
THE AMERICAN
MODELICA 2024

CONFERENCE
STORRS
OCTOBER 14-16

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024
Storrs, Connecticut, USA, October 14-16, 2024

EDITORS
Michael Tiller, Hubertus Tummescheit, Luigi Vanfretti, Christopher Laughman, and Michael Wetter

PUBLISHED BY
Modelica Association and Linköping University Electronic Press

Series info: Linköping Electronic Conference Proceedings Nr. 207
ISBN: 978-91-8075-568-9
ISSN: 1650-3686
eISSN: 1650-3740
DOI: 10.3384/ecp207

ORGANIZED BY
North America Modelica Users’ Group
na.modelica-users.org

in co-operation with:
Modelica Association
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping
Sweden

CONFERENCE LOCATION
Innovation Partnership Building
University of Connecticut Tech Park
159 Discovery Drive
Storrs, CT 06269
USA

Copyright © Modelica Association, 2024

KEYNOTE SPEAKER

1

SWAMINATHAN GOPALSWAMY
Research Professor, Director
Connected Autonomous Safe Technologies (CAST) Lab
Department of Mechanical Engineering, Texas A&M

ABSTRACT
Modeling, Simulation, and Autonomous
Vehicles: Challenges and Opportunities
Modeling is abstraction of reality. As an engineering practice
and skill set, modeling has evolved and been evolving over
the decades aligned with two fundamental priorities – form
and function. Geometric modeling to capture form has made
tremendous progress, and spawned form-driven functional
(primarily structural) modeling through finite element
decompositions and analysis. However, the interest of the
Modelica community is on functional modeling that abstracts
away form and focuses on dynamic behavior of systems.

I will discuss some of my experiences in functional modeling,
along with the evolution in techniques over the decades.
This experience spans aero and automotive systems. The
growing maturity of the field is observed in the distillation and
separation of critical techniques to enable specialization and
cross-leverage of expertise. The explosive growth of software
content in functionality over the last decades has been a
catalyst for the use of modeling for algorithm development
and verification and validation of embedded software.

With the advent of machine learning, artificial intelligence, and
growth of autonomous driving systems, new challenges and
opportunities have emerged for modeling to be useful. There
is morphing of the fundamental priorities between form and
function, as photorealistic rendering of environment becomes
integral to functional modeling driven by the presence
of sensors such as cameras and LIDARs that observe the
environment and influence dynamic behavior. The sheer growth
in complexity and scale of these systems forces the exploration
of distributed computations and simulations, bringing with
it new questions to be answered. Uncertainty modeling and
stochasticity are part and parcel of learning systems, providing
yet another avenue for evolution of modeling.

Finally, continued evolution of abstraction leads to the next
layer, where machines are interacting with humans. I will finish
with some thoughts on the opportunities for modeling in
this context.

BIO
Swami Gopalswamy is a Research Professor in the department
of mechanical engineering at Texas A&M University, and the
director of the Connected Autonomous Safe (and Sustainable)
Technologies (CAST) Lab. His research at A&M is focused on
control-enabled technologies that can lead to safer and more
sustainable transportation solutions. The research at CAST
spans development of fuel-efficient powertrains to new vehicle
platooning concepts to techno-business paradigms such as
“Infrastructure Enabled Autonomy”. He is also working on
developing algorithms and software to enable coordinated
movement of a fleet of heterogeneous air and ground vehicles
autonomously, on off-road terrains. He has introduced Modelica
as part of classes that he has taught at Texas A&M.

Previously, Dr. Gopalswamy was the CEO of Emmeskay, Inc.,
a company that provided modeling, simulation and other
advanced technology solutions to the automotive industry. As
part of Emmeskay, Dr. Gopalswamy and his colleagues were
engaged in advanced modeling and control projects based on
Modelica. Subsequently, he was LMS-VP at LMS International
and Siemens PL, responsible for managing a global MBSE
engineering services team, as also leading the development
of Control-design software products. Prior to Emmeskay, Dr.
Gopalswamy was a Staff Research Engineer at General Motors
R&D Center.

At GM, he was engaged in solving powertrain control challenges
(such as smooth clutch-to-clutch shifting) and developing
powertrain concepts (such as magnetorheological fluid devices
and hybrid electric powertrains).

He holds a doctorate and master’s degree in controls from the
department of mechanical engineering at the University of
California, Berkeley. He has a bachelor’s degree in Mechanical
Engineering from the Indian Institute of Technology, Madras.

KEYNOTE SPEAKER

2

CLAS A. JACOBSON
Senior Fellow, Systems Engineering

Carrier Global Corporation

BIO
Clas Jacobson is a Carrier Senior Fellow with over 25 years
experience in Systems Engineering and Controls.

Jacobson has focused his efforts on “Model Based Development”
and has contributed to several areas to develop and deploy
computational methods and tools for the effective use of model
based development across Carrier.

Jacobson served as Chief Scientist for the United Technologies
Systems & Controls Engineering (UTSCE) organization across
United Technologies Corporation and, before that, in several
UTRC management and technical positions. In his Chief
Scientist position, he led the creation of the UTSCE organization
with a mission of driving product and product development
transformation enabled by systems and controls engineering
technologies.

Jacobson was a (tenured) Associate Professor at Northeastern
University before joining Carrier.

ABSTRACT
Energy Urgency, Computation and Role
of “Systems” Methods & Tools
Today, energy considerations are critical and policy issues matter
more than in the recent past, so that there is a newfound urgency
to address cost, climate and security. These kinds of decisions
require very large capital investments; how do we address the
risks involved and the choices that are to be made? Several things
are needed that are described in this talk. First, well-crafted
design flows are needed to determine how overall capabilities will
be considered, designed, implemented, and maintained. Second,
it is essential that we understand what we can compute today
and what we cannot compute, as well as the reliability of these
computations and their accessibility to a wide set of groups. A
few examples of energy districts and data centers will be used
to illuminate what we can do and what we cannot. What should
the audience thus take away from this presentation? Computing
is much more than simulation. Computation --- in reliable and
trusted ways - is a key element to decision making today, but
not all the pieces are in place. In particular, the workforce in

“computational engineering” and their training in academia
needs to be used and designed to scale.

PROGRAM COMMITTEE

3

CONFERENCE CO-CHAIRS
Dr. Michael Tiller, JuliaHub

Dr. Hubertus Tummescheit, Modelon

PROGRAM CO-CHAIRS
Prof. Luigi Vanfretti, RPI

Dr. Michael Wetter,
Lawrence Berkeley National Laboratory

CONFERENCE EXECUTIVE COORDINATOR
Dr. Christopher Laughman,
Mitsubishi Electric Research Laboratories

LOCAL CONFERENCE CHAIR
Prof. George Bollas, University of Connecticut

LOCAL CONFERENCE COORDINATOR
Janesa Mackin, University of Connecticut

Dr. Behnam Afsharpoya,
Dassault Systèmes

PROGRAM COMMITTEE
Bernhard Bachmann, Fachhochschule Bielefeld

John Batteh, Modelon

Christian Bertsch, Robert Bosch GmbH

Torsten Blochwitz, ESI ITI GmbH

George Bollas, University of Connecticut

Francesco Casella, Politecnico di Milano

Yan Chen, Pacific Northwest National Lab

Atiyah Elsheikh, Mathemodica.com

Olaf Enge-Rosenblatt, Fraunhofer

Yutaka Hirano, Woven Planet Holdings, Inc.

Jianjun Hu,
Lawrence Berkeley National Laboratory

Yaoyu Li, University of Texas at Dallas

Alexandra Mehlhase, TU Berlin

Thierry S Nouidui,
The United African University of Tanzania

Kaustubh Phalak, Ingersoll Rand

Adrian Pop, Linköping University

Johan Rhodin, ModSimTech, LLC

Clemens Schlegel, Schlegel Simulation GmbH

Michael Sielemann, Modelon Deutschland GmbH

Giorgio Simonini, EDF

Martin Sjölund, Linköping University

Wilhelm Tegethoff, TLK-Thermo GmbH

Alfonso Urquia,
Universidad Nacional de Educación a Distancia
(UNED)

Stefan Wischhusen, XRG Simulation GmbH

Dirk Zimmer, DLR

CONTENTS

4

Thermofluid Systems 1

Model-Based Design and Characterization of an Actuator with a Low-Boiling Liquid 7
Christoph Steinmann, Johannes Herold, Jens Schirmer

Dynamic Modeling Methodology for Near Isothermal Compressor . 15
Haopeng Liu, Vikrant Aute, Yunho Hwang, Chengyi Lee, Jan Muehlbauer, Lei Gao

Fluid Property Functions in Polar and Parabolic Coordinates . 21
Scott Bortoff, Christopher Laughman, Vedang Despande, Hongtao Qiao

Language/Tools 1

Objectively Defined Intended Uses, a Prerequisite to Efficient MBSE . 29
Erik Rosenlund, Robert Hällqvist, Robert Braun, Petter Krus

Modelica Supported Automated Design . 43
Ion Matei, Maksym Zhenirovskyy, John Maxwell, Saman Mostafavi

Proposal for a Context-Oriented Modelica Contributing to Variable Structure Systems 53
Zizhe Wang, Manuel Krombholz, Uwe Aßmann, John Tinnerholm, Christian Gutsche, Volodymyr Prokopets, Sebastian Götz

Power Systems

Building Power System Models for Stability and Control Design Analysis
using Modelica and the OpenIPSL . 63
Srijita Bhattacharjee, Luigi Vanfretti, Fernando Fachin

Integrating the IEEE/CIGRE DLL Modeling Standard to Use “Real Code’’ Models
for Power System Analysis in Modelica Tools . 72
Hao Chang, Luigi Vanfretti

Decentralised Hydrogen Fuelled Gas Engine CHP Units: A Feasibility Study with Modelica 80
Florian Andreas Beerlage, Naqib Salim, Maurice Kettner

Language/Tools 2

FMI-3.0 Export for Models with Clocks in a Signal Flow Diagram Environment 91
Masoud Najafi, Ramine Nikoukhah

Event Support for Simulation and Sensitivity Analysis in CasADi for Use with Modelica and FMI 99
Joel Andersson, James Goppert

Steady-State Optimization of Modelica Models and Functional Mockup Units with Pyomo 109
Jesse Gohl, Hubertus Tummescheit, Robin Andersson, Matthew Stuber

CONTENTS

5

Thermofluid Systems 2

Development and Validation of a Water-To-Air Heat Pump Model Using Modelica 119
Yuhang Zhang, Mingzhe Liu, Zhiyao Yang, Caleb Calfa, Zheng O’Neill

A Modelica Implementation of an Organic Rankine Cycle . 127
Hongxiang Fu, Ettore Zanetti, Jianjun Hu, David Blum, Michael Wetter

Electromechanical Systems

Advancements in Building-to-Grid Interactions:
Thermo-Electric Coupling Models of Motor-driven Devices . 136
Viswanathan Ganesh, Zhanwei He, Wangda Zuo

Modelica as Model Aggregator for Holistic Architecture Validation of Electric Vehicles 145
Marcel Gottschall, Torsten Blochwitz, Andreas Abel, Alex Magdanz

Multiphysics Acausal Modeling and Simulation of Satellites Using Modelica Library 155
Salvatore Borgia, Francesco Topputo

Language/Tools 3

Advanced Edge Deployment: Abstracting Cyber-Physical Models via FMU Mastery 170
Fanping Bu, Mikalai Filipau, Nikolay Baklanov

Integrating Generative Machine Learning Models and Physics-Based Models
for Building Energy Simulation . 178
Luigi Vanfretti, Christopher Laughman, Ankush Chakrabarty

Pipeline-based Automated Integration and Delivery Testing of Simulation Assets
with FMI/SSP in a Railway Digital Twin . 189
Ozan Kugu, Shiyang Zhou, Stefan H. Reiterer, Mario Schwaiger, Lukas Wurth, Manfred Grafinger

Thermofluid Systems 3

Thermo-Fluid Modeling Framework for Supercomputer Digital Twins, Part 1:
Demonstration at Exascale . 199
Vineet Kumar, Scott Greenwood, Wesley Brewer, David Grant, Nathan Parkison, Wesley Williams

Thermo-Fluid Modeling Framework for Supercomputing Digital Twins, Part 2:
Automated Cooling Models .208
Scott Greenwood, Vineet Kumar, Wesley Brewer

PAPERS

DOI 10.3384/ECP207 7 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 7

Model-Based Design and Characterization
of an Actuator with Low-Boiling Liquid

Christoph Steinmann1 Johannes Herold1 Jens Schirmer1

1Institute of Electromechanical and Electronic Design, TUD Dresden University of Technology, Germany
christoph.steinmann@tu-dresden.de

Abstract
Visually impaired people rely on special equipment for ac-
cess to graphic representations in digital form. The avail-
able devices are very large and expensive. A simple and
cost-effective alternative to the existing concepts for hap-
tic displays is therefore desirable. This paper evaluates
the concept of a lifting actuator based on a fluid with a
low boiling point for this purpose. A functional proto-
type is constructed and its behavior is characterized. A
corresponding model is built and validated to simulate the
actuator and to analyze its operation. It provides detailed
information about the actuator that can be used to further
develop the design and to make decisions on the usability
of the new actuator in the product design process. Follow-
ing test runs and investigations on the model, the actuator
concept proved to be suitable for haptic display devices
under certain assumptions. Therefore the newly developed
model presents a good starting point for future revisions of
the concept.
Keywords: haptic display, multi-domain model, liquid-to-
gas phase change actuator, low-boiling liquid

1 INTRODUCTION
Tactile displays make it possible for visually impaired
people to interact with graphical representations of infor-
mation. Text-to-speech or classical braille lines can not
fulfill this functionality to the same degree (Baldwin et al.
2017). It is therefore desirable to further improve this type
of device.

Information can be made palpable primarily by ther-
mal, electrical or mechanical stimulation. Consequently
a variety of actuators can be used to generate these ef-
fects. For dot based graphical output the most com-
mon method is to feel mechanically elevated surfaces
(Vidal-Verdú and Hafez 2007). These can be actuated
by electric motors (Wagner, Lederman, and Howe 2002;
Sarakoglou, Tsagarakis, and Caldwell 2005), shape mem-
ory alloy (Howe, Kontarinis, and Peine 1995; Velazquez
et al. 2005), light (Mirvakili et al. 2021), pneumatic de-
vices (Caldwell, Tsagarakis, and Giesler 1999; Wilhelm
2015) or piezoelectric actuators, as often used in commer-
cial products (Tieman and Zeehuisen 1988; Matschulat
2024; Metec AG 2024).

Thermopneumatic actuators are rarely used. They are

based on the expansion of fluids due to heat input. When
liquids with low boiling points are utilized even more me-
chanical expansion is obtainable during evaporation. This
type of actuator is called a phase change actuator (PCA).
A very simple actuator consisting of a closed volume of
fluid with the ability to expand directionally can be con-
structed (Rai-Choudhury 1997; Matsuoka and Suzumori
2014).

This actuator principle could have many advantages be-
cause of its very simple structure and the miniaturization
potential it offers. The low number of internal components
might also lead to a more cost effective design.

There are multiple publications utilizing this principle
to generate mechanical force in soft robotics and other
fields (Han et al. 2019; Matsuoka, Kanda, et al. 2016;
Niiyama, Rus, and Kim 2014; Boyvat, Daniel M. Vogt,
and Robert J. Wood 2019; Sanchez et al. 2020; Uramune
et al. 2022). Work has also been done on low-boiling liq-
uids in the context of single braille actuators (Vidal-Verdú,
Madueno, and Navas 2005) and even on the use of micro
electro-mechanical system technology (Kwon, S. W. Lee,
and S. S. Lee 2009).

A common shortcoming of existing publications using
thermopneumatic actuators for braille displays is the lack
of a satisfactory theoretical model to describe the entire
system. Available models typically focus only on specific
properties or are based on simplified assumptions regard-
ing the thermodynamics of the system. An example of this
is the use of the Clausius-Clapeyron equation in (Vidal-
Verdú, Madueno, and Navas 2005), which describes the
resulting vapor pressure as a function of the temperature.
It does not provide any information on the system state
and therefore its own validity; nor does it provide any in-
formation on transport properties like heat capacity, which
is needed to calculate the energy demand. The exact force
generated is often characterized by taking measurements
on prototypes subsequently.

The goal of this work is to build a useful model of the
complete tactile system with standard engineering tools
and to make similar models applicable to other designs
based on the same principle. For this purpose a thermo-
pneumatic actuator is built based on the braille standard
size with a corresponding model describing its behavior.
The prototype is then characterized with measurements to
validate the model.

8 10.3384/ECP2077 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

2 METHODS
First a basic design is decided upon to then derive a model
of the relevant physical effects and the model’s theoretical
behavior. A demonstrator is constructed on the same basis.
Finally, the two are compared by means of experimental
validation in order to derive findings for further decisions
in the product development process.

2.1 Actuator Design
The actuator meets the requirements of the braille stan-
dard, in particular the footprint of 2.5 mm (braille dot
size), and represents a single tactile point. The prototype
was designed considering the available tools, scalability
and general ability to build up a matrix display based on
it. This is a more segmented approach comprising dis-
crete components as compared to other more integrated
approaches like in Kwon, S. W. Lee, and S. S. Lee (2009).
The system comprises only a few components to facilitate
modeling (Figure 1 A).

A wide variety of materials with different state transi-
tions (solid to liquid, liquid to gas) can be used to im-
plement the basic principle (Wilhelm, Richter, and Rapp
2018). We decided to use Novec 7000 (also known as HFE
7000 or RE347mcc) because of its low boiling point, good
environmental performance and its successful use in other
studies by Nakahara et al. (2017), Hiraki et al. (2020), and
Narumi et al. (2020).

The working fluid (F) is held in a copper chamber
sealed by adhesive copper foil (Figure 1 component "C").
While using this much copper increases the thermal mass
and therefore slows down the actuator, it accelerates heat
entry and speeds up the process. The latter was the dom-
inant effect with the first prototypes. Thermopneumatic
actuators are often designed with thin, flexible membranes
primarily made from latex. Tests showed that this is not an
option for this prototype using Novec 7000 as a working
fluid: The hygroscopic properties of alkoxy perfluoroalka-
nes (Koenigsegg 2021) might have led to water from the

Figure 1. A) Components of actuator prototype from bottom
to top: heatplate H, copper foil C, fluid F, membrane/foil M,
spring S, pin P
B) Experiment with tensile testing machine TM, stroke S and
force F

surrounding air migrating through the thin latex layers.
Therefore in our design a polyester foil with aluminum
coating is used (M). The metal layer makes this seal gas-
tight. The actuator can only expand by curving the foil
instead of mechanically stretching it like an elastic mem-
brane. This solution reaches its lower size limit with the
design footprint of 2.5 mm but produces a better seal than
a latex membrane. The prototype is completed by a small
push rod (P) to transmit the force and motion to the touch
surface and a spring (S) to assist with restoring the initial
position. The actuator itself does not include a heat gen-
erating device for the demonstrator. An external Peltier
element with temperature control is used to provide the
thermal energy needed (H).

2.2 Model of the Actuator
Bardaweel et al. (2009) built a detailed model of a PCA by
dividing it into discrete elements that are each described
by algebraic differential equations. Combining these re-
sults in a model describing all relevant internal and exter-
nal properties of the actuator. This technique of combining
differential equations across multiple physical domains
in a single system simulation is well suited for thermo-
pneumatic actuators. The structure of our chosen design
is shown schematically in Figure 2 A. It illustrates that
many variables and various physical effects interact with
each other in this actuator.

To make a similar approach for our actuator more gen-
erally accessible we opted to use the Modelica (Matts-
son and Elmqvist 1997) based commercial simulation tool
SimulationX (SimulationX 2024). With this approach a lot
of object-oriented basic elements are predefined and easily
accessible. A second general advantage of the approach is
that the parameters of the idealized individual components
can be well estimated in the concept phase and still be eas-
ily adjusted later. Hence, models created this way offer a
high degree of flexibility. The most important constructive
parameters of the prototype are shown in Table 1. These
values change when altering the actuator design. Parame-
ters which are constant in this context like material prop-
erties are not listed in the table.

In Figure 2 B the network of thermal components in the
system is built from the bottom up. It consists of contact
resistances between the components and their respective
heat capacities. Constructive parameters from Table 1 in
this context are contact areas and the mass of the compo-
nents to calculate heat capacity. The thermal conductiv-
ity at the contact points with thermal grease can be deter-
mined from the literature (Lienig and Bruemmer 2017).
For the heat transfer into the fluid, boiling and condensa-
tion processes would theoretically have to be considered,
which affect the resistance value depending on the fluid
state. Since available models do not properly reflect a
wide chamber, like it is used in our design, and since this
variable primarily affects system dynamics, the effect is
not being modeled more precisely for the time being. It
could be integrated in the model in future iterations.

9DOI 10.3384/ECP2077 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

mechanical
system

temperature T
heat flow Pth

thermal
network

volume V pressure p

two-phase
fluid

actuator force Fa stroke x

disruptive force Fdext. loads Fe

ext. pressure
patm

ext. temperature
Tatm

thermal source Pth

A)

m

B)

P

S

gravity

M

foil with
hysteresis

piston F

heat source

thermal resistance

chamber
heat capacity

H

C

REFPROP

Figure 2. A) Schematic of the different physical domains in-
volved in a PCA and their connections
B) Simplified version of the system model realized with Model-
ica

The chamber with the working fluid is connected to the
thermal network. The thermodynamic properties of the
fluid are hard to determine. In principle, the pressure in the
fluid can be represented as a function of temperature using
the Antoine equation or an empirical function according
to the data sheet. With the characteristic points given in
the data sheets, the Clausius-Clapeyron equation (Gerlach
and Dotzel 2008) describing the vapor pressure can often
be evaluated:

p(T) = pk · e
L0
R

(
1

Tk
− 1

T

)
(1)

Here the critical point tuple (Tk, pk) and heat of evapo-
ration L0 can be taken from the manufacturer’s data sheet.
The universal gas constant R is also well documented. The
state of the fluid includes additional variables like the ra-
tio of vapor to liquid phase as well as dependent transport
variables, such as thermal conductivity and thermal capac-
ity. In the case of very extensively tested fluids (e.g. wa-
ter), the corresponding relationships can be found in em-
pirical formulae or tables. But generally such thoroughly
verified data is not available for every material.

Table 1. Most important constructive model parameters for
nominal (n) and tuned (t) model

component parameter value

H,C radius contact area heater 5.25 mm
H,C thickness copper bottom 0.05 mm
C mass fluid chamber 2.1 g
C radius fluid chamber 1.25 mm
C volume fluid chamber 23 mm3

M movement force foil 36.8 mN
M stiffness foil (n) 137 N/m
M stiffness foil (t) 500 N/m
S spring constant 585 N/m
P mass pin 0.5 g
P maximum stroke 0.6 mm
F elasticity fluid volume (n) 0.7 mm3/bar
F elasticity fluid volume (t) 0.5 mm3/bar

Thermodynamic reference models such as CoolProp
(Bell et al. 2014), TREND (Span et al. 2020) or REF-
PROP (Lemmon et al. 2018) offer a solution. Based on
the Helmholtz equation of state and appropriate laboratory
data, these tools provide both state and transport quanti-
ties. They also determine properties that would be un-
available with the above method. REFPROP, which was
developed by the National Institute of Standards and Tech-
nology (NIST), was used in this work. In order to include
the data in the Modelica model, either suitable lookup ta-
bles can be generated beforehand and integrated into the
corresponding simulation programs or, as in our case, a
program interface can be used, which feeds parameters
from the current simulation step directly into REFPROP
and receives the results. This means that states outside the
phase transition region can also be simulated in the fluid
section of the model (Figure 2 blue) and energy aspects
can be considered by means of the variable material pa-
rameters.

The model is completed by the actuator’s mechanical
components. These consist of basic elements such as
springs and masses as well as travel stoppers. Foil be-
havior (Figure 1 component "M" and Figure 2 B "M") is
modeled by a force hysteresis over the deformation path.
Hysteresis parameters are obtained from previously per-
formed tests on the physical setup with an external pres-
sure source instead of the fluid. Two parameters in Table 1

10 10.3384/ECP2077 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

0.0 0.1 0.2 0.3 0.4 0.5

Stroke [mm]

0

500

1000

1500

2000

2500

F
o
r
c
e

[
m
N
]

F

start

F

end

F

max

F

hyst

k

model at 55°C

model at 57°C

Figure 3. Simulation results with characteristic points on the
actuator curve

are used to represent the hysteresis in the model: the stiff-
ness of the foil, which determines the increase in force,
and a constant force offset, which determines the pressure
at which the foil begins to change its direction of move-
ment. The latter was adjusted in a tuned model in sec-
tion 3. For the purpose of this study, only the observed
behavior is used as a basis for modeling. One approach
for a more precise modeling would be the phenomenolog-
ical description of the process using two principles: The
stiffness is mainly caused by friction of the foil against it-
self during flipping. The constant force is comparable to
the limit load that leads to plate buckling. However, since
the foil represents a design trade off to make the chamber
gas tight, a more detailed modeling is not considered to be
necessary. Further iterations of the actuator design would
need a different solution for this component nonetheless.

2.3 Experimental Validation
The experimental procedure can now be virtually repro-
duced in the actuator model and the measurable variables
can be compared with each other. In addition, the model
also provides insight into the system states.

First, the actuator is preheated to a constant temperature
and completely extended. In a real-world scenario, a per-
son would now apply a tactile force from above when feel-
ing the actuator. In order to simulate this process and to
characterize the actuator as appropriately as possible, the
measurement is performed identically: The extended ac-
tuator is compressed to the lower end stop by a tensile test-
ing machine (Zwick 1120) and then released. Meanwhile,
the force is measured as a function of the actuator stroke.
The test cycles are very slow with 40 s for 0.5 mm stroke
to enable the readjustment of the temperature, which is as-
sumed to be constant. Each measurement is carried out at
least twice on the real prototype. The tests are repeated
at different temperatures. A characteristic curve based on
the model is plotted in Figure 3.

The plot shows that the force at the beginning (Fstart)
is greater by the amount of the hysteresis force Fhyst when
moving down than when moving out at the end (Fend). As
long as steam is still present in the system, the pressure is

0.0 0.1 0.2 0.3 0.4 0.5

Stroke [mm]

0

500

1000

1500

2000

2500

F
o
r
c
e

[
m
N
]

F

start

F

end

F

max

F

hyst

k

measurement at 64°C

measurement at 66°C

Figure 4. Test results with characteristic points on the actuator
curve

constant according to theory, since the temperature is kept
constant. The increase k visible in Figure 3 is due to the
mechanical properties of the spring and foil.

When leaving the two-phase region, there is a signif-
icant increase of up to Fmax in the force required be-
cause the vapor pressure equation loses its validity at this
point and the tensile tester is now acting against a non-
compressible fluid with no vapor content. This response
can only be depicted by using the thermodynamic refer-
ence model.

Curves similar to those yielded by the model are also
expected in the trials and can be compared based on the
characteristic points. Exemplary test results are shown in
Figure 4 and variables corresponding to those in the model
are plotted for comparison purposes.

3 Results
The experiments show that the fully assembled proto-
type fulfills the basic function of an actuator for an active
braille display. In addition to the functional tests, the test
sequence described above was performed 13 times. Figure
4 shows two of these test runs at 64°C and 66°C, respec-
tively.

There is a constant temperature offset of 9 K between
the model values and the measurements. This will be dis-
cussed later.

3.1 General Behavior
Some basic actuator characteristics were determined prior
to the force measurements. It has been shown that the
prototype does not start to extend until a temperature of
62°C is reached. The extension and retraction periods of
31 s and 60 s, respectively, are very long with the heating
and cooling unit used. The reason for this is that the over-
all structure is stiffer then it needs to be, which is mainly
due to the foil being used to make the system gas tight.
The minimum force of 50 mN - required for probing the
point (Vidal-Verdú and Hafez 2007) - is greatly exceeded
as well. However, these drawbacks are all a direct conse-
quence of the concrete design implementation. With the

11DOI 10.3384/ECP2077 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

100

200

300

400

500

F

s
t
a
r
t

[
m
N
]

Force Characteristics

1200

1400

1600

1800

2000

F

m
a
x

[
m
N
]

50 52 54 56 58 60 62 64 66 68 70

Temperature [°C]

0

100

200

300

F

e
n
d

[
m
N
]

measured

offset

model nominal

model tuned

Figure 5. Forces at different temperatures. From top to bottom:
force at first contact, maximum force and force after releasing
the load

help of the model, it is possible to simulate a smaller ac-
tuator with lower heat capacity and less stiff mechanical
components that reaches cycle times of 0.1 s with still suf-
ficiently large tactile force.

Although the energy consumption could not be mea-
sured in the demonstrator, the results from the model al-
low conclusions to be drawn in this regard as well. The
selected design boundary conditions, such as overall size,
mechanical losses and stiffness, are clearly too large. This
results in very high energy consumption. In practical
terms, this would mean that approximately 1 W of power
would be required per actuator in the extreme case of a
display with a 10 Hz refresh rate. This is not realistic for
applications with several thousand actuators like high res-
olution tactile displays. The design of the actuator concept
would have to be adapted so that it could realistically be
operated at lower power levels.

The curve in Figure 4 can be compared with the mod-
eled sequence in Figure 3 and all characteristic values are
identifiable for further examination. The plot also shows
that the demonstrator does not quite achieve the targeted
maximum stroke of 0.5 mm due to mechanical tolerances.
Other differences between the curves can be better ana-
lyzed using the characteristic points in the next section.

3.2 Actuator Characteristics
The characteristic points in the force-displacement curve
are obtained from the experimental procedure described

1000

1500

2000

2500

k

[
N
/
m
]

Stiffness and Hysteresis

50 52 54 56 58 60 62 64 66 68 70

Temperature [°C]

150

200

250

300

350

F

h
y
s
t

[
m
N
]

measured

offset

model nominal

model tuned

Figure 6. Stiffness (top) and hysteresis (bottom) of the actuator
at different temperatures

above. This data is used to compare the model and the
experiment. In addition to the model with nominal values
from the design process, a tuned model was developed, as
a result of deviating system parameters (Table 1). In cer-
tain areas this new model better corresponds to the mea-
surement. Figure 5 shows the three force points. The force
at the beginning of the cycle Fstart is well reproduced by
both models, taking into account the constant temperature
offset. The same applies to the force after releasing the
load (Fend).

The maximum force Fmax applied during the experi-
ment is significantly less accurate. The parameter for the
stiffness of the fluid chamber was changed in the tuned
model to achieve a slightly better match. However, this
is still significantly less accurate compared to the other
two forces. There are two reasons for this: First, the ten-
sile tester compresses the test setup to a defined maximum
force, since the stroke could not be used in a control capac-
ity. As a result, the very high peak forces do not originate
from the actuator itself but from the mechanical stop be-
tween the actuator and the testing equipment. The exact
value is therefore difficult to determine from the test data.
Secondly, there are also inaccuracies in the model, which
compresses a fluid inside a stiff mechanical structure af-
ter leaving the two-phase region. This parameter change
causes numerical inaccuracies at peak values, which could
not be fine-tuned for every test series.

The parameters of the actuator stiffness k and hysteresis
width Fhyst in Figure 6 can also not be fitted very well and
both show a fundamental unsolved problem in our stud-
ies: In the demonstrator the actuator stiffness increases
with temperature. This behavior is not implemented in the
model, since the exact cause of the effect is still unknown.
Accordingly, there are strong deviations between model
and measurement here.

12 10.3384/ECP2077 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

4 Discussion
In the simulation results (Figure 3), a clear distinction can
be made between the two-phase region with steam inside
the fluid chamber and the single-phase region with pro-
gressive compression. The sharp bend separating the two
regions is assumed to occur at a stroke height of around
0.3 mm, however in the test setup it is not nearly as appar-
ent as in the model. It should be noted, that the rightmost
part of the curve in Figure 4 results from the actual test
setup, in which the actuator is fully compressed and re-
leased again. This represents a well repeatable test case,
but does not correspond to the practical application. When
the elevated surfaces are sensed by touch, the actuator
would only be loaded in the left part of the characteris-
tic curve. The relevant characteristic values Fstart and Fend
are again well modeled there.

The continuous transition between the two regions in
the trial could explain why the stiffness k of the test ac-
tuator is higher than in the model. A temperature depen-
dency can be at least partially explained: In the two-phase
region, the stiffness depends only on the mechanical com-
ponents of the system, since the pressure in the actuator
remains constant. However, this does not apply to further
compression with purely liquid fluid. Changes can occur
here since the mechanical properties of the fluid change in
relation to temperature. Whether these effects are a suf-
ficiently accurate quantitative explanation for the differ-
ences needs further investigation.

4.1 Temperature Offset
The temperature during the experiment was only set on the
heater and actively regulated there. It could not be mea-
sured inside the actuator itself due to its compact design. It
is therefore conceivable that the temperature inside the ac-
tuator was slightly lower than inside the heating plate be-
cause the device was air cooled. In addition, it was shown
earlier that the complete actuator is overall stiffer than the
model predicts. This means that the real actuator needs a
higher temperature to exert the desired force. Both effects
combined can explain the temperature difference between
model and experiment.

4.2 Model Inaccuracies
Two simplifications were made in the design of the model.
On one hand, the expansion within an ideal cylindrical
piston is assumed. In this case, the calculated volume
does not exactly match that of the actuator because the
foil bulges slightly and does not form perfect edges. On
the other hand, the boiling and condensation processes are
not accurately modeled. The heat transfer between cham-
ber and fluid is thus only a simplification, which impacts
actuator dynamics. However, the impact of both effects
on the system should be minimal and does not explain the
increase in actuator stiffness as a function of temperature.
Enhancing these parts of the model therefore improves the
overall model behavior only slightly.

4.3 Future Work
This work shows how a Modelica based simulation model
can be used to evaluate an idea during the product develop-
ment process. Apart from this, the actually implemented
structure of the actuator prototype still has room for fur-
ther improvement that should be addressed in future work.
The modeling inaccuracies that occur are mainly related to
these components.

The foil used as a membrane was selected to replace
latex membranes, which repeatedly showed leaks. The
foil for the 2.5 mm diameter prototype actuator is on the
limit of usability because of its stiffness. This caused the
very high operating temperature and large actuator forces,
which are significantly greater than required. A better so-
lution with good sealing properties when used in combina-
tion with fluorine-based fluids is needed for future setups.

In addition, the setup should be equipped with more
sensors for pressure and temperature monitoring inside
the actuator. Even if this means that the targeted size of
2.5 mm is probably not feasible for an experimental setup,
this disadvantage is outweighed by the significantly better
verifiability of the model.

Furthermore it would be worth considering whether a
different fluid could be utilized. The coolant used has a
high evaporation enthalpy, due to its intended use for ab-
sorbing heat, which is also responsible for the high energy
consumption. It might be more advantageous to choose a
fluid with a higher boiling point but a lower heat of evapo-
ration. The temperature of the actuator must then be kept
close to the boiling point by means of insulation. Un-
fortunately, substances with similarly low boiling points
and at the same time low enthalpy of vaporization, such as
isopentane, are often toxic (Chiba and Oshida 1991).

5 Conclusions
It was shown that the system simulation approach in com-
bination with thermodynamic reference models can be
used to simulate PCAs for tactile applications. The struc-
ture is intuitive due to the existing object-oriented libraries
and can be adapted well to further work. They therefore
form a useful basis for product development processes
when evaluating solution concepts.

A model of an actuator was successfully built and ex-
perimentally validated. This makes transient simulations
possible. It can be easily adapted to modified designs. The
challenges that still exist are largely due to the specific foil
used in the actuator.

The model based on Modelica with libraries from Sim-
ulationX can also be extended to include the previously
neglected effects. To do this, it would make sense to first
carry out further tests with more measurement options and
thus clarify the still unexplained effects in regard to the ac-
tuator stiffness. However, due to the energy consumption
observed on the model, the actuator concept was not pur-
sued further for the specific planned application of a haptic
braille display.

13DOI 10.3384/ECP2077 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Acknowledgements
We would like to thank the NIST and Dr. Eric Lemmon
for providing the fluid model file used with REFPROP as
a part of the system model.

References
Baldwin, Mark S. et al. (2017). “The Tangible Desktop”. In:

ACM Transactions on Accessible Computing 10.3, pp. 1–28.
DOI: 10.1145/3075222.

Bardaweel, H. K. et al. (2009). “Characterization and modeling
of the dynamic behavior of a liquid–vapor phase change actu-
ator”. In: Sensors and Actuators A: Physical 149.2, pp. 284–
291. DOI: 10.1016/j.sna.2008.11.020.

Bell, Ian H. et al. (2014). “Pure and pseudo-pure fluid ther-
mophysical property evaluation and the open-source thermo-
physical property library CoolProp”. In: Industrial & engi-
neering chemistry research 53.6, pp. 2498–2508. DOI: 10 .
1021/ie4033999.

Boyvat, Mustafa, Daniel M. Vogt, and Robert J. Wood
(2019). “Ultrastrong and High-Stroke Wireless Soft Actua-
tors through Liquid–Gas Phase Change”. In: Advanced Ma-
terials Technologies 4.2, p. 1800381. DOI: 10 . 1002 / admt .
201800381.

Caldwell, D. G., N. Tsagarakis, and C. Giesler (1999). “An
integrated tactile/shear feedback array for stimulation of
finger mechanoreceptor”. In: Proceedings 1999 IEEE In-
ternational Conference on Robotics and Automation (Cat.
No.99CH36288C). Vol. 1, 287–292 vol.1. DOI: 10 . 1109 /
ROBOT.1999.769991.

Chiba, S. and S. Oshida (1991). “Metabolism and toxicity
of n-pentane and isopentane”. In: Nihon Hoigaku Zasshi -
The Japanese Journal of Legal Medicine 45.2, pp. 128–137.
PMID: 1920919.

Gerlach, Gerald and Wolfram Dotzel (2008). Introduction to mi-
crosystem technology: a guide for students. John Wiley &
Sons. Chap. 7.2 Transducers for Sensors and Actuators. ISBN:
9780470058619.

Han, Jie et al. (2019). “Untethered Soft Actuators by Liquid–
Vapor Phase Transition: Remote and Programmable Actua-
tion”. In: Advanced Intelligent Systems 1.8, p. 1900109. DOI:
10.1002/aisy.201900109.

Hiraki, Takefumi et al. (2020). “Laser Pouch Motors: Selective
and Wireless Activation of Soft Actuators by Laser-Powered
Liquid-to-Gas Phase Change”. In: IEEE Robotics and Au-
tomation Letters 5.3, pp. 4180–4187. DOI: 10 . 1109 / LRA .
2020.2982864.

Howe, R. D., D. A. Kontarinis, and W. J. Peine (1995). “Shape
memory alloy actuator controller design for tactile displays”.
In: Proceedings of 1995 34th IEEE Conference on Decision
and Control. Vol. 4, pp. 3540–3544. DOI: 10 . 1109 / CDC .
1995.479133.

Koenigsegg, Christian (2021-10-13). “Liquid heat transfer mix-
ture and use thereof”. European pat. EP3757190B1. Alpraaz
AB. URL: http : / / v3 . espacenet . com / textdoc ? IDX =
EP3757190.

Kwon, Hyuk-Jun, Seok Woo Lee, and Seung S. Lee (2009).
“Braille dot display module with a PDMS membrane driven
by a thermopneumatic actuator”. In: Sensors and Actuators
A: Physical 154.2, pp. 238–246. DOI: 10.1016/j.sna.2008.10.
002.

Lemmon, Eric W. et al. (2018). “NIST standard reference
database 23: reference fluid thermodynamic and transport
properties-REFPROP, Version 10.0, National Institute of
Standards and Technology”. In: Standard Reference Data
Program, Gaithersburg.

Lienig, Jens and Hans Bruemmer (2017). Fundamentals of elec-
tronic systems design. Springer. Chap. 5.4.2 Thermal Inter-
face Materials. ISBN: 9783319558400.

Matschulat, Gunnar (2024). ABTIM. URL: http: / /www.abtim.
com/ (visited on 2024-04-26).

Matsuoka, Hiroki, Takefumi Kanda, et al. (2016). “Develop-
ment of a rubber soft actuator driven with gas/liquid phase
change”. In: International Journal of Automation Technology
10.4, pp. 517–524. DOI: 10.20965/ijat.2016.p0517.

Matsuoka, Hiroki and Koichi Suzumori (2014). “Gas/liquid
phase change actuator for use in extreme temperature envi-
ronments”. In: International Journal of Automation Technol-
ogy 8.2, pp. 140–146. DOI: 10.20965/ijat.2014.p0140.

Mattsson, Sven Erik and Hilding Elmqvist (1997). “Modelica -
An International Effort to Design the Next Generation Model-
ing Language”. In: IFAC Proceedings Volumes 30.4, pp. 151–
155. DOI: https://doi.org/10.1016/S1474-6670(17)43628-7.

Metec AG (2024). Hyperflat. URL: https://www.metec-ag.de/
downloads/hyperflat-flyer-komplett.pdf (visited on 2024-04-
26).

Mirvakili, Seyed M. et al. (2021). “Solar-Driven Soft Robots”.
In: Advanced Science 8.8, p. 2004235. DOI: 10.1002/advs.
202004235.

Nakahara, Kenichi et al. (2017). “Electric phase-change actuator
with inkjet printed flexible circuit for printable and integrated
robot prototyping”. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, pp. 1856–1863.
DOI: 10.1109/ICRA.2017.7989217.

Narumi, Koya et al. (2020). “Liquid Pouch Motors: Printable
Planar Actuators Driven by Liquid-to-Gas Phase Change for
Shape-Changing Interfaces”. In: IEEE Robotics and Automa-
tion Letters 5.3, pp. 3915–3922. DOI: 10.1109/LRA.2020.
2983681.

Niiyama, Ryuma, Daniela Rus, and Sangbae Kim (2014).
“Pouch Motors: Printable/inflatable soft actuators for
robotics”. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 6332–6337.
DOI: 10.1109/ICRA.2014.6907793.

Rai-Choudhury, Prosenjit (1997). Handbook of microlithogra-
phy, micromachining, and microfabrication: microlithogra-
phy. Vol. 39. SPIE press. ISBN: 0-8194-2378-5.

Sanchez, Vanessa et al. (2020). “Smart thermally actuating tex-
tiles”. In: Advanced Materials Technologies 5.8, p. 2000383.
DOI: 10.1002/admt.202000383.

Sarakoglou, I., N. Tsagarakis, and D. G. Caldwell (2005). “A
portable fingertip tactile feedback array - transmission sys-
tem reliability and modelling”. In: First Joint Eurohaptics
Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems. World Haptics Con-
ference, pp. 547–548. DOI: 10.1109/WHC.2005.17.

SimulationX (2024). URL: https://www.esi-group.com/products/
simulationx (visited on 2024-04-26).

Span, R. et al. (2020). TREND. Thermodynamic Reference and
Engineering Data 5.0.

Tieman, Frans J. and Kees Zeehuisen (1988-07-19). “Tactile re-
lief display device and method for manufacture it”. U.S. pat.
4758165.

14 10.3384/ECP2077 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Uramune, Ryusei et al. (2022). “HaPouch: A Miniaturized, Soft,
and Wearable Haptic Display Device Using a Liquid-to-Gas
Phase Change Actuator”. In: IEEE Access 10, pp. 16830–
16842. DOI: 10.1109/ACCESS.2022.3141385.

Velazquez, Ramiro et al. (2005). “A low-cost highly-portable
tactile display based on shape memory alloy micro-
actuators”. In: IEEE Symposium on Virtual Environments,
Human-Computer Interfaces and Measurement Systems,
2005. IEEE, 6–pp. DOI: 10.1109/VECIMS.2005.1567577.

Vidal-Verdú, Fernando and Moustapha Hafez (2007). “Graph-
ical tactile displays for visually-impaired people”. In: IEEE
transactions on neural systems and rehabilitation engineer-
ing : a publication of the IEEE Engineering in Medicine and
Biology Society 15. DOI: 10.1109/TNSRE.2007.891375.

Vidal-Verdú, Fernando, Manuel J. Madueno, and Rafael Navas
(2005). “Thermopneumatic actuator for tactile displays and
smart actuation circuitry”. In: Smart Sensors, Actuators, and
MEMS II. Ed. by Carles Cane, Jung-Chih Chiao, and Fer-
nando Vidal Verdu. SPIE Proceedings. SPIE, pp. 484–492.
DOI: 10.1117/12.607603.

Wagner, C. R., S. J. Lederman, and R. D. Howe (2002). “A tac-
tile shape display using RC servomotors”. In: Proceedings
10th Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems. HAPTICS 2002, pp. 354–
355. DOI: 10.1109/HAPTIC.2002.998981.

Wilhelm, E. (2015). “Entwicklung eines mikrofluidischen
Brailledisplays”. PhD thesis. Karlsruhe. ISBN: 978-3-7315-
0385-9.

Wilhelm, E., C. Richter, and B. E. Rapp (2018). “Phase change
materials in microactuators: Basics, applications and perspec-
tives”. In: Sensors and Actuators A: Physical 271, pp. 303–
347. DOI: 10.1016/j.sna.2018.01.043.

15DOI 10.3384/ECP207 15 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Dynamic Modeling Methodology for Near
Isothermal Compressor

Haopeng Liu1 Vikrant Aute1 Yunho Hwang1 Cheng-Yi LEE1
Jan MUEHLBAUER1 Lei Gao1

1Center for Environmental Energy Engineering, Department of
Mechanical Engineering, University of Maryland, College Park, USA,

{hliu1220, vikrant, yhhwang, muehlie,
cylee, leigao}@umd.edu

Abstract
Compressors are the vital component of the vapor
compression systems and account for the majority of
energy consumption. Developing appropriate controllers
or optimizing compressor design can significantly reduce
the carbon emissions. The isothermal compressor
combines the compressor chamber and gas cooler, using
the liquid piston to compress the working fluid for near-
isothermal compression. This methodology can reach up
to 30% energy saving compared to the traditional
isentropic compression work. This paper leverages the
CEEE Modelica Library (CML) to demonstrate a detailed
isothermal compressor model that captures the near-
isothermal compression process of transcritical carbon
dioxide (CO2) cycle. The model uses the real experimental
data as the boundary conditions, and the relevant
component-level experimental validation was carried out
by using a prototype with 1-ton nominal capacity. The
results proved the accuracy of the dynamic model (7.5%
relative error for chamber pressure and 0.74 K deviation
for chamber temperature), and provide a guideline for
designing the isothermal compressor chamber. Finally,
the modeling for the isothermal compression cycle is
ongoing and the filed is still in its infancy.

Keywords: Isothermal Compressor, Transcritical CO2
Cycle, Dynamic Modeling

1 Introduction
Vapor compression system (VCS) are extensively utilized
in heating, ventilation, and air conditioning (HVAC) area,
which together account for more than 30% of electricity
generated in the U.S. (EIA, 2022). The compressor,
responsible for circulating refrigerant and transferring
heat, consumes the majority of this electricity. Therefore,
measures to improve the system energy efficiency,
especially the innovative design of compressor, can
significantly reduce the carbon footprint and boost the
resilient energy economy.

The ideal thermodynamic cycle (Carnot cycle) defines
the upper limit on the efficiency of refrigeration system in

creating a temperature difference through the application
of work to the system. In reality, it’s not possible to build
such thermodynamically reversible engine and the real
engines that even operate along the Carnot cycle style
(isothermal expansion / isentropic expansion / isothermal
compression / isentropic compression) are rare. However,
the isothermal compression can bring the system close to
the Carnot cycle efficiency, and the related technology
have achieved breakthrough progress recently, especially
with the widespread adoption of compressed air energy
storage (CAES) that driven by the increasing penetration
of renewable energy sources (Kim et al., 2022). Given that
one of the biggest problems come with CAES is low
energy efficiency, i.e., the traditional CAES systems lose
energy due to heat generated during the compression,
which cannot be fully recovered. A considerable number
of studies have explored achieving isothermal
compression in CAES applications, including water
injection (Patil et al., 2020, Odukomaiya et al., 2016),
chamber shape optimization (Zhang et al, 2016) and
chamber packing with inserted material (Yan et al, 2015,
Saadat et al, 2012).

On the other hand, CAES systems emit greenhouse
gases, which pose challenges to the goals of reducing
greenhouse gas emissions. In view of long-term
environmental safety, one potential substitute refrigerant
is carbon dioxide (CO2), a natural refrigerant that has
negligible impact on climate change, which is
environmentally benign, non-toxic, and non-explosive. In
addition, recent advancements in system design and
manufacturing improvements make it possible to achieve
high pressure required for CO2 transcritical operation, and
the CO2 can deliver much higher heat rejection through
sensible cooling to regain efficiency when it’s compressed
beyond critical point (31.1 °C, 7.38 MPa). The CO2
transcritical cycles have many different system
configurations for different applications (Sarkar et al.,
2004, Fernandez et al., 2010), with ongoing tightening
environmental regulations, further theoretical research is
needed to explore the potential for enhancing the energy
efficiency of transcritical CO2 systems.

16 10.3384/ECP20715 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

The CEEE Modelica Library (CML) is a
comprehensive Modelica library developed by the Center
for Environmental Energy Engineering (CEEE),
University of Maryland, College park. It is designed for
transient simulation of extensive thermal system
configurations and HVAC applications. The CEEE can
assist in gaining a deeper understanding of
thermodynamic systems. The CML is scalable, allowing
users to virtually assess and optimize the VCS’s
performance. Two features in our implementation are
tailored for modeling of isothermal compressor model in

CML: (1) Using the liquid piston to compress the working
fluid (CO2) within the heat exchanger-based chamber to
enhance the heat transfer. (2) The compression chambers
can realize the double-acting mechanism, allowing
compression and suction processes to occur
simultaneously. The modeling details are elaborated in
Section 2, while Section 3 covers the information about
our experimental setup and the relevant experimental
validation. Finally, the conclusions and future work are
summarized in Section 4.

2 Modeling Methodology
In our test unit, a two-chamber isothermal compressor
design with shared liquid pump is adopted. Each
compression chamber is based on the plate heat exchanger
(PHX), with the secondary fluid (water) provided by the
air-cooled radiator to cool down the compressed
refrigerant. Additionally, both the residual gas cooler and
suction line heat exchanger are PHXs as well, utilized to
ensure the rated cooling capacity of 1 ton. The piston
accumulator is used as the storage component to regulate
the system charge level and mitigate pressure fluctuation.
The electronic expansion valve (EXV) controls the
downstream pressure and mass flow rate, while the
electric heater acts as the evaporator to control the
refrigerant state at the suction side of the isothermal
compressor by regulating its heat load.

The schematic diagram of the test facility with sensors
installed is shown in Figure 1. Sensors are in place to
measure key operation variables such as pressures,
temperatures and mass flow rates, etc. In Figure 1, letters
‘T’ and ‘P’ represent the temperature and pressure
measurement via thermocouples and pressure transducers,
respectively, which can provide us with information about
the refrigerant state for different components. The
hydraulic directional control valve is installed to
facilitates the switching of flow direction when the
isothermal chamber completes the compression/ suction
stroke, and the oil level reaches the upper/ lower oil level
sensor. The check valves were utilized to minimize the
dead volume in each compression cycle and the mass flow
meter is uilized to measure the suction side mass flow rate
of the isothermal compressor.

Figure 1. Sensor instrumentation diagram for the test unit.

The Modelica interface of the PHX-based isothermal
compressor is depicted in Figure 2 and following
assumptions are made for the modeling:

1. The refrigerant side boundary conditions (e.g.,
pressure and enthalpy) of the isothermal
compressor were provided based on the
experimental data, while the water-side boundary

17DOI 10.3384/ECP20715 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

conditions were assumed to be constant for
simplification.

2. The liquid piston model is simplified as the input
to the isothermal compressor, which compresses
or suck in the refrigerant within the chamber
under the given volumetric flow rate and time
period.

3. For each channel of the PHX-based isothermal
compressor, the geometric details and the flow
conditions (e.g., mass flow rate and temperature)
for both primary and secondary fluid were
assumed to be the same. Therefore, the individual
channel was selected for the modeling, and the
corresponding results were multiplied by half the
total number of plates to derive the overall
component results.

4. The process of solubility / degassing of CO2 in oil
during the compression/ suction is too complex

and can affect the charge estimation within the
isothermal compressor. Therefore, for
simplification, the oil is assumed to be mineral oil
with no solubility. Additionally, the model does
not consider the heat transfer between the oil and
CO2.

The geometric details of the PHX are shown in Table 1.

Table 1. Geometric details of the PHX.
Parameter Value

Port to port length (mm) 329
Width (mm) 119.5
Corrugation depth (mm) 1.55
Area enlargement factor
Total number of plate
Diamter of port (mm)

 1.24
 50
 23.5

Figure 2. Modelica interface of the isothermal compressor model.

The conservation differential equations for the refrigerant
energy, mass and tube wall energy for the isothermal
compressor are given in Equation 1 to Equation 3.

()in in out out r r wU = m h m h A T T− − − (1)

e in outm = m m− (2)

() (),th w w r r w water w waterE = C T A T T A T T = − − − (3)

where U is the refrigerant internal energy; inm and outm
represent the inlet and outlet refrigerant mass flow rates
of the chamber, respectively; hin and hout represent the inlet
and outlet refrigerant enthalpy of the chamber,
respectively; Tr, Tw and Twater are the temperature of

refrigerant, plate wall and water (secondary fluid); em is
the time derivative of refrigerant mass held in the
chamber; E is the plate wall energy and Cth,w denotes its
thermal capacitance; A is the heat transfer area; αr and
αwater are the refrigerant side and water side heat transfer
coefficient (HTC), respectively;

Based on the relationship between the refrigerant internal
energy and enthalpy

Pu h


= − (4)

where u is the refrigerant specific internal energy and ρ is
the refrigerant density, the time derivative of the
refrigerant internal energy U in Equation 1 can be
decomposed into terms of time derivatives of the pressure

18 10.3384/ECP20715 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

and enthalpy using the chain rule:

()U = Vh V P Vh V h h P V
P h
       − + + + −       

(5)

where V is the chamber volume of isothermal compressor.
Similarly, the mass balance equation of Equation 2 can be
rewritten as

em = V P h V
P h
    + +   

(6)

Equation 5 and 6 allow the reformulation of the governing
equations using the pressure P and enthalpy h as the state
variables. The resultant state-space governing equations
for each channel of PHX-based isothermal compressor are
formulated as follows

()

() ()

, ,

,
, , , , ,

,

0

0

0 0 0
0 0 0 1

in out
i i in i r i i r,i w i

i i i i i i i i i i
i i i

in out
i i i

i i i
i i w i

r i i r,i w i water i i w i water i

th w i

m m
h h A T TV h V V h V h P N NP h P

m m
hV V N N

P h T A T T A T T
C V

   

 


 

   − − −− + −         −    =      − − −      
  

mV
N

 
 
 
 
 
 
 
 
 −
  

(7)

where i denotes the ith channel; Vm is volumetric flow rate
of the liquid piston and N is half of the total number of
plates.

As shown in Figure 1, a flow meter was installed at the
hydraulic part to measure the volumetric flow rate of oil,
and the experimental results were shown in the left part of
Figure 3. For modeling purposes, simplifications were

thereby implemented: in each process (compression/
suction), the volumetric flow rate was initially kept
constant for the first 6 seconds, and then linearly declined
throughout the remaining period. Note that the volumetric
flow rate profile for each chamber takes mirror
relationship.

Figure 3. Volumetric flow rate of liquid piston for each compression chamber
(“Com”: compression, “Suc”: suction).

3 Experimental Validation
Figure 4 shows the test rig of isothermal compressor
system with the rated cooling capacity of 1 ton. As
forementioned, the two PHXs-based compression
chambers were utilized to implement the double-acting
mechanism. This design ensures each of the compression

chamber undergoes either the suction or compression
process, with both processes having the same duration by
using the level sensor to monitor the oil level. The
secondary loop of PHX is managed by the water radiator
with fan to release the heat into ambient. The oil separator
is introduced to separate the oil dissolved in the refrigerant
during the compression process and return it to the liquid

19DOI 10.3384/ECP20715 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

pump. This pump provides high-pressure liquid to the
compression chamber and is designed to achieve high
volumetric efficiency.

Figure 4. Experimental facility of isothermal compressor cycle.

The experimental validation results for the isothermal
compression system model were depicted in Figure 5.
Overall, the established model can accurately capture the
pressure and temperature behavior of test rig, for both
dynamic and steady state characteristics, with 7.5%
relative error for the chamber pressure and 0.74 K
deviation for the chamber temperature. However, the
pressure comparison revealed that the simulation curve
appears “steeper” than the experimental counterpart at the
end of the compression process (delivery of CO2), which
probably due to the liquid piston model didn’t accurately
reflect the real volumetric flow rate at that stage.
Therefore, one of the future tasks should be the calibration
of liquid piston model. Furthermore, during the suction

period, there is noticeable deviation between the
simulation and experiment. This is mainly because the
model didn’t account for the degassing process, where
quite amount of CO2 is released from the oil due to the
pressure drop.

As for the temperature comparison, the experimental
results show a sudden drop at the beginning of the suction
process. This drop is due to the expansion of the remaining
CO2 in the isothermal chamber. However, the model did
not capture this behavior, likely because the sensor is
attached to the surface of the compression chamber, and
the model did not account for the thermal mass of the
chamber wall.

20 10.3384/ECP20715 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 5. Comparisons of pressure and temperature between experiment and simulation for each compression chamber.

4 Conclusions
In this paper, a dynamic model for the double-acting
isothermal compressor based on the CML is established.
The isothermal compressor is coupled with liquid piston
to serve the dual purpose as a heat exchanger to cool down
the refrigerant and achieve the isothermal compression
within the chamber. Unlike the conventional compressor
model which evolve on much faster time scales than the
heat exchanger dynamics and typically established as
quasi-steady state model, the compression process for the
isothermal compressor model requires much longer time
to dissipate the sufficient heat. To demonstrate the
accuracy, the experimental tests were carried out based on

the 1-ton refrigeration system, where the boundary
conditions of experimental data were fed into the model.
The results validated that the established model can
accurately capture both the steady-state and dynamic
behaviors of test rig (7.5% relative error for chamber
pressure and 0.74 K deviation for chamber temperature).

To further improve the model accuracy, future work
include the calibration of liquid piston model and the
incorporation of the CO2 solubility correlation in the oil.
The developed model will be used to guide the future
design (e.g., shape optimization of chamber) and
prototyping.

Acknowledgements
This material is based upon work supported by the U.S.
Department of Energy’s Office of Energy Efficiency and
Renewable Energy (EERE) under the Building
Technologies Office Award Number DE-EE0008674.

References
EIA (2022). Electricity data. 2022.

https://www.eia.gov/energyexplained/electricity/use-of-
electricity.php.

Kim, T., Lee, C. Y., Hwang, Y., & Radermacher, R. (2022). A
review on nearly isothermal compression technology.
International Journal of Refrigeration, 144, 145-162.

Patil, V. C., Acharya, P., & Ro, P. I. (2020). Experimental
investigation of water spray injection in liquid piston for near-
isothermal compression. Applied energy, 259, 114182.

Odukomaiya, A., Abu-Heiba, A., Gluesenkamp, K. R.,
Abdelaziz, O., Jackson, R. K., Daniel, C., ... & Momen, A.

M. (2016). Thermal analysis of near-isothermal compressed
gas energy storage system. Applied energy, 179, 948-960.

Zhang, C., Li, P. Y., Van de Ven, J. D., & Simon, T. W. (2016).
Design analysis of a liquid-piston compression chamber with
application to compressed air energy storage. Applied
thermal engineering, 101, 704-709.

Yan, B., Wieberdink, J., Shirazi, F., Li, P. Y., Simon, T. W., &
Van de Ven, J. D. (2015). Experimental study of heat transfer
enhancement in a liquid piston compressor/expander using
porous media inserts. Applied energy, 154, 40-50.

Saadat, M., Li, P. Y., & Simon, T. W. (2012, June). Optimal
trajectories for a liquid piston compressor/expander in a
compressed air energy storage system with consideration of
heat transfer and friction. In 2012 American Control
Conference (ACC) (pp. 1800-1805). IEEE.

Sarkar, J., Bhattacharyya, S., & Gopal, M. R. (2004).
Optimization of a transcritical CO2 heat pump cycle for
simultaneous cooling and heating applications. International
Journal of Refrigeration, 27(8), 830-838.

Fernandez, N., Hwang, Y., & Radermacher, R. (2010).
Comparison of CO2 heat pump water heater performance
with baseline cycle and two high COP cycles. International
Journal of Refrigeration, 33(3), 635-644.

21DOI 10.3384/ECP207 21 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Fluid Property Functions in Polar and Parabolic Coordinates

Scott A. Bortoff, Christopher R. Laughman, Vedang Deshpande and Hongtao Qiao 1

1Mitsubishi Electric Research Laboratories, Cambridge, MA, USA {bortoff, laughman, deshpande,
qiao}@merl.com

Abstract
This paper presents two methods for reallizing fluid prop-
erty functions in Modelica simulation models. Each
makes use of a coordinate transformation that aligns one
coordinate with the saturation curve. This provides for
a precise representation of the fluid property function at
the saturation curve, and for connected domains of inter-
est including the liquid, vapor, supercritical and two-phase
regions. Both approaches make use of spline function ap-
proximation in the aligned coordinates, and are numeri-
cally efficient, well conditioned, and allow for efficient
calculation of derivatives up to any desired order that are
precise up to processor numerical tolerance.
Keywords: thermofluid models, fluid properties

1 Introduction
Fluid property functions relate fluid property variables
such as temperature, pressure, density, etc., to one another.
For a fluid of fixed composition in thermodynamic equi-
librium, all fluid property variables can be calculated as
a function of two independent variables: a mixture vari-
able and a second variable. Pressure P and specific en-
thalpy h are often chosen for vapor compression models,
but other combinations are also possible (Bejan, 1993).
Fluid property functions are critical for thermofluid model
simulation, and must be implemented in an accurate, com-
putationally efficient manner. For some applications, fluid
property function evaluations consume more than 70% of
simulation time (Aute and Radermacher, 2014).

Mathematically, the domain of a fluid property function
is the span of the two independent fluid property variables.
For many thermofluid systems, such as vapor compression
cycles, the domain includes values of the two independent
fluid property variables that correspond to more than one
of the fluid’s states, such as the vapor state, the supercrit-
ical state, or the two-phase state. The boundary between
the liquid region and two-phase region in the domain is
the liquid saturation curve, and the boundary between the
vapor region and two-phase region in the domain is the
vapor saturation curve. These curves intersect smoothly at
the critical point of the fluid, and their union is referred to
as the saturation curve.

The saturation curve is distinguished because its image
under a fluid property function is not smooth. The fluid
property function is continuous (C0), but not continuously
differentiable (C1), for all points on the saturation curve.

Figure 1. Density of R410A as function of h and log(P), show-
ing the saturation curve (red).

For all other points in the domain, the fluid property func-
tion is a smooth (Cn) function of the two fluid property
variables, for some n ≥ 1, as shown in Figure 1, which
plots density ρ as a function of specific enthalpy h and
pressure P for R410A. Modelica models of thermofluid
systems often make use of derivatives of a fluid property
function with respect to the two fluid property variables,
and it is important to compute these accurately, especially
near the saturation curve.

Several approaches for computing fluid properties may
be found in the literature. Some are based upon using the
Helmholtz (or Gibbs) free energy equation (Span, 2000).
Any fluid property of interest may be numerically com-
puted by solving these equations using iterative meth-
ods, typically Newton’s method of root finding. These
methods are realized in available software such as REF-
PROP (Lemmon et al., 2018) and CoolProp (Bell et al.,
2014), and also realized in the HelmholtzMedia Model-
ica library (Thorade and Saadat, 2012, 2013). While these
methods are general and accurate, they tend to be com-
putationally expensive for use in simulation models, espe-
cially for large models with long simulation times. Fur-
thermore, iterative algorithms include a stopping criteria,
and therefore small errors are introduced into the com-
puted fluid property values. If these values are numeri-
cally differentiated, which may be done by a simulation
tool to compute a Jacobian, for example, then small er-
rors can be amplified to the point of being unacceptably
large, especially in the region near the saturation curve.
Moreover, these iterative methods can fail to converge for
certain values of the two independent fluid property vari-
ables.

22 10.3384/ECP20721 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Other approaches for calculating fluid property func-
tions for use in simulation include Taylor’s series approx-
imations or splines. Aute, et al describe a method using
Chebyshev polynomials that is built from data obtained
from REFPROP (Aute and Radermacher, 2014). This
method demonstrates a significant speedup over standard
iterative methods, but does not enforce consistency be-
tween the properties and their derivatives and cannot rep-
resent the behavior of the fluid close to the critical point.
Kunick et al. describe a method using quadratic splines
to represent the fluid properties of water and steam for
the International Association for the Properties of Water
and Steam (IAPWS) (Kunick, 2018). This method divides
a domain of interest into three distinct regions of fluid
state. But by splitting up the domain into non-overlapping
sets, the method introduces inconsistencies at the satura-
tion curve between these sets, resulting in errors in the
property derivatives near the saturation curve.

US Patent Application 2020/0050158 (Xu, 2020) de-
scribes a thermodynamic property calculation method us-
ing a linear approximation of the properties, but this does
not capture the nonlinearities that are pominant near the
saturation curve. US Patent 7,676,352 B1 (Van Peursem
and Xu, 2010) describes a method for calculating thermo-
dynamic properties and their derivatives using local ap-
proximations of fluid property functions, but it is an it-
erative algorithm and fails to describe nonlinear fluid be-
havior on a large domain of interest, and does not provide
accurate derivatives near the saturation curve.

