factory in Darmstadt, where build-
ing, production equipment and building services are inter-
linked mainly by thermally activated building structures
(TABS). Low temperature waste heat captured by TABS
can then for example be lifted to a usable temperature level
using a heat pump (as e.g. described by Ramschak et al.
(2018)).

As part of the research project ETA im Bestand, the
simulation library ThermalIntegrationLibrary (TIL) has
been developed for the identification and evaluation of
energy efficiency measures in existing factories and was
described by Theisinger et al. (2023). A special focus
of this library is the interconnection of building, build-
ing equipment and machines. As Modelica is a popular
tool for hydraulic grids and sophisticated control strate-
gies (described e.g. by O’Donovan, Falay, and Leusbrock
(2018)), it was chosen as a modelling language for all sub-
systems. Thereby time-consuming co-simulation and the
usage of commercial building simulation software could
be avoided.

Within the TIL the FactoryBuildings package aims to
provide the user with easy-to-use basic building models
as well as example factory buildings assembled from data
collected within the research project. These example mod-
els can be dragged and dropped to be simulated along
with the machine models as described by Theisinger et
al. (2023). The FactoryBuildings package is intended to
create a link between the available information of an ex-
isting building, the experience of the person responsible
for the building, and the often time intensive model set up
and simulation in Modelica by facilitating the modeling to
such an extent that the barrier for use is minimized and a
plausibility check with experience is possible.

The structure of the package is presented in Section 2.1.
The correct implementation of the enclosure model intro-
duced in Section 2.1 is validated using measurement data
obtained from an experiment with a small demonstrator in
Section 2.2. Furthermore an application example of the
package is given, applying a few simple efficiency mea-
sures to an exemplary production hall (Section 2.3). The
respective results are presented in Section 3.
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2 Methods
2.1 The FactoryBuildings package
The FactoryBuildings package relies to a large extent on
the well known Buildings library described by Wetter et al.
(2014) in addition to the ModelicaStandardLibrary (Mod-
elica Association and contributors 2020), both in terms
of models and structure of the package. The package
browser is shown in Figure 1 and contains the following
sub-packages:

• BaseClasses: Contains the framework for the use of
the building model within the factory system model
described by Theisinger et al. (2023).

• BuildingModels: Contains examplary models con-
sisting of one or more thermal zones ready to use
in a factory model along with the machines. Fur-
thermore examples are provided to evaluate building
related energy efficiency measures including the ma-
chine waste heat as load profiles only.

• Controls: Contains a semi-ideal heater to facilitate
simulating heating and cooling loads using a range
of set temperatures over a whole year, described in
Detail below.

• HeatTransfer: Contains data as known from the
Buildings library.

• InternalGains: Contains models to facilitate the in-
put of boundary conditions regarding heat sources
and sinks used in PartialBuildingModel (described
below).

• ThermalZones: Contains the base class Partial-
BuildingModel which makes use of the Build-
ings.ThermalZones.Detailed.MixedAir model, ex-
tended by ProductionHall, which facilitates mod-
elling thermal zones like production halls and office
spaces, and Enclosure, which can be used to model
room-in-room concepts. The ProductionHall and
Enclosure Model are described in more detail below.
Furthermore modelling examples and examplary in-
dustrial building models are provided.

• Types: Contains types like weekdays for conve-
nience.

• Utilities: Contains utilities used throughout the li-
brary.

The ProductionHall model consists of the MixedAir
model as well as of a collection of different convenient
submodels for ventilation, infiltration, schedule based in-
ternal gains, thermal bridges and various for clarity con-
ditionally generated connectors, which facilitate a cou-
pling with technical building equipment. A simplified
room temperature control allows for a quick generation of

Figure 1. TIL package browser

useful heating and cooling loads. Furthermore the inclu-
sion of efficiency measures like an enclosure or TABS is
facilitated by conditionally generated submodels and pa-
rameters reduced to the essentials. For the mapping of
TABS the Buildings model ParallelCircuitsSlab is inte-
grated. The Enclosure model is based on the same prin-
ciple as ProductionHall but does not allow external walls
and uses temperature inputs rather than a weather bus. It
should be set up by connecting its room-facing construc-
tions to corresponding surfaces of the surrounding room
in order to allow the radiation calculation.

As the time step of the simulation is variable and at the
same time the thermal zone should not be thermally condi-
tioned within a certain temperature range, the implemen-
tation of an ideal heater/ cooler is not trivial. Our solution
is described in the following: The semi-ideal heater model
checks whether the current room temperature falls below
or exceeds a certain minimum and maximum threshold.
The error between the current value and the threshold is
fed into a first order function if the current temperature is
not between the minimum and maximum limit. A gain
constant with a standard value of V · 1.3 kg

m3 · 1005 J
kg·K ,

where V denotes the zone volume, may be specified by the
user to be multiplied with the error (in K). A correspond-
ing heat flow is then prescribed to the heat port respect-
ing a specified minimum and maximum power for heating
and cooling. The graphics view of the model is shown in
Figure 2. It may be advisable to adjust the gain constant
depending on how the zone is equipped, which is why we
recommend to check the results of the air temperature be-
fore proceeding.
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Figure 2. Graphics view of the semi-ideal heater model

2.2 Validation of the enclosure model
Measured data obtained from an experiment with a small
demonstrator (1.82 m x 0.4 m x 1 m) is used to validate
the correct implementation of the enclosure model. The
experimental setup is shown in Figure 3.

The envelope of the demonstrator consists of vac-
uum insulated micro-reinforced high-performance con-
crete (mrUHPC) embedded in a steel frame. The respec-
tive properties are summarized in table 1.

Table 1. Properties of the construction layers

Property Concrete Vacuum
insulation

Layer thickness [m] 0.05 0.02
Thermal conductivity [ W

m·K ] 5 * 0.007
Specific heat capacity [ J

kg·K ] 1100 900
Density [ kg

m3 ] 2500 195
* Hauser (2016)

The four walls are thermally activated each using a cap-
illary tube mat located in the centre of the concrete layer.
The connections are arranged according to the Tichelmann
system so that supply and return lines of each mat sum
up to about the same length, the two shorter mats are
connected in series. The dimensions of the cross-linked
polyethylene (PEX) capillary tubes are 3.5 x 0.5 mm ar-
ranged in parallel at a distance of 10 mm between one
collector pipe each for supply and return. The supply and
return pipes outside the demonstrator (about 4 m each) are
non-insulated.

When the measurement is started the air temperature in
the demonstrator is approx. 13.8 ◦C. At this time, the
water is not yet circulating through the system. 28 min-
utes after the start of the measurement the pump supplying
the TABS is turned on (total volume flow rate of 0.19 m3

h ,
supply temperature of approx. 9.7 to 10.1 ◦C). The wa-
ter temperatures are measured with PT1000 sensors with
a tolerance of ± 0.3 K at 21 ◦C. The surface tempera-
tures are measured with NTC sensors with a tolerance of

± 0.2 K at 0 to 70 ◦C. The ambient temperature during
the experiment is approx. 21.4 ◦C.

The model is set up in Dymola. The inlet tempera-
ture, mass flow rate and surrounding temperature are read
in from a file containing measured data over 2.5 hours.
The demonstrator is modelled using the Enclosure model
with TABS. Inside the demonstrator, the connecting in-
sulated pipe between the short wall TABS is considered
as well as the longer supply or return pipe of each wall
respectively. To account for the thermal losses of the non-
insulated pipes outside the demonstrator, a series of ex-
periments is conducted and the heat transfer coefficient
is fitted according to the measured temperature difference
to 15 W

m2·K . Furthermore an air exchange by infiltration
of 0.15 h−1 and a heat flow rate of 0.05 W

m2·K by thermal
bridges to account for the steel frame are assumed. The
model is shown in Figure 4. The results are described in
Section 3.1.

2.3 Evaluation of energy efficiency measures
Besides the application of the building model as a pro-
duction environment the FactoryBuildings package also
enables the user to evaluate building related energy effi-
ciency measures without the machine models. Including
the machine waste heat as load profiles offers the advan-
tage of a reduced computational effort, which facilitates
the simulation over a whole year. The TIL thereby offers
a solution for the relevant time frames for both production
and building efficiency measures.

For the simulation of the building related efficiency
measures the same models as for the factory simulation
can be used. The BldSystemEnergyManager model ex-
tending the SystemEnergyManager, which centrally eval-
uates the energy demands of the factory components (as
described by Theisinger et al. (2023)), can be used to com-
pare a reference building with a refurbished building ver-
sion.

To illustrate the application described above, an ex-
emplary production hall is equipped with efficiency mea-
sures. The production hall was constructed 1994 and has
a rectangular base area of about 7800 m2. The external
walls consist of sandwich- and cassette constructions with
8 cm PUR foam resp. 12 cm mineral wool. The flat roof
is insulated with 12 cm PIR and the floor is a 20 cm thick
concrete slab. The windows are double glazed. Further-
more air change rates of 0.15 h−1 by infiltration and of
1.5 h−1 by ventilation are assumed and weather data of
Frankfurt, Germany is used, while the ground temperature
oscillates between 0 and 20 ◦C. As internal gains 130 peo-
ple with a heat output of 75 W each are considered along
with lighting of 15 W

m2 at an efficiency of 12%. 50 ma-
chines with 10 kW waste heat output to the room air (taken
from an exemplary machine within the research project)
are operated from 8:00 till 17:00. The minimum and max-
imum set temperatures are specified as 19 and 25 ◦C when
the space is occupied resp. 16 and 30 ◦C when the space
is not occupied.
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(a) Demonstrator without ceiling element with designation of the walls (b) Uninsulated (c) Insulated

Figure 3. Experimental setup

Figure 4. Graphics view of the Dymola model of the experi-
mental setup

To improve the energy efficiency of the industry hall,
firstly a retrofit insulation of the floor is considered, as
the energy demand of the hall is heating dominated. This
could be an option for the owners in the course of a major
restructuring. Secondly modern lighting is integrated with
15 W

m2 at an efficiency of 40%. Furthermore a 500 m2

PV plant with 100 kWp is integrated. The integration
of renewables is not an efficiency measure in the clas-
sical sense, but should still be considered when changes
of the building envelope and technical building equipment
are planned. The two versions of the model are dragged
and dropped in the model containing the BldSystemEner-
gyManager. For the evaluation, the user may specify en-
ergy prices and and CO2 factors. The results are described
in section 3.2.

3 Results

3.1 Validation of the enclosure model

In Figures 5 and 6 the simulated and measured return tem-
peratures and inner wall surface temperatures of the enclo-
sure described in Section 2.2 are compared. While in the
transient cool down of the construction at the beginning of
the experiment the simulated and measured return temper-
atures differ up to 1.4 K, the difference decreases to 0.2 K
while steady state is approached. This behaviour can be
observed using the epsilon-NTU as well as the finite dif-
ference method implemented in the Buildings radiant slab
model for the heat transfer between fluid and slab, and
corresponds to its limitation to steady state applications as
described in the user’s guide (Wetter et al. 2014). The rise
in the measured return temperature before the pump starts
is due to the fact that the fluid temperature in the pipes
where the sensor is located is initially not in equilibrium
with the ambient air temperature. The jump in the simu-
lated return temperature at the beginning of the experiment
is due to the initial temperatures of the water volumes in
the various pipes which differs from the respective room
temperatures and could only be modelled approximately.

The surface temperature sensors are located approx.
in the centre of the inner wall surfaces respectively. As
shown in Figure 6, the measured and simulated surface
temperatures differ up to 0.6 K two hours after the pump
is switched on and even more at the beginning of the cool
down. While in the model the heat transfer seems to be
overestimated at the beginning of the cool down for the
two larger walls and underestimated when steady state
is approached, the opposite seems to be true for the two
smaller walls. Apart from the above mentioned restric-
tions of the radiant slab model, the two main reasons for
the deviation are firstly that the whole air volume is as-
sumed to be completely mixed. This is not the case in
reality, where an uneven temperature distribution in the
air and at the construction surfaces can be observed. Sec-
ondly, the simulated values are to be understood as an av-

Energy Efficiency Measures for Existing Factory Buildings

740 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204737



0 0.5 1 1.5 2 2.5
10

12

14

16

18

20

Time [h]

R
et

ur
n

Te
m

pe
ra

tu
re

[◦
C

]
Simulated

Measured

Figure 5. Simulated and measured return temperatures

erage over the whole surface area while the sensor mea-
sures the temperature at one point.
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Figure 6. Simulated (S) and measured (M) inside surface tem-
peratures

The results show that the Buildings model ParallelCir-
cuitsSlab is reasonably well suited for an estimation of the
behaviour of the considered type of capillary tube mats
within the Enclosure model, e.g. for the capturing of tem-
porally constant machine waste heat, keeping in mind the
depicted limitations.

3.2 Evaluation of energy efficiency measures
Using a script with convenient plot settings provided in
the TIL, an overview of the annual heating, cooling, elec-
trical and total energy demands, energy costs and green-
house gas emissions is given based on the user inputs. In

this case, the insulation of the floor leads to a reduction
of the heating demand by 80%, but at the same time to an
increase of the cooling demand by 350%. Therefore an
increased ventilation of additional 1.5 h−1 is introduced
when the room temperature exceeds a maximum value of
24 ◦C as well as the outside temperature. However, the ef-
fect is not high, as the heat capacity of the constructions is
very low. The electricity costs and emissions decrease no-
ticeably, but the relative effect on the overall energy costs
and emissions is not high. It can be safely assumed that
this would not be the case taking into account the electric-
ity consumption of the machines. The results for the com-
parison of the total energy costs and emissions is shown in
Figure 7. The overall costs and emissions are more than
halved and more evenly distributed throughout the year in
the refurbished building, due to the above described rea-
sons.

Figure 7. Results for the energy efficiency measures in Dymola

The assumptions made in this example are not repre-
sentative for industrial buildings in general and are merely
meant to depict the application of the FactoryBuildings
package. As the utilization and boundary conditions for
different industrial buildings are manifold, it is important
for the user to make suitable assumptions for their specific
case.

4 Conclusions and Outlook
The presented package enables the user to identify and
evaluate energy efficiency measures especially in factory
buildings. It relies largely on the Buildings library, but
provides a simplified user experience by adding some
functionalities and restricting the user’s choice to a nec-
essary minimum. The building model can either be simu-
lated with simplified assumptions for machine waste heat
to lay the focus on the building related efficiency mea-
sures, or act as an environment for the production equip-
ment, typically simulated in a shorter time frame.

To propose and analyze more sophisticated energy ef-
ficiency measures than the ones presented in Section 2.3,
it is important to have some knowledge about boundary
conditions like the type of production equipment and de-
tails about the technical building equipment. Therefore,
in future work a case study with a real factory will be per-
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formed where all important parameters are known a pri-
ori and customized efficiency measures can be evaluated
using the FactoryBuildings package. The application of
the package as part of the ThermalIntegrationLibrary is
intended to serve as a starting point for more in-depth en-
ergy system analyses.
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Abstract 
Collaborative model-based development of the hybrid 

power system often requires large-scale co-simulation and 

system parameter optimization. In this study, we 

investigate an architecture for parallel processing 

simulation of SSP (System Structure and Parametrization) 

and FMI (Functional Mock-up Interface), which enables 

high-speed computation by multi-core distribution. We 

combine Bayesian optimization and co-simulation, then 

we build a collaborative development platform for hybrid 

power systems design. We report performance 

experiments using hybrid electric vehicle simulation 

model published by JAMBE (Japan Automotive Model-

Based Engineering center). 
Keywords: Model exchange, FMI, SSP, Distributed co-

simulation 

1 Introduction 

Hybrid power systems are a combination of power 

generation and energy storage systems (batteries and fuel 

cells). As shown in Figure 1, a hybrid power system 

consists of systems for both power supply and power 

demand stakeholders, and each stakeholder has its own 

methods and tools for system design and analysis. Hybrid 

electric vehicles (HEVs) also consist of various 

components such as engines, electric motors, DC-DC 

converters, DC-AC inverters, and batteries, and OEMs 

and suppliers work together for system design and 

analysis. 

This means that system designing should consider 

different perspectives, which requires the use of several 

different tools and methodologies. However, connecting 

tools and exchanging information between different teams 

often leads to inefficiencies in system development. Since 

connecting tools from different vendors is not guaranteed 

to work and not supported by each vendor, it is necessary 

for the tool users to build and maintain their own 

environment for connecting tools.  

For these reasons, interoperability standards for model 

exchanging between tools are important. FMI (Functional 

Mock-up Interface) and SSP (System Structure and 

Parametrization) are standardized by Modelica 

Association to establish interoperability between tools for 

model exchanging at various levels of abstraction.  

SmartSE project of prostep ivip Association has 

published “SmartSE Recommendation” (SmartSE 2023) 

for simulation-based system design and decision making 

in collaborative development between multiple design 

teams across companies based on the utilization of FMI 

and SSP standard. 

1.1 FMI (Functional Mock-up Interface) 

FMI (Functional Mock-up Interface) is common interface 

and file format that allows simulation models to be passed 

between different tools. FMI standard is available on the 

official website (ref. FMI website). There are many tools 

over hundreds that support the FMI standard, and models 

can be exchanged between these tools.  

FMU (Functional Mock-up Unit), which is zipped 

compressed file format, contains modelDescription.xml 

file in XML document format and a library file in binary 

format (DLL on Windows systems, SO on Linux systems) 

that implements the model's definition expressions or 

solver functions. 

The format of modelDescription.xml is defined by the 

standard, and it contains information such as the names, 

types, and other attributes of the input and output signals 

of the model stored in the FMU, and a list of parameters 

that can be set and changed from outside the FMU. 

There are two types of FMI standards “Model 
Exchange” interface and “Co-simulation” interface. 

Model Exchange FMU contains only the model equations. 

 
Figure 1.  DX in Hybrid Power Supply Systems Design. 
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Co-simulation FMU includes both model equations and 

solver.  

Model Exchange interface assumes that the model 

equations in multiple FMUs are aggregated and computed 

by a single solver. This makes it difficult to speed up the 

calculation by distributed parallelization, and it is difficult 

to guarantee consistency between the results of a single 

solver and those of distributed parallel computation. The 

reason is that each individual Co-simulation FMU 

contains a model and a solver, so each FMU can be 

computed independently. 

1.2 SSP (System Structure and 

Parametrization) 

SSP (System Structure and Parametrization) is standard 

format for describing model and signal connection 

structures and other parameters necessary to conduct 

multi-domain co-simulation combining multiple FMUs. 

Specification of SSP can be obtained from the official SSP 

website (ref. SSP website). 

Like FMU, SSP is a compressed file in zip format, and 

its interior consists of several sub-formats and its interior 

consists of several sub-formats. SSD (System Structure 

Description) is an XML file that describes the hierarchical 

structure, connection relationships, and functional 

structure of the entire FMU network. 

1.3 Distributed co-simulation standards 

In collaborative development through model exchange, 

there are many opportunities for large-scale simulation 

that combine model components created by multiple 

teams. Most commercial simulation tools calculate 

models sequentially, so when model parts are exchanged 

between companies or design teams using FMI and SSP, 

the simulation speed decreases as the number of FMUs for 

model parts increases. 

Distributed co-simulation is expected to speed up large-

scale simulations by running models in parallel. 

Distributed co-simulation may be run in a multi-core 

distribution within a single machine, on a set of machines 

interconnected via a local area network, or on globally 

distributed computers communicating via the Internet. 

Typical distributed co-simulation standards include 

IEEE 1516 HLA and DSP. 

IEEE 1516 HLA (High Level Architecture) (IEEE 

1516) standardizes distributed co-simulation and standard 

interface for connecting multiple heterogeneous 

simulators. HLA defines controller called RTI (Run-time 

Infrastructure) which provides services such as data 

distribution and time synchronization among multiple 

connected simulators (called federates in HLA). Through 

this RTI, simulators are combined in a star-like network 

configuration for distributed simulation. 