Generally, previously published methods that use func-
tion approximations such as splines, or commonly used it-
erative methods based on the Helmholtz free energy func-
tion, for example, suffer from two fundamental problems.
First, the coordinates used for numerical calculation are
not aligned with the saturation curve. In other words, the
saturation curve is not represented as a contour of one of
the two independent coordinates. Therefore, the discon-
tinuity in derivative across the saturation curve is not ac-
curately represented. Secondly, the coordinates typically
used can result in an ill-posed numerical calculation at or
near the critical point. This is because one of the coordi-
nates achieves a maximum when expressed as an explicit
function of the other coordinate at this point. Iterative
methods especially fail near the critical point, and may
employ special curve-fit approximations near it. As such,
many available fluid property libraries are limited to the
sub-critical region. However, both of these problems are
purely a consequence of poorly chosen coordinates: The
saturation curve itself is smooth everywhere, and the prop-
erty function itself is smooth everywhere except across the
saturation curve.

In this paper, we introduce two coordinate systems for
representation of fluid property functions that are well-
defined for all regions of practical interest, including the
two-phase, vapor, liquid, and super-critical regions. Both
coordinate systems are defined to be aligned with the sat-
uration curve, so that the discontinuity in derivative is rep-

resented in terms of only one of the coordinates, which is
defined to be constant along the saturation curve (Laugh-
man et al., 2023). In both coordinate systems, the critical
point is no different from any other on the saturation curve,
so that super-critical problems are no different than purely
subcritical ones.

First, we show how a normalized polar coordinate sys-
tem may be used to define fluid property functions. In
these coordinates, the interior of the unit disk represents
the two-phase region, and the liquid, supercritical and va-
por regions are represented in the exterior of the unit disk.
The saturation curve is an arc of the unit circle. Fluid
property functions are represented as B-spline functions
(de Boor, 1978; Piegl and Tiller, 1995), arranged such that
the transition across the saturation curve is C0 but not C1.
B-spline coefficients are computed off-line by solving a
constrained least squares problem using data generated by
a reference calculator such as REFPROP. The implemen-
tation is computationally and memory efficient, accurate,
numerically well-conditioned and allows for evaluation of
derivatives of the fluid property function of any desired
order.

We derive a second implementation using normalized
parabolic coordinates, which may be less familiar to the
reader but for this application have a certain elegance. In
normalized parabolic coordinates, the saturation curve is
represented as a unit parabola in one of the two coordi-
nates, which is naturally similar in shape to the saturation
curve expressed in conventional (h,P) variables. The re-
sulting fluid property functions are computationally effi-
cient and well-conditioned, but some of the peculiarities
of parabolic coordinates require additional attention.

Both are realized as a set of C language functions, with
interface to Modelica though the external function inter-
face. This makes the coordinates entirely invisible to the
user. However, the result begs a question: Is there a ben-
efit to expressing the fluid dynamics equations explicitly
in these variables, instead of using conventional physi-
cal variables? This might be possible if the coordinate
transformations were defined natively in the Modelica lan-
guage. Addressing this question is left to future research.

This paper is organized as follows. In Sections 2 and 3
we derive the polar and parabolic coordinate transforma-
tions and property functions realizations, respectively. We
discuss some of the implications in Section 4, and draw
some conclusions in Section 5.

2 Polar Coordinates
Consider density ρ (kg/m3) as a representative fluid prop-
erty, to be computed as a function of independent fluid
property variables pressure Pe (Pa) and specific enthalpy
he (J/kg), where the subscript e denotes that the variables
are in engineering units. Consider a domain of interest Ω
in the he −Pe plane, on which an approximation ρ̂ of ρ
is defined. Ω may include the two-phase region, the liq-
uid and vapor regions, and the super-critical region, and

23DOI 10.3384/ECP20721 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 2. Domains Ω1, Ω2, the saturation curve Ωs (red) and
the saturation curve extension (green).

will be defined below. ρ̂ is computed in a normalized po-
lar coordinate system defined by the composition of three
coordinate transformations T = T3 ◦T2 ◦T1.

Scaling Coordinate Transformation T1

Choose an origin (he0,Pe0) ∈ Ω, inside the two-phase re-
gion, and values for two scaling factors, ps (dimension-
less) and hs (J/kg), to define the scaling coordinate trans-
formation T1 : R2 → R2 : (he,Pe) �→ (h, p) as

h = (he −he0)/hs (1a)
p = ps · log(Pe/Pe0). (1b)

The scaling factors are chosen such that the dimensionless
p and h are O(1) over Ω. The inverse scaling coordinate
transformation, T−1

1 : R2 → R2 : (h, p) �→ (he,Pe), is

he = hs ·h+he0 (2a)
Pe = Pe0 · exp(p/ps). (2b)

Polar Coordinate Transformation T2

In the scaled (h, p) coordinates, define the polar coordi-
nate transformation T2 : R2 → R2 : (p,h) �→ (r,θ) as

r =
√

h2 + p2 (3a)
θ = atan(p,h), (3b)

where atan(·, ·) is the two-argument, four quadrant inverse
tangent function. The inverse polar coordinate transfor-
mation T−1

2 : R2 → R2 : (r,θ) �→ (h, p) is

h = r · cos(θ) (4a)
p = r · sin(θ). (4b)

Saturation Curve Radial Distance Normalization T3

Figure 2 shows a domain Ω on the (h, p) - plane, divided
into three regions: Ω2 is the two-phase region; Ω1 is out-
side the two phase region, and may include the liquid,
vapor and super-critical regions; and Ωs is the saturation

curve, which is the boundary between Ω1 and Ω2. De-
fine pr0 to be a small value of p on the vapor side of the
saturation curve Ωs at or near the lower boundary of Ω.
Consider a small value pl0 of p on the liquid side of the
saturation curve, at or near the lower boundary of Ω. A
precise value for pl0 will be computed from pr0 and the
choice of spline knots in the θ -direction below. Define
hr0 and hl0 to be the scaled enthalpies corresponding to
pr0 and pl0, respectively, on Ωs. This defines the points
(hr0, pr0) and (hl0, pl0) on Ωs. Express these points in po-
lar coordinates as

(r1,θ1) = T2(hr0, pr0) (5)

and
(r j∗ ,θ j∗) = T2(hl0, pl0), (6)

where j∗ is defined below. Then the saturation curve be-
tween (hr0, pr0) and (hl0, pl0), including the critical point
(hc, pc), may be represented on the (h, p) plane in po-
lar coordinates as the image of (hsat, psat) = T−1

2 (rsat,θ),
where fsat : R→ R : θ �→ r, is

rsat = fsat(θ) for θ ∈ [θ1,θ j∗]. (7)

As shown in Figure 2, choose an extension of fsat on
the open interval (θ j∗ ,θ1 +2π) so that the extended fsat is
periodic in θ and Cn−1 (continuous up to (n−1)th deriva-
tive) for all θ ∈ R, for some value of n > 0. (A value for
n is defined below as the degree of a spline.) Essentially,
this defines a closed curve (a loop) to be the image of the
extended fsat that is the saturation curve for scaled pres-
sures larger than pr0 and pl0, and connects (hl0, pl0) and
(hr0, pr0) through the two-phase region.

The extended function fsat(θ) is approximated with a
periodic B-spline denoted f̂sat(θ), which is fit to data on
Ωs that is generated by a thermofluid property calcula-
tor such as REFPROP. Other functional representations,
such as NURBS, Fourier series or Chebychev polynomi-
als might also be used. Define

Θs = {θ1, . . . ,θ j∗ , . . . ,θN} (8)

to be a set of (periodic) knots in the θ -direction, and de-
note the corresponding ith degree-n periodic B-spline basis
function as Bi,n(θ), 1 ≤ i ≤ N (de Boor, 1978; Piegl and
Tiller, 1995). Then

f̂sat(θ) =
N

∑
i=1

csiBi,n(θ). (9)

The coefficients csi 1 ≤ i ≤ N are computed by solving
a least squares curve fit to data, as follows. First compute
a number Nds of pairs of values of (h, p) along the liquid
and vapor sides of the saturation curve from (hr0, pr0) and
(hl0, pl0), respectively, up to but not including the critical
point (hc, pc), using a thermofluid property calculator and
the transformations T1. For many fluids the values of Pe

24 10.3384/ECP20721 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 3. Periodic spline function r = f̂sat(θ) for R410A.

and he on the saturation curve near the critical point is dif-
ficult to compute and may be inaccurate, but the value of
Pe and he at the critical point may be computed accurately.
Add the calculated value of (hc, pc) to the set of data from
the vapor and liquid saturation curves, giving Nds +1 data
pairs. This set is transformed into polar coordinates using
T2 giving a set of data points (rk, θk) for 1 ≤ k ≤ Nds +1,
and this set is used to solve a least squares curve fit prob-
lem to compute csi, 1 ≤ i ≤ N.

Note that the set Θs need not be uniform, and we may
set j∗ = N, so that the saturation curve extension is de-
fined by a single spline interval. If the data set is accurate,
then Θs may be defined by the values of θk in the data, so
that the spline function is interpolating between the data
points.

The third coordinate transformation T3 : R2 → R2 :
(r,θ) �→ (r̄, θ̄), which normalizes the distance between the
origin and Ωs to a constant value of one, is defined as

r̄ = r/ f̂sat(θ) (10a)

θ̄ = θ , (10b)

with inverse T−1
3 : R2 → R2 : (r̄, θ̄) �→ (r,θ)

r = r̄ · f̂sat(θ̄) (11a)

θ = θ̄ . (11b)

Polar Splines
The fluid property function ρ is approximated by a two-
dimensional spline function ρ̂ of degree n defined in the
(r̄, θ̄)-coordinates. Spline functions in dimensions higher
than one are conventionally constructed for Cartesian co-
ordinates, and the presence of the origin, where con-
ventional polar coordinates exhibit a singularity, requires
some care.

Knot Points
Referring to Figure 2, a set of knots Θρ is defined in the
θ̄ -direction around the full circle, such that the first knot
θ̄1 is coincident with the point (hro, pro) on the vapor side
of Ωs, knots are spaced in a counter-clockwise (positive)

direction, and the set includes θ j∗ . Note that Θρ need not
be the same as Θs (8), used to represent f̂sat. Computations
are simplified if an even number of knots is used such that
that both θ̄i and θ̄i+π are in Θρ , simplifying consideration
of negative r̄. The multiplicity of the knots depends on the
region and is discussed in the next section.

In the r̄-direction, a set of knots

Φρ = {−rn,−rn−1, . . . ,−r1,0,r1,r2, . . . ,rmax} (12)

is defined such that 0 and 1 are elements, and n negative
values are included to create some overlap at the origin.
The multiplicity of the knots at r̄ = 1, corresponding Ωs,
is n so along Ωs in the r̄-direction, the spline function is
C0 but not C1. All other knots have multiplicity 1 so that
the spline function is Cn between any of the knots, Cn−1 at
any of the knots not on Ωs.

Indexing
Indexing of B-spline functions in polar coordinates is
more complex than for Cartesian coordinates. For the r̄-
direction, denote the set of integers that index the spline
basis as

I = {i ∈ I : 1 ≤ i ≤ imax}, (13)

where imax is the number of spline basis functions. Let
isp ∈ I denote the index for r̄ = 1, and decompose I
into

Is = {isp} (14a)
I1 = {i ∈ I : i > isp} (14b)
I2 = {i ∈ I : i < isp}, (14c)

so that Is contains the basis indices in the r̄-direction on
Ωs, I1 contains the basis indices in the r̄-direction outside
of Ωs (region Ω1), and I2 contains the basis indices in the
r̄-direction inside of Ωs (region Ω2).

In the θ̄ -direction, the number of basis functions de-
pends on the fluid state region, shown in Figure 4, mak-
ing the B-spline indexing dependent on the region. In the
two-phase region Ω2, the B-spline basis functions in the θ̄
direction are periodic, defined for all values of θ̄ , and all
of the knots are multiplicity one. Then the set of integers
that index the spline basis in the θ̄ -direction in region Ω2
is

J = { j ∈ I : 1 ≤ i ≤ jmax}. (15)

where jmax is the number of elements of Θρ .
On the saturation curve, the density ρ̂ is smooth as a

function of θ̄ except at the points θ̄1 and θ̄ j∗ where there
is a transition between the actual saturation curve and the
extended saturation curve, ρ̂ is C0 but not C1 in the θ̄ di-
rection, so the multiplicity of knots at θ̂1 and θ̂ j∗ is n. This
leads to a different number of B-spline basis functions in
the θ̄ direction for Ωs compared to Ω2, requiring a differ-
ent indexing. The set of integers that index the B-spline
basis in the θ̄ -direction in region Ωs is

Js = { j ∈ I : 1 ≤ i ≤ jmax +2(n−1)}. (16)

25DOI 10.3384/ECP20721 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 4. Domain Ω in normalized polar coordinates, show-
ing the saturation curve Ωs (red) the saturation curve extension
(green), the two-phase region Ω2, and single-phase region Ω1.

As illustrated in Figure 4, ρ̂ in the region Ω1 is the par-
tial annular set (1,rmax] × [θ̄1, θ̄ j∗]. For many thermofluid
systems of interest, the fluid property ρ for values of Pe
and he corresponding to the region below the extended sat-
uration curve, between the limits θ̄ j∗ and θ̄1, is outside the
region of interest and is therefore excluded from Ω.

Since the region Ω1 is only partially annular, the B-
spline functions in the θ̄ direction are Cartesian and not
periodic in θ̄ . The set of integers that index the spline
basis functions in the θ̄ -direction in region Ω1 is

J1 = {1 ≤ j ≤ j∗ −1+n} (17)

Normalized Polar Spline Functions
The normalized polar spline function ρ̂ is

ρ̂(r̄, θ̄) = ∑
i∈I2

∑
j∈J

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ω2

+ ∑
i∈Is

∑
j∈Js

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ωs

+ ∑
i∈I1

∑
j∈J1

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ω1

(18)

where Bi,n(r̄) and B j,n(θ̄) are n-degree B-spline basis
functions defined by knot sets Φρ and Θρ , respectively,
and ci j are spline coefficients that are computed by solv-
ing a constrained least squares or equivalent curve fitting
algorithm. Note that although the knot sets are identical
for each region, the multiplicities differ, so the B jn(·) are
different in each region.

Coefficient Calculation
Values for the coefficients ci j in (18) are computed by
solving a constrained least squares problem using a ref-
erence property calculator such as REFPROP. First, note
that for values of (r̄, θ̄) ∈ Ωs,

ρ̂(r̄, θ̄) = ∑
j∈Js

cisp jBi,n(θ̄). (19)

This is because all of the B-spline basis functions in the
r̄-direction vanish on Ωs, except for those corresponding
to index isp, which is identically 1 for r̄ = 1. This makes
the contributions from the Ω2 and Ω1 terms in (18) to be
zero for (r̄, θ̄) ∈ Ωs.

The coefficients ci j for the Ωs term in equation (18) are
computed first using equation (19). For each value of θ̄ j
from a data set Ds = {θ̄ j : 1≤ j ≤Ns}, where Ns is any in-
teger greater or equal to the number of coefficients in (19)
and θ̄ j suitable sample Ωs, ρ j is computed on the extended
saturation curve using a thermofluid property calculator
such as REFPROP. Then equation (19) may be solved for
cisp by solving a least squares or similar curve fit problem.

Once the coefficients ci j are computed for the saturation
curve Ωs, then equation (18) decomposes into two decou-
pled equations

ρ̂(r̄, θ̄)− ∑
i∈Is

∑
j∈Js

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ωs

= ∑
i∈I2

∑
j∈J

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ω2

(20)
for the two-phase region Ω2, and

ρ̂(r̄, θ̄)− ∑
i∈Is

∑
j∈Js

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ωs

= ∑
i∈I1

∑
j∈J1

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ω1

(21)
for the region Ω1. Note that the terms on the left-hand
sides of (20) and (21) labeled Ωs may be assigned a nu-
merical value given a value for (r̄, θ̄). For each element
of a set of data D2 = {(r̄i, θ̄ j) : 1 ≤ i ≤ N2, 1 ≤ j ≤ M2}
over the region Ω2, where r̄i and θ̄ j suitably sample Ω2,
and N2 and M2 are sufficiently large, values of ρi j are
computed using a thermofluid property calculator such as
REFPROP. These values are substituted for ρ̂ in equa-
tions (20), defining an constrained least squares problem,
which is solved for the unknown coefficients ci j. The con-
straint arises because for coefficients near the origin, ci j
for positive r̄i and θ̄ j is identical to the coefficient ci j for
negative r̄i and θ̄i + π . This is repeated for a set of data
D1 = {(r̄i, θ̄ j) : 1 ≤ i ≤ N1 1 ≤ j ≤ M1} over the region
Ω1, where r̄i and θ̄ j suitably sample Ω1.

Derivative Evaluation

Derivatives of ρ̂ with respect to the (r̄, θ̄) variables may
computed using efficient algorithms (de Boor, 1978; Piegl
and Tiller, 1995), and add marginal overhead to the com-
putational cost of evaluation of the B-spline function ρ̂ at a
given (r̄, θ̄). These derivative calculations are exact; there
is no numerical differentiation. The derivatives of ρ̂ with
respect to the two input fluid property variables he and Pe
are computed with the Jacobian of T , denoted DT ,

[
dρ̂
dhe
dρ̂
dPe

]
= DT ·

[
dρ̂
dr̄
dρ̂
dθ̄

]
= DT3 ·DT2 ·DT1 ·

[
dρ̂
dr̄
dρ̂
dθ̄

]
,

(22)

26 10.3384/ECP20721 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

where DT1, DT2 and DT3 are the Jacobians of T1, T2 and
T3, respectively.

At the origin, derivatives of ρ̂ with respect to the en-
gineering coordinates he and Pe are well defined and are
evaluated by computing derivatives of ρ̂ with respect to r̄
evaluated at (r̄, θ̄) = (0,0) and (r̄, θ̄) = (0,π/2), respec-
tively, and then by using elements of DT1, DT2 and DT3 to
transform back to engineering units:

∂ ρ̂
∂he

| Pe=Pe0
he=he0

=
∂ ρ̂
∂ r̄

| r̄=0
θ̄=0

· 1
f̂ (0)

· 1
hs

(23a)

∂ ρ̂
∂Pe

| Pe=Pe0
he=he0

=
∂ ρ̂
∂ r̄

| r̄=0
θ̄=π/2

· 1
f̂ (π/2)

· ps

Pe0
. (23b)

This calculation is well-defined because the domain of the
spline in the r̄ direction was extended to include negative
values of r̄, and also because of the structures of T1, T2
and T3 make some of the off-diagonal terms in the Jaco-
bians zero. Higher derivatives with respect to he and Pe
are computed similarly.

3 Parabolic Coordinates
Normalized parabolic coordinates are similar to normal-
ized polar coordinates, defined by the composition of three
coordinate transformations, T = T3 ◦T2 ◦T1, reusing nota-
tion from Section 2. T1 is the same, but here T2 defines
parabolic instead of polar coordinates.

Parabolic Coordinate Transformation T2

In the scaled (h, p) coordinates, define the parabolic co-
ordinate transformation T2 : R2 → R2 : (p,h) �→ (σ ,τ) as

σ = sign(h) ·
√√

h2 + p2 − p (24a)

τ =

√√
h2 + p2 + p, (24b)

with inverse T−1
2 : R2 → R2 : (σ ,τ) �→ (h, p)

h = σ · τ (25a)

p = (τ2 −σ2)/2. (25b)

Figure 5 shows constant contours of σ and τ on the (h, p)-
plane, along with the saturation curve for R410A for ref-
erence.

Saturation Curve τ-Distance Normalization T3

The third coordinate transformation T3 : R2 → R2 :
(σ ,τ) �→ (σ̄ , τ̄) normalizes the saturation curve to be the
locus τ̄ = 1, and is defined as

σ̄ = σ (26a)

τ̄ = τ/ f̂sat(σ), (26b)

with inverse T−1
3 : R2 → R2 : (σ̄ , τ̄) �→ (σ ,τ)

σ = σ̄ (27a)

τ = τ̄ · f̂sat(σ̄), (27b)

Figure 5. Constant contours of σ (blue) and τ (red), on the
(h, p)-plane. Also shown is the saturation curve represented as a
spline function (purple), fit to saturation curve data (*).

Figure 6. Saturation curve defined as the spline function τ =
f̂sat(σ) for R410A. Note the gap in data around the critical point.

where τ = f̂sat(σ) denotes an approximation to τ =
fsat(σ), which defines the saturation curve in τ as a func-
tion of σ . Just as for polar coordinates, we use a property
calculator to compute pairs of values for τ and σ on the
saturation curve, using T1 and T2, and then fit a spline to
the data to give the approximation τ = f̂sat(σ), as shown
in Figure 6 for R410A.

Normalized Parabolic Spline Functions
The density function ρ̂ is realized as a 2-dimensional n-
degree B-spline function in (σ̄ , τ̄) coordinates,

ρ̂(σ̄ , τ̄) =
M

∑
i=1

N

∑
j=1

ci jBi,n(σ̄)B j,n(τ̄), (28)

defined on the rectangular domain [−σ̄max, σ̄max] ×
[0, τ̄max], which defines Ω = Ω1

⋃
Ω2

⋃
Ωs. Figure 7

shows the domain in the (σ̄ , τ̄) coordinates, and its pull
back into the (h, p) coordinates, for R410A.

Parabolic coordinates exhibit two characteristics that at
first seem to be obstacles but with some thought present no
problems. First, there is an apparent singularity along the
p-axis (h = 0), where τ = 0 along the negative p axis, and
where σ = 0 along the positive p axis. Along a constant σ
contour, the sign of σ changes discontinuously from posi-
tive in the right half plane to negative in the left half plane

27DOI 10.3384/ECP20721 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 7. Ω1, Ω2, Ωs and their boundaries in (h, p) coordinates
(left) and (σ̄ , τ̄) coordinates (right) for R410A.

at the p axis. This is caused by the sign(h) used to define
σ in (24). Second, the boundary of Ω seems to have a dif-
ferent number of edges when represented in (σ̄ , τ̄) coor-
dinates, compared to (h, p) coordinates. Indeed, the rect-
angular region in (σ ,τ), with four boundary edges, maps
to a region in (h, p) coordinates that is bounded by two
parabolas, as shown in Figures 5 and 7.

Fortunately these characteristics do not present any ob-
sticles. Figure 7 shows how the rectangular domain Ω in
(σ̄ , τ̄) coordinates maps back to (h, p) coordinates, with
the boundaries shown in color. The two vertical bound-
aries along −σ̄max and σ̄max map to the lower boundary of
Ω in (h, p), while the lower boundary τ̄ = 0 is in fact not
a boundary at all. Points on the positive σ̄ -axis are con-
nected to points on the negative σ̄ -axis, so that ρ̂(σ̄ ,0)
is equivalent to ρ̂(−σ̄ ,0), for 0 < σ̄ ≤ σmax. The τ̄ = 0
axis is equivalent to the negative p axis, which is inside
Ω. Therefore, when defining a spline function ρ̂ on Ω, we
simply need to ensure that coefficients are constrained so
that the spline function is connected across the τ = 0 axis.
This ensures that the spline ρ̂ and its first n− 1 deriva-
tives are continuous across τ = 0, and are well defined
for all points in Ω1

⋃
Ω2. This is precisely how the spline

coefficients were computed for polar coordinates around
the origin (by extending r̄ to be negative, and then con-
straining coefficients for positive and negative r̄ to ensure
continuity at 0) except for parabolic coordinates, it must
be done across the entire τ̄ axis.

Knot indexing is simplified compared to polar coordi-
nates. In the τ̄-direction, knots are spaced from 0 to τmax,
with a knot of multiplicity n placed at 1, which is the sat-
uration curve in (σ̄ , τ̄) coordinates. All other knots are
multiplicity 1. In the σ̄ -direction, knots are spaced from
−σ̄max to σ̄max, all of multiplicity 1. This defines the
degree-n B-spline basis functions Bi,n and B j,n in the σ̄
and τ̄ directions, respectively.

4 Discussion
Both methods are computationally efficient. The calcula-
tion of T in polar coordinates requires 11 floating point
operations, compared to 14 for the equivalent calculation
in parabolic coordinates. Only one floating point division
is needed, but if f̂−1

sat is approximated by a spline instead
of f̂sat, then that division becomes a multiplication. Ad-
ditionally, both methods require one 1-d spline function

Figure 8. log(ρ̂) for R410A in (σ̄ , τ̄)-coordinates.

evaluation of f̂sat, plus evaluation of the 2-d spline func-
tion ρ̂ . Spline derivatives are computed essentially for free
and pulled back into the (Pe,he) coordinates using DT .

Polar coordinates have the advantage of familiarity and
simplicity in terms of domain boundaries. Computing
derivatives at the origin is not ill-posed because the spline
is defined for some range of negative r̄, and the derivatives
are computed in the (Pe,he) coordinates using elements of
DT that are all well defined at the origin.

There are some disadvantages to polar coordinates. In-
dexing is complex. The extended saturation curve is
clumsy, and the spline function ρ̂ near the point (hl0, pl0)
can fit data poorly because of the large change in deriva-
tive near this point in the θ̄ direction. Despite their un-
familiarity, parabolic coordinates seem more natural once
their peculiarities are mastered, as these issues are avoided
entirely. One issue with parabolic coordinates is that the
domain Ω is “warped” by T3. In particular, the vapor re-
gion to the right of the saturation curve may be insuffi-
ciently covered using a rectangular domain in (σ̄ , τ̄) co-
ordinates. This is apparent in Figure 7. One solution is
to make use of a non-rectangular domain, extending τ̄ for
positive values of σ̄ .

It should be emphasized that the spline functions f̂sat
and ρ̂ (and its derivatives) should be used consistently
and exclusively in any simulation model. These in effect
become the definitions of the saturation curve and fluid
property function, even though they are spline approxima-
tions of a data set, which is in turn was computed from a
Helmholtz energy function, which itself is defined to be
the reference standard, but is in reality a curve fit to exper-
imental data. It is important not to mix different represen-
tations of the saturation curve or fluid property functions
in the same model, because even slight differences, espe-
cially near the saturation curve, can result in significant
differences (or even failures) in simulation results.

For some properties, especially density ρ , we have no-
ticed that a 2-dimensional spline fit to logρ , (or, more rig-
orously, log(ρ/ρ0) for some constant density ρ0) instead

28 10.3384/ECP20721 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

of ρ , reduces approximation error, especially near the sat-
uration curve, at the expense of one additional exponen-
tial computation during evaluation. A rendering of log(ρ̂)
on Ω in (σ̄ , τ̄)-coordinates for R410A is shown in Figure
8. The log reduces the magnitude of the first and second
derivatives near the saturation curve, reducing approxima-
tion error. We have observed similar behavior for polar
coordinates. However we offer no formal proof of this
statement.

In practice, significant attention must be paid to data
cleaning. Values for ρ , P and h computed by REFPROP,
for example, may exhibit small errors that can adversely
affect the curve fitting computation. This is especially true
for mixtures such as R454C. Errors are caused by finite,
nonzero iteration termination conditions in REFPROP’s
code, or sometimes by failures to converge, and are es-
pecially apparent around the saturation curve at high pres-
sures, although other regions can also exhibit errors. A
full discussion may be found in (Laughman et al., 2024).

There is little performance gain to be had by imple-
menting these functions directly in Modelica, since the
Modelica compiler will translate it into C anyway, and
that code is unlikely to be more efficient than the relatively
simple, hand coded function. However, one potential per-
formance improvement is largely unexploited: derivative
evaluation can be done largely for free when evaluating ρ̂ .
Unfortunately the Modelica compiler does not know that,
so it may evaluate the function multiple times to compute
ρ̂ and its derivatives. Perhaps there is a way to prevent this
behavior in Modelica?

Finally, we speculate that the fluid property coefficients,
and the 2-dimensional spline function evaluations, could
be implemented in integer arithmetic. Although this is not
likely to improve numerical efficiency by a large margin in
a modern superscalar architecture, it would reduce mem-
ory storage requirements. This in turn could reduce simu-
lation time because of improved cache efficiency.

5 Conclusion
This paper presents two methods for computing fluid
property functions in simulation models. Both make use
of coordinate transformations that align one coordinate
with the saturation curve. This provides for precise rep-
resentation of the fluid property function at the saturation
curve, and for connected domains of interest including the
liquid, vapor, supercritical and two-phase regions. Both
approaches make use of spline function approximation in
these special coordinates, and are numerically efficient,
well conditioned, and allow for efficient calculation of
derivatives up to any desired order that are precise up to
processor numerical tolerance.

References
V. Aute and R. Radermacher. Standardized polynomials for fast

evaluation of refrigerant thermophysical properties. In Inter-

national Refrigeration and Air-Conditioning Conference at
Purdue, 2014.

Adrian Bejan. Advanced Engineering Thermodynamics. Wiley,
1993.

Ian H. Bell, Jorrit Wronski, Sylvain Quoilin, and Vincent
Lemort. Pure and pseudo-pure fluid thermophysical prop-
erty evaluation and the open-source thermophysical prop-
erty library coolprop. Industrial & Engineering Chemistry
Research, 53(6):2498–2508, 2014. doi:10.1021/ie4033999.
URL http://pubs.acs.org/doi/abs/10.1021/
ie4033999.

Carl de Boor. A Practical Guide to Splines. Springer, 1978.

M. Kunick. Fast Calculation of Thermophysical Properties in
Extensive Process Simulations with the Spline-Based Table
Look-Up Method (SBTL). Number 618. Fortschritt - Berichte
VDI, 2018. ISBN 978-3-18-361806-4.

C. Laughman, H. Qiao, and S. A. Bortoff. System and method
for calculation of thermofluid properties using saturation
curve-aligned coordinates. U.S. Patent 11,739,996, Aug. 29
2023.

Christopher R. Laughman, Vedang Deshpande, Ankush
Chakrabarty, and Hongtao Qiao. Enhancing thermodynamic
data quality for refrigerant mixtures: Domain-informed
anomaly detection and removal. In Procedings of the 20th

International Refrigeration and Air Conditioning Conference
at Purdue, 2024.

E. W. Lemmon, I.H. Bell, M. L. Huber, and M. O. McLin-
den. NIST Standard Reference Database 23: Reference
Fluid Thermodynamic and Transport Properties-REFPROP,
Version 10.0, National Institute of Standards and Technology,
2018. URL https://www.nist.gov/srd/refprop.

L. Piegl and W. Tiller. The NURBS Book. Springer, 2 edition,
1995.

R. Span. Multiparameter Equations of State. Springer-Verlag,
2000.

Matthis Thorade and Ali Saadat. HelmholtzMedia - a fluids
properties library. In Proceedings of the 9th International
Modelica Conference, pages 63–70, 2012.

Matthis Thorade and Ali Saadat. Partial derivatives of thermo-
dynamic state properties for dynamic simulation. Environ-
mental Earth Sciences, 2013.

D.J. Van Peursem and G. Xu. System and method for efficient
computation of simulated thermodynamic property and phase
equilibrium characteristics using comprehensive local prop-
erty models, 2010.

Gang Xu. Super-linear approximation of dynamic property val-
ues in a process control environment, 2020.

29DOI 10.3384/ECP207 29 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Objectively Defined Intended Uses, a Prerequisite to Efficient
MBSE

Erik Rosenlund1,2 Robert Hällqvist1,2 Robert Braun2 Petter Krus2

1Saab Aeronautics, Linköping, Sweden
2Fluid and Mechatronic Systems, Linköping University, Sweden

Abstract
This article proposes a method for improved model ver-
ification within Large-Scale Simulators (LSS). The ap-
proach relies on machine-interoperable traceability of
model verification information, such as model Operational
Domains (ODs). This enables automated evaluation of
model relevance and facilitates the combination of mod-
els for a broader evaluation of credible simulation re-
sults. The paper introduces a proof-of-concept testbed for
verification of black-box models against model require-
ments. Furthermore, the results also include a proposal
for a machine-readable format to capture model require-
ment Verification & Validation (V&V) results, along with
the resulting model and updated model OD information.
Keywords: Verification and Validation, Operational
Domain, Large-Scale Simulators (LSS), Machine-
Interoperable Traceability, Model Reuse, Model
Exploration, Simulation Credibility, FMI, SSP, SSP
Traceability

1 Introduction
In the area of modeling and simulation, the primary chal-
lenges no longer concern whether something can be sim-
ulated or not but rather if the results are credible and can
be utilized as intended. Many different factors influence
whether the results can be used for a specific purpose
or not, several of them exemplified by NASA STD-7009
(2008):

• Are models validated for the scenario simulated?

• Does the model fidelity correspond to what is re-
quired by the intended use of the results?

• Are aggregation effects between interacting models
sufficiently accounted for?

For a user to make credible decisions based on simulation
results, all questions above, and many more, must be
answered to the rigor required purpose. When scaling
from a scenario where the model designer is making
decisions based on simulation results, to a use-case
where the simulator end-user has minimal knowledge of
the simulated models, additional information needs to
be transferred along with the model for the user to be
able to draw conclusions regarding the credibility of the

test results. Increased simulator complexity or model
complexity increases the need for this knowledge transfer.
Simulator complexity is in this context seen to be dictated
by factors that increase the number of support functions
needed for a simulation to execute; such as functions
that enable the mixing of Software-in-the-loop (SIL) and
Hardware-in-the-loop (HIL) or distributing computations
over multiple computers.

How this additional information is to be transferred is
situation-dependent, for smaller projects or Modeling
& Simulation (M&S) activities it could be enough to
discuss model requirements between the user and model
designer. For LSS (Andersson 2012; Steinkellner 2011),
the number of models and support systems makes the
amount of knowledge needed to evaluate if results are
credible almost impossible for a single user to manually
ingest in a reasonable time frame. Thus solutions to
automate this workflow are required (Hällqvist 2023).
This creates additional demands on the model designer
and many model requirements that previously were
implicit now need to be explicit and verified in a traceable
way. Examples of model characteristics that typically
fall into this category are related to runtime performance,
numerical errors, or end-use not captured in the original
model specification. The gain of explicitly expressing
these requirements, and imposing a standard for how the
information is relayed, is seen as an enabler in further
scaling of LSS.

In short, LSS imposes an increased need for standardized
knowledge transfer and evaluation of model intended uses.
Enabling this effectively is stipulated to minimize the need
for users to possess detailed knowledge of all constituent
models and their respective implementations. This would
allow extended simulator utilization and increase the cred-
ibility of decisions based on simulator results. The goal
of this work is to propose a machine-interoperable way
of providing model requirement verification information.
This goal is expressed in the following research questions,

RQ: How can information regarding model ver-
ification activities be communicated in a tool-
independent way to enable model evaluation in a LSS
environment?

30 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

1.1 Contributions
The work includes the development, evaluation, and
demonstration of a proof of concept testbed that provides
a structured way of verifying black-box models against
requirements. This testbed enables the verification of
legacy models where knowledge of the model’s intended
use and model requirements are documented according to
the traditional document-centric paradigm; any improve-
ments on this topic are highly desirable in organizations
with a large knowledge capital expressed in legacy mod-
els. The testbed verification results are documented in
a machine-readable format, based on Extensible Markup
Language (XML). The proposed format provides a con-
tainer for mediating information regarding model verifi-
cation results that enable automated reasoning on how
models can be combined without implicit compromises
of credibility. Integrating this information into the model
enhances availability and traceability, while also demon-
strating an industry-relevant application of the SSP Trace-
ability (Modelica Association 2022) format Simulation
Resource Meta Data (SRMD). The proposed structure is
thought to initiate a discussion on the establishment of an
end-user standardized layer on top of SRMD, capturing
what meta-data is relevant to encapsulate together with a
model or set of coupled models.

1.2 Research Method
The utilized research method is built on the estab-
lished method, "Industry-as-laboratory" proposed by Potts
(1993), where the industry provides the questions and then
acts as a base for conducting experiments. The goal is
to enable the study of real-world problems in a scientific
manner. The method has since been further refined by
Muller (2020) and has previously been applied success-
fully within the field of aeronautical engineering, see for
example Eek, Hällqvist, et al. (2016) and Oprea (2022).

2 Theoretical Background
2.1 Verification and Validation
There have been many attempts in both academia and in-
dustry to clarify the difference between model verifica-
tion and model validation (Wang et al. 2019); however,
should we strive to separate the two different sets of ac-
tivities? Model verification is popularly defined as the
quest to answer the question of whether the model is built
“right” whereas validation is the quest to answer the ques-
tion of whether the right model has been built (Osman
Balci 1997). In other words, verification concerns a “qual-
ity control” on conducted model transformations typically
associated with the identification of “bugs” in the imple-
mentation. In contrast, validation concerns ensuring that
the model is fit for its purpose. So, model validity needs
to be assessed with respect to the purpose of the model.
Verification does not. However, transforming model re-
quirements into a model is a transformation that needs to
be verified, just as the transformation from source code to

an executable model that can be integrated in a simulator.
In that sense, the modeling begins with the requirements.
Any model purpose is therefore ideally expressed explic-
itly in the form of requirements to, among other things,
simplify the model development (Hällqvist 2023). Exam-
ples of such functional requirements are shown in Enu-
meration 1.

Enumeration 1. Functional requirements of a model.

1. The model predicting the ambient air temperature
shall predict the temperature with 95% accuracy,
concerning the corresponding physical system, in its
complete input space, see Section 2.3.

2. The model predicting the ambient air shall relate the
model inputs altitude and speed to its response quan-
tity in an International Standard Atmosphere (ISA)
(ISO 2533 1975) atmosphere.

These two requirements can act as a solid foundation
to a model development process (Carlsson et al. 2012).
Transforming model requirements into a mathematical
model should be accompanied by verification activities.
Such verification activities can be done without any
subjective judgment; however, they cannot be concluded
until a 95% accuracy in the model response quantity,
according to requirement one in Enumeration 1, can be
guaranteed with sufficient probability to deem the risk of
concluding the activities as acceptable. In early phases,
this can be achieved through, for example, Uncertainty
Quantification (UQ) (Riedmaier et al. 2020) techniques.

In later phases the accuracy can be accessed through com-
parisons against in-situ measurements (Beisbart and Saam
2019; Sargent 2010), accompanied by UQ analysis if
deemed necessary. Once this point has been reached, there
is no need to initiate any activities denoted as "valida-
tion"; As the model has been deemed to fulfill its specified
purpose (the two requirements). With this line of reason-
ing, model validation is a subset of verification concerning
only the verification of requirements that are implicit or
require subjective judgment. These types of requirements
are, as pointed out earlier, undesirable. Consequently, we
should strive towards declaring an intended use free from
implicit requirements and remove the need for model val-
idation.

2.2 Intended Uses
Expressing explicit modeling requirements with verifica-
tion criteria is a challenging task that requires substantial
research. Murray-Smith (2019) emphasizes how impor-
tant it is for a user to be aware of model limitations and
accuracy for all of its intended use and that formal testing
is often lacking during model development. Methods
and tools to aid engineers in this process are essential.
Hällqvist (2023) partitioning model purposes into two
different categories: coarse-grained intended-uses and

31DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

fine-grained intended-uses:

A coarse-grained intended use qualitatively expresses the
purpose of a M&S application in some format, formal or
natural language, with a clear connection to, if needed
for acceptance, one or more fine-grained intended uses.

A fine-grained intended use quantitatively expresses the
purpose of a M&S application in a formal format, with
a mathematical connection to one or more validation
or predictive capability metrics, predictive capability
defining a notion of capturing model representativeness.

To concretize requirements as fine-grained intended uses
and to utilize these as foundation during verification is
to provide increased traceability during the model design
process. Correlations can be made towards Test-driven de-
velopment (TDD) and maybe even more so towards Ac-
ceptance test–driven development (ATDD) where accep-
tance tests are written before feature development. As
described by Martin and Melnik, this allows the designer
to analyze the requirements, in a structured way, and to
evaluate how they can be translated into tests (Martin and
Melnik 2008). Verifying this translation should be done
by both the architect and model designer to ensure that
requirements are interpreted correctly and test cases cover
all intended uses (Pugh 2010). Expressing a requirement
as a test can be one of the most effective ways to verify its
’completeness and accuracy’ and the process can be uti-
lized to weed out implicit or ambiguous requirements thus
reducing the risk of not ’designing the model right’.

2.3 Operational Domains
The work on concretizing model ODs is viewed as an
essential part of expressing fine-grained intended uses. A
model OD is viewed as an enclosed n-dimensional volume
representing the model’s feasible input space. A sought,
or required, model OD could be seen as an outcome of
the model specification activity. The modeler then has
a challenge in realizing or identifying existing models
capturing, selected aspects of the physical system to be
modeled. Three such ODs are schematically visualized
in Figure 1. The OD denoted ODModel B schematically
represents the feasible input space of an existing legacy
model of the System of Interest (SoI). The, by the M&S
task, required model OD is visualized as ODModel A. A
first verification activity could encompass the evaluation
and comparison of ODModel A and ODModel B; where
ODModel B can have been deduced analytically or empiri-
cally. This verification will concern iterative negotiations,
between the model end-users and developer, regarding
the overlapping regions of ODModel A and ODModel B to
deduce if the developed model is fit for purpose.

A frequently used representation of the n-dimensional
volume representing the OD has been that of an n-
dimensional hypercube constrained by the minimum and

ODSoI

System Input 1

System
Input2

ODModel A

ODModel B

Figure 1. Schematic description of two-dimensional ODs:
ODSoI represents the system of interest input space, and
ODModel i the OD of two different models representing differ-
ent parts of the system of interest input space.

Figure 2. Verification samples mapping input space towards
passed or failed evaluations.

maximum value of each input variable (FMI development
group 2022). A hypercube representation may in cer-
tain cases result in a loss of information regarding how
a model can be used, see Figure 2 where any attempt to
limit the OD to a rectangular domain will reduce the rep-
resentation of the OD with respect to the actual capabil-
ity of the model. Both Roy and Oberkampf (2011) and
Hällqvist, Eek, et al. (2023) utilize n-dimensional convex
hulls to represent ODs; however, they are still models of
the domain and suffer from the same problems that any
model representation incurs, mainly, ’is it good enough?’
Nonetheless, this approach enables transferring a more nu-
anced picture of the actual domain at the cost of simplic-
ity." The documented use, in the context of the presented
research, has focused on creating and utilizing hulls for
verification, but not on how it can be stored for further
reuse downstream in the M&S chain.

32 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

2.3.1 Delimitations

Multiple solutions for passing information regarding ver-
ification results exist, the most straightforward one is to
provide the coordinates of all the tests. This leaves the
full responsibility of interpreting the verification results to
the end-user. In certain situations, this may be preferred
but in LSS this is not an option due to the broad user base
and extensive quantities of packaged information. In the
end, the choice should be the least complex solution that
encapsulates sufficient information to express the model
requirement. For example, whilst potentially providing a
higher fidelity representation of a model OD, a concave
hull is more complex to construct and utilize than a con-
vex hull. Where a set of points can only have one solution
in a convex volume, the number of solutions in a concave
hull grows rapidly with the number of points (Asaeedi,
Didehvar, and Mohades 2014). Other solutions such as
clustering algorithms to map the OD into smaller regions
of hypercubes, hyperspheres or hulls may provide a more
detailed representation, but the choice of clustering algo-
rithm must then be taken into account leading to increased
complexity. We will acknowledge the existence of other
solutions and limit the scope to the shape of the transfer-
able n-dimensional volume as a convex hull or one of its
simpler representations such as the hypercube, since the
shape itself is not vital in establishing the methodology
around its transfer and it has been utilized in a similar con-
text in related research.

2.4 Model reuse and Traceability

Many of the aspects of model reuse can be correlated to
the Findable, Accessible, Interoperable, Reusable (FAIR)
principles (Wilkinson et al. 2016) and their role in en-
abling increased reuse of datasets or, to some extent, Long
term archiving and retrieval (LOTAR) (Coïc et al. 2021) in
its goal to provide a common standard for geometry data.
All aspects of FAIR are needed as enablers for credible
model reuse. The Functional Mock-up Interface (FMI)
(FMI development group 2019) and System Structure and
Parameterization (SSP) standards (Modelica Association
Project System Structure and Parameterization 2019)
enable some of the FAIR principles by providing common
interfaces and data structures, enabling model reuse over
a multitude of tools and simulation purposes. However,
they do not capture all aspects concerning the Findable
principle of FAIR. While there are mechanisms to convey
information concerning units and permissible input ranges
for models or systems, more comprehensive information
of intended use is not supported in a structured way as of
now (FMI development group 2022).

A model expressed in the form y⃗t = F (⃗xt , x⃗t−1, ..., x⃗0),
often referred to as a computational model (P. Fritzson
2004; Ljung and Glad 2004), adds something that static
data does not; a data conversion or a predictive capability
(Beisbart and Saam 2019). This creates an additional

requirement that FAIR does not encompass, traceability
when it comes to results. Within the healthcare sector,
Erdemir et al. (2020) states that having the ability to as-
sociate results to input data and model version is "critical
for accurate interpretation, repeatability, reproducibility,
and debugging of the simulation predictions". There is no
reason that this should not be true for the field of complex
product development.

The area of storing and reusing engineering knowl-
edge has been under intensive research for a long time
(Robinson et al. 2004; Sivard 2001) and according to
Pokojski, Knap, and Skotnicki (2021) any knowledge
from subject matter experts that can be stored and reused
will be beneficiary. Traceability between the executable
model and the founding model requirements is one of
the cornerstones when it comes to model use; any use
of a model in a context where it can not be proved
to be credible is by definition not credible (O. Balci
and Ormsby 2000). A multitude of standards dictate
how requirements are to be traced through a product
life-cycle, e.g. ISO 26262 (2018), DO-178C (2012),
NASA STD-7009 (2008) or MIL-STD-3022 (2008). Since
models and the resulting data often are not part of the
end-product they can sometimes be exempted from
mentioned standards. However, lacking such information
traceability can impede the possibility of model reuse. It
additionally restricts the utilization of models employed
in product verification (Oprea 2022; Hällqvist 2023) or
where models are included in the end-product, such as
pilot training simulators (Gripen Mission Trainers 2024).
Transparency and traceability of any data underlying
decisions and a formal testing process increase the
credibility of models greatly (Murray-Smith 2019).

Increasing utilization of simulation results in the prod-
uct development process prompts harsher requirements
regarding the traceability of models and simulation re-
sults (Level 2024). This is the reason for introducing
the "Credible Simulation Process Framework" within the
Simulation-based Engineering and Testing of Automated
Driving (SET Level) project (Level 2024). The process is
a base for the SSP Traceability standard (Modelica Asso-
ciation 2022).

2.4.1 Delimitations

To convey model ODs, the SRMD container of the SSP
Traceability is selected as an initial bearer. Its intent de-
fined as “SRMD files are used to define essential metadata
for resources that can help users quickly understand the
content and intent of a simulation” (Modelica Association
Project System Structure and Parameterization 2019) goes
well in line with the intent to store information regarding
intended use. The format sets few boundaries to what can
be stored within the container and it provides large free-
dom in how the resulting OD can be expressed. When
looking at information abstraction levels, SSP is more at-

33DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

(a) Grid search, evenly distributed points over the input OD. (b) Random search, uniform distribution over the input OD.

Figure 3. Different methods used for model Operational Domain (OD) exploration.

tuned to system-level information, and FMI is closer to the
model level. In some cases, it would be more fitting to uti-
lize a layered FMI standard to convey the OD. This does
however pose a limitation in usage, that the information
can only be conveyed on a model level and not on a sys-
tem level. To remedy this, and get access to both model
and system standards, a simple solution of incorporating
standalone models in a SSP is proposed. A single model
can be viewed as a system and can easily be incorporated
within a SSP container to get access to both FMI and SSP
layered standards. It is possible to do the opposite but not
without a loss of flexibility regarding the inner workings
of the SSP and then only layered standards of FMI would
be available.

2.5 Exploration
The primary method of model exploration involves ex-
posing the model to various scenarios and evaluating the
outcomes. Model exploration allows the model designer
to verify the model against requirements, whether for
new model design or model reuse. Many models are
developed for, and subjected to, use where the quantities
of interests are time-dependent, this is in contrast to sce-
narios performed under steady-state operating conditions.
When synthesizing simulation scenarios the former will
hence be referred to as dynamic scenarios and the latter as
steady-state scenarios. The underlying purpose of model
exploration utilized for verification differs somewhat
from Design Space Exploration (DSE) or Hyperparameter
Optimization (HPO); while the latter aims to find global
extrema in the form of an optimal design, the former seeks
to continuously increase the understanding of specific
model behavior, often measured by a coverage metric
(Atamturktur, Hemez, et al. 2009).

To empirically verify the model OD, various established
methods in DSE and HPO are considered viable alter-
natives for model exploration. These methods include
random search, where values for each input variable
are randomly sampled from a uniform distribution (see
Figure 3b). In contrast, grid search systematically maps

the entire input domain with evenly distributed points in a
grid (see Figure 3a). Lastly, Bayesian search iteratively
evaluates previous simulations to identify and further ex-
plore areas of interest (see Figure 4). This is often done by
comparing the resulting coverage for new potential points.

According to Feurer and Hutter (2019), black-box meth-
ods such as random search and grid search suffer from
the curse of dimensionality and can take a long time to
search a multidimensional volume compared to guided
search methods like Bayesian search. However, both ran-
dom search and grid search are simple and straightforward
in their implementation, requiring minimal tuning com-
pared to Bayesian algorithms. Comparing random search
to grid search, in x explorations, random search will eval-
uate x different values, whereas grid search will only ex-
plore x1/n different values since each row corresponds to
the same exploration value (Feurer and Hutter 2019). For
input combinations with low correlation, this can result in
simulations that do not contribute new information. Ran-
dom search, unlike grid search, is also an embarrassingly
parallel algorithm (Herlihy and Shavit 2012), making it
highly parallelizable with minimal overhead.

2.5.1 Delimitations

For this study, only steady-state scenarios will be used.
These scenarios are considered complex enough to
yield useful results while allowing for straightforward
evaluation. However, future research may benefit from
expressing coarse-grained intended use as use-cases,
as proposed by Andersson and Carlsson (2012), to
deduce dynamic scenarios and create variations used for
verification.

Two different exploration methods are selected to verify
the model OD: Random search and Grid search, primarily
due to their ease of use. The assessment of coverage based
on different metrics, as summarized by Atamturktur, Ege-
berg, et al. (2015), is also omitted from this study.

34 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 4. Bayesian search, placement of test coordinate depend-
ing on previous evaluations.

Figure 5. Application example architecture expressed as a
SysML block diagram.

3 Application example
The application example simulator used in this study
is a virtual reference system, originally developed in
the EMBrACE project (ITEA 3 2019). This system is
based on publicly available data regarding the modeled
constituent sub-systems (Schminder et al. 2018; Hällqvist,
Schminder, et al. 2018), and it offers a level of complexity
and requirements similar to those encountered during the
preliminary and detailed design of aircraft subsystems
at Saab Aeronautics. The application example consists
of a simple heat sink to consumer loop, including an
Environmental Control System (ECS) and its controlling
software, as illustrated in Figure 5. This system aligns
well with the scope of the study and it provides oppor-
tunities to evaluate the use-case specified in Section 4.
An initial OD volume is derived from the sub-system
requirements. The OD is a subset of the full input space
to increase results visibility; here limited to two input
variables, altitude and mach. Other inputs are fixed to a
specified value in collaboration with the model designer.

Two of the models in the application example architecture
are chosen for this study: the ECS model and the model
representing a generic consumer of cooling power. The

inner workings of these two different models have been
described in detail by Hällqvist, Munjulury, et al. (VI). In
short, however, the ECS model includes both a traditional,
bleed-driven, cooling system as well as a coolant distri-
bution system. The coolant distribution system exploits
a liquid coolant to transport heat from the consumer to a
heat sink utilizing a modeled pump, a heat exchanger, and
piping components all modeled using Modelica Standard
Library (MSL), initially presented by Pop and P. A. Fritz-
son (2004), and the Saab in-house Modelica Fluid Light
(MFL) (Eek, Gavel, and Ölvander 2017) Modelica library.
The consumer model coupled to the ECS model is also
modeled using components from the same Modelica li-
braries. However, the aircraft sub-systems that the mod-
els represent are typically developed by different organiza-
tions at Saab which motivates the co-simulation approach
compared to developing a Modelica monolith.

4 Use-Case
The use-case presented in this section aims to exemplify
the need for the research in focus. The use-case aims
to capture a realistic and likely scenario in any organi-
zation applying M&S for decision-making, in any life-
cycle phase. The presented use-case is seen to be applica-
ble also in early life-cycle phases such as concept devel-
opment (Raymer 2018; International Council on Systems
Engineering 2015); however, the activities are likely less
formal and rigorous to reflect the pace and information
uncertainty inherent to the early phases.

4.1 Prerequisites
A need for a new model of a system, sub-system, or com-
ponent emerges as a result of an engineering task deduced
as most efficiently tackled through M&S. Additionally, a
set of model requirements have been deduced, see for ex-
ample Section 2.2, from the requirements on the physical
system along with the M&S need. Several similar models
exist, as a result of previous M&S activities, but their fit to
the current model requirements is uncertain.

4.2 Actors
A total of three actors participating in the use-case are
identified: the architect, the model designer, and the
simulation engineer. The architect supplies requirements
on the physical system in focus and utilizes the M&S
results to evaluate the system design. The model designer,
in close collaboration with the architect, transforms sys-
tem requirements to requirements on the corresponding
virtual system implementation; furthermore, they design
and verify the model against the supplied requirements.
The simulation engineer utilizes the model to produce the
results needed by the architect.

It is important to recognize that permutations of the above-
stated roles may occur. Naturally, the setup decided to
be most efficient in advancing the task at hand is the one
that should be employed. The immediate need for trace-

35DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

ability of all information concerning the utilization of the
model increases when the number of involved actors in-
creases. However, please note that traceability to model-
ing requirements is here viewed as essential regardless of
whether adopting a life-cycle perspective or not.

4.3 Main Scenario
1. The architect is to decide on a system design, and

appropriate knowledge regarding a constituent sub-
system is lacking.

2. The architect and the model designer identify a po-
tential to fill this gap in knowledge by means of sim-
ulating the subsystem.

3. The model designer searches central model storage
for possible models to reuse.

4. The model designer finds a model that could fit the
requirements, but the documentation concerning the
usage in the new context is incomplete.

5. The model designer explores the model to verify it
against the new set of requirements. In each ex-
ploratory simulation, the model is evaluated using
the steps presented in Enumeration 2 until a suffi-
cient coverage (Atamturktur, Egeberg, et al. 2015)
of the input space is achieved.

6. The model designer evaluates the results from 5. If
the actor is unsuccessful, he or she adjusts the model
and reiterates the main scenario steps from 5.

7. The simulation engineer utilizes the model when
simulating the subsystem.

8. The architect utilizes the results as the basis for se-
lecting, or refining, a system design.

Enumeration 2. Detailed description of the model
evaluation steps.

1. Pre-processing, the test input point is selected from
the initial OD using an exploration algorithm, and a
steady-state scenario is synthesized from the values.
(Figure 9)

2. Run simulation, the simulation encompasses three
different phases, the duration of the phases is ideally
objectively defined with a connection to the model
characteristics. (Figure 6)

A. Ramp-up phase, enables a smooth and numer-
ically sound transition from a cold model state
to the test point.

B. Stabilization phase, allows the model to reach
a steady-state at the test input point.

C. Measurement phase, the model Quantity of In-
terests (QoIs) are recorded.

Figure 6. Synthesized simulation scenario of a set of input coor-
dinates, i.e. input steady-state values representing one of the sets
of coordinates of Fig. 9. The scenario is partitioned into three
different phases: A-Transitioning from cold to test coordinate, B-
fixing the input to the selected test coordinate, and C-Evaluating
test coordinate based on output measurements.

3. Post-processing, the simulation results (Figure 7a
and 7b) are evaluated with respect to the model re-
quirements.

From the results of the model evaluation steps described
in Enumeration 2, initial ODs in the form of hulls are gen-
erated. These reference hulls enable comparing OD be-
tween models and identifying limitations concerning the
system’s intended use. They also aid in identifying poten-
tial attributes for a standardized data format. The determi-
nation of sufficient coverage is left to the discretion of the
model designer on a case-by-case basis.
The test framework DevelOpment, RIgorous, and auto-
mated assessment of models and Simulators (DORIS)
(Hällqvist 2023), implemented in the now finalized project
Digital Twin for Automated Flight Test Evaluation and
Model Validation (Hällqvist 2019), is extended and uti-
lized to evaluate models. The software is built around
OMSimulator (Ochel et al. 2019) enabling simulations
unified by Modelica Association (MA) (The Modelica As-
sociation 2019) standards such as FMI and SSP. It enables
exploratory testing of models in an automated and repeat-
able way. The evaluation against requirements will be lim-
ited to check model robustness. A set of general model
integration requirements is exemplified in Enumeration 3.

Enumeration 3. General model integration requirements
adopted to exemplify the presented research.

1. The simulation shall not crash.

2. There shall not be any errors or warnings due to com-
putational/solver problems.

3. Any single time step should be executed within rea-
sonable time limits, as specified by the model de-
signer.

4. The modeled system shall be able to reach steady-
state, see 7a for example.

36 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

(a) Example of simulated QoIs that have succeeded in reaching
steady-state. These results correspond to a passed evaluation,
marked with a green dot in Figure 9.

(b) Example of simulated QoIs that have failed to reach steady-
state. These results correspond to a failed evaluation, marked
with a red cross in Figure 9.

Figure 7. Example of simulation results for different test coordinates, see Figure 5 for an overview of the simulated application
example.

To evaluate how hulls can be utilized when aggregat-
ing multiple models into a larger system, two Functional
Mock-up Units (FMUs) are extracted from the application
example architecture. These two models are subjected to
an identical verification exploration to generate their cor-
responding hulls. The hypothesis is that the system can
only be utilized in the hull created by the intersection of
the internal model hulls (xmodel) for any shared input vari-
able according to

xsystem =
models⋂

model=0

xmodel (1)

where xsystem represent the system OD. Comparison
between the model hulls and measurements of selected
variables extracted from the system simulation is to
provide a basis for conclusions regarding this hypothesis.

Additionally, a reference implementation of a simple
Bayesian search is developed to evaluate the challenges
and possibilities for further research. Although the
method will not be used in the current study, some rea-
soning around the implementation will be included in the
Discussion.

5 Results
When the domains initially exhibit a simple hypercube
characteristic, it becomes evident from exploring the
reference system (see Figure 2) that this representation
is insufficient. In investigated model examples, fitting a
hypercube to encompass the passed samples will incur a
loss of information. It can also be seen in Figure 9 that
the quality of the generated hull is also a factor to take
into consideration. Where the ’Original hull’ has a very
low quality in its representation of the domain against
the requirement, the ’Low quality hull’ increases that
quality but there are still a certain amount of verification
experiments within the volume that fails. The last area,

’High quality hull’, is a very high-quality area where no
experiments have failed, but this is at the cost of utiliza-
tion of the model; in other words, the high quality hull
excludes many operating conditions that are identified as
’Passed’ .

A simple nearest neighbor metric has been used for cre-
ating the different quality hulls. A metric value for each
simulation is calculated based on the ratio of how close
the simulation is to both failed and successful simulation,
mathematically described through

simratio = f (sim,sims f ail)/ f (sim,simspass) (2)

f (sim,sims) =
sims

∑
n=1

(1/((distance(sim,simn)
2 (3)

where sim is the current simulation and sims f ail/pass
signify all simulations that pass or fail a requirement.

The proposed extension of the SRMD format consists
of an OperationalDomain tag that encapsulates the OD
information. An implementation example is shown in
Listing 1, followed by a description of the individual tags
and attributes in Table 1, 2, 3, 4 and 5. The included
attributes should be viewed as initial examples and should
be evaluated further in a broader industrial context to
account for requirements from other business domains.
A full example can be found in Listing 2 provided in the
Appendix.

A note on the types of OD proposed, a hypercube can be
expressed as a convex hull but the points needed to do so
are 2n, therefore we also proposed to include "hypercube"
as a separate volume type where the geometry is defined
by two points "xmin, ymin;xmax, ymax" for simplicity.

37DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

(a) Results of the consumer model verification and the resulting
OD, a total of 300 test are performed.

(b) Results of the ECS verification and the resulting OD, a total
of 800 tests are performed.

Figure 8. Model ODs that can be used to describe and aggregated system OD.

Figure 9. Different quality variants of Operational Domain
(OD), represented as convex hulls.

Listing 1. SRMD implementation example.
<OperationalDomain

name="domain1.1"
derived="domain1">

<Annotations>
<Annotation type="OD_Information">

<Info>
Simulation completed, no errors

</Info>
</Annotation>

</Annotations>

<Volume
type="convex_hull"
points="x1,y1;x2,y2;x3,y3"
variables="Altitude,Mach"/>

<Requirement
simulation_status="no_errors"/>

<Error fraction="0.1">
<Point pos="x4,y4">
....

</Error>
</OperationalDomain>

Table 1. OperationalDomain tag details.

Attribute Description
name (str) Unique name of the OD
derived (str) If present, enables traceability to the

domain used as a basis for the current ex-
ploration

Element
<Annotations> If present, FMI or SSP XML standard an-

notations to support additional information
and a human-readable definition of the OD.

<Volume> Contains the resulting volumetric represen-
tation of the OD.

<Requirement> Defines against what requirements the OD
is verified.

<Error> Provide information regarding the faults
within the final hull

Table 2. Volume tag details.

Attribute Description
type (enum["convex_hull", "hypercube"]) The volume

type OD
points (array[array[float]]) The coordinates of the points

defining the volume.
variables (array[str]) The variable name mapping towards

the model input space.

Table 3. Requirement tag details.

Attribute Description
simulation_status (enum["failed", "no_errors",

"no_warnings"]) If present, place
constraints on simulation execution.

execution_time (float) If present, place constraints on
single-step execution time in seconds.

hull_uncertainty (float) If present, place constraints on
hull uncertainty as the ratio of permis-
sible faults within the volume.

38 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Table 4. Error tag details.

Attribute Description
fraction (float) The final ratio between failed/passed

points within the hull.
Element
<Point> [multiple] If present, coordinates of a failed

point within the hull to enable an additional
evaluation of credibility.

Table 5. Point tag details.

Attribute Description
position (array[float]) Coordinates of a point

5.0.1 OD comparison
When evaluating hulls to establish what performance and usage
that can be expected when pairing the application example
models, both the consumer and ECS are utilized. A return
pipe connecting the consumer and ECS is selected for the
comparison and both models were verified using a random
search, they both have a nine-dimensional input space where
suitable ranges for each input variable were acquired from the
respective model designers. The comparison of ODs presented
in Figure 8 is conducted over liquid enthalpy and mass flow;
these two input variables were selected since they both appear
to have some correlation to test failure in both model and system.

Mapping the system usage over the two models, see Figure 11,
shows that the hypothesis should not be discarded. The results in
this case are promising and the method utilized could give sys-
tem architects a powerful new tool for evaluating how a system
will behave earlier in the product development cycle. However,
additional tests involving other models and systems are needed
for any strong conclusions to be made but such tests are left for
future research.

6 Discussion
O. Balci and Ormsby (2000) argues that a model accreditation
recommendation can only be provided for data and scenarios
connected to the model’s intended use and that any results
obtained from conditions outside this scope are not credible.
Model exploration is a means to evaluate the model in such a

Figure 10. Results of the system verification and the resulting
OD, a total of 500 tests are performed.

Figure 11. Comparison between the consumer model OD, the
ECS model OD, and the resulting system utilization OD.

way as to provide evidence supporting that model accreditation
can be provided for the full OD. One of the larger questions
regarding this is when a requirement can be guaranteed up to
a certain confidence level. Taking Figure 9 as an example,
the single failed experiment almost in the center of the plot
showcases a situation without a simple solution. If the require-
ment of this particular model dictates a confidence level of
100%, it could be the difference between reusing a model and
designing a new one. In some cases, the design cost difference
between 100% and 95% can be extensive. Concretizing the
confidence level for each requirement enables the creation
of a cost-effective solution. As stated Section 2.1, we are to
strive towards minimizing implicit requirements. This together
with the utilization of a standardized machine-readable format
together with the MA standards would fulfill the Findable,
Accessible, Interoperable, and Reusable principles of FAIR and
increase the traceability of model verification.

Stating confidence levels in requirements opens up an interest-
ing opportunity for model reuse. As seen in Figure 9, multiple
domains for a requirement can be specified depending on
the confidence level. The current system may require a 95%
confidence level, but during verification, ODs can be created
not only for 95% but also for 90% and 80%. This could enable
evaluating the model for uses outside the current project that
requires a larger OD but has lower requirements regarding con-
fidence level. The same approach may be applied to common
requirements such as requirements concerning accuracy and
speed. Variations of confidence levels and requirements can,
in most cases, be achieved without additional simulations by
evaluating already collected data from each simulation against
additional requirements. Each model or application area will
likely have some specific requirements that may enable easier
utilization in new contexts and quick verification in reuse cases.
The areas that could benefit the most from this approach will
likely become clearer with increased usage of domains in
general.

When exploring a model, as established earlier, it is quite in-
effective to explore the OD using the described Grid or Ran-
dom search approaches. However, as previously stated, a simple
Bayesian search was implemented to evaluate potential chal-
lenges using this method in this context, see Figure 4. It is
built upon the assumption more information regarding system
behavior can be found in the border regions dividing the passed
and failed simulations. It’s therefore designed to prioritize new

39DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

simulations in such areas. The main finding from this imple-
mentation is that a challenge in utilizing a Bayesian search as
a general solution is in evaluating the choice of tests chosen by
the algorithm. For example, evaluating results based on a Ran-
dom search is often straightforward, whereas the corresponding
results when using a complex search algorithm may require spe-
cialized knowledge of both the search algorithm and the cov-
erage metric. This is especially true as manual evaluation of
the exploration strategy becomes more complex with increas-
ing input dimensions. As of now, avoiding specialized search
algorithms sidesteps the question of evaluating if the chosen op-
timization method and coverage objective is the correct choice
for the current model.

7 Conclusion
Coupling a requirement-driven formulation of a model veri-
fication activity in the form of a Operational Domain (OD)
would increase traceability and may provide multiple new
opportunities for model and system verification. Before
simulating, evaluating how aggregated models perform together
can provide valuable insights regarding the system’s behavior.
During simulation, model validity can be monitored and
provide warnings for models utilized in an unverified context.
After simulating, more computationally intensive verification
and debugging can be conducted utilizing logs and results.
When combining multiple models, aggregation factors make it
difficult to validate the system at scale (Wang et al. 2019), and
verification utilized during all phases of usage can be seen as a
means to monitor aggregation effects.

Acknowledgements
This research was conducted within the scope of the ITEA4
OpenSCALING project, funded by Vinnova and Saab AB. The
authors would also like to thank Dan Louthander for his work
with the needed DORIS framework adaptations.

References
Andersson, Henric (2012). “Variability and Customization of

Simulator Products : A Product Line Approach in Model
Based Systems Engineering”. PhD thesis. Linköping Univer-
sity, Machine Design, p. 83. ISBN: 978-91-7519-963-4.

Andersson, Henric and Magnus Carlsson (2012-12-12). Saab
Aeronautics Handbook for Development of Simulation Mod-
els. Public Variant. 1st ed. Linköping University Electronic
Press.

Asaeedi, Saeed, Farzad Didehvar, and Ali Mohades (2014).
Alpha-Concave Hull, a Generalization of Convex Hull. arXiv:
1309.7829 [cs.CG].

Atamturktur, Sezer, Matthew C. Egeberg, et al. (2015-01).
“Defining coverage of an operational domain using a mod-
ified nearest-neighbor metric”. In: Mechanical Systems and
Signal Processing 50-51, pp. 349–361. DOI: https://doi.org/
10.1016/j.ymssp.2014.05.040.

Atamturktur, Sezer, François Hemez, et al. (2009-02-09). “Pre-
dictive Maturity of Computer Models Using Functional and
Multivariate Output”. In: Proceedings of the 27th Conference
and Exposition on Structural Dynamics 2009, IMAC-XXVII.
Orlando, Florida USA.

Balci, O. and W.F. Ormsby (2000-12). “Well-defined intended
uses: an explicit requirement for accreditation of modeling
and simulation applications”. In: 2000 Winter Simulation
Conference Proceedings (Cat. No.00CH37165). 2000 Winter
Simulation Conference Proceedings (Cat. No.00CH37165).
Vol. 1, 849–854 vol.1. DOI: 10 . 1109 / WSC . 2000 . 899883.
URL: https://ieeexplore.ieee.org/document/899883 (visited
on 2024-06-05).

Balci, Osman (1997). “Verification, validation and accreditation
of simulation models”. In: Proceedings of the 1997 Winter
Simulation Conference. IEEE Computer Society, Washing-
ton, D.C., United States, pp. 135–141. DOI: 10.1109/WSC.
1997.640389.

Beisbart, Claus and Nicole J. Saam (2019-04-24). Computer
Simulation Validation: Fundamental Concepts, Methodolog-
ical Frameworks, and Philosophical Perspectives. Springer.
1088 pp. ISBN: 978-3-319-70765-5. URL: https : / / www .
ebook . de / de / product / 30290750 / computer _ simulation _
validation.html.

Carlsson, Magnus et al. (2012-01). “Methodology for Develop-
ment and Validation of Multipurpose Simulation Models”. In:
50th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. American Insti-
tute of Aeronautics and Astronautics. DOI: 10.2514/6.2012-
877.

Coïc, Clément et al. (2021-09). “Modelica, FMI and SSP for
LOTAR of Analytical mBSE models: First Implementation
and Feedback”. In: Linköping Electronic Conference Pro-
ceedings. Linköping University Electronic Press. DOI: 10 .
3384/ecp2118149.

DO-178C (2012-01-05). URL: https://www.do178.org/ (visited
on 2024-06-03).

Eek, Magnus, Hampus Gavel, and Johan Ölvander (2017-02).
“Definition and Implementation of a Method for Uncertainty
Aggregation in Component-Based System Simulation Mod-
els”. In: Journal of Verification, Validation and Uncertainty
Quantification 2.1. DOI: https://doi.org/10.1115/1.4035716.

Eek, Magnus, Robert Hällqvist, et al. (2016-06). “A Concept
for Credibility Assessment of Aircraft System Simulators”.
In: AIAA Journal of Aerospace Information Systems 13.6,
pp. 219–233. DOI: https://doi.org/10.2514/1.I010391.

Erdemir, Ahmet et al. (2020-12). “Credible practice of model-
ing and simulation in healthcare: ten rules from a multidis-
ciplinary perspective”. In: Journal of Translational Medicine
18.1, p. 369. ISSN: 1479-5876. DOI: 10.1186/s12967- 020-
02540-4. URL: https://translational-medicine.biomedcentral.
com/articles/10.1186/s12967-020-02540-4 (visited on 2024-
04-26).

Feurer, Matthias and Frank Hutter (2019). “Hyperparameter Op-
timization”. In: Automated Machine Learning. Ed. by Frank
Hutter, Lars Kotthoff, and Joaquin Vanschoren. Series Ti-
tle: The Springer Series on Challenges in Machine Learning.
Cham: Springer International Publishing, pp. 3–33. ISBN:
978-3-030-05317-8 978-3-030-05318-5. DOI: 10.1007/978-
3-030-05318-5_1. URL: http://link.springer.com/10.1007/
978-3-030-05318-5_1 (visited on 2024-06-05).

FMI development group (2019-10-31). FMI Functional Mock-
up Interface. https://fmi- standard.org/. Accessed: 2019-11-
07. URL: https://fmi-standard.org/ (visited on 2019-11-15).

FMI development group (2022-05-10). Functional Mock-up
Interface Specification, FMI for Model Exchange, Co-
Simulation, and Scheduled Execution. Available online: https:

40 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

//fmi- standard.org/. Report 3.0. URL: https://fmi- standard.
org/.

Fritzson, Peter (2004-01). Principles of Object Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-IEEE Press.
ISBN: 9780470545669. DOI: 10.1109/9780470545669.

Gripen Mission Trainers (2024). Start. URL: https://www.saab.
com/markets /brazil / press - releases /2023 /gripen- mission -
trainers-in-Brazil (visited on 2024-05-13).

Hällqvist, Robert (2019-05-14). Digital Twin for Automated
Flight Test Evaluation and Model Validation. Ed. by VIN-
NOVA, National Aeronautical Research Program 7, Ref Nr.
2019-02760.

Hällqvist, Robert (2023). “On The Realization of Credible Sim-
ulations: Efficient and Independent Validation Enabled by
Automation”. PhD thesis. Linköping University, Division of
Fluid and Mechatronic Systems. ISBN: 978-91-7929-597-4.

Hällqvist, Robert, Magnus Eek, et al. (2023-01). “Towards Ob-
jective Assessment of Model and Simulator Predictive Ca-
pability”. In: Journal of Aerospace and Information Systems
(JAIS), AIAA., pp. 1–16. DOI: https : / / doi . org /10 .2514 /1 .
I011153.

Hällqvist, Robert, Raghu Chaitanya Munjulury, et al. (2022-09-
13). “Realizing Interoperability between MBSE Domains in
Aircraft System Development”. In: MDPI: Electronics 11.18.
ISSN: 2079-9292. DOI: 10.3390/electronics11182901. URL:
https://www.mdpi.com/2079-9292/11/18/2901.

Hällqvist, Robert, Jörg Schminder, et al. (2018-09-09). “A Novel
FMI and TLM-based Desktop Simulator for Detailed Stud-
ies of Thermal Pilot Comfort”. In: Proceedings of the 31st
Congress of the International Council of the Aeronautical
Sciences. International Council of the Aeronautical Sciences,
ICAS20180203. ISBN: 978-3-932182-88-4.

Herlihy, Maurice and Nir Shavit (2012-06-25). The Art of Multi-
processor Programming, Revised Reprint. Google-Books-ID:
vfvPrSz7R7QC. Elsevier. 537 pp. ISBN: 978-0-12-397795-3.

International Council on Systems Engineering (2015). Systems
Engineering Handbook. 4th ed. John Wiley and Sons, Inc.
ISBN: 9781118999400.

ISO 2533 (1975). URL: https://www.iso.org/standard/7472.html
(visited on 2024-05-27).

ISO 26262 (2018). ISO 26262. URL: https : / / www. iso . org /
standard/68383.html (visited on 2024-06-07).

ITEA 3 (2019-11-12). EMBrACE. https : / / itea3 . org / project /
embrace.html. URL: https://itea3.org/project/embrace.html
(visited on 2024-01-26).

Level, S. E. T. (2024). SET Level - The safety of automated driv-
ing. URL: https://setlevel.de (visited on 2024-04-26).

Ljung, Lennart and Torkel Glad (2004). Modelbygge och Simu-
lering. Vol. 2. Studentliteratur. ISBN: 91-44-02443-6.

Martin, Robert and Grigori Melnik (2008-02-01). “Tests and Re-
quirements, Requirements and Tests: A Möbius Strip”. In:
Software, IEEE 25, pp. 54–59. DOI: 10.1109/MS.2008.24.

MIL-STD-3022 (2008-01-28).
Modelica Association (2022-10-27). SSP Traceability Specifica-

tion. Version 1.0.0-Beta2. Standard, unreleased.
Modelica Association Project System Structure and Parameter-

ization (2019). System Structure and Parameterization. URL:
https://ssp-standard.org (visited on 2019-10-23).

Muller, G. (2020-11-01). Industry-as-Laboratory Applied in
Practice: The Boderc Project, Version: 1.3. Ed. by University
of South-Eastern Norway-NISE. Kongsberg, Norway. URL:
http://www.gaudisite.nl/ (visited on 2022-12-15).

Murray-Smith, David (2019-02-08). “Some Issues in the Test-
ing of Computer Simulation Models”. In: International Jour-
nal of Business and Technology 5.1, pp. 1–10. ISSN: 2223-
8387. DOI: 10 . 33107 / ijbte . 2016 . 5 . 1 . 01. URL: https : / /
knowledgecenter.ubt-uni.net/ijbte/vol5/iss1/1.

NASA STD-7009 (2008). Place: Washington DC.
Ochel, Lennart et al. (2019-03-04). “OMSimulator – Integrated

FMI and TLM-based Co-simulation with Composite Model
Editing and SSP”. In: Proceeding of the 13th International
Modelica Conference, pp. 69–78. DOI: 10.3384/ecp1915769.

Oprea, Alexandra (2022). On aircraft simulation in conceptual
design. Linköping: Department of Management and Engi-
neering, Linköping University. 1 p. ISBN: 978-91-7929-476-
2.

Pokojski, Jerzy, Lech Knap, and Stanisław Skotnicki (2021).
“Concept of a Multi-Criteria and Multi-Disciplinary Design
Activity Supporting Tool in the Design and Development Pro-
cess of CPS”. In: pp. 113–122. DOI: 10.3233/ATDE210089.
URL: https://ebooks.iospress.nl/doi/10.3233/ATDE210089
(visited on 2024-05-01).

Pop, A. and Peter A. Fritzson (2004). “The Modelica Standard
Library as an Ontology for Modeling and Simulation of Phys-
ical Systems”. In: URL: https : / / api . semanticscholar . org /
CorpusID:26864047.

Potts, C. (1993-09). “Software-engineering research revisited”.
In: IEEE Software 10.5, pp. 19–28. DOI: doi : 10 .1109 /52 .
232392.

Pugh, Ken (2010-12-22). Lean-Agile Acceptance Test-Driven
Development: Better Software Through Collaboration. Upper
Saddle River, NJ. ISBN: 978-0-321-71408-4.

Raymer, Daniel P. (2018). Aircraft design: a conceptual ap-
proach. 6th ed. American Institute of Aeronautics Astronau-
tics. ISBN: 9781624104909.

Riedmaier, Stefan et al. (2020-08). “Unified Framework and
Survey for Model Verification, Validation and Uncertainty
Quantification”. In: Archives of Computational Methods in
Engineering. DOI: https : / / doi . org / 10 . 1007 / s11831 - 020 -
09473-7.

Robinson, Stewart et al. (2004-11). “Simulation model reuse:
definitions, benefits and obstacles”. In: Simulation Modelling
Practice and Theory 12.7-8, pp. 479–494. DOI: doi:10.1016/
j.simpat.2003.11.006.

Roy, Christopher J. and William L. Oberkampf (2011-06). “A
comprehensive framework for verification, validation, and
uncertainty quantification in scientific computing”. In: Com-
puter methods in applied mechanics and engineering 200.25-
28, pp. 2131–2144. DOI: 10.1016/j.cma.2011.03.016.

Sargent, Robert G. (2010). “Verification and validation of sim-
ulation models”. In: Proceedings of the 2010 Winter Simu-
lation Conference, pp. 166–183. DOI: 10.1109/WSC.2010.
5679166.

Schminder, Jörg et al. (2018). “Pilot Performance and Heat
Stress Assessment Support Using a Cockpit Thermoreg-
ulatory Simulation Model”. In: Proceedings of the 31st
Congress of the International Council of the Aeronautical
Sciences. International Council of the Aeronautical Sciences,
ICAS20180463. ISBN: 978-3-932182-88-4.

Sivard, Gunilla (2001). “A generic information platform for
product families”. QC 20100812. PhD thesis. KTH, Produc-
tion Engineering, pp. v, 213.

Steinkellner, Sören (2011). “Aircraft Vehicle Systems Model-
ing and Simulation under Uncertainty”. Licentiate thesis.

41DOI 10.3384/ECP20729 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Linköping University, Division of Machine Design. ISBN:
9789173931366.

The Modelica Association (2019). Modelica and the Modelica
Association. https://www.modelica.org/. Accessed: 2018-06-
21. URL: https://www.modelica.org/ (visited on 2019-11-15).

Wang, Yanan et al. (2019-03-04). “A survey on VV&A of large-
scale simulations”. In: DOI: 10.1108/IJCS-01-2019-0004.

Wilkinson, Mark D. et al. (2016-03-15). “The FAIR Guiding
Principles for scientific data management and stewardship”.
In: Scientific Data 3.1, p. 160018. ISSN: 2052-4463. DOI: 10.
1038/sdata.2016.18. URL: https://www.nature.com/articles/
sdata201618 (visited on 2024-04-26).

42 10.3384/ECP20729 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

8 Appendix
Full example of an SRMD hull implementation, Listing 2, showcasing an initial hull provided by model designer and then the
resulting verified hull. These two hulls correspond to the "original hull" and "high quality hull" in Figure 9.

Listing 2. Full SRMD implementation example.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<srmd:SimulationResourceMetaData version="1.0.0" name="Simulation meta data"

generationTool="Manual" generationDateAndTime="2024-02-06T13:21:41Z"
xmlns:srmd="http://ssp-standard.org/SSPTraceability1/SimulationResourceMetaData"
xmlns:ssc="http://ssp-standard.org/SSP1/SystemStructureCommon"
xmlns:stc="http://ssp-standard.org/SSPTraceability1/SSPTraceabilityCommon"
xmlns:xlink="http://www.w3.org/1999/xlink">

<OperationalDomain name="initial_domain" >
<Annotations>

<Annotation type="OD_Information">
<Info>

Initial hypercube provided by model designer Mr/Mrs. X.
</Info>

</Annotation>
</Annotations>

<Volume
type="hypercube"
points="0,0;22000,2.3"
variables="Altitude,Mach"/>

</OperationalDomain>

<OperationalDomain name="no_errors_confidence_1" derived="initial_domain" >
<Annotations>

<Annotation type="OD_Information">
<Info>

High confidence operational domain of no error requirement,
confidence level of 100%.

</Info>
</Annotation>

</Annotations>

<Volume
type="convex_hull"
points="10500,0;7000,0;5000,0.1;5000,0.4;6000,2.3;8000,2.3;13000,0.1"
variables="Altitude,Mach"/>

<Requirement simulation_status="no_errors"/>
<Error fraction="0.0">
</Error>

</OperationalDomain>
</srmd:SimulationResourceMetaData>

43DOI 10.3384/ECP207 43 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Modelica supported automated design

Ion Matei1 Maksym Zhenirovskyy1 John Maxwell1 Saman Mostafavi1

1Intelligent Systems Laboratory, SRI, United States, {ion.matei, maksym.zhenirovskyy, john.maxwell,
saman.mostafavi}@sri.com

Abstract
We propose a component-based, automated, bottom-up
method to system design, using models are expressed in
the Modelica language. This bottom-up approach is based
on a meta-topology that is iteratively refined via opti-
mization. Each topology link is described by a univer-
sal component that is defined in terms of atomic compo-
nents (e.g., resistors, capacitors for the electrical domain)
or more complex canonical components with a well de-
fined function (e.g., operational amplifier-based inverters).
The activation of such links is done via discrete switches.
To address the combinatorial explosion in the resulting
mixed-integer optimization problems, we convert the dis-
crete switches into continuous switches that are physically
realizable and formulate a parameter optimization prob-
lem that learns the component and switch parameters. We
encourage topology sparsity through an L1 regularization
term applied to the continuous switch parameters. We
improve the time complexity of the optimization prob-
lem by reconstructing intermediate design models when
components become redundant and by simplifying topolo-
gies through collapsing components and removing discon-
nected ones. To demonstrate the efficacy of our approach,
we apply it to the design of various electrical circuits.
Keywords: component-based, design, optimization, non-
linear programming

1 Introduction
In this paper, we describe a general approach for design-
ing physical systems using a bottom-up approach that im-
plements the “change design” process in Figure 1. This
type of problem can be formulated as a mixed integer pro-
gram that includes a combinatorial part to select the com-
ponent types and a continuous optimization part that se-
lects parameters of components to meet requirements. A
brute force approach to solving such an optimization prob-
lem suffers from combinatorial explosion, and heuristics
based on branch-and-bound methods do not scale with the
number of discrete optimization variables (Clausen 2003;
Morrison et al. 2016). To limit the effects of combinatorial
explosion, we introduce an algorithm that transforms the
mixed-integer formulation into a nonlinear program, with
physically realizable solutions.

To facilitate the description of the algorithm and of the
results, we focus on design problems in the electrical do-
main. However, the approach can be generalized to other

physical domains. We use the Modelica language to de-
scribe the basic components and the generated design so-
lutions, which allows subject matter experts to interpret
and evaluate the generated designs.

The design models use a universal component that em-
beds the behavior of basic components in the electrical
domain (e.g., resistor, inductor, capacitor, short connec-
tion, and open connection) or more complex components
based on operational amplifiers (OpAmps) in various con-
figurations. For example, a universal component based
on inverting and non-inverting OpAmp configurations is
shown in Figure 2. Each branch of the component is acti-
vated or deactivated by a switch that controls the current
that flows through it. The design problem is to find the
correct switch assignments and component parameter val-
ues to meet the requirements, which can be specified in
terms of the time evolution of certain quantities of inter-
est or the characteristics of a transfer function in the case
of filter design. We start with a topology that describes
how the universal components are connected and includes
points for setting boundary conditions (e.g., voltage/cur-
rent sources) and taking measurements. The design prob-
lem is then formulated as an optimization problem that
minimizes a loss function C (ŷyy0:T (ppp,sss),yyy0:T), where ppp
and sss are the parameters and switches of the basic com-
ponents, respectively, yyy0:T is a target vector of measure-
ments over time interval [0,T], ŷyy0:T (ppp,sss) is the model’s
predicted measurements, and C is a metric that measures
the error between the model predictions and the target
measurements (e.g., mean square error). The optimization
problem also takes into account dynamic constraints, and
bounds on component parameters (e.g., resistances must
be non-negative).The main contributions of this paper are
as follows:

• Continuous relaxation with lossless realization: We
developed an optimization algorithm that relaxes
the integer constraints on the switches by treat-
ing them as continuous variables in the range [0,
1]. The parameters of the components and their
associated switches are optimized using gradient-
free search algorithms and simulations based on
Functional Mockup Units (FMUs) (Blochwitz et al.
2011). To encourage sparsity in the design solu-
tion, we also add an L1 regularization term to the
loss function. The non-zero switches are not approx-
imated by 0 or 1, but are realized as electric resis-
tors, ensuring no loss in optimality but a possible

44 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 1. The design optimization process: an initial design is continuously refined until requirements are satisfied.

Figure 2. Universal component based on inverting and non-inverting OpAmp configurations.

loss in sparsity. Since we cannot guarantee finding
the global optimum, we also use parallel optimiza-
tion runs with random initial conditions to generate a
diverse set of design solutions.

• Scalability improvement via model simplifications:
During optimization, when certain components are
no longer needed (i.e., their switches are set to zero),
we eliminate them and reconstruct the design model.
This reduces the complexity of the model, as mea-
sured by the number of equations, and leads to faster
simulation times. In addition, we developed a graph
theory-based algorithm that further simplifies the de-
signs generated by the optimization procedure. The
algorithm removes unnecessary components, com-
bines compatible components in series and parallel
connections into equivalent single components, and
annotates the resulting design models for visual rep-
resentation and simulation in tools that support the
Modelica language.

Paper structure: In Section 2, we present an algorithm
for automated design that uses continuous relaxation. In
Section 3, we discuss how we improve the efficiency of
our design algorithm by reducing the complexity of the
intermediate design models that are simulated during the
design space exploration. Finally, in Section 4, we present
the designs generated by the proposed algorithm for var-
ious circuit design problems and types of universal com-
ponents.

2 Design optimization
When using branch-and-bound heuristics to solve mixed
integer programs, we may encounter situations where the
cost of the relaxed problem is better than the cost ob-
tained by converting the optimization variables into in-
teger values. In this section, we present a method to
avoid such a case. The key idea is to interpret the
switches in a way that allows for their physical im-
plementation, even when they do not have integer val-

45DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

ues. In the universal component definition, each branch
has a corresponding switch that opens or closes a con-
nection. When the switch is open, no current flows
through the component, leading to its exclusion from the
design model. In the Modelica electrical library, the
switch (Modelica.Electrical.Analog.Ideal.
IdealOpeningSwitch) is modeled such that when
the switch is open, there is a high resistance that blocks
the flow of current. When the switch is closed, there is
a very low resistance and the current flows freely. This
switch is controlled by a boolean input, the value of which
determines the switch mode. We draw inspiration from
the definition of the Modelica switch to create a contin-
uous switch that is controlled by a parameter that takes
values in the range [0, 1]. The switch is defined by the
equations

v = a((ε −1)s+1), (1)
i = a((1− ε)s+ ε), (2)

where v is the switch voltage, i is the current through the
switch, a is an auxiliary variable, s ∈ [0,1] is the switch
control, and ε is a small hyper-parameter that determines
the residual resistance when the switch is closed. The
switch equation can be simplified to

v =
(ε −1)s+1
(1− ε)s+ ε

i,

showing that for s = 0 we have v = i/ε and for s = 1
we have v = εi, the expected behavior of a switch. We
do not use this simplified representation of the switch for
numerical stability reasons. The introduction of the aux-
iliary variable a prevents the presence of equations with
terms that involve divisions by very small numbers. How-
ever, the disadvantage is that the resulting system of equa-
tions for the design model becomes a differential algebraic
equation (DAE) rather than an ordinary differential equa-
tion (ODE). This limitation restricts the type of optimiza-
tion approach that can be used, as we cannot directly uti-
lize platforms that support automatic differentiation (AD)
(e.g., the torchdiffeq package in Pytorch). In addi-
tion to the requirements loss function C , we introduce a
sparsity-promoting L1 regularization term, resulting in the
total optimization loss:

L (ppp,sss) = C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1,

where 0 ≤ si ≤ 1, with sss = (si), and λ is a positive weight
that controls the sparsity strength. If in the optimiza-
tion solution not all entries of sss are zero or one, we map
them into electric resistors with equivalent resistances,
(ε−1)si+1
(1−ε)si+ε . Thus, we can physically realize them, without
affecting the optimal cost function, i.e., the design require-
ments.

The pseudocode for this algorithm is shown in Algo-
rithm 1. We use a gradual approach to achieve sparsity.

We start with a small λ value to make sure that we gener-
ate an initial design that satisfies the requirements. Then
we gradually increase λ until the requirements cost func-
tion is no longer improved. Ideally, for each λ , we would
like to obtain the optimal solution. The strategy for updat-
ing λ is reminiscent to a primal-dual approach (Bertsekas
1999), where we minimize C under an L1 sparsity con-
straint.

In our approach, we incrementally increase the value of
λ until it begins to negatively impact the requirements cost
function. At this point, we halt the process and perform a
final optimization without the L1 regularization term. The
result of this final optimization will be our design solution.
Box constraints are commonly used in our problem setup,
but we use variable transformations to eliminate them and
use an unconstrained optimization algorithm to minimize
L . For example, we can eliminate the constraint a≤ x≤ b
by using the transformation x = a+(sin(x̃)+1)(b−a)/2,
where x̃ is the new unconstrained optimization variable. It
is not guaranteed that the optimization will converge to the
global minimum, as the cost function’s nonlinear depen-
dence on the optimization parameters means we cannot
accurately predict the structure of the problem. Ideally,
we would find at least a local minimum for each λ value,
but it is possible that the optimization algorithm may take
too many iterations to converge. As a result, we set a limit
on the number of iterations allowed between λ updates for
practical reasons.

All optimization algorithms will require the evaluation
of the design model. We use a black-box approach to op-
timization, where the cost evaluation is done by querying
a computational model of the design: an FMU (Blochwitz
et al. 2011). In the cosimulation version of the FMU,
such a representation contains the algorithm used for sim-
ulating the model (e.g., CVODE solver (Hindmarsh et
al. 2005)), in addition to the design description. FMUs
can be integrated in several languages (e.g., Python, C,
Java) and computational platforms (e.g., Matlab/Simulink,
OpenModelica, Dymola). The optimization algorithms
were implemented in Python based on the Scipy opti-
mization package. We used a gradient free (i.e., a direct
method) optimization algorithm that relies only on the ob-
jective function, namely Powell’s method (Powell 1964).
Empirically, it provides a better convergence rate than
other gradient-free algorithms such as Nelder-Mead, and
is faster than global, gradient-free optimization algorithms
(e.g., genetic algorithms). The integration of FMUs into
the optimization algorithms was done using the PyFMI
library (Andersson, Åkesson, and Führer 2016).

3 Model Construction and Simplifica-
tion

We automatically construct a Modelica model for a do-
main given a universal component and a specification of
the initial topology. For instance, if the user wanted to use
a 5x6 grid, then the program would generate a Modelica

46 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Algorithm 1 Continuous relaxation design algorithm

Require: δ : solution tolerance
Require: λ : L1 loss weight
Require: ∆: L1 loss weight increase rate
Require: FMU of the initial design model
Require: ppp, sss: initial parameter and switch values
Require: yyy0:T : target measurements

1: Cprev = ∞
2: while True do
3: ppp,sss ← argminppp,sss C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1
4: C ∗ = C (ŷyy0:T (ppp,sss),yyy0:T)
5: if C ∗ ≤ Cprev then
6: λ ← ∆λ
7: Cprev = C ∗

8: eliminate components corresponding to zero
switches and reconstruct the model

9: else
10: ppp,sss ← argminppp,sss C (ŷyy0:T (ppp,sss),yyy0:T)
11: return ppp,sss
12: end if
13: end while

model with 30 grid points with components connecting
pairs of points vertically and horizontally (see Figure 3).
This model is embedded in another model which specifies
the components that set the boundary conditions, i.e., the
voltage source and the resistor load (see Figure 4).

Figure 3. Modelica model for the grid. Universal components
connect the grid points.

Figure 4. Modelica model for the scenario that gives the bound-
ary conditions of a grid.

In the continuous relaxation approach to optimization,

each universal component has switches that allow inter-
nal components to be enabled or disabled. These switches
can be set from the top level model. When a component
is disabled, then the Modelica compiler ignores it when
constructing an FMU, thus no equations pertaining to the
respective components are added. This process is imple-
mented by conditionally declaring the basic components
of the universal component. Consequently, a basic com-
ponent appears in the instance of a universal component
only when a corresponding flag is set to true. The flags of
the basic components in all instances of the universal com-
ponent are continuously updated during the optimization
process.

After the optimizer has found a solution (i.e., has de-
termined which components should be enabled and what
their parameter values should be), we produce another
Modelica model that flattens the universal components
and just shows the internal components. At this point we
perform two simplification operations: eliminate isolated
components and dangling components. These operations
are necessary to deal with the cases where switch, resis-
tor or capacitor values are close to zero. Such a situa-
tion indicates the presence of open connections. Figure 5
shows a design solution example based a universal compo-
nent that uses passive components only, and that contains
isolated (capacitor between vertices 26 and 27) and dan-
gling (components between vertices 14, 20, 21, 22) com-
ponents. The design solution can contain isolated com-

Figure 5. Graph representation of a design solution: vertices are
connection points and edges components.

ponents since switches are not exactly zero, meaning that
there may be some very small residual currents passing
through components. Thus, it may appear that we have
components that are isolated but in fact only a small, neg-
ligible current passes through them. The isolated compo-
nents are eliminated by first generating the largest set of
connected components that include the boundary condi-
tions (i.e., the voltage source and the resistor load), and
discarding the remaining ones. The design solution may
also contain components that appear to be dangling, i.e.,

47DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

they are connected at one end only. The reason for such
a phenomenon is the same as in the isolated components
case: residual currents passing through them. The dan-
gling components are found by looking at the cycles of
the design. If a component does not belong to a cycle
then it must be dangling, thus it is eliminated. We im-
plemented code that generates a visually interpretable lay-
out for the components based on the and-or graph also of
the components that are between two grid points. The
layout was achieved by annotating the flattened Model-
ica design model with Modelica notation that generates
the visual effects. Finally, we have code to simplify the
model by merging compatible serial or parallel compo-
nents. The code goes through this process iteratively, un-
til no merging can be achieved. The resulting model has
correct equivalent parameter values (i.e., resistances in se-
rial connections are added) and it can be simulated using
Modelica.

4 Results
In this section we present design results based on Algo-
rithm 1 for various design examples.

4.1 Cauer analog low pass filter with passive
components

Our goal is to design a filter whose output from a step re-
sponse matches the output of the Cauer analog low pass
filter of the fifth order (see Figure 6). The input voltage
versus the load voltage plot is shown in Figure 7. To

Figure 6. Modelica model of the Cauer analog, low pass filter
of the fifth order.

improve the likelihood to find a design solution, we start
with a dense initial topology expressed as a 5x6 grid, with
a universal component based on passive electrical compo-
nents. The number of optimization variables correspond-
ing to this initial topology is 343, including component
parameters and switch values. The dense initial topology
is likely to ensure the existence of several local minima
that are close to satisfy the design requirements. To ex-

Figure 7. Cauer low pass analog filter: input source voltage vs.
resistive load voltage.

plore multiple of such local minima, we leverage parallel
executions of design optimization processes, where each
process starts with random initial component parameters,
and initial weight for the L1 cost, and where all switches
are initialized to 0.5. We run 20 parallel processes that
explore various design solutions. The design optimization
algorithm was implemented in Python, and the evaluation
of the design loss function was done via FMU-based sim-
ulations using the fmypi Python package. We refer to
each optimization corresponding to an instance of the L1
loss weight as outer iteration. An outer iteration was im-
plemented using the gradient free Powell algorithm, where
we limit the execution of the algorithm to 150 (inner) it-
erations. The limited number of iteration affects only the
early outer iterations, since 150 iterations may not be suf-
ficient to converge to a local minima. However, since we
use a sequence of outer iterations, where each such outer
iteration uses the previous optimization variables as initial
values, in practice we do converge to a design that satis-
fies requirements. More importantly, each outer iteration
reduces the time complexity since, after each outer iter-
ation we eliminate redundant components whose switch
values are approximately zero. The number of variables
drops from 343 at the first iteration to values in the twen-
ties or smaller, at the last iteration. Remarkably, after the
first iteration that uses no L1 regularization term, all pro-
cesses eliminate more than 250 optimization variables as
a result of switches being set to zero. The time per itera-
tion is determined by three factors: the number of iteration
of the Powell algorithm, the number of optimization vari-
ables and the FMU simulation time. Not unexpectedly, the
most expensive outer iteration is the first one, that corre-
sponds to 343 optimization variables. As the design mod-
els become simpler, the outer iteration times reduce to tens
of seconds. An example of a design solution that realizes
the behavior of the Cauer analog filter implemented using
passive components is shown in Figure 8.

48 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 8. Design solution for the Cauer analog low pass filter based on passive components generated by Algorithm 1.

4.2 Voltage level shifter design with opera-
tional amplifiers

We present the results of designing a voltage level shifter
(see Figure 9), using Algorithm 1. The universal compo-
nent employed to generate the initial grid topology con-
sists of a resistor, capacitor, and operational amplifier
arranged in a non-inverting configuration, together with
open and short connections. We run 10 parallel execu-
tions of Algorithm 1 for 150 outer iterations, with a limit
of 300 inner iterations for the Powell algorithm in each
outer iteration.

Figure 9. Voltage level shifter circuit used to generate the
ground truth data in the form of the voltage across the load re-
sistor (RL).

Two examples of design solutions produced by Algo-
rithm 1 for the voltage level shifter are depicted in Figures
10 and 11. Notably, both solutions have a component
count that is similar to that of the original level shifter de-
picted in Figure 9, with 10 and 9 components for the two
solutions compared to 8 components in the original cir-
cuit (not counting the load resistor and the voltage source

components). Additionally, both solutions utilize a single
OpAmp.

4.3 Cauer analog low pass filter with active fil-
ters

We repeated the design optimization problem for the
Cauer low pass filter, where the branches of the universal
component include first and second-order low and high-
pass filters, implemented using operational amplifiers, to-
gether with resistor, capacitor, short and open connection
components. We started with a 2x6 grid as the initial
topology and ran 10 parallel executions of Algorithm 1 for
250 outer iterations, with a limit of 1000 inner iterations
for the Powell algorithm in each iteration. After a final
simplification, we chose one of the solutions and arrived
at a circuit shown in Figure 12 that includes 8 operational
amplifiers. The Modelica Standard Library (MSL) has an
implementation of the Cauer analog filter that uses only
5 operational amplifiers but also includes 4 negative re-
sistors, where each negative resistor can be implemented
using an operational amplifier. Our design solution there-
fore has a similar number of operational amplifiers as the
one in the MSL.

Table 1 summarizes the design results of the above ex-
amples in comparison with the original circuits that were
used to generate the ground truth. When counting the
number of resistors and OpAmps in the MSL active im-
plementation of the Cauer filter, we included the number
of resistors and OpAmps needed to implement the neg-
ative resistors. The loss function used in the optimiza-
tion algorithm focuses on behavior and complexity (via
the L1 regularization term). The loss function can be aug-
mented with additional objectives that can include compo-
nent costs, for example. The computational time depends

49DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 10. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 1.

on the number of iterations of the optimization algorithms
and the FMU simulation time. The latter can be decreased
or increased by manipulating the number of collocation
points or the solver tolerances. Depending of the com-
plexity of the initial models and the weight of the L1 regu-
larization term, the optimization algorithms can take from
tens of minutes to several hours.

5 Differential programming for
gradient-based optimization

The algorithm introduced in the previous sections uses
gradient-free optimization to search for the component pa-
rameters. The advantage of such algorithms is that they
work directly with computational representations of the
design model (i.e., FMUs). The disadvantage is that they
become slower as the number of optimization variables
increases. An alternative to gradient-free algorithms is
gradient-based algorithms, and the optimization problem
would translate into a nonlinear program with dynamical
constraints. Solving such a problem would requires hav-
ing access to the gradients of the objective and constraint
functions. When dealing with design models represented
as ODEs, we can map the design optimization problem
into a framework that supports automatic differentiation
(AD) (e.g., Pytorch (Paszke et al. 2017) or Jax (Bradbury
et al. 2018)), and solve the problem using gradient de-
scent algorithms. Such platforms are endowed with ODE
solvers that support AD (Chen et al. 2018). To formu-
late the problem in frameworks such as Pytorch or Jax,
we first need to extract the equations from the Model-
ica model of the design. One approach is to generate an
XML representation for the DAE using the dumpXMLDAE
function of the OpenModelica (Fritzson et al. 2010; Open
Source Modelica Consortium n.d.) scripting language. Al-

ternatively, we can process the flattened Modelica us-
ing a Python Modelica parser such as modparc (Dong-
Ping 2013). Similar equation extraction can be done
using commercial Modelica tools such as Dymola, or
SystemModeler. The extracted equations are con-
verted into symbolic objects such as Sympy (Meurer et
al. 2017) objects, and mapped into deep-learning platform
objects that support automatic differentiation. This pro-
cess leads to a constrained optimization problem that in
the case of the continuous relaxation approach is given by:

min
xxx,ppp,sss

C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1 (3)

subject to: ẋxx = f (xxx,zzz; ppp,sss), (4)
g(xxx,zzz; ppp,sss) = 0, (5)
ŷyy = h(xxx,zzz; ppp,sss), (6)

where (4)-(5) is the DAE in the semi-explicit form, repre-
senting the dynamics of the design model, and h(xxx,zzz; ppp,sss)
is the sensing model.

To solve (3), we can convert (4) into a set of equality
constraints using direct collocation methods (Hargraves
and Paris 1987; Herman and Conway 1996), or we can
use local (e.g., Chebyshev polynomial expansions (Boyd
2001)) or global (e.g., neural networks) parameterizations
of the state solution and solve for the representation pa-
rameters (e.g., weights and biases of the neural network).
For example, if we use neural networks to represent the
state xxx(t) = NNx(t;βx) and the algebraic variables zzz(t) =
NNz(t;βz), the optimization problem (3) will be solved in
terms of the parameters βx, βz, ppp, sss. In addition, automatic
differentiation can be used to evaluate the time derivative
of the state. Our attempts to use a differentiable program-
ming paradigm to solve design problems were met with
mixed results. In the case where the model is represented

50 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 11. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 2.

Figure 12. Design solution for the Cauer analog low pass filter with operational amplifiers using Algorithm 1.

as an ODE, we obtained good results. For example, in
(Ion Matei et al. 2020) we showed how to learn control
policies for an inverted pendulum using a model predic-
tive control approach solved using Pytorch. When dealing
with DAEs though, the gradient-based optimization algo-
rithm, when combined with direct collocation methods to
approximate time derivatives, tend to converge slowly. In
addition, the parameterized DAE solution does not always
check against the DAE simulation executed with the op-
timal component and switch parameters. Unfortunately,
we cannot always guarantee that the design model can be
represented as an ODE, especially since the model is re-
peatedly reconstructed and simplified. Thus, the results
shown in this paper use a direct method (i.e., Powell al-
gorithm), instead a gradient-based approach. Ideally, we
would like to have a sensitivity analysis method embed-

ded in the DAE solvers, so that we can access the Jacobian
of the state with respect to the model parameters. Such a
method is present for instance in the SUNDIALS software
family, introduced in (Gardner et al. 2022; Hindmarsh et
al. 2005), with DAE solvers such as CVODES and IDAS
that include both direct and adjoint-based approaches to
compute sensitivities. Currently though, deep learning
platform do not offer such a functionality, except for the
case where the DAE can be transformed into an ODE.
Moreover, even when dealing with ODE, gradient-descent
algorithm that include solvers supporting automatic differ-
entiation tend to slow down as the number of optimization
parameters increases. We addressed this challenge in (I.
Matei et al. 2023), where we showed that block coordinate
descent algorithm in combination with direct collocation
method speed up training by several order of magnitude.

51DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Circuit Number of resistors Number of capacitors Number of inductors Number of OpAmps
Original passive Cauer filter 1 5 2 0
Designed passive Cauer filter 5 3 5 0

Original active Cauer filter 19 8 0 9
Designed active Cauer filter 17 16 0 8
Original voltage level shifter 7 1 0 1

Designed voltage level shifter (sol. 1) 8 2 0 1
Designed voltage level shifter (sol. 2) 5 4 0 1

Table 1. Summary of the design results for various examples.

We are currently working on extending this approach to
DAE models. There are Julia libraries that can also be
used for a gradient-based approach. For example, Mod-
elingToolkit.jl and its component library, ModelingToolk-
itStandardLibrary, are modeling languages for symbolic-
numeric computation (Ma et al. 2021). They combine
symbolic computational algebra systems ideas with causal
and acausal equation-based modeling frameworks. We did
not use this library in our work because it lacks many
components from the Modelica Standard Library, thus re-
quiring a model-transformation component for mapping
Modelica models into Julia representations. White the dif-
ferential programming paradigm is an appealing avenue
for dealing with numerical complexity, we cannot always
guarantee that the model we use are smooth. It is possi-
ble for such models to be hybrid (i.e., include discrete and
continues variables) and thus not differentiable.

6 Conclusions
In this paper, we presented an automated design process
utilizing a bottom-up approach. The process begins with
an initial possibly large topology of universal components
that is iteratively refined until a sparse solution is found.
The initial design is based on universal components, each
of which can exhibit a range of behaviors through ba-
sic components. This combination of modes and topol-
ogy ensures a broad coverage of the design space. We
demonstrated an approach for addressing the combina-
torial explosion typical of design optimization problems.
The approach relaxes discrete variables to continuous vari-
ables by transforming discrete switches into continuous
switches. These continuous components are physically
realizable, resulting in no loss in performance. Addition-
ally, sparsity is induced through an L1 regularization cost
that encourages the parameters of the continuous switches
to be zero. The proposed approach is supported by au-
tomated model simplification and reconstruction that re-
duce the complexity of the design model, in turn decreas-
ing the time complexity for the continuous optimization
algorithms that require model simulations. The continu-
ous optimization algorithms are gradient-free. We are cur-
rently investigating the application of a differential pro-
gramming paradigm to the design problem described in
this paper, which would allow us to utilize gradient-based
algorithms. The major challenge we face is extending au-
tomatic differentiation support to DAEs that typically re-

quire stiff, implicit numerical solvers, while avoiding the
need for implementing model-transformation modules to
convert Modelica models to new representations.

References
Andersson, C., J. Åkesson, and C. Führer (2016). PyFMI: A

Python Package for Simulation of Coupled Dynamic Models
with the Functional Mock-up Interface. Technical Report in
Mathematical Sciences 2. Centre for Mathematical Sciences,
Lund University.

Bertsekas, D.P. (1999). Nonlinear Programming. Athena Scien-
tific.

Blochwitz, T. et al. (2011). “The Functional Mockup Interface
for Tool independent Exchange of Simulation Models”. In: In
Proceedings of the 8th International Modelica Conference.

Boyd, John P. (2001). Chebyshev and Fourier Spectral Methods.
Second. Dover Books on Mathematics. Mineola, NY: Dover
Publications. ISBN: 0486411834 9780486411835.

Bradbury, James et al. (2018). JAX: composable transformations
of Python+NumPy programs. Version 0.3.13. URL: http : / /
github.com/google/jax.

Chen, Ricky T. Q. et al. (2018). “Neural Ordinary Differential
Equations”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc.

Clausen, Jens (2003). “Branch and Bound Algorithms-
Principles and Examples”. In.

DongPing, X. (2013). ModParc. https://github.com/xie-
dongping/modparc.

Fritzson, Peter et al. (2010-02). OpenModelica System Doc-
umentation. URL: https : / / github . com / OpenModelica /
OpenModelica-doc/blob/v1.9.1/OpenModelicaSystem.pdf.

Gardner, David J. et al. (2022). “Enabling new flexibility in
the SUNDIALS suite of nonlinear and differential/algebraic
equation solvers”. In: ACM Transactions on Mathematical
Software (TOMS).

Hargraves, C. R. and S. W. Paris (1987). “Direct trajectory opti-
mization using nonlinear programming and collocation”. In:
Journal of Guidance, Control, and Dynamics 10.4, pp. 338–
342.

Herman, Albert L. and Bruce A. Conway (1996). “Direct op-
timization using collocation based on high-order Gauss-
Lobatto quadrature rules”. In: Journal of Guidance, Control,
and Dynamics 19.3, pp. 592–599.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396.

52 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Matei, I. et al. (2023). “Sensitivity-Free Gradient Descent Algo-
rithms”. In: Journal of Machine Learning Research 24.300,
pp. 1–26. URL: http://jmlr.org/papers/v24/22-1002.html.

Matei, Ion et al. (2020). “Deep Learning for Control: a non-
Reinforcement Learning View”. In: 2020 American Con-
trol Conference (ACC), pp. 2942–2948. DOI: 10 . 23919 /
ACC45564.2020.9147287.

Meurer, Aaron et al. (2017-01). “SymPy: symbolic computing
in Python”. In: PeerJ Computer Science 3, e103. ISSN: 2376-
5992. DOI: 10.7717/peerj-cs.103.

Morrison, David R. et al. (2016). “Branch-and-bound algo-
rithms: A survey of recent advances in searching, branching,
and pruning”. In: Discrete Optimization 19, pp. 79–102.

Open Source Modelica Consortium (n.d.). OpenModelica
User’s Guide. URL: https : / / openmodelica . org / doc /
OpenModelicaUsersGuide/latest/.

Paszke, Adam et al. (2017). “Automatic differentiation in Py-
Torch”. In.

Powell, M. J. D. (1964-01). “An efficient method for finding the
minimum of a function of several variables without calculat-
ing derivatives”. In: The Computer Journal 7.2, pp. 155–162.

53DOI 10.3384/ECP207 53 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Proposal for A Context-oriented Modelica Contributing to
Variable Structure Systems

Zizhe Wang1,2* Manuel Krombholz2* Uwe Aßmann2 John Tinnerholm3 Christian Gutsche1,2

Volodymyr Prokopets2 Sebastian Götz2

*Co-first author
1Boysen-TU Dresden-Research Training Group, Dresden, Germany

2Software Technology Group, Technische Universität Dresden, Germany
3Department of Computer and Information Science, Linköping University, Sweden

zizhe.wang, manuel.krombholz, uwe.assmann, christian.gutsche,
volodymyr.prokopets, sebastian.goetz1@tu-dresden.de

john.tinnerholm@liu.se

Abstract
Context-aware systems are widespread in our daily lives,
but modeling languages that address the notion of context
are rare. Variable structure systems (VSS) allow for struc-
tural and behavioral changes in physical models at runtime
(while the simulation is running) based on different situ-
ations. It is desirable to explicitly describe under which
contextual situation a specific variant of the simulation
model should be used and how to implement the switching
between these variants at runtime. In this case, contexts
could be used to control the variability of context-aware
systems. Equation-based modeling languages are suitable
for modeling complex multi-domain, multi-physical sys-
tems, and among them, Modelica is the state-of-the-art.
Unfortunately, the capabilities for VSS in Modelica are
strongly limited. As a result, several frameworks have
been proposed to address this problem by supporting dif-
ferent VSS types. However, it remains unclear which
framework contributes to which VSS type. Furthermore,
approaches have been developed to support VSS, but none
can explicitly describe contexts and their transitions. In
this work, we first introduce VSS and its different types.
Then, we provide an overview of which framework tar-
gets which VSS type. Finally, we propose a new language
extension based on Modelica, ContextModelica, that pro-
vides semantics for the direct context definition, enabling
the use of context to control and manage variability.
Keywords: modeling and simulation, Modelica, variable
structure systems, context, context-oriented programming,
ContextModelica

1 Introduction
1.1 Context-aware systems
Context-aware systems are widely present in different as-
pects of our daily lives. According to Dey, Abowd,
et al. 2000, a context is "any information that can be
used to characterize the situation of an entity. An en-

tity is a person, place, or object considered relevant to
the interaction between a user and an application, in-
cluding the user and application themselves". Many
context-aware systems operate according to system con-
texts (e.g., "a robot should stop working when a human
enters its operation area", "an iPhone will make emer-
gency calls if a car crash has been detected"). Dif-
ferent context-oriented techniques have been developed
to enhance context-aware systems, including Context-
Oriented Programming (Hirschfeld, Costanza, and Nier-
strasz 2008), commonly referred to as COP. Elyasaf, Car-
dozo, and Sturm 2023 and Elyasaf and Sturm 2023 state
"Although COP languages have existed for over 15 years,
they are still very limited for developing context-aware
systems. Also, modeling languages that address the notion
of context are rare." Thus, how the idea of COP could be
implemented in equation-based modeling languages, such
as Modelica, remains a research question.

1.2 Variable Structure Systems and Modelica
Utkin 1977 introduced variable structure systems (VSS),
which consist of continuous subsystems with a proper
switching logic and enable dynamic control of simulation
systems. In real applications, certain conditions, such as
contexts (Elyasaf and Sturm 2022), can be used to control
the variability (different modes). Modes refer to differ-
ent states; different modes correspond to different models
defined by distinct equation systems.

Figure 1 shows a minimal example. On a sunny day
(Context = Sunny), solar radiation is present, and the mode
"Solar Power" is activated. This mode engages the corre-
sponding equation system, which represents the solar pan-
els. Thus, in the Sunny context, the solar panels are acti-
vated and begin producing electricity from solar energy.
In the evening (Context = Night), solar radiation is absent,
and the mode "Standby" with its corresponding equation
system is activated (while other modes and their equation
systems are deactivated). The equation system for this
mode represents a physical state where the solar panels

54 10.3384/ECP20753 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Zizhe Wang
F6, Hy4GreenIT
Altensteig, May 12, 2023

Page 4/14

Equation System 1

NightCloudy DaySunny

Context

Mode

. . .

Equation System 2 Equation System 3

. . .

Standby Solar Power Hybrid

Figure 1. A minimal example of using contexts to control different modes.

are inactive. In realistic applications, multiple systems can
be switched simultaneously. All of this occurs at runtime
(simulation time); there is no need to power off the system,
switch modes, and then re-initialize and restart the simula-
tion. Typical application fields where VSS can be benefi-
cial include circuit switching, mechanical elements break-
ing apart, systems with clutches, different rocket stages,
and robot reconfigurations.

Modern modeling environments handle complex phys-
ical systems using equation-based modeling languages,
also known as acausal modeling languages. The Model-
ica language (Fritzson and Engelson 1998) (Modelica, for
short) is the state-of-the-art example, widely used in var-
ious industries like energy grids (Senkel et al. 2021) and
building systems (Wetter et al. 2014). However, like most
equation-based modeling languages, the possibilities for
VSS in Modelica (current version 3.6) are limited. Only
a few frameworks have been designed to support VSS in
Modelica, and in most cases, switching modes at runtime
fails. Zimmer 2010 attributes these limitations to the static
treatment of the differential-algebraic equations (DAEs)
and the lack of expressiveness in the Modelica language.

A classic example of VSS is the "breaking pendu-
lum" (Figure 2) which can be described as follows: a
ball attached to a string moves as a pendulum initially
(mode 1). After a few seconds, the string breaks, and
the ball moves as if in free fall (mode 2). This exam-
ple includes two modes, each corresponding to a different
model: one describes the pendulum (Listing 2), and the
other describes the free fall of the ball (Listing 3). Mode
switching is triggered by time. It is important to note that
the two models have different equation systems. Classical
Modelica environments, such as OpenModelica (Fritzson,
Pop, et al. 2022) and Dymola (Elmqvist 1979), which are
based on the current Modelica specification (Modelica As-
sociation 2023), cannot handle this situation effectively.
The simulation will fail at the moment when the modes
are switched. Typically, different modes are modeled and
simulated separately. Ideally, developers would model and
integrate different modes within a single model.

Zizhe Wang
F6, Hy4GreenIT
Altensteig, May 12, 2023

Page 6/14

Mode 1: Pendulum Mode 2: Free Fall

Figure 2. Two modes of the breaking pendulum.

1.3 Problem Statement and Research Objec-
tives

During literature research, two main problems related to
VSS in Modelica have been identified:

1. Despite various frameworks targeting VSS in Model-
ica (Table 1) and Modelica-like environments, it re-
mains unclear which solution contributes to which
VSS type. A detailed overview is lacking.

2. Enabling contexts significantly impacts the control of
variability and the realization of context-aware sys-
tems. However, the idea of COP has not yet been im-
plemented in Modelica. How to introduce contexts in
Modelica remains an interesting research question.

This work aims to address these two problems. The
main goals are:

1. To provide a clear classification of VSS in Modelica
and an overview of frameworks supporting their VSS
types.

2. To propose the extension ContextModelica that intro-
duces contexts into Modelica.

55DOI 10.3384/ECP20753 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Table 1. Frameworks targeting VSS in Modelica and other
equation-based modeling environments.

Frameworks

Mosilab (Nytsch-Geusen et al. 2005)
Sol (Zimmer 2010)
Hydra (Giorgidze 2012)
Modelyze (Broman and Siek 2012)
DySMo (Möckel, Mehlhase, and Nytsch-Geusen 2015)
MoVasE (Esperon, Mehlhase, and Karbe 2015)
PyVSM (Stüber 2017)
Modia.jl (Elmqvist, Neumayr, and Otter 2018)
OM.jl (Tinnerholm, Pop, Sjölund, et al. 2020)
ModelingToolkit.jl (Ma et al. 2021)

1.4 Structure of the Work
Section 2 provides a detailed explanation and classifica-
tion of VSS in Modelica. Section 3 summarizes vari-
ous frameworks designed to support different VSS types
in Modelica or Modelica-like environments, offering an
overview to understand which framework addresses which
specific VSS problem. In Section 4, we propose Con-
textModelica, developed based on OpenModelica.jl, in
short, OM.jl1 (Tinnerholm, Pop, Sjölund, et al. 2020). Our
extension combines Modelica with the concept of con-
text from the language engineering field. We demonstrate
ContextModelica with an example and discuss the cur-
rent challenges. This section also explores the potential
benefits of integrating context-aware features into existing
Modelica models. Finally, Section 5 presents the conclu-
sions and an outlook, including discussions and sugges-
tions for future research.

2 VSS in Modelica
To provide an extension that enables modeling and man-
aging VSS using contexts in Modelica, the first step is
to understand what VSS are. Definitions of VSS vary
slightly across different domains in the literature. VSS
were first introduced by Utkin 1977. Mehlhase 2015 of-
fers an overview of publications with definitions related
to VSS. In short, VSS can be summarized as "structural
change during runtime (simulation time)". In Model-
ica, VSS correspond to the switching of equation systems
based on different situations while the simulation is run-
ning. However, different types of structural change during
runtime exist, and Modelica supports only some of them
in a limited way. Consequently, various frameworks have
been designed to enhance VSS possibilities in Modelica
and Modelica-like environments. Unfortunately, since the
types of structural changes during runtime have not been
discussed in detail, it remains unclear, which framework
addresses which specific VSS type.

1https://github.com/JKRT/OM.jl (A Modelica compiler written in
Julia)

To the best of our knowledge, variables and differ-
ential index2 have the most impact on realizing VSS in
Modelica. In general, three different types can be distin-
guished based on these two factors:

1. Two modes share the same variables and differ-
ential index. Thus, the structural change does not
introduce new variables, and the differential index
remains unchanged.

2. Two modes have different variables but the same
differential index. In this case, the structural change
introduces new variables and corresponding equa-
tions, while the differential index stays the same.

3. Two modes have the same variables but different
differential indices. Here, the structural change in-
volves a change in the differential index.

At this point, some issues related to VSS arise in Mod-
elica (Benveniste, Caillaud, et al. 2019). In most cases,
the simulation fails when switching from one mode to an-
other, primarily because Modelica is static and the com-
piler cannot handle types 2 and 3 at runtime.

Regarding type 2 where each mode contains a different
set of variables, there are several sub-types. The number
of variables may either change or remain the same during
the mode transition. For simplicity, this work does not
specify different sub-types of variables.

3 State of the Art
This section provides an overview of the frameworks for
supporting different VSS types in Modelica and other
equation-based modeling environments (most of them are
Modelica-like). Table 2 summarizes the applicability of
approaches for different VSS types. All approaches can
be used for type 1.

Mosilab (Nytsch-Geusen et al. 2005) uses a Modelica
extension to describe the models and transitions
through a state chart.

Mosilab supports types 1 and 2 but does not support
type 3, as the environment only simulates index-0
models and lacks an index-reduction mechanism.

Sol (Zimmer 2010) is an experimental language designed
as a proof of concept to support variable-structure
models using dynamic casualization.

Although Sol is similar to Modelica, it is a separate
language. It enables the modeling of VSS with Sol-
Sim and allows changes to the differential index.

2For a general differential algebraic equation (DAE) F(t,x,x
′
) = 0,

the differential index is defined as "the minimum number of differentia-
tions required to translate the DAE system into a system of the ordinary
differential equations (ODEs)" (Campbell and Gear 1995) (Benveniste,
Bourke, et al. 2014). Thus, ODEs have a differential index of 0.

56 10.3384/ECP20753 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Hydra (Giorgidze 2012) is an embedded acausal model-
ing language implemented in Haskell according to
the paradigm of functional hybrid modeling. Hy-
dra lacks the object-oriented characteristic present in
modeling languages such as Modelica.

Modelyze (Modeling Kernel Language) (Broman and
Siek 2012) is a host language designed for embed-
ding equation-based DSL based on gradual typing.
Modelyze has been developed with OCaml.

Dymola extensions Elmqvist, Mattsson, and Otter 2014
and Mattsson, Otter, and Elmquvist 2015 present ex-
tensions of Dymola to enable the possibility of VSS.
In the first work VSS with varying DAE index is not
supported, the second work extends the Pantelides al-
gorithm (Pantelides 1988) and allows VSS with vary-
ing DAE index. These extensions have limited func-
tionality. They have only been tested with simple
examples. Because of this, these extensions have not
been implemented in the latest stable release of Dy-
mola yet (as of May 2024).

DySMo (Dynamic Structure Modeling) (Mehlhase
2015) is a Python application that enables the simu-
lation of VSS. A case study by Möckel, Mehlhase,
and Nytsch-Geusen 2015 demonstrated the use of
DySMo in the context of building simulation.

DySMo is a script-based approach designed for sim-
ulating VSS rather than modeling them. In this ap-
proach, different models are simulated separately,
and their results are then integrated using Python.

MoVasE (Modelica Variable-structure Editor)
(Esperon, Mehlhase, and Karbe 2015) enables
structural changes to models by defining conditional
exchanges externally.

Compared to DySMo, MoVasE has the advantage of
not requiring manual creation and maintenance of all
modes and transitions. However, this approach still
has limitations in terms of the dynamic addition and
removal of components.

PyVSM (Python Variable-structure Model) (Stüber
2017) is another script-based approach using Dy-
mola’s Python interface. The idea is the same as in
DySMo: Using Modelica for simulating different
modes and Python for switching between them.

Modia.jl (Elmqvist, Neumayr, and Otter 2018) is a
Modelica-like software written in Julia. It has been
initiated by the inventor of Dymola. After several
attempts to support VSS in Dymola, as discussed
in Elmqvist, Mattsson, and Otter 2014 and Mattsson,
Otter, and Elmquvist 2015, the authors explored Ju-
lia’s potential in modeling. Modia.jl utilizes prede-
fined acausal components, as described in Neumayr
and Otter 2023.

OM.jl OpenModelica.jl (Tinnerholm, Pop, Sjölund, et
al. 2020) is a Modelica compiler written in Julia,
developed by the OpenModelica development team
from Linköping, Sweden. Leveraging Julia’s just-in-
time (JIT) compilation and multi-dispatch features,
OM.jl supports modeling VSS. It can also connect
ModelingToolkit.jl with Modelica (Tinnerholm, Pop,
Heuermann, et al. 2021).

ModelingToolkit.jl (Ma et al. 2021)3 is a Julia pack-
age for modeling and simulation that integrates Ju-
lia’s ecosystem with the modeling. Inspired by
Modelica, it features a Modelica-like syntax. Com-
pared to Modelica, ModelingToolkit.jl supports not
only ODEs and DAEs, but also partial differential
equations (PDEs), stochastic differential equations
(SDEs), and other types of equation systems. Like
Modia.jl and OM.jl, ModelingToolkit.jl supports var-
ious VSS types due to Julia’s capabilities.

Table 2. Overview of Modelica-based and Modelica-like frame-
works for different VSS types. ✓ indicates that the approach
supports this VSS type, while ✗ indicates that it does not.

VSS Types Applicability of Approaches

Type 1 All approaches (✓)

Type 2 Standard Modelica (✗)
Mosilab (✓, but only index 0)
Sol (✓)
Dymola extensions (✓)
DySMo (✓)
MoVasE (unknown, lack of literature)
PyVSM (✓)
Modia.jl (✓)
OM.jl (✓)
ModelingToolkit.jl (✓)

Type 3 Standard Modelica(✗)
Mosilab (✗)
Sol (✓)
Dymola extensions (✓)
DySMo (✓)
MoVasE (unknown, lack of literature)
PyVSM (✓)
Modia.jl (✓)
OM.jl (✓)
ModelingToolkit.jl (✓)

Despite some approaches supporting all VSS types,
none of the above approaches support the explicit spec-
ification of contexts and their transitions.

3https://docs.sciml.ai/ModelingToolkit/dev

57DOI 10.3384/ECP20753 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

4 ContextModelica
The previous section introduced different approaches to
support VSS in Modelica. However, none of these ap-
proaches provide semantics to support contexts and con-
text management within Modelica for modeling and man-
aging context-aware systems. Therefore, we propose the
ContextModelica - an extension of the Modelica language
based on OM.jl, which already includes capabilities for
supporting structural transitions between variants in Mod-
elica.

This section will examine the concepts behind this ex-
tension in more detail and describes how it can be applied
to manage VSS, along with an illustrative example. Fi-
nally, we will discuss the current challenges and limita-
tions of the extension.

4.1 Units of Variability
In a software language, variability relies on variation
points (Webber and Gomaa 2004). The Variation Point
Model (VPM) is designed to model variation points con-
tained in reusable software components (Webber and Go-
maa 2004). Variation points are the units of variation in
a specification of a program. For Modelica, several kinds
of variation points can be considered, some of which are
intended by the language designers.

Class and subclass Modelica is a static object-oriented
language in which classes can be specialized by sub-
classes. These subclasses can be defined in varia-
tions. Therefore, a class is a static variation point
in Modelica, and it is common to replace a class with
one of the members of its transitively defined derived
subclasses.

Equation block An equation block defines a set of vari-
ables or derivatives, constituting the provided inter-
face of the block. In Modelica, equation blocks can
be guarded by if/else and when statements, al-
lowing them to be dynamically varied (dynamic vari-
ation point).

Equation A single equation can also be a variation point.
It is a special case of a block variation point.

As discussed, modes in VSS may differ in variables and
the differential index. Modes relate to variation points in
that these constraints about variables and the differential
index must hold also for all variants of a Modelica varia-
tion point. This means that for any pointwise variation, the
VSS types 1-3 can be distinguished. For instance, a vari-
ation point of type 1 can be a class, block, or equational
variation point.

For a class variation point, VSS type 1 is the simplest
type, where polymorphism of the class resolves the tran-
sition to another subclass. At runtime, the subclass can be
varied by wrapping all variant subclasses in a simple case
expression. In Modelica, polymorphism is not available

because subclasses must be selected statically. A block
variation point of VSS type 1 can also be handled in Mod-
elica if the block is encapsulated by a case expression. All
frameworks discussed in section 3 offer dynamic block
variation. Usually, an equational variation point of VSS
type 1 can also be managed because one equation is a sim-
ple equational block.

We will demonstrate later how ContextModelica can be
employed for the variation points described above.

4.2 Context

While addressing the lack of VSS manageability in Mod-
elica, one potential solution is to introduce a language
concept called a context. Contexts are common used in
software development to separate concerns (Hirschfeld,
Costanza, and Nierstrasz 2008). By integrating contexts
into Modelica, we can achieve better code structure and
improved manageability of VSS.

To this end, we have extended the Modelica language
to include this concept and thus created ContextModelica.
This extension introduces two new semantics, as shown
in Listing 1. First, all modes can be listed in a separate
section using the keyword "context", with each mode as-
sociated with corresponding condition. Second, the new
semantics allow for the addition of multiple equation sys-
tems, with each system labeled by the corresponding con-
text. This means that the equation system represents the
model or mode when the context is active. Additionally,
the set of contexts must include an initial state, which is
the mode that is active at the start of the simulation.

The advantage of mapping contexts to their applicable
conditions is that developers no longer need to manage the
resulting transitions between contexts. This separation of
concerns leads to cleaner and more readable code, partic-
ularly when compared to the use of if/else and when
statements in large-scale systems.

Listing 1. Semantics in ContextModelica.
model ExampleModel

/∗ pa ramete r s & v a r i a b l e s ∗/

equation on initial (ContextA)
/∗ c o r r e s p ond i n g equa t i o n s ∗/

equation on ContextB
/∗ c o r r e s p ond i n g equa t i o n s ∗/

equation on ContextC
/∗ c o r r e s p ond i n g equa t i o n s ∗/

...

context
initial on /∗ c o n d i t i o n ∗/;
ContextB on /∗ c o n d i t i o n ∗/;
ContextC on /∗ c o n d i t i o n ∗/;
...

end context;

end ExampleModel;

58 10.3384/ECP20753 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Zizhe Wang
F6, Hy4GreenIT
Altensteig, May 12, 2023

Page 3/14

OMParser.jl OMFrontend.jl OMBackend.jl

OM.jl

Absyn.jl

OMKParser.jl

MKAbsyn.jl

OMK.jl

Figure 3. Structure of ContextModelica. The blue section represents the original OM.jl, while the green section indicates the added
preprocessor.

4.3 How It Works
ContextModelica4 is implemented as a language extension
of Modelica in Julia (OM.jl). It benefits from the structural
transitions available in OM.jl, which can be used to con-
struct state machines in Modelica. More precisely, the de-
fined contexts and their associated conditions from a given
ContextModelica model are translated into a context tran-
sition automaton comprising states and transitions, repre-
senting the possible changes of the contexts. This results
in n*(n-1) state transitions, where n is the number of exist-
ing states. The context transition automaton can be real-
ized through the dynamic recompilation features of OM.jl.