DCP (Distributed Co-simulation Protocol) (ref. DCP 
website) is a new protocol developed for the purpose of 

connecting real-time systems (HILS or prototype 

machines) and simulators. DCP protocol has two modes: 

real-time mode that connects a real-time system (actual 

device) and a simulator, and non-real-time mode that is 

used to connect virtual simulators. In both modes, the role 

of controller (equivalent to RTI in HLA standard) is 

limited compared to HLA. For data communication, each 

simulator node communicates directly with the other 

simulator node on a point-to-point basis. DCP protocol 

configures mesh-type network for distributed simulation. 

In the real-time mode of DCP protocol, each node runs 

using its own timer, so there is no explicit synchronization 

of time between nodes. In the non-real-time mode, the 

controller sends clock signal to each node, and the 

simulator on each node runs explicit synchronized to the 

clock signal. 

1.4 Contributions of this paper 

In this paper, we design a multi-core distributed simulator 

which performs high speed co-simulations that connect 

many model parts (FMUs). Next, we combine Bayesian 

optimization and distributed co-simulation to create a 

toolset that can automatically perform parameter 

optimization of hybrid power systems design.  

2 Computation of distributed co-

simulation 

This section considers distributed co-simulation for SSP 

and FMI that can perform parallel computation with 

multi-core distribution. 

The upper part of Figure 2 shows the sequence of 

execution of the calculations of each simulator connected 

to the distributed simulation, the time synchronization for 

distributed simulation, and the data distribution. The 

lower part of Figure 2 shows the case of simulation by 

sequential computation without distributed computation 

as a comparison. 

In the upper part of Figure 2, each of the three 

simulators computes independently and in parallel until 

the logical time set as the synchronization timing 

(coupling point), at which point the simulators exchange 

output values with the other simulators. After that, the 

three simulators again perform calculations in parallel and 

exchange output values with the other simulators at the 

next synchronization timing. This process is repeated. 

This figure shows a simple case in which the 

communication step size of the three simulators is the 

same and does not vary, but there may be other cases in 

which the synchronization period varies, or in which each 

simulator has a different synchronization period or 

synchronization timing. 

In contrast, in the case of sequential calculations as in 

the lower part of Figure 2, which do not involve 

distributed calculations, the three calculations are repeated 
in sequence using a set of simulators. Most commercial 

simulation tools are considered to be sequential. 
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Comparing distributed and sequential computation 

cases, the distributed simulator is expected to increase 

simulation speed compared to the sequential case. 

However, the simulation speed does not increase linearly 

with the degree of parallelism. In the case of distributed 

computation, there is the overhead of synchronization and 

signal transmission, so it is important how lightly this 

process can be made and how much the computation time 

can be shortened. It should also be assumed that the 

computational complexity of each model component is not 

uniform, so even if distributed computation is used, there 

is a tendency for the speed to decrease when there is a 

model with a large computational complexity. 

In Figure 2, all simulators synchronize at the same 

period, but in general, each simulator may synchronize at 

a different period. DSP described in section 1.3 is suitable 

for distributed co-simulations that synchronize at a single 

cycle, but not for distributed simulations that synchronize 

at different cycles, because it synchronizes by distributing 

clock signals from the controller node to the slaves. On the 

other hand, IEEE 1516 HLA is suitable for both single-

period and multi-period synchronization because it 

schedules slave nodes by supervising the global time in 

the controller node. Therefore, this paper adopts the IEEE 

1516 HLA mechanism. 

3 Distributed SSP-FMI co-simulation 

3.1 Architecture of distributed simulator 

This section shows the architecture of SSP-FMI simulator 

with distributed computation shown in Figure 3. SSP-FMI 

simulator was developed using distributed co-simulation 

platform VenetDCP from Toshiba Digital Solutions (ref. 

VeneDCP website). 

"FMI Executable" loads and executes Co-simulation 

2.0 interface FMU file. FMI standard defines the function 

APIs used to initialize the FMU and execute model 

computation. These functions are stored in DLL binary 

library file in the FMU. "FMI Executable" unzips FMU 

file, obtains information of input/output signals and 

parameters from modelDescription.xml file, and calls the 

function APIs in DLL binary library file to drive and 

simulate the imported FMU. In co-simulation where 

multiple FMUs are running, multiple FMI executables are 

launched for individual FMUs to achieve parallel 

distributed computation. 

Recording and monitoring of the test data time series 

signal input and output signal time series are performed 

using Python. 

Figure 2. Comparison of computation between distributed co-simulation and sequential co-simulation. 

 
Figure 3. Architecture of distributed SSP & FMI simulator. 
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 "Distributed simulation controller" provides the signal 

transmission service and the time synchronization service 

between FMI Executables and Python. 

This mechanism corresponds to the RTI (Run-time 

Infrastructure) of the IEEE1516 HLA. The signal 

exchange service also reads SSP file and sets up the signal 

connection relationship between FMUs and parameters. 

Since "FMI Executable," "Python," and "Distributed 

simulation controller" are independent processes, each 

process will be distributed across multiple CPU cores 

when run on a multi-core CPU machine. The number of 

processors and CPU core allocation can be changed using 

the processor affinity option in Microsoft Windows.  

Processor Affinity, also called CPU pinning, allows the 

user to assign a process to use only a few cores.  

Inter-process communication between "FMI 

Executable," "Python," and "Distributed simulation 

controller" uses shared memory between processes on the 

same machine and TCP communication between 

processes on different machines. 

Figure 4 shows the execution screen of the SSP-FMI 

simulator, with the "Distributed simulation controller" 

screen on the left and the simulation output signal time 

series on the right, plotted as a graph using Python's 

Matplotlib library (ref. Matplotlib website).  

3.2 Performance evaluation using hybrid 

vehicle simulation 

This section reports the performance evaluation of 

distributed SSP-FMI simulation by using series parallel 

hybrid electric vehicle (HEV) simulation model shown in  

Figure 4.  Example of SSP-FMI Simulation (series parallel hybrid vehicle model). 

 
Figure 5.  Series parallel hybrid electric vehicle model (ref. JAMBE HEV model) 
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 Figure 5 and continuously variable transmission (CVT) 

engine vehicle simulation model shown in Figure 6. Both 

simulation model is published by JAMBE (Japan 

Automotive Model-Based Engineering center). 

 The original model was built in MathWorks Simulink. 

We divided Simulink model and exported in FMI format. 

The number of FMI files for the hybrid vehicle model is 

21 files divided by the block units of BXXX in Figure 5,  

and the CVT vehicle model is 7 files divided by the block 

units of color marks in Figure 6. 

Each simulation was performed with the input of 1800 

second standard driving pattern of WLTC (Worldwide 

harmonized Light vehicles Test Cycles) class 3b 

developed by UNECE (United Nations Economic 

Commission for Europe). Both simulations were run with 

a sampling time of 2.5 millisecond which is the same as 

the original JAMBE model. 

We measured the RTF (real-time factor) of simulation 

speed using two different machines. The first machine 

equips Intel Core i7-10870H processor with 8 cores and 

16 threads. The second machine equips Intel Core i7-8700 

processor with 6 cores and 12 threads. 

We used Windows 10 as the OS. The SSP-FMI 

simulator we developed allows the user to select the 

number of CPU cores (threads) used in the calculation 

using the processor affinity option of Windows, and we 

compared the simulation speed when using a single CPU 

and when using multiple CPU cores (threads). 

Figure 7 shows the measurement results on the machine 

with Intel Core i7-10870H processor. The vertical axis 

represents RTF. The horizontal axis is the number of CPU 

cores (threads) used. The upper measurement is for a CVT 

vehicle simulation with 7 FMUs, and the lower 

measurement is for a hybrid vehicle simulation with 21 

FMUs. Figure 8 shows the measurement results using the 

machine with Intel Core i7-8700 processor, and the 

notation is the same as in Figure 7. 

 The measurement results show that increasing the 

number of CPUs used in a distributed calculation can 

increase the speed by up to a factor of two compared to a 

Figure 6.  CVT vehicle simulation model (ref. JAMBE CVT model) 

 
Figure 7.  Number of CPU cores (threads) and RTF 

 (Core i7-10870H) 

 

 
Figure 8.  Number of CPU cores (threads) and RTF 

 (Core i7-8700) 
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calculation using a single CPU. However, it was also 

found that speed increases only up to 8 CPU cores 

(threads) and that speed tends to decrease slightly when 

more than 8 CPU cores (threads) are used. This is thought 

to be because excessive use of processor CPU cores 

(threads) affects the execution of non-simulation 

processes and has the opposite effect on the performance 

of distributed computation. 

Table 1 compares RTF of each individual component 

FMU in a hybrid vehicle simulation using 21 FMUs with 

8 threads on a Core i7-10870H, measuring the execution 

time that "FMI Executable" was running. It can be seen 

that the simulation speed varies by a factor of several 

depending on the complexity of the model included in the 

FMU and the amount of calculation. The overall 

simulation RTF is 21.785 while the RTF of the single 

FMU of HV_CNT (hybrid control controller) is close to 

this at 26.651, indicating that the calculation of HV_CNT 

is the overall speed-determining factor. This shows that 

the overall simulation speed tends to be dragged down by 

the computationally intensive FMU, and that no further 

speed-up can be expected in the hybrid vehicle simulation 

even if the number of threads is increased to 8 or more. 

By measuring the overall RTF and RTFs of each 

individual FMU in this manner, it is believed that it is 

possible to determine the optimal number of CPU cores 

(threads) that will provide the maximum simulation speed 

in the parallel distributed SSP-FMI simulator. 

4 System parameter optimization 

using SSP-FMI co-simulation 

4.1 Framework of system parameter 

optimizetion 

This chapter describes an application of SSP-FMI co-

simulation to system parameter optimization.  

Collaborative and rapid development of hybrid power 

supply systems often requires various configuration and 

many control parameters to be optimized. It also requires 

to facilitate model exchange between partners while 

keeping confidentiality of model. We think distributed co-

simulation utilizing model interoperability standard FMI 

and SSP and Bayesian optimization will be solve the 

problems. 

Figure 9 illustrates the framework of collaborative 

development platform for hybrid power suppy systems. In 

this framework, model parts are collected from partners 

in FMI format and optimum parameter set can be searched  

by Bayesian optimizer and distributed co-simulation. 

4.2 Optimization set-up 

A flowchart for optimization functionality is shown in 

Figure 10, where an initial value is first generated (either 

randomly or by user input). The SSP file for the co-

simulation is then modified, where the values of the 

parameters to be optimized over are changed. This allows 

the co-simulation to be run for the chosen parameter 

values. 

Once the co-simulation has finished, the cost function 

to be optimized can be extracted from the output. Based 

on the parameter and output values, an optimization 

module can determine the next point to evaluate. 

4.3 Optimization algorithms 

Compared to most optimization problems, the cost 

function in co-simulation is often time- and resource-

consuming. The system may comprise a large number of 

subsystems and even with parallel and distributed 

simulation, it can take a long time to evaluate its 

performance. Furthermore, the inner workings of the 

subsystems are often not known to the co-simulation 

master as they may originate from different vendors or 

developers. Hence, we can treat the cost function as a 

black box which is expensive to evaluate.  

For this kind of optimization problem, a suitable 

algorithm is Bayesian optimization (Brochu09). This 

works by placing a Gaussian prior on the function and 

updating the posterior distribution based on the observed 

input and output values. This can be used to compute the 

best next value to evaluate, where criteria such as 

“probability of improvement” and “expected 

improvement” can be used. The advantage of Bayesian 

optimization is that it requires few evaluations of the cost 

function, as opposed to, e.g., evolutionary methods  

Table 1.  Comparison of RTF for each FMI model. 

 (Series parallel hybrid vehicle) 

 
 

Parts Speed ratio

DCDC_HI_CNT 84.755

BK_CNT 79.029

BT_HI_PNT 74.171

BT_PNT 70.812

BK_PNT 66.966

DCDC_HI_PNT 63.065

DCDC_PNT 60.866

DF_PNT 58.56

Driver 53.997

EL_HI_PNT 54.604

EL_PNT 52.353

ENG_CNT 49.95

ENG_PNT 48.118

MD1_PNT 45.65

HV_CNT 26.651

MD2_PNT 42.494

MG1_CNT 45.802

MG2_CNT 42.333

TM_PNT 35.417

TR_PNT 38.759

VL_PNT 35.661

Total 21.785
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 (NSGA-II, genetic algorithms, particle swarms, etc.) 

which need many evaluations (Emmerich18). 

 It should be pointed out that it is possible to consider 

more than one cost function. Multi objective optimization 

is common in large and complex systems, where there are 

many metrics by which a system performance can be 

measured in. These are often conflicting, and an optimal 

trade-off is sought. Bayesian optimization can be extended 

to multi objective optimization, e.g., with efficient 

algorithms such as TSEMO (Bradford18).   

 

 
 

Figure 10.  Optimization principle with co-simulation. 

 

4.4 Optimization example 

As an example of system parameter optimization, we 

considered the JAMBE HEV model. In particular we 

considered the role the clutch thresholds play in the 

propulsion. As shown below, the clutch helps activate 

electric only (Figure 11a) or hybrid-electric assist (Figure 

11b). This is determined by, among other things, a 

threshold to open and a threshold to close it (measured in 

vehicle speed, km/h). These two thresholds were chosen 

as the system parameters to optimize over. The cost 

function was set as the fuel consumption during the 

WLTC class3b test drive cycle shown in Figure 12.  

 

 
 

Figure 11.  Scenario for the considered JAMBE model. 

 

 
Figure 12.  WLTC Class 3b test driving cycle consisting of Low, 

Medium, High and Extra High phases. 

 

Figure 9.  Framework of collaborative development platform. 
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4.5 Optimization results 

Using the MATLAB toolbox, Bayesian optimization of 

the clutch thresholds was implemented. Note that this 

allows the Optimization module in Figure 10 to output a 

suggested next value to evaluate in the next co-simulation, 

which was based on the “expected improvement” 

criterion. The cost function was extracted from the co-

simulations as the fuel consumption after the 1800 

seconds drive cycle. This is measured in km/l, so we are 

looking for its maximum. 

The results are shown in Figure 13, where the fuel 

consumption (in km/l) is plotted against the two clutch 

thresholds parameter which defined in the JAMBE HEV 

model. HV_CNT_Clutch_ON_threshold_vel_kmph 

means that closing clutch is possible above this speed. 

HV_CNT_Clutch_OFF_threshold_vel_kmph means that 

opening clutch is prohibited below this speed. 

To appreciate the optimization result, we also 

performed an exhaustive evaluation for all feasible 

parameter values. This involved around 400 co-

simulations, whereas the optimization approach only used 

10. Compared with the default parameter values which 

defined in the JAMBE HEV model (red circle), the 

optimized values (blue circle) showed a 2% improvement 

in fuel consumption. Although this is quite small, more 

gains can be had by considering other blocks, possibly in 

combination with each other.  

 

 
Figure 13.  Optimization results for the co-simulated JAMBE 

model. The red and blue circles represent the default and 

optimized operational values, respectively. 

5 Conclusion 

FMI and SSP standards establish model exchange at 

various levels of abstraction and interoperability between 

tools. In this paper, we investigated a configuration of 

SSP-FMI simulator that enables parallel computation by 

multi-core distribution. We also examined application of 

SSP-FMI simulator to the system parameter optimization. 

We are planning to apply collaborative development 

platform to the development of electric vehicles 

(integration of batteries, BMS, power trains, vehicle 

dynamics, etc), hybrid electric aircrafts (hydrogen fuel 

cells with batteries and high-performance electric motors) 

and offshore wind turbines (optimize efficiency and cost 

by wind & wave prediction). 

We also plan to support co-simulation interface of  

FMI3.0 standard, whose official specification will be 

issued in 2022, and the newly introduced Scheduled 

Execution (SE) interface with the distributed parallel 

simulation in this paper. 

References 

SmartSE (2023). “SmartSE Recommendation V3 (Smart 

Systems Engineering Collaborative Simulation-Based 

Engineering Version 3.0), prostep ivip Association, 

January 2023. 

https://www.prostep.org/fileadmin/downloads/PSI_11_V

3_SmartSE_Rec_and_Part_A-I.zip 

FMI - Functional Mock-up Interface) 

https://fmi-standard.org 

SSP - System Structure and Parameterization 

https://ssp-standard.org 

IEEE1516. “IEEE Standard for Modeling and Simulation 

(M&S) High Level Architecture (HLA)”,  

DOI： 10.1109/IEEESTD.2010.5553440 

https://standards.ieee.org/ieee/1516/3744/ 

DCP - Distributed Co-Simulation Protocol 

https://dcp-standard.org/ 

VenetDCP - Distributed Co-Simulation Platform 

https://www.global.toshiba/ww/products-

solutions/manufacturing-ict/venetdcp.html 

Matplotlib - Visualization with Python 

https://matplotlib.org/ 

JAMBE HEV model. “Fuel efficiency models and manuals 

for series parallel hybrid 2 vehicles” 

https://www.jambe.jp/system/link.aspx?cid=200091 

JAMBE CVT model. “Fuel efficiency model and manual for 

CVT”  

https://www.jambe.jp/system/link.aspx?cid=200101 

Brochu, E., Cora, M., and de Freitas, N. (2009). “A tutorial 

on Bayesian optimization of expensive cost functions, 

with application to active user modeling and hierarchical 

reinforcement learning”. Technical Report TR-2009-023, 

Department of Computer Science, University of British 

Columbia. arXiv:1012.2599. 

Emmerich, M.T.M., Deutz, A.H. A tutorial on multi 

objective optimization: fundamentals and evolutionary 

methods. Nat Comput 17, 585–609 (2018).  

https://doi.org/10.1007/s11047-018-9685-y 

Bradford, E., Schweidtmann, A.M. & Lapkin, A. “Efficient 

multi objective optimization employing Gaussian 

processes, spectral sampling and a genetic algorithm”. J 

Glob Optim 71, 407–438 (2018). 

https://doi.org/10.1007/s10898-018-0609-2 

 

 

Hybrid Power Systems Simulation and Optimization Utilizing SSP and FMI

750 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204743



 

 

Information Classification: Internal INTERNAL & PARTNERS 

5acXjzUk 

Simulation of Vehicle Headlamp 

Levelling systems 

Filip Cieslar1     Martin Düsing1 
1HELLA GmbH & Co. KGaA, Czech Republic, Germany, 
{filip.cieslar,martin.duesing}@hella.com 

 

 

 

Abstract 

Adjustment systems are used in vehicle headlamps to 

regulate the flare on the street. The kinematic system 

within the headlamp is driven automatically based on 

level sensor signals and can additionally be manually set 

to a start position. In modern cars the automatic vehicle 

headlamp levelling is legal duty due to the strong cut-off 
line (COL) between dark and light. This COL can be 

measured in a workshop but not during operation. Due to 

the complex kinematics including nonlinear contacts, 

friction and damping a Modelica model is used to 

calculate the position of the COL. The results show a 

characteristic hysteresis of the horizonal position during 

automatic movement. The simulation results are 

compared to measurements and show good agreement. 

Keywords: Cut-off line, hysteresis, headlamp 

1 Introduction 

Modern vehicle headlamps have a strong COL between 

dark and light. Different loads can cause oncoming traffic 

to be blinded unintentionally (Hignett 1970). To prevent 

that a vehicle headlamp levelling system adjusts the COL 

based on information of level sensors at the car axles. The 

mechanical system to adjust the horizontal or vertical 

position of the COL is strongly nonlinear because of 

contacts, friction, elasticity and damping such that a 

hysteresis behavior of the COL position vs. the adjustment 

size can be observed (Opgen-Rhein et al. 2004).  

Overall hysteresis can be defined as a difference between 

the direction of a process which changes the system. In 

our case this process is a levelling of the COL, and the 

direction of movement can lead to different ending 

position of COL. Thus, the hysteresis behavior can be 

considered as parasitic.  

The aim of this paper is to model the dynamics of the 

levelling system to understand the origin of hysteresis and 

to predict the position in detail anytime. The model is used 

in early predevelopment phase of few headlamp projects 

to verify design ideas and optimize the adjusting system. 

In this work the model is described and validated with 

measured data of a real headlamp.  

2 Hysteresis behavior of Vehicle 

Headlamp Levelling 

 As hysteresis in a headlamp levelling system, we define 

the difference between start and end position of COL after 

a defined levelling process. Each automotive company 

have different measurement processes, but principally it is 

always forward and backward (or exactly in opposite 

order) movement. Thus, we compare starting position of 

COL assuming as 0 and the end position as h. The distance 

between headlamp and wall on which is the COL 

projected is 10m. The position of the COL is measured in 

a special testing lab with adequate equipment. The COL 

level is digitally evaluated while the leveling is done by 

stepper motor connected to the adjusting system.  

Each automotive company has special requirements about 

the COL level which should be kept. This prevents the 

unwanted position of the light on the street based on 

dynamic leveling during travel. The range of vertical 

(horizontal) COL travel varies but, in all cases, is smaller 

than 5°, in the 10 m distance equals to 0.87 m. Hysteresis 

in such a system can be significant and without proper 

focus on result will not fulfill the requirements. To prevent 

that the simulating model is created. The Modelica 

environment is chosen because of its multi domain 

capabilities because in these systems there are several 

physical phenomena.  

 

 

Figure 1 Vertical hysteresis test scheme 
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3 Modelica Model 

The geometry of the hysteresis test shown in Figure 1 

leads to 

ℎ =  𝑥 ∙
𝑤

𝑧
  (1) 

ℎ = w ∙ tan 𝜑  (2) 

where 𝜑 is the angle of rotation of the light source.  

Geometry of most of headlamps is within following limits: 

z = 90…130 mm, x= 2…10 mm. Based on that we realize 

that any movement in x will lead to around 100 times 

bigger movement of COL in h. To create a model which 

is able to simulate such a system we need to pay attention 

to the adjusting system and include the following: 

- Geometry of each part 

- Backlashes between parts 

- Elasticity of parts 

- Contact deformations between parts 

- Forces and friction in the system 

The adjustment system is designed with several 

mechanical parts which are connected to each other. The 

adjustment can be done with an electrical stepper motor 

and by a manual rotational movement of the so-called 

customer interface which lead to mechanical movement of 

the whole adjustment system with stepper motor 

including. The Hysteresis test is done separately for both 

versions, but the system is connected as one. As it was 

written before this system contains several parts and each 

connection can generate unknown hysteresis behavior. 

From physical point of view, we can observe the 

following behavior on an example connection of 2 parts: 

 

Figure 2 Connection of part1 and 2 in adjustment system 

Then the hysteresis contribution of such a contact can be 

defined as: 

ℎ = ℎ𝑏+ ℎ𝑑 +  ℎ𝑒   (3) 

Where: 

ℎ is total hysteresis 

ℎ𝑏  is backlash part of hysteresis  

 ℎ𝑑 is part of hysteresis caused by deformation 

 ℎ𝑒  is elasticity part of hysteresis 

Backlash Contact def. Elasticity 

∆ℎ𝑏 = 𝑏 ∆ℎ𝑑 = 𝑑

= (
9𝐹2

16𝐸2𝑅
)

1
3 

 

(Popov et al., 2019) 

∆ℎ𝑒 = 𝑒

=
𝐹

𝐸 ∙ 𝑆
∙ 𝑙0 

 
 

 

∆ℎ𝑏= 0.001 

mm 
∆ℎ𝑑= 0.008 mm 

∆ ℎ𝑒= 0.0025 

mm 

ℎ = ℎ𝑏+ ℎ𝑑 + ℎ𝑒 = 0.0115 ≈ 𝟏. 𝟏𝟓 𝐦𝐦 

Figure 3 Example hysteresis contribution with backlash, 

contact and elasticity. 

In Figure 3 the contributions of each physical part shown 

in Figure 2 of the total hysteresis are shown. The radius of 

the ball is R and S is the area. Young's modulus is referred 

to as E. This particular example shows that the backlash 

does not have to be the main contributor to the hysteresis 

even thought that it usually is. The part of Figure 3 

describing contact deformation includes manufacturing 

tolerances and imperfections of the production. Such a 

contact can be described by the Hertzian contact 

deformation law or a variation of it. The elasticity of parts 

contributes as well, due to the different orientation of 

internal force during leveling. This could be described by 

Hooke’s law. Hertzian deformation and elastic 

deformations depend on internal forces in the system. The 

tangential internal forces are functions of the frictions 

between elements in the system. Therefore, the problem 

of hysteresis contribution is pretty complex and needs to 

be simulated. Some factors can be simplified by 

linearization of the behavior.  
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Figure 4 Basic kinematics scheme created in 

3DExperience  

To create a Modelica model capable of simulating the 

hysteresis of a COL during the development of a 

headlamp the software Dymola 2022x and Behavioral 

modeling (Dymola) in 3DExperience 2022x platform 

from Dassault systems are used. Very useful is a CATIA 

interface for kinematics. The kinematics can be easily 

defined in CATIA. In the next step a Modelica model can 

be automatically generated with 3DExperience. This 

Modelica model is based on the precise geometric 

parameters of the system, such as geometry, center of 

gravity, inertia tensors and mass of the body. It can be 

used within 3DExperience or exported to Dymola without 

loss of functions.  

Figure 4 shows a part of subsystem of the main body of a 

headlamp and its adjusting system. Parts are connected 

through joints. Controlled joints need to be connected to 

other subsystems which define their behaviors in terms of 

torques, forces, elasticities, or backlashes.  

 

Figure 5 Subsystem of backlash with friction and hard 

stop 

To model friction the subsystem in Figure 5 is used. It is 

a model with Stribeck characteristic, which is the most 

accurate and proven technique to simulate friction in 

mechanical systems. It combines static friction which is 

higher than the dynamic friction, when parts are moving. 

In addition, velocity dependency is included into this 

behavior. Thus, in comparison to a very simple Coulomb 

model of friction, this model can simulate more precisely 

parts which are sliding in guiderail. The behavior of that 

part is very dependent on friction. The Stribeck 

characteristic is described in Figure 6.  

4 Simulation Results 

The simulation model shown in the previous chapter was 

used in development of several headlamps. In the variety 

of projects, the design team is forced to use different 

adjustment systems. Some parts are changed due to space 

management but as the simulation model is developed as 

a parametric model, it is possible to adjust it to the current 

design. The simulation procedure is set up with the same 

parameters as the one in the measuring laboratory for 

every project. A big advantage of the model is that 

additional parameters like forces inside the system or 

input torques are tracked automatically.  

 

Figure 6 Friction definition using Stribeck characteristic 
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Figure 7 Hysteresis results histogram of 2 adjusting 

systems 

 

Figure  8 Driving torque needed to level during hysteresis 

test – project compared 

 

Because of the high number of parameters and their 

manufacturing tolerances there is a need to perform 

hundreds or thousands of simulations during the design 

phase (Brück et al., 2002). A Monte Carlo approach was 

applied to include statistical characteristic of that problem. 

The simulation is run 500 times with randomly selected 

parameters. The distributions are chosen based on 

knowledge of tolerances and measured real production 

samples.  The results can predict the possibility of a 

hysteresis test fulfilling requirements with current design. 

Example of results of two different adjusting systems used 

in headlamps are shown in  Figure 7. The difference 

between A and B Adjusting systems are in the design and 

the parts are used. Due to restricted space inside of a  

headlamp the A system is smaller and less robust.  This is 

why his behavior leads to worse hysteresis results.  

In Figure 8 two torque characteristics are shown. It is a 

comparison of two different projects. It can be observed 

that Project A is dealing with way more higher torque 

values. This can lead into problems within the adjusting 

system and the design needs to be changed. This is a good 

example how a simulation result can help a design team 

in early development phase without any real testing and 

measurement. 

 
Figure 9 Comparison of simulation result based on 

geometry from CAD and real 3Dscan (the difference is 

influence of manufacturing process) 

The graph in Figure 9 shows a comparison of simulation 

results with different 3D data. The blue line illustrates a 

result based on data from an early phase of development 

in CAD environment. To reduce the influence of the 

manufacturing process on the simulation result, 

manufactured parts were scanned and analyzed. The 

simulation result is shown in red. This was done later in 

the project phase and proved that it can significantly 

change the hysteresis result. 

Therefore, in next projects it is planned to make 

collaboration with Moldflow simulations department. 

Moldflow can predict the manufacturing imperfections or 

dislocations and this data can be used as input for system 

model for hysteresis instead of using CAD data from 

design. This makes the simulation output more reliable 

concerning precision of both models, but also makes the 

result more realistic. Realizing this feature in early phase 

of the project is a key point to benefit from digitalization 

of testing process and will save a lot of time and money in 

next phases of each project. 

5 Comparison with Measurements 

All simulation models contributing into development 

process must be validated and verified. Otherwise, the 

project team cannot rely on simulation results or make 

simulation-based decision and must prove the simulation 

ideas with proper measuring test. In that case there is no 

significant cost reduction which is the biggest reason to 

do simulations at all. A once validated and verified model 

can be used in a lot of following projects it can save a lot 

of money with reducing numbers of physical testing, 

development of wrong design ideas, speeding up the 

troubleshooting process etc. 

However, in our case verification of such a model is 

especially complex. System model of headlamp for 

hysteresis of adjusting processes deals with a lot of 

complex and hard to measure parameters such as friction, 

current position of components, very precise dimensions 

of the parts and forces. In the hysteresis test only, the final 

value is measured and even thought it fits to the simulation 
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value, it is not certain that the model can identify the root 

cause properly.  

Tables 1 and 2 show examples from projects. In Table 1 

the simulated hysteresis in mm in x-direction is compared 

to a measurement and shows quite good agreement. Table 

2 shows an analysis of the simulation results to identify 

the biggest contributor to the total hysteresis. In this case 

obviously Part C is the root cause of 70% of hysteresis in 

the whole system.  

 

 

Table 1 Prediction of hysteresis value: Simulation vs 

measurements 

 Simulations Measurements 

Part A no 3 % 

Part B no 4 % 

Part C Root cause  70 % 

Part D no 5 % 

Part E no 6 % 

Part F Small influence 7 % 

Part G no 5 % 

Table 2 Identifying the root cause in the system 

6 Conclusion 

In this paper a headlamp levelling system and its issues 

with hysteresis of the cut-off line between dark and light 

at the 10m wall is shown. A Modelica model based mostly 

on the Modelica standard library, using the CAD interface 

within the 3DExperience platform was described and 

proven as capable to be a great help in the development of 

a headlamp. The Simulation calculates and prints several 

internal parameters inside the adjusting system as torques 

and forces. Furthermore, the simulation model was 

improved with measured data of real parts through 3D 

scan. Verification methods were used to evaluate the 

precision of the simulation results. However, there are still 

some uncertain factors that were not considered in the 

model such as temperature of headlamp. In the future 

there is an ambition to upgrade the model to be even more 

valuable in the development process. 
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Abstract
The conceptual design of industrial processes is challeng-
ing as relatively little information about the eventually
selected equipment and their operation is known in this
early design stage. Furthermore, the systems are increas-
ingly integrated with themselves, and their design must be
addressed systematically. Simulation can assist in better
understanding the effects of design decisions on the re-
sulting system performance. To facilitate the simulation
of industrial processes in this early design phase, this pa-
per proposes an approach to modeling system components
specifically aimed at employing known key design param-
eters and assuming steady-state behavior of the process for
a certain period of time (e.g. one hour). A solution over a
longer period of time (e.g. for a year) can then be obtained
by simulating a multitude of such shorter periods, leading
to the piecewise-steady-state solution. The proposed ap-
proach is developed with an exemplary case study, based
on a real industrial site. The resulting model computes
the annual load profile within the range of seconds for the
given case study.
Keywords: Piecewise-Steady-State, Conceptual Design,
Process Simulation, Energy Systems

1 Introduction
The design and the optimization of industrial processes
must be addressed systematically. In the conceptual de-
sign phase, engineers evaluate how different process-
requirements can be fulfilled with various technologies
and with different combinations of possible unit opera-
tions. This generally includes the design of heat exchanger
networks including energy conversion units such as (ab-
sorption) heat pumps, gas turbines, or (organic) Rankine
cycles. However, the plant design is restricted to consider
a limited number of operating points due to its require-
ment of manual execution of specific steps. Nevertheless,
many processes are undergoing changes over time, such as
annual load variation or intra-day operation changes. This
also applies with increasing intensity to energy supply sys-
tems, especially when considering (local) renewable en-
ergy sources. In the conceptual design phase, it may nei-
ther be of high relevance nor appropriate to attempt to ad-
dress these fluctuations with detailed dynamic simulations
of the processes as this level of detail may be too intensive

on engineering cost, while the necessary boundary condi-
tions and especially process parameters are neither known
nor relevant in this phase. Therefore, the processes can
often be described sufficiently accurately when assuming
piecewise-steady-state behavior of the process over a cer-
tain period of time, in which the operating conditions do
vary only negligibly and which are significantly longer
than the dynamic response of the individual components.
The evaluation of a multitude of such periods allows for
the quantitative analysis of the system through a larger
period of time. The, in this phase, unknown system dy-
namics can therefore be neglected and the models can be
reduced to their steady-state characteristics.

Modelica is often used for the simulation of such ther-
mal systems. As it can be seen on the Modelica Library
overview (Modelica Association 2023a), various libraries
– open-source and commercial – address these systems
specifically. Furthermore, Modelica software develop-
ers are developing an increasing amount of functional-
ities specifically targeting the steady state evaluation of
models. These tools mainly target the calculation of one
steady-state operation point. In this way, they may also be
used to simulate design points of industrial processes. In
the conceptual design phase, the customarily required set
of parameters describing the physical entity of each sys-
tem component is, however, not known.

The research gap addressed in this paper is the change
in the modeling requirements compared to existing li-
braries when simulating industrial processes in the con-
ceptual design phase. Using an example from a waste in-
cineration plant, this paper describes how Modelica may
be used as a simulation framework to model the steam tur-
bine process with corresponding heat utilization based on
its steady-state characteristics and available design param-
eters. The simulations are performed to analyze the per-
formance of the system on an annual basis. The novelty
introduced is the use of piece-wise steady-state modelica
models that employ design reference values as system pa-
rameters instead of estimated physical properties that are
not known in the given design-phase.

2 Case Description
The analysis described in this paper is part of an ongoing
project and lays the foundation for comparing system per-
formance considering different yet to-be-defined system
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Figure 1. Schematic of the system under consideration.

configurations. Various energy conversion units may be
included in the analysis in the future step. The core part of
the analysis, the steam turbine and heat utilization process
of a waste incineration plant, is described subsequently.
The data is anonymized and simplified from the real case
under investigation by the authors.

Overall, the core part of the system (depicted in Fig-
ure 1) is governed by the supply of steam from a waste
incineration furnace, which can be assumed to work con-
tinuously over the year, delivering steam at p1 = 41bar
and T1 = 410 ◦C with a mass flow rate of ṁ1 = 25kg/s.
Subsequently, the steam is expanded in a two-stage steam
turbine. The turbine considered is equipped with a steam
bleed on the medium pressure level at p2 = 4bar (between
stages one and two). Different heating demands are to
be covered by this bleed steam, including combustion air
preheating, a district heating network and various process
streams (summarized in one aggregated heating demand
called process streams). While most processes are due
to their link to the main waste furnace constant, the dis-
trict heating demand varies by nature. To account for this
variation, in this early design phase, a simple linear heat-
ing curve, specified by a heating limit of THL = 18 ◦C and
a nominal heating load of Q̇nom = 28MW at the nomi-
nal ambient temperature for the heating system design of
Tamb,nom =−8 ◦C is assumed. This nominal ambient tem-
perature corresponds to the climatic conditions in Zurich
(SIA 2010), the heating limit is chosen based on the expe-
rience of the authors with similar systems. To account for
the domestic hot water consumption, a constant load of 1.5
MW is added to the heating curve. This value corresponds
to a split of 84 % space heating demand and 16 % do-
mestic hot water demand based on the Swiss end-energy
consumption statistics (Kemmler and Trachsel 2022). The
annual load profile is then calculated with the design ref-
erence year data of the Meteonorm database (Meteotest
AG 2023) for Zurich which provides the hourly averages
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Figure 2. Heat load curve (a) and annual load profile of the as-
sumed district heating network (b) when applying the heat load
curve of (a)

of the ambient temperature. Since district heating systems
possess rather large inertia (storage, volume of the pipes
and inertia of the heat consumers), a rolling-mean filter
was applied with an assumed four hours averaging win-
dow. Figure 2 shows the assumed heating demand in re-
lation to the ambient temperature in the form of the heat
load curve and as the resulting hourly profile, which is
later imported into the Modelica simulation.

The remaining streams are defined by their constant
heat load as follows:

• Combustion air preheating: Q̇Air = 1.15MW

• Process Streams: Q̇PS = 13.8MW

3 Model Description
Since the parameters of the physical entity of the planned
components in the system under consideration are only
specified in later design phases, the models used in the
proposed simulation approach must be formulated differ-
ently than typically seen in thermal energy system simu-
lation. In the case of a condenser, for example, it shall be
prescribed that the steam be condensed fully to its bub-
ble point or subcooled to a given temperature. Thus the
model shall accept corresponding parameters instead of
the parameters of an eventually selected component, such
as its heat transfer area or its heat transfer coefficient.
Naturally, this specification affects the resulting models’
structure and reduces their universal applicability. Addi-
tionally, boundary conditions must be chosen such that
the overall model is well-defined. Considering these re-
strictions, an overview description of the derived models
is given in the following sections.

Piecewise-Steady-State Modelica Simulations for the Conceptual Design Phase of Industrial Processes

758 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204757



Figure 3. Icon of (a) one turbine stage, (b) of the condenser with
prescribed heat flow rate and (c) of the low-pressure condenser
after the second turbine stage.

3.1 Steam Turbine
In the considered model, the individual turbine stage is
modeled based on typically available design parameters:

• Outlet pressure pω

• Isentropic efficiency ηs

• Combined mechanical and electrical efficiency
ηel.+mech.

Based on these three parameters and the given inlet con-
ditions governed in the overall model (see section 3.4),
the model can be implemented to describe the steady-state
characteristics of the turbine stages as follows (See e.g.
Baehr and Kabelac (2012) for further references):

Pel = ṁ (hα −hω) ηs ηel.+mech. (1)

Where Pel is the generated electric power of the turbine
stage, ṁ the steam mass flow rate, hα and hω the specific
enthalpies at the in- and outlet of the turbine, respectively.
Using the isentropic efficiency, hω is expressed as follows:

hω = hα − (hα −hω,s(pω))ηs (2)

Where hω,s(pω) is the enthalpy at the outlet of the tur-
bine if the expansion to pω would occur isentropically.

The turbine stage is therefore parameterized with its ef-
ficiencies and the outlet pressure of this stage. These val-
ues can be obtained at the very beginning of any design
process of a steam turbine process.

3.2 Steam Condensers
To model the utilization of the middle-pressure steam (af-
ter the first turbine stage) for different heating require-
ments, a set of condenser models was developed (see Fig-
ure 3b and Figure 3c).

For the simplest case of a prescribed heat flow (Fig-
ure 3b), the model requires only the outlet condition of
the condensate (temperature or steam quality) as a param-
eter. The prescribed heat flow is implemented as an input
signal to the block.

In the given case study, the pressure losses can be ne-
glected as there are no subsequent components after the
condensers, but could also be later integrated as an addi-
tional parameter of the models.

Therefore, the outlet enthalpy on the steam side of the
condenser can be calculated with the specified outlet tem-
perature or steam quality and the pressure at the inlet (pre-
scribed by the upstream component). With this known
outlet enthalpy hω the energy balance is as follows:

Q̇ = ṁ (hα −hω) (3)

With the described case of a prescribed heat flow rate Q̇
for the middle-pressure condensers, the mass flow rate ṁ
is calculatable, and Modelica’s equation-based modeling
concept can be applied directly.

The resulting variation of ṁ directly employs the typ-
ically used control concept of a mass flow variation with
a throttle valve on the steam side. However, no control
parameters have to be specified in this, proposed way.

The condenser of the low-pressure steam after the sec-
ond turbine stage must be modeled slightly differently, as
the heat flow rate may not be specified by an input, but it is
the result of the condensation of the entire steam flow af-
ter the second turbine stage. With a slight alteration of the
condenser model described above, this objective can be
achieved. The energy balance (Eq. 3) remains the same.
The only alteration in the Modelica code is removing the
heat flow rate input. Additionally, the mass flow rate of
this component must be specified in the overall model,
utilizing the proper boundary conditions as described in
the following section. Again, the only parameter needed
for this component is the outlet temperature or the steam
quality of the condensate.