The structure of ContextModelica is illustrated in Fig-
ure 3. OMK.jl functions as a preprocessor for OM.jl and
was developed by reusing components of OM.jl, including
the ANTLR parser generator (Parr and Quong 1995) and
the abstract syntax tree (AST) module. Both have been
slightly modified to support the new semantics introduced
in ContextModelica, specifically the definition of contexts
with their corresponding conditions and the equation sys-
tems that can be tagged with context labels. In addition
to these modules, we added a code generator backed by
some OpenModelica packages. It traverses the AST con-
structed by the parser and then generates the correspond-
ing state machine using the syntax of structural transitions
provided by OM.jl. Therefore the code generator gathers
context labels, active conditions, and the associated equa-
tion sets, creating sub-models within a larger model. Af-
terward, the transitions supported by OM.jl are inserted.
The resulting state machine is an undirected graph where
every state has a transition to every other state. The output
can then be passed to OM.jl, which generates the corre-
sponding Julia code for further simulation.

ContextModelica inherits the ability of OM.jl to sup-
port the change of differential index, thus supporting type
3. Type 2 is currently not supported because all variables
and parameters share a common set. This is due to the
focus on varying the actual behavior in the individual con-
texts, which is primarily determined by the equation sys-
tems. Future modifications should allow separate defini-
tions for local variables and parameters. In conclusion,
ContextModelica supports two VSS types: types 1 and 3.

4https://github.com/dev-manuel/OMK.jl

4.4 Example

We demonstrate the proposed ContextModelica using the
classical "breaking pendulum" model, as shown in Fig-
ure 2. Listing 2 and Listing 3 show the Modelica mod-
els for the "Pendulum" mode and the "FreeFall" mode re-
spectively. With the classical Modelica software which
has limited functionality of VSS the developers need to
model and simulate them separately. In ContextModel-
ica, these two models can be integrated into one model
as VSS with two modes, as Listing 4 shows. Two differ-
ent equation sets together with switch mechanisms will be
defined in the model. The outcome of the preprocessor is
shown in Listing 5. It includes the whole context transition
automaton containing the models and transitions required
by OM.jl for further simulation. This model corresponds
to VSS type 3 because the differential index of the "Pen-
dulum" and "FreeFall" modes are different. The result is
shown in Figure 4.

Listing 2. A pendulum model written in Modelica.
model Pendulum

parameter Real g = 9.81;
parameter Real L = sqrt(200);
Real x(start = 10);
Real y(start = 10);
Real vx; Real vy;
Real phi(start=1.0); Real phid;
equation

der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

end Pendulum;

Listing 3. A free fall model written in Modelica.
model FreeFall

Real x; Real y; Real vx; Real vy;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
equation

der(x) = vx;
der(y) = vy;
der(vx) = vx0;
der(vy) = -g;

end FreeFall;

59DOI 10.3384/ECP20753 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Listing 4. Syntax for modeling the "Breaking Pendulum" model
in ContextModelica. This model corresponds to VSS type 3.
model BreakingPendulum

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
parameter Real L = sqrt(200);

// con t e x t = I n i t i a l (Pendulum)
equation on initial

der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

// con t e x t = F r e e F a l l
equation on FreeFall

der(x) = vx;
der(y) = vy;
der(vx) = vx0;
der(vy) = -g;

// sw i t ch o f c o n t e x t s
context

initial on t < 5;
FreeFall on t >= 5;

end context;

end BreakingPendulum;

Listing 5. Transpiled model compatible with OM.jl.
model BreakingPendulum

// BreakingPendulum = BP
structuralmode

BP__Context_Initial
bP__Context_Initial_instance;

structuralmode
BP_FreeFall
bP_FreeFall_instance;

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g=9.81;
parameter Real vx0=0.0;
parameter Real L = sqrt(200);

model BP__Context_Initial
equation

/∗ equa t i on s e t ∗/
end BP__Context_Initial;

model BP_FreeFall
equation

/∗ equa t i on s e t ∗/
end BP_FreeFall;

equation
initialStructuralState(

bP__Context_Initial_instance);
structuralTransition(

bP__Context_Initial_instance,
bP_FreeFall_instance,
t >= 5);

end BreakingPendulum;

Figure 4. Simulation result of the "breaking pendulum" model
with ContextModelica.

Compare the same "breaking pendulum" model imple-
mented in ContextModelica (Listing 4) and OM.jl (List-
ing 6). ContextModelica enables the explicit definition of
contexts directly while defining the corresponding equa-
tion systems for each mode, eliminating the need to de-
fine structural modes separately. The transition process
is also simplified. In OM.jl, the transition process must
be defined with a separate equation system, while in Con-
textModelica, this is unnecessary. The explicit definition
of contexts in ContextModelica results in a cleaner struc-
ture and readable code for realizing and managing VSS,
especially in large context-aware systems.

Listing 6. Syntax of "Breaking Pendulum" model in OM.jl
model BreakingPendulum

model FreeFall
/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation
/∗ equa t i o n s ∗/

end FreeFall;

model Pendulum
/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation
/∗ equa t i o n s ∗/

end Pendulum;

structuralmode Pendulum pendulum;
structuralmode FreeFall freeFall;

equation
initialStructuralState(pendulum);
structuralTransition(

pendulum, freeFall,
t >= 5
);

end BreakingPendulum;

60 10.3384/ECP20753 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

The example also shows how ContextModelica can be
deployed to the block and the equational variation points.
Each equation block, or single equation in specific cases,
will be varied by switching on/off different contexts/-
modes. In conclusion, ContextModelica supports VSS
types 1 and 3 as well as block and equational variation
points, as summarized in Table 3.

Table 3. Supported VSS types and variation points of Con-
textModelica.

Supported VSS types Supported variation points

VSS type 1 ✓ Class and subclass
VSS type 2 Equation Block ✓
VSS type 3 ✓ Equation ✓

4.5 Challenges
One challenge is synchronizing variable values when tran-
sitioning from one mode to another. Currently, all vari-
ables and parameters in a model must be defined as global
ones, making them valid across all modes. For example,
in Listing 4 the variables phi and phid are only used
in the first mode (Pendulum), which results in redundant
variables for the second mode (FreeFall). This limitation
means that specific variables and parameters cannot be
defined within their corresponding modes. This charac-
teristic leads to the lack of support for VSS type 2 and
this may negatively impact the performance, especially in
large systems. Another challenge is that, currently, the
OM.jl version only supports structural transitions in the
top-level model of a program. As a result, one of the lim-
itations is that only the top-level model of a program can
have user-defined contexts. This means the use of con-
texts in submodels is not supported at the moment (e.g.
different contexts can be defined under the "BreakingPen-
dulum" model, but no contexts could be defined under the
"FreeFall" submodel). Still, the number of modes/contexts
in the top-level model is not limited. Because of this, Con-
textModelica does not fully support class/subclass varia-
tion point. Another challenge is the overlap of transition
conditions. If two conditions can be evaluated to be true
at the same time, unexpected behavior may occur because
the transition is not deterministic. For now, the developers
need to ensure that the conditions are mutually exclusive
to avoid such issues.

5 Conclusion and Future Work
To fully demonstrate and explain the restricted VSS fea-
ture in Modelica, we have discussed the background and
explained how combining COP with Modelica can help
manage variability in context-aware systems. Modeling
variability using contexts reveals the switch mechanisms,
aiding developers in understanding and maintaining mod-
els more effectively. Following this, we presented a clas-
sification of VSS types as well as a detailed overview

of various frameworks designed to support VSS in Mod-
elica or Modelica-like environments, covering different
VSS types. Unfortunately, none of these frameworks
support the explicit specification of contexts, making it
difficult to manage variability in context-aware environ-
ments. Therefore, we proposed the ContextModelica, a
context-oriented extension of Modelica ContextModelica
with easy-to-understand semantics. This approach also
avoids the complexities of using if/else and when
statements in large-scale systems. ContextModelica sup-
ports VSS types 1 and 3, as well as "equation block" and
"equation" variation points. To our knowledge, the pro-
posed ContextModelica is the first approach that intro-
duces the concept of context and COP into Modelica.
It extends the Modelica language with the explicit specifi-
cation of context, providing a novel solution to model and
manage variability in context-aware systems.

Note that the VSS can be quite complex, and this com-
plexity must be addressed in future work. On one hand,
contexts can either be mutually exclusive or overlapping,
which adds complexity to our implementation. We need
to carefully consider and address these scenarios to en-
sure that our system can handle both exclusive and non-
exclusive contexts effectively. On the other hand, in our
example, we only covered contexts that are time-relevant.
However, there can also be time-irrelevant contexts. For
instance, after the "FreeFall" mode, when the ball hits the
ground and switches to the "BouncingBall" mode, it is
challenging to define the exact moment the ball hits the
ground. In such cases, time-irrelevant contexts are use-
ful, e.g., when the ball hits the ground and its accelera-
tion vectors changes direction, at this moment, the third
mode "BouncingBall" is activated, as shown in Listing 7.
While ContextModelica can technically handle this sce-
nario, we do not consider it a verified example without
thorough testing. More tests are needed to explore poten-
tial issues that might arise in such cases.

Listing 7. Syntax for adding the "BouncingBall" mode.
model BreakingPendulum

/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation on initial
/∗ equa t i o n s ∗/

equation on FreeFall
/∗ equa t i o n s ∗/

equation on BouncingBall
/∗ equa t i o n s ∗/

// sw i t ch o f c o n t e x t s
context

initial on t < 5;
FreeFall on t >= 5;
BouncingBall on vy < 0;

end context;

end BreakingPendulum;

61DOI 10.3384/ECP20753 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Another complexity of VSS is the concept of unilateral
constraints, as explored in the works of Ch Glocker and
Pfeiffer 1992, Friedrich Pfeiffer and Christoph Glocker
2000, Enge and Maißer 2005, and Enge-Rosenblatt 2017,
as well as in the PhD theses of Christoph Glocker 1995
and Enge 2005, where the switching between modes is
driven by these constraints. For example, this occurs when
a normal "Pendulum" mode transitions to a string-bound
free-flying mode Figure 5, or in switching diodes used in
power electronics. In the first example, defining the ex-
act point of transition is difficult, unlike in a scenario in-
volving a pendulum string breaking, which can be clearly
identified. The transitions in the second example differ
depending on the direction of the switching.

Mode 1: Pendulum Mode 2: Free Flying

Figure 5. Transition from the pendulum mode to the string-
bound free-flying mode.

The two challenges discussed in Section 4.5 are also
crucial for future work. Firstly, VSS type 2 is not sup-
ported since all variables and parameters should be de-
fined as global variables and parameters, this may lead to
redundancy of variables and thus performance issues, es-
pecially in large systems. Secondly, only contexts in the
top-level model are supported. It would be more prac-
tical to also enable defining and using contexts in sub-
models. This will also allow ContextModelica to support
the class and subclass variation point. It should be noted
that OM.jl supports both structural transitions and recom-
pilation constructs. However, currently, ContextModel-
ica only supports structural transitions. Implementing the
recompilation constructs in ContextModelica would help
solve these two challenges and improve the performance
significantly. Listing 8 shows an example of recompila-
tion constructs used in OM.jl for the "breaking pendu-
lum" model5. In this example, variables and parameters
for different submodels can be defined separately in the
submodels rather than as global variables and parameters.
Implementing recompilation constructs to support VSS
type 2 and nested contexts in submodels should be consid-
ered for future development. Furthermore, more practical
and industry-oriented examples should be examined using
ContextModelica.

5https://github.com/JKRT/OM.jl/tree/master/test/Models/VSS

Listing 8. Syntax using recompilation constructs in OM.jl.
model BreakingPendulum

model FreeFall
/∗ pa ramete r s & v a r i a b l e s ∗/
equation

/∗ equa t i o n s ∗/
end FreeFall;

model Pendulum
/∗ pa ramete r s & v a r i a b l e s ∗/
equation

/∗ equa t i o n s ∗/
end Pendulum;

parameter Boolean breaks = false;
FreeFall freeFall if breaks;
Pendulum pendulum if not breaks;

equation
when 5.0 <= time then

recompilation(breaks, true);
end when;

end BreakingPendulum;

Acknowledgements
The authors would like to thank the Boysen–TU Dres-
den–Research Training Group for the financial and gen-
eral support that has made this contribution possible. The
Research Training Group is co-financed by the Friedrich
and Elisabeth Boysen Foundation and TU Dresden. This
work is also financially supported by the German Re-
search Foundation (Project No. 453596084 - SFB/TRR
339). The authors would also like to thank Prof. Peter
Fritzson and Dr. Adrian Pop from Linköping University
for their valuable discussions, as well as Anastasiia Ko-
rolenko for her contribution to the test suite.

References
Benveniste, Albert, Timothy Bourke, et al. (2014). On the index

of multi-mode DAE Systems (also called Hybrid DAE Sys-
tems). Research Report. Inria.

Benveniste, Albert, Benoıt Caillaud, et al. (2019). “Multi-mode
DAE models-challenges, theory and implementation”. In:
Computing and Software Science: state of the Art and Per-
spectives, pp. 283–310.

Broman, David and Jeremy G Siek (2012). “Modelyze: a gradu-
ally typed host language for embedding equation-based mod-
eling languages”. In: EECS Department, University of Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS-2012-173.

Campbell, Stephen L and C William Gear (1995). “The index of
general nonlinear DAEs”. In: Numerische Mathematik 72.2,
pp. 173–196.

Dey, Anind K, Gregory D Abowd, et al. (2000). “The context
toolkit: Aiding the development of context-aware applica-
tions”. In: Workshop on Software Engineering for wearable
and pervasive computing. University of Washington Seatle,
pp. 431–441.

62 10.3384/ECP20753 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Elmqvist, Hilding (1979). “DYMOLA-a structured model lan-
guage for large continuous systems”. In: Summer Computer
Simulation Conference, Toronto, Canada.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin Otter (2014).
“Modelica extensions for multi-mode DAE systems”. In: Pro-
ceedings of the 10th international Modelica conference. 96.
Linköping University Electronic Press Linköping, Sweden,
pp. 183–193.

Elmqvist, Hilding, Andrea Neumayr, and Martin Otter (2018).
“Modia-dynamic modeling and simulation with julia”. In: Ju-
liacon, University College London, UK.

Elyasaf, Achiya, Nicolás Cardozo, and Arnon Sturm (2023). “A
framework for analyzing context-oriented programming lan-
guages”. In: Journal of Systems and Software 198, p. 111614.

Elyasaf, Achiya and Arnon Sturm (2022). “Modeling Context-
aware Systems: A Conceptualized Framework.” In: MODEL-
SWARD, pp. 26–35.

Elyasaf, Achiya and Arnon Sturm (2023). “A Framework for
Analyzing Modeling Languages for Context-Aware Sys-
tems”. In: SN Computer Science 4.2, p. 149.

Enge, Olaf (2005). “Analyse und Synthese elektromechanis-
cher Systeme”. PhD thesis. Technische Universitaet Chem-
nitz (Germany).

Enge, Olaf and Peter Maißer (2005). “Modelling electromechan-
ical systems with electrical switching components using the
linear complementarity problem”. In: Multibody System Dy-
namics 13, pp. 421–445.

Enge-Rosenblatt, Olaf (2017). “Equation-based modelling and
simulation of hybrid systems”. In: Proceedings of the 8th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pp. 27–36.

Esperon, Daniel Gomez, Alexandra Mehlhase, and Thomas
Karbe (2015). “Appending variable-structure to modelica
models (WIP)”. In: Proceedings of the Conference on Sum-
mer Computer Simulation, pp. 1–6.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: ECOOP’98—Object-Oriented Programming:
12th European Conference Brussels, Belgium, July 20–24,
1998 Proceedings 12. Springer, pp. 67–90.

Fritzson, Peter, Adrian Pop, et al. (2022). “The OpenModelica
integrated environment for modeling, simulation, and model-
based development”. In: Mic.

Giorgidze, George (2012). “First-class models: On a noncausal
language for higher-order and structurally dynamic mod-
elling and simulation”. PhD thesis. University of Nottingham
(England).

Glocker, Ch and F Pfeiffer (1992). “Dynamical systems with
unilateral contacts”. In: Nonlinear Dynamics 3, pp. 245–259.

Glocker, Christoph (1995). “Dynamik von Starrkörpersystemen
mit Reibung und Stößen”. PhD thesis. Technische Universi-
taet Muenchen (Germany).

Hirschfeld, Robert, Pascal Costanza, and Oscar Nierstrasz
(2008). “Context-oriented programming”. In: Journal of Ob-
ject technology 7.3, pp. 125–151.

Ma, Yingbo et al. (2021). “Modelingtoolkit: A composable
graph transformation system for equation-based modeling”.
In: arXiv preprint arXiv:2103.05244.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmquvist
(2015). “Multi-mode DAE systems with varying index”. In:
Proceedings of the 11th International Modelica Conference,
pp. 89–98.

Mehlhase, Alexandra (2015). “Konzepte für die Modellierung
und Simulation strukturvariabler Modelle”. PhD thesis. Tech-
nische Universitaet Berlin (Germany).

Möckel, Jens, Alexandra Mehlhase, and Christoph Nytsch-
Geusen (2015). “Exploiting variable-structure models in the
context of building simulations within Modelica”. In: Pro-
ceedings of BS2015. International Building Performance
Simulation Association.

Modelica Association (2023-03). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
pdf.

Neumayr, Andrea and Martin Otter (2023). “Variable Structure
System Simulation via Predefined Acausal Components”. In:
Proceedings of the 15th International Modelica Conference.

Nytsch-Geusen, Christoph et al. (2005). “MOSILAB: Develop-
ment of a Modelica based generic simulation tool supporting
model structural dynamics”. In: Proceedings of the 4th Inter-
national Modelica Conference TU Hamburg-Harburg. Vol. 2.
Citeseer.

Pantelides, Constantinos C. (1988). “The Consistent Initializa-
tion of Differential-Algebraic Systems”. In: SIAM Journal on
Scientific and Statistical Computing 9.2, pp. 213–231. DOI:
10.1137/0909014.

Parr, Terence J. and Russell W. Quong (1995). “ANTLR: A
predicated-LL (k) parser generator”. In: Software: Practice
and Experience 25.7, pp. 789–810.

Pfeiffer, Friedrich and Christoph Glocker (2000). Multibody dy-
namics with unilateral contacts. Vol. 421. Springer Science
& Business Media.

Senkel, Anne et al. (2021). “Status of the transient library: Tran-
sient simulation of complex integrated energy systems”. In:
Modelica Conferences, pp. 187–196.

Stüber, Moritz (2017). “Simulating a Variable-structure Model
of an Electric Vehicle for Battery Life Estimation Using Mod-
elica/Dymola and Python.” In: Proceedings of the 12th inter-
national Modelica conference, pp. 132–031.

Tinnerholm, John, Adrian Pop, Andreas Heuermann, et al.
(2021). “OpenModelica. jl: A modular and extensible Mod-
elica compiler framework in Julia targeting ModelingToolkit.
jl”. In: Modelica Conferences, pp. 109–117.

Tinnerholm, John, Adrian Pop, Martin Sjölund, et al. (2020).
“Towards an Open-Source Modelica Compiler in Julia”. In:
Asian Modelica Conference 2020, Tokyo, Japan. Linköping
University Electronic Press, pp. 143–151.

Utkin, Vadim (1977). “Variable structure systems with sliding
modes”. In: IEEE Transactions on Automatic control 22.2,
pp. 212–222.

Webber, Diana L and Hassan Gomaa (2004). “Modeling
variability in software product lines with the variation
point model”. In: Science of Computer Programming 53.3,
pp. 305–331.

Wetter, Michael et al. (2014). “Modelica buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270.

Zimmer, Dirk (2010). “Equation-based modeling of variable-
structure systems”. PhD thesis. ETH Zurich (Switzerland).

63DOI 10.3384/ECP207 63 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Building Power System Models for Stability and Control Design
Analysis using Modelica and the OpenIPSL

Srijita Bhattacharjee1 Luigi Vanfretti1 Fernando Fachini2

1Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, NY, USA
{bhatts10, vanfrl}@rpi.edu

2Electric Transmission Strategic Initiatives, Dominion Energy, VA, USA
fernando.fachini@dominionenergy.com

Abstract
Ensuring the stability of complex power system models
is a critical challenge in the field of electrical power engi-
neering, and the tuning of Power System Stabilizers (PSS)
plays a pivotal role in this endeavor. Modelica, an open-
access modeling language, emerges as a powerful tool for
this purpose, due to its distinctive features that facilitate
efficient power system modeling. This paper explores the
capabilities of Modelica using the OpenIPSL library to
create models to analyze control system designs developed
for a multi-machine power system model. It particularly
focuses on using the features of Modelica for the lineariza-
tion, control-oriented analysis, and time-simulation of the
model. The results demonstrate the effectiveness of using
Modelica for control system design analysis and perform-
ing linear model-based analysis. This work aims to show
how Modelica can be used to perform these tasks on a sin-
gle platform efficiently, thereby streamlining the process
of power system design and analysis.
Keywords: Power System Modeling, Linearization, Stabil-
ity Analysis, Controller Design Analysis, OpenIPSL

1 Introduction
1.1 Motivation
Modern power systems exhibit a complex architecture that
requires the use of both physics-based models for sophisti-
cated control system designs. The design of robust control
systems is crucial to ensure reliable grid operation, which
facilitates the management of complex power system dy-
namics. A significant aspect of this involves conducting
stability analysis and tuning of Power System Stabilizers
(PSS), which are essential to damp electromechanical os-
cillations that can adversely affect system stability (F. J.
De Marco, Martins, and Ferraz 2012). To address this need
of developing models for control design and analysis, Mod-
elica, in conjunction with the OpenIPSL library, has been
used effectively to create a detailed University Campus
Microgrid model, demonstrating its effectiveness in linear
analysis, which is often challenging with traditional power
system analysis tools (Fachini, Bhattacharjee, et al. 2023).

This work explores the capabilities of Modelica (Fritz-
son and Engelson 1998), and the Dymola tool (Brück et al.

2002), to develop power system models that are suitable
for control system design and analysis. The model devel-
oped here emerges from the power system literature (F.
De Marco, Rullo, and Martins 2021), which can be used to
address intra-plant and inter-area oscillations when consid-
ering a power plant with multiple machines. The developed
can be further explored to create a more detailed design
for specific control tasks beyond those for which it was
originally developed (F. J. De Marco, Martins, and Ferraz
2012).

1.2 Background and Related Works

The evolution of power system analysis has advanced com-
puting technologies, notably through the development of
software tools designed to improve the accuracy and ef-
ficiency of modeling and simulation (Isaacs 2017). This
transition has been marked by significant shifts from tra-
ditional methods to more sophisticated software-oriented
approaches that integrate the capabilities of modern com-
puting frameworks (Guironnet et al. 2018). These advances
have facilitated a detailed analysis of the dynamics of the
power system, setting the stage for the addressing of the
complex engineering challenges that arise from the adop-
tion of renewable energy sources (Fachini, Luigi Vanfretti,
et al. 2021; Plietzsch et al. 2022). The widespread com-
modification of computing technologies in the 1900s and
2000s led to the commercialization of domain-specific pro-
prietary software and the rise of open-source software for
power system analysis, often exploiting proprietary general-
purpose computing languages and environments, that is,
mainly tools based on MATLAB (Chow and Cheung 1992;
Milano and Luigi Vanfretti 2009). This technological evo-
lution set the stage for the addressing of more complex
system challenges. One such challenge is linearization of
power system models, a task that is complex due to the
limitations of domain-specific tools, many of which lack
symbolic linearization capabilities.

Many industry standard tools such as Siemens PSS/E
depend on additional tools to perform numerical pertur-
bations for linearization (Nikolaev et al. 2020). Likewise,
CEPEL in Brazil has developed two independent tools, one
for nonlinear time simulation and another for linear anal-
ysis (Martins et al. 2000). However, developers of both

64 10.3384/ECP20763 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

tools need to provide symbolic expressions, which presents
challenges in maintaining modeling consistency between
the internal model descriptions within each tool (Luigi Van-
fretti et al. 2013). Researchers have developed certain tools,
such as PSAT, that support symbolic linearization (Milano
2005). However, they require users to input symbolic ex-
pressions and have a complete understanding of the source
code of the software to modify or expand it (Li, Luigi Van-
fretti, and Chompoobutrgool 2012). Other software tools
such as DOME have been developed that utilize Python
for power system analysis, demonstrating the viability and
utility of scripting languages in this field, particularly for
their modularity, ease of integration with various libraries
and suitability for academia (Milano 2013).

In contrast, Modelica offers a compelling alternative,
providing robust support for graphical modeling through
software such as OpenModelica (al. 2020) and Dymola,
thus significantly improving user experience and acces-
sibility. Modelica emerges as a formidable language for
power system modeling, especially when integrated with
the Open-Instance Power System Library (OpenIPSL)
(Baudette et al. 2018; De Castro et al. 2023), as elabo-
rated in (Winkler 2017). Unlike the conventional power
system approach of building a monolithic simulation tool,
Modelica serves as a language that numerous software pro-
grams can implement, including proprietary options such
as Dymola, Modelon Impact, Wolfram System Modeler,
etc.

Along with these compliant tools, what the Modelica
language offers is a unique advantage: it facilitates model
linearization (including symbolic-based linearization) with-
out the need of users or developers to specify additional
(linear) models, excelling over other alternatives. This
work explores the capabilities of Modelica symbolic analy-
sis to automatically derive the linear model from exactly the
same model used for non-linear time-domain simulation.

1.3 Paper Contribution
The main contributions of this paper are:
• To construct a multi-machine power system model by

utilizing Modelica and the OpenIPSL library, specially
designed to study intra-plant and inter-area oscillations
(F. De Marco, Rullo, and Martins 2021).

• To extend the model in applying a control system de-
sign derived from the literature (F. J. De Marco, Mar-
tins, and Ferraz 2012).

• To demonstrate the benefits of object-oriented model-
ing for complex power system models.

• To demonstrate the application of the Modelica lan-
guage and the OpenIPSL library for control system de-
sign analysis as a strong alternative to domain-specific
power system tools with simulation results.

While the article aims to illustrate how Modelica and
OpenIPSL can be used for the purposes stated above, some
familiarity with the Modelica language would be beneficial
to the reader. When necessary, the paper briefly introduces

some language constructs and concepts used to guide the
reader.

1.4 Paper Structure
The structure of the paper is as follows: Section 2 demon-
strates the application of the object-oriented modeling tech-
nique to construct the different components of the system.
Section 3 explains the process of creating the model used
for linearization. Section 4 describes the nonlinear simu-
lation of the multimachine system. The simulation results
for the designed control system are presented in Section
5. Finally, Section 6 concludes the work and outlines the
future direction of the work.

2 Object-Oriented System Modeling
Figure 1 shows the package structure of the three-
machine infinite bus package ThreeMIB with several sub-
packages, namely Generation Units, Networks,
Systems, PF_Data, etc. Due to space con-
straints, only the Generation Units package is
expanded in Figure 1 to show its internal structure.
The sub-packages Generation Units, Networks,
Systems are further explained below to describe the
process of system modeling. This package is avail-
able in the Github repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB

2.1 Component Modeling
The OpenIPSL contains different component models
that are built using object orientation. For components,
object-oriented modeling can be illustrated using the in-
stance for the bus component. As observed in the
Modelica code excerpt in Listing 1, the Bus model ex-
tends a partial model named pfComponent from
the *.Electrical.Essentials package. This
inheritance approach is a hallmark of object-oriented
modeling in Modelica, allowing the bus model to re-
utilize and extend predefined functionalities, such as
initial parameter setups for algebraic variables that are
crucial for setting initial state values in the models
it comprises. Central to object-oriented design, at-
tributes like final enablev_0=true and final
enableangle_0=true are strategically enabled for
initializing values, while final enableP_0=false
is disabled to comply with KCL, illustrating the model’s
ability to customize through selective inheritance. The
PwPin instance, named p, exemplifies encapsulation, ini-
tializing its algebraic variables, vr and vi, from v_0 and
angle_0. Furthermore, the variables v and angle, in
Lines 13 and 14, which represent the magnitude and angle
of the voltage, are managed within the model to reflect
its link with other components of the system. The calcu-
lations in for voltage (Lines 13-14) and zero current en-
forcement (Lines 15-16) through p.ir and p.ii not only
confirm the model’s functionality but also ensure its inte-
gration within the larger system, underscoring the efficacy
and adaptability of object-oriented modeling for complex

65DOI 10.3384/ECP20763 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 1. Package Structure

power systems.

Listing 1. Excerpt of the
OpenIPSL.Electrical.Buses.Bus model

1 model Bus "Bus model"
2 extends OpenIPSL.Electrical.Essentials.

pfComponent(
3 ...
4 final enableP_0=false,
5 ...
6 final enablev_0=true,
7 final enableangle_0=true);
8 OpenIPSL.Interfaces.PwPin p(vr(start=v_0*

cos(angle_0)), vi(start=v_0*sin(
angle_0)));

9 Types.PerUnit v(start=v_0) "Bus v.
magnitude";

10 Types.Angle angle(start=angle_0) "Bus v.
angle";

11 ...
12 equation
13 v = sqrt(p.vr^2 + p.vi^2);
14 angle = atan2(p.vi, p.vr);
15 p.ir = 0;
16 p.ii = 0;
17 ...
18 end Bus;

Similarly to the bus component, other OpenIPSL com-
ponent models are used to develop the system models de-
scribed below. More information on the components avail-
able in OpenIPSL can be found in (L. Vanfretti et al. 2016;
Baudette et al. 2018; De Castro et al. 2023).

2.2 System Modeling
This section explains how the object-oriented features of
Modelica (Fritzson 2014) and OpenIPSL components are
used to construct the multi-machine power system model
from (F. De Marco, Rullo, and Martins 2021), as shown in
Figure 4, allowing modular reusable components that sim-
plify the design of the system model and enhance the sim-
ulation flexibility. The model consists of three generation
units, six buses, two transmission lines, three transformers,
three loads, and an infinite bus. Some of the sub-packages
are explained below.
• Generation Units: The GenerationUnits sub-

package is expanded in Figure 1 to show the internal
structure. The sub-packages within offer various con-
figurations of the three generation units named G1,
G2, and G3:

Figure 2. GenerationUnits.MachineEXPSS.Generator1
Generator1 model diagram view

• MachineOnly: Consists of only the syn-
chronous machine (SM).

• MachineEXPSS: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS).

• MachineEXPSSIO: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS) along
with an input and output (IO) interface.

The three generation units are chosen from
MachineEXPSS to be used in the multi-machine
model shown in Figure 4. Each unit is modeled as a
separate component. The structure of each generation
unit consists of a synchronous machine (SM), which is
the primary component for generating electrical power,
an excitation control system (ES) which regulates the
field voltage, maintaining the terminal voltage stability,
and a power system stabilizer (PSS) which provides
damping of the power system oscillations by modulating
the ES. The diagram view of one of the generation
units G1 is shown in Figure 2. The graphical placement
and connections of the components ensure that the
mathematical relationships are correctly established when
connect(...) statements are generated. In Modelica,
a connect(...;...) statement links the compatible
ports of two components, enabling them to interact within
the simulation environment as described in Chapter 9
(Modelica Association 2023).

The SM and ES are parameterized using the values
of an implementation made in the Siemens PSS/E soft-
ware. *.raw and *.dyr files from (Illinois Center for
a Smarter Electric Grid (ICSEG) 2024) are used to set pa-
rameter values and to obtain a power flow solution that
populates Modelica records within the PF_Data sub-
package in Figure 1. These help provide an initial guess for
the algebraic variables that are used to initialize the model
(see more details in (Dorado-Rojas et al. 2021). PSS mod-
els are specifically parameterized according to optimized
transfer functions from studies on PSS tuning for phase
compensation(F. J. De Marco, Martins, and Ferraz 2012;
F. De Marco, Rullo, and Martins 2021). Furthermore, the
parameters of the individual components that are required

66 10.3384/ECP20763 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

B1

B3

B4

B2

line2

p…

Load1

System Base: 100 MV A
Frequency: 50 Hz

System Data

B5 B6

TF1

TF2

TF3

p…

Load2

p…

Load3

line1

i…IB

pf

pw
Fault

Figure 3. ThreeMIB.Networks.BasePFnFault multi-
machine Power System Base Model

at higher levels, such as the model shown in Figure 4, are
propagated to provide a user-friendly interaction.
• Networks: The sub-package named Networks is com-

prised of a partial model of the multi-machine
system ThreeMIB.Networks.Base including the
buses B1-B6, transmission lines line1 and line2,
the transformers TF1-TF3, and the System Data
component. Instead of programmatically building it,
this model is built graphically. The components are
dragged and dropped, connected, and parameterized;
the Modelica tool automatically generates the corre-
sponding source code as shown in Listing 2.

Listing 2. Connect equations of the partial model called
ThreeMIB.Networks.Base

1 partial model Base "Partial model
containing network elements"

2 ...
3 OpenIPSL.Electrical.Branches.PwLine line1

(R=0, X=0.036, G=0, B=0);
4 ...
5 equation
6 connect(B1.p, TF1.p);
7 connect(TF1.n, B4.p);
8 connect(B2.p, TF2.p);
9 connect(line1.n, line2.p);

10 ... (more connect equations follow)
11 end Base;

As observed in Listing 2, the instantiation of the
PwLine component named as line1 and the parameter
X=0.036 is set through a modifier, that is, it is changed
from the default values. Similar code is generated for all
other component instantiation and parameterized. Observe
that there are fewer components in Figure 3 than those
shown in Figure 4. This is because the model in 4 is built
through inheritance, i.e., it inherits the components in Fig-
ure 3 and adds new ones. This method allows for the cre-

ation of varied system model variants from partial models,
which are extended and customized through modifications.
The automatically generated connect equations link the
PwPin within each component instance. For example, as
observed from Line 6 of Listing 2, B1.p is connected to
TF1.p, thereby interfacing bus B1 to transformer TF1.
Similarly, line 9 shows how line1 and line 2 are in-
terfaced through the connect equations. For illustration,
this is labeled in red in Figure 4. Similar equations are
automatically generated by the tool for other connections
that were done graphically.

The partial model ThreeMIB.Networks.Base
is extended by adding other components, namely
the power flow component pf, the loads Load1-
Load3, and the fault component pwFault. This
does not include the generation units, which are dis-
cussed later. The resulting base model is called
ThreeMIB.Networks.BasePFnFault shown in
Figure 3.

• Systems: The sub-package Systems comprises
the final model of the multi-machine power sys-
tem, as shown in Figure 4. To create this,
the ThreeMIB.Networks.BasePFnFault en-
closed in the dotted blue box is extended and
the three generation units G1, G2, and G3
enclosed in the dotted green box are dragged
and dropped from the ThreeMIB.Generation
Units.MachineEXPSS package. Once connected
to the corresponding buses, the generation units are
parameterized with power flow data contained within
the pf record component. The resulting model is the
ThreeMIB.Systems.Grid, which can be readily
used for typical power system time-domain simulations.
This particular package also consists of the models built
for linearization and nonlinear simulation which is dis-
cussed in detail in the following sections.

3 Deriving Linear Models
3.1 Refactoring Models for Linearization
This section discusses the creation of the linearized
model, here referred to as “plant”. To generate
a model that can be linearized, the base model
ThreeMIB.Networks.Base is extended and instanti-
ated as ThreeMIB.Systems.GridIO, and the power
flow component pf and fault component pwFault are
added graphically. It is worth noting here that the
load components added to this model Load1-Load3
are chosen as those with an external input. Fig-
ure 5 shows the detailed extended model with the in-
puts in the green boxes and the outputs within the or-
ange one. This is achieved by choosing the genera-
tion units from the package ThreeMIB.Generation
Units.MachineEXPSSIO with an IO interface depict-
ing a structure as shown in Figure 6. The inputs, enclosed
within the dotted green boundary in Figure 6, are simply

67DOI 10.3384/ECP20763 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 4. ThreeMIB.Systems.Grid multi-machine power
system model

connected to a RealInput interface from the Model-
ica Standard Library (MSL). In the case of the outputs,
RealOutput interfaces from the MSL need to be pro-
vided, which are shown enclosed by a dotted orange bound-
ary in Figure 6. These interfaces must be linked to the
desired output variables. This is carried out in the textual
layer of the model, as shown in Listing 3.

Listing 3. Linking output variables to the RealOutput inter-
faces.

1 model GridIO
2 "Multimachine power grid model with input

/output interfaces ..."
3 extends ThreeMIB.Interfaces.

OutputsInterface;
4 extends ThreeMIB.Networks.Base(...
5 GenerationUnits.MachineEXPSSIO.

Generator1EXPSSIO G1(...)
6 ... // More i n s t a n t i a t i o n s f o l l ow
7 equation
8 SCRXin = G1.feedbackSCRX.y;
9 SCRXout = G1.sCRX.EFD;

10 Vt = G1.gENSAE.ETERM;
11 ANGLE = G1.gENSAE.ANGLE;
12 SPEED = G1.gENSAE.SPEED;
13 ... // More connect s ta tements f o l l ow
14 end

Each of the RealOutput interfaces must be linked
to the output of different components. For example, on
Line 10 of Listing 3, the generator’s terminal voltage
G1.gENSAE.ETERM is linked to the interface Vt. This
is done similarly for other machine variables. Meanwhile,
to access the output of the PSS (which is the input of
the ES), the RealOutput interface SCRXin is linked to
G1.feedbackSCRX.y as seen in Line 8 and similarly
the output of the ES, SCRXout, is linked to the field volt-
age G1.sCRX.EFD in Line 9. The plant model shown in
Figure 5 can now be utilized as a block with the specified

Inputs

uPm1

uPm2

uPm3

uPSS1

uPSS2

uPSS3

uvs2
Input

uvs2
Input

uvs1
Input

Outputs

uPload2
Input

uPload1
Input

uPload3
Input

Three Machine Infinite Bus Model with IO Interface

B1

Vpu…

B3

Vpu…

B4

Vpu…

B2

Vpu…

li…

…

Load1

System Base: 100 M…

Frequency: 50 Hz

System Data

B5

Vpu…

B6

Vpu…

TF1

TF2

TF3

…

Load2

…

Load3

li…

…IB

…G1

…G2

…G3

pwFault

pf

ANGLE SPEED

Vt SCRXin SCRXout

Figure 5. ThreeMIB.Systems.GridIO multi-machine
power system model with IO interface

inputs and outputs for the analysis of the design of the
control system. Figure 7 illustrates this concept where the
inputs to the ThreeMIB.Systems.GridIO can be set
to zero with only one desired functional input and output.
The entire model enclosed in the red dotted lines is treated
as a single-input-single-output (SISO) block. This modu-
larity improves the adaptability and utility of the model in
diverse linearization and simulation needs.

3.2 Linearization Process
Each Modelica-compliant tool, such as Dymola or Open-
Modelica, supports symbolic analysis to automatically
generate a linear model from the same model used for
non-linear time-domain simulation. Within Dymola, the
Modelica_LinearSystems2 (MLin2) library can
be used to perform this task, which allows easy conver-
sion of models to representations of linear time-invariant
systems (Baur, Otter, and Thiele 2009). Listing 4 shows the
command needed to linearize the model shown in Figure
5. A state space object and *.mat file are generated as
the resulting output ss which is suitable for further analy-
sis in Dymola or external tools, supporting tasks such as
eigenvalue computation, frequency response analysis, and
advanced control design such as pole placement and LQG
controller design.

Listing 4. Linearization using Modelica_LinearSystems2

1 ss := Modelica_LinearSystems2.ModelAnalysis
.Linearize("ThreeMIB.Systems.GridIO");

Once linearized, the system, input, and output matrices
can be observed from Dymola’s command window.

4 Nonlinear Simulation
This section explores the initialization process and the se-
lection of solvers in time-domain simulations, demonstrat-
ing how these features can accommodate various use cases
with models developed using OpenIPSL.

4.1 Initialization
Providing suitable initial guess values for large-system
models under various operating conditions can be challeng-
ing. To address this, a Modelica record template within

68 10.3384/ECP20763 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 6. GenerationUnits.MachineEXPSSIO.Generator1 Generator1 model with IO interfaces.

GridIO

0.0

zeros SISO
BLOCK

Vt

uvs

Figure 7. ThreeMIB.Systems.GridIOsiso multi-
machine power system with IO interface used as a SISO Block

ThreeMIB.PF_Data.powerflow is associated with
each component of the model to facilitate the entry of data
from the power flow solution as starting values. This map-
ping is done once when creating the model. As shown in
Figure 5, the component pf is added directly as the block
of the yellow record template in the diagram. This allows
for the selection of specific data values for buses, machines,
loads, and transformers. This record structure can be auto-
matically implemented using the pf2rec Python utility,
which transforms the power flow simulation results into
Modelica records (Dorado-Rojas et al. 2021).

Similarly, as mentioned in Sec-
tion 2 the OpenIPSL.Electrical
.Essentials.pfComponent can be provided
with data that are used to calculate the starting values
within each of the components that extend from the
pfComponent. For example, it can be observed in
Listing 1, how the start values for the real and imaginary
parts of the voltage phasor, vr and vi are calculated from
data of voltage magnitude and angle, v_0 and angle_0
(see Line 8).

4.2 Solvers
Domain-specific power system tools like Siemens PSS/E
usually provide a single solver for which the models’
equations have been discretized; a popular choice is to
use the trapezoidal integration method combined with a

Netwon-Raphson solver to solve the DAEs. This approach
typically restricts simulations to a few seconds with a fixed
time step. Modelica tools do not face this limitation when
simulating the models from the OpenIPSL library. As
noted in (Henningsson, Olsson, and Luigi Vanfretti 2019),
Dymola has advanced solvers for sparse large-scale DAE
models, enhancing the competitiveness of power system
simulations with Modelica compared to Siemens PSS/E.
To utilize these advanced features in Dymola, the utility
ThreeMIB.Utilities.SetupSolverSettings
offers a series of functions to enable or dis-
able them. For example, it allows settings
like Advanced.Define.DAEsolver :=
true/false and Advanced.SparseActivate
:= true/false, which activates the DAE solvers
and optimizes for sparsity, respectively. Note that for
linearization tasks, these advanced settings should be
deactivated to ensure the generation of accurate state-space
models.

5 Results
The power system models developed in this work are
utilized to analyze the control system design developed
in the study for PSS tuning using phase compensation
(F. J. De Marco, Martins, and Ferraz 2012). Modelica
tools provide means to visualize and analyze the results.
Custom functions can be used with the necessary path
to the models to perform the required analysis. Within
Dymola, the Modelica_LinearSystems2 (MLin2)
library provides commands to directly linearize and plot
the frequency response from the single-input-single-output
version of the model in Figure 7 as observed in Listing 5.

Listing 5. Custom Function for Bode Plot using Model-
ica_LinearSystems2

1 function bodeplot_GridIOsiso
2 extends Modelica.Icons.Function;

69DOI 10.3384/ECP20763 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

3 input Modelica.Units.SI.Time tlin = 30;
4 algorithm
5 ...
6 // l i n e a r i z e and p l o t
7 Modelica_LinearSystems2.ModelAnalysis.

TransferFunctions(
8 "OpenIPSL.ThreeMIB.Systems.GridIOsiso",

simulationSetup=
9 Modelica_LinearSystems2.Records.

SimulationOptionsForLinearization(
10 linearizeAtInitial=false,
11 t_linearize=tlin));
12 end bodeplot_GridIOsiso;

Figure 8 illustrates the frequency response of the sys-
tem, showing both the magnitude and phase of the terminal
voltage as functions of frequency for increasing values of
the PSS gain (Kw). These values were obtained from the
designs in (F. J. De Marco, Martins, and Ferraz 2012). The
adjustment Kw adjusts the phase change introduced by the
system as shown in Figure 8a. When the PSS is disabled
by setting Kw = 0, the phase curve introduces a negative
phase shift in the frequency response. Increasing Kw to 15
and 35 shows an improvement in phase around the reso-
nant frequency, reducing the phase lag, which is crucial to
effectively damp system oscillations. The magnitude plot
as shown in Figure 8b reveals the system’s sensitivity to
frequency changes for different PSS gains. With increasing
Kw, there are noticeable peaks in the magnitude response,
particularly around the resonant frequencies, suggesting
an enhanced ability of the PSS to counteract perturbations
effectively. However, higher gains (Kw = 35) introduce
sharp peaks that could lead to potential system instability
under certain conditions.

The PSS is tuned by receiving a feedback signal from the
rotor speed of the synchronous machine. Figure 9 demon-
strates the time-domain simulation of the rotor speed of
Generator 1 after a load disturbance at t = 30.5 seconds,
clearly demonstrating the impact of varying PSS gain val-
ues on the stability of the system. With the PSS disabled
(Kw = 0), the rotor speed experiences substantial oscilla-
tions, indicating poor damping characteristics. With an
increase of Kw to 15 and 35 there is an improvement in
damping performance, with the rotor speed quickly stabiliz-
ing and exhibiting minimal oscillatory behavior. This anal-
ysis underscores the effectiveness of PSS in enhancing the
system’s dynamic response to disturbances, highlighting
the critical role of appropriate PSS tuning in maintaining
system stability.

To further investigate this power system dynamics, Fig-
ure 10 provides further insight into the stability of the sys-
tem by illustrating the pole positions of the GridIOsiso
model under varying PSS gains. With the PSS disabled
(Kw = 0), the poles marked with pink crosses highlight
a critically damped system with potential for sustained
oscillations. Increasing Kw to 15 (red) and 35 (dark red)
shows a shift in the poles, which move toward the left in
the complex plane. This indicates improved damping and
stability, thus emphasizing the significant influence of PSS

10-4 10-3 10-2 10-1 100 101 102

Frequency (Hz)

-250

-200

-150

-100

-50

0

Ph
as

e
(d

eg
re

es
)

Kw = 0
Kw = 15
Kw = 35

(a) Phase for different values of Kw

10-4 10-3 10-2 10-1 100 101 102

Frequency (Hz)

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ag

ni
tu

de

Kw = 0
Kw = 15
Kw = 35

(b) Magnitude for different values of Kw

Figure 8. Bode Plot of the GridIOsiso model for three values of
the PSS gain (Kw)

tuning on the system dynamics. Moreover, this illustrates
the value of complementing non-linear simulations with
linear methods when assessing control system designs.

6 Conclusions
In this work, Modelica and the OpenIPSL library have been
utilized to build a multi-machine power system model de-
veloped for the analysis of intra-plant and inter-area modes.
The model is refactored and extended to implement a con-
trol system design and analyze its performance. This is
done by exploiting the object-oriented modeling features
of Modelica. Linearization capabilities provide an advan-
tage over other domain-specific tools in implementing this
design and performing an analysis of the model. Given the
complexity of power systems and the critical role of stabil-
ity and dynamic behavior as illustrated in Figure 10, careful
control design analysis is essential to ensure the robustness
of the system to dynamic conditions and disturbances.

This study demonstrates how Modelica and OpenIPSL

70 10.3384/ECP20763 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 9. Time domain simulation of the rotor speed of G1 under
a load disturbance at t= 30.5 sec. for different values of PSS
gain (Kw)

-120 -100 -80 -60 -40 -20 0
Real Axis

-15

-10

-5

0

5

10

15

Im
ag

in
ar

y
Ax

is

Kw = 0
Kw = 15
Kw = 35

Figure 10. Poles of the GridIO model

can be used to assist in control design analysis and im-
prove power system dynamic performance by testing con-
trol system designs. The modifications (model re-factoring
and extension) aim to effectively address the complexities
of power system stability studies effectively. Additional
work includes the development of detailed examples of
the actual design of the PSS using the unique features of
Modelica and the integration of the models presented into
the OpenIPSL library.

To access the models in this paper before they are in-
tegrated into OpenIPSL, the reader can find them in the
following GitHub repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB

Acknowledgements
This paper is in part, based upon work supported by the
U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced Man-
ufacturing Office, Award Number DE-EE0009139.

References
al., Peter Fritzson et (2020). “The OpenModelica Integrated En-

vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system library—update 1.5 to “iTesla power systems
library (iPSL): A modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Baur, Marcus, Martin Otter, and Bernhard Thiele (2009). “Mod-
elica libraries for linear control systems”. In: Proceedings 7th
Modelica Conference. DOI: 1, pp. 593–602.

Brück, Dag et al. (2002). “Dymola for multi-engineering model-
ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Citeseer.

Chow, J.H. and K.W. Cheung (1992). “A toolbox for power sys-
tem dynamics and control engineering education and research”.
In: IEEE Transactions on Power Systems 7.4, pp. 1559–1564.
DOI: 10.1109/59.207380.

De Castro, Marcelo et al. (2023). “Version [OpenIPSL 2.0.
0]-[iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21, p. 101277.

De Marco, Fernando, Pablo Rullo, and Nelson Martins (2021).
“Synthetic power system models for PSS tuning and perfor-
mance assessment”. In: 2021 IEEE Electrical Power and En-
ergy Conference (EPEC). IEEE, pp. 107–112.

De Marco, Fernando Javier, Nelson Martins, and Julio Cesar
Rezende Ferraz (2012). “An automatic method for power sys-
tem stabilizers phase compensation design”. In: IEEE Trans-
actions on power systems 28.2, pp. 997–1007.

Dorado-Rojas, Sergio A et al. (2021). “Power flow record struc-
tures to initialize openipsl phasor time-domain simulations
with python”. In: Modelica Conferences, pp. 147–154.

Fachini, Fernando, Srijita Bhattacharjee, et al. (2023). “Exploit-
ing Modelica and the OpenIPSL for University Campus Micro-
grid Model Development”. In: Modelica Conferences, pp. 285–
292.

Fachini, Fernando, Luigi Vanfretti, et al. (2021). “Modeling and
validation of renewable energy sources in the openipsl model-
ica library”. In: IECON 2021–47th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, pp. 1–6.

Fritzson, Peter (2014). Principles of object-oriented modeling
and simulation with Modelica 3.3: a cyber-physical approach.
John Wiley & Sons.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and simula-
tion”. In: ECOOP’98—Object-Oriented Programming: 12th
European Conference Brussels, Belgium, July 20–24, 1998
Proceedings 12. Springer, pp. 67–90.

Guironnet, Adrien et al. (2018). “Towards an Open-Source Solu-
tion using Modelica for Time-Domain Simulation of Power
Systems”. In: 2018 IEEE PES Innovative Smart Grid Tech-
nologies Conference Europe (ISGT-Europe), pp. 1–6. DOI:
10.1109/ISGTEurope.2018.8571872.

Henningsson, Erik, Hans Olsson, and Luigi Vanfretti (2019).
“DAE Solvers for Large-Scale Hybrid Models.” In: Modelica,
pp. 157–050.

Illinois Center for a Smarter Electric Grid (ICSEG) (2024). Three
Machines Infinite Bus Benchmark System. Available online:
https:// icseg.iti . illinois.edu/three- machines- infinite- bus-
benchmark-system/.

71DOI 10.3384/ECP20763 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Isaacs, Andrew (2017). “Simulation Technology: The Evolution
of the Power System Network [History]”. In: IEEE Power and
Energy Magazine 15.4, pp. 88–102. DOI: 10.1109/MPE.2017.
2690527.

Li, Wei, Luigi Vanfretti, and Yuwa Chompoobutrgool (2012).
“Development and implementation of hydro turbine and gov-
ernor models in a free and open source software package”. In:
Simulation Modelling Practice and Theory 24, pp. 84–102.

Martins, Nelson et al. (2000). “A small-signal stability program
incorporating advanced graphical user interface”. In: Proceed-
ings of the VII SEPOPE.

Milano, Federico (2005). “An open source power system analy-
sis toolbox”. In: IEEE Transactions on Power systems 20.3,
pp. 1199–1206.

Milano, Federico (2013). “A Python-based software tool for
power system analysis”. In: 2013 IEEE Power & Energy Soci-
ety General Meeting. IEEE, pp. 1–5.

Milano, Federico and Luigi Vanfretti (2009). “State of the art and
future of OSS for power systems”. In: 2009 IEEE Power &
Energy Society General Meeting. IEEE, pp. 1–7.

Modelica Association (2023). Modelica Language Specification
v3.6.0. Available online: https://specification.modelica.org/
maint/3.6/MLS.html. Accessed: 14 Aug 2024.

Nikolaev, Nikolay et al. (2020). “PSS/E Based Power System
Stabilizer Tuning Tool”. In: 2020 21st International Sympo-
sium on Electrical Apparatus & Technologies (SIELA). IEEE,
pp. 1–6.

Plietzsch, Anton et al. (2022). “PowerDynamics.jl–An experi-
mentally validated open-source package for the dynamical
analysis of power grids”. In: SoftwareX 17, p. 100861.

Vanfretti, L. et al. (2016). “iTesla Power Systems Library (iPSL):
A Modelica library for phasor time-domain simulations”. In:
SoftwareX 5, pp. 84–88. ISSN: 2352-7110. DOI: https://doi.org/
10.1016/j.softx.2016.05.001. URL: https://www.sciencedirect.
com/science/article/pii/S2352711016300097.

Vanfretti, Luigi et al. (2013). “Unambiguous power system dy-
namic modeling and simulation using modelica tools”. In:
2013 IEEE Power & Energy Society General Meeting. IEEE,
pp. 1–5.

Winkler, Dietmar (2017). “Electrical power system modelling in
modelica–comparing open-source library options”. In.

72 10.3384/ECP207 72 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Integrating the IEEE/CIGRE DLL Modeling Standard to Use
“Real Code” Models for Power System Analysis in Modelica Tools

Hao Chang1 Luigi Vanfretti1

1Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, USA,
{changh7, vanfrl}@rpi.edu

Abstract
Vendors of power system simulation tools are investigat-
ing the incorporation of actual controller code into spe-
cialized simulation environments. To facilitate this, IEEE
and CIGRE have collaboratively created the IEEE/CIGRE
DLL Modeling Standard. However, adoption by simula-
tion tool providers has been minimal. The limited adop-
tion is because ’real code’ models per the IEEE/CIGRE
DLL Modeling Standard must be provided as DLLs by
equipment vendors. Thus, to support the standard, tools
need to support a standard-specific interface and provide
additional functions to execute the models.

This paper presents a method for integrating ’real
controller code’ models (RCMs) built according to the
IEEE/CIGRE DLL Modeling Standard into Modelica-
based tools. This is achieved by linking precompiled C
code to Modelica models and using components from the
OpenIPSL library. The approach is demonstrated with
an RCM of a simplified silicon-controlled rectifier exci-
tation system (SCRX). The paper discusses the details of
the implementation, challenges, and solutions. The find-
ings show that this method allows RCMs to be used in
Modelica tools for power system simulations, providing a
valuable alternative to specialized simulation tools.
Keywords: IEEE/CIGRE DLL Modeling Standard, Gener-
ator excitation, Power Systems, Power System Simulation,
External Object

1 Introduction
1.1 Motivation
In modern control systems engineering, the ability to test
and validate control strategies under diverse and realis-
tic conditions is paramount. Traditional controller test-
ing methods often fail to replicate real-world scenarios,
leading to discrepancies between the simulated and ac-
tual performance of the system under test. To bridge this
gap, the integration of controller code into simulation en-
vironments has emerged as a crucial step, often referred
to as “Software-In-the-Loop” (SIL) simulation (Schaub,
Hellerer, and Bodenmüller 2012). By incorporating the
controller code into SIL, the number of discrepancies be-
tween simulation results and field measurements can be
reduced, improving the accuracy and reliability of simula-
tion models (Ramasubramanian et al. 2024). However, in

the field of power system simulation, this remains a chal-
lenging situation for multiple reasons. One of the difficul-
ties faced is that of exchanging models between electro-
magnetic transient (EMT) simulation platforms and/or dy-
namic simulation tools (transient stability or phasor sim-
ulators). To a large extent, this is mainly due to the lack
of a standardized equation-based modeling language for
model exchange, leading to inconsistencies in simulation
results between different tools. This inconsistency can re-
sult in speculation about the accuracy of the model or the
adequacy of a simulation tool, highlighting the need for a
more consistent model exchange mechanism (Rogersten,
Vanfretti, and Li 2015).

Power system simulation tool vendors and users have
started to explore the integration of ’real controller code’
models (RCMs) into domain-specific simulation environ-
ments. They have established a joint effort within two
professional organizations (CIGRE and IEEE 1) to de-
velop a domain-specific approach to perform such integra-
tion, known as the IEEE/CIGRE DLL Modeling Standard
(ICDMS). Unfortunately, the proposed approach has only
been adopted by a few power system simulation tool ven-
dors, limiting the use of such RCMs to those tools. This
adoption has been limited because the RCMs, according
to the IEEE/CIGRE DLL Modeling Standard (ICDMS),
are to be provided as DLLs (Dynamic Link Libraries)
by equipment vendors. Hence, to support this standard
within a simulation environment, a standard-specific inter-
face needs to be called, and to run the models additional
ancillary functions need to be developed.

To expand the potential use of such models beyond
domain-specific power system tools and leverage the built-
in features of the Modelica language for integrating ex-
ternal objects, this paper presents a novel method for in-
corporating precompiled C code to support the ICDMS

1According to https://www.electranix.com/
ieee-pes-tass-realcodewg/ this is under the IEEE Task Force
“Use of Real-Code in EMT Models for Power System Analysis” and
according to https://tinyurl.com/ieee-cigre-dll-tor
this is a Joint Task Force under CIGRE Study Committe B4, with Title:
“Guidelines for Use of Real-Code in EMT Models for HVDC, FACTS
and Inverter based generators in Power Systems Analysis”.
CIGRE is the International Council on Large Electric Systems, which
is a professional global non-profit in the field of high voltage.
The Institute of Electrical and Electronics Engineers (IEEE) is a pro-
fessional association for electronics engineering, electrical engineering,
and other related disciplines

73DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

domain-specific standard within the Modelica language
and the OpenIPSL library.

1.2 Related Works
The modeling and simulation community has success-
fully developed interoperable standards, such as the Func-
tional Mock-up Interface (FMI) (Junghanns et al. 2021)
and the Functional Mock-up Interface for Embedded Sys-
tems (eFMI) (Lenord et al. 2021), which aim to stream-
line model exchange and integration in simulation envi-
ronments. However, there are still significant challenges
to achieve widespread adoption, especially in engineer-
ing areas where domain-specific approaches are the rule,
which is the case for the electrical power industry (Van-
fretti, Li, et al. 2013).

Meanwhile, within the power industry itself, previous
efforts to standardize equipment models have not been
successful due to their lack of adoption. One particular ex-
ample is that of the generic software interface developed
as part of the IEC 61400-27-1:2020 standard “Wind en-
ergy generation systems - Part 27-1: Electrical simulation
models - Generic models” (see https://webstore.
iec.ch/publication/32564), which intended to
provide both generic models and an interface method for
vendor-specific wind turbine models.

These grid standards have been unsuccessful as equip-
ment manufacturers have been slow to adopt them and
provide equipment models according to the standards, re-
sulting in persistent difficulties in model exchange. Man-
ufacturers are discouraged in adopting any of these stan-
dards due to the customers’ preference for tool-specific
implementations (e.g., PSCAD and PSS/E), which leads
to tool lock-in. Although there have been efforts in Europe
to develop the Common Grid Model Exchange Specifica-
tion (see https://tinyurl.com/cgmes2p5); sim-
ulation tools built and used outside Europe have not yet
adopted this standard. What this implies for user’s that
need functionalities not yet supported by domain-specific
simulation tools, or that want to use Modelica-complaint
simulation environments, is that the domain-specific ap-
proach has to be somehow supported within the Model-
ica ecosystem. This is what is attempted in this paper
for the case of the IEEE/CIGRE DLL Modeling Standard
(ICDMS).

In addition to implementing the ICDMS, means to sim-
ulate the reminder of the power grid in Modelica tools
are required. Fortunately, an effort to port the behavioral
model descriptions in Modelica replicating those of the
PSS/E software (the simulation tool most used in the US
and the Nordic countries) has been in place for almost a
decade (T. Bogodorova et al. 2013; Vanfretti, Tetiana Bo-
godorova, and Baudette 2014; Zhang et al. 2015), which
makes it possible to reproduce power system dynamic
simulation results like those expected by industry practi-
tioners. The OpenIPSL(de Castro et al. 2023) is a Mod-
elica library that provides robust models and enhanced
portability aimed at building an open-source software-

based encyclopedia of dynamic power system models that
can be exploited by multiple modeling tools that are com-
pliant with the Modelica language specification. The
OpenIPSL is used here to set up power grid simulation
models in which the RCMs are included.

1.3 Contributions
This paper presents a method for integrating RCMs built
according to the IEEE/CIGRE DLL Modeling Standard
(ICDMS) into Modelica-based tools. This is achieved by
linking precompiled C code to Modelica models and us-
ing components from the OpenIPSL library. The approach
is demonstrated with an RCM of a simplified silicon-
controlled rectifier excitation system (SCRX).

Our demonstration involves modifying and compiling
the code of the SCRX RCM into Dynamic Link Libraries
(DLLs), following the ICDMS. This standardization en-
sures compatibility with domain-specific standards and fa-
cilitates the seamless incorporation of controller code into
Modelica simulations. The primary contribution of this
paper is the detailed description of the process used to
integrate the precompiled DLLs into the simulation envi-
ronment, enabling extensive testing and validation of the
controller code.

2 Background on the IEEE/CIGRE
DLL Modeling Standard

To explain how the ICDMS functions, the simulation
workflow shown in Figure 1 is used. It starts with “Al-
locate Memory”, where memory for inputs, outputs, and
parameters is allocated. Model Initialization then sets ini-
tial conditions and parameters. The Update Input step
reads the current input values, followed by Run Calcula-
tion, where the model computes the output based on input
values and parameters. Finally, Update Output writes the
results to the output variables, completing one simulation
cycle. This workflow repeats, allowing dynamic simula-
tion of the controller’s behavior.

Figure 1. Model Structure and Simulation Workflow according
to the IEEE/CIGRE DLL Modeling Standard

The implementation of the workflow in Figure 1 fol-
lows the ICDMS by defining a clear structure for in-
put signals, output signals, and parameters using stan-
dardized data types and units. Standardized functions

74 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

such as Model_GetInfo, Model_CheckParameters, and
Model_Initialize ensure proper initialization and param-
eter validation. The Model_Outputs function performs the
main computational tasks, adhering to the fixed time step
approach common in the real-world controller firmware.
Each model to be developed using this approach needs to
be compiled into a DLL, enabling its use across various
simulation tools. However, this requires that the ICDMS
be supported by the simulation tool.

3 Implementing the IEEE/CIGRE
DLL Modeling Standard in Model-
ica

In the following section, the SCRX RCM is used as an
example to illustrate the implementation of the interface
between the C code and the Modelica language. The same
methodology can be applied to other controller codes fol-
lowing the same ICDMS. It should be noted that the
SCRX RCM is one of the examples used in the develop-
ment of the ICDMS.

This example demonstrates the capability to interface
a DDL of an RCM with a Modelica library and simula-
tion tool. In most cases, controller manufacturers will not
disclose their controller structure and may only provide
parameter values, which would require a clean-room re-
implementation similar to those in (Laera et al. 2022) to
be used in a Modelica tool. However, if they follow the
approach proposed in this paper, RCMs provided by man-
ufacturers could be used to run simulations without the
need of a complete re-implementation in Modelica.

3.1 External Object Integration
In ICDMS, structures store all the information about a
controller including the simulation time step, the num-
ber of input/output, the parameter values and other in-
formation. To access a structure defined in C, we have
to define a class in Modelica as shown in Listing 1. A
constructor and destructor must be specified in
a class to initialize and de-initialize an object from a class.
This is essential for the computer to allocate and free the
memory that stores the data of the structure.

Listing 1. SCRX Class Real-code Modelica Implementation.

1class SCRX9_DLL
2extends ExternalObject;
3function constructor
4output SCRX9_DLL scrx9_dll;
5external "C" scrx9_dll = init_scrx_model()

annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library");

6end constructor;
7function destructor
8input SCRX9_DLL scrx9_dll;
9external "C" deinit_scrx_model(scrx9_dll)

annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library");

10end destructor;

11end SCRX9_DLL;

The external C function init_scrx_model is called
at line 5 of Listing 1 to allocate memory space. In
annotation, the library name and directory have to be
specified for the compiler to know where to look for the
required functions.

Listing 2. init_scrx_model Function Implementation.

1__declspec(dllexport) void* __cdecl
init_scrx_model(void)

2{
3IEEE_Cigre_DLLInterface_Instance* instance =

(IEEE_Cigre_DLLInterface_Instance*)
malloc(sizeof(
IEEE_Cigre_DLLInterface_Instance));

4...
5/∗PARAMETER INITIALIZATION∗/
6...
7double * states = malloc(6 * sizeof (double)

);
8instance->DoubleStates = states;
9Model_Initialize(instance);
10
11return (void *) instance;
12}

The C functions shown in Listing 2 initialize all the
parameters (Line 5) of the instance and allocate memory
space (Line 7) to save key state values, when the construc-
tor is called. Since most controller consists of integra-
tors that require memory, line 7 allocates memory space
to store the states of the integrators. Line 11 returns the
address of the instance to access this initialized instance
later in Modelica functions. From line 4 of Listing 1, the
returned address is returned again by the constructor as an
external object of class SCRX9_DLL.

Having initialized and allocated memory, the model
needs to be accessed and integrated to a power system
model. As an excitation control system, the example
model features two primary inputs: ETERM, represent-
ing the generator’s terminal voltage, and XADIFD, rep-
resenting the field current, both initialized to steady-state
values to avoid initialization problems. The EFD output is
the generated field voltage. The object scrx9_struct
wraps the states and parameters of the SCRX controller
initialized in Line 3 of the Listing 2. The algorithm sec-
tion updates the controller’s state from the input port us-
ing the update function shown in Listing 4. The re-
sulting field voltage is obtained through model_output
function defined in Listing 5. In addition, the function
update_scrx_input shown in Listing 4 reads the val-
ues from the input ports in Modelica and updates them in
the defined C instance.

Listing 3. SCRX Controller Modelica Model.

1model SCRX
2Modelica.Blocks.Interfaces.RealInput ETERM(

start = 1);
3Modelica.Blocks.Interfaces.RealInput XADIFD(

start = 1.325);
4Modelica.Blocks.Interfaces.RealOutput EFD;

75DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

5SCRX9_DLL scrx9_struct = SCRX9_DLL();
6algorithm
7Functions.update(scrx9_struct,time,1,ETERM,0,

XADIFD,ETERM,0,0);
8EFD:=Functions.model_output(scrx9_struct);
9when terminal() then
10Functions.save_ss_state(scrx9_struct);
11end when;
12end SCRX;

Listing 4. update Function Implementation.