3.3 Boundaries and Data Sources
The boundaries are adapted from the Modelica Standard
Library (Modelica Association 2023b) but altered to pre-
scribe pressure, enthalpy and mass flow rate at the steam
source and none of them at the condensate sink. There-
fore, they must be used together to result in a well-defined
system of equations.

The heat load of the district heating system is imported
from the Combi Time Table block of MSL 4 (Modelica As-
sociation 2023b) utilizing the Extern Data Library (Beut-
lich and Winkler 2021) to facilitate data exchange with the
external data source.
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Figure 4. Complete model of the considered part of the steam
turbine process with two turbine stages and four condensers.

3.4 Resulting Overall Model
When modeling the overall process as shown in Figure 1
with the components as derived in the previous sections,
the Modelica model of Figure 4 is resulting. For the fol-
lowing simulation study, the parameters according to Ta-
ble 1 have been set, where the outlet conditions of the con-
densers are prescribed with the respective temperature T
or steam quality x:

Table 1. Used parameter values in simulation study

Variable Value
ηs 0.8
ηel.+mech. 0.9
pω,2 p2
pω,1 p3
Tω,cond,Air 50 °C
Tω,cond,PS 70 °C
Tω,cond,DH 100 °C
xω,cond,RC 0 (bubble point)

Annual system simulations were performed to evalu-
ate the functionality and performance of the described
modeling approach. The steady-state solution of each
timestep (in this case, one hour) is computed. The cal-
culated steady-state solutions for each hour of operation
are then analyzed to create an overview of the resulting
operating points of the eventual system. The specification
of the boundary conditions is given in section 2 and the
parameterization is given in section 3.4.

4 Simulation Results
This initial simulation aims to validate the model’s func-
tionality and to perform first investigations of the effects
of varying middle-pressure steam utilization on electricity
production. Using Dymola® 2023 with the Dassl (Pet-
zold 1993) algorithm and the Visual Studio 2019 C++
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Figure 5. Stack plot of extracted heat flow rates and electric
powers from the system.
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Figure 6. Mass flow rates through the two turbine stages
throughout the year

Compiler, a total CPU-time for the integration of approx-
imately 1.5 seconds results on a Notebook with an i7-
1265U CPU and 16 GB of RAM.

Figure 5 shows the duties of the different components
under consideration. Electricity and heat extracted from
the process are added up in the vertical of the stack plot to
give an overview of the shares of the different quantities
over time. It can be seen that roughly 65 MW of heat or
electricity is extracted from the plant throughout the year.
The total extracted load varies slightly as the condensate
leaves the system at different enthalpy levels, and the tur-
bines’ mechanical and electrical efficiency ηel.+mech. leads
to further losses. The condensate of the middle-pressure
steam is leaving the system in the range of 50-70 °C, while
the condensate of the low-pressure steam at the recooler is
leaving the system at 46°C (i.e., the bubble temperature at
0.1 bar) (See section 3.4). The plot’s three lowest entries
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depict the constant heat extraction for the process streams,
the combustion air preheating and the electricity extracted
through the first turbine stage. Thereafter, there is mainly
a trade-off between heat utilization for the district heating
network and electricity production with the second turbine
stage. The recooling heat flow corresponds with the elec-
tricity production of the second stage, as there is a direct
link between the two components.

When analyzing the turbine more thoroughly by study-
ing the steam mass flow rate of each turbine stage as
shown in Figure 6, it can be seen that i) the mass flow
rate of the first stage is expectedly not varying as no steam
consumers are in parallel to this stage, an ii) the steam
mass flow rate through the second stage varies greatly in
the chosen concept. A part load ratio in terms of the mass-
flow rate of 26% would result (minimum vs. maximum
of mass flow rate in stage 2). Since this might pose chal-
lenges for the detailed design of the turbine and the corre-
sponding controls, changes in the conceptual design may
be investigated to improve system operability.

5 Discussion
The chosen approach of piecewise-steady-state system
simulation for the considered steam process leads to a rel-
atively lightweight model that computes annual load sim-
ulations in the scale of seconds. To be able to obtain these
results, the overall model must be formulated in a way, that
the given physical relationships are sufficient. The Mod-
elica modeling concept assists in formulating such models
as the balance equations can almost directly be entered in
the respective Modelica source code. The graphical repre-
sentation and interactive connection of the different com-
ponents allow additionally the adaption of changes of the
components and model re-utilization for similar applica-
tions.

The chosen approach for system parameterization using
the design values such as isentropic efficiency and con-
denser outlet temperatures instead of the physical quan-
tities like heat transfer area or turbine geometry enables
the modeling of the system as it should be designed in
the later design phase without having to fine-tune compo-
nent specifications with the latter sets of parameters. The
presented case-study demonstrates the applicability of the
proposed modelling approach, while more sophisticated
design tasks must be addressed in the future to showcase
the ability of such models to support design decisions.
Comparing to the traditional design workflow where only
few data points are calculated manually the herein pro-
posed approach offers insight into a large range of possi-
ble operating conditions and enables the study of the in-
dividual process parameters in detail. This approach thus
allows to make design decision based on the performance
in various operating conditions and enables additionally
the quantification of the performance of the system for a
representative period of time (e.g. one year).

On a numerical point of view, the removal of the dy-

namics of the models should allow for the use of lower-
order integration methods to further reduce the computa-
tion time. A comparison of different integration methods
is thus also needed in the future.

6 Conclusion
In this paper, a novel approach for the simulation of ther-
mal energy systems in the conceptual design phase has
been presented. It was shown, that the models should be
formulated differently when simulating a process in the
conceptual design phase than in later phases. The devel-
oped simulation models consisting of steam turbines and
condensers enable piecewise-steady-state Modelica simu-
lations for the analysis of the annual performance of the
example case-study in the scale of seconds in integration
time. The main contributions can be summarized as (i) the
formulation of the components to be compliant with the
available parameters and (ii) the implementation as sim-
plified models treating the systems as piecewise-steady-
state in their behavior. Further development of the cho-
sen approach is identified in the development of a general-
purpose model library and in the extension of the available
unit operations with a focus on energy conversion units.
Furthermore, more exhaustive case studies need to be ana-
lyzed to demonstrate the viability of the chosen approach.
This would also allow to identify possible challenges in
the solvability of models with the proposed approach and
to derive more general modelling guidelines.
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Abstract 
A magnetic levitation system is a perfect educational 
example of a nonlinear unstable system. Only with 
suitable control, a small permanent magnet can be held 
floating stable below a coil. After modeling and 
simulation of the system, control of the system can be 
developed. At the end, the control algorithm can be 
coded on a microcontroller, connected to a pilot plant.  
Keywords: mechatronics, magnetic levitation, time-
discrete control, functional mockup interface 

1 Introduction 
Using a ready-to-use system like Zeltom’s depicted in 
Figure 1 allows to set the focus on the development of 
the control algorithm and gives quick results.  

 

Figure 1 Magnetic Levitation System 
https://www.zeltom.com/emls.html 

1.1 Description of the System 
Zeltom’s system (Figure 1) consists of: 

1. Permanent magnet (disc or sphere) 

2. Coil (with iron core) 

3. Hall effect sensor (below coil) 

4. PCB with controller and power electronics 

5. Voltage source (9 V battery) 

The permanent magnet is attracted by the iron core of the 
magnet and the magnetic field excited by the current 
flowing through the coil. Gravitational force acts in 
opposite direction. Inverting the coil current wouldn’t 
result in repelling the magnet, but causes the magnet to 
flip by 180°.  
The magnet’s position is detected by a Hall effect sensor, 
placed at the bottom of the coil. Not only does the 
magnetic field of the permanent magnet affect the Hall 
effect sensor, but the magnetic field caused by the coil 
current, too.  

1.2 Equations of the System 
The transient behavior of the coil current is described by 
Equation 1: 

𝑣𝑣 =  𝑅𝑅 ∙ 𝑖𝑖 + 𝐿𝐿 ∙
𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

 (1) 

Induced voltage due to the moving permanent magnet 
can be neglected. 
The equation of motion of the permanent magnet can be 
written as Equation 2: 

𝑚𝑚 ∙ �̈�𝑑 = 𝑓𝑓(𝑑𝑑, 𝑖𝑖) −𝑚𝑚 ∙ 𝑔𝑔 (2) 
The position of the magnet is measured along the d-axis 
in upward direction as shown in Figure 2. Position 𝑑𝑑 = 0 
is located at the bottom of the coil. Therefore, only 
positions of the permanent magnet along the negative 
half of the d-axis are meaningful. 

 
Figure 2 Illustration of the system 

1 

2 

3 

4 

5 

DOI
10.3384/ecp204763

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

763



The force between coil and magnet is strongly nonlinear 
and either the function has to be determined by finite 
element simulations of the magnetic field or by 
measurements at the real system. Fortunately Zeltom has 
performed such measurements and provides a set of 
equations by (Zeltom 2009) - Equation 3 for the force: 

𝑓𝑓(𝑑𝑑, 𝑖𝑖) = 𝑘𝑘 ∙
𝑖𝑖
𝑑𝑑4

 (3) 

Unfortunately Equation 3 doesn’t take into account the 
force between the permanent magnet and the iron core 
even in absence of coil current 𝑖𝑖 = 0 . Although the 
influence on control around the equilibrium is small, the 
equation can be enhanced as shown in Equation 4: 

𝑓𝑓(𝑑𝑑, 𝑖𝑖) = 𝑘𝑘′ ∙
𝑖𝑖𝐶𝐶 + 𝑖𝑖
𝑑𝑑4

 (4) 

Equation 4 introduces a new parameter 𝑖𝑖𝐶𝐶 which describes 
the force between the permanent magnet and the iron core 
and adapts parameter 𝑘𝑘  such way that the original 
equilibrium at position 𝑑𝑑0 with coil current 𝑖𝑖0 described by 
Equation 5 remains unchanged: 

𝑘𝑘 ∙
𝑖𝑖0
𝑑𝑑04

= 𝑘𝑘′ ∙
𝑖𝑖𝐶𝐶 + 𝑖𝑖0
𝑑𝑑04

= 𝑚𝑚 ∙ 𝑔𝑔 (5) 

Specifying the position 𝑑𝑑𝐶𝐶  where the force between the 
permanent magnet and the iron core just meets the 
gravitational force (Equation 6) allows calculation of the 
new parameters (Equations 7 and 8): 

𝑘𝑘′ ∙
𝑖𝑖𝐶𝐶
𝑑𝑑𝐶𝐶4

= 𝑚𝑚 ∙ 𝑔𝑔 (6) 

𝑘𝑘′ = 𝑘𝑘 ∙ �1 −
𝑑𝑑𝐶𝐶4

𝑑𝑑04
� 

(7) 

𝑖𝑖𝐶𝐶 =
𝑚𝑚 ∙ 𝑔𝑔
𝑘𝑘′

∙ 𝑑𝑑𝐶𝐶4 (8) 

The output of the Hall effect sensor has been approximated 
by Zeltom in Equation 9: 

𝑒𝑒 = 𝛼𝛼 +
𝛽𝛽
𝑑𝑑2

+ 𝛾𝛾 ∙ 𝑖𝑖 (9) 

This voltage 𝑒𝑒  will be corrupted by some noise. The 
influence of this effect can easily be investigated by 
adding a noise signal from Modelica.Blocks.Noise 
as described by (Klöckner 2014). 
The parameters of the system are summarized in Table 1 
and taken from (Zeltom 2009) as well as (Thiele 2019). 

Equilibrium is investigated with a stationary model, 
setting all derivatives in Equations 1 and 2 to zero, 
additionally exploiting Equation 4 (and 9, if the output of 
the Hall effect sensor is of interest).  

Figure 3 compares the steady-state characteristic 
 𝑖𝑖0 = 𝑓𝑓(𝑑𝑑0) according to Equation 3 (blue) and 4 (red, 
dashed). Bear in mind that equilibrium for these points 
of operation is unstable without appropriate control.  

Table 1 Parameters of the system 
Parameter Value Unit 

𝑅𝑅 2.41 Ω 
𝐿𝐿 15.03 mH 
𝑚𝑚 3.02 g  
𝑘𝑘 1.731 ∙ 10−8 N ∙ 𝑚𝑚

4

𝐴𝐴
  

𝑑𝑑0 −2 cm 
→ 𝑖𝑖0 273.75 mA 
𝑑𝑑𝐶𝐶  −1 cm 
→ 𝑖𝑖𝐶𝐶  18.25 mA 
→ 𝑘𝑘′ 1.623 ∙ 10−8 N ∙ 𝑚𝑚

4

𝐴𝐴
  

𝛼𝛼 2.48 𝑉𝑉 
𝛽𝛽 0.292 𝑚𝑚𝑉𝑉 ∙ 𝑚𝑚2 
𝛾𝛾 0.48 𝑆𝑆 

 
Figure 3 Steady-state characteristic of the system 

2 Controller Design 
Splitting the system into three control loops allows 
simple and stable control, similar to an electric drive: 

• A series connection of resistor and inductor, with or 
without induced voltage (Equation 1). 

• The current causes force (Equation 4). 
The force accelerates the mass (Equation 2). 
Integral of acceleration gives velocity. 

• Integral of velocity gives position. 

Table 2 Comparison between DCPM and MagLev 
DCPM MagLev 

𝑣𝑣𝐴𝐴 = 𝑅𝑅𝐴𝐴 ∙ 𝑖𝑖𝐴𝐴 + 𝐿𝐿𝐴𝐴 ∙
𝑑𝑑𝑖𝑖𝐴𝐴
𝑑𝑑𝑑𝑑

+ 𝑣𝑣𝑖𝑖 𝑣𝑣 =  𝑅𝑅 ∙ 𝑖𝑖 + 𝐿𝐿 ∙
𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

 

𝑣𝑣𝑖𝑖 = 𝑘𝑘𝑘𝑘 ∙ 𝜔𝜔 𝑣𝑣𝑖𝑖 ≈ 0 
𝜏𝜏 =  𝑘𝑘𝑘𝑘 ∙ 𝑖𝑖𝐴𝐴 𝑓𝑓 = 𝑓𝑓(𝑖𝑖,𝑑𝑑) 

𝐽𝐽 ∙
𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

= 𝜏𝜏 − 𝜏𝜏𝐿𝐿 𝑚𝑚 ∙ �̈�𝑑 = 𝑓𝑓 − 𝑚𝑚 ∙ 𝑔𝑔 

𝜔𝜔 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑 = � �̇�𝑑 ∙ 𝑑𝑑𝑑𝑑 
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Table 2 shows a comparison between a DC machine 
excited by permanent magnets and the magnetic 
levitation system under investigation. Despite the fact 
that the force formula is nonlinear and the velocity is not 
directly accessible, the equations are equivalent. 

According to (Schröder 2020) such a system can be 
controlled using cascaded control. Figure 14 shows a 
block diagram of the whole system including control. 

2.1 Current Controller 
Input: Current control error 
Output: Reference voltage 
Taking into account the dead time caused by the time 
discrete communication between controller and 
hardware based on switching frequency 𝑇𝑇𝑑𝑑 = 1 𝑓𝑓𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠ℎ⁄ , 
the controllers can be designed as for continuous control. 
The dead time is replaced by the first element of its 
series expansion, i.e. a  first order delay. 
Optimal control for the innermost control loop results in 
a PI controller, parameterized according to the 
magnitude optimum (Dierk Schröder 2020, Equation 10 
and 11): 

𝑘𝑘𝑃𝑃 =  
𝐿𝐿

2 ∙ 𝑇𝑇𝑑𝑑
 (10) 

𝑇𝑇𝐼𝐼 =  
𝐿𝐿
𝑅𝑅

 (11) 

The output of the controller is limited to the source 
voltage (battery), therefore an anti-windup measure has 
to be implemented. 
The transfer function of the closed loop can be 
approximated by a first order delay with substitute time 
constant 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∙ 𝑇𝑇𝑑𝑑. 

2.2 Speed Controller 
Input: Speed control error 
Output: Reference force → Reference current 
Assume the actual position 𝑑𝑑 is known, we can establish 
a transformation from force to current inverting 
Equation 4. The output of the speed controller is limited 
by a force dependent on the maximum admissible 
current. Therefore an anti-windup measure has to be 
implemented. Using the actual position 𝑑𝑑, the maximum 
admissible force can be calculated from the maximum 
admissible current using Equation 4. 
Optimal control of the speed control loop results in a PI 
controller, parameterized according to the symmetrical 
optimum (Dierk Schröder 2020, Equation 12 and 13): 

𝑘𝑘𝑃𝑃 =  
𝑚𝑚

2 ∙ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
 (12) 

𝑇𝑇𝐼𝐼 =  4 ∙ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 (13) 
Furthermore, a low-pass filter for the reference speed has 
to be implemented. This fulfills the physical law that a 
step in speed would require infinite force.  

2.3 Position Controller 
Input: Position control error 
Output: Reference speed 
A simple P-controller should be sufficient, since the 
speed controlled system subsequently integrates speed to 
position, which guarantees accuracy without permanent 
deviation between reference and actual position. It is 
possible to define an upper limit for the proportional 
gain (Equation 14) to avoid overshooting position. In 
reality we will have to reduce proportional gain to find 
the optimal setting. 

𝑘𝑘𝑃𝑃 ≤
1

16 ∙ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
 (14) 

2.4 Observer 
Since neither position nor velocity is measured directly, 
both of them have to be calculated from the output of the 
Hall effect sensor, using some sort of observer. Using 
the measured current, we can evaluate Equation 15 after 
inverting Equation 9, neglecting noise: 

𝑑𝑑 = −�
𝛽𝛽

𝑒𝑒 − 𝛼𝛼 − 𝛾𝛾 ∙ 𝑖𝑖
 (15) 

Velocity is the derivative of position. 

2.5 Time Discrete Control 
According to (Latzel 1995), the controller blocks may be 
transformed from a continuous version to a time discrete 
version without changing the parameterization, as long 
as the sample period – which is chosen as the inverse of 
the switching frequency – is short compared to the 
system’s time constants. The shortest time constant is the 
coil’s time constant. Using a switching frequency of 
1 𝑘𝑘𝑘𝑘𝑘𝑘  (or higher) this constraint (Equation 16) is 
fulfilled: 

1
𝑓𝑓𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠ℎ

= 1 ms ≪
𝐿𝐿
𝑅𝑅

= 6.23 𝑚𝑚𝑚𝑚 (16) 

All controller tasks are triggered once per sample period, 
but additionally the desired sequence has to be kept: 

• A/D-conversion (sample) 

• Position controller 

• Speed controller 

• Current controller 

• D/A-conversion (hold) 

Two versions of the control blocks have been 
implemented, a triggered and a clocked one.  

The triggered blocks (Figure 15) use slightly time shifted 
triggers to guarantee the order of execution of the blocks. 
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The clocked blocks (Figure 16) based on 
Modelica.Clocked (Otter 2012) are executed within the 
same clock partition. The order of execution relies on the 
tool, sorting the blocks according to the signal flow. 

3 The MagLev Library 
The library developed by the author contains examples, 
components, DC/DC-converter and control blocks. It is 
available on github under the BSD 3-Clause Revised 
License:  
https://github.com/AHaumer/MagLev 
The complete system model is depicted in Figure 15 and 
Figure 16. The discrete block e2d calculates position 
from the output of the Hall effect sensor and the actual 
sampled current (Equation 15) and performs a time 
discrete differentiation of the position to obtain velocity. 
The discrete block adda samples sensed and holds 
actuating variables with 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 = 1

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
:  

• ← Source voltage 

• ← Coil current 

• → Reference voltage 

When the control part (grey background in Figure 15) 
communicates with a co-simulation FMU of the system 
(light blue background in Figure 15) this block can be 
omitted. 
All parameters are summarized in a parameter record 
which also calculates steady state position and controller 
parameter. This ensures consistent parameterization of 
all components and makes it easy to switch to a different 
system, e.g. Zeltom offers additionally a MagLevPlus 
system with an enhanced coil providing higher force 
acting on the magnet. 

3.1 Components 
This sub-library contains the coil and the magnet, 
modeled in an object-oriented style. 
The coil has an additional translational mechanical 
connector to determine the magnet’s position and 
provide the force caused by the magnetic field of the coil 
current, as shown in Figure 4. This force is calculated 
according to Equation 4. Additionally, Equation 9 is 
evaluated to determine the output signal of the Hall 
effect sensor, including noise which is modeled using 
Modelica.Blocks.Noise (Klöckner2014).  
The magnet model is a simple point mass whose vertical 
acceleration is determined by the magnetic force 
provided by the translational mechanical connector and 
the gravitational force. 

 

 

Figure 4 Model of the coil 

3.2 DC/DC-Converter 
The DC/DC-converter is provided as an averaging 
implementation and a switching version. The averaging 
version avoids switching effects and provides higher 
performance. For a detailed proof of concept the 
switching version is used. 
The averaging version shown in Figure 5 just prescribes 
the reference voltage to the output and pulls current from 
the input such way that power on both sides is equal. 
This is achieved with a fast integral controller. Of course 
reference voltage is limited between actual source 
voltage and zero in case of a buck converter. 

 
Figure 5 Averaging DC/DC-converter 
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The switching H-bridge shown in Figure 6 has the same 
functionality as the model implemented in 
Modelica.Electrical.PowerConverters.DCDC 
but modeled with a different layout. It is used as a buck 
converter. The SignalPWM is taken from 
Modelica.Electrical.PowerConverters.DCDC 
but is adapted by replacing the sawtooth PWM reference 
signal by a triangular one. This allows to sample the 
current at the beginning (or in the middle) of the 
switching period, finding the average of the current with 
good accuracy as shown in Figure 7. The block C in the 
controller time line designates the time span to execute 
the control algorithm. 

 
Figure 6 Switching DC/DC-converter (H-bridge) 

 
Figure 7 Timing: Switching period and PWM 

3.3 Control Blocks 
For the anti-windup measure necessary in both the 
continuous and time discrete PI controller, two solutions 
have been implemented: 

• Back-Calculation: The difference between limited 
and unlimited output multiplied by the inverse of 
the proportional gain is subtracted from the 
integrator’s input. 

• Clamped: The integral part is stopped when the 
output exceeds the limit. 

The observer block e2d implements Equation 15 and 
takes an approximate derivative. 

The continuous version of the limited PI controller is 
taken from Modelica.Electrical.Machines. 
Examples.ControlledDCDrives.Utilities 
with some enhancements. The equations of the 
continuous PI controller do not avoid iteration. 
The time discrete version implements an equivalent 
algorithm as shown in Listing 1, using an explicit 
(forward) Euler. Iteration is avoided by calculating a 
prediction of the unlimited output. This function is called 
both from the triggered block and the clocked block 
within when-clauses. 

Listing 1 Time discrete PI controller 

function piStep 
  input Real u "Reference signal"; 
  input Real u_m "Measured signal"; 
  input Real kp "Proportional gain"; 
  input SI.Time Ti "Integral time constant"; 
  input SI.Time Ts "Sample period"; 
  input Real kFF "Gain of feed-forward"; 
  input Real ff "Feed-forward signal"; 
  input AntiWindup antiWindup; 
  input Real yMin "Lower limit of output"; 
  input Real yMax "Upper limit of output"; 
  input Real pre_x "Previous state"; 
  output Real x "State"; 
  output Real y "Result"; 
protected  
  Real e "Control error"; 
  Real predict "Prediction of output "; 
  Real cropped "Cropped part of output"; 
algorithm  
  e := u - u_m; 
  predict := kp*e + kp*(pre_x + Ts/Ti*e) + 
    kFF*ff; 
  cropped := predict -  
    min(max(predict, yMin), yMax); 
  x := pre_x + Ts/Ti* 
    (if antiWindup ==  BackCalc then  
      (e - cropped/kp) 
    else (if abs(cropped) > small then 0  
      else e)); 
  y := min(max(kp*e+kp*x+kFF*ff,yMin),yMax); 
end piStep; 
 

4 Simulation Results 
Simulation of the time discrete position controlled 
system shows satisfactory results: 

In Figure 8 the initial position of the magnet is  
𝑑𝑑0 = −2 𝑐𝑐𝑚𝑚, the initial velocity is zero. The reference 
position is given by a trapezoid which is nearly a pulse 
series. The real position of the magnet follows the 
reference position very well. The observer’s result 
e2d.d shows only negligible deviation from the real 
position taken from the magnet model. 
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Figure 8 Time discrete position control: Positon trajectory 

 
Figure 9 Time discrete position control: Speed trajectory 

Figure 9 compares velocity obtained in the observer 
block with velocity in the magnet model. The influence 
of the noise added to the output signal of the Hall effect 
sensor can be seen at the trajectory of the velocity signal 
e2d.d_der reconstructed by the observer. Thus it is 
possible to estimate the impact of noise on the control 
performance. 

 
Figure 10 Coil current of discrete and continuous version 

The coil current simulated with discrete control and 
switching DC/DC converter is shown in blue in Figure 
10. The same figure shows the coil current obtained with 
continuous control and averaging DC/DC converter in 
red. The discrete results have been obtained using a 
switching frequency 𝑓𝑓𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 2.5 𝑘𝑘𝑘𝑘𝑘𝑘.  For the 
continuous results additionally noise of the Hall sensor 
signal has been set to zero. 
Differences between the two trajectories: 

• Switching versus averaging DC/DC-converter 

• Time discrete versus continuous control 

• Sample/hold versus first order delays 

• Absence of noise in the continuous model 

The continuous model neglects some effects but is 
capable of being simulated in real-time. It shows a good 
estimation of the behavior under control and the energy 
consumption from the source. The energy consumption 
over the shown cycle differs only by 0.6% from the 
discrete version. 

Both the triggered and the clocked version of the discrete 
models provide a more detailed insight in the systems 
behavior, but the triggered version takes 7.5-times and 
the clocked version 6-times the  as long as the 
continuous version  to simulate. 

5 Controller and Power Electronics 
Zeltom’s printed circuit board (No. 4 in Figure 1) is 
replaced by a rapid prototyping system available in the 
lab: 
The TI F28069M LaunchPad shown in Figure 11 
contains a TI C2000 µC and can be programmed either 
using a software tool provided by TI or utilizing 
Simulink.  
The latter one has the advantage that the system model 
can be exported from Modelica as functional mockup 
unit. This FMU is subsequently imported to Simulink, 
the control algorithm can get thoroughly tested under 
realistic conditions before downloading it to the µC. 
 

 

Figure 11 TI 28069M LaunchPad 
https://www.ti.com/tool/LAUNCHXL-F28069M 
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The TI BoosterPack DRV8848 shown in Figure 12 
provides two H-bridges suitable for 4. .18 𝑉𝑉/1 𝐴𝐴 𝑅𝑅𝑅𝑅𝑆𝑆. 
One half of one of the two H-bridges is used as a step-
down converter to supply the coil with variable voltage.  

 
Figure 12 BoosterPack DRV8848 
https://www.ti.com/tool/BOOST-DRV8848 

For sure this choice of controller and DC/DC converter 
is overkill, but it is available in the lab and the workflow 
is well documented. 
6 Conclusions and Outlook 
This project proves the advantages of using Modelica, 
especially for educational purposes: 

1. Develop a clearly arranged open source model of 
the physical system using Modelica. 

2. Design a control concept, testing it with Modelica. 

3. Export a functional mockup unit of the physical 
system from Modelica. 

4. Import the FMU to Simulink. Implement the 
controller in Simulink and test it acting on the 
FMU. 

5. Download the control algorithm to the embedded 
controller, proving the control concept in reality. 

Steps 1 – 3 can be performed by a teacher, preparing a 
students’ project.  

A physical model of the magnetic levitation system has 
been implemented, as well as both averaging and 
switching versions of a DC/DC-converter.  
For the concept of control a conventional cascaded 
control with current controller, speed controller and 
position controller has been chosen. Final simulations 
show satisfactory results. 
Furthermore, the system model can be exported as 
functional mockup unit shown in Figure 13. This FMU 
can be imported in Simulink.  
It is a students’ project to implement the control structure 
in Simulink, subsequently downloading the control 
algorithm to the embedded controller. Thus the concept 

can be proven: The magnet should follow the reference 
position signal. 
Since the students’ project is ongoing work, it is not sure 
that the magnetic levitation system with the new control 
board can be presented at the conference, but following 
the results of the Modelica simulations it can be 
expected to be a success. 

 

Figure 13 Functional mockup unit of the system 
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Figure 14 Block diagram of the system 

 

Figure 15 Complete System Model using triggered blocks 

 

Figure 16 Complete System Model using clocked blocks 
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Abstract
This work is focused on the coupling of two complex
models based on different underlying physics: a vapor
compression refrigerating system and its electrical drive
system. The main challenge was to correctly handle the
large simulation time constant difference which is three
orders of magnitude smaller for the electrical system. The
two models have been originally developed following very
specific requirements (i.e. high numerical robustness and
low time consumption) for their suitable use in simula-
tions of large and complex aircraft Environmental Control
Systems (ECS). The direct coupling of both systems has
been observed to cause numerical instabilities, therefore,
a coupling approach based on non-invasive dynamic re-
laxations has been implemented. The resulting combined
simulations have shown to be numerically stable for the
complete range of operating conditions and for a wide
range of time steps.
Keywords: Multi-physics, Vapor compression system,
Electrical drive system, Systems coupling

1 Introduction
The aviation industry has witnessed significant advance-
ments in recent decades, supported by remarkable innova-
tions. While aviation has made substantial contributions
to society, certain critical issues resulting from the growth
of commercial air travel need attention. The foremost con-
cern is its impact on climate change, primarily due to the
release of CO2 emissions. To tackle these challenges, the
industry has embraced a strategy that involves replacing
mechanical, hydraulic, and pneumatic systems with elec-
trically driven systems. This shift has given rise to the
term "More Electric Aircraft" (MEA) within the industry
(Sarlioglu and Morris 2015). The ECS is responsible for
maintaining cabin temperature and pressure. It tradition-
ally uses the bleed air from the main engines for its oper-
ation. However, under the MEA paradigm, the ECS has
undergone a transition to be electrically fed (Sarlioglu and
Morris 2015).

The novel ECS architectures within the MEA frame-
work may include a Vapor Compression System (VCS)
powered by an electrical motor drive with the aim to

provide higher efficiency additional cooling power to the
cabin. In this paper, the combined simulation of the two
aforementioned systems is addressed. On the one hand,
the VCS system consists of a single-stage compression
configuration including a centrifugal compressor, an air-
to-refrigerant condenser (to eject heat into the aircraft ram
air ducts), and a refrigerant-to-liquid evaporator (to indi-
rectly extract heat from the cabin). This VCS provides
additional cooling power to the cabin. It can be turned
on and off during the flight according to the cabin cooling
needs. The model developed to simulate the VCS system
has been introduced in a previous work (Ablanque et al.
2023). On the other hand, the electrical system consists of
a three phase inverter which drives a Permanent Magnet
Synchronous Motor (PMSM). The Field Oriented Con-
trol strategy (FOC) has been adopted for the control of the
PMSM drive (Irwin 1997). The PMSM drive is equipped
with speed and torque control. The speed requested by the
VCS is delivered by the electrical system.

In this paper, the goal is to successfully couple the ther-
mal and electrical systems and conduct numerous simu-
lation tests to validate the correct operation of the sys-
tem. Discussions about the coupling strategy of two sys-
tems, the time steps adapted for the simulations and the
results of the simulations are provided. Since the angular
speed of the PMSM and VCS are different, the shafts of
the two system are coupled through a gear box. The two
systems are based on different domains of physical laws
and ideally require different time steps for optimal simu-
lation. The electrical system typically requires very small
time steps for Electro-Magnetic Transient (EMT) simula-
tions (in the range of 1 to 100 µs) while the VCS time
step is significantly larger (about 1 second). The electrical
system is modelled in the dynamic phasor domain instead
of EMT domain for increasing the time step to the range
of 1 second such that it is compatible with the VCS sys-
tem (Gurumurthy et al. 2022; Loka et al. 2022; Demiray
2008). To avoid non-smooth changes of torque from the
VCS side and non-smooth changes of speed from the elec-
trical side, a non-invasive dynamic relaxation strategy has
been introduced. The dynamics of the individual thermal
or electrical models are not internally modified with this
approach. It consists in numerically relaxing the torque
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and speed values exchanged across the mechanical flanges
of the two systems. The coupled VCS-PMSM drive sys-
tem is tested for various scenarios such as initial switch-on
of the system, various speed reference changes, and more
importantly, the starting-up and switching-off of the two
systems while the simulation is being conducted. This pa-
per also analyzes the computation CPU time of the model
for various time steps to show the computational effective-
ness of the proposed thermal-electrical system.

The paper is organized as follows: Section 2 describes
the VCS and its testing procedures, followed by numerical
simulation results of the VCS. The electrical system de-
scription, testing procedure and numerical simulation re-
sults are carried out in Section 3. The coupling strategy
of the thermal-electrical system, the multi-physics sim-
ulation results, and the computational burden evaluation
of the coupled simulations are carried out in Section 4.
Finally, the conclusions and future work are presented in
Section 5.

2 Vapor Compression System Model
2.1 Description
The vapour compression system model represents a typi-
cal single-stage configuration with four fundamental com-
ponents: a centrifugal compressor, a refrigerant-to-air
condenser, an expansion device, and a refrigerant-to-
liquid evaporator. Additional minor components are also
considered in the model such as connecting pipes, a reser-
voir, a by-pass valve and a super-heating sensor. Figure 1
shows the model internal scheme.

Figure 1. Vapor compression system scheme.

The vapor compression system model has been devel-
oped for its use within large thermal-electrical architec-
tures of aircraft environmental systems. It must be ther-
mally and electrically coupled to other subsystems. More
specifically, the condenser exchanges heat with a ram air
circuit (through inlet and outlet air fluid connections), the
evaporator exchanges heat with a liquid circuit (through
inlet and outlet liquid fluid connections), and the compres-
sor exchanges mechanical variables with the electric drive

system (through a single mechanical connection).

2.2 Numerical Assessment and Tests
To successfully conduct simulations at the architecture
level is particularly challenging due to many reasons such
as the high number of components being solved, the high
number of interactions between systems, the different
physics being considered, and the necessity of low com-
puting time consumption. Therefore, to prevent resolu-
tion issues, the vapor compression system model has been
developed to fulfill demanding numerical robustness re-
quirements and has been subjected to comprehensive se-
ries of tests focused on achieving the following aspects:

• The model must initialize correctly independently
of the boundary condition values (the values at the
boundary conditions are shared with other systems
and they can vary dramatically during the initializa-
tion calculations).

• The model must be correctly simulated indepen-
dently of the main simulation set-up parameters such
as the stop time and the interval length (the set-up is
common to all architecture systems).

• The model must be robust for all possible combi-
nations of fluid boundary types. The fluid connec-
tions can be defined from the pressure values at both
ends (P-P), or alternatively, from the pressure and the
mass flow rate values at opposite ends (M-P). The
model must also handle different input signal types
for the boundary condition variables such as con-
stant, step, ramp or sine.

• The vapor compression system model must be able to
be turned on and/or off as many times as necessary
and at any moments of the architecture simulation.
In such cases, the simulation of the other systems in-
volved should continue without being affected.

• The CPU time needed for the model to simulate dy-
namic and steady-state cases must be relatively low
to prevent numerical bottlenecks at the architecture
level (the maximum time required for steady-state
simulations has been set at 10 seconds).

2.2.1 Initialization and steady-state tests
A complete set of runs has been generated to test the
model robustness during initialization and the correspond-
ing resolution time for steady-state conditions. The data-
set has been built-up taking into account different values
for all the boundary conditions (i.e. compressor speed, air
and liquid temperatures, air and liquid mass flow rates, and
air pressure) covering the whole physical range of possi-
bilities and all its possible combinations. In addition, dif-
ferent fluid boundary condition types (see Figure 2) and
different values for the interval length were also taken into
consideration.
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Figure 2. Boundary condition types: M-P (left) and P-P (right)

The tested runs consisted of 5400 cases (900 cases for
each combination of boundary condition type and interval
length). The simulation stop time was set at 2000 seconds
so that the steady-state condition can be reached before.
The main statistics obtained from the model simulations
are summarized in Table 1.

Table 1. Initialization and steady-state convergence of VCS
model: main statistics

Boundary Interval Mean CPU time Failure rate
type length

[s] [s] [%]
M-P 4 1.40 0
M-P 2 1.58 0
M-P 1 1.86 0
P-P 4 1.42 0
P-P 2 1.59 0
P-P 1 1.88 0

The results have shown that the model initialization is
successful for all the cases without being affected by the
interval lengths used or the combination of boundary val-
ues. The mean simulation time calculated for all cases is
1.6 seconds which is well below the threshold of 10 sec-
onds required (in fact no cases were found to have a sim-
ulation time above 10 seconds).

2.2.2 Start-up and shut-down tests

A complete set of cases has also been generated to test the
model robustness during shut-down and start-up demand-
ing transients. These cases are mostly based on the same
combinations and characteristics defined in the previous
section. However, instead of reaching a steady-state con-
dition, the system is now subjected to consecutive shut-
downs and start-ups every 1000 seconds (the stop time for
simulations is now 5000 seconds).

In this case, the whole set of cases has also been suc-
cessfully simulated without experiencing any numerical
issue. Illustrative results for a particular case are shown
in Figure 3 in terms of the VCS refrigerant mass flow rate
and the CPU time consumption (the mass flow rate is pre-
sented in dimensionless form due to confidentiality rea-
sons). It can be observed from the CPU time evolution
that the solver requires additional efforts during the main

dynamic events.

Figure 3. VCS model refrigerant mass flow rate and CPU time
consumption during start-up shut-down test

2.2.3 Additional transient tests

Finally, it is worth mentioning that the model has been
subjected to additional tests to ensure its robustness for
different dynamic changes of the boundary condition vari-
ables based on the input signal type as shown in Figure 4
for the step and sine cases.

Figure 4. Boundary variable signal types: step (left) and sine
(right)

The whole data-set prepared to test signals has also
been successfully simulated by the model. Illustrative re-
sults for a particular case with sine signals are presented
in Figure 5 in terms of the VCS compressor suction and
discharge dimensionless pressures.

3 Electrical Drive System
3.1 Description
The model of the electrical system considered is shown
in Figure 6. The system consists of a three-phase 2-level
converter that interfaces a DC power supply and a perma-
nent magnet synchronous motor (PMSM). The motor con-
troller is equipped with field oriented control to track the
reference speed supplied to motor controller. The motor
controller achieves speed reference tracking by actively
controlling the output voltage vectors of the three-phase
inverter. The electrical drive system would be coupled
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Figure 5. VCS suction and discharge pressures under transient
conditions (sine signal)

Three Phase

Inverter

IM/PMSM

Vector Control 

         FOC
Ω ef Ωref 

Ω idq 

Mr,ϕ 

Vdc 

Figure 6. Electrical drive system

with the VCS system and therefore the electrical model
needs to be robust and stable when load torque changes
and speed changes occur. A short description of the elec-
trical drive system is provided followed by detail simula-
tion results to test the electrical motor.

3.1.1 PMSM
The PMSM is modelled in the dynamic phasor domain
similar to (Irwin 1997; Loka et al. 2022). The flux in the
stator λps depends only on the stator currents ips since
there is no electrical circuit in the rotor (Irwin 1997;
Krause et al. 2013). The stator flux real part depends on
the permanent magnet flux λ f from the rotor as shown in
Eq. (1). [

λps,re
λps,im

]
=

[
Lsd 0
0 Lsq

][
ips,re
ips,im

]
+

[
λ f
0

]
(1)

Lsd and Lsq represent the direct and quadrature axis self-
inductance. The stator currents are controlled by the ap-
plied stator voltage vps and electrical supply angular fre-
quency ωs of the three phase inverter as shown in (2).

dλps

dt
= vps − rsips − jωsλps (2)

The electrical torque Te developed by the PMSM is given
by (3). The differential equation corresponding to the me-
chanical angular speed of the motor Ωm is given by (4)
where TL is the load torque applied on the motor from the
coupled external system , B is the coefficient of rotational
friction, J is the inertia of the PMSM.