1__declspec(dllexport) void __cdecl
update_scrx_input(
IEEE_Cigre_DLLInterface_Instance* instance,
double sim_time_input, double vref,double ec
,

2double vs,double ifd,double vt,double vuel,
double voel) {

3MyModelInputs* inputs = (MyModelInputs*)
instance->ExternalInputs;

4inputs->IFD = ifd; // F i e l d cu r r ent
5inputs->VT = vt; // Terminal vo l tage
6... // Other input s
7sim_time = sim_time_input;
8};

Listing 5. model_output Function Implementation.

1__declspec(dllexport) double __cdecl
model_calculate(
IEEE_Cigre_DLLInterface_Instance* instance)
{

2MyModelOutputs* outputs = (MyModelOutputs*)
instance->ExternalOutputs;

3if (sim_time != pre_sim_time)
4{
5Model_Outputs(instance);
6pre_sim_time = sim_time;
7}
8return outputs->EFD;
9};

At each time step of the simulation, the program will
call model_calculate shown in Listing 5 to calculate
the output with Model_Outputs. The calculation re-
sult will return to Modelica as a floating number or a list
of floating numbers depend on the type of the controller
(multiple input single output or multiple input multiple
output).

3.2 Initialization of the External Object
Initializing the RCM requires us to ensure that the simu-
lation starts from a valid equilibrium point. Consequently,
this requires sending data to the external object and link-
ing its output to the rest of the system model. In the case
of the SCRX RCM, this means passing the measured volt-
age from the bus bar to the excitation system and returning
the field voltage value at the equilibrium condition.

To this end, the C function shown in Listing 6 is called
at the termination of each simulation (see Line 10 of List-
ing 3) to extract the current values of the controller’s in-
puts, outputs, and state variables, storing them in an array
for writing to a binary file. For the SCRX controller, the
inputs include signals such as VRef (reference voltage),

Ec (measured voltage), VOEL (over excitation limit), and
others. The output, EFD, represents the generated field
voltage. Furthermore, the state variables, stored in the
DoubleStates array (see Line 16) within the instance,
are also included. The function opens the file in binary
write mode, populates the array with the extracted values,
and writes the entire array to the file (see Line 18). This
process ensures that all critical data required by the con-
troller are preserved, enabling the analysis and potential
reinitialization of the system at the desired state in future
simulations.

Listing 6. save_ss_state Function Implementation.

1__declspec(dllexport) void __cdecl
save_states(
IEEE_Cigre_DLLInterface_Instance*
instance)

2{
3MyModelOutputs* outputs = (MyModelOutputs

*)instance->ExternalOutputs;
4MyModelInputs* inputs = (MyModelInputs*)

instance->ExternalInputs;
5int listSize = 7+1+6; %input+output+

states
6double list[listSize];
7FILE* file = fopen("list.dat", "wb");
8if (file != NULL)
9{
10list[0] = inputs->VRef;
11list[1] = inputs->Ec;
12.../∗More Input s t a t e s ∗/
13list[6] = inputs->VOEL;
14list[7] = outputs->EFD;
15for (int i = 0; i < 6; i++){
16list[8+i] = instance->

DoubleStates[i];
17}
18fwrite(list, sizeof(double), listSize

, file);
19fclose(file);
20}
21}

3.3 Illustration with the SCRX Excitation
Model

The SCRX excitation model is a simplified control sys-
tem designed to regulate the field voltage of a synchronous
generator, thereby maintaining the machine’s AC voltage
at a specified reference set-point. This section introduces
the excitation controller and illustrates its block diagram
and overall system structure shown in Fig.2.

Synchronous
Machine

Regulator
Exciter

Synchronous
Machine

Power
System

Exciation System

Excitation Control System

Figure 2. Synchronous Machine Control System(IEEE 2007).

The Synchronous Machine Regulator generates control

76 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 3. Excitation Control System (“IEEE Standard Defini-
tions for Excitation Systems for Synchronous Machines” 2022).

signals based on the reference voltage (V_REF) and feed-
back signals from the synchronous machine. It takes these
inputs to produce an appropriate control command for
the exciter. The Exciter modulates the field voltage of
the synchronous machine in response to the control com-
mands from the regulator. It serves as an intermediary that
translates the regulator’s signals into field winding volt-
age adjustments. The Synchronous Machine is the plant
of this system that converts rotational mechanical energy
into electrical power. It responds to the field voltage ad-
justments made by the exciter and influences the voltage
and stability of the broader power system. The Power Sys-
tem represents the electrical grid of which the synchronous
machine is part. The primary goal of the excitation system
is to maintain the desired voltage levels at the generator
terminals.

The SCRX excitation model shown in Figure 3 presents
a detailed block diagram and standardized modeling ap-
proach that is generally adopted to represent how the con-
trol of the field voltage of the synchronous generators is
achieved (“IEEE Standard Definitions for Excitation Sys-
tems for Synchronous Machines” 2022). The integration
of this model into power system simulations allows for
extensive testing and validation, ensuring optimal perfor-
mance under various operational conditions.

Table 1 lists the parameters and the default values re-
quired by the SCRX controller, including time constants
(TAdTB, TB, TE), controller gain (K), and voltage lim-
its (EMin, EMax), as well as the power source selection
switch (CSwitch) and the field resistance ratio (RCdRFD).
These parameters are essential for configuring the con-
troller to operate within the desired specifications and to
ensure compatibility with the ICDMS.

Table 2 lists the input signals such as the reference volt-
age (VRef), measured voltage (Ec), stabilizer signal (Vs),
field current (IFD), terminal voltage (VT), and excitation
limits (VUEL and VOEL), which are used to dynamically
adjust the controller performance during simulation. Table
3 defines the output signal (EFD), representing the output
machine field voltage.

These tables illustrate the format typically used to de-
fine the models of excitation control systems. Note that
the ICDMS adopts this formating to specify the parameter,
input, and output specifications of all RCMs. This would
allow us to use the RCMs in any simulation environment
adhering to the ICDMS.

Table 1. SCRX Parameters.

Parameters Description Default

TAdTB Time Constant 0.1
TB Time Constant 10
K Controller Gain 100
TE Time Constant 0.05
EMin Min Field Voltage -10
EMax Max Field Voltage 10
CSwitch Power Source Select 1
RCdRFD Field resistance ratio 10

Table 2. SCRX Input Signals.

Vref Reference voltage
Ec Measured voltage
Vs Stabilizer signal
IFD Field Current
VT Terminal Votlage
VUEL Under Excitation Limit
VOEL Over Excitation Limit

4 Results
4.1 Testing Power Network Model
The power network model that incorporates the SCRX
model is constructed using the OpenIPSL and is shown in
Fig.4. This power system model provides a platform for
testing both RCM and standard OpenIPSL built-in SCRX9
example controllers.

The power network consists of a synchronous genera-
tor connected to an infinite bus through transmission lines,
buses, and including a load. The generator is controlled
by an SCRX excitation system, which regulates the field
voltage (EFD) to maintain the desired power output. A
short fault was applied between Bus2 and Bus3 starting
at 2 seconds and stopping at 2.15 seconds. This net-
work allows for comprehensive testing and validation of
the SCRX controller integrated as an RCM in DLL form,
following the ICDMS. By simulating a short fault (i.e.,
a large disturbance), the power network response can be

Figure 4. SCRX Controller within a Testing Power Network.

77DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

V_erro
1
1
1

+

imLeadLag

1+sT

1+sT
K

1

2

simpleLagL…

K

1 + Ts
Negative Cu…

negCurLogicswitch1

booleanCo…

false

product

D
iff

V1 +
1 -1

VoltageRef…

k=V_REF

DiffV

+
-1

1

VU
EL

VO
EL

XA
D

IF
D

EFD

EFD0

VOTHSG

ECOMP

Figure 5. SCRX Controller in OpenIPSL.

Table 3. SCRX Output Signal.

EFD Output Signal Voltage

used to evaluate the performance of the RCM in handling
dynamic events.

4.2 Original SCRX Controller Simulation Re-
sult

Figure 6. SCRX9 Simulation Example in OpenIPSL.

OpenIPSL contains a model of the SCRX excitation
control system, which is shown in Figure 5. In this model,
the SCRX is implemented with traditional lead-lag and
phase-lag compensators, similar to what is specified in
(“IEEE Standard Definitions for Excitation Systems for
Synchronous Machines” 2022) and shown in Figure 2.
The default parameters in Table 1 are used in this model to
compare with the model implemented using the external
DLL library. Meanwhile, the grid network is built with
OpenIPSL and the generator is controlled by the SCRX
RCM, as shown in Figure 6.

Simulating the model in Figure 6 yields the results
shown in Figure 7, where two subplots: 1. Generator Volt-
age (p.u.); 2. SCRX Field Voltage (EFD, Volts). Before
the fault occurs, the generator voltage is stable at the ref-
erence value of 1.0 p.u., and the field voltage (EFD) is
maintained in steady state by the SCRX. When the fault

Figure 7. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

occurs at 2.0 seconds, there is a significant drop in the
generator voltage to approximately 0.4 p.u. The SCRX
controller responds by sharply increasing the field voltage
to counteract the voltage dip and stabilize the generator.
The peak field voltage reaches around 10 Volts (EMAX)
shortly after the fault initiation. Once the fault is cleared
at 2.15 seconds, the generator voltage initially overshoots
about 0.2 p.u. before settling back to the reference value.
The SCRX controller adjusts the field voltage accordingly,
first reducing it to correct the overshoot and then gradu-
ally stabilizing it around the required level to maintain the
generator voltage at 1.0 p.u. The performance metrics ob-
served in this simulation can be used as a reference for
further testing and comparison with the RCM.

4.3 External Object SCRX Controller Simula-
tion Result

Next, we compare the implementation of the ICDMS us-
ing the ‘real code’ implementation of the SCRX model.

Figure 8 shows the simulation diagram with an exci-
tation controller of the generator replaced with the ‘real-
code’ implementation. The original SCRX controller has
6 inputs. However, 4 of them remain zero during the sim-
ulation. Thus, for simplicity of the block, only two feed-
back ports are preserved, and the input voltage set point is

78 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 8. SCRX Controller With Real-Code Implementation.

Figure 9. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

always set to 1 p.u.
The comparison results shown in Figure 9 indicate that

the real code SCRX controller, implemented as a DLL
following the ICDMS , performs similarly to the original
Modelica-based model from OpenIPSL. This successful
integration and matching performance validate the RCM
compatibility and robustness within the Modelica simula-
tion environment. Although the comparison of simulation
performance (e.g., time required to simulate) was part of
our experimental analysis, we observed significant vari-
ability in simulation times between different runs. This
variability led us to conclude that the operating system’s
task scheduling had a substantial impact on the simulation
time. As a result, we were unable to provide a consistent
and meaningful comparison of simulation times between
the two approaches.

5 Conclusions and Future Work
By achieving consistent behavior across different imple-
mentations, this study confirms that the IEEE/CIGRE
DLL Modeling Standard (IDMS) can be implemented in
Modelica to support RCMs. These models can be seam-
lessly integrated with Modelica models of power system
components, as shown using the OpenIPSL library, and

tested in simulation scenarios. This offers the possibility
of performing power system simulations without the need
for domain-specific tools, which is valuable for practition-
ers and researchers who need to develop models that com-
ply with the ICDMS. These results support the broader use
of RCMs in power system simulations with Modelica, en-
hancing the flexibility and reliability of power system sim-
ulations and control systems for industrial applications.

The implementation has been tested using the Dymola
software. Future work involves releasing the developed
code to implement the ICDMS, integrating the examples
in this paper into the OpenIPSL library, and conducting
tests with OpenModelica.

Although the prototype implementation approach used
herein requires one to create treat each RCM individually
and, therefore, providing interfacing functions and a Mod-
elica model for each RCM, this process can be automated
by developing generic Modelica functions that extract and
pass information to a generic DLL. This will be explored
in future work.

In addition, future work includes the development of
unit testing to assess the performance of the integrated
DLLs and determine if additional error handling functions
would be required to protect against unexpected DLL nu-
merical errors or other unwanted simulation behavior.

Finally, the authors will explore the potential wrapping
of RCMs with FMI and compare the benefits and draw-
backs with the approach proposed herein.

Acknowledgements
This paper is in part, based upon work supported by the
U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced Man-
ufacturing Office, Award Number DE-EE0009139.

References
Bogodorova, T. et al. (2013). “A modelica power system library

for phasor time-domain simulation”. In: IEEE PES ISGT
Europe 2013, pp. 1–5. DOI: 10 . 1109 / ISGTEurope . 2013 .
6695422.

de Castro, Marcelo et al. (2023). “Version [OpenIPSL 2.0.0]
- [iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21, p. 101277. ISSN: 2352-7110. DOI: https : / / doi . org / 10 .
1016/j.softx.2022.101277. URL: https://www.sciencedirect.
com/science/article/pii/S2352711022001959.

IEEE (2007). “IEEE Standard Definitions for Excitation Sys-
tems for Synchronous Machines”. In: IEEE Std 421.1-2007
(Revision of IEEE Std 421.1-1986), pp. 1–33. DOI: 10.1109/
IEEESTD.2007.385319.

“IEEE Standard Definitions for Excitation Systems for Syn-
chronous Machines” (2022). In: IEEE Std 421.1-2021 (Re-
vision of IEEE Std 421.1-2007), pp. 1–45. DOI: 10 . 1109 /
IEEESTD.2022.9737077.

Junghanns, Andreas et al. (2021-09-27). “The Functional Mock-
up Interface 3.0 - New Features Enabling New Applications”.
In: 14th Modelica Conference 2021. Linköping University

79DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Electronic Press. DOI: 10 . 3384 / ecp2118117. URL: http : / /
dx.doi.org/10.3384/ecp2118117.

Laera, Giuseppe et al. (2022-10). “Guidelines and Use Cases
for Power Systems Dynamic Modeling and Model Verifica-
tion using Modelica and OpenIPSL”. In: Proceedings of the
American Modelica Conference 2022. Linköping University
Electronic Press. DOI: 10.3384/ECP21186146.

Lenord, Oliver et al. (2021-09-27). “eFMI: An open standard
for physical models in embedded software”. In: 14th Model-
ica Conference 2021. Linköping University Electronic Press.
DOI: 10.3384/ecp2118157. URL: http://dx.doi.org/10.3384/
ecp2118157.

Ramasubramanian, Deepak et al. (2024). “Techniques and
Methods for Validation of Inverter-Based Resource Unit
and Plant Simulation Models Across Multiple Simulation
Domains: An Engineering Judgment-Based Approach”. In:
IEEE Power and Energy Magazine 22.2, pp. 55–65. DOI: 10.
1109/MPE.2023.3343679.

Rogersten, Robert, Luigi Vanfretti, and Wei Li (2015). “To-
wards consistent model exchange and simulation of VSC-
HVdc controls for EMT studies”. In: 2015 IEEE Power &
Energy Society General Meeting, pp. 1–5. DOI: 10 . 1109 /
PESGM.2015.7285986.

Schaub, Alexander, Matthias Hellerer, and Tim Bodenmüller
(2012-09). “Simulation of Artificial Intelligence Agents us-
ing Modelica and the DLR Visualization Library”. In: 9th In-
ternational Modelica Conference. Linköping University Elec-
tronic Press. DOI: 10.3384/ecp12076339. URL: http://dx.doi.
org/10.3384/ecp12076339.

Vanfretti, Luigi, Tetiana Bogodorova, and Maxime Baudette
(2014-03-10). “A Modelica Power System Component Li-
brary for Model Validation and Parameter Identification”. In:
10th International Modelica Conference. Linköping Univer-
sity Electronic Press. DOI: 10 . 3384 / ecp140961195. URL:
http://dx.doi.org/10.3384/ecp140961195.

Vanfretti, Luigi, Wei Li, et al. (2013-01). “Unambiguous power
system dynamic modeling and simulation using modelica
tools”. In: pp. 1–5. DOI: 10.1109/PESMG.2013.6672476.

Zhang, Mengjia et al. (2015-10). “Modelica Implementation
and Software-to-Software Validation of Power System Com-
ponent Models Commonly used by Nordic TSOs for Dy-
namic Simulations”. In: 56th Conference on Simulation and
Modelling (SIMS 56). Linköping University Electronic Press.
DOI: 10.3384/ecp15119105. URL: http://dx.doi.org/10.3384/
ecp15119105.

80 10.3384/ECP207 80 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Decentralised Hydrogen Fuelled Gas Engine CHP Units:
A Feasibility Study with Modelica

Florian Andreas Beerlage1 Naqib Salim1 Maurice Kettner1

1Institute of Refrigeration, Air-Conditioning and Environmental Engineering, Karlsruhe University of Applied
Sciences, Germany, florian.beerlage, muhamad_naqib.md_salim, maurice.kettner@h-ka.de

Abstract
The use of hydrogen gas as an alternative fuel to power en-
ergy systems has been a topic of research over the last few
decades and is currently gaining importance, even more
due to current circumstances related to decarbonise energy
supply. One focus of research is the use of hydrogen gas in
combined heat and power gas engines, as this type of en-
ergy conversion is known for its high efficiency. For this
reason, a cross-border project between France and Ger-
many is developing a living laboratory in the Upper Rhine
region to investigate the feasibility of hydrogen gas as an
alternative fuel in a holistic decentralised energy system1.
It consists of several energy components, including a poly-
mer electrolyte membrane electrolyser (PEMEC), gas en-
gine combined heat and power (CHP) unit, photovoltaic
(PV) panels, hydrogen storage, thermal and electrical en-
ergy storage. To enable and demonstrate multiple what-if
scenarios of possible variations of the energy system, a
simulation model was developed using Modelica. Users,
e.g. local authorities, landlords, businessman etc., of this
simulation model could utilize it as a decision support tool
for designing a carbon neutral energy system for their own
use. This paper describes the development of the model
and its application with real measured data from munici-
pal buildings in the city of Offenburg, Germany. The re-
sults indicate that the suitability of the model and the use
of hydrogen CHPs can be beneficial for this specific use
case.
Keywords: Hydrogen, HVAC, CHP, Electrolyser, Gas en-
gine, Cogeneration

1 Introduction
The primary motivation for undertaking these projects is
the ambitious objective to reduce greenhouse gas emis-
sions. Germany set goals to reduce these by at least
65% by 2030 and 88% by 2040, compared to 1990 lev-
els (Umweltbundesamt 2023b). These goals align with the
Paris Agreement and the Kyoto Protocol, forming part of
the climate protection strategies of the EU and the United
Nations. Given these targets, hydrogen is likely to play
a crucial role in the energy transition due to its potential
for carbon-neutral production. On 14th November 2023,

1For more information please visit this website: https://
co2inno.com

Germany’s Vice-Chancellor Robert Habeck announced a
plan for a 9,700 km hydrogen network, set to start in 2024.
This network is part of the European Hydrogen Backbone
initiative, comprised of thirty-three energy infrastructure
operators with a vision for a climate-neutral Europe sup-
ported by a renewable and low-carbon hydrogen market
(Reuters 2023; European Hydrogen Backbone 2024). De-
spite the initiative’s early stage, concerns have been raised
about the inclusion of small and medium-sized locations,
with Offenburg, for example, not being connected to the
hydrogen backbone until 2035. Yet, Offenburg aims for
carbon neutrality, partly through hydrogen as a green en-
ergy carrier. Given that the city already operates gas en-
gine CHP units, an investigation into the feasibility of
transitioning them to hydrogen is required. When compar-
ing hydrogen-based gas engine CHP units with fuel cell
CHP units, both offer the advantage of no green house
gas emissions. While fuel cells have higher electrical effi-
ciency, gas engines often provide better thermal efficiency
due to higher combustion temperatures. Additionally, gas
engines benefit from shorter startup times and the capabil-
ity for modulation (Ellamla et al. 2015; Elmer et al. 2015).
The purchase, installation and operating costs of gas en-
gine CHP units are also generally lower (see (Danish En-
ergy Agency 2024)). To ensure a precise and practical in-
vestigation, measurement data concerning heat and elec-
tricity demand from five communal buildings were pro-
vided, which are located in Offenburg2.

This paper is structured as follows: Section 2 describes
the model considered in this study and the equations im-
plemented in the newly developed modules. Section 3
presents the validation of the model. Section 4 details the
construction, simulation and results of a case study using
the data provided by the city of Offenburg. Lastly, section
5 discusses the results and outlines future work.

2 Schematic Model Description
Wherever possible, open-source Modelica libraries com-
patible with OpenModelica were integrated to ensure the
software remains open-source. The Modelica Buildings
library was utilized for modeling PV systems, batteries,
and the grid (Wetter et al. 2014). For the heat pump, an

2The software is compatible with OpenModelica and will be pub-
lished here: https://github.com/IKKUengine

81DOI 10.3384/ECP20780 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

empirical approach was adopted based on Ruhnau et al.
(2019) for both accuracy and to simplify programming.
This methodology allows for the selection between air-,
ground-, and water-source heat pumps, as well as between
floor heating or radiator heating. Additionally, a simpli-
fied thermal energy storage system was implemented to
facilitate easier control of the CHP units. This section
outlines the modeling methodology for gas engine CHP
units, PEMEC, hydrogen storage, compressors, and con-
trol strategies.

Table 1. Notation

Amem m2 Area membrane
CF Correction factor
E V Operating voltage
E0 V Reversible cell voltage
Eact,k kJ/mol Activation energy
F C/mol e Faraday constant
Icell A Cell current
J0,k A/m2 Current exchange density at k
Jcell A/m2 Current exchange density at

the anode or cathode
Jref

0 A/m2 Reference exchange current
density

LHVi kWh/kg Lower heating value
Mi kg/mol Molar mass of i
P W Electrical power
R J/(mol ·

K)
Universal gas constant

Rohm Ω Resistance
SOC State of Charge of the storage
T K Temperature in Kelvin
Q̇i W Heat flow
V̇i Nm3/h Volume flow
Vact V Activation voltage
Vcell V Cell voltage
Vcon V Transport voltage
Vohm V Ohmic voltage
Voc V Open circuit voltage
Vtn V Thermo-neutral voltage
Y Minimum threshold
Z Modulation of the CHP plant
mi kg Total mass of fuel needed
ṁi kg/s Mass flow rate
ni Count
pi Pa Pressure
vi Stoichiometric coefficients
αk Symmetry factor
σmem S/m Proton conductivity of the

membrane
ν Relative difference
∆G kJ/mol Gibbs free energy
∆H kJ/mol Work enthalpy

2.1 Gas Engine CHP
Two different modelling approaches were carried out. The
first one being a gas engine CHP operating with a sta-
tionary heat and power output under nominal conditions.
Second, an empirical approach was used for a gas engine
CHP model that can follow a heat load up to a given max-
imum and minimum modulation. Both models are de-
signed for heat-driven operation, where sizing and oper-
ation are based on the heat demand of the consumer. This
is because heat-guided CHPs are the most common (Ar-
beitsgruppe Erneuerbare Energien-Statistik 2015, pp. 16–
17).

One of the most important key performance indices for
an gas eninge CHP are the utilisation hours τ . These will
help to evaluate the performance of the CHP later on and
is defined as:

τ =
ECHP,a

Pnom
(1)

where ECHP,a is the energy delivered within one year and
Pnom is the nominal power of the cogeneration unit. This
value can be calculated using either thermal or electrical
energy. In this paper only heat energy and power will be
considered due to the fact that the CHP is heat guided.

2.1.1 Stationary Gas Engine CHP Model
Normally, gas engine CHP units are running under nomi-
nal conditions. Excess heat is stored in a buffer tank. Elec-
tricity is either consumed, stored in the battery (BAT) or
fed into the grid. When the load is lower, the efficiency of
the CHP decreases, so a minimum threshold Y is set as a
turn-on condition, which by default is ≥ 50 %:

Y =
Pth,dem

Pth,nom
, (2)

where Pth,dem is the thermal heat demand and Pth,nom is
the thermal heat production of the CHP at nominal condi-
tions. In order to determine the fuel consumption, nom-
inal efficiencies are required. Thereby ηel is the ratio of
the electrical power Pel and the fuel power Pf :

ηel =
Pel

Pf
, (3)

and ηth – also called heat yield – is the ratio of the use-
ful heat output (thermal power) Pth and the fuel power:

ηth =
Pth

Pf
. (4)

Since the gas engine is able to be fueled with natural
gas, hydrogen, or gas- hydrogen mixture, the fuel power
is calculated by:

Pf = ∑ ṁi ·LHVi, (5)

where ṁi represents the fuel mass flow rate of i repre-
senting CH4 or H2 and LHVi is the lower heating value of

82 10.3384/ECP20780 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

the fuel (compare table 2). The total mass of fuel required
can be determined as follows:

mi =
∫

ṁi dt (6)

Table 2. LHV of different fuels (Bender et al. 2020, p. 805)

value unit

LHVH2 33.3 kWh/kg
LHVCH4 13.9 kWh/kg

2.1.2 Modulation Gas Engine CHP Model

The modulation CHP model is based on an empirical
modelling approach based on Berberich et al. (2015) and
Höfner (2019). The electrical efficiency is exclusively a
function of the nominal electrical power of the CHP plant
Pel,nom and the modulation Z, which is defined as

Z =
Pf

Pf ,nom
, (7)

with the nominal fuel power Pf ,nom and Z theoretically
ranging between 0 and 1. Within the model, the minimum
modulation Zmin must be predefined and should always be
greater than 0.33 and smaller than 1. Pel lies in the range
between 50 kW and 18.3 MW according to Berberich et
al. (2015). The general empiric relation between Z and the
electrical efficiency is defined as:

ηel = ael +bel · (Z −Zmin)

+ cel · [ln(Pel,nom)− ln(Pel,min)],
(8)

where
Pel,min = Pel,nom ·Zmin, (9)

and with the partial derivatives bel and cel . The min-
imum electrical efficiency ael represents the point from
where the tangent plane is spanned. This value can be
computed by rearranging the equation and setting in the
nominal electrical efficiency ηel,nom for ηel as well as set-
ting Z to 1 (Höfner 2019, p. 16). The parameters bel and
cel result out of the research of Berberich et al. (2015)
analysing 49 combustion engine CHP plants and are sum-
marized in table 3 (Berberich et al. 2015). In addition to
the calculation of the electrical efficiency, the calculation
of the thermal efficiency comprises the further variables
supply temperature of the heat circuit Ts and the return
temperature of the heat circuit Tr. The nominal electri-
cal power Pel,nom and the minimum electrical power Pel,min
need to be replaced in comparison to equation by the cor-
responding nominal thermal power Pth,nom and the mini-
mum thermal power Pth,min:

Pth,min =
Pth,nom

Pel,nom
·Pel,min, (10)

which leads to the equation:

ηth = ath +bth · (Z −Zmin)

+ cth · [ln(Pth,nom)− ln(Pth,min)]

+ dth · (Ts −Ts,max)+ eth · (Tr −Tr,min)

(11)

with the maximum supply Ts,max and minimum return tem-
perature Tr,min. The minimum thermal efficiency equates
ath and is reckoned through a rearranging of equation 11.
Since the partial derivatives dth and eth have negative signs
(compare table 3), ath reaches its minimum if Ts is set to
the maximum value and Tr is set to the minimum value.
The corresponding terms will be zero. For the calculation
of the thermal efficiency ηth in equation 11 the modulation
Z is needed and redefined as following:

Z =
Pf ,tar

Pf ,nom
=

Pth,tar

Pth,nom
·

ηth,nom

ηth
= Xth ·

ηth,nom

ηth
, (12)

according to (Berberich et al. 2015, pp. 59–60).
Thereby are Pf ,tar the targeted fuel power and Xth the ther-
mal modulation. The equation 11 and equation 12 result
in the final equation for ηth (Berberich et al. 2015, p. 62):

ηth =−1
2
{
−ath +bth ·Zmin

− cth ·
[
ln(Pth,nom)− ln(Pth,min)

]

−dth · [Tr −Tr,min]− eth · [Ts −Ts,max]
}

+

{(
1
2
(
−ath +bth ·Zmin

− cth ·
[
ln(Pth,nom)− ln(Pth,min)

]

−dth · [Tr −Tr,min]− eth · [Ts −Ts,max]
))2

−bth ·Xth ·ηth,nom

}0.5

,

(13)

Now the produced electricity Pel is determined by:

Z =
Pf ,tar

Pf ,nom
=

Pel

Pel,nom
·

ηel,nom

ηel
. (14)

2.2 Electrolyser
PEMEC are usually selected by the required hydrogen
mass flow rates. Mass flow rates from the reaction can be
calculated using the following equation with i indicating
either water, oxygen or hydrogen:

ṁi = vi ·Mi ·η f ·Ncells ·
Icell

n ·F
, (15)

where vi and Mi are the stoichiometric coefficients and
the molar mass, respectively (Sood et al. 2020). These
are multiplied by the cell current Icell and divided by the
number of moles transferred n and the Faraday constant F

83DOI 10.3384/ECP20780 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Table 3. Parameters for the calculation of ηel and ηth according
to (Berberich et al. 2015, p. 57)

Parameter Value Unit

bel 0.1089
cel 0.0255
bth -0.0746
cth -0.0255
dth -0.0020
eth -0.0017
Zmin 0.33
Zmax 1
Tr,min 45 °C
Ts,max 90 °C

[9.6485 ·104 C/mol]. In this case n= 2 and vi = 1 (Sood et
al. 2020). η f represents the Faraday efficiency and Ncells
the total number of cells within the PEMEC. For calculat-
ing Icell losses must be considered. These losses can be
expressed by calculating the operating voltage (E) of the
PEMEC:

E =Voc +Vact +Vohm +Vcon, (16)

where Voc represents the open circuit voltage, Vact acti-
vation voltage, Vohm ohmic voltage and Vcon the transport
voltage. However, Vcon is negligibly small and do not play
a role in this consideration and are therefore not taken into
account (Sood et al. 2020). Voc is derived from the Nernst
voltage valid for the equilibrium state:

Voc = E0 +
RT
nF

· ln
(

pH2 ·
√pO2

aH2O

)
, (17)

with
E0 =

∆G
nF

= 1.229 V, (18)

where R stands for the universal gas constant
[8.31447 J/(mol K)], pi for the partial pressures of the re-
spective substances involved and T for the temperature in
Kelvin. The partial pressures of hydrogen and oxygen are
typically determined by the system design. The water ac-
tivity aH2O between electrode and membrane corresponds
to 1, because water is fed to the cell (Ruiz Diaz 2021).
The reversible cell voltage E0 is then calculated with the
Gibbs free energy ∆G [237.22kJ/mol] at standard condi-
tions (Abdin et al. 2015; Ruiz Diaz 2021).

For calculating Vohm the resistance Rohm is needed
which mainly includes the resistance due to the membrane
and other resistances of the cell components Rother:

Rohm =
dmem

σmem
+Rother. (19)

The quantity dmem denotes the thickness of the mem-
brane. The reference value of 180 µm was used according
to Ojong (2018). Rother must be determined experimen-
tally (Sood et al. 2020). The proton conductivity σmem of

the membrane is directly related to the membrane hydra-
tion and the operating temperature. For PEM fuel cells,
the proton conductivity of the Nafion®- membrane has
been studied in detail and can be empirically expressed
as a function of membrane hydration and temperature:

σmem = (0.005139λ −0.00326) · e[1268(303−1−T−1)],
(20)

where λ is the hydration number of the membrane,
which varies from 14 to 25 (Ojong 2018; Ruiz Diaz 2021;
Sood et al. 2020). The degree of hydration of the mem-
brane plays a crucial role in the performance of low-
temperature PEM fuel cells. It shows considerable vari-
ation, which makes it a critical parameter for determin-
ing fuel cell efficiency. On the other hand, for PEM wa-
ter electrolysis cells, where water is the main transport
medium, it is usually assumed that the membrane is al-
ways fully hydrated. This is why the hydration number is
estimated to be (λ ≈ 24) (Ojong 2018). Vohm can be deter-
mined with the use of the cell current Icell or with the cell
current density Jcell as following:

Vohm =
Icell

Rohm
=

dmem

σmem
Jcell . (21)

For the calculation of Vact , the exchange current den-
sity needs to be obtained. This is typically done with the
Butler–Volmer equation:

Jcell = J0,k

[
e
(αknF

RT Vact,k

)
− e

(
− (1−αk)nF

RT Vact,k

)]
, (22)

where αk is the symmetry factor, J0,k is the current ex-
change density at k which represents either anode or cath-
ode (Ojong 2018; Ruiz Diaz 2021; Sood et al. 2020). Fur-
thermore Jcell can be determined by using the area content
of the membrane Amem according to Sood et al. (2020):

Jcell =
Icell

Amem
. (23)

Lastly the activation voltage Vact,k at the anode or cath-
ode can be expressed by the following equation:

Vact,k =
RT
F

sinh−1
(

Jcell

2J0,k

)
. (24)

J0,k must be determined for cathode and anode using a
reference exchange current density Jref

0 :

J0,k = Jref
0 e

(
−

Eact,k
RT

)

, (25)

where the activation energy Eact,k for cathode and anode
must be determined experimentally (Ojong 2018; Sood et
al. 2020). However, there are publications that use a sim-
plified model using only the exchange current density J0,k
without a reference value. Table 4 gives an overview of

84 10.3384/ECP20780 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

the research results from which the values of Abdin et al.
(2015) seem to fit best to this PEMEC model. Other tables
can be found in the literature or have to be determined ex-
perimentally (Carmo et al. 2013; Ojong 2018; Sood et al.
2020).

Table 4. Overview of electrokinetic parameters. Abdin et al.
(2015) parameters were applied.

Parameter Abdin
et al.
(2015)

Liso
et al.
(2018)

Marangio
et al.
(2009)

Ni et al.
(2006)

J0,anode 10−3 5 ·10−9 10−2 10−2

J0,cathode 103 10 10 105

αanode 0.8 1.2 2 0.5
αcathode 0.25 0.5 0.5 0.5

The three important efficiencies to consider are the
Faraday efficiency η f , cell efficiency ηcell and the energy
efficiency ηe. The Faraday efficiency represents the cor-
relation between the actual and presumed efficiency of the
produced hydrogen output and is expressed as:

η f =
ṁ ·n ·F
I ·MH2

. (26)

The voltage efficiency ηv is the ratio of the thermo-
neutral voltage Vtn, also called the minimum required volt-
age, and the actual cell voltage Vcell . This requires the
work enthalpy ∆H [237.22 kJ/mol] at standard conditions
and is expressed as:

Vtn =
∆H
nF

= 1.48V, (27)

ηv =
Vtn

Vcell
. (28)

Here the losses due to pressure, mass transport and ac-
tivation are taken into account (Ruiz Diaz 2021). At this
point it is possible to determine the overall efficiency of
the cell:

ηcell = η f ·ηv. (29)

Additionally, the energy efficiency is calculated as the
ratio of the benefit, measured as H2 mass flow expressed
in generated watts, to the input, the energy balance:

ηe =
ṁ ·HHV

Pel − Q̇he + Q̇add
. (30)

where HHV is the higher heating value of hydrogen
(39.4 kWh/kg) (Bender et al. 2020, p. 805). In addition to
the electrical power Pel , the heat recovered from the heat
exchangers Q̇he and the heat supplied to the system Q̇add
may be included in the energy balance.

2.3 Hydrogen storage and compressor
The hydrogen storage dynamics are governed by the equa-
tion:

pi = p0 +CF ·
ṁH2 ·R ·T

Vbottle ·nbottle ·MH2

, (31)

where pi is the pressure inside the storage tank, p0 the ini-
tial pressure, CF the correction factor, ṁH2 the mass flow
rate of hydrogen, Vbottle and nbottle denote the bottle’s vol-
ume and number of bottles, respectively (Albarghot et al.
2019; Gorgun 2006; Onar et al. 2006). The system is de-
signed with a maximum pressure pmax of 80 bar, an initial
pressure p0 of 1 bar, and a bottle volume Vbottle of 50 litres,
mirroring laboratory setups, and nbottle indicates the count
of such bottles. The correction factor (CF), integral to the
equation, adjusts for deviations from ideal gas behaviour,
essentially a temperature and pressure-dependent ratio of
real to ideal gas volumes (Zucker et al. 2019, p. 327). It
is equal to one at pressures below 138 bar at ambient tem-
perature, reflecting the model’s assumption of a constant
room temperature and a slow storage process with a max-
imum pressure of 80 bar, thus simplifying CF to one for
this scenario (McCarty et al. 1981). Using this informa-
tion the state of charge (SOC) of the storage can be calcu-
lated:

SOC =
pi

pmax
. (32)

An isothermal compressor has been implemented, as-
suming an ideal gas as the compression pressures are low.
The power of the ideal compressor Pcom is defined as an
integral over the volume flow rate:

Pcom =−
∫
(p− pu)dV̇ , (33)

where p is the compression pressure and pu is the ambi-
ent pressure. Using the efficiency ηcom, the effective com-
pression power required Preq can be calculated in terms of
electrical power needed:

Pel,req =
Pcom

ηcom
. (34)

2.4 Control Strategies
The control strategies play a crucial role in the perfor-
mance of the energy system. First, a BAT management
control sequence has been implemented based on Lu et al.
(2019), as the Modelica Buildings library does not offer
one. The CHP unit within the heating system plays the
most important role. This is because very small or very
large heat loads can not be met by the CHP unit, either be-
cause it is uneconomical or because the size of the engine
does not allow it. The whole control sequence is shown
in Figure 1, where TES is the thermal energy storage, HP
is the heat pump and U is the user. The control system
always checks if the TES is charged. If not, the minimum
threshold is checked and if this is exceeded, the CHP is
switched on. It is switched off when the heat load is no
longer required or when the TES is fully charged.

85DOI 10.3384/ECP20780 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 1. Control sequence of the implemented heating and electrical system

In general, it is possible to operate industrial PEMECs
in a grid-connected manner. However, in applications for
buildings with smaller PEMECs, low electricity prices are
very important to ensure economic viability. For this rea-
son, only self-produced electricity by e.g. PV is used for
operation. In case a BAT has been implemented as well,
excess energy should first be stored in the BAT before us-
ing it for hydrogen production, in order to reduce losses
due to lower PEMEC efficiencies. This control sequence
is also shown in Figure 1, where ∆Pel is the difference
between the supplied electrical power Pel,sup and the de-
mand Pel,dem. The power requirement of the compressor is
always included when the PEMEC is in operation. If the
supply exceeds the PEMEC capacity and the BAT is fully
charged, the excess energy is sold to the grid.

Additionally the CHP only runs when sufficient hydro-
gen is in the tank and is turned off when the hydrogen tank
is empty. Similarly to the PEMEC as shown in Figure 2.

Figure 2. Control sequences of the hydrogen tank.

2.5 CO2e Calculation
For calculating CO2e emissions the emission factors need
to be known. Sources of CO2e emissions include com-
bustion of methane gas (202 gCO2e/kWh (Umweltbun-
desamt 2023a)) and electricity production, varying by
location and energy mix. In 2022, emission factors
were 366 gCO2e/kWh for Germany and 66 gCO2e/kWh
for France (European Environment Agency 2023). Us-
ing only green electricity, emission factors differ based
on the renewable source, ranging from 4 gCO2e/kWh
for hydro power to 475 gCO2e/kWh for liquid biomass
(Lauf et al. 2022, p. 40). The estimated green emis-
sion factors are approximately 66 gCO2e/kWh for Ger-
many and 31 gCO2e/kWh for France, reflecting their re-
spective green energy mixes (Arbeitsgruppe Erneuerbare
Energien-Statistik 2024; L’Agence ORE et al. 2024).

3 Validation
Laboratory measurements, literature, and manufacturer
data were utilized to validate the PEMEC and gas engine
CHP models. Technical data are provided in the appendix
in Table 8 and Table 9. Initially, the PEMEC’s validation
involved conducting measurements at different hydrogen
outlet pressures (6, 8, and 10 bar) in the university labora-
tory. Table 5 is a summary of the measured values com-
pared with the simulation results at a 6 bar outlet pressure,
with the relative deviation, ν , calculated using the theoret-
ical value as a reference. This procedure was also applied
to data measured at 8 and 10 bar, revealing an average rel-
ative deviation of 10%.

Due to its high complexity the modulation model
needed to be validated. Höfner (2019) has developed
a model specifically for CHP, rather than a general ap-

86 10.3384/ECP20780 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

proach. Their efficiency curves are therefore suitable for
comparison and validation, as also shown in Figure 3.
Furthermore, the university has the manufacturer’s speci-
fications for a hydrogen-fuelled CHP unit, which are com-
pared with the simulation results in Figure 4. A deviation
is present, yet it remains within acceptable limits. Note
that both gas engine CHP units are from the same manu-
facturer (compare Table 8) (2G Energy AG 2024).

100 125 150 175 200 225 250
Pel in kW

35.0

37.5

40.0

42.5

45.0

47.5

50.0

η
in

%

ηth,sim

ηth,Hoefner

ηel,sim

ηel,Hoefner

Figure 3. Comparison of Simulation Efficiencies and Höfner
(2019) Efficiencies of agenitor 406 Gas Engine CHP

60 70 80 90 100 110
Pel in kW

32.5

35.0

37.5

40.0

42.5

45.0

47.5

η
in

%

ηth,sim

ηth,2g

ηel,sim

ηel,2g

Figure 4. Comparison of Simulation Efficiencies and Manufac-
turer Specification of agenitor 404 H2 Gas Engine CHP

Table 5. Comparison of measurements and simulation at 6 bar
outlet pressure and V̇ in Nm3/h

Pel V̇H2,real V̇H2,sim ν

334.5 0.050 0.054 0.08
555.0 0.100 0.090 0.11
817.7 0.150 0.133 0.13
1138.8 0.200 0.185 0.08
1357.8 0.222 0.220 0.01

4 Case Study
For this project, the city of Offenburg provided hourly data
for heat and electricity consumption, used in all simula-

tions. In agreement with project partners, the five build-
ings were treated as one system to achieve climate neutral-
ity, requiring the system to be designed around the CHP,
which needs to be dimensioned first. The CHP aims to
cover the base heat demands while the HP operates as sup-
portive heat generator.Here, the classic mode of operation
of a gas-fuelled CHP unit is copied for hydrogen-fuelled
units .

The dimensioning of a heat-guided CHP plant relies
on the descending sorted annual load duration curve of
the consumer. The economic optimum for the classical
CHP and a peak load boiler, an HP, is sought, aiming for
5,000 to 6,000 full utilization hours or 10% to 30% cover-
age of thermal heat demand (Arbeitsgruppe Erneuerbare
Energien-Statistik 2015; Sokratherm GmbH n.d.; Ver-
braucherzentrale 20.05.2021). 4,000 full utilisation hours
or 15% of nominal thermal capacity at maximum heating
demand was chosen as these buildings have no domestic
hot water demand and low summer heating demand. The
optimal fit would be a CHP with a nominal thermal capac-
ity range Pth,nom of 33 to 38 kW. A commercially available
hydrogen CHP was chosen, the smallest available being
the MAH 33.3 TI 311A from MAMOTEC energy solu-
tions (see technical data in Table 6) (MAMotec GmbH
2024).

Table 6. Technical data of hydrogen and natural gas CHP
(MAMotec GmbH 2024).

MAH 33.3 TI 311A

Fuel Hydrogen
Pel 38 kW
Pth 53.7 kW
ηel 35.5 %
ηth 50.2 %
ηtotal 85.7 %

Given that Offenburg will not be connected to the Eu-
ropean hydrogen grid until at least 2030, a decentralized,
standalone operation is more realistic in the near future.
Hydrogen is produced by PEMEC, stored in tanks, and
then burned by a CHP when needed. Most of the elec-
tricity demand is met by renewable energy sources, with
excess energy stored in a BAT and used to operate the PE-
MEC.

The low density of hydrogen poses storage challenges,
with the hydrogen tank being the limiting factor. Large
tanks can serve as seasonal hydrogen sinks but require sig-
nificant space and investment. Therefore, the hydrogen
tank size will be investigated through a sweep, keeping
the PV size constant. The tank pressure is maintained at
80 bar throughout the study.

Before investigating different tank sizes, the PEMEC
size must be determined. Several test simulations indi-
cated that a 500 kW PEMEC is optimal due to the unifor-
mity of hydrogen production, resulting in high full load
hours for the PEMEC. Diversifying the electricity mix

87DOI 10.3384/ECP20780 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 5. Schematic set up of the decentralised stand-alone operation scenario with a modulation CHP

with PV and Wind Turbines (WT) is prudent. Reducing
the PV area to provide the required amount of renewable
energy is cost-efficient, while reducing the size of a WT is
more challenging form a technical point of view.

Figure 5 shows the schematic structure of this scenario.
The Modelica model was implemented identically to the
schematic setup. The orange blocks indicate the varia-
tion combination, the grey block indicates the parameter
for the sweep, and the white blocks indicate constants
throughout the sweeps. Only the modulation operation
strategy of the CHP is investigated, based on previous re-
sults. These showed that with this described control strat-
egy and under the condition that hydrogen can be supplied
at any time, the modulation CHP needed 900 kg less hy-
drogen per year than a stationary CHP (13,700 kg). The
downside is a worse efficiency and less heat coverage of
only 56% compared to 59%. As the production of hydro-
gen is very expensive, it should only be used sparingly.
For this reason, the modulation was chosen.

5 Results
A total of six scenarios are considered and CO2e emis-
sions are calculated for comparison as this is the target to
be reduced. The results are summarised in Figure 6. The
labels indicate the composition of the scenario according
to Table 7.

Figure 6 shows the emissions in tonnes of CO2e for dif-
ferent storage capacities. Sources of emissions during op-

eration are from natural gas combustion or depending on
the electricity demand emission factor (see section 2.5).
Since only hydrogen is burned, all emissions are due to
the electricity required from the grid. In this scenario, only
green electricity was consumed, using the estimated green
emission factor of 66 gCO2e/kWh for Germany. It demon-
strates that the combination of PV, WT, and BAT leads to
the lowest emissions. Nevertheless, due to drought periods
where no electricity is produced, this strategy is unable to
entirely eliminate emissions. It also states that the WT
generated by this facility is insufficient for its intended
purpose. Consequently, it would be necessary to expand
the plant. However, the geographical location is not opti-
mal for the generation of wind power.

Furthermore an increase in the size of the hydrogen
storage tank has a negligible impact on emissions from a
volume of 500 m3, particularly when WT and PV are com-

Table 7. Dimensioning and composition of the decentralised
energy system with the MAH 33.3 TI 311A CHP.

Description PV PV and WT

CHP 38 kWel , 53.7 kWth 38 kWel , 53.7 kWth
PV 1.8 MWp 0.9 MWp
BAT 500 kWh 500 kWh
WT - 0.5 MWp
HP 197 kW 197 kW

88 10.3384/ECP20780 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

0 200 400 600 800 1000
H2 Storage in m3

6

8

10

12

14

16

18

tC
O

2
e

PV

PV BAT

WT

WT BAT

PV WT

PV WT BAT

Figure 6. CO2e emissions depending on hydrogen storage size (at 80 bar)

0 200 400 600 800 1000
H2 Storage in m3

1000

1500

2000

2500

3000

τ
in

h

PV

PV BAT

WT

WT BAT

PV WT

PV WT BAT

10

20

30

40

S
u
p
p
ly

of
h
ea
t
fr
om

C
H
P
in

%

Figure 7. Full utilisation hours and heat coverage of the CHP.

bined. However, tank sizes larger than 50 m3 are unreal-
istically large. Therefore, the feasibility of such a system
needs to be investigated using other control strategies.

The full utilization hours of the CHP depend on hy-
drogen production. This depends on the amount of elec-
trical energy available, the size of the PEMEC, and the
size of the hydrogen tank. For this reason, the Figure 7
shows that the full utilization hours also increase as the
tank size increases. The only exceptions are the two sce-
narios where wind power is the sole source of electricity.
In these cases, the full load hours decrease as the tank size
increases due to the minimum threshold of the control sys-
tem, which means the tank can only be emptied when a

certain amount is available. Here, the electricity produc-
tion of the WT is clearly too low. Conversely, the highest
full utilization hours can be achieved with pure PV and a
larger hydrogen storage tank.

6 Discussion and Outlook
In this paper, the feasibility of a hydrogen-powered gas
engine CHP unit in a decentralised energy system has been
investigated using a real use case with data from the city
of Offenburg in Germany. The ultimate goal is to reduce
emissions in order to achieve carbon neutrality or come
close to this target.

The results of the simulation models indicate several

89DOI 10.3384/ECP20780 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

promising benefits of hydrogen CHP units. In particu-
lar, this system can significantly reduce carbon emissions
when integrated into decentralised energy systems. How-
ever, hydrogen storage requires a lot of space, which is
questionable in real-world conditions and probably not re-
alistic. Smaller storage sizes already reduce CO2e, but
other operating strategies may be more efficient in terms
of CO2e emissions and need to be compared while con-
sidering costs as well. Therefore, a new control strategy
needs to be investigated, where the CHP covering only
peak heat demand.

A cost calculation has already been added, calculating
investment and operating costs, as well as the levelized
costs of electricity and hydrogen. In the future, the cal-
culation of CO2 emissions will be improved by including
emissions from the manufacture of the equipment used.
In addition, improvements to the empirical approach are
being considered with the CHP units available in the lab-
oratory, as well as improvements to all other models us-
ing measured data from the university laboratory where
possible. For example, by implementing a hydrogen tank
with higher storage pressures. For a continuation of this
project, an optimisation tool could be used to optimally
dimension the system.

Please refer to the link for the latest version of
the model: https://github.com/IKKUengine/
CO2InnO-H2-CHP-Demonstrator.

Acknowledgements
This work was co-funded by Interreg through the
CO2InnO project. The authors would like to thank Lukas
Stahl and René Behmann for their early support in imple-
menting the software. Special thanks to Natalie Miller and
Yamit Ibarrasuarez from the City of Offenburg for their
cooperation.

References
2G Energy AG (2024). agenitor | 75-450 kW | Der globale Ef-

fizienzmaßstab : 2G Energy. URL: https : / / 2 - g . com / de /
produkte/agenitor (visited on 2024-02-15).

Abdin, Z., CJ. Webb, and E.MacA. Gray (2015). “Modelling
and simulation of a proton exchange membrane (PEM) elec-
trolyser cell”. In: International Journal of Hydrogen Energy
40.39, pp. 13243–13257. ISSN: 0360-3199. DOI: 10.1016/j.
ijhydene.2015.07.129.

Albarghot, Mohamed M. et al. (2019). “Sizing and Dynamic
Modeling of a Power System for the MUN Explorer Au-
tonomous Underwater Vehicle Using a Fuel Cell and Batter-
ies”. In: Journal of Energy 2019, pp. 1–17. ISSN: 2356-735X.
DOI: 10.1155/2019/4531497.

Arbeitsgruppe Erneuerbare Energien-Statistik (2015). BHKW-
Fibel: Wissen in kompakter Form. Essen: energieDRUCK
Verlag für sparsamen und umweltfreundlichen Energiever-
brauch. URL: https://asue.de/sites/default/files/asue/themen/
blockheizkraftwerke / 2015 / broschueren / asue _ 050315 _
bhkw_fibel.pdf.

Arbeitsgruppe Erneuerbare Energien-Statistik (2024-03-08).
Erneuerbare Energien in Zahlen. Umweltbundesamt. Pub-
lisher: Umweltbundesamt. URL: www.umweltbundesamt.de/
themen /klima - energie / erneuerbare - energien / erneuerbare -
energien-in-zahlen#uberblick (visited on 2024-04-23).

Bender, Beate and Göhlich Dietmar, eds. (2020). Dubbel
Taschenbuch für den Maschinenbau 1: Grundlagen und
Tabellen. 26th ed. Vol. 1. Berlin: Springer. ISBN: 978-3-662-
59710-1. DOI: 10.1007/978-3-662-59711-8.

Berberich, Magdalena et al. (2015). SOLAR-KWK – Entwick-
lung multifunktionaler Systeme zur solar unterstützten Kraft-
Wärme-Kopplung – solare Fernwärme und saisonale Wärme-
speicher für die Energiewende. Stuttgart.

Carmo, Marcelo et al. (2013). “A comprehensive review on
PEM water electrolysis”. In: International Journal of Hydro-
gen Energy 38.12, pp. 4901–4934. ISSN: 0360-3199. DOI: 10.
1016/j.ijhydene.2013.01.151.

Danish Energy Agency (2024). Technology Catalogues. The
Danish Energy Agency. URL: www.ens.dk/en/our-services/
technology-catalogues (visited on 2024-04-10).

Ellamla, Harikishan R. et al. (2015-10-20). “Current status of
fuel cell based combined heat and power systems for residen-
tial sector”. In: Journal of Power Sources 293, pp. 312–328.
ISSN: 0378-7753. DOI: 10.1016/j.jpowsour.2015.05.050.

Elmer, Theo et al. (2015-02). “Fuel cell technology for domestic
built environment applications: State of-the-art review”. In:
Renewable and Sustainable Energy Reviews 42, pp. 913–931.
ISSN: 13640321. DOI: 10.1016/j.rser.2014.10.080.

European Environment Agency (2023). Greenhouse gas emis-
sion intensity of electricity generation. Greenhouse gas emis-
sion intensity of electricity generation. URL: www . eea .
europa .eu /data - and- maps /daviz /co2- emission- intensity -
14/#tab-googlechartid_chart_41 (visited on 2024-04-23).

European Hydrogen Backbone (2024). The European Hydrogen
Backbone (EHB) initiative | EHB European Hydrogen Back-
bone. URL: www.ehb.eu (visited on 2024-01-04).

Gorgun, H. (2006). “Dynamic modelling of a proton exchange
membrane (PEM) electrolyzer”. In: International Journal of
Hydrogen Energy 31.1, pp. 29–38. ISSN: 03603199. DOI: 10.
1016/j.ijhydene.2005.04.001.

Höfner, Peter (2019). Vergleich strom- und wärmege-
führter Betriebsweise eines BHKW im Nahwärmenetz mit
Langzeitwärmespeicher. Vienna.

L’Agence ORE et al. (2024-03-08). Panorama de l’électricité
renouvelable. URL: www.assets.rte-france.com/prod/public/
2023- 07/2023- 07- 19- panorama- energies- renouvelables-
2022.pdf (visited on 2022-12-31).

Lauf, Thomas, Michael Memmler, and Sven Schnei-
der (2022-12-09). Emissionsbilanz erneuerbarer En-
ergieträger 2021. Umweltbundesamt. 170 pp. URL:
www.umweltbundesamt.de/publikationen/emissionsbilanz-
erneuerbarer-energietraeger-2021 (visited on 2024-04-23).

Liso, Vincenzo et al. (2018). “Modelling and Experimental
Analysis of a Polymer Electrolyte Membrane Water Electrol-
ysis Cell at Different Operating Temperatures”. In: Energies
11.12. ISSN: 1996-1073. DOI: 10.3390/en11123273.

Lu, Xing et al. (2019). “An Open Source Modeling Framework
for Interdependent Energy-Transportation-Communication
Infrastructure in Smart and Connected Communities”. In:
IEEE Access 7. Conference Name: IEEE Access, pp. 55458–
55476. ISSN: 2169-3536. DOI: 10 . 1109 / ACCESS . 2019 .
2913630.

90 10.3384/ECP20780 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

MAMotec GmbH (2024). Gasmotoren Überciht. URL: https:/ /
mamotec-online.de/gasmotoren-uebersicht/ (visited on 2024-
06-03).

Marangio, F., M. Santarelli, and M. Calì (2009). “Theoretical
model and experimental analysis of a high pressure PEM wa-
ter electrolyser for hydrogen production”. In: International
Journal of Hydrogen Energy 34.3, pp. 1143–1158. ISSN:
0360-3199. DOI: 10.1016/j.ijhydene.2008.11.083.

McCarty, RD., J. Hord, and H. M. Roder (1981). Selected
properties of hydrogen (engineering design data). URL:
https : / / nvlpubs . nist . gov / nistpubs / Legacy / MONO /
nbsmonograph168.pdf.

Ni, Meng, Mkh Leung, and Y. C. Leung (2006). “Electrochem-
istry Modeling of Proton Exchange Membrane (PEM) Water
Electrolysis for Hydrogen Production”. In: Semantic Scholar.
URL: https://api.semanticscholar.org/CorpusID:45236790.

Ojong, Tabu Emile (2018). Characterization of the Performance
of PEM Water Electrolysis Cells operating with and with-
out Flow Channels, based on Experimentally Validated Semi-
empirical Coupled-Physics Models. Ed. by Fraunhofer. DOI:
10.24406/publica-fhg-282794.

Onar, O. C., M. Uzunoglu, and M. S. Alam (2006). “Dynamic
modeling, design and simulation of a wind/fuel cell/ultra-
capacitor-based hybrid power generation system”. In: Jour-
nal of Power Sources 161.1, pp. 707–722. ISSN: 03787753.
DOI: 10.1016/j.jpowsour.2006.03.055.

Reuters (2023-11-14). “Wasserstoff: Robert Habeck kündigt fast
10.000 Kilometer langes Netz an”. In: Der Spiegel. ISSN:
2195-1349. URL: www.spiegel.de/wirtschaft/unternehmen/
habeck - kuendigt - fast - 10 - 000 - kilometer - langes -
wasserstoffnetz - an - a - 2821473f - 6e07 - 47dd - a1f0 -
15c9ab45f6a6 (visited on 2023-11-22).

Ruhnau, Oliver, Lion Hirth, and Aaron Praktiknjo (2019-10-01).
“Time series of heat demand and heat pump efficiency for
energy system modeling”. In: Scientific Data 6.1. Publisher:
Nature Publishing Group, p. 189. ISSN: 2052-4463. DOI: 10.
1038/s41597-019-0199-y.

Ruiz Diaz, Daniela Fernanda (2021). Mathematical Modeling of
Polymer Electrolyte Membrane Water Electrolysis Cell with
a Component-level Approach. Ed. by UC Irvine. URL: https:
//escholarship.org/uc/item/8cv660cn.

Sokratherm GmbH (n.d.). Dimensioning of CHP units up to 2
MWel. URL: https://www.sokratherm.de/wp-content/uploads/
auslegungsgrundsaetze-08-1-wm-eng.pdf.

Sood, Sumit et al. (2020). “Generic Dynamical Model of PEM
Electrolyser under Intermittent Sources”. In: Energies 13.24.
ISSN: 1996-1073. DOI: 10.3390/en13246556.

Umweltbundesamt (2023a-10-31). Kohlendioxid-
Emissionsfaktoren für die deutsche Berichterstattung
atmosphärischer Emissionen. URL: https://view.officeapps.
live . com / op / view. aspx ? src = https % 3A % 2F % 2Fwww.
umweltbundesamt . de % 2Fsites % 2Fdefault % 2Ffiles %
2Fmedien % 2F361 % 2Fdokumente % 2Fco2 _ ef _ liste _
2024 _ brennstoffe _ und _ industrie _ final . xlsx & wdOrigin =
BROWSELINK (visited on 2024-05-08).

Umweltbundesamt (2023b-05-02). Treibhausgasmin-
derungsziele Deutschlands. Umweltbundesamt. Publisher:
Umweltbundesamt. URL: www.umweltbundesamt.de/daten/
klima/treibhausgasminderungsziele-deutschlands (visited on
2023-11-08).

Verbraucherzentrale (20.05.2021). Kleine Blockheizkraftwerke:
Die Heizung, die auch Strom liefert. URL: https : / / www .
verbraucherzentrale . de / wissen / energie / heizen - und -

warmwasser/kleine- blockheizkraftwerke- die- heizung- die-
auch-strom-liefert-6007.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: https://doi.org/10.1080/19401493.2013.765506.

Zucker, Robert D. and Oscar Biblarz (2019). Fundamentals of
gas dynamics. 3rd ed. Hoboken, NJ: Wiley. ISBN: 978-1-119-
48170-6.

Appendix

Table 8. Technical data of the gas engine CHP units (2G Energy
AG 2024; Höfner 2019)

agenitor
404c H2

agenitor
404

agenitor
406

Pel 115 kW 100 kW 250 kW
Pth 129 kW 130 kW 264 kW
ηel 0.377 0.384 0.425
ηth 0.423 0.499 0.449
ηtotal 0.80 0.883 0.874

Table 9. Technical data PEMEC

Value Unit

ncell 10 -
nstack 1 -
Pel,max 1900 W
p 0 - 10 bar
Vop 230 V
V̇H2,max 0.3 Nm3/h

91DOI 10.3384/ECP207 91 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

FMI-3.0 export for models with clock in a signal flow diagram
environment

Masoud Najafi Ramine Nikoukhah

Altair Engineering, France {masoud,ramin}@altair.com

Abstract
The FMI-3.0 standard, recently released, introduces sev-
eral promising features, such as clocks and arrays. FMI-
3.0 supports various clock types, including time-based
clocks, triggered input and triggered output clocks. Altair
Twin Activate (TA), as a modeling and simulation envi-
ronment, inherently supports hybrid systems combining
continuous-time and discrete-time models. The discrete-
time part is typically activated by events and clocks. The
clock types provided by FMI-3.0 however may differ from
those in TA. In the paper (Najafi and Nikoukhah 2022),
we explained how different clocks defined in FMI-3.0
can be successfully imported into TA. Building upon this,
our current paper aims to demonstrate how various clocks
used in TA can be used in the export of a subsystem in
both FMI-3.0 and FMI-2.0 formats. Specifically, we will
explain the way input periodic clocks and input triggered
clocks are exported.
Keywords: FMI, Synchronous clock, Signal based tool,
Modelica tool

1 Introduction
The Functional Mock-up Interface (FMI) (Modelica As-
sociation 2022) has become the de facto tool-independent
standard for the exchange of dynamic models and co-
simulation. The FMI-3.0 version (Specification 2022)
introduces numerous new features that enable more ad-
vanced modeling and support for co-simulation algo-
rithms. Clocks facilitate the synchronization of events be-
tween Functional Mock-up Units (FMUs) and the simu-
lator (importer). Additionally, several new data types and
multi-dimensional arrays are now supported (Junghanns
et al. 2021).

Altair Twin Activate is a modeling and simulation tool
developed by Altair Engineering, built on the open-source
academic simulation software Scicos (INRIA n.d.). The
TA environment allows users to create models of dynam-
ical systems using signal-based block diagrams. Basic
blocks, such as FMUs, can be interconnected to construct
complex models. This approach is very similar to the way
diagrams are created in the SSP (System Structure and
Parametrization) standard 1.

TA can also be used to create Modelica diagrams
(Nikoukhah and Furic 2009). The process begins with

1https://ssp-standard.org/

aggregating Modelica components to create a Modelica
program, which is then processed by the Modelica com-
piler2. In TA, the Modelica compiler generates an FMU
block that replaces the Modelica components in the origi-
nal model. The resulting FMU for Modelica supports both
ModelExchange or CoSimulation.

Due to this FMI-based integration of Modelica in TA,
the tool offers FMU import support via a TA FMU block.
More generally, this block can be used to import FMUs
from other vendors (Nikoukhah, Najafi, and Nassif 2017).

With FMI-3.0 and the introduction of clocks, activa-
tion, and synchronization, FMU import and export in TA
presents new challenges. Although activation signals and
synchronization have been integral parts of the TA seman-
tics from the beginning, slight semantic differences be-
tween FMI-3.0 and TA formalism prevent FMUs from be-
ing imported or exported like other native blocks in TA.
This issue also existed, to a lesser extent, with FMI-2.0, as
discussed in (Nikoukhah, Najafi, and Nassif 2017). The
challenges and solutions for FMI-3.0 import have been
presented in (Najafi and Nikoukhah 2022).

This paper addresses the difficulties and proposed so-
lutions for providing extended support for FMI-3.0 export
in TA. It begins with an overview of how TA handles ac-
tivations (clocks) and discusses the differences with FMI-
3.0’s clock handling. Then, it presents solutions for ex-
porting models as FMI-3.0 in TA, focusing on periodic
and triggered input clock types.

1.1 Activation signals in TA
Activation signals in TA control the execution of block
functions and can be explicitly manipulated, providing
powerful modeling capabilities within the simulation envi-
ronment. These signals are associated with red links con-
nected to ports typically located at the top and bottom of
blocks, as illustrated in Figure 1.

Activation signals are used to specify the activation
times of the blocks to which they are connected. The most
common usage involves the activation of blocks at a fixed
frequency using signals generated by a SampleClock
block. This block produces a series of isolated activa-
tions, known as events, which are regularly spaced in time.
These events correspond to the clock ticks in FMI-3.0.

In TA, events can be explicitly manipulated: they can be
conditionally subsampled, and unions and intersections of

2The Maplesim Modelica compiler is used in TA

92 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 1. Event Delay model

events can be constructed. Blocks can generate delayed
events, enabling operations such as event delaying. In
the model shown in Figure 1, the output activation port
of an event delay block is fed back to its input activation
port. This setup creates a sequence of events where the
time spacing between successive events corresponds to the
value of the delay.

A first event generated by the Event time(s)
block initiates the cycle, producing its first (and only)
event at 1.0 seconds. The union of this activation
signal and the activation signal fed back from the
EventDelay block is generated by the red "Event
Union" block, which then activates the EventDelay
block at 1.0 seconds. At this point, the EventDelay
block creates an event delayed by 2.0 seconds, so the next
event will occur at 3.0 seconds. The simulation result of
the model in Figure 1 is shown in Figure 2. Since the
EventDelay block’s activation output triggers itself, it
continues to create events every two seconds for the re-
mainder of the simulation. This combination of blocks
mimics the behavior of an EventClock block, and indeed,
the EventClock and SampleClock blocks are con-
structed with the same principle in mind.

Figure 2. Event Scope results

Output events are defined by their time instants. Based
on how the time instant of an event is determined, there
are two different types of events in TA: predictable and
unpredictable events.

Predictable or programmed events: When activated
at any event time instant, a block can schedule another
event on its activation output ports either at the current
time instant or at any future time. The block specifies the
event firing delay, i.e., the duration after the block execu-
tion when the event should occur, for each of its output
activation ports.