Te =
3
2

p(λ f ips,im +∆L.ips,reips,im) (3)

J
dΩm

dt
= Te −BΩm −TL (4)

The PMSM model is included to have the electrical loss,
mechanical loss and efficiency calculations.

The PMSM is controlled through field oriented control
(FOC). The controller consists of three levels, the outer
level is a speed controller modelled by a PI controller.
The speed controller synthesizes the torque reference. By
Maximum Torque per Ampere (MTPA) strategy (Irwin
1997), the reference currents are calculated. An inner cur-
rent controller tracks the stator current of the PMSM by
actively controlling the output voltage vectors of the in-
verter.

3.1.2 Three phase inverter

We consider a 2-level inverter with B6C topology for the
three-phase inverter. Harmonics introduced by the three
phase inverter are neglected and the three-phase inverter
is modelled as a fundamental phasor. A model that con-
siders switching harmonics can be found in (Gurumurthy
et al. 2022; Holmes and Lipo 2003; Ruan et al. 2018). The
dynamic phasor of the phase to neutral voltage of phase A
van is given by (5).

⟨van⟩0 =
MrVdc

4
e jϕ (5)

The voltage on the DC link is Vdc and the control vari-
ables are Modulation ratio Mr and phase-shift angle ϕ .
The conduction and switching loss evaluation of the power
electronic switches are performed and these calculations
are included within the model (Loka et al. 2022; Bierhoff
and Fuchs 2004; Acquaviva et al. 2020).

3.2 Numerical testing and simulation results
To test the numerical robustness of the PMSM drive
model, several tests are conducted. The drive model needs
to control the speed of the motor adhering to the speed
reference command provided by the VCS system. The
speed reference needs to be maintained while supplying
the required load torque and power that the VCS system
requires. Furthermore, when the speed reference is in-
creased, the torque required by the VCS system also in-
creases. This adds further dynamic constraints that needs
to be taken care by the motor controller.

The following tests are proposed to validate the drive
operation. Notice that the speed and torque values are re-
ferred to the electrical motor side and not to the VCS side.
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Figure 7. Comparison of reference speed and actual motor
speed

A specific gear ratio value had to be considered for the
conversion of speed and torque values to the VCS side.

• At t = 0s to t = 10s, the motor is switched-on and
accelerated to a speed reference of 1100 rpm with
torque 0 Nm.

• At t = 15s to t = 20s, the torque is increased lin-
early to 55.5 Nm while the motor tries to maintain
the speed.

• At t = 30s to t = 35s, the torque is increased lin-
early to 83.3 Nm while the motor tries to maintain
the speed.

• At t = 50s to t = 55s, the motor is accelerated to a
speed reference of 1450 rpm.

• At t = 60s to t = 65s, the motor is decelerated to a
speed reference of 1200 rpm.

• At t = 70s to t = 75s, the motor is accelerated to a
speed reference of 1500 rpm and simultaneously, the
torque is also linearly increased to 139 Nm.

• At t = 90s to t = 95s, the motor is controlled to speed
reference 0 rpm and 0 Nm torque to validate a stand-
still behavior.

• At t = 100s to t = 105s, the motor is controlled to
speed reference 1500 rpm and 139 Nm torque to val-
idate the recovery from stand-still position.

Fig. 7 shows the comparison of reference speed and the
actual motor speed. The start-up of the motor is smooth
without oscillations and the speed reference changes are
also accurately tracked without oscillations and steady
state error.

During sudden load torque changes at t = 15s and
t = 30s, the speed does not change drastically due to fast
torque control action as shown in Fig. 8. It can be ob-
served that the electrical torque is greater than the mechan-
ical load torque due to frictional losses.

The power losses occurring in the PMSM are shown in
Fig. 9, which are consisting of electrical losses and me-
chanical losses. The electrical losses are dependent on the
operating currents which in-turn depend on the required
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Figure 8. Comparison of applied load torque and electrical
torque produced by PMSM

torque. The mechanical frictional losses mainly depends
on the operational speed of the motor. The overall peak
efficiency of the PMSM is approximately 98 %.
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Figure 9. Power losses in the PMSM

The inverter losses consists of switching losses and con-
duction losses occurring in the IGBTs and the diodes. The
inverter losses are shown in Fig. 10. The conduction and
switching losses are functions of operational currents and
voltage which are mainly dependent on the operational
torque of the motor. The three phase inverter peak effi-
ciency is approximately 97.5 %.

0 20 40 60 80 100 120

Time (s)

0

200

400

600

P
o

w
e

r 
L

o
s
s
 (

W
)

conduction

switching

total

Figure 10. Power losses in the three phase inverter

4 Coupling of Thermal and Electrical
Systems

4.1 Description
The VCS model has been coupled with the electrical drive
system as shown in Figure 11. The VCS is based on fluid-
dynamic and thermal physics while the drive system is
based on electric physics. The latter system is aimed to
power the compressor and to regulate its speed based on
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Figure 11. VCS and electrical drive system coupling scheme

an input signal provided by an external control mecha-
nism (for the present tests the signal has been provided
by appropriate source blocks). The two systems are me-
chanically linked so that the compressor rotating shaft pa-
rameters, namely, torque and speed, are shared by the two
systems.

Two additional elements have been added to the me-
chanical linking. Firstly, an ideal gear component from the
Modelica Standard Library has been used to match the op-
erating characteristics of both systems. And secondly, due
to uncontrolled oscillations observed when direct mechan-
ical coupling was conducted, an additional non-invasive
component integrating dynamic relaxation equations has
been added. This component acts as a numerical hinge
for the solver to avoid unstable numerical iterations when
steep changes are experienced by both shared values: the
torque and the speed. The aforementioned connecting ele-
ment reduces the torque that the electrical system receives,
and similarly, it moderates the speed that the compressor
of the thermal system receives. In this way, rapid changes,
such as start-ups or shut-downs are dampened, and the res-
olution does not collapse. The equations used are as fol-
lows:

dφ

dt
=

(φaux −φ)

αφ

(6)

dτ

dt
=

(τaux − τ)

ατ

(7)

Where φ and τ are the rotation angle and the torque
in the coupling shaft, respectively. The time constant for
relaxation, α , is used to avoid numerical instabilities and
can be modified by the user.

4.2 Simulation
4.2.1 Expected performance

The simulations have been conducted in order to test the
system capability and to achieve the following character-

istics:

• Robustness during the initialization (i.e. resolution at
time step zero) which is usually a critical numerical
aspect for the solver due to unknown values of the
variables at the previous time step.

• Ability to conduct simulations at different fixed time
steps (i.e. interval length defined in the simulation
set-up). This characteristic is also crucial as the two
systems studied herein are intended to be simulated
together with all the other thermal and electrical sys-
tems of the complete ECS architecture.

• Robustness to handle start-up and complete switch-
down conditions during the simulations. This numer-
ically challenging feature is necessary due to the in-
termittent use of the VCS within the ECS operation.

• Low CPU resolution time to reduce the impact on
the time consumption for the whole ECS simulation.
This will allow real time based simulations and also
to carry out simulations of large data-sets for design,
prediction and/or control studies.

4.2.2 Results
The simulation baseline case to test all the aforementioned
requirements is described as follows: an initial start-up
procedure (time = 0 s), followed by a rapid complete shut-
down of the system (at time = 500 s), then a rapid start-up
again (at 1500 s), and finishing at stop time of 3000 s.
The solver used for all cases was the default integration
method DASSL.

Figure 12 shows the compressor rotating speed evolu-
tion for the baseline case dynamic simulation. The fig-
ure shows both the compressor speed value for the VCS
and the rotational speed value provided by the electrical
drive in order to see the impact of the mechanical relax-
ation applied to the systems coupling. Similarly, Figure
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Figure 12. Rotational speed evolution. Top: whole simulation
period. Bottom: zoom area in a start-up event

Figure 13. Torque evolution. Top: whole simulation period.
Bottom: zoom area in a start-up event

13 shows the compressor torque evolution. The values
of both shared variables, namely, the rotational speed and
the torque, are practically the same for both systems dur-
ing the whole simulation except for the moment of fast
dynamic changes. The dynamic relaxations applied at the
mechanical coupling have proven to provide numerical ro-
bustness for such transitions with a minimum cost (the
discrepancies observed at such critical moments are not
significant for the global result).

The baseline case has been simulated considering dif-
ferent values for the time step (i.e. interval length of
the simulation set-up) to evaluate its numerical robust-
ness but also its computational time consumption. The
results are summarized in Table 2. The results show very
good performance in terms of real time factor for all cases
(RT F = CPUtime/realtime) and also, as expected, im-
portant resolution time differences between the time step

values considered.

Table 2. Time consumption and time step assessment

Time step [s] CPU time [s] real time factor
5 26.4 0.0088
1a 24.9 0.0083
0.5 30.7 0.0102
0.1 51.2 0.0170
0.05 69.3 0.0231
0.01 99.3 0.0331
0.005 171.9 0.0573
0.002b 349.7 0.1165

a

aTypical value for VCS, b typical value for electrical drive

Figure 14. CPU time evolution for two different time steps

Finally, Figure14 shows the CPU time consumption
evolution for two representative cases with different time
steps. This Figure allows to see the solver stress level at
different moments. In this sense, based on the CPU time
slope, we can observe that the shut-down procedure and
the transition to the off condition are more stressful for
the solver than the start-up procedure.

5 Conclusions
The present work dealt with the linking of two models
based different underlying physics: a vapor compression
system and its electrical drive. The linking has been
conducted using mechanical components to represent the
compressor shaft.

• Both models have been independently tested to en-
sure appropriate numerical performance in terms of
robustness and CPU time consumption.

• The combined simulation of the resulting thermal-
mechanical-electrical model has been assisted with
dynamic relaxations for the applied to the mechani-
cal linking parameters, namely, rotational speed and
torque.

• The combined model has proven to be numerically
robust at critical conditions (initialization, start-up
and shut-down procedures), independently of the
simulation set-up configuration, and with low time
consumption (adequate to simulate large data-sets of
cases and real time calculations).
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• The combined model is suitable for integrated simu-
lations in large ECS architectures where many other
systems are involved.
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Abstract 
Contact collisions are prevalent in mechanical multi-body 
systems and have always been a significant limiting factor 
for engineering technology development. This paper 
examines the fundamental types of contact in multi-body 
dynamics systems and explores their inherent topological 
relationships. Based on the multi-body dynamics theory 
and penalty function contact algorithm, this paper 
constructed the multi-body dynamics contact model using 
Modelica, which is a multi-domain unified modeling 
language. To enhance the applicability of the contact 
model library in the modeling of multi-body system, the 
contact model provides a connection interface compatible 
with the multi-body library in the Modelica standard 
library. 
Keywords: Contact, multi-body dynamics, penalty 
function, Modelica, MWORKS 

1 Introduction 
Multibody dynamics primarily investigates the 
relationships between forces and motion among multiple 
bodies. In actual multibody dynamics systems, the 
majority of the relationships between bodies are contact-
based. In multibody dynamics simulations, it is 
challenging to simulate the contact relationships between 
objects with precision. Consequently, conventional 
contact relationships are transformed into modeling 
components, such as motion pairs to enhance modeling 
efficiency and simulation accuracy. Nevertheless, there 
exist numerous simulation scenarios where modeling 
using contact relationships between geometric entities is 
necessary and cannot be simplified, such as simulation of 
cam mechanism motion, quadruped robot gait simulation, 
and Contact process between gears (Dahl M et al. 2017) 
(Bortoff S A 2020). Currently, basic contact analysis 
functions are necessary for multibody dynamics software. 

Various contact modeling methods have been proposed 
to address diverse engineering application problems. For 
instance, Magalhaes H et al. proposed a modeling idea 
applied for the orbital dynamics contact model based on 
the Hertzian contact theory (Magalhães H et al. 2020). 
Additionally, Dahl M et al. introduced a modeling method 
that applies the Hertzian contact algorithm to the gear 
contact process (Dahl M et al. 2017). Safaeifar H et al. 
addressed the issue of hysteresis damping coefficient and 
proposed a novel modeling approach (Safaeifar H et al. 

2020). Bortoff S A et al propose an implicit, event-driven, 
penalty-based method for modeling rigid body contact and 
collision in the design and analysis of control algorithms 
for precision robotics (Bortoff S A 2020).  

Referring to the penalty function contact algorithm, this 
paper constructs a rigid body dynamic contact model 
library based on the Modelica language and the reusable 
Modelica mechanical library. Devoted to enhancing the 
contact analysis capabilities of the Modelica language 
within the domain of rigid body dynamics. At present, 
numerous scholars have developed a variety of rigid body 
dynamic contact model libraries based on the Modelica 
language. Oestersotebier F et al. employed the geometric 
analysis method to establish a contact model library 
specifically for simple contact surfaces (Magalhães H et 
al. 2020). Furthermore, Hofmann A and Otter M et al. 
implemented a collision library, utilizing a penalty-based 
collision approach and incorporates the Bullet Physics 
Library for collision detection(Hofmann A et al. 2014) 
(Otter M et al. 2005).  

Currently, most mainstream multibody dynamics 
simulation software features contact analysis function, 
which is considered as a crucial technical indicator. Multi-
body dynamics simulations generally involve the analysis 
of geometric, mechanical, and mathematical models. The 
geometric model provides an intuitive representation of 
the model structure. The mechanical model expands on 
the geometric model by adding four mechanical elements: 
kinematic constraints, driving constraints, force elements, 
and external forces or torques. These elements are 
assembled according to the kinematic constraints and 
initial position conditions. This assembly process utilizes 
a solver to compute the expression and establish a 
mechanical model. The solver generates the coefficient 
matrices for the system motion equation of the mechanical 
model. These matrices can be utilized to derive the 
system's mathematical model and analyze the model's 
kinematic and dynamic characteristics.  

MWORKS.Sysplorer is a system-level integrated 
platform for the design and simulation verification of 
multi-domain industrial products that fully supports the 
Modelica unified modeling standard across multiple 
domains. This paper aims to develop a contact model 
library utilizing the capabilities of this platform.  
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2 Basic Concept 
2.1 Contact Mechanism 

Contact friction arises when two distinct surfaces make 
contact and interact through rubbing, creating a contact 
state characterized by friction. In the field of physics, 
surfaces in contact demonstrate the following properties: 
(1) they prevent penetration; (2) they can transmit both 
normal pressure and tangential friction forces; (3) they do 
not transmit normal tensile forces. These characteristics 
enable free separation among surfaces.  

2.2 Penalty Function Method for Contact 
Mechanism 

In the case of contact between rigid bodies, the contact 
force can be calculated using a spring-damper model that 
takes into account the penetration depth, resulting in a 
force, and the penetration velocity, leading to a damping 
force, between the bodies. To calculate the contact force 
between bodies in such scenarios, the spring-damper 
model is frequently employed(Machado M et al. 2012).  

 
Figure 1 Two-dimensional point-face contact force equivalent 

schematic 

Currently, there are two methods available for 
computing contact forces in multibody systems: the 
regression-based and penalty-based contact algorithms. 
The penalty-based contact algorithm is generally 
smoother and faster in numerical simulation. The contact 
model in this study is established solely using the penalty-
based contact algorithm. When calculating the contact 
force between two components using the impact function, 
it is mainly composed of two parts: the elastic force 
generated by mutual penetration and the damping force 
generated by relative velocity. The generalized form can 
be expressed as: 

  ( )nF K C V t    (1)

In which, 
𝐹— Normal contact force, measured in N. 

𝐾— Contact stiffness, measured in N/m. Generally, a 
higher stiffness value makes numerical integration more 
difficult, but if it is too small, the contact situation of the 
component cannot be accurately simulated. Usually, the 
contact stiffness is set to 10^8 N/m, The reasonable range 
of stiffness values can be estimated by Hertz contact 
theory. 

𝑛 — Force exponent, used to calculate the contribution 
value of the material stiffness term in the instantaneous 
normal force. For contact with high stiffness, n >1 
otherwise n <1. For metals, it is usually taken as 1.3~1.5, 
and for rubber, it is usually taken with a typical value of 
1.5. 

𝛿 — Penetration depth between objects, a variable that 
depends on time, measured in mm. 

 𝐶ሺ𝛿ሻ — Contact damping as a cubic function of 
penetration depth, measured in Ns/m, Generally, 0.1~1% 
of the stiffness value is taken. 

𝑉ሺ𝑡ሻ — Normal relative velocity between contact 
objects as a function of time, measured in m/s. 

In this paper, the contact penetration depth is used to 
characterize the size of the contact force, mainly 
considering that the contact model is constructed based on 
three geometric elements: point, line and surface. It is 
more intuitive to calculate the contact force between 
points, lines and surfaces by using penetration depth, and 
it is easy to expand in building complex geometric contact 
models. 

If the normal penetration depth of the contact point is 
less than the critical penetration value, the damping force 
varies cubically with the penetration depth. Conversely, if 
the penetration depth is greater than or equal to the critical 
value, the damping force will attain its maximum value, 
as illustrated in the following figure:  

 
Figure 2 Relationship curve between damping and penetration 

depth 

Firstly, the essence of the penalty function contact 
algorithm can be analyzed through the point-surface 
contact model. According to the diagram, contact is 
deemed to transpire when the distance between the point 

A Penalty Function-based Modelica Library for Multi-body Contact Collision

780 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204779



 

 

and the surface is below zero, signifying the penetration 
of the two rigid bodies. 

  
Figure 3 Two-dimensional schematic diagram of point-surface 

contact 

Here, the penetration depth 𝛿ሺ𝑡ሻ ൌ max ሼሺ𝑅  𝑏ሻ െ
𝑝ሺ𝑡ሻ, 0ሽ  0  is used to characterize the degree of 
penetration between the two rigid bodies. A contact is 
considered to exist when δ(t)>0, with larger values 
indicating a more pronounced penetration phenomenon 
and resulting in greater interaction forces. In this paper, 
when the rigid bodies are in contact, the normal pressure 
generated by the contact between the rigid bodies is 
equivalently modeled using a spring-damper model, and 
its value is related to the penetration depth 𝛿ሺ𝑡ሻ and the 
relative velocity 𝑉௩ሺ𝑡ሻ of the surface normal. The specific 
expression is as follows: 

  max{ ( ) ( ( )) ,0} ( ) 0

0 ( ) 0

n
v

Contact elasticity

K t C t V t t
F
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：

(2)
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C Ste C
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The friction force F generated by the contact between 
rigid bodies is equivalent to a velocity based Coulomb 
friction model, and its value is calculated according to the 
contact force 𝐹  and friction coefficient 𝑢 . The friction 
coefficient is related to the relative slip velocity 𝑉௧ሺ𝑡ሻ of 
the two objects in contact(Sextro W et al. 2003). 

 =- ( ( ))f tF F u V t  (4)

According to the difference of the relative sliding speed 
of the two contact objects, the friction process transitions 
between dynamic friction and static friction. The 
equivalent formula of friction coefficient and slip velocity 
is calculated by a cubic step function. The expression of 
the cubic step function is as follows: 
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(5)

The specific expression of friction force is as follows: 

= ( ( ), , 1, ,1) ( ( ( )), , , , )t s s t s st tr dyu Step V t V V Step abs V t V C V C   (6)

𝑉௦  is the relative slip velocity corresponding to the 
maximum static friction; 

𝐶௦௧ is static friction coefficient; 
𝑉௧  is the relative slip velocity corresponding to the 

dynamic friction; 
𝐶ௗ௬ is the coefficient of dynamic friction. 
The following diagram shows the relationship between 

the friction coefficient and the relative slip velocity. 

 
Figure 4 Relation curve of friction coefficient and 

relative slip velocity 
When the slip velocity gradually increases, the friction 

coefficient gradually increases from 0 to 0.2 of static 
friction, and then gradually transitions to 0.1 of dynamic 
friction. 

According to the above formula, it can be seen that the 
value of the interaction force is only related to the velocity 
vector 𝑉௧ሺ𝑡ሻ and the penetration depth 𝛿ሺ𝑡ሻ between the 
rigid bodies. The velocity vector 𝑉௧ሺ𝑡ሻ  can be 
conveniently obtained using the Modelica multi-body 
library, and only the penetration depth value 𝛿ሺ𝑡ሻ needs to 
be calculated. Therefore, the essence of contact algorithm 
is actually the process of calculating the penetration depth 
𝛿ሺ𝑡ሻ. 

3 Overview of Contact Model Library 
The contact model library mainly includes examples 
library, basic component library, friction component 
library, function library and icon library. The basic 
component library provides 9 typical contact models, 
mainly including Sphere-line contact, Sphere -surface 
contact, and line-line contact. On this basis, six contact 
models are derived, including line-surface contact, Sphere 
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-curve contact, Sphere -cylinder, line-cylinder, and Sphere 
-to- Sphere contact. Each model takes into account the 
contact force and friction characteristics between rigid 
bodies, and has a mechanical connection interface, which 
is compatible with the Modelica multi-body library. The 
friction component library serves the purpose of 
calculating the friction force during object contact and 
forming the contact model components. The function 
library mainly includes the penalty function contact 
algorithm function, the damping coefficient calculation 
function and the geometric analysis algorithm function, 
etc., which are called repeatedly during the contact 
simulation. The resulting library structure is illustrated in 
the accompanying figure. 

 
Figure 5  The structure of contact model library 

4 Implementation of Contact Models 
Based on MWORKS.Sysplorer platform and Modelica 
mechanical standard library, this paper uses Modelica 
language to build the contact model mentioned above. The 
platform has an open Modelica model library 
customization function to meet different modeling needs. 
Provides model text, model ICONS, components and 
other views of the model browse and edit. Support curve 
display of result data, 3D animation display and rich curve 
calculation and operation functions. 

When analyzing the dynamic process and kinematic 
process of multi-body contact, the model must describe 
not only the contact force and contact friction force 
resulting from the interaction between rigid bodies but 
also consider the geometric shape information of the 
objects to determine the contact state and contact area. The 
following modeling ideas can be employed: 

 
Figure 6 Modeling approach for contact models 

The contact model serves as a bridge that connects the 
multi-body models in the Modelica standard library. It 
acquires the pose information between rigid bodies 
through the frame interface, and utilizes the geometric 
information of the relative local coordinate system 
between two rigid bodies as parameters to analyze the 
contact state between their geometric elements. 

 
Figure 7  Example of a multibody model including contact 

The example model, depicted in the above figure, 
references the body module from the multi-body library. 
Users can define the shape of the object according to the 
actual situation or import geometric models in specific 
formats. Additionally, users are required to set the 
geometric data of the object as parameters in the contact 
model in accordance with specific formats. 

5 Contact Detection 
The contact algorithm solves only the problem of 
determining the acting force when contact occurs between 
rigid bodies. The contact process between rigid bodies 
involves considering the contact area between the 

A Penalty Function-based Modelica Library for Multi-body Contact Collision

782 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204779



 

 

geometric elements of the rigid bodies. For instance, when 
dealing with the contact problem between a point and a 
plane, this article addresses the contact process between a 
point and a finite surface region. Thus, the key to 
developing a geometric contact model is determining 
whether the geometric elements lie within the boundary 
region.  

 
Figure 8   Schematic diagram of point-surface contact area 

between cubes 

This paper mainly refers to the discrete element method 
and the geometric analysis method to detect the contact 
area(Oestersötebier F et al. 2014) (Elmqvist H et al. 2015) 
(Van Den Bergen 2003). Here, this paper based on the 
theory of geometric graphics, all rigid bodies are 
described by basic geometric figures such as points, lines, 
and surfaces, so that the contact problem between rigid 
bodies can be transformed into the contact problem 
between three geometric elements. In addition, in order to 
improve the efficiency of the software to solve the model, 
all the contact models constructed in this paper use the 
geometric analysis method to analyze the contact state 
between objects.  

5.1 Point-Line Contact Boundary Detection 

Point-line contact involves two main issues: calculating 
the distance between a point and a line, and determining 
whether a point is within the line segment. The diagram 
below shows how to determine if a point lies within the 
line segment. 

 
Figure 9  Point-segment region judgment schematic diagram 

With frame_a as the reference frame, calculate 𝑎𝑏ሬሬሬሬ⃑ ，𝑎𝑝ሬሬሬሬ⃑ ，
𝑏𝑝ሬሬሬሬ⃑  respectively, and then calculate the angle 𝑢 between 
the vectors 𝑎𝑏ሬሬሬሬ⃑  and 𝑎𝑝ሬሬሬሬ⃑ , as well as the angle v  between the 

vectors 𝑏𝑎ሬሬሬሬ⃑  and 𝑏𝑝ሬሬሬሬ⃑ .When 𝑢 ൏ 𝜋/2  and 𝑢  𝜋/2 , it is 
judged that the point p is in the accessible area of the line 
segment ab. When the penetration depth 𝛿ሺ𝑡ሻ  0 occurs, 
there will be contact force between the two rigid bodies. 

5.2 Point-Surface Contact Boundary Detection 

In fact, any polygon or curved surface can be made up of 
several triangular surfaces. Therefore, solving the 
problem of determining the region between points and 
triangular surfaces enables the easy solution of the 
problem of determining the region of complex geometric 
bodies. This article uses the centroid method and the 
schematic diagram below to determine whether the point 
lies within the region of the triangular surface. 

 
Figure 10  Point and Triangle Face Region Judgment Diagram 

Algorithm for determining if a point is within a triangle 
face region: 

1 1 2 0 1 0 2 1

0 0 1 1 0 1 1 0

0 0 2 1 0 1 2 0

0 0 1 1 0 1 1 0

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )

v v v v v v v v
u

v v v v v v v v

v v v v v v v v
v

v v v v v v v v

               
         
       

 (7)

When 𝑢, 𝑣  0 the contact point is inside the triangle 
area, contact force calculation will be performed. 
Otherwise, contact force calculation will not be performed. 
To determine whether a point is inside a rectangular area, 
it can be divided into two triangular areas, which makes it 
possible to perform the contact force calculation. 

5.3 Line-Line Contact Boundary Detection 

The point-surface contact algorithm in the example of 
contact between cubes only considers the process of 
vertex-surface contact. To prevent interference issues, as 
illustrated in the figure, multiple geometric points on the 
geometric body must be selected for contact calculations 
with the surface. However, the number of geometric 
points significantly affects the model's solving efficiency 
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and accuracy. Therefore, for computational efficiency, an 
analytical method should be used to establish a line-line 
contact model instead. 

 
Figure 11  Cubic Contact Interference Phenomenon 

Considering Only Point-surface Contact 

The line-to-line contact model requires consideration of 
two situations: contact between coplanar line segments 
and contact between non-coplanar line segments. The 
former can be achieved by point-to-line contact, while the 
latter involves determining the positional information of 
the contact points at each moment, as the contact point 
between non-coplanar line segments changes over time. 
To address this, this paper proposes the use of the theory 
of perpendicular lines, which establishes that there is only 
one straight line perpendicular to two non-coplanar lines. 
By calculating the vector information of the perpendicular 
line, the distance between contact points at each moment 
and the penetration depth 𝛿ሺ𝑡ሻ can be determined. 

 
Figure 12  Schematic diagram of line-line contact judgment 

method 

The specific algorithm is shown in the figure above. 
Assuming that there are two line segments AB and CD in 
space, 𝑃  and 𝑃  are the intersection points of line 
segments AB and CD with the common perpendicular, 
and the coordinate values of 𝑃 and 𝑃 can be described 
by the following equations. 

1 2 1

1 2 1

1 2 1

3 4 3

3 4 3

3 4 3

( )

( )

( )

( )

( )

( )

a

b

X x m x x

P Y y m y y

Z z m z z

U x n x x

P V y n y y

W z n z z

  
   
   

  
   
   

 (8)

When 0  𝑚, 𝑛  1, it indicates that 𝑃 and 𝑃 are on 
line segments AB and CD. Otherwise, 𝑃  and 𝑃  are on 
the extended lines of the respective line segments AB and 
CD respectively. With the expressions of 𝑃 and 𝑃, the 
distance between the two points can be calculated as 
follows: 

2 2 2( ) ( ) ( )a bP P X U Y V Z W       (9)

To find the common perpendicular of two line segments 
is equivalent to finding the minimum value of 𝑃, 𝑃: 

2 2 2min ( , ) ( ) ( ) ( )f m n X U Y V Z W       (10)

Then taking the partial derivative of the function 
𝑓ሺ𝑚, 𝑛ሻ  with respect to 𝑚, 𝑛 , a system of two linear 
equations in two variables can be obtained: 

( , )
0

( , )
0

f m n

m
f m n

n

  
 
 

 
(11)

With the above equation system, we can obtain the 
value of 𝑚, 𝑛  and determine the distance and position 
vector between the contact points. Utilizing this 
information, we can apply the contact algorithm formula 
to develop the line-line contact model. The application of 
the line-line contact model ensures that the 
aforementioned interference problem is eliminated in the 
cubic contact simulation results.  

 
Figure 13  Schematic diagram of point and cylinder contact 

judgment method 
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6 Model Extension 
6.1 Contact between Point and Cylinder 

Surface 

Drawing on the modeling ideas for point-line contact, it 
can be extended to the modeling of point-cylinder surface 
contact, as depicted in the following schematic diagram. 
By obtaining the position vector of the current point 
element (P1\P2) relative to the coordinate system LCI of 
the cylinder geometry, combined with the position vector 
of the line element endpoints relative to the cylindrical 
geometry coordinate system, the spatial geometric 
information of which line segment the point element is 
about to contact can be obtained in real-time. 

 
Figure 14  Geometric information diagram of contact line 

segment 

6.2 Point-Curve Contact 

The point-curve contact model is equivalent to the point-
line contact model with multiple line segment elements, 
and is based on the point-line contact modeling algorithm. 
To create the point-curve contact model, geometric 
information from several points on the curve is read, and 
cubic spline interpolation is performed to fit the curve. 
The interpolated curve is then discretized into line 
segments. By selecting more discrete points, the contact 
curve can be made to resemble the actual curve more 
closely. 

 
Figure 15  Realization method of contact between point and 

spline curve 

The cubic spline interpolation algorithm actually 
divides the curve interval ሾ𝑎, 𝑏ሿ  into n intervals 
ሾሺ𝑥, 𝑥ଵሻ, ሺ𝑥ଵ, 𝑥ଶሻ, . . . , ሺ𝑥ିଵ, 𝑥ሻሿ , with a total of 𝑛  1 
points. Each interval is described by a cubic spline 
function: 

3 2( )i i i i if x a x b x c x d     (12)

The cubic spline interpolation should satisfy the 
following conditions: 

(1). Each segment should be a cubic spline function; 
(2). It should satisfy the interpolation condition, i.e., 

𝑓ሺ𝑥ሻ ൌ 𝑦ሺ𝑖 ൌ 0,1, … , 𝑛ሻ; 

(3). The curve should be smooth, i.e., 

𝑓ሺ𝑥ሻ,  𝑓ᇱሺ𝑥ሻ,  𝑓ᇱᇱሺ𝑥ሻ,should be continuous. 

7 Simulation Results 
The main objective of this chapter is to focus on the 
aforementioned contact model. It presents three 
representative examples implemented in MWORKS and 
utilizes the Dassl algorithm for solving and analysis. 

Example 1: Simulating the contact process between a 
ball with a radius of 30mm and a disk with a radius of 
250mm. The z axis of the disk is connected with the world 
coordinate system by a rotating pair, and a position sine 
excitation is applied to the rotating pair to analyze the 
motion of the ball under the action of contact force. The 
following example demonstrates the construction process.  

 
Figure 16   Sphere falling on a swinging round plate 

.  
Figure 17 Animation of a sphere falling on a swinging round 

plate 
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Figure 18 The displacement curve in the Y direction of the 

center of the sphere 

The simulation results are compared with those 
obtained from Adams, a commercial dynamic simulation 
software. Figure 17 depicts the simulated curves with 2s. 
The curves of the two simulation results are in good 
agreement, and the cumulative error of the position at 2s 
is 1.6mm. 

Example 2: The linear contact model is utilized to 
simulate the operational principle of the differential. 
Initially, an equal resistance moment is applied to both 
wheels, causing them to rotate at the same speed. 
Subsequently, the resistance moment on the left wheel is 
increased, leading to the occurrence of differential 
behavior between the two wheels.  

 
Figure 19 An example of the application of the line contact 

model 

.  
Figure 20 An example animation of a line-line contact model 
(In the figure, the single arrow is the interacting force vector 

and the double arrow is the interacting torque vector) 

 
Figure 21 Curve of speed change of two tires 

From the graph, it is evident that initially both wheels 
have the same resistance and speed. However, at 10s, 
when a resistance moment is applied to the right wheel, a 
differential phenomenon arises between the two wheels. 
The speed of the right wheel approaches zero, while the 
speed of the left wheel doubles its original value.  

Example 3: Apply point and curve contact to construct 
the following two high pair transmission processes. 

 
Figure 22 Example of application of point and spline contact 

model 
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Figure 23 Point and spline curve contact model animation 

 
Figure 24 Cylinder displacement curve 

Example 4: The point and cylinder contact model is 
applied to simulate the dynamic contact process of several 
small balls rolling successively on a funnel until they fall 
into the cylinder. The following is an example of the build. 

 
Figure 25 Example of the point-cylinder contact model 

 
Figure 26 Animation of multiple spheres tumbling down 

funnels 

The example model is constructed by point-cylinder 
contact model, point-disc contact model and ball-ball 
contact model. Taking this as an example, multiple typical 
contact models can be combined to construct more 
complex contact scenarios. 

8 Summary and Outlook 
In this paper, the contact library primarily focuses on 
developing fundamental models for point-surface, point-
line, and line-line contacts. These three contact types form 
the foundation for complex geometric contacts. 
Furthermore, this paper extends the scope of rigid body 
dynamic contact models to include more significant 
variations, such as point contact with spline curves, point 
contact with cylindrical surfaces, and point contact with 
polygonal surfaces.  

The above discussion represents only a fraction of the 
broader field of rigid body contact dynamics, leaving 
significant room for further advancements in contact 
model development. For instance, when dealing with 
complex geometric contact problems, it is crucial to 
optimize model solving efficiency through contact search 
algorithms, analyze the impact of different contact force 
calculation methods on the accuracy and efficiency of 
model solutions, and address contact force errors 
stemming from the transition between geometric elements. 
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Abstract 
The evaluation and analysis of complex energy supply 

systems with Modelica models is more and more an 

integral part of the building design processes. Dynamic 

system modeling became there especially important 

regarding analyses of the use of storage and the integration 

of volatile renewable resources as well as intelligent 

control. 

However, this still requires extensive engineering work 

and time-consuming modeling efforts, although the basic 

work steps are largely comparable and based on the same 

fundamentals. Therefore, the open interfaces to and from 

Modelica offer extensive possibilities for automation and 

generalization of these processes. 

This paper describes such a new integrative and automated 

optimization framework for energy systems of buildings 

and districts, which uses Modelica models and FMUs 

iteratively for the identification of optimal system 

configurations. 

Keywords: System Optimization, HVAC System Models, 

Python Automation 

1 Introduction 

Energy supply systems in buildings become more and 

more complex. Therefore, huge knowledge and a high 

number of professionals in different trades must be 

coordinated. This adds further challenges for architects, 

engineers and designers especially regarding the increased 

requirements on energy efficiency and availability. 

These extensive engineering tasks can only be solved with 

adequate calculation tools. These tools must be able to 

deal with an increasing variety of solution options and 

degrees of freedom as well as influencing factors. 

For example, the required heat of new buildings is 

nowadays provided by renewable energies and no longer 

by individual boiler systems. Renewable heat sources 

often require heat pumps to provide the necessary 

temperature level. Both the volatile heat sources (such as 

waste heat, solar heat, geothermal heat) and the heat 

pumps must be considered in detail. 

An engineer can now no longer focus on a singular 

balancing of the necessary natural gas consumption of the 

boilers. Design decision now need an influence analysis 

of weather and site conditions as well as the necessary 

power requirements for the heat pumps. These design 

analyses must often include an additional coverage by 

local renewable power production (e.g. by photovoltaics 

or wind power) which is another important boundary 

condition and influencing factor. In case of an additional 

seasonal storage (e.g. ice storage) in a system, engineers 

need to solve a multi-valent and cross-domain design 

problem already only regarding the singular task of 

heating system design. 

Keywords like multi-valent and cross-domain quickly 

bring simulation-savvy engineers to the versatile, multi-

physics modeling language Modelica. Therefore, 

Modelica already provides a large number of well-proven 

library solutions, e.g. Buildings, BuildingSystems, 

IBPSA, AixLib, IDEAS, Green City, etc. (c.f. Wetter 

2009, Müller et.al. 2016). Furthermore, the various 

Modelica simulation environments (like SimulationX, 

Modelon Impact, Dymola, Open Modelica, etc.) offer a 

variety of open interfaces for the simulation automation. 

They can help to automate the necessary extensive variant 

analysis. This saves a significant amount of engineering 

time. Additional export options, especially like the 

Functional Mockup Interface Standard (FMI), enable IP 

protection and tool-independent development of the 

necessary design tools. 

Engineers can design the energy supply for each building 

individually. However, thinking on a district level often 

provides more efficient solutions. It allows to use synergy 

effects between different buildings and surrounding 
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energy sources. This is the core topic of the Smood (Smart 

Neighborhood) network (Roselt, and Büttner, 2019). 

The Smood joint project consists of a group of German 

engineering companies and local scientists. It tries to 

develop a holistic value chain of tools and processes for 

the decarbonization of the energy supply of residential 

neighborhoods. Another important research and 

development aspect is the market launch of the developed 

toolsets. 

The whole project considers four core development goals. 

SmoodQIM represents a holistic neighborhood 

information model for data management (i.e. comparable 

to BIM for buildings). Another core piece, i.e. 

SmoodManage, includes automated process steps for the 

building retrofit planning. Besides these software and 

process components, the SmoodHardware part considers 

the development of novel storage systems in both the 

thermal and the electrical domain. For the Smood 

collaborators, all these components are necessary for a 

future sustainable energy supply to residential 

neighborhoods.  

Another key component of the developed tool chains is a 

new methodological simulation approach (i.e. 

SmoodSimulator) that evaluates buildings and HVAC 

systems together in an iterative optimization process. This 

automated process results in a holistic retrofit strategy 

including a therefore optimized HVAC system 

configuration. It includes three main components.  

A building-focused analysis tool (i.e. Caala) provides 

basic retrofit options for the particular building envelope 

with respect to CO2 savings and gray energy demand. 

Then, the automated tool chain derives a model matrix 

with different system configurations based on the building 

requirements. This matrix is linked to a huge set of pre-

configured HVAC system models developed in Modelica. 

These models run automatically after an automated setup 

of the necessary components parameters. All automation 

steps are based on the versatile scripting language Python. 

This Python framework also includes an optimization 

algorithm which iteratively adjusts the HVAC system 

parameters depending on the chosen optimization goals. 

Such iterative approaches which connects Python-based 

optimization algorithms and Modelica models are not 

new. Leimeister, 2019 describes in her paper a combined 

optimization framework that uses both components. 

However, this work primarily focuses on the optimization 

of a singular system component, a wind turbine in its 

operating environment. A more general link between 

Python-based machine learning libraries and the 

simulation tool EnergyPlus was introduced by 

Christiaanse et.al. 2021. Eckstädt et.al. 2020 investigated 

extensively the use of simulation-based methods and 

optimization approaches with respect to different 

application scenarios in the context of building design 

process. 

The use of multi-criteria optimization approaches with 

focus on architectural design was introduced by Dan Hou 

et.al. 2019 among others. The BeDOT tool (c.f. Bergel 

et.al. 2019) uses some the scientific approach of holistic 

software tools for energy system optimization. An 

alternative view on building controls with a holistic 

framework is also part of Arroyo et.al. 2021. 

Comparable approaches to Smood regarding a holistic 

view of all these topics on a neighborhood scale is also 

part of the research at the University of Innsbruck, Austria 

(c.f. Dermentzis et.al. 2019). 