The block can also schedule initial output events. For
instance, the block Event time(s) only schedules initial
events and remains inactive during simulation.

The programmed events can be considered as similar to
time-based clocks in FMI-3.0, in particular, changing
and countdown time-based clock types.

Unpredictable or zero-crossing events: Activation
signals may also be produced by blocks activated in
continuous-time. If something happens inside the block,
the block can program an event immediately or in the fu-
ture. The EdgeTrigger block is a good example that
produces an event based on a zero-crossing test. It gen-
erates an event when a condition occurs, such as when a
variable reaches a threshold value. Figure 3 represents the
simple model of a thermostat and its results (Figure 4).

Figure 3. Simple Thermostat model

Two yellow EdgeTrigger blocks are used to acti-
vate the heater or the cooler when the temperature falls
below -10 or rises above 10. These events trigger the
SelectInput block, which, depending on the activa-
tion port through which it is activated, copies its first or
second input (values -6 or +6) to its output. This out-
put represents the heat flow added to a random signal
and fed to an integrator, the output of which represents
the temperature. The simulation results illustrate how
the thermostat functionality is implemented by the zero-
crossing blocks. This kinds of events are similar to the
triggered output clock type in FMI-3.0.

The activation signals encountered so far are series

93DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 4. Results from Simple Thermostat model

of events, which are isolated activation signals in time,
i.e., discrete events. However, activation signals can be
more general and include time intervals. The simplest
activation signal of this type is the always active acti-
vation signal. Many basic blocks in TA palettes, such
as the SineWaveGenerator or the Integral block,
are "always active" by default, i.e., they are (implicitly)
activated by the always active block; they are active in
continuous-time. There is no similar clock or activation
type in FMI-3.0.

Another activation signal is the "initial activation".
Some blocks are only activated once at the initialization
phase, just before the start of the simulation. For example,
the Constant block is declared initially active.

In the model in Figure 1, a sequence of events firing
at regular intervals was created using the EventDelay
block. This was achieved by programming an event on
a regular basis. The resulting activation signal resem-
bles the signal produced by the SampleClock block,
but it is not of the same type. The one produced by
the SampleClock block is of type periodic. The com-
piler recognizes this signal as periodic, which contains
events firing periodically and synchronously with all other
SampleClock blocks in the model. When a block is ac-
tivated by a periodic signal, it has access to the period and
offset information at compile time. This allows the block
to adapt its behavior by computing specific block simula-
tion parameters. For instance, the SampledData block
computes the discrete-time linear system matrices corre-
sponding to the discretization of a continuous-time linear
system for the operating frequency. This frequency, which
is the inverse of the sampling (activation) period, is avail-
able at compile time. SampledData block cannot be ac-
tivated with non-periodic clock. The regular time-spaced
events is similar to periodic time-based clocks in FMI-3.0,
particularly fixed and constant clock types.

1.2 Synchronous vs. asynchronous activations
Activation signals are characterized by time periods or
time instances. An event, for example, defines an iso-
lated point in time specifying the time instant when the
blocks receiving the event should be activated. However,
the time of the event does not fully characterize the event,
especially its relationship with other events. Two events
may have identical times (simultaneous) but not be syn-
chronous.

When two blocks are activated by the same event, the
compiler must compute the order in which they should be
activated depending on their connections and direct de-
pendencies between inputs and outputs (port feedthrough
properties) of blocks. If a block requires the value on one
of its inputs to compute its output and this input is con-
nected to the output of another block, then the latter block
should be executed first. Generally, for any activation sig-
nal, the compiler computes an execution order of blocks.
This order includes the blocks receiving the activation sig-
nal directly, or indirectly through inheritance.

Each "distinct" activation source has its own list of
blocks and is treated independently of other activation
sources. Even if two events produced by two "distinct"
activation sources happen to have identical times, they are
treated as independent events. At runtime, the two events
are treated sequentially. Two "distinct" activation sources
produce asynchronous activation signals. In general, any
output activation port on a TA is considered a distinct ac-
tivation source. However, there are two exceptions: basic
blocks with direct event input-output dependencies are the
conditional blocks IfThenElse and SwitchCase.

Consider, for example, the IfThenElse block, which
represents conditional constructs similar to the if-else
statement in classical programming languages such as C.
The IfThenElse block has one activation input port
and two activation output ports. Depending on the value
of the signal on its regular input port, the block redirects
its input activations to one of its output activation ports.
In this case, the output activation signal is synchronous
with the input activation signal. So, the compiler does
not treat the output activation ports of the IfThenElse
block as "distinct" activation sources. In other words, the
origin of the output clocks is the same, making them syn-
chronous. The SwitchCase block is the counterpart of
the switch-case statements in classical languages. Other
blocks, such as Subsample, built on top of these two
basic blocks, also provide synchronous outputs. Note that
all SampleClock blocks, even having periods and offset
values, produce synchronous activations or events.

2 Code Generation and FMU export
Code generation is utilized to create C code from a TA
superblock, capturing its dynamic behavior. The gener-
ated code serves various purposes, including creating new
blocks to replace the original superblock, ensuring intel-
lectual property protection, or exporting to other simula-

94 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

tion environments.
Two distinct code generation technologies are available

in TA:

1. Standard Code Generator: This technology
closely mirrors the behavior of the TA simulator, re-
lying on the same libraries used by the simulator, par-
ticularly the libraries containing the simulation func-
tions of the blocks. The generated code essentially
replicates the actions performed by the simulator,
resulting in performance comparable to simulation.
However, the generated code is not intended for in-
spection or direct use and has dependencies on TA
libraries. Therefore, when exported, the FMUs pro-
duced using this code generation technology contain
several shared libraries.

2. Inline Code Generator: Unlike the standard code
generator, the inline code generator does not rely
on TA libraries for block simulation functions. In-
stead, it generates and inlines a specific code based
on the types and sizes of the block input and out-
put signals. The code is customized and highly op-
timized using for example by constant propagation
and threshold based loop rolling. As a result, the
generated code is more efficient and simpler. Ad-
ditionally, all memory used by the code can be stat-
ically allocated. This code generator supports both
discrete-time and continuous-time dynamics and, to
some extent, multiple synchronous clocks. Various
targets can be selected for code generation, such as a
native TA block, a Python block, or an FMU block.

Both code generators support nested FMUs, enabling
the export of Modelica models. In the standard code gen-
erator, the Modelica model is converted into an FMI-2.0
for ModelExchange, while in the inline code generator, it
is converted to an FMI-2.0 for CoSimulation.

2.1 Events and clocks in FMU export
In general, the TA model may contain continuous-time
and discrete-time states. Continuous-time states are, in
general, always active and are invoked by the numerical
solver. These states may be reinitialized or experience dis-
continuities at event times. Events can be triggered by ei-
ther a clock or an external event. Discrete-time states are
usually activated by clocks or external activations.

During the code generation process, the periods and off-
sets of all SampleClocks blocks are used to compute
a base frequency which is used as parameter of a unique
periodic clock. This clock drives the periodic part of the
model directly or through subsampling. Thus, the final
generated code is activated by one clock and possibly sev-
eral external activation sources. The clock and external
activations execute their own tasks at activation. These
tasks may or may not have intersections or common vari-
ables.

There are several clock and event types in FMI-2.0 and
FMI-3.0. Most of these event and clock types are success-
fuly imported in Activate (Najafi and Nikoukhah 2022).
In this section, we examine the inverse problem: the way
events and clocks defined in TA can be exported to FMUs.

2.2 FMI export for FMI-2.0
Synchronous clocks or external clocks are not supported
in FMI-2.0. FMI-2.0 for CoSimulation does not support
events. In FMI-2.0 for ModeExchange, events can be ei-
ther time-event, input-event, or state-event. Among these
event kinds, time-event looks appropriate to be used for
export of clocks used in TA. In FMI-2.0, at each time
event, the time instant of the next time-event is retrieved
and the FMU is called at that time instant. This is the ex-
act counterpart of the way events are generated in TA. The
events can be either periodic or aperiodic; see, for exam-
ple, the model in Figure 1.

During the FMU export, the initial event time is used at
the very first time the FMU enters the Event-Mode. For
the later event times, the next event time is programmed
by the FMU and delivered to the FMU importer. The code
snippet for handling the event inside the FMU is as fol-
lows:

if (fabs(comp->eventInfo.nextEventTime - currentTime)<Tolerance){
updateOutput(x,xd,ins1,outs1,outs2);
updateState(x,xd,ins1,outs1,outs2);
comp->eventInfo.nextEventTimeDefined = fmi2True;
comp->clock_tick++;
comp->eventInfo.nextEventTime = comp->start_time+

(comp->clock_tick) *ClockPeriod;
}

The Tolerance and ClockPeriod values are de-
fined by the code generator. The problem with events in
FMI-2.0 lies in event classification inside the FMU. When
an event occurs, the FMU must distinguish whether it oc-
curs due to a time-event, state-event, input-event, or if no
particular event has occurred and the importer has simply
pushed the FMU into event mode. To determine if the
event is indeed a time event, the expected time-event time
instant is compared with the current time of the FMU set
by the API fmi2SetTime. While a good importer usu-
ally sets the current time precisely at the expected time
event, the FMU should consider the general case and take
into account numerical round-off errors by using an error
tolerance in the comparison. This error tolerance may be
problematic in many cases, which is why clocks were in-
troduced in FMI-3.0 to eliminate uncertainties.

2.3 FMI export for FMI-3.0
FMI-3.0 provides a number of new features for both
Model-Exchange and Co-Simulation (Gomes et al. 2021).
Some of the new features of FMI-3.0 are intrinsically sup-
ported in TA, such as arrays. However, despite blocks in
TA having activation (clock) inputs and outputs, the se-
mantic differences between FMI-3.0 clocks and TA ac-
tivations do not allow for a simple mapping of FMI-3.0
clocks into TA activation signals.

95DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

In FMI-3.0, besides the legacy time event already avail-
able in FMI-2.0, several clock types have been introduced.
There is no exact one-to-one correspondence between TA
clocks and FMI-3.0 clocks. The way FMI-3.0 clocks
are imported in TA has been explained in (Najafi and
Nikoukhah 2022).

2.3.1 Periodic Clock: Example of Clocked Counter
The simplest and most basic clock type in TA is the
SampleClock, which is defined by offset and period
values. Consider the sample clock shown in Figure 5,
which activates a counter. The counter increaments its
output on each clock tick and once reaches five resets to
zero.

Figure 5. Clocked-counter

The sample clock is mapped to the time-based periodic
clock with intervalVariability="constant".
The intervalDecimal is set to the basic period of
the final clock, and the shiftDecimal or the clock
offset is always set to zero in TA, as its value has been
taken into account in computing the basic period of
the clock. The clocks in TA cannot be exported with
intervalDecimal fixed or tunable. The clocks at-
tribute of the variable Output indicates the dependency
on the clock, i.e., "2".

<Clock name="SampleClock" causality="input"
valueReference="2" variability="discrete"
intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0"
description="Constant periodic input clock: 1, nevprt=1" >
</Clock>

<Int32 name="Output" valueReference="3" variability="discrete"
clocks="2" causality="output" description="" >
</Int32>

This code snippet is generated for the above model. At
the clock tick, at first, the model is evaluated, then the
internal states are updated.

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Clock values[]) {

...
for (i=0;i<nValueReferences;i++)

if (valueReferences[i]==2) {

...
comp->Clk[k]=values[i];

}
}
...
}

fmi3Status fmi3UpdateDiscreteStates(...) {
...
if (comp->Clk[0]) {
updateOutput_clock_1 (outs1);
updateState_clock_1 (outs1);
....
}
...
}

The exact timing of the clock ticks is computed by the
importer. At each clock time instant, the importer sets the
corresponding clock and informs the FMU that the clock
is enabled. So there’s no place for uncertainty or error
tolerance.

2.4 Triggered Input Clock: Incrementing the
Counter

The next basic event source type in TA is the external ac-
tivation. If a superblock is activated by an external activa-
tion, the compiler has no information about the periodicity
of the events. The model part is executed when the event
happens. This event type is the exact counterpart of the
triggered event in FMI-3.0. Consider the model in Fig-
ure 6 where a counter is activated by an external unknown
source.

Figure 6. Triggered-counter

<Clock name="TriggeredClock1" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"
description="External triggered input clock: 1, nevprt=1" >
</Clock>
<UInt8 name="Output" valueReference="3"
variability="discrete" clocks="2"
causality="output" >
</UInt8>

2.5 Multiple Variable Access: Clocked
Counter and Reset

In TA, several events and clocks can be used to access
and update a single variable. For instance, the output
of the block Selector in Figure 3, is updated by two
input events. Another example is the Counter with
reset block. Consider the model in Figure 7 where the

96 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

counter is incremented at activation time instants of the
SampleClock.

Figure 7. Counter-with-reset

Counter is reset to zero whenever the event of the exter-
nal activation is fired.

reset act ouput
0 0 do nothing
0 1 increament by one
1 0 resent to zero
1 1 resent to zero

In this model, the counter output variable is accessed
and updated by two different events.

<Clock name="TriggeredClock1" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"
description="External triggered input clock: 1, nevprt=1" >
</Clock>
<Clock name="SampleClock" valueReference="3"
variability="discrete" intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0" causality="input"
description="Constant periodic input clock: 2, nevprt=2" >
</Clock>
<Float64 name="Output" valueReference="4" variability="discrete"
clocks="2 3" causality="output" description="" >
</Float64>

Note that the clocks attribute of the variable Output
lists the dependency of the two clocks, i.e., "2,3".

2.6 Synchronism Issue
Unlike in FMU, in TA, events can happen at the same time
(simultaneous) but be asynchronous. Due to this differ-
ence, several situations should be considered to be han-
dled. Consider, for example, a superblock having two
external input events. In this case, the following table is
considered to handle three possible different tasks in these
situations.

Event-1 Event-2 Task
0 0 do nothing
0 1 task-1
1 0 task-2
1 1 task-3

For instance, if only Event-1 is activated, task-1 should
be run. If Event-1 and Event-2 are activated syn-
chronously, task-3 is run. This distinction between tasks

is important in some situations where there is a common
variable activated by two events. If no common variables
are activated by both events, the execution of task-3 would
have the same result as the execution of task-1 and task-2
in any order. Consider, for example, the counter in Fig-
ure 8.

Figure 8. Counter with two-external-activations

If at a time instant both the reset and increment events
are activated synchronously, in TA the output of the
counter will be zero. If event ports are activated simul-
taneously, the order of execution is important. If the in-
crement event input is activated after the reset event input
is activated, the result will be different.

In the FMI-3.0 standard, when the FMU en-
ters the event-mode, the importer should inform the
FMU about the activated clocks by calling the API
fmi3SetClock. With this API, the importer can
enable the clocks one by one and then call the API
fmi3UpdateDiscreteStates to execute the tasks
corresponding to each clock of the FMU. The other possi-
bility is to activate all clocks at once and then call the API
fmi3UpdateDiscreteStates.

Actually, since there is no way in FMI-3.0 to indicate
if input clocks are synchronous, i.e., should tick together,
the result of the simulation may be different in different
importers. The only way to avoid this situation is to avoid
using variables activated by different clocks. In this case,
the order of execution does not matter. But this becomes a
limitation for exporting a tool independent FMU.

2.7 Periodic Input Clock Connections
In TA, every clock source, dependent or independent, de-
fines the information flow toward other input clock ports.
No clock source can be connected to other clock sources.
If the union of two clock sources is needed, a Union
block can be used. For example, in Figure 9, the counter
is incremented whenever each of the clock sources ticks.

In FMI-3.0, the causality attribute of periodic
clocks is "input", which should be interpreted as if the
clock source is coming from the importer. This makes
an open gate for arbitrary interpretation from FMU im-
porters. For example, what should happen if two periodic
clocks from two FMUs are connected together and con-
nected to the triggered input clock of another FMU. In
TA, this connection raises an error, but other tools may in-
terpret it as the union (OR operation) or the intersection

97DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 9. Example of clock unions (EventUnion)

(AND operation) of periodic clock ticks. This lack of def-
inition would result in the FMU export of a model with
such a connection being tool-dependent.

2.8 FMU for Cosimulation: Solver inlining
The way the clock is handled in FMI-3.0 is independent
of the FMU implementation, i.e., the FMU can be either
Model-Exchange or Co-Simulation3. The FMI-3.0 FMUs
work almost identically for both FMU implementations
in handling clocks. The difference between the two im-
plementations is in handling of the continuous-time dy-
namics. The introduction of clocks in FMI-3.0 has offered
TA the opportunity of exporting the internal dynamics in
a new way, i.e., solver inlining.

In the FMU export for Co-Simulation, with the inline
code generation, a variable-step or fixed-step solver is
chosen to be used to simulate the continuous-time part of
the model. Besides the classical solver linking, e.g., link-
ing an Euler or RK4 solver, TA supports solver inlining
which is a transformation method for embedding a numer-
ical solver within the generated code. This transformation
can be applied to a general model or part of it, to turn
it into a purely discrete-time synchronous model with the
resulting discrete-time (super) block behavior matching as
closely as possible that of the original super block.

The model transformation for solver inlining, done dur-
ing the model compilation process, is achieved by em-
bedding a fixed-step numerical solver for discretizing the
dynamics of the continuous-time components of the sys-
tem. The exported model can be considered both as a pure
discrete-time block and a Co-simulation component. The
main usage of the solver inlining is for models exported
by the inline code generator for embedded applications.

The basic idea behind the embedded solver is the con-
version of the differential equations associated with the
dynamics of blocks with internal continuous-time states
to time difference equations. Difference equations are,

3The Scheduled Execution FMU type has not been considered in this
paper

in turn, can be implemented by discrete-time blocks run-
ning on a single base clock. This, however, does not
work for variable step-solvers. The construction of the
discrete-time version of the model in that case requires
complex transformations. To see this difference, consider
the following simple system, which can be implemented
in TA by two blocks: an integrator block and a memory-
less block realizing the function f .

y′ = f (y)

The Euler solver uses a first order discrete approximation
of this system:

yk+1 = yk +h. f (yk)

where
yk = y(tk)

and
tk+1 = tk +h

. The time instances when the state is updated correspond
to a fixed frequency sampling of time t, with period h. The
differential equation in this case is trivially translated into
a difference equation. The system can be represented as a
block diagram by separating the system into an integrator
block and a memoryless block by noting that it can be
rewritten as follows

y′ = u

u = f (y)

The corresponding model can be constructed as fol-
lows.

In this case, the Euler discretization yields

yk+1 = yk +h.uk

uk = f (yk)

So, the discrete-time version of the model is obtained by
simply replacing the integrator block by a discrete block
(Discrete Integral super block). The content of the Dis-
crete Integral superblock is also shown.

The new model which is activated by a SampleClock
block with period h is a purely discrete-time model.
The original model is simply transformed by replacing
the integrator with the Discrete Integral block and a
SampleClock block. In a more general model with
multiple integrator blocks, each integrator block can be
replaced by its discrete-time equivalent, activated the
SampleClock block. The stateless blocks of the model,

98 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

represented here by the f block, are not modified. For
higher order approximations of the derivative however, the
computations at each time step cannot be realized by sin-
gle activations of discrete blocks. To see this, consider a
fourth order Runge-Kutta (RK4) solver algorithm for the
same system:

yk+1 = yk +
1
6
(k1 +2k2 +2k3 + k4)

k1 = h. f (yk)

k2 = h. f (yk + k1/2)

k3 = h. f (yk + k2/2)

k4 = h. f (yk + k3)

The computation of the of next discrete state y requires
four evaluations of the function f with different arguments.
To embed this solver in the continuous-time model to ob-
tain a discrete-time model, the RK4 solver equations can
be implemented as a more complex Discrete Integral su-
perblock as shown in Figure 10.

Figure 10. Discreteization of an integrator block using RK4
solver

Once the transformation is done, a C code is generated
for the purely discrete model activated by the sample clock
with period h.

The generated C code, which is activated by a
periodic clock with a known constant period, can
naturally be exported to an FMU. For FMI-2.0, a
periodic regular time-event with the time interval
equal to h will be used in the FMU. For FMI-
3.0, the export is more natural; an input clock
with the intervalVariability="constant" and
intervalDecimal equal to h will be used.

The embedded solver transformation converts the
continuous-time dynamics part of the model to discrete-
time. In other words, the FMU has no continuous-time
dynamics and the whole dynamics has been discretized
and activated by a periodic clock. As a result, dis-
regarding the discretization error, the FMU can be ex-
ported in the same way for both ModelExchange and Co-
Simulation in FMI-3.0.

3 Conclusion
The introduction of clocks in FMI-3.0 has provided
the possibility of exporting more general models with
continuous-time and discrete-time dynamics, particularly
from TA. This paper has explored the integration of clocks
within the context of Altair Twin Activate for FMU ex-
ports. Different clock and activation types are considered
and the way they are exported to FMI-3.0 has been pre-
sented. The introduction of periodic clocks in FMI-3.0
has allowed the inlining of the numerical solver within
the FMU, making it possible to achieve identical discrete
dynamics in FMU export for both ModelExchange and
CoSimulation.

References
Gomes, Claudio et al. (2021). “The FMI 3.0 Standard Interface

for Clocked and Scheduled Simulations”. In: Proceedings of
the 14th International Modelica Conference.

INRIA (n.d.). URL: http://www.scicos.org.
Junghanns, Andreas et al. (2021). “The FMI 3.0 Standard Inter-

face for Clocked and Scheduled Simulations.” In: Proceed-
ings of the 14th International Modelica Conference.

Modelica Association, FMI Website (2022). URL: https://fmi-
standard.org.

Najafi, Masoud and Ramine Nikoukhah (2022). “Importing
FMU-3.0: challenges in proper handling of clocks”. In: Pro-
ceedings of Asian Modelica Conference 2022, Tokyo, Japan.

Nikoukhah, Ramine and Sebastien Furic (2009). “Towards a full
integration of Modelica models in the Scicos environment”.
In: Proceedings of the 7th International Modelica Confer-
ence.

Nikoukhah, Ramine, Masoud Najafi, and Fady Nassif (2017).
“A Simulation Environment for Efficiently Mixing Signal
Blocks and Modelica Components”. In: Proceedings of the
12th International Modelica Conference.

Specification, FMI-3.0 (2022). URL: https://fmi- standard.org/
docs/3.0.

99DOI 10.3384/ECP207 99 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Event support for simulation and sensitivity analysis in CasADi for
use with Modelica and FMI

Joel Andersson1 James Goppert2

1Freelance software developer and consultant, USA, joel@jaeandersson.com
2School of Aeronautics and Astronautics, Purdue University, USA, jgoppert@purdue.edu

Abstract
CasADi is an open-source framework that can be used
to efficiently solve optimization problems involving user-
defined ODE/DAE models. Supported solution methods
include so-called shooting methods, where solvers for
initial-value problems in ODEs or DAEs are referenced
inside in nonlinear programming (NLP) formulations. In
order to solve such NLP formulations with gradient-based
algorithms, CasADi implements a fully automatic sensi-
tivity analysis. This analysis includes forward sensitivity
analysis, adjoint sensitivity analysis as well as the cal-
culation of higher-order sensitivities for the ODE/DAE
models. Because of the variational (differentiate-then-
integrate) approach used, the numerical solution can be
performed with variable-step size, variable-order integra-
tors such as those from the SUNDIALS suite.

In this work, we present a generalization of the sensi-
tivity analysis support in CasADi to systems with events,
as are common in real-world cyber-physical models. In
particular, the event extension enables us to formulate
and solve optimization problems with such event systems,
without a priori knowledge of the number and ordering of
events. Ultimately, we expect the proposed approach to
be compatible with general cyber-physical models formu-
lated in Modelica or available as model-exchange FMUs.

We demonstrate the proposed approach for two proof-
of-concept examples; the classical bouncing ball written
in CasADi directly and a simple hybrid DAE describing
a breaking spring formulated in Modelica and imported
symbolically into CasADi. In the examples, we show that
the forward sensitivities calculated to high precision using
the proposed approach are consistent with a cruder finite-
difference approximation and provide an example of how
they can be embedded into optimization formulations. We
discuss how the approach can be extended to handle stan-
dard FMUs, adhering to FMI 2 or FMI 3, as well as non-
trivial Modelica models imported via a symbolic interface
based on the emerging Base Modelica standard.
Keywords: Hybrid DAEs, sensitivity analysis, CasADi,
Modelica, FMI

1 Introduction
Dynamic models describing cyber-physical systems often
include events that are triggered when some conditions

are met. These events can arise both from the need to
faithfully capture the physics, e.g. an object transition-
ing from being stationary to starting to slide, or to capture
the modes in control systems. Physical modeling environ-
ments, such as those based on Modelica, allow events to
be efficiently described and transformed into a canonical
form compatible with numerical solvers. For Modelica,
the corresponding form is a hybrid differential-algebraic
equation (DAE) as described by the language specifica-
tion (Modelica Association 2021). For a hybrid DAE in
a standard form, events are generally triggered by zero-
crossing conditions for a set of event indicators, which are
evaluated along with the DAE. Certain numerical solvers
such as those from the SUNDIALS suite (Hindmarsh et
al. 2005) used in this work, are able to monitor the event
indicators for zero-crossings and stop the integration pre-
maturely if an event is detected. At the detected event, the
system is then updated according to the finite state ma-
chine semantics described in the hybrid DAE representa-
tion before the DAE integration is resumed.

1.1 Events in dynamic optimization
The handling of events using zero-crossing events and
event transitions is the standard approach for hybrid DAE
simulation. For dynamic optimization problems, i.e. op-
timization problems where the hybrid DAE enters as con-
straints in the formulation, the standard approach is in-
stead to partition the time horizon into multiple stages
(or phases) with events happening between the different
stages but not within them. The time durations between
events then become additional decision variables of the
optimization problem. To illustrate, if we have a single
event at (a priori unknown) time T , the physical time vari-
able t is substituted in the first stage with a dimension-
less time τ according to t = T τ . We can then proceed to
solve the optimization problem as if the event times were
known with stage durations added as an additional opti-
mization variables. While this approach has proven useful
in numerous applications, it is not as general as the hy-
brid DAE representation used for simulation. In particu-
lar, it requires a priori knowledge of the number of stages,
which is often not available.

Using the approach proposed here, this reformulation to
a multi-stage problem, with associated restrictions, is no
longer needed. Instead, we are able to embed the hybrid

100 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP20799 DOI

DAEs directly in the dynamic optimization formulations
and still get the exact first and second order sensitivity in-
formation needed by gradient-based numerical optimiza-
tion methods.

1.2 CasADi
CasADi (J. A. E. Andersson et al. 2019) is an open-source
software package for C++, Python, MATLAB and Octave.
It offers versatile environent that in particular can be used
to solve a range of different numerical optimization prob-
lems, using different methods and solvers. In particular,
CasADi can be used to efficiently solve numerical optimal
control problems, i.e. optimization problem constrained
by differential equations. At the core of CasADi is a sym-
bolic framework implementing algorithmic differentiation
(AD) in both forward and reverse (adjoint) modes. In ad-
dition to AD, symbolic expressions can be used for ef-
ficient evaluation, either in virtual machines or in gener-
ated, self-contained C code. Importantly, the symbolic ex-
pressions can embed calls to user-defined, differentiable
function objects. Such function objects can be defined in
number of different ways, including from other symbolic
expressions, by linear or nonlinear systems of equations
or user defined code. In (Joel Andersson 2023), it was
shown how differentiable CasADi function objects could
be created from functional mock-up units (FMUs) adher-
ing to the functional mock-up interface (FMI) standard.
In this work, we present an extention of another imporant
type of function objects in CasADi, Integrator instances,
which are used to simulate and perform sensitivity anal-
ysis for differential equations. A relatively comprehen-
sive and up-to-date description of this functionality is pre-
sented in Section 2. In Section 3, we will show how the
integrators were extended to support general events han-
dling, while still retaining efficient and accurate differen-
tiability.

1.3 Related work
Sensitivity analysis and numerical optimization for hy-
brid dynamic systems have been performed previously,
in particular in the Julia environment, using integrators
formulated in the DifferentialEquations.jl package (Rack-
auckas and Nie 2017). For models available as expres-
sions, derivatives can be calculated analytically by dif-
ferentiating the entire algorithm, giving a integrate-then-
differentiate approach. It is our understanding that this
approach, unlike the variational approach presented here,
can not be readily used with models formulated in Model-
ica or provided as FMUs. We refer to (Corner, C. Sandu,
and A. Sandu 2019) for a recent overview of methods for
hybrid sensitivity analysis.

2 Simulation and sensitivity analysis
in CasADi

CasADi can be used to solve initial value problems (IVP)
in ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs) with fully automatic sensitiv-
ity analysis. This support, which has existed since early
versions of CasADi, has been extended and improved over
the years. In the following, we provide a description of the
current algorithm, which largely corresponds to the refac-
toring of the functionality which enabled the use of FMI
models, as described in (Joel Andersson 2023). In Sec-
tion 3, we will show how this formulation can be extended
to support events, while still maintaining efficient, analytic
differentiability.

The dynamic systems considered, as of CasADi 3.6, are
semi-explicit DAEs with quadratures:





ẋ(t) = fode(t,x(t),z(t), p,u(t))
0 = falg(t,x(t),z(t), p,u(t))

q̇(t) = fquad(t,x(t),z(t), p,u(t)),
(1)

where t ∈ R is time (or some other independent variable),
x(·) ∈ Rnx is a state vector, z(·) ∈ Rnz is a vector of al-
gebraic variables, q(·) ∈ Rnq is a state vector that does
not appear in the right-hand-side, p ∈ Rnp is a (tunable)
parameter and u(·) ∈ Rnu is a control input, which is as-
sumed to be piecewise constant. If piecewise constant
control inputs are too restrictive for a particular applica-
tion, piecewise polynomial approximations can be han-
dled by adding additional state variables (e.g. defined by
ẋpiecewise linear = upiecewise constant). The quadrature states in
this context are especially important for calculating inte-
gral terms but are also used in adjoint sensitivity analysis.

We assume that any DAE is of index-1, i.e. in particular
that the Jacobian of falg with respect to z exists and is in-
vertible. For ODEs, z and falg(·) have dimension zero. If
the index-1 assumption does not hold, an index reduction
should be performed prior to simulation, which has been
implemented both in CasADi natively (for models given
as symbolic expressions) and in coupled modeling enviro-
nents, such as those based on Modelica.

To solve IVPs, the CasADi user creates Integrator in-
stances. These are formed from a given the initial time t0,
an output time grid [t1, . . . , tN] as well as symbolic expres-
sions of the form (1), or more generally, a (differentiable)
CasADi function object that calculates fode, falg and fquad
from given values for t, x, z, p and u:

f : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz ×Rnq

(t,x,z, p,u) → (fode, falg, fquad)
(2)

For the typical usage, an Integrator instance is a (differ-
entiable) CasADi function object that given x(t0), p, the
u(t) trajectory and a guess for z(t0), calculates x(tk), z(tk)
and q(tk) at all output times, k = 1, . . . ,N. If the DAE has
quadratures, q(t0) is assumed zero. We can write the func-
tion object defined by the integrator instance as follows:

F : Rnx ×Rnz ×Rnp ×Rnu×N → Rnx×N ×Rnz×N ×Rnq×N

(x0,z0, p,u) → (x,z,q)
(3)

101OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP20799

Solving the initial value problem

The actual calculation of (3) takes places in the CasADi
Integrator class, which relies on successive calls to one of
the solver plugins. The top level solver algorithm is il-
lustrated in Algorithm 1, where the functions RESET and
ADVANCE are implemented in the specific solver plugin.
These two functions correspond to initializing the (for-
ward) integration at some given time, providing the neces-
sary data, and advancing the solution to some given time
point, respectively. Algorithm 1 also includes the helper
function NEXT_STEP which checks the provided control
input and determine when the next step change in the con-
trol occurs. If there are no more input step changes, the
end of the simulation (N) is returned. The algorithm will
ensure that the integration is stopped at such input change
times. The stopping times are also used to prevent a solver
plugin from taking internal time steps past the stopping
times during the ADVANCE step (omitted in Algorithm 1
for simplicity).

Algorithm 1 Integration in CasADi without sensitivity
analysis or events handling

1: procedure SIM(x0 ∈ Rnx , z0 ∈ Rnz , p ∈ Rnp , uk ∈
Rnu , k = 0, . . . ,N −1)

2: kstep := 0 ▷ Index of the next input step change
3: for k = 0, . . . ,N −1 do ▷ Forward integration
4: if k = kstep then ▷ Input step change
5: kstep := NEXT_STEP(k,uk+1, . . . ,uN−1)
6: RESET(tk,xk,zk, p,uk)
7: end if
8: (xk+1,zk+1,qk+1) := ADVANCE(tk+1)
9: end for

10: return xk ∈ Rnx , zk ∈ Rnz , qk ∈ Rnq , k = 1, . . . ,N
11: end procedure

As of this writing, there were four solver plugins avail-
able; two CasADi native fixed-step integrators implement-
ing explicit and implicit Runge-Kutta, respectively, as
well as interfaces to the SUNDIALS solvers CVODES
and IDAS (Hindmarsh et al. 2005). For latter two solvers,
the default algorithm is a variable-order variable-step size
backward differentiation formula (BDF) method that takes
successive steps past the given output time and then eval-
uates the polynomial representation available for the last
integrator step at the given output time. All the inter-
faced solvers rely on CasADi to automatically generate
any derivative information needed, including sparse Jaco-
bians, and use sparse linear algebra for the step size com-
putation.

The remainder of this section details how Algorithm 1
is extended internally in CasADi to be able to effi-
ciently calculate forward and adjoint sensitivities and re-
quires some familiarity with algorithmic differentiation.
A reader mainly interested in using the framework in ap-
plications may choose to skip these parts as they are not
essential for using the code.

Forward sensitivity analysis

The CasADi integrators support analytic forward sensitiv-
ity analysis via a variational approach (J. Andersson 2013;
J. A. E. Andersson et al. 2019), i.e. an augmented set of
DAEs are formed corresponding to the forward sensitiv-
ity equations. The forward sensitivity analysis is imple-
mented both symbolically and numerically. In the sym-
bolic implementation, which is the older implementation,
a new DAE for the augmented system is created which is
solved as any other DAE, exploiting only the sparsity of
the augmented DAE system. This symbolic differentia-
tion can be done repeatedly, to get analytic derivatives to
any order, assuming sufficiently smooth DAEs.

To better exploit the specific structure of the for-
ward sensitivity equations, a numeric implementation of
forward sensitivity analysis was added (Joel Andersson
2023). The numeric implementation is implementated by
supporting multiple columns in (3), corresponding to dif-
ferent forward seeds/sensitivities, i.e. perturbations with
respect to different combinations of inputs in Algorithm 1.
For Nf forward sensitivities that are calculated along with
the original (undifferentiated) trajectory, the generalized
definition of F can be written:

F̃ : Rnx×(1+Nf)×Rnz×(1+Nf)×Rnp×(1+Nf)×Rnu×(1+Nf)N

→ Rnx×(1+Nf)N ×Rnz×(1+Nf)N ×Rnq×(1+Nf)N

(x0,z0, p,u) → (x,z,q)
(4)

Note that the multiple right-hand-sides are usually hid-
den from the user, who typically embeds the undifferenti-
ated F from (3) in some optimization formulation, and the
sensitivity equations are generated automatically to pro-
vide a gradient-based optimizer with the required deriva-
tive information.

Algorithm 1 continues to be valid when forward sensi-
tivity equations are included in the calculation, with the
only change that calculation of xk, zk and qk is now done
with (1+Nf) columns at a time instead of one column
at a time. It is up to the solver interfaces, i.e. the imple-
nentation of RESET and ADVANCE to exploit the sensitiv-
ity structure. In the SUNDIALS interfaces, this exploita-
tion is done by providing SUNDIALS with structure-
exploiting linear algebra routines. These linear algebra
routines use second order derivative information – calcu-
lated via forward-over-forward algorithmic differentiation
of the DAE function – to exactly and efficiently solve the
augmented linear system. Note that we do not use SUN-
DIALS native forward sensitivity support.

Adjoint sensitivity analysis

Similar to forward sensitivity analysis, the CasADi in-
tegrators support adjoint sensitivity analysis via a varia-
tional approach (J. Andersson 2013; J. A. E. Andersson et
al. 2019). These equations define a terminal-value prob-
lem coupled to the regular forward integration. Because
the coupling of the terminal-value problem to the initial
value problem is in one direction only, the combined prob-

102 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP20799 DOI

lem can be solved with a forward integration, recording
the integrator steps, followed by a backward integration.

The original implementation of adjoint sensitivity anal-
ysis in CasADi supported a general backward differential
equation, as long as it was affine in the “backward states”,
and was implemented symbolically. Because of the spe-
cific structure, the integrator could be differentiated re-
peatedly, giving analytical sensitivities to any order, not-
ing that adjoint-over-adjoint sensitivities can be reformu-
lated as forward-over-adjoint sensitivities.

In CasADi 3.6, a restriction of the formulation was im-
posed, requiring that the terminal value problem to always
be the adjoint sensitivity equations corresponding to the
forward integration. The adjoint equations may in turn
have forward sensitivity equations, which is important to
be able to efficiently calculate second order derivative in-
formation, e.g. for numerical optimization. With Na ad-
joint sensitivities and Nf forward sensitivities, (4) is fur-
ther generalized as follows:

F̂ : Rnx×(1+Nf)×Rnz×(1+Nf)×Rnp×(1+Nf)×Rnu×(1+Nf)N

×Rnx×(1+Nf)Na N ×Rnz×(1+Nf)Na N ×Rnq×(1+Nf)Na N

→ Rnx×(1+Nf)N ×Rnz×(1+Nf)N ×Rnq×(1+Nf)N

Rnx×(1+Nf)Na ×Rnz×(1+Nf)Na

×Rnp×(1+Nf)Na ×Rnu×(1+Nf)Na N

(x0,z0, p,u,λx,λz,λq) → (x,z,q,λx0 ,λz0 ,λp,λu),
(5)

where λx,λz,λq correpond to adjoint (and forward-over-
adjoint) seeds and λx0 ,λz0 ,λp,λu correspond to adjoint
(and forward-over-adjoint) sensitivities. Note that since
z0 is a guess, λz0 is going to be trivially zero, but is kept
in the function signature to get a consistent function sig-
nature (that can easily be embedded into symbolic expres-
sions). The function signature (5), which is the most com-
plex of any of the CasADi core classes, remains the same
with the addition of event support, which we will present
in Section 3.

In Algorithm 2 we show the generalization of Algo-
rithm 1 to handle forward and adjoint sensitivities, which
in addition to RESET and ADVANCE mentioned earlier
also includes two additional methods, IMPULSE to pro-
vide an additive contribution to the adjoint states at a given
time and RETREAT to integrate the system backwards to
a given time point. NEXT_IMPULSE is a helper function,
similar to NEXT_STEP to find the next output time where
an IMPULSE call is needed. Note that whenever there is
a step change in a control input, the forward integration
is repeated starting at the beginning of the previous step
change (or initial time t0).

As in the case of forward sensitivity analysis, the ad-
dition of numerical adjoint (and forward-over-adjoint)
sensitivity analysis in CasADi 3.6 enabled significantly
better structure exploitation in the integrator interfaces,
specifically in the SUNDIALS interfaces. In particular,
it allowed an arbitrary number of forward, adjoint and
forward-over-adjoint sensitivities to be calculated along
with the original simulation without increasing the size of

the linear system needing to be factorized inside the inter-
faced ODE/DAE integrators. Similar to the forward sensi-
tivity analysis, the forward-over-adjoint sensitivity anal-
ysis uses a matrix-free second order correction, imple-
mented via forward-over-adjoint directional derivatives to
exactly solve the augmented linear system.

Algorithm 2 Integration in CasADi with forward and ad-
joint sensitivity analysis but without events handling

1: procedure SIM_S(x0 ∈Rnx×(1+Nf), z0 ∈Rnz×(1+Nf),
p ∈Rnp×(1+Nf), u• ∈Rnu×(1+Nf), λx• ∈Rnx×(1+Nf)Na ,
λz• ∈ Rnz×(1+Nf)Na , λq• ∈ Rnq×(1+Nf)Na)

2: kstep := 0 ▷ Index of the next input step change
3: for k = 0, . . . ,N −1 do ▷ Forward integration
4: if k = kstep then ▷ Input step change
5: kprev := k ▷ Also keep track of old kprev
6: kstep := NEXT_STEP(k,u•)
7: RESET(tk,xk,zk, p,uk)
8: end if
9: (xk+1,zk+1,qk+1) := ADVANCE(tk+1)

10: end for
11: λ p := 0, λu• := 0 ▷ Initialize to zero
12: for k = N −1, . . . ,0 do ▷ Backward integration
13: if k < kprev then
14: kprev := <retrieve saved value>
15: RESET(tkprev ,xkprev ,zkprev , p,uk)
16: ADVANCE(tk+1)
17: end if
18: if k < kstep then
19: IMPULSE(λxk+1 ,λzk+1 ,λqk+1)
20: kstep := NEXT_IMPULSE(k,λx• ,λz• ,λq•)
21: end if
22: [λ̃x, λ̃p, λ̃u] := RETREAT(tk)
23: λp := λp + λ̃p, λuk := λuk + λ̃u
24: end for
25: λx0 := λ̃x
26: λz0 := 0
27: return x• ∈ Rnx×(1+Nf), z• ∈ Rnz×(1+Nf), q• ∈

Rnq×(1+Nf), λx0 ∈ Rnx×(1+Nf)Na , λz0 ∈ Rnz×(1+Nf)Na ,
λp ∈ Rnp×(1+Nf)Na , λu• ∈ Rnu×(1+Nf)Na

28: end procedure

3 Event support in CasADi
In order to implement event support in the CasADi inte-
grators, we add a zero-crossing output to the DAE function
(2) resulting in the generalized formulation:

f : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz ×Rnq ×Rne

(t,x,z, p,u) → (fode, falg, fquad, fzero)
(6)

The zero-crossing component calculates ne separate
smooth trajectories which are monitored for zero cross-
ings, as of this writing only from strictly negative to
strictly positive values (this restriction may be removed in
the future). The smoothness property is essential, and will

103OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP20799

be used for finding the exact event time as described as
in Section 3.2 below. Furthermore, the smoothness prop-
erty is necessary to properly calculate forward and adjoint
sensitivities as described in Section 3.3 and Section 3.4,
respectively.

When a zero crossing occurs, an optional reinit function
is called. This is a separate user-provided function which
has the signature:

E : I×R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz

(j, t,x-,z-, p,u) → (x,z) (7)

where x- and z- are the values of x and z immediately
before the event, i.e. x-(t) = limτ→t x(τ) and z-(t) =
limτ→t z(τ), respectively. In other words, the function E
explicitly defines a the new state vector and a new guess
for the algebraic variables. If a reinit function is not pro-
vided, the identity mapping is assumed.

A differentiable function with the signature (7) can be
created in various ways in CasADi. In particular, we may
want to create ne different functions of the form:

E j : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz

(t,x-,z-, p,u) → (x,z), j = 0, . . . ,ne −1, (8)

and then use a Switch function in CasADi to combine them
into a single function with the signature of (7). Also note
that we can use an implicit definition of E or E j e.g. by
using a Rootfinder function in CasADi.

With the addition of the zero-crossing output in the
DAE function and the new reinit function, the DAE for-
mulation (1) becomes generalized as follows:



(x(t),z(t)) = E(j, t,x-(t),z-(t), p,u(t))
if ∃ j : f (j)

zero(t,x-(t),z-(t), p,u(t)) = 0


ẋ(t) = fode(t,x(t),z(t), p,u(t))
0 = falg(t,x(t),z(t), p,u(t))

q̇(t) = fquad(t,x(t),z(t), p,u(t))
otherwise

(9)

3.1 Generalized simulation algorithm
In Algorithm 3 we show the generalization of Algorithm 2
to also include event handling as described above. Dur-
ing the forward integration, the main generalization comes
from allowing the ADVANCE step to terminate before the
desired output time, in which case it will return the cor-
responding time and the index of the triggered root-zero
crossing component. When this happens, a reinit function
called REINIT in the algorithm is called. For simulation
without sensitivities, the REINIT function is essentially
a call to E from (7). We will show in Section 3.3 below
how this function generalizes to forward sensitivity anal-
ysis. Following an event, the solver plugin needs to be
reset, similarly as for the case of changing inputs. To sim-
plify the presentation, we assume that REINIT returns the
actual algebraic variable z̃. In the actual implementation,
REINITwill just return a guess for the algebraic state and

the actual values will be calculated during the algorithm
to find consistent initial conditions inside the following
RESET. For each event, we record x and z both before and
after the event transition, along with information such as
the zero crossing index and time. This will be used for the
backward integration.

For the backward integration, two generalizations are
necessary. Firstly, before the call to progress the back-
wards integration to the beginning of the interval (tk), there
is a for-loop to first visit all events that were recorded for
the specific interval, in reverse order. After the adjoint
integration has progressed to a specific event, the adjoint
of the event transition function is called. This function is
discussed in Section 3.4. Following the event, during the
backward integration, we need to redo the forward integra-
tion starting at the previous event or input step (whichever
is encountered first), denoted by the PREVIOUS_EVENT
helper function.

3.2 Event detection algorithm
In order to determine the time of zero crossing event with
high precision, the current algorithm is based on lineariz-
ing the zero-crossing algorithm in the time direction. Note
that we currently do not use the zero-crossing detection
capabilities of the interfaced solvers, although we may
switch to doing so in a future version of the code, as dis-
cussed in Section 6.3.

Consider the zero-crossing function as a function of t,
including the indirect dependencies via x, z and u:

e(t) = fzero(t,x(t),z(t),u(t)) (10)

We can linearize this function with respect to time as
follows, assuming known values for ẋ(t) and ż(t):

ė(t) = ∂ fzero
∂ t (t,x(t),z(t), p,u(t))

+ ∂ fzero
∂x (t,x(t),z(t), p,u(t)) ẋ(t)

+ ∂ fzero
∂ z (t,x(t),z(t), p,u(t)) ż(t),

(11)

which can be efficiently calculated using a forward direc-
tional derivative of fzero. Note that there are no partial
derivatives w.r.t. p and u as these are constant during the
interval. As of this writing, we obtain ẋ(t) from evalu-
ating the ODE right-hand-side, i.e. fode in (9) and did
not consider zero crossing functions depending on alge-
braic variables. In a future iteration, we expect to obtain
ẋ(t) and ż(t) from the specific integrator interface, e.g. by
linearizing the DAE equations with respect to time or by
evaluating an exiting polynomial representation of the x(t)
and z(t) trajectories.

The event detection algorithm used consists of three
parts:

• At the beginning of the (now generalized) ADVANCE
function, we predict using linear extrapolation
whether a zero-crossing event is expected before the
given output time. If this is the case, the forward in-
tegration will be done only to this time and not to

104 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP20799 DOI

Algorithm 3 CasADi integration, with events handling

1: procedure SIM_E(x0 ∈Rnx×(1+Nf), z0 ∈Rnz×(1+Nf),
p ∈Rnp×(1+Nf), u• ∈Rnu×(1+Nf), λx• ∈Rnx×(1+Nf)Na ,
λz• ∈ Rnz×(1+Nf)Na , λq• ∈ Rnq×(1+Nf)Na)

2: kstep := 0 ▷ Index of the next input step change
3: t := t0, i := 0 ▷ Current time, event index
4: for k = 0, . . . ,N −1 do ▷ Forward integration
5: if k = kstep then ▷ Input step change
6: kprev := k ▷ Also keep track of old kprev
7: kstep := NEXT_STEP(k,u•)
8: RESET(tk,xk,zk, p,uk)
9: end if

10: while t < tk+1 do ▷ Integrate until tk+1
11: (x̃, z̃, q̃, t, j) := ADVANCE(tk+1)
12: while j ≥ 0 do ▷ Event transition(s)
13: Save x̃, z̃ (pre-call), t, j for event i
14: (x̃, z̃) := REINIT(j, t, x̃, z̃, p,uk)
15: RESET(t, x̃, z̃, p,uk)
16: Save x̃, z̃ (post-call) for event i
17: i := i+1
18: j := <chained event, if any>
19: end while
20: end while
21: xk+1 := x̃, zk+1 := z̃, qk+1 := q̃
22: end for
23: λ p := 0, λu• := 0 ▷ Initialize to zero
24: for k = N −1, . . . ,0 do ▷ Backward integration
25: if k < kprev then
26: kprev := <retrieve saved value>
27: [t, x̃, z̃] = PREVIOUS_EVENT(k, i)
28: RESET(t, x̃, z̃, p,uk)
29: ADVANCE(tk+1)
30: end if
31: if k < kstep then
32: IMPULSE(λxk+1 ,λzk+1 ,λqk+1)
33: kstep := NEXT_IMPULSE(k,λx• ,λz• ,λq•)
34: end if
35: for all events i in interval k in reverse order do
36: [λ̃x, λ̃p, λ̃u] := RETREAT(t(i))
37: [λ̃x, λ̃z, λ̃ E

p , λ̃ E
u] := ADJ_REINIT(i, λ̃x, λ̃z)

38: [t, x̃, z̃] = PREVIOUS_EVENT(k, i)
39: RESET(t, x̃, z̃, p,uk)
40: ADVANCE(tk+1)

41: λp := λp + λ̃p + λ̃ E
p

42: λuk := λuk + λ̃u + λ̃ E
u

43: end for
44: [λ̃x, λ̃p, λ̃u] := RETREAT(tk)
45: λp := λp + λ̃p, λuk := λuk + λ̃u
46: end for
47: λx0 := λ̃x
48: λz0 := 0
49: return x• ∈ Rnx×(1+Nf), z• ∈ Rnz×(1+Nf), q• ∈

Rnq×(1+Nf), λx0 ∈ Rnx×(1+Nf)Na , λz0 ∈ Rnz×(1+Nf)Na ,
λp ∈ Rnp×(1+Nf)Na , λu• ∈ Rnu×(1+Nf)Na

50: end procedure

the output time. If there are multiple zero crossing
events predicted, only the soonest one will be con-
sidered. Also, ommitted in the algorithm for ease
of presentation, if a zero-crossing event is predicted
before the next input change, the stopping time for
internal time stepping will be updated accordingly.

• If after this initial integration, the zero crossing func-
tions and their derivatives w.r.t. time indicate that
a zero crossing event has occurred or is still pre-
dicted to occur before the desired output time, a root-
finding iteration will start. The algorithm is an New-
ton method, with a fallback to bisection if ė has the
wrong sign. This fallback can e.g. happen if ė j is
non-positive, even though the sign of e j indicates
that a zero crossing from negative-to-positive has oc-
cured, or if the predicted event crossing happens be-
fore the start of the integration interval. During the
rootfinding iterations, the solver interfaces will be
responsible for updating the state to a given time
(which may require small steps backwards in time).

• When the zero crossing iteration has reached a given
tolerance, or hit a user-selected maximum number
of iterations, the corresponding values for x, z and q
along with time and zero-crossing index are returned
to the user.

We do not include specific handling of the case where
the event time is explicitly given, e.g. as a function of
p, u and non-changing components of x, but note that the
above algorithm will find the exact time of such events in
a single iteration since e(t) is linear in t.

3.3 Forward sensitivity analysis
For the forward sensitivity analysis, the function REINIT
in Algorithm 3 needs to be generalized. To get the correct
sensitivity propagation through the event, we must take
into consideration that the event time t may depend on
the state. We can handle this at the event considering the
time t to be implicitly defined by the corresponding zero
crossing function:

f (j)
zero(t,x,z, p,uk) = 0 ⇔ t = G(x,z, p,uk) (12)

We can propagate forward sensitivities through this
function using the implicit function theorem, similar to
how forward sensitivities for CasADi’s Rootfinder
class implemented. Since it is a scalar function, the prop-
agation can easily be calculated:

t̂ :=
∂ t
∂x

x̂+
∂ t
∂ z

ẑ+
∂ t
∂ p

p̂+
∂ t
∂u

û

=− 1
ė j

(
∂ fzero

∂x
x̂+

∂ fzero

∂ z
ẑ+

∂ fzero

∂ p
p̂+

∂ fzero

∂u
û,
)

(13)
where t̂ are the forward sensitivities of t and the corre-
sponding forward seeds are x̂, ẑ, p̂ and û, respectively.

105OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP20799

With t̂ for each sensitivity direction calculated, we are
able to propagate the forward sensitivities through the
reinit function:

x̂E :=
∂Ex

∂ t
t̂ +

∂Ex

∂x
x̂+

∂Ex

∂ z
ẑ+

∂Ex

∂ p
p̂+

∂Ex

∂u
û, (14)

where Ex is the calculation of x using E in (7). This calcu-
lation is performed using a forward directional derivative
applied to the reinit function (7). Since the reinit function
will only provide a guess for z (the exact value being deter-
mined by the DAE), no derivative propagation is needed.

Finally, we need to consider that sensitivity of t̂ needs
to be propagated to the duration of the subsequent inter-
val. For example, if a small perturbation ∆p in an input
parameter p leads to the event happening a time ∆t later,
the subsequent integration interval will be ∆t shorter. We
can account for this by using ẋ obtained from (9) and the
known sensitivity in duration length (−t̂).

x̂REINIT := x̂E − t̂ ẋ (15)

3.4 Adjoint and forward-over-adjoint sensi-
tivity analysis

Algorithm 3 also include a tentative implementation of ad-
joint sensitivity analysis and second order (forward-over-
adjoint) sensitivity analysis. During the backward integra-
tion, there is no need to detect zero crossings. Instead we
will simply keep records of the events (times and corre-
sponding event indices) during the forward integration and
then visit the same events in reverse order during the back-
ward integration. Second order derivatives are handled by
allowing all variables to have multiple right-hand-sides.

As of this writing, the extension of the adjoint sensitiv-
ity support to support events is still ongoing. The parts
in Algorithm 3 related to adjoint and forward-over-adjoint
sensitivity analysis therefore reflects the planned imple-
mentation.

4 Examples
4.1 Forward sensitivities for a bouncing ball
In our first example, we perform an analytical forward
sensitivity analysis for a bouncing ball and compare the
results with a finite-difference approximation. The system
has two states corresponding to height h and velocity v,
i.e. the state vector is x = [h;v]. The corresponding ODE
is:

ḣ = v, v̇ =−9.81 (16)

When the ball hits the ground at h = 0, defined by
fzero(x) =−h, an event will be triggered defined by:

x =
[

0
−0.8v−,

]
(17)

where v− is the velocity immediately before the event.

In the leftmost figures of Figure 1, we show the event
simulation, over 7 s for a ball starting at rest at h = 5, us-
ing SUNDIALS/CVODES as the interfaced solver. The
remaining figures show the sensitivities of h and v with
respect to perturbations in h(0) = h0 and v(0) = v0, re-
spectively. The results are compared to a basic finite dif-
ferencing perturbation of the whole simulation trajectory.

To understand the results in the lower right subplot,
which may seem counter-intutitive, it can be shown that
for a ball starting at rest, the derivative of the time of the
first bounce Tbounce with respect to initial velocity can be
written:

dTbounce

dv0
=

1
g
. (18)

Therefore, the first derivative of the ball velocity at impact
vimpact = v0 − gTbounce with respect to initial velocity is
zero:

∂vimpact

∂v0
=

dv0

dv0
−g

dTbounce

dv0
= 1− g

g
= 0. (19)

The first order sensitivity of the ball velocity after the
bounce with respect to initial velocity, is therefore just due
to how much time has elapsed since the bounce:

dv(t;h0,v0)

dv0
=−dTbounce

dv0
(−g) = 1. (20)

This theoretical result, which holds in the almost every-
where sense, is confirmed with the analytical forward sen-
sitivities (blue line). The result repeats itself at subsequent
bounces. For the corresponding finite difference approx-
imation (red line), in contrast, the numerical error will
grow for every bounce.

4.2 Parameter estimation for a breaking
spring

As a second example, we consider the a simple model
of a spring formulated in Modelica. When the spring
is extended too far, an event corresponding to the spring
“breaking” is triggered:

model BreakingSpring
input Real m(start = 1)

"PARAMETER:Mass";
output Real v(start = -5, fixed = true)

"velocity";
output Real x(start = -1, fixed = true)

"displacement";
input Real k(start = 2)

"PARAMETER:spring constant";
input Real c(start = 0.1)

"PARAMETER:damping constant";
input Real d(start = 0) "disturbance";
Real f "spring force";
Boolean b "Is the spring broken?";

initial equation
b = false;

equation
der(x) = v;
f = if not b then -k * x + d else 0;

106 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP20799 DOI

0 2 4 6

0

1

2

3

4

5

6

h(t; h

0

, v

0

)

0 2 4 6

−2

−1

0

1

2

3

4

5

FD:

h(t; h

0

+ ε, v

0

) − h(t; h

0

, v

0

)

ε

Analytic:

∂h(t; h

0

, v

0

)

∂h

0

0 2 4 6

−0.5

0.0

0.5

1.0

1.5

2.0

FD:

h(t; h

0

, v

0

+ ε) − h(t; h

0

, v

0

)

ε

Analytic:

∂h(t; h

0

, v

0

)

∂v

0

0 2 4 6

−10

−5

0

5

10

v(t; h

0

, v

0

)

0 2 4 6

0

2

4

6

8

10

FD:

v(t; h

0

+ ε, v

0

) − v(t; h

0

, v

0

)

ε

Analytic:

∂v(t; h

0

, v

0

)

∂h

0

0 2 4 6

1.00

1.01

1.02

1.03

1.04

FD:

v(t; h

0

, v

0

+ ε) − v(t; h

0

, v

0

)

ε

Analytic:

∂v(t; h

0

, v

0

)

∂v

0

Figure 1. Forward sensitivity analysis for a bouncing ball, comparison with finite differences (FD)

m * der(v) + c * v = f;
when x>2 then

b = true;
end when;

end BreakingSpring;

Compared to the bouncing ball model, the breaking
spring model includes the following:

• A free input parameter d, corresponding to u in (1)

• Three tunable parameters, m, k and c, corresponding
to p in (1). To ensure derivative information is avail-
able after compiling the model (e.g. into an FMU),
we will model tunable parameters as controls, using
a Parameter: prefix in the description string to
distinguish them from regular controls.

• A boolean state b, which is updated discontinuously
at events. Since CasADi does not have the concept of
discrete states, we will model discrete states as real-
valued states with zero time derivative, i.e. b is a
component of x (say, index ib) with ẋ[ib] = 0.

Using OpenModelica 1.24, we compile the above
model into an XML file, containing a symbolic representa-
tion of the problem, using the approach described in (Shi-
tahun et al. 2013). This model is then imported into a
CasADi DaeBuilder instance, which in turn is used to
generate an analytically differentiable integrator object in
CasADi, again using SUNDIALS/CVODES as the inter-
faced solver.

CasADi integrator instances can be embedded into ex-
pression graphs corresponding to different optimization
formulations. In Figure 2 (left), we show the result of
solving a parameter estimation problem using the hybrid
integrator. The problem corresponds to finding the param-
eter values m, k and c that minimize a sum-of-squares cost
function:

minimize
m,k,c

N

∑
k=1

(xk − x̃k)
2, (21)

subject to the hybrid dynamical equation and bounds of
the parameter. To generate simulated measurements x̃k,
we add Gaussian noise to the simulation result corre-
sponding to known values of the parameters. The opti-
mization is done for a known disturbance vector d, but
again with random noise added, as shown in Figure 2
(right). The problem is solved using a single-shooting dis-
cretization, using IPOPT as an optimizer.

5 Summary
In this work, we have shown an extension of the DAE sim-
ulation routines in CasADi to handle systems with events.
This includes the efficient calculation of analytical sensi-
tivity information, as needed by gradient-based optimiza-
tion algorithms, also in the presence of events. We pro-
vided details of the forward sensitivity implementation, il-
lustrated with two examples, as well as details on the on-
going work to implement adjoint and forward-over-adjoint
sensitivity analysis with events. While we have thus far re-
lied on relatively simple toy examples available as CasADi

107OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP20799

0 1 2 3 4

−5

0

5

10

15

Actual x

Measured x

Guessed x

0 1 2 3 4

−5

0

5

10

15

Actual d

Guessed d

Figure 2. Parameteter estimation for a breaking spring, with generated measurement values.

symbolic expression graphs, the intention is to use this
feature to implement dynamic optimization for challeng-
ing cyber-physical systems, including but not limited to
systems implemented in Modelica. We will discuss the
path to handle such systems in the following section.

6 Outlook
The work presented in this paper is in active development,
with additional features being added as they become re-
quired by applications. In the following, we discuss some
of the most important extensions planned.

6.1 Event support for models provided as
standard FMUs

The ultimate goal of this work is to enable the formulation
and solution real-world optimization problems with event
dynamics, in particular those formulated in Modelica. In
our initial experiments, presented in Section 4, we used
a symbolic coupling based on a legacy XML-based sym-
bolic coupling between OpenModelica and CasADi. This
coupling is neither well maintained, nor generic enough
to handle realistic systems. It is also restricted to a single
exporting tool (OpenModelica).

A recent addition to CasADi is the import of general
FMUs adhering to FMI 2, as described in (Joel Anders-
son 2023). In pre-release versions of CasADi, this support
has since been extended to FMI 3, including the interface
to adjoint derivatives of model equations. Our plan is to
use the FMI interface together with the event support in

the CasADi integrators to be able to efficiently and conve-
niently solve optimization problems for real-world Mod-
elica models. Note that by relying on FMI, the structure of
the underlying Modelica model becomes irrelivant as long
as it conforms with the FMI standard and has the prerequi-
site smoothness properties for numerical optimization. It
is also possible to use models that include variables that
cannot be represented in CasADi, for example records or
string-valued expressions, as long as these variables are
not manipulated by the optimizer.

Since the FMI format, as written, does not natively con-
form to the required formulation (9), some reformulations
of the Modelica models may be needed prior to FMU gen-
eration. In particular:

• Event indicator expressions will need to be linked to
differentiable model outputs. That means that the ar-
gument of when-constructs in Modelica may need to
be assigned to additional model outputs, following
some naming convention. This convention ensures
that derivative information is available for the zero-
crossing functions.

• The reinit equations need to consist of simple
outputs-to-states mappings. This means that at
events, the differential state should be assigned to
some of variable with output causality. Each event
indicator should uniquely map to an assignment,
which may require the addition of additional output
variables. This convention ensures that derivative in-

108 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP20799 DOI

formation is available for the reinit functions.

• We may need to reformulate free parameters as in-
puts (as in Section 4.2) to ensure that analytic deriva-
tive information with respect to these parameters is
included in the FMU. Alternatively, we can rely on
tool-specific extensions, such as using the annotation
"evaluate = false" in Dymola to ensure that
the parameter can be manipulated by the optimizer.

6.2 A standardized symbolic interface based
on Base Modelica

A symbolic model interface, such as the XML-based inter-
face used in Section 4.2 will always have some fundamen-
tal advantages over a “black box” binary interface. This
is especially true when the model dimensions are small
or when higher order derivative information is needed.
To be able to take advantage of the fundamental advan-
tages of a symbolic interface, we plan to replace the
XML interface with a new symbolic interface based on
a ANTLR4-based parser for the emerging Base Modelica
standard (Kurzbach et al. 2023). This interface builds on
our previous work with Pymoca and Cymoca, cf. https:
//github.com/pymoca/pymoca and https://
github.com/jgoppert/cymoca, respectively.

Since Base Modelica is intended to become a stan-
dard, with ongoing work to export models in this format
from different Modelica compilers, the approach should
be compatible with multiple tools. The hope is also that
since Base Modelica is in essence a small subset of the
full Modelica language, implementing and maintaining a
parser should be possible with a reasonable effort.

6.3 Event detection in interfaces
In Section 3.2, we presented an approach to locate events
based on an algorithm implemented in the integrator base
class. An alternative to this algorithm would be to use the
solver’s native event-finding algorithm, such as the Illinois
algorithm (Hiebert and Shampine 1980) used in SUNDI-
ALS. This algorithm has proven efficient and robust for
numerous applications. There is also value in using the
same event finding algorithm as the modeler uses for hy-
brid simulation.

6.4 Algebraic variables in the zero-crossing
functions and reinit functions

The implementation of the proposed approach was done in
a way that was generic for both ODEs and DAEs, although
it had yet to be tested with DAEs as of this writing. The
implementation would also need an extension to be able
to handle the case when algebraic variables (z) explicitly
enter in the zero-crossing functions or reinit functions.

Disclaimer
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

Acknowledgements
This material is based on research sponsored by DARPA
under agreement number FA8750-24-2-0500. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

The authors also want to acknowledge the helpful re-
marks by the anonymous reviewers.

References
Andersson, J. (2013-10). “A General-Purpose Software Frame-

work for Dynamic Optimization”. PhD thesis. Arenberg Doc-
toral School, KU Leuven.

Andersson, Joel (2023-10). “Import and Export of Functional
Mockup Units in CasADi”. In: Proceedings of the 15th Inter-
national Modelica Conference. Vol. 2855, pp. 321–326.

Andersson, Joel A E et al. (2019). “CasADi – A software
framework for nonlinear optimization and optimal control”.
In: Mathematical Programming Computation 11.1, pp. 1–36.
DOI: 10.1007/s12532-018-0139-4.

Corner, Sebastien, Corina Sandu, and Adrian Sandu (2019).
“Modeling and sensitivity analysis methodology for hybrid
dynamical system”. In: Nonlinear Analysis: Hybrid Systems
31, pp. 19–40. ISSN: 1751-570X. DOI: https : / /doi .org /10 .
1016/j.nahs.2018.07.003. URL: https://www.sciencedirect.
com/science/article/pii/S1751570X1830058X.

Hiebert, Kathie L. and Lawrence F. Shampine (1980-02). Re-
port SAND80-0180: Implicitly Defined Output Points for So-
lutions of ODEs. Tech. rep. Sandia National Laboratory.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396. DOI: 10.1145/1089014.1089020.