2 General Concept 

The entire Smood nucleus includes a variety of companies 

and research groups as well as many advanced 

technologies and tools. One key component of the master 

plan is a novel, holistic simulation environment for the 

automated generation of retrofit strategies and energy 

concepts for larger residential districts, i.e. 

SmoodSimulator. 

This tool needs to take into account the great variety of 

requirements of the building structure and the energy 

supply as far as possible. The identified solutions have to 

look for the local and global optima with regard to the 

joint consideration of life cycle costs (LCC) and life cycle 

assessment (LCA). Therefore, it can consider retrofit 

measures for the building envelope as well as the use of 

novel (renewable) supply technologies. Very often, 

potentials solutions can also be mixed forms of both 

approaches. The main goal of the SmoodSimulator is to 

automatically find exactly these solutions on the basis of 

the existing data. 

Designated users of the tool can also be city and district 

planners as well as architects. High engineering and 

simulation know-how can therefore not be assumed. 

Requirements resulting from the use of Modelica models 

have to be handled as automated as possible by the 

SmoodSimulator itself or corresponding simplifications. 

Figure 1 shows the general structure of the 

SmoodSimulator workflow and its abstract software 

components. This also includes application-specific tools 

from Smood partners (i.e. Caala) and third-party providers 

(i.e. Rhino 3D). 

The Rhino 3D tool enables architects to plan the structure 

of new buildings from the design point of view or to 

optimize existing buildings with the help of a graphical 

interface. It provides only information about the building 

envelope. The tool Caala (via Grasshopper plugin) 

evaluates exactly this structural data of the 2D and 3D 
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building representations in order to run a first analysis of 

LCC and LCA based on simple key figures. 

Its strength is primarily in the underlying databases on the 

necessary building material costs and their LCA statistics. 

In this manner, it enables a balanced quantification of the 

so-called "gray energy". This is a measure of necessary 

CO2 emissions regarding the required building materials 

and amounts (i.e. incl. insulation). However, the energy 

supply system in Caala only uses simple and constant 

efficiency factors. This is an essential limit of the HVAC 

and power supply system evaluation in Caala. Especially, 

volatile production of renewables and local storages with 

nonlinear efficiency characteristics and availability are 

thus hard to assess. A more specific modeling was 

necessary for appropriate engineering evaluation. 

The SmoodSimulator was designed to fill this gap using 

the available interfaces of Caala as well as its results and 

outputs. The main idea is to add a seamless automated 

toolset which takes the available information and adds the 

necessary complexity in the HVAC and power supply 

system part of the evaluation strategy. Therefore, 

Modelica models seemed to be most promising in 

accuracy but lacked regarding handling and usability for 

non-professional simulation engineers, like architects and 

designers. Therefore, adequate automation, e.g. via 

Python, was necessary. 

This process starts with the building-specific data, such as 

thermal and electrical energy requirements, as well as the 

initial results of the LCA/LCC analyzes in Caala. The 

SmoodSimulator reads them via a specific interface API 

using the Data Importer. This process defines the 

caalaConfig. Furthermore, it reads additional information 

regarding optimization process parameters and the stored 

simulation models from other configuration files (i.e. 

userConfig, optiConfig). In the future, a graphical user 

interface will be available for this specific import task. 

The core piece of the Python framework is the Model 

Assembler and the Optimization Initialization. It has a 

variety of tasks, especially in the area of automatic 

selection, preparation and instantiation of the required 

models. 

The Modelica models have to represent as accurately as 

possible the interdependencies of any dynamic energy 

system with its variety on possible details. The building(s) 

are considered as static load profiles. Their optimization 

with respect to possible retrofit steps for the building 

envelope was part of the prior optimization loop in the 

Caala tool. However, these Modelica models of HVAC 

systems require consumption curves with high temporal 

resolution that go beyond the available outputs of the 

Caala tool (i.e., monthly balances only). Therefore, the 

Model Assembler has to generate automatically suitable 

input data sets for the models, i.e. heating and power 

loads, weather data. 

The Model Assembler has access to an extensive model 

library of predefined energy supply system 

configurations. The variants choice for the optimization 

process is based on a dynamic requirements matrix. This 

is matched with the requirements of the building(s) under 

consideration (e.g. temperature conditions). 

Furthermore, the Model Assembler prepares the required 

set of model configurations for the optimization process. 

This is a working step which has been optimized regarding 

the total optimization speed for several times. One of these 
steps included the execution of exported FMUs 

(Functional Mockup Units) via Python instead of running 

Modelica models via remote control. This provides a very 

Figure 1: Overview of smoodSimulator workflow and abstract software components incl. the integration of Modelica models and FMUs 
(sources of figures: Constantino and Pepe 2021) 

Poster Presentation

DOI
10.3384/ecp204789

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

791



performant solution which enable a parallel execution of 

models with different configurations on different 

platforms (i.e. using PyFMI or FMPy interface in Python 

platform). In order to perform appropriate parameter 

optimization (i.e., equipment technology performance 

data) for each configuration, each FMU provides 

appropriate variable parameters. 

Another important initialization step is the initial 

parameterization of all system variants which is based on 

the requirements of the generated building loads. The 

Model Assembler checks all generated load profiles 

regarding potential critical values, such as peak power 

(e.g. dynamic heating load). Then, it derives the necessary 

preset parameters of each FMU with respect to the 

requirements of the variant matrix and some specific 

heuristics. 

The optimization process runs iteratively and parallelized. 

Each model configuration and parameter variant runs an 

annual simulation as an executable FMU in Python. 

Because of the necessary high number of system 

configurations and suitable parameter numbers, the 

requirements on the model performance are very high. 

Section 3 therefore shows the most relevant steps of model 

performance optimization. 

Each system configuration is first simulated as a baseline 

with its initial parameter set. LCC and LCA are then 

calculated based on the energetic results of the executed 

FMUs in post-processing. With the Python 

hyperparameter optimization framework Optuna, the 

variable parameters (i.e., power classes) of all system 

variants are then optimized in parallel using an iterative 

loop and a high number of year simulations. Special 

attention is given to bivalent equipment configurations 

such as district heating grid and heat pump etc. during 

optimization. 

If the optimizer reaches the previously defined termination 

conditions, the optimization process ends. The results of 

the analysis, i.e. a selection of the different optimized 

system configurations and the presentation of the best 

result, are displayed. This includes an export of suitable 

graphics and necessary data for post-processing. 

3 Model Concept 

The developed framework focuses on Modelica-based 

simulation models of technical equipment for heat and 

power supply of (residential) buildings. The building itself 

is only a simple look-up table based load profile because 

of highly accurate tool sets (i.e. Caala, Rhino 3D) before 

the Modelica models in the tool chain. However, these 

simple models also require suitable interfaces to the still 

necessary dynamic model components. 

The Modelica-based Green City library in SimulationX 

therefore provides some relevant interfaces and a suitable 

data integration (c.f. Schwan et.al. 2017). 

 

Figure 2: Simple modelling approach of building load curves with 
Green City (i.e. Modelica-based library) components 

Regarding the co-simulation of HVAC systems with 

independent building models, Nicolai and Paepcke 2017 

have already shown a first adequate solution with the 

Green City library. The presented framework uses the 

same premises as model base. 

 

Figure 3: Detailed HVAC system model component 

The chosen modeling concept is based on the main task to 

enable simulations of each possible system configuration 

of the model matrix (cf. section 2). A first approach used 

detailed single Modelica models. There were saved in 

specific library as a model template for the Model 

Assembler. In these templates all model-internal 

parameters (e.g., pump parameters, storage tank sizes, 

etc.) depend on a reduced set of relevant parameters, like 

performance categories. If these performance values are 

changed during the optimization process, the model 

internally adapts automatically. This is important for both 

Heat pump with heat storage and heating circuit 

Connected domestic 
hot water supply 
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numerical stability and a realistic representation of real-

world behavior. 

Figure 3 shows an example model of a simple heat pump 

system with geothermal collectors as renewable heat 

source based on Green City components. The model only 

has a unified interface to the heating circuits and the local 

power grid which are compatible to the general load 

profile model (c.f. Figure 2). However, there are strong 

mathematical dependencies between the different 

temperature levels of both heating circuits (i.e. heating 

and domestic hot water) due to the availability of only one 

heat supply component (i.e. one heat pump). This model 

is comparatively accurate as individual controls define the 

heat pump output depending on individual storage 

temperatures and the respective dynamic loads. However, 

this significantly lowers the simulation performance. 

Simulation of one entire year thus requires about 10 to 15 

min for each variant and system configuration. 

In an optimization process with 10++ different system 

configurations and various options of discrete system 

parameterization (especially in bivalent system 

configuration), 1,000s to 10,000s simulation runs may be 

necessary. However, the optimization period should not 

exceed a frame of hours to a few days. 

The first important performance optimization step 

considered the decoupling of dependencies between the 

two heat supply tasks (i.e. heating and hot water 

production). This approach required to focus on each 

template model of SmoodSimulator’s system matrix. 

Obviously, it results in a higher deviation between the 

simulated system behavior and exact simulation results or 

real-world measurements. However, this loss of accuracy 

is acceptable because the intended field of toolset 

application are preliminary design phases of existing 

neighborhood districts. The level of detail of all 

assumptions is there quantified with +/-40% and higher 

(c.f. Kochendörfer et.al. 2010). Deviations from different 

efficiencies of the simulated systems (e.g. temperature-

related COP of heat pumps) or limited availability due to 

simultaneity will be significantly lower. 

The presented approach already reduced the average 

simulation times of an entire year to 2 to 3 min. However, 

this was still not fast enough. Further optimization steps 

were necessary. The model concept update still 

considered a coupled forward-backward modelling 

approach. Heat and power load characteristics defined a 

backward model of the considered building(s). The energy 

system template models still represented a forward model 

which operated depending on internal control on 

temperature levels of the decoupling storage tanks (i.e. 

internal system capacities). 

The next optimization step consisted of a complete 

conversion of the Modelica model approach to a backward 

model. This required a redesign of the individual system 

components of the HVAC system models in the templates. 

Now, these models only represent a nonlinear, dynamic 

efficiency characteristic and are thus only conversion 

models (e.g. heat pump - heat/electric energy). 

 

Figure 4: Simplified HVAC system model component 

Model dependencies on external control functions were 

removed as far as possible. However, since the interfaces 

of the model templates stay the same, reuse of the more 

detailed model options for detailed analyses within the 

framework will be possible at any time. 

In this way, the average simulation time for a year 

simulation per system model template could be reduced to 

less than 30 s (i.e. using CVODE solver with common 

settings). 

Now an acceptable performance range was reached. 

Further simplifications in the models themselves were 

almost no longer possible. However, further performance 

potential could still be identified during model execution. 

On the one hand, the direct execution of Modelica models 

requires the use of a suitable simulation environment (in 

this case SimulationX). Communication with and 

automatic execution of models in this environment also 

requires a certain time period. The faster the models, the 

higher is the share of these communication time periods 

on execution total time. On the other hand, the execution 

of simulation models in the simulation environment takes 

place exclusively on one computational core of the 

respective computer/server. Parallelization is difficult to 

realize and also requires extended licensing costs, 

especially in the area of optimization for the simultaneous 

execution of a large number of models. 

Therefore, the use of FMUs in Python with the help of the 

PyFMI framework provides an alternative solution. This 
allows the execution of parameterizable FMUs directly in 

Python without an additional running simulation 

Simple inverse heat 
pump model with 
heating circuit 

Decoupled domestic 
hot water supply with 
inverse heat pump 
model 
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environment. By exporting the models with solvers (FMI 

4 co-simulation), similar or even better performance can 

be expected without the communication overhead. 

However, the biggest potential advantage is the 

parallelizability of model execution. By using multi-

threading approaches, the Python framework supports 

parallel execution of models within an optimization loops. 

This last optimization step again provided another 

significant reduction of the necessary simulation time 

periods per model (FMU). With about 10 to 20 s per 

annual simulation to be performed, the framework now 

has a sufficient computing speed even for large problems. 

Common optimization tasks with about 5,000 model 

iterations can usually be performed in 2 to 3 hours. 

The developed approach now represents a powerful 

simulation and optimization framework. However, due to 

the necessary simplifications, the model accuracy is now 

somewhat reduced. However, it is still in an acceptable 

range regarding the available degree of accuracy of 

necessary assumptions in an early building design phase 

(i.e. +/-40%). 

Furthermore, the developed model concept represents 

another huge advantage regarding its upward 

compatibility. Because of the consistent interface 

definition, the models are always available in different 

accuracy levels (c.f. Figure 3).  

If a more detailed consideration of some system variants 

with the help of the optimization framework is required in 

a later design phase (e.g. detailed planning), a more 

accurate simulation model with the same interfaces can 

simply be generated and analyzed with the help of the 

identified system configurations. These adapted models 

can then also be edited manually, refined and developed 

during the entire design period. 

4 Examples of Optimization and 

Validation Results 

The developed SmoodSimulator approach is predestinated 

for all scalable tasks of an automated design regarding 

retrofit and energy concepts of buildings up to urban 

quarters. However, the current version focuses primarily 

on residential quarters and thus on the use of buildings as 

living space. 

The toolset is currently used in a comparatively limited 

field. The required input data sets for the simulations of 

buildings are thus often similar. 

As a starting point of any optimization run, the Caala tool 

performs a simplified energy analysis of a given building 
structure and type. The results are monthly energy demand 

characteristics of the considered building. However, this 

is only the basis of input data set generation for the HVAC 

and power supply system models. 

 

Figure 5: Example power consumption characteristic (1-week 
detail) of H0 standard load profile 

Because of the similarity of energy consumption patterns 

in all potential households, generalized time series (i.e. 

standard load profiles – c.f. Figure 5) are the base to create 

load curves with higher temporal resolution. The Caala 

results only provide scaling factors, such as the 

cumulative energy demand values. This approach is used 

in the smoodSimulator for both electricity consumption 

and hot water demand. 

 

Figure 6: Example heat consumption profile based on TRY weather 
data 

In addition to primarily occupancy-related energy 

consumption, buildings also consume climate-based heat. 

In order to be able to provide these with a higher temporal 

resolution, weather data (e.g. test reference year - TRY) 

with an hourly resolution are used as scaling base. The 

cumulative heat demands, again a result of the Caala tool, 

are weighted and distributed to a corresponding year 

profile with respect to the outdoor temperature and 

corresponding generic heat demands. 
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However, the optimization framework does not only 

consider energy aspects. The goal of optimization is 

always a holistic system analysis, also in the direction of 

life cycle costs (LCC) and life cycle assessment (LCA). In 

this regard, adequate estimated values for the necessary 

investments are required in addition to suitable assessment 

factors. 

 

Figure 8: Cascading of heat supply systems depending on 
available system sizes and total power demands 

The investment costs always depend primarily on the 

component size. However, not every system/unit size is 

available on the market as standard. Typically, the 

availability of the individual size follows a series 

development by power classes (e.g. 10 - 20 - 50 kW). 

Therefore, certain capacities can be achieved either with 

one unit or by cascading several units. Oversized units 

will cause additional costs. A cascade of several units is 

more expensive than one unit with the same total power. 

From this static optimization problem, an optimal 
component configuration can always be found for each 

(discrete) power class prior to any simulation run. 

Figure 8 therefore shows an example configuration matrix 

of air-to-water heat pumps with different total (discrete) 

system sizes and individual optimal cascade solutions (i.e. 

blue / red / green – individual maximum power output of 

heat pumps). 

The Model Assembler also organizes the optimal 

cascading of each analyzed system configuration 

automatically during the initial simulation period and the 

later iterative optimization process. 

This also results in a necessary requirement for the 

parameterization of the models. No matter which models 

base is used, i.e. Modelica model or FMU, before the start 

of each simulation run all components parameters must be 

editable regarding new power categories and 

characteristics of the individual system configurations. 

However, this represents a huge challenge for the 

instantiation of the models, especially in the optimized 

FMU mode. 

FMUs are not structurally changeable after export. Only 

constant parameters (unchangeable during simulation) 

can be adjusted. The modeling approach used in Green 

City is thus advantageous. It maps the cascadability of the 

individual component models by internal integer 

parameters. 

Figure 8 shows exemplary results of one of the first test 

analyses. It considered a small urban living quarter in mid-

Germany. 

On the one hand, the analysis took into account the 

possible retrofit of the building envelope with different 

building materials (i.e. use of different U-values). On the 

other hand, different system configurations were analyzed 

Figure 7: Example results of a holistic LCC/LCA analysis of an urban living quarter 
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and their performance parameters were optimized with the 

help of the framework: 

 District heating grid plus solar collectors 

 Monovalent water-to-water heat pump and 

photovoltaics 

 Bivalent heat pump system (air-to-water) for 

heating and domestic water supply 

The existing system is district heating, which currently 

supplies heat monovalently only to buildings with simple 

insulation. In a simple optimization strategy, this is 

supplemented exclusively by thermal solar collectors. The 

retrofit carried out in this way generates the lowest 

investment costs. Over the lifetime, however, both the life 

cycle assessment (LCA) and the life cycle costs (LCC) are 

disproportionate to comparable heat pump systems. 

Through iterative parameter optimization in the optimizer, 

the respective optimal system configuration with regard to 

LCAs and LCCs is found for all alternative supply 

concepts. The respective retrofit conditions of the building 

(i.e. the selected insulation standard) are also included in 

this optimization. 

The example in Figure 8 shows the three best options, all 

describing different heat pump configurations. Depending 

on the efficiency and necessary costs of the selected 

technical systems, the energy standard of the building 

envelope can or must be adapted. Therefore, all variants 

describe slightly different insulation standards (i.e. U-
values). The same applies to the use of local renewable 

generators (e.g. photovoltaics). Depending on the 

efficiency of the used heat pumps, slightly smaller or 

larger generator sets must be installed. 

Figure 8 only shows the final results of the optimization 

process. It compares the baseline, i.e. the existing 

energetic standard and HVAC system, with the three best 

retrofit options of the optimization process.   

Figure 9 adds to this plot a dot plot showing all parameter 

configurations simulated by the framework with the 

results of the LCC/LCA analysis for all evaluated system 

configurations. 

It also shows different clusters of efficiencies and costs for 

different system configurations. The influence of 

parameter optimization is presented very precisely for 

each configuration from the deviations of the points of the 

same color. It is noticeable that the change of the HVAC 

system configuration has a significantly higher influence 

on efficiency and costs in each case than an optimal 

identification of the respective component parameters 

(e.g. power categories). 

5 Conclusions 

The presented approach of a holistic, automated 

optimization framework for energy systems of buildings 

and districts shows again the versatility of Modelica 

models. 

On the one hand, multiphysical, noncausal modeling with 

Modelica is also widely used in the fields of energy supply 

and building services engineering. On the other hand, both 

the models themselves and their derivatives (especially 

Figure 9: Full results of LCC/LCA optimization process of an urban living quarter 
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FMUs) can be integrated into automated software 

applications independently of tools. 

Multiphysics simulation of power systems using Modelica 

allows very detailed evaluation of system behavior, 

especially in the presence of volatile generation and 

storage. However, these models are still very complex for 

use in optimization loops. Simplification to a minimum of 

necessary complexity is still required to ensure a 

reasonable time frame for optimization. 

Further developments in the field of solver technologies 

are still necessary. This relates primarily to the 

computational speed of the models. In addition, 

knowledge-based potentials for increasing speed must 

continue to be tested and implemented. This mainly refers 

to the simplification of model equations by application-

specific information. In this way, solvers can be relieved 

and high speed increases can be achieved. These 

approaches can be supported by the use of artificial 

intelligence and automated expert systems. 

Another important next step is to extend the approach to 

non-residential buildings. These entail a significantly 

higher complexity and new dependencies for the 

optimization procedure and especially for the integrated 

simulation models. These arise primarily in the area of 

ventilation and air conditioning systems as well as 

refrigeration technology. 

Since the approach of decoupling dependencies has 

already led to a significant acceleration of the existing 

optimization framework, this also seems to be a promising 

solution in this case. However, even such a solution can 

quickly reach its limits, especially due to increased 

complexity and deeper dependencies. 
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