Kurzbach, Gerd et al. (2023-10). “Design proposal of a standard-
ized Base Modelica language”. In: Proceedings of the 15th
International Modelica Conference. Vol. 2855, pp. 469–478.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
html.

Rackauckas, Christopher and Qing Nie (2017).
“DifferentialEquations.jl–a performant and feature-rich
ecosystem for solving differential equations in Julia”. In:
Journal of Open Research Software 5.1.

Shitahun, Alachew et al. (2013). “Model-Based Dynamic Op-
timization with OpenModelica and CasADi”. In: IFAC Pro-
ceedings Volumes 46.21. 7th IFAC Symposium on Advances
in Automotive Control, pp. 446–451. ISSN: 1474-6670. DOI:
https : / / doi . org / 10 . 3182 / 20130904 - 4 - JP - 2042 . 00166.
URL: https : / / www. sciencedirect . com / science / article / pii /
S1474667016384117.

109OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 109

Steady-state Optimization of Modelica
Models and Functional Mockup Units

with Pyomo

Jesse Gohl1 Hubertus Tummescheit1 Robin Andersson1
Matthew Stuber 2
1Modeon Inc, USA,

 2Dept. of Chemical & Biomolecular Engineering, University of
Connecticut

jesse.gohl@modelon.com

Abstract
This paper describes two ways on how to interface
Functional Mockup Units (FMUs) and Modelica models
through the Pyomo’s foreign function interface with
Pyomo. Pyomo is a Python-based, open-source
optimization modeling language with a diverse set of
optimization capabilities. Modelica has arguably much
better modeling capabilities than Pyomo, but Pyomo
integrates excellent optimization solvers, such as Ipopt
(Wächter et al. 2006), and provides a good optimization
infrastructure. The Interface has been developed in the
context of a NAWI, (National Alliance Water Innovation)
Hub project in collaboration with the University of
Connecticut and Sandia National Labs. The optimization
has been set up and tested within Modelon’s Modelica
platform Modelon Impact. An unpublished, detailed
multi-effect desalination plant developed by Prof. Matt
Stuber in the context of (Stuber et al., 2015) has been used
to demonstrate the capabilities, as well as simple test
models, and design models from Modelon’s commercial
Libraries.
Keywords: Modelica, Functional Mockup Interface,
FMI, Steady-state Optimization, Design Optimization

1 Introduction
There is a growing list of options to perform optimization
studies involving Modelica models. A number of
simulation tools support optimization natively within their
simulation environment (OpenModelica, Ansys Twin
Builder®, System Modeler, the Modelica Optimization
Library, etc.). The models can also be exported as
Functional Mockup Units (FMU) and imported to
specialized optimization tools (modeFrontier®,
Optimus®, etc.). A couple of dynamic optimization
(Bryson 1999) methods (OpenModelica and JModelica)
rely on CasADi (Andersson 2011; Bachmann 2012; Ruge
2014). The tools transfer the Modelica model to CasADi
for automatic differentiation and optimization. Originally
this was done via an XML file format for both tools
(Magnusson 2015), but the Optimica Compiler Toolkit
(OCT) has evolved from JModelica to support more
comprehensive coverage of the Modelica language,

transferring large parts of the language into a native
CasADi problem (Modelon 2024). This is done
automatically but both methods rely on sufficiently
restricted models to avoid unsupported constructs by
CasADi. The Optimica Compiler Toolkit also includes
support for derivative free optimization using the Nelder-
Mead simplex method (Nelder and Mead 1965; Fletcher
1987) for static optimization. In addition, OpenModelica
and OCT support the Optimica® language for the
description of the optimization problem. This language is
an extension to the Modelica language. An alternative to
the above methods that is explored in this paper, is to
connect the FMU to a solver through the Pyomo Python
toolbox for optimization and solution through its
connection to IPOPT.

The Functional Mockup Interface (FMI, Modelica
Association 2024) is a standardized, widely accepted API
implemented by more than 200 simulation tools for
executable simulation models. However, it has been
designed for transient simulations, not steady-state
(design-oriented) simulation models. It can be used to
compute stationary points for transient system models, but
the API lacks functions to compute sensitivities with
respect to decision variables in an optimization problem
symbolically. It is possible, but less accurate and
performant to approximate the derivates by finite
differences. Modelon Impact offers to convert Modelica
model parameters to inputs when translated into an FMU.
This allows using the symbolic derivatives with respect to
inputs in the standard FMI-interface in the solution
process. While this is helpful, and allows to optimize
arbitrary Modelica-models, it is not sufficient to robustly
optimize large and highly non-linear problems.

This paper will present two different interfaces between
Modelica models and Pyomo’s optimization algorithms:

 An interface based on generic FMUs, enhanced with
Modelon Impact’s capability to convert parameters
to inputs for improved accuracy of Jacobian
computations.

 Modelon Impact’s internal interface for solving large
non-linear systems for steady-state design problems.

110 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Modelon’s interface is similar to FMI but adds the
ability to couple a Modelica model to an external
steady-state solver. This is in spirit like a model
exchange FMU.

The first interface allows to couple FMUs for any FMI-
compliant tool to Pyomo, the second interface is more
robust, able to solve larger models, but is only available
for Modelica models in Modelon Impact.

2 Requirements for efficient
gradient-based optimization

A typical constrained static optimization problem can be
written as follows:

Minimize 𝑓𝑓(𝑥𝑥)
Subject to 𝑔𝑔𝑗𝑗(𝑥𝑥) ≤ 0, 𝑗𝑗 = 1, … , 𝑝𝑝

ℎ𝑖𝑖(𝑥𝑥) = 0, 𝑖𝑖 = 1, … , 𝑚𝑚

(1)

where 𝑔𝑔𝑗𝑗 , ℎ𝑖𝑖: R𝑛𝑛 → R are inequality and equality
constraints respectively, and 𝑓𝑓(𝑥𝑥) is the objective
function. In the context of models coming from Modelica,
usually all equality constraints come from the model
equations, and the objective function and inequality
constraints must be handled outside of the standard
Modelica language. For this prototype interface, we have
chosen to not use the Optimica Modelica extension
proposed by (Åkesson et. al., 2011). A graphical Modelica
user environment such as Modelon Impact can allow those
to be entered in the definition of the optimization
experiment.

With the optimization of a model in Modelica, there are
two fundamentally different ways of solving a steady-state
optimization problem: 1) the nonlinear solver is the same
that is used for steady-state initialization in a Modelica
simulator, and the optimization solver is “wrapped”
around that, i.e. nested solvers, or 2) the optimization
solver handles everything, and treats the model equations
as equality constraints (ℎ𝑖𝑖(𝑥𝑥)), i.e. a single solver. With
generic FMUs, a nested solver is the only option. With
Modelon Impact’s steady-state interface, the second
option is possible, and has demonstrably been the faster
and more robust option in our testing.

It should be noted that the dimension m of ℎ𝑖𝑖(𝑥𝑥) can be
large, several thousand equations, which can lead to
excessive solution times. However, so called tearing of
equation systems (Baharev et al., 2016) can dramatically
reduce the dimension, is generally used by Modelica tools,
and is also used by us in this interface to reduce the
dimension of the 𝒉𝒉(𝒙𝒙) vector equations that are exposed

to the solver. Also note that, even after the dimensionality
reduction through tearing, the resulting subset of the
equations is still large enough to justify the use of sparse
solver interfaces.

There are further important numerical requirements for
efficiency and robustness, some of which are on the
model-side of the interface, and some on the optimization
solver side of the interface. Pyomo offers methods to
compute first and second derivatives for constraints and
objective function. On the model side, these can be
approximated numerically, or computed analytically. For
standard, transient FMUs, they must be approximated
numerically. Modelon’s dedicated steady-state, FMU-like
interface allows to provide even analytic Jacobians to the
Pyomo external function interface. Scaling of variables is
also important for robustness and can be achieved by
making use of the Modelica and FMI feature of nominal
values for variables. Note that scaling is much more
important than in the simulation case.

3 The Pyomo/PyNumero External
Function Interface

The core of both interfaces of this work, mentioned in the
introduction, extends from the
ExternalGreyBoxModel class of PyNumero
(Rodriguez et al. 2024). This class allows users to use
external models with Pyomo. The class translates the
external model, usually written in Python code, into a
Pyomo model by wrapping a set of standard methods,
necessary to define an optimization problem. Examples
of these methods are evaluate_outputs,
evaluate_equality_constraints,
evaluate_jacobian_outputs, and
evaluate_jacobian_equality_constraints.
The second derivatives can also be defined using the
evaluate_hessian_outputs and
evaluate_hessian_equality_constraints
methods. The new classes from this effort, wrap
(evaluate) the FMI interface methods from a PyFMI FMU
object within these PyNumero methods.

The main class constructor of this work accepts a PyFMI
FMU object or a steady state FMUProblem1 object from
Modelon’s steady-state interface class. The methods
provided by these objects are evaluated within the
PyNumero methods during the solution of the
optimization or static problem. The constructor also
accepts lists of relevant variables for inputs, outputs, and
constraints, as well as modifiers to FMU parameters and
some additional options specific to this interface. The
input, output, and constraint lists identify the relevant

as “normal”

111OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

FMU variables for the optimization or steady state
problem.

4 The Interfaces
In general, FMUs define a mathematical representation of
an engineering problem. Frequently, this is defined as an
experiment that simulates a transient, progression in time,
as a differential-algebraic equation (DAE) system. The
GenericFMU class from the new Python package
simulates an FMU from the initial time to the final time to
supply the values needed by an optimization solver. This
includes the outputs, constraint residuals, and their
derivatives. Because many FMUs support these methods,
this allows the new interface to support the widest range
of FMUs, regardless of the generation tool.

Static problems do not include a dependence on time
because time and derivatives with respect to time do not
appear in the DAE system. This means that the
mathematical representation of the problem is reduced to
a set of nonlinear equations with one or more solutions
(hopefully!) that needs to be solved by a nonlinear
programming (NLP) solver. Modelon’s steady state
problem interface is an efficient translation of these types
of problems to pass to an NLP solver. Evaluating the
outputs and constraints does not require stepping forward
in time and is the simplest and most efficient case because,
since there are no dynamic states (no time derivatives), the
outputs only depend on the inputs in continuous-time
mode (as defined by the FMI specification). This means
the solver can update the inputs and the outputs can be
evaluated without additional method calls. This is also the
most efficient case for the evaluation of derivatives and
can take advantage of the directional derivatives defined
by the FMU. This applies when the inputs to the
optimization problem are also the inputs to the FMU
(v𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 of section 2.1.9 of the FMI specification version
2.0.4). The methods of the StaticFMU class avoid full
simulations to compute the values needed by the
optimization solver.

The static interface also supports other cases that include
FMUs with event indicators, optimization inputs that are
not also FMU inputs (usually this means causality =
parameter), and co-simulation FMUs. The static interface
checks for these cases and defines the appropriate
evaluation methods depending on the situation. For the
case of FMUs with event indicators an event handling
loop is activated if an event is detected by the indicators.
The allowed modes for modifying parameter values are
more restricted. For example, normal parameters (e.g.
causality = parameter and variability = fixed), can only be
modified before exiting initialization mode. Therefore
this version of the interface package resets the FMU, sets
the updated parameter values, then initializes the FMU to

ensure consistency. Co-simulation type FMUs use a
similar strategy of setting values and initializing.

5 Test Models and Results
PyNumero includes an example of a problem based on a
continuously stirred reactor as described in section 7.4.4
of Bynum et al., (2021). The problem is to find the
incoming flow rate of an inlet stream with a single species
to a chamber with competing reactions, that maximizes
the concentration of a specific species in the outlet stream.

Figure 1. Continuously stirred reactor diagram

The reactions within the vessel are governed by the rates
𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 through the following sequences.

 𝐴𝐴
𝑘𝑘1→𝐵𝐵

𝑘𝑘2→𝐶𝐶 (2)

 2𝐴𝐴
𝑘𝑘3→𝐷𝐷 (3)

This can be represented by the following model that
describes the rates of change of the outlet concentrations
𝐶𝐶𝐴𝐴, 𝐶𝐶𝐵𝐵, 𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐷𝐷.

 �̇�𝐶𝐴𝐴 =
𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴𝑓𝑓 −

𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴 − 𝑘𝑘1𝐶𝐶𝐴𝐴 − 2𝑘𝑘3𝐶𝐶𝐴𝐴2 (4)

 �̇�𝐶𝐵𝐵 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐵𝐵 + 𝑘𝑘1𝐶𝐶𝐴𝐴 − 𝑘𝑘2𝐶𝐶𝐵𝐵 (5)

 �̇�𝐶𝐶𝐶 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐶𝐶 + 𝑘𝑘2𝐶𝐶𝐵𝐵 (6)

 �̇�𝐶𝐷𝐷 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐷𝐷 + 𝑘𝑘3𝐶𝐶𝐴𝐴2 (7)

 𝑞𝑞
𝑉𝑉 = 𝑠𝑠𝑠𝑠 (8)

At steady state, the rates of change of concentrations are
zero and the inlet and outlet flow rates are equal. This is
equivalent to a statics problem that does not involve time.

 �̇�𝐶𝑋𝑋 → 0 (9)
 𝑞𝑞𝑘𝑘 → 𝑞𝑞𝑖𝑖 (10)

Notice the steady state problem involves a quadratic term
for 𝐶𝐶𝐴𝐴. Depending on the tool, this can require iteration
to solve numerically. The example in PyNumero encodes
this problem in Python code to demonstrate the external
interface to a Pyomo model. The
ExternalGreyBoxModel of this example appears as in

112 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

the following image that shows the method definitions
from the base class:

Figure 2. PyNumero reactor model example Python class
definition

The finalize_block_construction method is the
location for specifying the Pyomo variable attributes like
bounds and starting values. Notice the variable bounds
are specified separately from the constraints. In this
example a lower bound of zero is defined for all the
concentrations. Evaluation of the residuals occurs in the
_model function, defined in the function
reactor_outlet_concentrations. This is where
equations (4) – (8) are defined in the Python model. As
the problem is written, solution of this system requires an
iterative approach to drive the four residual values toward
zero. This relies on fsolve from scipy.optimize to
minimize the residuals. Whenever the optimization
solver needs the values of the outputs (or to estimate the
Jacobian as described next), the external NLP solver,
fsolve, must be called to find the values of ca, cb, cc, and
cd that result in sufficiently small residual values. This
structure can also be used with the FMU based approach
if the FMU requires iteration to resolve nonlinear systems
of equations. Alternatively, the variables and residual
values can be exposed to the optimization solver and the
residuals handled as equality constraints (with equality
zero). This is possible with the steady-state FMU
interface package and is usually considered more efficient
and robust.

Figure 3. PyNumero reactor model output evaluation function

The Jacobian is provided by the
evaluate_jacobian_outputs method of the reactor
class. The matrix is returned in the sparse coordinate
format as an instance of a coo_matrix class from the
scipy.sparse package. The PyNumero example estimates
the matrix using finite differences, but it could also have
been analytically computed from the model equations.

The Pyomo code to define the optimization problem to
maximize the concentration of species B appears as in the
following:

Figure 4. PyNumero reactor model optimization problem
statement in Pyomo code

Notice that an instance of a Pyomo ConcreteModel class,
m, is passed to an instance of the SolverFactory class,
solver. This will be the same when using the new
FMU/Pyomo interface package. Also notice that the
values of k1, k2, k3, and caf are handled as equality
constraints. Only sv is free to iterate during optimization.
Pyomo hands this problem to cyipopt to solve the problem
and produces the following print out of the results:

Figure 5. PyNumero reactor model solution results log

This shows that the solver converged to a solution of 1.34
with 1072 as the maximum concentration of species B.
Alternatively, the problem can be written in another
language, from which an FMU can be generated. For
example, in Modelon Impact the reactor model definition
could be written in Modelica as:

113OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Figure 6. Static continuously stirred reactor model in Modelica

Notice that the variables include attributes like min, max,
start, nominal. These can be included in the FMU’s
variable attributes and the new FMU/Pyomo interface
package will use these to automatically define the
required Pyomo attributes. The interface also allows the
attributes to be provided in the problem statement for
cases when the FMU does not include these.

It is also worth noting that an added benefit to encoding
this model in Modelica is that the Modelica translator can
“tear” (Baharev et al., 2016) the system of equations to
minimize the size of equation blocks. In this case the
block is torn to a size 1 system around variable ca.

With this model the solution space of can be explored by
plotting the solution of cb as a sweep of values of sv.
Notice the location and maximum of this curve correlates
to the solution from Ipopt shown in Figure 5.

Figure 7. Sweep of outlet concentration, cb, (vertical axis)
versus inlet flow rate, sv (horizontal axis)

A similar optimization problem can now be defined using
the new FMU/Pyomo interface package. The package
includes helper functions static_pyomo_model and
generic_pyomo_model that return an instance of the
PyNumero ExternalGreyBoxBlock, “block”, as an
element of an instance of a Pyomo ConcreteModel. The
block contains an external_model that is an instance of
one of either of the new FMU/Pyomo classes, StaticFMU
or GenericFMU, as described in section 3. The methods
in these classes are optimized for the type of FMU that is

being used. An example of this is shown in the following
code where m is the instance of a Pyomo ConcreteModel
class that includes an instance of the StaticFMU class.

Figure 8. Optimization problem statement using the
CSTR_static FMU.

By default the FMU’s inputs and outputs will be used for
the problem inputs and outputs, or they can be specified
directly for FMUs without explicit I/O variables, as in the
above code that specified sv and cb as the inputs and
outputs respectively. Notice that the code that defines the
optimization problem, i.e. the objective, solver, and its
settings on lines 64 – 69 in the above code, is the same as
lines 38 – 43 shown in Figure 4. Calling the pprint
method of the Pyomo ConcreteModel instance, m prints
the following information to the screen. This
demonstrates that the found solution matches the solution
shown in Figure 5.

Figure 9. Solution log for the CSTR system using the static
FMU/Pyomo interface

At this point it is important to note a difference in solver
statistics between the two cases. In the original
PyNumero example, Ipopt reports 13 iterations required
to solve the problem. With the FMU based approach the
solution required 17 iterations. The exact cause for this
difference has not yet been determined but some
differences can be noted. One difference with the
previous example is the initialization. The original
PyNumero example initializes the problem with sv = 5
and ca and cb both equal to 1 whereas the above FMU
based example initialized at sv = 1 and ca and cb equal
to 0. This can be changed in the problem statement by
adding the following lines.

114 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Figure 10. Applying consistent initial conditions to the problem
statement

This reduces the number of iterations to 16 but still not to
13. This result is unexpected since the FMU based
approach has both reduced the number of iteration
variables and provides an analytic Jacobian. Resolution
of this discrepancy would likely require low-level review
of the verbose Ipopt log.

The above FMU based approach relied on the steady-state
interface of the new FMU/Pyomo interface as described
in the Introduction section. This allows the Ipopt solver
to resolve the nonlinear block for the concentration of
species A as described above. An alternative approach
relies on the generic FMU/Pyomo interface described in
the Introduction section. This approach supports any
FMU, not just FMUs generated by Modelon Impact’s
steady-state interface. This is demonstrated with a generic
FMU based on the model shown in Figure 6 and uses the
generic_pyomo_model method of the FMU/Pyomo
interface. Notice that the ca variable is no longer an input
but is now an internal variable that will be resolved by the
methods within the FMU.

Figure 11. Comparable problem statement for the CSTR system
using the generic FMU/Pyomo interface.

Because generic FMUs can have time varying equations,
the simulate method of the PyFMI FMU object is used to
evaluate the variables. For model exchange FMUs this
will attach an external DAE (differential algebraic
equation) solver to integrate forward in time from zero to
some user defined final time. For co-simulation FMUs,
the DAE solver is internal so the simulate method requests
the solver step forward from zero to the final time. The
values returned to the optimization solver (e.g. Ipopt) are
the values at the end of the simulation, even if steady-state
conditions have not been reached. This also means that
the Jacobian must be computed numerically.

Passing this problem to the solver results in a failed
solution because the maximum number of iterations is
reached. Adding a constraint on the upper bound of the
iteration variable, sv, helps resolve this issue.

Figure 12. Defining the upper bound on the iteration variable to
resolve failed solutions.

With an upper limit on the iteration variable, the solution
now converges to the same solution as before but requires
more than 2000 iterations.

Notice the iteration variable, sv, is on the order of 1.0
while the output concentration variable, cb, is on the order
of 1000. This can significantly affect the accuracy of the
Jacobian, especially when it is computed through the
finite difference. Instead of applying a bound on the
iteration variable, we can define better nominal values of
the variables. The FMU/Pyomo interface will then scale
the inputs, outputs, and Jacobian elements based on these
nominal values.

Figure 13. Defining a nominal attribute for the output variable
of the CSTR

In this case the solver converges to the solution much
faster, although still not as fast as the case when an
analytic Jacobian is used.

The last example using the CSTR model demonstrates the
same problem but with a transient model. In this example
the species concentrations are states of the differential
equation system that evolve in time.

Figure 14. Modelica definition of the CSTR system that
includes transient effects.

115OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Simulating this for 1 second demonstrates these
trajectories.

Figure 15. Species concentrations (vertical axis) transient
response of the CSTR system versus time (horizontal axis)

Notice that the generic_pyomo_model function is used
to define the problem statement. We also allow the
simulation to proceed longer, to ensure that steady state
conditions have been reached. Alternatively, we could
have elaborated on the Modelica model to terminate the
simulation after acceptable steady-state conditions have
been reached. The problem statement remains the same
as the other cases and the results are also comparable to
the static cases.

Figure 16. Transient CSTR optimization problem statement

Now that we have demonstrated the use of the
FMU/Pyomo interface package with the CSTR model, we
can use this for larger models. The results are shown for
two different models. The first is a model from
Modelon’s Jet Propulsion Library that simulates a steady-
state operating gas turbine engine. The sizing of the
engine is designed to meet the requirements for an
example aircraft under the conditions of a rolling-take-off
(RTO), top-of-climb (TOC), and cruise (CRZ) conditions.
These requirements are constraints within the model and
simultaneous evaluation of these three cases relies on
three instances of the engine component within a single
simulation model. This is based on the multi-point
methodology defined by Kyprianidis et al. (2014). The
optimization problem is to minimize the specific fuel
consumption under cruising conditions.

Figure 1. The Steady-state gas-turbine design model used for

testing.

Sweeping some of the variables of interest and plotting the
specific fuel consumption for the cruising case shows the
local minimum (the solution that the solver will search
for) occurs between 0.94 and 0.96 of the swept variable.

Figure 17. Specific fuel consumption (vertical axis) versus
swept by-pass ratio constraint on the velocity ratio tuning
variable (horizontal axis)

Defining the optimization problem is the same as for the
CSTR system but with specifics for the FMU and its
variables. The variables to tune are the cold-to-hot air
velocity ratio, the overall pressure ratio of the engine, and
the specific thrust. The nominal values for these (used for
the normalization) are 1, 50, and 100 respectively.

116 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Figure 18. Gas turbine specific fuel consumption minimization
problem statement

The total problem involves 112 variables. Most of the
iteration variables are the constraints needed to solve the
design problem that requires the engine to meet the
specific performance requirements. The solver converges
to the solution within about 60 iterations.

The last model described in this paper defines an open-
cycle parallel double-effect absorption heat pump
(DEAHP) coupled to a multi-effect distillation (MED)
system for brine desalination. In this system, the DEAHP
acts as a steam recompression unit that improves the
coupled system’s overall efficiency proportionally to the
coefficient of performance of heating (COPh).

The optimization problem is to maximize the COPh of the
DEAHP by varying the strong and weak mass fraction
concentrations of the absorption fluid Xstrong and
Xweak, respectively.

Figure 2. The Steady-state design model for a double effect

absorption heat pump from (Stuber et al., 2015)

Using the new FMU/Pyomo interface package to define
an optimization problem to solve with Ipopt results in
convergence to a solution of 0.43 and 0.25 for Xstrong
and Xweak, respectively with a COPh of 2.66. In this test,
the starting values for Xstrong and Xweak were 0.588
and 0.549, respectively.

Sweeping the concentrations in simulation and observing
the COPh can be used to verify the solution. Notice there

is a local maximum in Xstrong and a maximum at the
lower boundary of Xweak. This is consistent with the
solution found by Ipopt.

Figure 19. Example sweep of the strong and weak
concentrations (horizontal axes) and the resulting coefficient of
performance (vertical axes) that demonstrates the optimization
problem’s solution.

Table 1 lists some statistics related to the different models
described in this paper. The key for the rows is shown in
Table 2.

Table 1. Statistics per model.
CSTR
Python

CSTR
FMU

Gas
Turbine

DEAHP

4 4 2382 621

4 1 109 30
1 1 3 2
13 16 60 24

Table 2. Row key for Table 1

1 Model implementation
2 Variable count
3 Equality constraint count
4 Optimization (tuner) variable count
5 Optimization iteration count

6 Conclusions
The Pyomo interface package has been used to solve both
small and large optimization problems. There are two
additional findings from this work. The first is the
sensitivity of success to converge to a solution, on the

117OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Jacobian. As described in the Test Models and Results
section, small changes in the method used to estimate or
compute the Jacobian had a significant effect on the
ability of the solver to find a solution. This was
demonstrated with a small example problem but is
especially true as the models become larger.

Another significant finding was the importance of
normalizing the variables. Even small models can benefit
from this. Using the nominal attributes to normalize
variables balances the sensitivity of individual variables
so they do not dominate the convergence criteria. The
current implementation uses the nominal attributes of the
FMU variables automatically to normalize both the
outputs and the Jacobian (using nominal attributes of both
inputs and outputs).

Finally, models that can produce failed simulations or
solutions can reduce the robustness of the solver. The
current implementation returns a Numpy NaN value to the
optimization solver in these cases. A possible
improvement to this is proposed in the next section.

7 Future Work
Future developments for this work include:

• Native support for parameter tuning (including
calibration) with respect to experimental data

• Support for dynamic optimization
• Sensitivity analysis to help the user identify tuner

variables
• Improved support for failed solutions
• Testing and support for additional problem types

and solvers (in addition to Ipopt that was used for
this current work)

In addition to the above list of improvements to the Pyomo
Interface Package, there is one item related to FMU
creation. The Pyomo Interface Package natively supports
FMUs generated with Modelon’s steady-state interface
for solving NLP problems. A proposed extension, similar
to the steady-state interface, would be automatic
conversion of mathematical operators with restricted
domains into a more optimization friendly format. As
described in Wächter 2009, mathematical functions with
restricted domains can usually be converted into
inequality constraints. It should be possible for Modelica
translators to make this conversion automatically. This
would make it easy for model developers to write the
equations in a familiar format for normal simulation but
export the FMU targeted for optimization when needed,
similar to exporting an FMU for steady state evaluation.

Disclaimer

The views expressed herein do not necessarily represent
the views of the U.S. Department of Energy or the United
States Government.

Acknowledgements
This material is based upon work supported by the
National Alliance for Water Innovation (NAWI), funded
by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy (EERE), Industrial
Efficiency and Decarbonization Office, under Funding
Opportunity Announcement DE-FOA-0001905.

A special thanks to Professor George Bollas from the
University of Connecticut for also supporting this work.

References
Åkesson, Johan and K-E Årzén, Magnus Gäfvert, Tove

Bergdahl, Hubertus Tummescheit (2011). “Modeling and
optimization with Optimica and JModelica. org—Languages
and tools for solving large-scale dynamic optimization
problems”, Computers & Chemical Engineering, Volume 34,
Issue 11, pp. 1747-1849.

Andersson, Joel and Johan Åkesson, Francesco Casella, Moritz
Diehl (2011). "Integration of CasADi and JModelica.org". In:
Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical University; Dresden; Germany,
pp. 218-231. DOI: 10.3384/ecp11063218.

Baharev, Ali and Hermann Schichl, Arnold Neumaier (2016).
“Tearing systems of nonlinear equations I. A survey.”

 URL: https://api.semanticscholar.org/CorpusID:51987111
Bachmann, Bernhard and Lennart Ochel, Vitalij Ruge, Mahder

Gebremedhin, Peter Fritzson, Vaheed Nezhadali, Lars
Eriksson, and Martin Sivertsson (2012). “Parallel multiple-
shooting and collocation Optimization with OpenModelica”.
In: Proceedings of the 9th International Modelica Conference.
Linköping University Electronic Press, September 2012, pp.
659-668. DOI:10.3384/ecp12076659.

Bryson, Arthur E. Jr. (1999), Dynamic Optimization, Addison
Wesley Longman, Inc. ISBN: 0-201-59790-X.

Bynum, Michael L. and Gabriel A. Hackebeil, William E. Hart,
Carl D. Laird, Bethany L. Nicholson, John D. Siirola, Jean-
Paul Watson, David L. Woodruff (2021). “Pyomo –
Optimization Modeling in Python” 3rd Edition, 2021, ISSN
1931-6828.

Fletcher, R (1987). "Practical Methods of Optimization", 2nd ed.
John Wiley and Sons. ISBN: 0-471-49463-1.

Kyprianidis, Konstantinos G. and Andrew M. Rolt, Tomas
Grönstedt (2014). “Multi-Disciplinary Analysis of a Geared
Fan Intercooled Core Aero-Engine”, Journal of Engineering
for Gas Turbines and Power, January 2014

Magnusson, Fredrick and Johan Åkesson (2015). “Dynamic
Optimization in JModelica.org”. In: Processes 2015, 3, pp.
471-496; DOI:10.3390/pr3020471.

Modelica Association (2024), FMI website, https://fmi-
standard.org.

Modelon Impact Help Center (2024), website URL:
https://help.modelon.com/latest/reference/oct/#dynamic-
optimization-of-daes-using-direct-collocation-with-casadi.

118 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

OpenModelica (2024) website URL:
https://openmodelica.org/doc/OpenModelicaUsersGuide/late
st/optimization.html.

Rodriguez, Jose Santiago and Michael Bynum, Carl Laird,
Bethany Nicholson, Robby Parker, John Siirola (2024).
“PyNumero is a package for developing parallel algorithms
for nonlinear programs”,
https://pyomo.readthedocs.io/en/stable/contributed_package
s/pynumero/index.html

Stuber, Matthew D. and Christopher Sullivan, Spencer A. Kirk,
Jennifer A. Farrand, Philip V. Schillaci, Brian D. Fojtasek,
Aaron H. Mandell (2015). “Pilot demonstration of
concentrated solar-powered desalination of subsurface
agricultural drainage water and other brackish groundwater
sources” Desalination, Volume 355, 2015, Pages 186-196,
https://doi.org/10.1016/j.desal.2014.10.037.

Ruge, Vitalij and Willi Braun, Bernhard Bachmann, Andrea
Walther, and Kshitij Kulshreshtha (2014). "Efficient
implementation of collocation methods for optimization
using OpenModelica and adol-c". In: Proceedings of the 10th
International Modelica Conference. Modelica Association
and Linköping University Electronic Press, March 2014, pp.
1017-1025. DOI:10.3384/ecp140961017.

Wächter, Andreas and L. T. Biegler (2006). “On the
Implementation of a Primal-Dual Interior Point Filter Line
Search Algorithm for Large-Scale Nonlinear Programming”,
Mathematical Programming, 106(1), pp. 25-57, preprint at
http://www.optimization-
online.org/DB_HTML/2004/03/836.html

Wächter, Andreas (2009). “Short Tutorial: Getting Started With
Ipopt in 90 Minutes”, In Combinatorial Scientific Computing.
Dagstuhl Seminar Proceedings, Volume 9061, pp. 1-17,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009),
https://doi.org/10.4230/DagSemProc.09061.16

119OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 119

Development and Validation of a Water-to-Air Heat Pump Model
Using Modelica

Yuhang Zhang1 Mingzhe Liu1 Zhiyao Yang1 Caleb Calfa1 Zheng O’Neill1

1J Mike Walker’ 66 Department of Mechanical Engineering, Texas A&M University, USA,
{yuhang.zhang,mingzhe.liu,z.yang,cjcalfa,zoneill}@tamu.edu

Abstract
Water-to-air heat pumps are widely used Heating, Ven-
tilation, and Air Conditioning (HVAC) devices due to
their versatility and energy efficiency. However, there is
a scarcity of readily available Modelica models that sup-
port reversible operation (heating and cooling modes), use
compressor speed as the control signal, and accurately
predict the system performance. To address this gap, this
paper presents a speed-input water-to-air heat pump model
developed using Modelica. Performance curves are em-
ployed to represent the functionality and predict the sys-
tem’s capacity and power usage. To validate the pro-
posed model’s effectiveness, manufacturer-provided data
are used to generate the performance curves. The model,
based on these curves, is then used to simulate testing
conditions, which are implemented in a real heat pump
testbed. The comparison between simulated and mea-
sured values shows that the errors during normal opera-
tion stages are within an acceptable range, demonstrating
the effectiveness of the developed water-to-air heat pump
model.
Keywords: Modelica, Water-to-air heat pump, Perfor-
mance curve, Validation

1 Introduction
Water-to-air heat pumps are versatile HVAC devices capa-
ble of providing both heating and cooling by transferring
heat between water and air. They have gained wide ap-
plications due to their energy efficiency, ability to reduce
operating costs, and environmentally friendly character-
istics. Unlike air-source heat pumps (ASHP) which ex-
change heat from the outside air, water source heat pumps
(WSHP) use water as its heat source or heat sink to pro-
vide heating or cooling. The water source could be a lake,
river, pond, groundwater, or a closed-loop system where
water circulates through buried pipes. Because water has
a higher heat capacity and generally maintains more stable
and moderate temperatures compared to air, WSHPs tend
to be more energy-efficient and weather-independent. In
addition, WSHPs are favored for their quiet operation and
long lifespan (Chua, Chou, and Yang 2010; Gaur, Fitiwi,
and Curtis 2021). These characteristics make WSHPs be-
come a good choice for both residential and commercial
buildings, especially where a reliable water source is avail-

able or where ground temperatures are stable.

In particular, heat pump-based heating and cooling sys-
tems are increasingly being integrated into building-to-
grid systems for electrifications. This integration allows
buildings equipped with these heat pumps to participate
in demand response programs, where the operation of the
HVAC system can be adjusted based on the needs of the
grid. During periods of peak demand, the heat pumps can
reduce their load or shift their operation to off-peak hours,
contributing to grid stability and enabling a better use of
renewable energy sources. This capability not only pro-
vides economic benefits to building owners through in-
centives and reduced energy bills, but also supports the
broader goal of creating a more resilient and sustainable
energy infrastructure.

As modeling is a widely acknowledged tool for
better understanding, analyzing, and applying heat
pumps, numerous studies have been conducted on the
development and improvement of heat pump models
for various applications (Montagud, Corberán, and
Ruiz-Calvo 2013; Baccoli, Mastino, and Rodriguez
2015; Huang et al. 2019). Among these, Modelica,
an object-oriented, equation-based language, has been
widely adopted in the modeling of heat pumps due
to its ability to directly incorporate physical laws into
models, facilitate reusable components, and support
multi-domain simulations (Fritzson and Engelson 1998).
For example, the Modelica Buildings library’s Build-
ings.Fluid.HeatPumps.EquationFitReversible is built
upon the curves-based model from EnergyPlus (Crawley
et al. 2001) and mainly used for water to water heat pump;
the control input of this model is the set point for the
leaving fluid temperature (Wetter et al. 2014). The IDEAS
library (Jorissen et al. 2018) developed by KU Leuven
and 3E offers models of air-to-air and water-to-water heat
pumps, but none of aforementioned heat pump models
incorporate the compressor speed as a control variable
for the heat pump with variable speed drivers, while it is
anticipated that inverter-based heat pump will play more
roles for electrifying buildings. Additionally, the AixLib
(Maier et al. 2024) developed a generic grey-box heat
pump model (AixLib.Fluid.HeatPumps.HeatPump)
that employs empirical data for modeling the refrigerant
cycle. This model enables the heat pump on/off control
and inverter based reversible operation. However, this

120 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207119 DOI

model lacks support for water-to-air heat pump applica-
tions. The DLR ThermoFluid Stream Library (Zimmer,
Meißner, and Weber 2022) provides robust modeling of
complex thermofluid architectures including heat pumps.
However, it focuses more on detailed vapor compression
component modeling, which can be computationally
inefficient for overall system performance. Moreover, this
model has not yet been validated.

To the best of the authors’ knowledge, there is no read-
ily available and open-source variable-speed water-to-air
heat pump model in Modelica that simultaneously meets
the following requirements: 1) utilizes the compressor
speed as a control signal, 2) seamlessly switches between
heating and cooling modes, 3) predicts power usage and
capacity, including both sensible and latent components.
4) has been validated using experiment measurements.

The development of such a model is crucial. Since the
performance of variable-speed heat pump systems is di-
rectly influenced by compressor speed, this model enables
more accurate simulations to predict overall system per-
formance, including power usage and both sensible and
latent heat capacity under various speed conditions. This
is particularly important for control applications, where
utilizing compressor speed as a control variable provides
a more direct method of adjusting system performance.
Modulating compressor speed directly affects the system’s
capacity and energy consumption, allowing for more pre-
cise management of the heat pump’s operation. By incor-
porating compressor speed into the model, engineers can
develop and test advanced control strategies that dynam-
ically respond to changing conditions, thereby improving
system efficiency and occupant comfort.

The lack of such a model also limits the ability to fully
explore building-to-grid integration. A model with com-
pressor speed control could be used to simulate the heat
pump’s behavior in response to grid signals, helping to de-
sign systems that can participate in demand response pro-
grams and contribute to grid stability. This integration is a
key component of creating energy-efficient buildings that
can interact seamlessly with the broader energy grid. In
summary, developing a reversible water-to-air heat pump
model that takes the compressor speed as a control sig-
nal in Modelica is not only necessary for improving the
performance and efficiency of HVAC systems but also for
advancing research in building energy management and
grid integration. Therefore, in this study, a variable-speed
reversible water-to-air heat pump model developed using
Modelica is presented. The developed water-to-air heat
pump model is based on the performance curve method
and is capable of supporting the reversible operation (i.e.,
heating and cooling modes), taking the compressor speed
as the control signal to facilitate the investigation of ad-
vanced control methods.

The paper is organized as follows: Section 2 introduces
the model development process, beginning with a concise
introduction to the major components and working princi-
ples of water-to-air heat pumps. It then details the Model-

ica implementation, including interfaces and performance
curves. In Section 3, the validation process is described,
where simulation results using the developed Modelica
model are compared with measurements from a real heat
pump testbed. In Section 4, the applicability of the devel-
oped model across various heat pump operating stages is
discussed. Finally, Section 5 concludes this study.

2 Modelica Development
2.1 Overview of Water-to-Air Heat Pumps
A typical water-to-air heat pump consists of several key
components: a compressor, an expansion valve, two heat
exchangers (a refrigerant-to-water heat exchanger and a
refrigerant-to-air heat exchanger), and a reversing valve.
Among these, the compressor, expansion valve, and the
two refrigerant heat exchangers are the primary compo-
nents of the refrigeration cycle, which provides the es-
sential functions of heating and cooling. The reversing
valve, located between the compressor and the refrigerant-
to-water heat exchanger, enables the reversal of refrigerant
flow, allowing the system to switch between heating and
cooling modes. Figure 1 illustrates the schematic of the
heat pump’s heating and cooling cycles. In heating mode,
the heat pump extracts heat from the water side (acting as
the evaporator) and releases heat into the air side (acting
as the condenser), resulting in an increase in room temper-
ature. Conversely, in cooling mode, the reversing valve re-
verses the refrigerant flow, causing the water side to func-
tion as the condenser and the air side to function as the
evaporator. Heat is then transferred from the indoor air to
the refrigerant, thereby lowering the indoor air tempera-
ture.

2.2 Modelica Implementation
Despite including all the aforementioned components in
the water-to-air heat pump, the focus of this study is to
predict the overall heat pump performance rather than the
performance of individual components. Therefore, a va-
por compression cycle with each component was not mod-
eled. Instead, performance curves are used to represent
the functionality of water-to-air heat pumps due to their

Figure 1. Schematic of the heating and cooling cycles in a re-
versible water-to-air heat pump (Trane Technologies 2024a)

121OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207119

simplicity in implementation and wide application (Ying
Zhang et al. 2020).

The proposed model was developed based on the fol-
lowing assumptions:

1. The model uses heating/cooling/off signals and the
compressor speed as control inputs.

2. The steady-state performance of the heat pump, in-
cluding total capacity (Q̇) and Energy Input Ra-
tio (EIR), is computed using polynomial equations.
These equations account for the mass flow fractions
on both the water and air sides, the inlet temperatures
on both sides, and the compressor speed ratio.

Figure 2 shows the Modelica diagram of the
developed heat pump model. To simplify and
expedite the modeling process, DX coil models
(Buildings.Fluid.DXSystems) from the Model-
ica Buildings Library (version 10.0.0) are reused and
modified to develop the heat pump model in this study.
(Wetter et al. 2014). Two data records (datCoiHea and
datCoiCoo) are included in the model to record the
nominal values and performance curves for heating mode
and cooling mode, respectively.

Figure 2. Diagram of the heat pump model in Dymola.

Table 1 lists all the connectors of the developed heat
pump model. The model inputs include system operating
mode (uMod), compressor speed (speRat). Both water-
side and airside inlet information, such as flow rates, tem-
peratures, and humidity ratios, are read from fluid ports.
The model then calculates the real-time system capacity
and power usage based on this information. These outputs
can also be read from the interfaces shown in Figure 2.

The proposed model calculates the steady-state total ca-
pacity (Q̇) and energy input ratio (EIR) at off-designed
conditions based on Equation 1 and Equation 2, respec-
tively. Both these equations are the product of functions

Table 1. Connectors of the developed heat pump model.

Type Name Description

FluidPort_a port_a Fluid connector for the
inlet of the load side

FluidPort_b port_b Fluid connector for the
outlet of the load side

FluidPort_a portSou_a Fluid connector for the
inlet of the source side

FluidPort_b portSou_b Fluid connector for the
outlet of the source
side

input RealInput speRat Speed ratio [1]
input IntegerInput uMod Controlinput signal,

cooling mode=-1,
off=0, heating
mode=+1

output RealOutput P Electrical power
consumed by the unit
[W]

output RealOutput QSen_flow Sensible heat flow rate
of the load side [W]

output RealOutput QLat_flow Latent heat flow rate
of the load side [W]

that account for changes in the inlet temperatures of both
the source side (waterside) (θloa,in) and load side (airside)
(θsou,in), changes in mass flow rates of both the source side
(ṁsou) and load side (ṁloa) and compressor speed ratio
(speRat).

Q̇
(
θloa,in,θsou,in, f f loa, f fsou

)
=

capθ
(
θloa,in,θsou,in

)
× capFFLoa (f f loa)×

capFFSou (f fsou)× capspe (speRat)× Q̇ (1)

EIR
(
θloa,in,θsou,in, f f loa, f fsou

)
=

EIRθ
(
θloa,in,θsou,in

)
×EIRFFLoa (f floa)×

EIRspe (speRat)/COPnom (2)

where θloa,in is the inlet temperature of the load side (air-
side), which is the dry-bulb air temperature if the coil
is dry or the wet-bulb air temperature if the coil is wet.
θsou,in is the inlet temperature of the source side (water-
side). f f loa is the normalized mass flow rate at the load
side and is calculated as ṁloa/ṁloa,nom. f f sou is the nor-
malized mass flow rate at the source side and is calculated
as ṁsou/ṁsou,nom. ṁloa,nom is the nominal mass flow rate at
the load side, and ṁsou,nom is the nominal mass flow rate at
the source side. The capacity modifiers capθ , capFFLoa,
capFFSou, capspe and the EIR modifiers EIRθ , EIRFFLoa,
EIRFFSou, EIRspe are functions of inlet temperatures, load
side flow rate, source side flow rate, and compressor speed
ratio, respectively. These modifiers can be calculated us-
ing Equation 3 to Equation 10:

122 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207119 DOI

capθ (θloa,in,θsou,in) = a1 +a2θloa,in +a3θ 2
loa,in+

a4θsou,in +a5θ 2
sou,in +a6θloa,inθsou,in

(3)

capFFLoa (f floa) = b1 +b2 f floa +b3 f f 2
loa+

b4 f f 3
loa + . . . (4)

capFFSou (f fsou) = c1 + c2 f fsou + c3 f f 2
sou+

c4 f f 3
sou + . . . (5)

capspe (speRat) = d1 +d2speRat +d3speRat2 + . . .
(6)

EIRθ (θe,in,θc,in) = e1 + e2θloa,in + e3θ 2
loa,in+

e4θsou,in + e5θ 2
sou,in + e6θloa,inθsou,in

(7)

EIRFFLoa (f floa) = f1 + f2 f floa + f3 f f 2
loa+

f4 f f 3
loa + . . . (8)

EIRFFSou (f fsou) = g1 +g2 f fsou +g3 f f 2
sou+

g4 f f 3
sou + . . . (9)

EIRspe (speRat) = h1 +h2speRat +h3speRat2 + . . .
(10)

The coefficients used in the above performance curves
can be obtained by fitting the performance data provided
by manufacturers or from on-site measurements. It should
be noted that although the form of the performance curves
is identical for heating and cooling operation modes, dif-
ferent coefficients should be used and fitted respectively.

3 Validation
3.1 Heat Pump Testbed
To validate the effectiveness of the developed heat pump
model, measurement data were gathered from an actual
heat pump testbed situated at Texas A&M University and
then compared with the simulated values using the pro-
posed heat pump model.

Figure 3 shows a photograph of the heat pump testbed.
The heat pump used in the testbed is a 2-ton water-to-
air heat pump. Load emulators are equipped within the
testbed to emulate various testing conditions. Multiple
sensors are installed to collect and monitor real-time inlet
and outlet conditions for both the waterside and airside,
compressor speed, and unit power consumption. A more
detailed introduction to the testbed can be found in (Calfa
et al. 2023). Table 2 shows part of the rated information
from the product catalog (Trane Technologies 2024b).

3.2 Performance Curves from Manufacturer
Datasets

The performance curves of the heat pump model are fitted
using the dataset provided by the manufacturer, which in-
cludes various inlet conditions for both the waterside and

Table 2. Rated information of the studied heat pump model.

Parameter Value

Water side flow rate [kg/s] 0.39
Air side flow rate [m3/s] 0.44
Cooling capacity [kW] 7.21
Cooling COP [-] 5.4
Heating capacity [kW] 8.88
Heating COP [-] 6.1

airside. The range of each normalized dependent variable
in the performance curves is shown in Table 3.

Table 3. Rated information of the studied heat pump model.

Variable Range

Normalized water flow rate [-] [0.65, 1]
Normalized air flow rate [-] [0.46, 1]
Air inlet dry bulb temperature [°C] [21.1, 32.2]
Air inlet wet bulb temperature [°C] [11.3, 23.8]
Water inlet temperature [°C] [7.2, 35]
Compressor speed ratio [-] [0.5, 1]

The data sets are divided into two distinct subsets: train-
ing and test sets, with an 80:20 split ratio. The curve fitting
process utilizes solely the data from the training set. The
generalized least squares method is used to estimate the
coefficients for the performance curves, as introduced in
Section 2. Table 4 lists part of the estimated coefficients
of performance curves as examples.

Following the training process, the fitted performance
curves are tested on the test set to evaluate the fitting ac-
curacy. Figure 4 presents the model performance for cool-
ing and heating operations using the test set. The results
indicate that the overall fitting of the heat pump’s perfor-
mance is satisfactory for both heating and cooling con-
ditions, with most prediction errors falling within 15%.
To further quantitatively evaluate the model performance,
Normalized Mean Bias Error (NMBE) and Coefficient of
Variation of the Root Mean Squared Error (CVRMSE) are
used as performance metrics to reflect the error between
the simulated and measured values. The equations to cal-
culate NMBE and CVRMSE are shown in Equation 11
and Equation 12, respectively.

NMBE =
∑n

i=1(yi − ŷi)

n× ȳ
×100% (11)

CVRMSE =

√
1
n ∑n

i=1(yi − ŷi)2

ȳ
×100% (12)

where yi are the observed values, ŷi are the predicted val-
ues, ȳ is the mean of observed values, and n is the number
of observations.

123OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207119

Figure 3. A photograph of the heat pump testbed (Calfa et al. 2023)

HeatingCooling

Ca
pa
ci
ty

EI
R

Figure 4. Prediction performance of WSHP performance curve on the testing dataset.

Table 4. Estimated coefficients of performance curves.

Performance curve Cooling Heating

capθ (θloa,in,θsou,in) [0.4861, 0.03002, -2.128×10-4,-1.376×10-4,
-2.067×10-5, -1.994×10-4]

[0.4593, -0.0013051, -1.902×10-5,
0.01901, 4.276×10-5, -1.448×10-4]

capFFLoa (f floa) [0.7686, 0.315] [0.8935, 0.1463]
capFFSou (f fsou) [0.9856, 0.01642] [0.9213, 0.07482]
capspe (speRat) [0, 1.628, -0.4200] [0, 1.807, -0.1575]

124 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207119 DOI

Table 5 presents the performance metrics on the test
set, demonstrating the accuracy of the predictive model.
This model will then be applied to the actual measurement
dataset for additional validation.

Table 5. Performance metrics on the test set.

NMBE CVRMSE NMBE CVRMSE
Cooling Cooling Heating Heating

Capacity 0.039% 5.70% 0.159% 2.23%
EIR 0.121% 8.19% 0.039% 7.47%

3.3 Validation with Experimental Datasets
Various testing conditions are conducted in the testbed,
and data are collected accordingly. After data pre-
processing, such as excluding data points recorded during
startup/shutdown cycles, a total of 311 data points are ob-
tained for cooling mode and 181 data points are obtained
for heating mode. Figure 5 uses compressor speed as an
example to illustrate the data distribution for both manu-
facturer and measurement data. For each data point, the
monitored conditions as listed in Table 1 are used as in-
puts for the developed Modelica heat pump model. Af-
ter the simulations, the model outputs are compared with
the measurements. The compared values include heat-
ing/cooling capacity, EIR and electricity power. Figure 6
shows comparisons between simulated and measured val-
ues for capacity, EIR, and power in cooling and heating
modes, respectively. Table 6 presents the calculated per-
formance metrics.

Figure 5. Data distribution of compressor speed ratio for both
manufacturer and measurement data in cooling (top) and heating
(bottom) modes.

Table 6. Performance metrics on the measurement set.

NMBE CVRMSE NMBE CVRMSE
Cooling Cooling Heating Heating

Capacity 1.09% 3.77% 4.89% 8.22%
EIR 1.24% -5.33% 3.96% 9.77%
Power 2.96% -1.32% 5.67% 5.85%

From the comparison results, it can be observed that
the simulated values using the developed model generally
align with the observed values, and the error metrics are
within an acceptable range, validating the effectiveness
of the developed reversible water-to-air heat pump model.
The discrepancy between the simulated and measured val-
ues might arise from the following sources:

1. Model Simplifications and Assumptions: The pro-
posed heat pump model uses simplified performance
curves to represent its performance. Although the re-
sults prove its effectiveness, some inevitable model
errors arise from this simplification.

2. Measurement Errors: Due to sensor uncertainties,
measurement values can have errors, leading to dis-
crepancies. This error can be mitigated by using
highly accurate sensors.

4 Discussions
This section evaluates the effectiveness of the developed
WSHP model by comparing continuous testing conditions
gathered from two full days of operation—one focused
on cooling and the other on heating. Unlike the valida-
tion section which only considers normal steady-state run-
ning stages, the testing conditions here encompass all heat
pump operation stages, including startup, normal steady-
state running, and shutdown phases. Data were sampled
at 5-second intervals, with a rolling average applied—5
minutes for the heating day and 3 minutes for the cooling
day—resulting in 288 testing points for cooling and 480
for heating. The model required inputs detailed in Table 1
are obtained from onsite measurements and then fed into
the developed model. The simulation outputs are subse-
quently compared with the measured values, specifically
focusing on system capacity as a comparison example.
Figure 7 presents the comparison results for two days with
cooling and heating operations, respectively. The figure
uses a yellow background to denote continuous steady-
state operation stages and a pink background to highlight
other stages, including startup, shutdown cycles, and off
periods.

From Figure 7, it can be observed that during normal
steady-state operation periods, the predicted system ca-
pacity closely matches the measured values. However,
during startup and shutdown cycles, the model fails to cap-
ture the transient variations for the system capacity, lead-
ing to discrepancies between the predicted and measured

125OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207119

HeatingCooling

Ca
pa
ci
ty

EI
R

Po
we
r

Figure 6. Comparison between simulated and measured values for system capacity, EIR, and power.

values. The comparison results demonstrate the applica-
tion restrictions of the proposed heat pump model. As
the performance curves adopted in the proposed model are
only valid during stable operation conditions, this model
is not suitable for simulating transient heat pump perfor-
mance, such as startup and shutdown cycles. Therefore,
other modeling approaches should be considered if tran-
sient behaviors are expected. In particular, behaviors from
Pulse Width Modulation (PWM) to adjust the system ca-
pacity need to be incorporated.

5 Conclusions and Future Work
In this paper, a new inverter-based variable-speed water-
to-air heat pump model developed in Modelica is pre-
sented. This model is expanded and modified based on
the DX coil model provided in the Modelica Buildings Li-
brary. Using multiple performance curves to represent the
overall functionality of the heat pump, it is able to simu-
late the heat pump’s total capacity and power usage under
different operational modes (heating/cooling) and variable
speed scenarios. The effectiveness of the proposed model

is validated through a comparison between simulated val-
ues and measurements from a real heat pump testbed.
The simulated capacity, EIR, and power correspond well
with measurements for both heating and cooling condi-
tions, demonstrating the model’s capability in predicting
variable-speed heat pump performance.

Future work in the following aspects can be considered:

• Improving Sensible Heat Ratio (SHR) Prediction:
Although the current model performs well in predict-
ing the total cooling capacity, the simulated sensible
heat ratio does not align well with measurement val-
ues. SHR, which describes the ratio of sensible heat
load to total heat load, needs further refinements to
improve the model performance.

• Extending Application Scenarios: The proposed heat
pump model can be applied to additional scenar-
ios, such as building-to-grid systems or district heat
pump systems (Yuhang Zhang et al. 2024). Further
verification of its effectiveness in these contexts is
needed.

126 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207119 DOI

Figure 7. Comparisons between simulated and measured sys-
tem capacity over two whole days (top: cooling, bottom: heat-
ing).

Acknowledgements
This work is partly supported by the National Science
Foundation (2309030). The authors would also like to
acknowledge the support and assistance provided by the
manufacturer Trane.

References
Baccoli, Roberto, Costantino Mastino, and Giuseppe Rodriguez

(2015). “Energy and Exergy Analysis of a Geothermal Heat
Pump Air Conditioning System”. In: Applied Thermal Engi-
neering 86, pp. 333–347. DOI: 10 . 1016 / j . applthermaleng .
2015.03.046.

Calfa, Caleb et al. (2023). “Performance Assessment of a Real
Water Source Heat Pump within a Hardware-in-the-Loop
(HIL) Testing Environment”. In: Science and Technology for
the Built Environment 29.10, pp. 1011–1026. DOI: 10.1080/
23744731.2023.2261810.

Chua, K. J., S. K. Chou, and W. M. Yang (2010). “Advances in
Heat Pump Systems: A Review”. In: Applied Energy 87.12,
pp. 3611–3624. DOI: 10.1016/j.apenergy.2010.06.014.

Crawley, Drury B. et al. (2001). “EnergyPlus: Creating a New-
Generation Building Energy Simulation Program”. In: En-
ergy and Buildings. Special Issue: BUILDING SIMULA-
TION’99 33.4, pp. 319–331. DOI: 10.1016/S0378-7788(00)
00114-6.

Fritzson, Peter and Vadim Engelson (1998). “Modelica — A
Unified Object-Oriented Language for System Modeling and

Simulation”. In: ECOOP’98 — Object-Oriented Program-
ming. Ed. by Eric Jul. Berlin, Heidelberg: Springer, pp. 67–
90. ISBN: 978-3-540-69064-1. DOI: 10.1007/BFb0054087.

Gaur, Ankita Singh, Desta Z. Fitiwi, and John Curtis (2021).
“Heat Pumps and Our Low-Carbon Future: A Comprehen-
sive Review”. In: Energy Research & Social Science 71,
p. 101764. DOI: 10.1016/j.erss.2020.101764.

Huang, Shifang et al. (2019). “Performance Comparison of a
Heating Tower Heat Pump and an Air-Source Heat Pump: A
Comprehensive Modeling and Simulation Study”. In: Energy
Conversion and Management 180, pp. 1039–1054. DOI: 10.
1016/j.enconman.2018.11.050.

Jorissen, Filip et al. (2018). “Implementation and verification of
the IDEAS building energy simulation library”. In: Journal
of Building Performance Simulation 11.6, pp. 669–688.

Maier, Laura et al. (2024). “AixLib: an open-source Modelica
library for compound building energy systems from compo-
nent to district level with automated quality management”. In:
Journal of Building Performance Simulation 17.2, pp. 196–
219.

Montagud, Carla, José Miguel Corberán, and Félix Ruiz-
Calvo (2013). “Experimental and Modeling Analysis of a
Ground Source Heat Pump System”. In: Applied Energy 109,
pp. 328–336. DOI: 10.1016/j.apenergy.2012.11.025.

Trane Technologies (2024a). Ascend® Air-to-Water Heat Pump
Model ACX. https://www.trane.com/commercial/north-
america/us/en/products-systems/chillers/air-cooled-
chillers/ascend-air-to-water-heat-pump.html.

Trane Technologies (2024b). Axiom™ Horizon-
tal and Vertical Water Source Heat Pumps.
https://www.trane.com/commercial/north-
america/us/en/products-systems/packaged-units-and-
split-systems/water-source-heat-pumps/high-ef-horizontal-
vertical-wshp.html.

Wetter, Michael et al. (2014). “Modelica Buildings Library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Zhang, Ying et al. (2020). “Study on Model Uncertainty of Wa-
ter Source Heat Pump and Impact on Decision Making”.
In: Energy and Buildings 216, p. 109950. DOI: 10 .1016 / j .
enbuild.2020.109950.

Zhang, Yuhang et al. (2024). “Temperature Control Strategies
for Fifth Generation District Heating and Cooling Systems: A
Review and Case Study”. In: Applied Energy 376, p. 124156.
DOI: 10.1016/j.apenergy.2024.124156.

Zimmer, Dirk, Michael Meißner, and Niels Weber (2022). “The
DLR ThermoFluid Stream Library”. In: Electronics 11.22,
p. 3790. DOI: 10.3390/electronics11223790.

A Modelica Implementation of an Organic Rankine Cycle

Hongxiang Fu1 Ettore Zanetti1 Jianjun Hu1 David Blum1 Michael Wetter1

1Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, USA,
{hcasperfu,ezanetti,jianjunhu,dhblum,mwetter}@lbl.gov

Abstract
Organic Rankine cycle (ORC) systems generate power
from low-grade heat sources, such as geothermal sources
and industrial waste heat. A key feature is that a working
fluid is selected to match the temperature of the source.
With the vast pool of candidate working fluids comes the
challenge of developing a large number of robust ther-
modynamic media models. We implemented a subcriti-
cal ORC model in Modelica that uses working fluid data
records and interpolation schemes in lieu of thermody-
namic medium evaluation for energy recovery estimation.
This is a component model that can be integrated into a
larger energy system model. It does not require detailed
thermodynamic, heat transfer, or machine analysis. Our
ORC model fills a gap where working fluids are ready to
choose or easy to add, and at the same time can be inte-
grated into an energy system.
Keywords: organic Rankine cycle, media model, compo-
nent model

1 Introduction
Organic Rankine cycle (ORC) systems have been an im-
portant waste heat recovery technology used to generate
power from low-grade heat sources, such as geothermal
sources and industrial process waste heat. It is particu-
larly valuable to building and district energy applications,
because in these areas both the electric power generated
by the expander and heat rejected from the condenser can
be used. Under the current background of decarbonisation
(U.S. DOE 2024), it is valuable to model such systems for
utilisation of renewable energy in district energy systems
design.

ORC systems typically use a working fluid whose boil-
ing point is matched to a specific waste heat source (U.S.
DOE 2021). This versatility also poses a significant chal-
lenge: Developing robust and computationally efficient
medium models for a wide range of candidate working
fluids is a time-consuming and complex task. To accom-
modate a wide range of heat sources, including geother-
mal sources at 80◦C to biomass sources at 500◦C, there
can be hundreds of potentially suitable substances (Bao
and Zhao 2013). Studies on working fluid selection rou-
tinely examined tens of candidates. For example Saleh
et al. (2007) investigated 31 pure fluids, and the number
goes up substantially if mixtures were considered due to
the possibility of combinations and mixing ratios (Abadi

and Kim 2017).
There are existing open-source Modelica libraries

that support modelling of thermodynamic cycles. The
DLR ThermofluidStream library (Zimmer 2020; Zimmer,
Meißner, and Weber 2022) has five refrigerant models that
can be used for ORC (as of Version 1.1.0). It provides
a helpful medium model template, but defers the imple-
mentation of additional robust models to the user, which
remains challenging for non-experts. The ThermoPower
library (Casella and Leva 2005) provides component mod-
els as well as control blocks suitable for thermodynamic
cycle and system modelling. However, it is not specifi-
cally geared towards ORC modelling and additional com-
ponent and medium models are needed. The ThermoCy-
cle library (Quoilin, Desideri, et al. 2014; Oliveira, Iten,
and Matos 2022) has Rankine and Brayton cycle models
with detailed components such as heat exchangers and tur-
bines, as well as control blocks. However, it only supports
the steam cycle and not the ORC. It also requires exter-
nal dependency for the medium models through the Mod-
elica ExternalMedia library (Modelica 3rd-party libraries
2023) to the open-source software CoolProp (Bell et al.
2014) and the commercial software FluidProp (Asimptote
2023).

Multi-phase fluid property computations needed for
ORC models are numerically challenging because of
sharp derivative changes at phase transition. Naïve in-
tegration with detailed medium models can lead to long
computation times and convergence problems. Litera-
ture has reported that, using professional software such
as the Modelica ExternalMedia library for medium prop-
erty computations was not enough. Interpolation meth-
ods at the phase transitions led to one order of magnitude
shorter simulation time (Quoilin, Van Den Broek, et al.
2013; Twomey 2016).

Because of these challenges, it is understandable that
we have not found an open-source ORC model with a col-
lection of medium models that do not require use of an
external code for media calculations. This is a drawback
because selecting a working fluid with properties match-
ing the waste heat source is a key step in the ORC system
design. The following gap exists in the literature: Stud-
ies with a large pool of working fluids are usually lim-
ited at thermodynamic analysis; in the meantime, studies
that performed detailed machine analysis or control de-
signs often either only used one specific working fluid or
resorted to external code for medium models. We there-

127OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 127

fore report a Modelica implementation of the ORC model
with energy system integration that comes with ready-to-
use and easy-to-add working fluid models to fill this gap.
Our method is based on data records of working fluids
converted from CoolProp and are used together with inter-
polation schemes in lieu of detailed thermodynamic fluid
property computation. It improves upon existing open-
source models we found in the literature as follows: First,
all code is contained in one standalone Modelica library.
Because there is no need to link to external code, usabil-
ity and compatibility are improved. Second, unlike de-
veloping full-fledged media models, adding more media
records to the package is easy for users, which suits the
nature of ORC system design, allowing consideration of
a broad pool of candidate working fluids. We have cur-
rently implemented ten fluids as listed in Table 2. We se-
lected CoolProp as the source of fluid properties because it
is open-source and offers wrappers for various languages
and environments. It is important to note that any soft-
ware that provides thermodynamic fluid properties can be
used to generate the data records. Furthermore, because
the property data are stored in Modelica records once gen-
erated, the choice of fluid property sources becomes irrel-
evant.

The vast pool of ORC working fluids manifests the
versatility and also challenges of ORC modelling. Our
method circumvents this challenge by using specialised
and interpolation-based medium models that forego com-
putationally challenging thermodynamic property evalua-
tions. The result is a fast and robust model to obtain en-
ergy recovery estimation for an ORC component that can
be integrated into an energy system for system-level de-
sign and analysis.

2 System Description
We consider a subcritical organic Rankine cycle as a bot-
toming cycle to recover energy from a hot fluid stream.
Figure 1 is its concept schematic.

The system is not controlled to track any load, electric
or thermal, and all generated power is assumed to be con-
sumed and heat dissipated. The working fluid evaporating
temperature Tw,eva is a user-specified parameter. This is in
line with the optimisation results reported by Quoilin, Au-

Evaporator

Condenser

Pump Expander

Hot Fluid

Cold Fluid

Figure 1. Schematic of the modelled ORC system.

mann, et al. (2011) and Imran et al. (2020) that keeping a
constant Tw,eva was a common and proper control strategy
for small-scale ORCs.

The heat source is variable in terms of temperature and
flow rate and an ORC system needs to accommodate to
that. To achieve this, the working fluid flow rate ṁw is
controlled to maintain the evaporator pinch point temper-
ature difference ∆Tpin,eva. The following constraints are in
place:

• The mass flow rate ṁw will not go higher than a set
upper limit. Rather, ṁw stays at the user-specified up-
per limit and ∆Tpin,eva increases beyond its set point.
This may happen when the incoming hot fluid has a
high flow rate or a high incoming temperature, i.e., it
carries more energy than the cycle is sized to process.

• When ṁw needs to go lower than a set lower limit,
ṁw is set to zero and the cycle is switched off. This
may happen when the incoming waste heat fluid has
a low flow rate or a low incoming temperature, i.e., it
carries too little energy.

On the condenser side, an upper limit is needed for the
working fluid condensing temperature Tw,con to maintain
sufficient pressure difference between evaporator and con-
denser. In some applications, a lower limit is also needed
so that the condensing pressure pcon remains above the
atmospheric pressure to prevent a vacuum. However, un-
like the evaporator control which actuates on the working
fluid pump, the condenser is controlled via the cold fluid
(Manente et al. 2013; Nami et al. 2018). Implementation
of these constraints are therefore the responsibility of the
encompassing system rather than the component.

3 Model Description
This section describes the model implemented in Model-
ica.

3.1 Assumptions
The model uses the idealised thermodynamic cycle shown
in Figure 2. Depending on the type of the fluid, the cycle
has two variants. Figure 2(a) shows a dry fluid whose sat-
urated vapour line has a section with positive slope. This
implies that no superheating is needed. Figure 2(b) shows
a wet fluid where superheating is required to avoid liquid
formation in the turbine which would cause damage. In
this case we assume that the superheating is controlled to
be minimised, i.e. the expander outlet state is exactly on
the saturation line. How this affects the calculation will
be explained in section 3.3.2. There is no subcooling out
of the condenser outlet. For any given working fluid, wet
or dry, the cycle is fully determined by the working fluid
evaporating temperature Tw,eva, working fluid condensing
temperature Tw,con, the expander efficiency ηexp, and the
pump efficiency ηpum. We will further explain how the
working fluid property influences the computation in sec-
tion 3.3.2.

128 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207127 DOI

exp,in

pin,eva

pin,con

Evaporator

Condenser
pum,in

T Th,in
ΔTpin,eva

Th,pin

Tw,eva
Th,out

Tc,out

Tc,in s

exp,out

ΔTpin,con
Tc,pin

Tw,con
pum,out

Evaporator

(b)(a)

Condenser

T

s

exp,out

exp,in

pum,in

pum,out

Th,out

Th,in

Tc,out

Tc,in

p eva

Tw,eva

Tw,con

pin,eva

pin,con

Figure 2. Idealised thermodynamic cycle used to implement the ORC. (a) For a dry fluid, the cycle has no superheating and the
expansion starts on the saturation line; (b) For a wet fluid, the cycle is superheated and the expansion ends on the saturation line.

The evaporator pinch point (PP) is at the bubble point
(where evaporation starts) and the condenser PP is at the
dew point (where condensation starts). Pan and Shi (2016)
discussed where the PP can occur at other places in a
phase-change heat exchanger, but our model assumes the
PP’s are only at these two places.

The evaporation and condensation processes are as-
sumed isobaric. This model therefore excludes any work-
ing fluid with a temperature glide, such as zeotropic mix-
tures. It also means there is no pressure loss along the
pipes.

The thermodynamic cycle of the working fluid is
steady-state, but the hot and cold fluid streams can be
configured to be either steady-state or dynamic. The
model does not perform detailed machine analysis. The
mass flow rate ṁw in the model is solved analytically
to meet the set point, subject to the described con-
straints, instead of being controlled using feedback con-
trol. For the condenser, at the component level, we use
the assert() function with AssertionLevel.error
to stop the simulation when Tw,eva −Tw,con < 1 K and we
use assert() with AssertionLevel.warning when
pcon < 101325 Pa.

3.2 Governing Equations
The evaporator heat exchange is

Q̇eva = ṁh cp,h (Th,out −Th,in), (1)

Q̇eva = ṁw (hpum,out −hexp,in), (2)

with evaporation taking place at a constant, user-specified
temperature Tw,eva. The evaporator PP difference ∆Tpin,eva
is also specified by the user, which is used in

Th,pin −Th,out

Th,in −Th,out
=

heva,pin −hpum,out

hexp,in −hpum,out
, (3)

∆Tpin,eva = Th,pin −Tw,eva. (4)

The condenser side uses the same equations with the vari-
ables replaced by their condenser counterparts where ap-

propriate:

Q̇con = ṁc cp,c (Tc,out −Tc,in), (5)

Q̇con = ṁw (hexp,out −hpum,in), (6)
Tc,pin −Tc,in

Tc,out −Tc,in
=

hcon,pin −hpum,in

hexp,out −hpum,in
, (7)

∆Tpin,con = Tw,con −Tc,pin. (8)

Equations 1 through 8 are eight equations and eight un-
knowns: Q̇eva, Th,out , ṁw, Tpin,eva, Q̇con, Tc,out , Tpin,con, and
Tw,con. Note that all enthalpy values are known through
Tw,eva, Tw,con, ηexp, and ηpum. This will be explained in
detailed in section 3.3.

The expander power Pexp, pump power Ppum, electrical
power generated Pele, and cycle thermal efficiency ηthe are

Pexp = ṁw (hexp,out −hexp,in), (9)
Ppum = ṁw (hpum,out −hpum,in), (10)
Pele = Pexp +Ppum (11)

ηthe =
−Pele

Q̇eva
. (12)

Note that all energy transfer and power terms follow the
sign convention where energy into the cycle is positive.
Therefore, Q̇eva and Ppum are positive; Q̇con and Pele are
negative.

The information flow of the model is summarised in
Table 1.

3.3 Thermodynamic Properties
The thermodynamic properties of the working fluid are not
computed by a medium model as in Modelica.Media,
but rather by interpolation schemes. Support points for
interpolation are given on the saturated liquid line, satu-
rated vapor line, and a superheated vapor line (called the
reference line), as shown in Figure 3. Each support curve
consists of an array of specific enthalpy, specific entropy,
temperature, and pressure. The temperature and pressure
arrays are paired as the corresponding saturation values of
each other. By default we set the reference line to be 30
K higher than the saturated vapor line. We determined the

129OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207127

User-specified parameters Inputs Outputs
Tw,eva Working fluid evaporat-

ing temperature,
Th,in Evaporator hot fluid in-

coming temperature,
ṁw Working fluid flow rate,

∆Tpin,eva Evaporator PP tempera-
ture difference,

ṁh Evaporator hot fluid flow
rate,

Tw,con Working fluid condens-
ing temperature,

∆Tpin,con Condenser PP tempera-
ture difference.

Tc,in Condenser cold fluid in-
coming temperature,

Th,out Evaporator hot fluid out-
going temperature,

ηexp Expander efficiency ṁc Condenser cold fluid
flow rate

Tc,out Condenser cold fluid
outgoing temperature,

ηpum Pump efficiency Q̇eva Evaporator heat flow
rate,

Q̇con Condenser heat flow
rate,

Pexp Expander power output,
Ppum Pump power consump-

tion.

Table 1. Information flow of the model

A
B

C
T

s

Isobars

Sa
tur

ate
d l

iqu
id

Sa
tu

ra
te

d
va

po
ur

Su
pe

rh
ea

te
d

va
po

ur
(R

ef
er

en
ce

 li
ne

)

1 2
3

Figure 3. Support curves for interpolation. A, B, and C are
example points on a saturation line, between the two saturation
lines, and in the superheated region, respective. 1, 2, and 3 are
example reference points on the saturation lines and the refer-
ence line used to find the example points.

values of these support points using CoolProp (Bell et al.
2014) with its Python wrapper. It should be noted that any
software that provides thermodynamic fluid properties can
be used to find these points.

3.3.1 Interpolation Schemes

We will demonstrate the interpolation schemes using Fig-
ure 3.

• On the saturation line, the specific enthalpy, specific
entropy or density, here labeled as yA, are obtained
using cubic Hermite spline interpolation as

yA = s(uA,d) (13)

where s(·, ·) is a cubic Hermite spline, uA is the in-
put property, and d are the support points. For the
saturation curves, the user can configure the model

to use either the saturation pressure or the saturation
temperature for uA; for the reference line in Figure 3,
uA is the pressure.

• If the fluid is wet, the isentropic expander outlet point
would be in between the saturation lines, shown in
Figure 4(b). In this case, its enthalpy hB is obtained
from

hB −h1

sB − s1
=

h2 −h1

s2 − s1
(14)

where sB is known because it equals the expander in-
let entropy, and all other points are on the saturation
line and therefore can be found using (13).

• C is a point in the superheated vapor region. This
is the case for the expander outlet and the isentropic
expander outlet in Figure 3(a), the expander outlet in
Figure 3(b), the expander inlet and the isentropic ex-
pander inlet in Figure 3(c). The isobaric lines are not
straight in this section, but they are assumed linear
so that (13) can be applied using the saturated vapor
line and the reference line, albeit with less accuracy.

3.3.2 Expander and Pump
Some expander and pump state points cannot be directly
found via interpolation and are estimated using the meth-
ods described in this section.

Expander Inlet and Outlet
The calculations of expander inlet and expander outlet de-
pend on the characteristics of the fluid and on the expander
efficiency ηexp.

Working fluids can be classified as dry fluids and wet
fluids according to the shape of their saturation lines and
this has significant implications on ORC system design
and efficiency (Hung 2001; Mago, Chamra, and Somayaji

130 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207127 DOI

Evaporator

(a)

Condenser

T

peva

p conη exp

s

exp,out

exp,in

exp,out,ise

Evaporator

(b)

Condenser

T

peva

p con
η exp

s

exp,out

exp,in

exp,out,ise

Evaporator

(c)

Condenser

T
peva

p con

η exp

s

exp,out

exp,in
exp,in,ise

Figure 4. Characteristics of the fluid and the cycle. (a) Dry fluid, dry cycle; (b) wet fluid, dry cycle; (c) wet fluid, wet cycle.

2007; B.-T. Liu, Chien, and C.-C. Wang 2004; Yu, Feng,
and Y. Wang 2016). On T -s charts, a dry fluid has a sec-
tion of positive slope on its saturated vapor line, as shown
in 4(a); whereas a wet fluid does not, as shown in 4(b)
and (c). Dry fluids are preferable for ORC because as the
expansion starts from the saturated vapor line, there is no
risk of condensation in the expander. Therefore, super-
heating before expansion is not needed. For a wet fluid,
whether exp,out will be under the dome depends on ηexp
as well as the location of exp, in.

With the objective to minimise the superheating tem-
perature difference ∆Tsup and with ηexp known, we distin-
guish the following two computational paths:

• We call a dry cycle a cycle in which the expansion
starts from the saturated vapor line (i.e. ∆Tsup = 0)
and ends in the superheated vapor region. For ei-
ther a dry fluid or a wet fluid undergoing such a cy-
cle, shown in Figure 4(a) and (b), the expander outlet
specific enthalpy hexp,out is obtained from

hexp,in −hexp,out

hexp,in −hexp,out,ise
= ηexp. (15)

• We call a wet cycle a cycle in which the expansion
starts from the superheated vapor region and ends on
the saturated vapor line. This way ∆Tsup assumes
the smallest value without causing condensation at
expander outlet. In this scenario, the expander inlet
specific enthalpy hexp,in is obtained from

hexp,in −hexp,out

hexp,in,ise −hexp,out
= ηexp. (16)

Pump Outlet
The pump outlet state is obtained from

hpum,out = hpum,in +wpum. (17)

In our Modelica implementation, the pump power con-
sumption is estimated from fluid work and efficiency as

Ppum =
V̇ ∆p
ηpum

. (18)

InterpolateStates
Performs interpolation of thermodynamic
states needed for the ORC.

FixedEvaporating
Fixes Tw,eva as a parameter, computes pinch
points, energy transfer, working fluid flow
rate, and implements input and output
connectors.

Extends

Cycle
Interfaces with the hot and cold fluid
streams including the fluid ports, fluid
volumes, and the pressure drops.

Instantiates

Figure 5. A screenshot from the the package browser and a
structure diagram of the implementation

Dividing both sides of (18) by ṁw yields the specific pump
work

wpum =
∆p

ρw ηpum
. (19)

Using the pump inlet state for ρw and expanding ∆p yields

wpum =
peva − pcon

ρpum,in ηpum
. (20)

This approximation takes advantage of the negligible den-
sity change of liquid to avoid property search in the sub-
cooled liquid region and an additional reference line.

In section 5.1, we will validate the above pump
work approximation assuming constant density against the
pump work estimated from the isentropic process using
CoolProp, similar to the expander work in Equation 15,
i.e.

hpum,out,ise −hpum,in

hpum,out −hpum,in
= ηpum. (21)

4 Modelica Package Structure
Inside the Modelica package, the ORC model was im-
plemented in three levels, as shown in Figure 5. At the

131OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207127

0

1

[
k
g
/
s
]

m

h

80

90

[
°
C
]

T

h, in

T

w, eva

0.0

0.1

[
k
g
/
s
]

m

w

m

w,max

m

w,min

0

20

[
K
]

T

pin, eva

T

pin, eva, set

0 50 100 150 200 250 300

time [s]

0

1

1

=

o
n

enable signal

actual status

Figure 6. Model validation with variable hot fluid incoming
temperature and flow rate

lowest level, thermodynamic property interpolation for the
ORC was implemented in InterpolateStates. This
functionality is in its standalone model for two reasons.
First, thermodynamic property estimations from the inter-
polation schemes are easy to be validated against prop-
erty tables. Second, this model has no constraints that
are imposed by the cycle and its control. When extended
by FixedEvaporating, various constraints are imposed
on the cycle computation to satisfy control objectives de-
scribed in sections 2 and 3.1. Having the unconstrained
model InterpolateStates available by itself makes it
easy to add different ORC models in the future. At the
intermediate level, FixedEvaporating adds calculation
of ṁw, Tpin,eva, and Tpin,con, which are central to the con-
trol objectives of the modelled system. At the top level,
Cycle finally involves the hot and cold fluid streams and
is ready to be integrated into an energy system.

5 Model Validation
5.1 Medium Property
The fluid property interpolation implemented in Modelica
was validated by comparing its results against direct prop-
erty readings from CoolProp. Tests were performed with
five dry and five wet working fluids to compare results for
the specific energy terms

wexp = hexp,out −hexp,in, (22)
wpum = hpum,out −hpum,in, (23)
qeva = hexp,in −hpum,out , (24)

and

qcon = hpum,in −hexp,out , (25)

using the error term

erry =
yM − yC

yC
, (26)

Fl
ui

d
O

R
C

Se
tu

p
R

es
ul

ts
E

rr
or

s
M

[g
/m

ol
]

T c
ri

[◦
C

]
T e

va

[◦
C

]
T c

on

[◦
C

]
∆T

su
p

[K
]

η t
he

(M
od

el
ic

a)
η t

he

(C
oo

lP
ro

p)
(w

ex
p)

(w
pu

m
)

(q
ev

a)
(q

co
n)

(η
th

e)

D
ry

n-
H

ep
ta

ne
10

0
26

7
14

7
37

0
20

.1
%

19
.2

%
3.

6%
1.

3%
-0

.5
%

-1
.5

%
4.

2%
n-

Pe
nt

an
e

(R
60

1)
72

19
7

11
2

37
0

16
.8

%
16

.6
%

0.
2%

0.
9%

-0
.5

%
-0

.6
%

0.
7%

To
lu

en
e

92
31

9
17

3
37

0
23

.3
%

24
.7

%
-6

.1
%

1.
4%

-0
.6

%
1.

2%
-5

.7
%

R
12

3
15

3
18

4
10

5
37

0
16

.3
%

16
.4

%
-1

.4
%

0.
9%

-0
.5

%
-0

.3
%

-1
.1

%
R

24
5f

a
13

4
15

4
91

37
0

13
.4

%
13

.6
%

-1
.3

%
0.

8%
-0

.3
%

-0
.2

%
-1

.1
%

W
et

A
ce

to
ne

58
23

5
13

1
37

5.
9

23
.1

%
23

.1
%

0.
3%

1.
2%

0.
1%

0.
0%

0.
2%

E
th

an
ol

46
24

2
13

4
37

41
.1

26
.1

%
26

.5
%

-2
.2

%
1.

6%
-0

.6
%

0.
0%

-1
.7

%
Pr

op
an

e
(R

29
0)

44
97

62
37

3.
9

7.
4%

7.
3%

1.
6%

0.
5%

0.
1%

0.
0%

1.
7%

R
13

4a
10

2
10

1
64

37
4.

2
8.

2%
8.

0%
1.

5%
0.

4%
0.

1%
0.

0%
1.

5%
R

32
52

78
53

37
14

.3
4.

8%
4.

6%
3.

7%
0.

3%
0.

2%
0.

0%
4.

2%

Ta
bl

e
2.

W
or

ki
ng

flu
id

s
pr

op
er

tie
s,

ex
pe

ri
m

en
ts

et
up

,r
es

ul
ts

,a
nd

er
ro

rs
.

where the subscript M represents Modelica and C
represents CoolProp. All tests use Teva = Tcri − 20K,
Tcon = 310K, ηexp = 0.8 and ηpum = 0.7. Their properties,
experiment setup, and errors are listed in Table 2.

Table 2 shows the largest errors in wexp. This is thought
to be caused by the linear approximation in the super-
heated region, namely for hexp,in in the case of wet cycles
and for hexp,out in the case of dry cycles, and affecting ηthe.
The maximum error is for wexp and ηthe for Toluene, with

132 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207127 DOI

orc

m

souHot sinHot

conPI

PI

TWatOut_set

k=55 + 273.15

T

colBou TWatRet

offset=273.15

pum

P… M
m_…

spl

booToRea

0.0
mC…

B R

… m…

hys and1

and

senTColOut

T

senMasFlo

m_flow

booTab

Figure 7. Modelica graphics of the example model where the ORC component is integrated in a district heating system.

0

1

[
k
g
/
s
]

m

c

0

5

[
k
W
]

P

exp

P

pum

0

50

[
k
W
]

Q

eva

Q

con

0 200 400 600 800

time [s]

40

50

[
°
C
]

T

s

T

r

Figure 8. Results output of the example model.

an error of 6.1% and 5.7%, respective. All other errors are
below 5%.

Our property computation results agree with the ther-
modynamic analysis performed by Borsukiewicz-Gozdur
(2013), H. Liu, Shao, and Li (2011), and Chen et al.
(2006).

5.2 Pinch Point
We conducted a validation to test the constraints on ṁw.
We used R245fa as working fluid with Tw,eva = 350 K,
∆Tpin,eva = 5 K, ∆Tpin,con = 10 K.

Figure 6 shows how the model deals with a waste heat
source whose temperature and flow rate are both variable.
It goes through the following stages:

• At t = 0, Th,in is sufficiently high but ṁh is too low.
The cycle does does not start (ṁw = 0 and “actual
status” is off). The set point for ∆Tpin,eva is ignored.

• As ṁh goes higher, the cycle starts (ṁw > 0 and “ac-
tual status” is on) when ṁh > ṁw,min +∆mhys, where
∆mhys is a parameter for the mass flow rate hystere-
sis. At this stage, Tpin,eva is maintained at its set
point.

• With ṁh increasing further, ṁw reaches its upper
limit and no longer increases along with ṁh. ∆Tpin,eva
is allowed to go higher than its set point.

• Then at t = 100, Th,in starts to decrease. ṁw is again
able to maintain ∆Tpin,eva at its set point shortly af-
ter, before the cycle shuts down again when Th,in be-
comes too low.

• From t = 150 the stages above run again in reverse
order.

6 Example Model
We integrated our ORC model in a hypothetical district
energy system as an example. The model graphics is
shown in Figure 7. The hot water return from the sys-
tem is connected through the ORC condenser, acting as
the ORC cold fluid. The mixing valve is modulated with

133OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207127

a PI loop controlling the cold fluid outgoing temperature
(i.e. district hot water supply temperature).

The working fluid is R123. It is a dry fluid, i.e. no
superheating in the cycle.

Carrying waste heat, the evaporator hot fluid is air, with
a constant flow rate and a constant incoming temperature.

The condenser cold fluid represents water from a dis-
trict heating system. A dedicated condenser pump is used
to maintain a constant water flow rate through the con-
denser. The district hot water return temperature Tr (i.e.
the condenser cold fluid incoming temperature Tc,in of the
ORC) fluctuates between 35 to 45◦C. The ORC is con-
trolled to lift its temperature to a supply temperature Ts
of 55◦C. Additionally, a safety control is implemented to
prevent the cycle from starting until the water flow in the
condenser is established, i.e. ṁc > ṁc,threshold .

Nominal conditions of this model are shown in Table 3.
Simulation results of key variables of this example model
are shown in Figure 8.

7 Discussion
We envision that that the model can be further developed
in the future to address the following.

Table 2 shows that the interpolation schemes are highly
accurate in energy transfer calculation with errors up to
1.6% for wpum, qeva, and qcon. For wexp and ηthe, the high-
est error was 6.1% and 5.7% with toluene. These higher
errors appear to be caused by the linear approximation of
isobars in the superheated vapor region and related to the
specific characteristics of the fluids. Deeper understand-
ing in this will be valuable in deciding how the medium
simplification can be modified to achieve higher accuracy.
Note that the validation was intentionally designed to have
a very high evaporating temperature (Teva = Tcri − 20 K)
to test extreme cases. Real-world subcritical applications
may not use such a high Teva and the model estimation
would be more accurate.

Although machine analysis is beyond the scope of this
study and we leave the expander efficiency to the user to
specify, it is nonetheless important to note that the compu-
tation of expander efficiency is important and can improve
the estimation accuracy of the model.

In our current model, we used a simple ORC ar-
chitecture without considering subcooling, recuperating,
multiple-stage expansion, or throttling. Supporting more
sophisticated architectures such as reviewed by (Lecompte
et al. 2015) can expand the general utility of this model.

8 Conclusion
In this work we reported a Modelica implementation of
an ORC model. Our model fills the gap of a general-use,
open-source ORC model in Modelica with both the fol-
lowing features: a working fluid model that is ready to
use or easy to add, and the ability to be integrated into
a larger energy system. Because the working fluid selec-
tion is an important design decision in ORC system de-

Quantity Value Unit Quantity Value Unit
Teva 100 ◦C ṁh 1 kg/s
Tcon 59.5 ◦C Th,in 150 ◦C
peva 786 kPa Th,out 90.2 ◦C
pcon 282 kPa ṁc 1.4 kg/s
ηexp 0.8 - Tc,in 45 ◦C
ηpum 0.6 - Tc,out 55 ◦C
ṁw 0.34 kg/s ηthe 7.7% -

Table 3. Example model nominal conditions.

sign, our method opens up the ability to choose working
fluids from a pool of candidates for an early-stage anal-
ysis of ORC system integration. This relieves modellers
from the challenges of developing a large number of de-
tailed and computationally efficient medium models. This
also results in a standalone model that does not depend
on external software for fluid property queries, improving
usability and compatibility.

Acknowledgements
This research was supported by the Assistant Secretary
for Efficiency and Renewable Energy, Office of Building
Technologies and Industrial Efficiency and Decarboniza-
tion Office of the U.S. Department of Energy, under Con-
tract No. DE-AC02-05CH11231.

Data Availability
This is an open-source development. At the time of writ-
ing, the data and code used in this study are available at
Modelica Buildings Library (Wetter et al. 2014) through
commit 4d9b7fd and will be released in future versions
of the Modelica Buildings Library.

Nomenclature
Quantities:

cp specific heat capacity at constant
pressure

h specific enthalpy
M molar mass
ṁ mass flow rate
P power
p pressure
Q̇ heat flow rate
q specific heat flow
s specific entropy
T temperature
V̇ volumetric flow rate
w specific work
x vapor quality
η efficiency
ρ density

Subscripts:
c cold fluid

134 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207127 DOI

ele electrical
h hot fluid
hys hysteresis
in incoming, inlet
ise isentropic
out outgoing, outlet
pin pinch point
w working fluid
con condenser
cri critical
eva evaporator
exp expander
pum pump
sup superheating
the thermal

References
Abadi, Gholamreza Bamorovat and Kyung Chun Kim (2017).

“Investigation of organic Rankine cycles with zeotropic mix-
tures as a working fluid: Advantages and issues”. In: Renew-
able and Sustainable Energy Reviews 73, pp. 1000–1013.

Asimptote (2023). FluidProp. https://asimptote.com/fluidprop/.
Date accessed: 22-Oct-2023.

Bao, Junjiang and Li Zhao (2013). “A review of working fluid
and expander selections for organic Rankine cycle”. In: Re-
newable and sustainable energy reviews 24, pp. 325–342.

Bell, Ian H. et al. (2014). “Pure and Pseudo-pure Fluid Thermo-
physical Property Evaluation and the Open-Source Thermo-
physical Property Library CoolProp”. In: Industrial & Engi-
neering Chemistry Research 53.6, pp. 2498–2508. DOI: 10.
1021 / ie4033999. eprint: http : / / pubs . acs . org / doi / pdf / 10 .
1021/ie4033999. URL: http://pubs.acs.org/doi/abs/10.1021/
ie4033999.

Borsukiewicz-Gozdur, Aleksandra (2013). “Pumping work in
the organic Rankine cycle”. In: Applied Thermal Engineer-
ing 51.1-2, pp. 781–786.

Casella, Francesco and Alberto Leva (2005). “Object-oriented
modelling & simulation of power plants with modelica”. In:
Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, pp. 7597–7602.

Chen, Yang et al. (2006). “A comparative study of the car-
bon dioxide transcritical power cycle compared with an or-
ganic Rankine cycle with R123 as working fluid in waste
heat recovery”. In: Applied thermal engineering 26.17-18,
pp. 2142–2147.

Hung, Tzu-Chen (2001). “Waste heat recovery of organic Rank-
ine cycle using dry fluids”. In: Energy Conversion and man-
agement 42.5, pp. 539–553.

Imran, Muhammad et al. (2020). “Dynamic modeling and con-
trol strategies of organic Rankine cycle systems: Methods and
challenges”. In: Applied Energy 276, p. 115537.

Lecompte, Steven et al. (2015). “Review of organic Rankine cy-
cle (ORC) architectures for waste heat recovery”. In: Renew-
able and sustainable energy reviews 47, pp. 448–461.

Liu, Hao, Yingjuan Shao, and Jinxing Li (2011). “A biomass-
fired micro-scale CHP system with organic Rankine cycle
(ORC)–Thermodynamic modelling studies”. In: Biomass and
Bioenergy 35.9, pp. 3985–3994.

Liu, Bo-Tau, Kuo-Hsiang Chien, and Chi-Chuan Wang (2004).
“Effect of working fluids on organic Rankine cycle for waste
heat recovery”. In: Energy 29.8, pp. 1207–1217.

Mago, Pedro J, Louay M Chamra, and Chandra Somayaji
(2007). “Performance analysis of different working fluids for
use in organic Rankine cycles”. In: Proceedings of the Institu-
tion of Mechanical Engineers, Part A: Journal of Power and
Energy 221.3, pp. 255–263.

Manente, Giovanni et al. (2013). “An Organic Rankine Cycle
off-design model for the search of the optimal control strat-
egy”. In: Energy 58, pp. 97–106.

Modelica 3rd-party libraries (2023). ExternalMedia. https : / /
github . com / modelica - 3rdparty / ExternalMedia. Date ac-
cessed: 23-Oct-2023.

Nami, Hossein et al. (2018). “Gas turbine exhaust gas heat re-
covery by organic Rankine cycles (ORC) for offshore com-
bined heat and power applications-Energy and exergy analy-
sis”. In: Energy 165, pp. 1060–1071.

Oliveira, Miguel Castro, Muriel Iten, and Henrique A Matos
(2022). “Simulation and assessment of an integrated thermal
processes and Organic Rankine Cycle (ORC) system with
Modelica”. In: Energy Reports 8, pp. 764–770.

Pan, Lisheng and Weixiu Shi (2016). “Investigation on the pinch
point position in heat exchangers”. In: Journal of Thermal
Science 25, pp. 258–265.

Quoilin, Sylvain, Richard Aumann, et al. (2011). “Dynamic
modeling and optimal control strategy of waste heat recovery
Organic Rankine Cycles”. In: Applied energy 88.6, pp. 2183–
2190.

Quoilin, Sylvain, Adriano Desideri, et al. (2014). “ThermoCy-
cle: A Modelica library for the simulation of thermodynamic
systems”. In: 10th international Modelica conference.

Quoilin, Sylvain, Martijn Van Den Broek, et al. (2013). “Techno-
economic survey of Organic Rankine Cycle (ORC) systems”.
In: Renewable and sustainable energy reviews 22, pp. 168–
186.

Saleh, Bahaa et al. (2007). “Working fluids for low-temperature
organic Rankine cycles”. In: Energy 32.7, pp. 1210–1221.

Twomey, Braden Lee (2016). “Dynamic simulation and experi-
mental validation of an Organic Rankine Cycle model”. In.

U.S. DOE (2021-04). Waste Heat to Power. https : / /
betterbuildingssolutioncenter.energy.gov/sites/default/files/
attachments/Waste_Heat_to_Power_Fact_Sheet.pdf. Date
accessed: 15-Aug-2023.

U.S. DOE (2024). Decarbonizing the U.S. Economy by 2050:
A National Blueprint for the Buildings Sector. URL: https :
//www.energy.gov/eere/articles/decarbonizing-us-economy-
2050.

Wetter, Michael et al. (2014). “Modelica Buildings Library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270.

Yu, Haoshui, Xiao Feng, and Yufei Wang (2016). “Working fluid
selection for organic Rankine cycle (ORC) considering the
characteristics of waste heat sources”. In: Industrial & Engi-
neering Chemistry Research 55.5, pp. 1309–1321.

Zimmer, Dirk (2020). “Robust object-oriented formulation of di-
rected thermofluid stream networks”. In: Mathematical and
Computer Modelling of Dynamical Systems 26.3, pp. 204–
233. DOI: 10 . 1080 / 13873954 . 2020 . 1757726. URL: https :
//doi.org/10.1080/13873954.2020.1757726.

Zimmer, Dirk, Michael Meißner, and Niels Weber (2022). “The
DLR ThermoFluid Stream Library”. In: Electronics 11.22.
ISSN: 2079-9292. DOI: 10.3390/electronics11223790. URL:
https://www.mdpi.com/2079-9292/11/22/3790.

135OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207127

Advancements in Building-to-Grid Interactions: Thermo-Electric
Coupling Models of Motor-driven Devices

Viswanathan Ganesh1 Zhanwei He1 Wangda Zuo1, 2

1Department of Architectural Engineering, Pennsylvania State University, University Park, PA, USA
{viswanathan.ganesh,zuh45,wangda.zuo}@psu.edu

2National Renewable Energy Laboratory, Golden, Colorado, CO

Abstract
Building-to-grid (B2G) integration transforms buildings
into active components of the electricity grid, enhancing
dynamic energy management and optimizing usage to re-
duce operational costs and carbon emissions. However,
existing modeling tools for building and power systems
often overlook or oversimplify the interactions between
power system dynamics and building dynamics. This pa-
per introduces Modelica-based thermo-electric coupling
models for motor-driven devices in buildings, such as
pumps and heat pumps. The developed models assess
transient oscillations and negative active power in these
devices within B2G systems. We compare the proposed
models with a base model from the Modelica Building Li-
brary that uses a radiator and heat pump to maintain room
temperature. The simulation results demonstrate that the
motor-driven models effectively capture transient oscilla-
tions in current and power when the systems are activated
and deactivated. Additionally, the occurrence of negative
power when systems turn off is a critical factor in enhanc-
ing B2G system stability and energy efficiency. These
findings underscore the model’s ability to improve grid
support, advancing energy management practices in B2G
applications.
Keywords: Thermo-Electric Coupling, Building-to-Grid
(B2G), Heat Pumps, Pumps

1 Introduction
In modern engineering applications, the quest for energy
efficiency and system reliability is of paramount impor-
tance. Systems that integrate pumps, heat pumps, and
chillers are critical components in various industrial pro-
cesses, HVAC (Heating, Ventilation, and Air Condition-
ing) systems, and renewable energy applications. These
systems rely heavily on the interplay between thermal and
electrical domains, where thermo-electric coupling plays
a vital role in their overall performance and energy man-
agement.

Thermo-electric coupling involves the interaction be-
tween thermal and electrical energy, where changes in
thermal conditions can significantly impact the electrical
performance of a system and vice versa (Fachini, De Cas-
tro, et al. 2022). Understanding these interactions is cru-

cial for optimizing the design, operation, and control of in-
tegrated systems. However, the transient effects caused by
thermal changes in such coupled systems are not fully un-
derstood, posing challenges for engineers and researchers
aiming to enhance system reliability and efficiency.

The primary objective of this study is to investigate
the transient effects on the electrical side due to ther-
mal variations in systems involving pumps, heat pumps,
and chillers. This research aims to develop a theoreti-
cal model that simulates these effects and to validate this
model through a comparative analysis with findings from
existing available established simulation models. By do-
ing so, the study seeks to bridge the gap between theo-
retical predictions and practical observations, providing
a more comprehensive understanding of thermo-electric
coupling in transient conditions.

The rest of the paper is organized as follows: Section 2
provides a literature review and related work, Section 3
describes motor-driven devices such as fans, pumps, and
heat pumps. Section 4 introduces the governing equations
for modeling induction motors, and Section 5 presents the
motor-driven models. The case study and the simulation
results are discussed in Sections 6 and 7, respectively. Fi-
nally, Section 8 concludes the paper.

2 Literature Review
Thermo-electric coupling, in the context of this study,
refers to the process of integrating mechanical devices
such as pumps, heat pumps, and chillers, which are re-
sponsible for thermal performance in buildings with elec-
trical devices like motors. This coupling involves the
interaction between the electrical and mechanical parts,
where changes in thermal conditions within the mechani-
cal components can significantly impact the electrical per-
formance of the system, and vice versa (Fu, Huang, Vra-
bie, et al. 2019; Fu, Huang, Liu, et al. 2019). Understand-
ing this interaction is crucial for optimizing the perfor-
mance and energy efficiency of integrated systems used
in HVAC and other industrial applications (Li et al. 2022).

Pumps are devices used to move fluids (liquids or gases)
by mechanical action. They play a crucial role in various
applications, including water supply, air conditioning, re-
frigeration, and industrial processes. Pumps can be classi-
fied into different types, such as centrifugal pumps, which

136 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207 136 DOI

use a rotating impeller to add velocity to the fluid, and pos-
itive displacement pumps, which move fluid by trapping a
fixed amount and forcing (displacing) it into the discharge
pipe (Karassik 2001). Heat pumps transfer thermal energy
from a cooler space to a warmer space using mechanical
energy, effectively functioning as both a heating and cool-
ing device. They are commonly used in HVAC systems to
provide space heating and cooling. The efficiency of heat
pumps is significantly influenced by the thermodynamic
properties of the working fluid and the design of the sys-
tem components.

Chillers are used to remove heat from a liquid via a
vapor-compression or absorption refrigeration cycle. This
cooled liquid can then be circulated through a heat ex-
changer to cool air or equipment. Chillers are essential
in industrial cooling processes and large-scale air condi-
tioning systems. The performance of chillers depends on
factors such as refrigerant type, system design, and op-
erational conditions. The study of transients in electrical
systems, particularly those induced by thermal changes,
is critical for ensuring the stability and reliability of inte-
grated systems (Stoecker and Stoecker 1998). Transient
phenomena occur due to sudden changes in system condi-
tions, such as load variations, switching operations, or en-
vironmental factors. These transients can lead to voltage
fluctuations, current surges, and potential system instabil-
ity (Kundur, Balu, and Lauby 1994).

One significant challenge in current research is the use
of simplified models that do not fully capture the com-
plexity of thermo-electric interactions. These models of-
ten assume steady state conditions and neglect dynamic
behaviors, leading to discrepancies between theoretical
predictions and real world observations. There is a lack
of empirical validation for many theoretical and simula-
tion based studies. Without experimental data to corrob-
orate simulation results, it is difficult to assess the accu-
racy and reliability of the models used. The application
of advanced simulation techniques, such as multi-physics
modeling and co-simulation, is limited. These techniques
are essential for accurately representing the interactions
between thermal and electrical domains, yet their use re-
mains under explored in existing literature.

3 Motor-driven Devices in Buildings
Motor-driven devices in buildings, such as fans, pumps,
heat pumps, and chillers, are significant electricity con-
sumers. The physical system diagram of a motor-driven
device, such as a pump, is illustrated in Figure 1. In
this setup, the induction motor acts as the primary power
source, providing rotational force to the motor shaft. The
motor is directly coupled with the pump, allowing the mo-
tor to drive the pump’s shaft. This system efficiently con-
verts electrical energy into mechanical energy, which is
then transformed into fluid movement. For modeling pur-
poses, motor-driven devices can be considered as coupling
models, consisting of two main components: the induction

motor and the mechanical device.

1. Induction Motor: Induction motors are commonly
used in building applications. These motors include
key sub-components such as coils, magnets, stators,
and rotors. The coils and stators, connected to the
VFD’s electrical circuit, generate an induced mag-
netic field. This magnetic field interacts with the ro-
tor to produce electromagnetic torque, causing the
rotor to spin at a constant or variable speed (Fachini,
Castro, et al. 2023; Fachini, Castro, et al. 2024).

2. Mechanical Devices: These devices convert the
transferred torque into mechanical work. For in-
stance, pumps work by converting the input mechan-
ical energy in the fluid being pumped. In the heat
pump or chiller, compressor, which is driven by mo-
tor, is transferring heat in desired directions—either
for heating or cooling. as it enables the refrigerant to
absorb or release heat as needed, allowing the heat
pump or chiller to function efficiently.

Pump

Pump Shaft

Physical

System

Mechanical
Devices

Induction
Motor

Coupling

Mechanical Shaft Motor Shaft

Coupling

Model

Motor Shaft

Induction Motor
Coupling

Figure 1. Motor-driven Devices and Coupling Models

Since the mechanical devices, such as pumps, heat
pumps, and chillers are available in the Modelica Building
Library (Wetter et al. 2014), the motor model for coupling
the mechanical devices should be included. The next sec-
tion illustrates the governing equations for modeling the
induction motor.

4 Induction Motor Modeling
The physical components of an induction motor are illus-
trated in Figure 2. The two main components are the stator
and the rotor. The stator, the stationary outer part, receives
power and generates a rotating magnetic field. The stator,
the stationary outer part, gets the supplied power and gen-
erates a rotating magnetic field. The rotor is the rotating
part, which is located inside the stator. The magnetic field
from the stator induces a current in the rotor, which in turn
creates a secondary magnetic field. This secondary field

137OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207136

interacts with the magnetic field of the stator, resulting in
the production of electromagnetic torque.

End
Bell

Bearing
Shaft

Rotor
Stator End

Bell

Cooling
Fan

Fan
Cover

Figure 2. Physical Components of an Induction Motor

For modeling the dynamic behaviors of the induction
motor, the DQ-axis method (Gol 1993) is employed to for-
mulate the governing equations. This approach simplifies
the analysis by transforming the three-phase system into
a two-axis (direct and quadrature) coordinate system, de-
coupling the complex interactions in the induction motor.

The D and Q axis equivalent circuits of an induction
motor are shown in Figures 3 and 4, respectively. The D-
axis and Q-axis circuits employ similar components, ar-
ranged differently to represent their respective axes within
the synchronous reference frame. These circuits share
identical resistances and inductances, presenting consis-
tent properties.

The D-axis circuit includes the D-axis stator voltage
(uds) and current (ids), stator resistance (Rs) and leakage
inductance (Lls), induced voltage (ωψds), D-axis rotor
voltage (udr), current (idr), and resistance (Rr), rotor leak-
age inductance (Llr) and induced voltage ((ωe −ωr)ψdr),
and mutual inductance between stator and rotor (Lm).

−

+

udr

idr
Rr− +

(ωe − ωr)ψqr

−

+

uds

ids
Rs

−+

ωψqs
Lls

Lm

Llr

Stator Circuit Rotor Circuit

Figure 3. D-axis of the Induction Motor

The Q-axis circuit similarly includes the Q-axis sta-
tor voltage (uqs) and current (iqs), with induced volt-
age (ωψqs), stator resistance (Rs) and leakage inductance
(Lls), Q-axis rotor voltage (uqr), current (iqr), resistance
(Rr), and leakage inductance (Llr).

The primary governing equations include voltage, flux
linkage, rotor speed, electromagnetic torque, and current.
The following subsections provide detailed explanations
of these equations.

−

+

uqr

iqrRr− +

(ωe − ωr)ψdr

−

+

uqs

iqs Rs

−+

ωψds
Lls

Lm

Llr

Stator Circuit Rotor Circuit

Figure 4. Q-axis of the Induction Motor

4.1 Voltage Equations in DQ-axis
The equivalent voltage equations for the stator are ex-
pressed as follows:

uds = Rsids +
dΨds

dt
+ωΨqs, (1)

uqs = Rsiqs +
dΨqs

dt
+ωΨds, (2)

where ω is the base electrical frequency [rad/s], Rs is the
stator resistance [Ω], uds and uqs are the D and Q axis
stator voltages [V], ids and iqs are the D and Q axis sta-
tor currents [A], Ψds and Ψqs are the D and Q axis stator
flux linkages [Wb]. Similarly, the rotor equivalent voltage
equations can be written as:

udr = Rridr +
dΨdr

dt
− (ωe −ωr)Ψqr, (3)

uqr = Rriqr +
dΨqr

dt
+(ωe −ωr)Ψdr, (4)

where Rr is the rotor resistance [Ω], ωe and ωr are the
electrical frequency and rotor angular frequency [rad/s],
udr, uqr are the D and Q axis rotor voltages [V], idr, iqr are
the D and Q axis rotor currents [A], Ψdr, and Ψqr are the
D and Q axis rotor flux linkages [Wb].

4.2 Flux Equations in DQ-axis
The next step is to calculate the magnetic flux linkages of
the stator and rotor, using the underlying equations:

Ψds = idsLs + idrLm, (5)

Ψqs = iqsLs + iqrLm, (6)

Ψdr = idrLr + idsLm, (7)

Ψqr = iqrLr + iqsLm, (8)

where Ls, Lr, and Lm are the stator, rotor, and mutual in-
ductance [H]. The Ls and Lr can be written as:

Ls = Lls +Lm, (9)

Lr = Llr +Lm, (10)

where Lls and Llr are the stator and rotor leakage induc-
tance of the machine [H].

138 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207136 DOI

4.3 Rotor Speed Equation and Electromag-
netic Torque

Since induction motor is an electro-mechanical device, we
can formulate the rotor speed based on the torque as

ωr =
P
2J

∫
(Te −Tl)dt, (11)

where P is the number of poles of induction motor, J is the
moment of inertia [kg/m2], Te and Tl are the electromag-
netic and load torque [Nm]. The details for calculating the
electromagnetic torques is shown as follows:

Te =
3
2

P
2

Lm(iqsidr − idsiqr) . (12)

4.4 Current Equations for Stator and Rotor in
DQ-axis

By substituting Equation (5) and Equation (6) into Equa-
tion (1) and Equation (2), the stator currents in DQ frames,
namely ids and iqs, can be expressed:

d
dt

ids =
1
Ls

[uds − idsRs −Lm
d
dt

idr +ωeLsiqs+

ωeLmiqr] and
(13)

d
dt

iqs =
1
Ls

[uqs − iqsRs −Lm
d
dt

iqr −ωeLsids−

ωeLmidr] .

(14)

By integrating the Equation (13) and Equation (14), the ids
and iqs are expressed as:

ids =
∫ 1

Ls
[uds − idsRs −Lm

d
dt

idr +ωeLsiqs+

ωeLmiqr]dt and
(15)

iqs =
∫ 1

Ls
[uqs − iqsRs −Lm

d
dt

iqr −ωeLsids−

ωeLmidr]dt .
(16)

Similarly, when the flux expressions are replaced in the
voltage equations, the rotor currents idr and iqr can be writ-
ten as:

d
dt

idr =
1
Lr

[udr − idrRr −Lm
d
dt

ids +ωeLriqr+

ωeLmiqs] and
(17)

d
dt

iqr =
1
Lr

[uqr − iqrRr −Lm
d
dt

iqs −ωeLridr−

ωeLmids] .

(18)

After integration, they are described by Equations (19)
and (20):

idr =
∫ 1

Lr
[udr − idrRr −Lm

d
dt

ids +ωeLriqr+

ωeLmiqs]dt and
(19)

iqr =
∫ 1

Lr
[uqr − iqrRr −Lm

d
dt

iqs −ωeLridr−

ωeLmids]dt .
(20)

5 Motor-driven Models
This paper studies two motor-driven models: the motor-
driven heat pump and the motor-driven pump. The induc-
tion motor model is coupled with a heat pump or pump
model available in the Modelica Building Library. Specif-
ically, the path for the heat pump model in the library is
Buildings.Fluid.HeatPumps.Carnot_y, and
the path for the pump model is Buildings.Fluid.-
Movers.SpeedControlled_y. Figure 5 presents
that the motor-driven heat pump is equipped with an elec-
trical interface to which the induction motor model con-
nects at the electrical terminal. Additionally, the motor
is mechanically coupled with the heat pump, referred to
as the mechanical interface. Similarly, Figure 6 shows

Figure 5. Motor-driven Heat Pump

the coupling of the induction motor model with the pump
model in the motor-driven pump. The motor, represent-
ing the electrical interface, connects to the electrical ter-
minal. This connection provides detailed insights into the
real-time power consumption, current, and other electri-
cal domain information. Also, the mechanical coupling
of the motor to the pump allows for a more realistic rep-
resentation of the pump operation. Based on the devel-

Figure 6. Motor-driven Pump

oped motor-driven heat pump and pump, a case study has
been conducted to demonstrate how motor-driven models
can reveal more detailed insight into the electrical domain
information and more realistic interactions between the
power system.

139OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207136

6 Case Study
In this case study, the heat pump and pump supply
water to a radiator for heating, aiming to maintain
a room temperature of 20 °C. A model is found
in the Modelica Building Library, and the path is
Buildings.Fluid.HeatPumps.Examples.Scr-
ollWaterToWater_OneRoomRadiator.

Radiator

Heat
Pump

Pu
m

p
Pu

m
p

Ambient
…

G=5…

…

RadiatorT

K

P
um

pP
…

T

…

K

Heat Pump
P

um
pP

…

hyst… not2
not

boo…
B

R

and1
and

and2
and

boo…
B

R

tes…

te
s…

Source
8.0

Sink
…

…

Weather
Bus

Dry Bulb
Temperature

Room

Control
Logic

Figure 7. System Schematics and the Modelica Model

As shown in Figure 7, This system model simulates a
single room equipped with a radiator, which is heated by
a 24 kW nominal capacity heat pump. The heat pump
operates as follows: the source side water, entering the
evaporator at a constant temperature of 10°C, is heated to
a nominal condenser output temperature of 50 °C for the
radiator. The return temperature from the radiator is set
at 45°C. The heat pump is set to activate when the room
temperature drops below 19°C and deactivate when the
temperature exceeds 21°C. The on/off control for both the
heat pump and pumps is achieved by the control logic,
highlighted by the pink shadow on the right-hand side of
Figure 7.

This system model can serve as a baseline because it
calculates the power consumption of the heat pump and
pump based on the heat flow through the condenser and
evaporator and the empirical efficiency of the heat pump.
The motor-driven heat pump and pump models, depicted
in Figures 5 and 6, replace the base models in the sys-
tem model. Figure 8 details the implementation of these
motor-driven models, highlighting the addition of electri-
cal terminals.

The following section presents simulation results that
compare the performance of the base system model with
the version that includes motor-driven models. This com-
parison specifically focuses on highlighting differences in
electrical performance.

7 Results and Discussions
7.1 Fluid System
The primary objective of the system model is to main-
tain the room temperature and Figure 9 displays simula-

…

G=50…

4…

RadiatorT

K

T

K

Heat Pump

hyster…

… …

not2

not

booTo…
B

R

and1

and

and2

and
tesCo…

… …

tesEv…

… …

Source

8.0

Sink

1…

5…Source

32…
Set Point

Pu
m

pP Q

Se
ns

orm
…

Pu
m

pP Q
…

V I
Pump

Monitor

S

V I

Heat Pump
Monitor

S
Source

V I

Pump
Monitor

S

Se
ns

orm
…

Weather
Bus

Dry Bulb
Temperature

Control
Logic

Room

Figure 8. Motor-driven Model Implementation

tion results showing that the room temperature fluctuates
between approximately 291K (17.85 °C) and 295K (21.85
°C). Both models have effectively demonstrated their abil-
ity to maintain the room temperature.

0 5 10 15 20

Time [Hour]

291

292

293

294

295

T
e
m
p
e
r
a
t
u
r
e

[
K
]

Coupled Model

Base Model

Figure 9. Room Temperature

The room temperature is maintained by the radiator.
The coupled model provides an accurate simulation of
room temperature changes, closely aligning with actual
observed temperatures. The results for the supply temper-
ature and the return temperature for the radiator are shown
in Figure 10 and Figure 11. The radiator supply temper-
ature ranges from about 300K (26.85°C)to 325K (51.85
°C), with the coupled model’s simulations more consis-
tent with observed data, highlighting its capability to track
supply temperature variations over time.

The return temperature (Figure 11) shows variations be-
tween approximately 300K (26.85 °C) and 320K (46.85

140 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207136 DOI

0 5 10 15 20

Time [Hour]

300

305

310

315

320

325

T
e
m
p
e
r
a
t
u
r
e

[
K
]

Coupled Model

Base Model

Figure 10. Radiator Supply Temperature

0 5 10 15 20

Time [Hour]

300

305

310

315

320

T
e
m
p
e
r
a
t
u
r
e

[
K
]

Coupled Model

Base Model

Figure 11. Radiator Return Temperature

°C), with the coupled model demonstrating closer align-
ment with base model, capturing the dynamics of return
temperature fluctuations throughout the day. Overall, the
comparative analysis across these three temperature met-
rics demonstrates that the coupled model consistently pro-
vides accurate and reliable simulations, proving its abil-
ity to simulate temperature dynamics and heat flow effec-
tively.

7.2 Electrical System
7.2.1 Heat Pump Electrical Monitoring

The heat pump power (Figure 12) shows variations be-
tween -5 kW and 20 kW in active power, while reactive
power (Figure 13) varies from -1 kVAr to 17 kVar. On
the other hand, the heat pump power factor (Figure 14)
shows variations between 0 - 1 and the nominal power
factor during operation is 0.93, while the heat pump cur-
rent (Figure 15) ranges from -10A to 70A. In the coupled
model, significant transient oscillations in power and cur-
rent are observed, particularly during the initial and tran-
sition phases, which are not as pronounced in the base
model.

These oscillations are crucial to consider as they impact
the stability and performance of B2G systems. Addition-

ally, instances of negative active power are observed in
both power and current data, indicating periods where the
heat pump contributes power back to the grid, an impor-
tant factor for energy efficiency and grid support.

0 5 10 15 20

Time [Hour]

5

0

5

10

15

20

25

30

P
o
w
e
r

[
k
W
]

Coupled Model

Base Model

18.145 18.150 18.155 18.160

0

20

Figure 12. Motor-drive Heat Pump Active Power Consumption

0 5 10 15 20

Time [Hour]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
e
a
c
t
i
v
e

P
o
w
e
r

[
k
V
A
r
]

Coupled Model

Figure 13. Motor-drive Heat Pump Reactive Power Consump-
tion

0 5 10 15 20

Time [Hour]

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w
e
r

F
a
c
t
o
r

Coupled Model

Figure 14. Motor-drive Heat Pump Power Factor

141OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207136

0 5 10 15 20

Time [Hour]

20

0

20

40

60

80

100

120

C
u
r
r
e
n
t

[
A
]

Coupled Model

Base Model

18.145 18.150 18.155 18.160

0

50

Figure 15. Motor-drive Heat Pump Current Consumption

7.2.2 Pumps Electrical Monitoring

The pump power (Figure 16) ranges -1 kW and 4 kW in
active power, while reactive power (Figure 17) varies from
-0.5 kVAr to 3.5 kVar. On the other hand, the pump power
factor (Figure 18) shows variations between 0 - 1 and the
nominal power factor during operation is 0.6, while the
pump current (Figure 19) ranges from -2A to 18A.

The coupled model exhibits significant transient oscil-
lations in power and current, particularly during the initial
and transition phases, which are not as pronounced in the
base model. Instances of negative active power are also
observed in both power and current data, indicating peri-
ods where the pump contributes power back to the grid.

0 5 10 15 20

Time [Hour]

1

0

1

2

3

4

5

6

P
o
w
e
r

[
k
W
]

Coupled Model

Base Model

18.650 18.655

0

2

Figure 16. Motor-drive Pump Active Power Consumption

The coupled model is built using an adaptation of
physics based equations (Le Fosse 2021) that is capable
of simulating sudden variations in signal during turn on
and turn off conditions. The adaptation reduces the com-
plexity of drive system, thereby increasing the computa-
tion speed.

The aspect of B2G interaction of HVAC equipment’s,
presents both opportunities and challenges. On the pos-

0 5 10 15 20

Time [Hour]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
a
c
t
i
v
e

P
o
w
e
r

[
k
V
A
r
]

Coupled Model

Figure 17. Motor-drive Pump Reactive Power Consumption

0 5 10 15 20

Time [Hour]

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w
e
r

F
a
c
t
o
r

Coupled Model

Figure 18. Motor-drive Pump Power Factor

0 5 10 15 20

Time [Hour]

0

10

20

30

40

50

C
u
r
r
e
n
t

[
A
]

Coupled Model

Base Model

0.010 0.005 0.000 0.005

+1.87e1

0

10

Figure 19. Motor-drive Pump Current Consumption

itive side, B2G can enhance grid stability by distributing
energy generation, particularly during peak demand. This
reduces the load on centralized power plants and enhances
overall grid resilience.

However, significant challenges arise with this ap-
proach. Managing the influx of energy from numerous
residential sources adds complexity to grid operations, po-
tentially leading to instability if not properly managed.
The grid must be equipped with advanced technology to

142 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207136 DOI

Table 1. Comparison of Translated Model Statistics

Metrics Base Model Coupled Model
Constants 1149 1455
Free parameters 172 scalars 383 scalars
Parameter depending 589 scalars 998 scalars
Outputs 24
Continuous time states 12 scalars 39 scalars
Time-varying variables 338 scalars 512 scalars
Alias variables 746 scalars 1246 scalars
Sizes of linear systems of equations [2, 2, 2, 2] [2, 2, 2, 2, 2, 4, 4, 2, 4]
Sizes of nonlinear systems of equations [3, 1, 19] [3, 5, 3, 2]
Sizes after manipulation of nonlinear systems [1, 1, 2] [1, 1, 1]
Number of numerical Jacobians 0

Table 2. Comparison of Computational Metrics

Metrics Base Model Coupled Model
CPU-time for integration (s) 7.92 4.69
CPU-time for one grid interval (ms) 0.0916 0.0543
CPU-time for initialization (s) 0.086 0.084
Number of result points 86554 86746
Number of grid points 86401
Number of accepted steps 18509 73064
Number of f-evaluations (dynamics) 307805 146002
Number of crossing function evaluations 102815 160670
Number of Jacobian-evaluations 1963 3839
Number of model time events 2
Number of input time events 0
Number of state events 75 171
Number of step events 0
Minimum integration stepsize 8.0e-08 1.09e-08
Maximum integration stepsize 129 440
Maximum integration order 5

balance supply and demand in real time, increasing oper-
ational complexity.

Frequent energy cycling can cause accelerated wear and
tear on heat pumps, reducing their lifespan and increas-
ing maintenance needs. Local infrastructure strain is an-
other potential consequence. Most distribution networks
are not designed for significant residential energy inputs,
leading to increased stress on components like transform-
ers. This could result in more frequent outages and neces-
sitate costly upgrades to the local grid.

In summary, while B2G integration offers promising
benefits for energy management, it also introduces chal-
lenges that must be addressed through advanced technol-
ogy, careful planning, and infrastructure investment to en-
sure long-term sustainability and efficiency.

7.3 Computational Performance
The computational analysis highlights the compara-

tive performance and complexity between base model
and coupled model. The translated model statistics (Ta-

ble 1) reveal that the coupled model demonstrates in-
creased complexity with a higher number of constants,
free parameters, and time-varying variables, leading to a
more intricate system of equations. However, despite this
increased complexity, the coupled model exhibits superior
computational efficiency (Table 2), as indicated by a re-
duction in CPU-time for integration and grid interval pro-
cessing. Specifically, the coupled model’s integration time
decreased by approximately 40% compared to the base
model, showcasing its enhanced performance in dynamic
simulations. The analysis of computational metrics fur-
ther underscores the efficiency of the coupled model, with
a significantly higher number of accepted steps and cross-
ing function evaluations, alongside a more refined control
over integration step size and maximum integration limits.
This detailed comparison underscores the coupled model’s
capability to handle more complex dynamics while main-
taining or improving computational performance, making
it a valuable advancement over the base model. In the fu-
ture, we plan to pursue additional enhancement of model
by integration of soft starters and compare the impact of

143OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207136

coupled model in terms of transients and computational
performance.

8 Conclusion
This study explores the interactions between buildings and
the power system. A case study is considered that use heat
pump and radiator with on/off controller to maintain the
room temperature. The comparison between the motor-
drive models with the baseline models has demonstrated
that our motor-driven models offers a more realistic es-
timation of the electrical responses when the pumps and
heat pump turn on and off. The coupled model is also
40% faster than the base model. This implementation of
the motor-drive mechanical models will enhance our un-
derstanding of the dynamic interactions between buildings
and power grids without compromise in terms of compu-
tational time. Furthermore, we intend to use our model in
Building-to-Grid (B2G) activities to aid in designing and
evaluating control strategies relevant to this field.

Acknowledgement
This research was supported by the DOE’s Office of
Energy Efficiency and Renewable Energy under the
Advanced Manufacturing Office, award number DE-
EE0009139. All opinions expressed in this paper are the
author’s and do not necessarily reflect the policies and
views of DOE.

References
Fachini, Fernando, Marcelo de Castro, et al. (2023). “Open-

IMDML: Open Instance Multi-Domain Motor Library uti-
lizing the Modelica modeling language”. In: SoftwareX 24,
p. 101591.

Fachini, Fernando, Marcelo de Castro, et al. (2024). “Mod-
eling of Induction Motors and Variable Speed Drives for
Multi-Domain System Simulations Using Modelica and the
OpenIPSL Library”. In: Electronics 13.9, p. 1614.

Fachini, Fernando, Marcelo De Castro, et al. (2022). “Multi-
domain power and thermo-fluid system stability modeling us-
ing modelica and openipsl”. In: 2022 IEEE Power & Energy
Society General Meeting (PESGM). IEEE, pp. 1–5.

Fu, Yangyang, Sen Huang, Yuan Liu, et al. (2019). “A multidis-
ciplinary model to couple power system dynamics and build-
ing dynamics to enable building-to-grid integration”. In: 16th
International Conference of the International Building Per-
formance Simulation Association, Building Simulation 2019.
International Building Performance Simulation Association,
pp. 940–947.

Fu, Yangyang, Sen Huang, Draguna Vrabie, et al. (2019). “Cou-
pling power system dynamics and building dynamics to en-
able building-to-grid integration”. In: Proceedings of 13th
International Modelica Conference, OTH Regensburg, Ger-
many.

Gol, Ozdemir (1993). “Dynamic modelling of induction ma-
chines.” PhD thesis.

Karassik, Igor J (2001). Pump handbook. McGraw-Hill.
Kundur, P., N.J. Balu, and M.G. Lauby (1994). Power System

Stability and Control. EPRI power system engineering series.
McGraw-Hill Education. ISBN: 9780070359581.

Le Fosse, Roberta (2021). “Dynamic modeling of induction mo-
tors in developing tool for automotive applications.” PhD the-
sis. Politecnico di Torino.

Li, Guangdi et al. (2022). “Optimal Scheduling of Thermoelec-
tric Coupling Energy System Considering Thermal Charac-
teristics of DHN”. In: Sustainability 14.15, p. 9764.

Stoecker, Wilbert F and Wilbert F Stoecker (1998). Industrial
refrigeration handbook. Vol. 10. McGraw-Hill New York.

Wetter, Michael et al. (2014). “Modelica buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270.

144 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207136 DOI

Modelica as Model Aggregator for holistic Architecture Validation
of Electric Vehicles

Marcel Gottschall1 Torsten Blochwitz1 Andreas Abel1 Alex Magdanz2

1ESI Germany GmbH, ESI Group, Germany, name.surname@esi-group.com
2Xcelerated Prototyping Inc., Canada, alex@xpincorporated.com

Abstract
Automotive OEMs and suppliers are facing recent chal-
lenges in the development process, induced by ever short-
ened product cycles, further distributed development as
well as increasing demands for virtual testing and certi-
fication using virtual proving grounds or digital twins.

This paper presents a real-life demonstration of a feder-
ated, seamlessly integrated design process for a complex
cyberphysical system (electric truck), where simulation is
used for early-stage performance validation and decision
making. Since holistic, but abstract architecture models
created in systems engineering discipline contain relevant
information with respect to logical system structure and
allocated requirements, the simulation domain will ben-
efit from a cross domain linking of model artefacts. By
aligning system interfaces across model abstractions and
augmenting logical models with physical information, be-
havioural model templates for design can be generated in
a smart, traceable and automated fashion. With the addi-
tional information of requirements allocated to certain ar-
chitectural components in those abstract architecture mod-
els, it is demonstrated how scenario-based component and
system simulation will contribute to analysis tasks like ar-
chitecture exploration or specific design optimization in
efficient, continuous engineering environments.
Keywords: Digital Thread, MBSE, Virtual Testing, Elec-
tric Vehicles Architecture

1 Introduction and Engineering
Ecosystem

Ongoing digitalization of todays product lifecycle, from
development to operation, creates new opportunities, but
also new challenges need to be handled introduced by the
ever increasing complexity of products and their underly-
ing processes. Traditionally, product development is di-
vided into stages with clear separation, based on each dis-
cipline’s view of the specific system of interest (see Fig-
ure 1), to enable systematic processes at each design step.
Systems Engineering (SE) is such major process, taking
place at the architectural level of mechatronic or cyber-
physical systems1, physical performance design (1D) or

1products or systems containing a physical part, often called plant
and a software or logical part, often called controller

Figure 1. Generic representation of product lifecycle with focus
on early-stage phases of design and the involved engineering dis-
ciplines, commonly allocated to model-based systems engineer-
ing terminology (MBSE)

geometrical specification (3D) are successors in a natural
top-down workflow. As shown in Figure 1, the very first
phases of a digital, holistic product definition, from stake-
holder needs to system functions and logical implementa-
tion to the physical realisation, are commonly included in
the term model-based systems engineering (MBSE).

Systems engineers describe the principal system archi-
tecture and its requirements to be fulfilled in early de-
velopment stages with abstract models, most commonly
in systems modeling language SysML or forks thereof,
(Object Management Group 2022). Despite rare cases,
these logical models are lacking real representations of the
physical behavior of the system. On the other hand, those
are often created in later design stages by design engineers
for detailed analysis of the system use cases. The Mod-
elica modeling language is a well established method, in
particular for such analysis of the dynamic, non-linear be-
havior of multiphysics systems. Due to limited simulation
capabilities in architecture tools (SysML), there is still no
possibility to effectively and conveniently link more so-
phisticated physical models created in different modeling
platforms by distributed engineering teams involved in the
design. However, providing physical system models to
systems engineers would enable complex tasks, like ar-
chitectural exploration and early-stage decision making as
well as virtual testing of allocated requirements. In addi-
tion to that, it is important to remark, that bottom-up pro-
cesses like change management and impact analysis (e.g.
in case of findings on a lower, more detailed level) will
benefit, or in the first place will become possible, by sim-

145OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 145

ulation capabilities on (early stage) holistic views of com-
plicated and complex products like cyberphysical systems
with tight interdependencies between the different compo-
nents.

Hence, this paper presents a new approach by integrat-
ing physical (1D) models into an architecture representa-
tion of an electric truck, which is transferred from model-
ing (SysML) to simulation domain in early design stages.
This way, physical models and corresponding data like pa-
rameters are linked to SysML model representations of
requirements, functional and logical views, as a key as-
pect of traceability and certification by simulation. Based
on the linked data approach, relevant information from
the SysML model is automatically transferred into a cor-
responding Modelica model components library with all
system- and subcomponents (e.g. battery, drivetrain, bat-
tery cooling system) and their interaction represented by
Modelica connections. Incorporating existing 1D models
available in such federated, multitool engineering environ-
ments and augmenting these architecture component mod-
els with certain stimulation and evaluation creates dedi-
cated testmodels ready to use in virtual validation cam-
paigns. It is emphasized, that such closed loop, fully au-
tomated testmodel execution and analysis, enables early-
stage architectural and design decisions as shown in Fig-
ure 1, their monitoring and evaluation considering full
variability in large product lines with respect to a complete
set of requirements, hence enabling agile design changes
in case of failed tests.

2 Motivation and Implementation
Looking at the very common visualisation of product life-
cycle by the V-Model shown in Figure 1, explains that
systems architecture design and system performance sim-
ulation are direct neighbours, where the latter is consum-
ing major output from the previous stage and vice versa.
However, these disciplines are separated by their specific
workflows, tools and artefacts they deal with. Digitali-
sation allows to break these silos of knowledge and estab-
lish a consistent and continous information flow across the
original boundaries.

From this perspective, system simulation is the perfect
tool to execute verification and validation steps on archi-
tectural level, providing proof and confidence on perfor-
mance to enable correct decisions in typical large archi-
tecture design spaces before going down in detail and
spending effort on the next level of system description like
CAD or FEM. Rework costs and time-to-market are sig-
nificantly decreased by such approach, thus implementing
an agile methodology, known from software design and
mapped to physical systems in Figure 2.

Due to its design and because of the multiphysics sys-
tem character, system simulations and in particular those
implemented by Modelica language, e.g. (Modelica As-
sociation 2021), are well suitable for several validation
stages along the design cycle. Starting with simplified or

Figure 2. Detailed pocesses in early phases of product devel-
opment for integration between architecting and simulation in
agile systems engineering methodology, (Douglass 2016)

even surrogate model descriptions of components in very
early phases of architecture drafts with lots of unknowns,
down to more detailed and sophisticated models at higher
maturity levels of the design throughout the system de-
composition phase, system simulation perfectly serves the
intended purpose. Hence, it is the key integrator between
architecture and geometry of a system.

The benefits of reusing information between these do-
mains have been already discussed and demonstrated in
several ways and projects, e.g (The INTO-CPS Associa-
tion 2018). Applying a predefined SysML profile in ar-
chitecture models allowed the automatic preparation of
co-simulation and proper parametrization between differ-
ent simulation objects, thus representing a system model.
However, the complexity of the models and logical struc-
ture have been quite limited, and the creation of dedicated
diagrams providing the required information imposed ad-
ditional modeling effort aside of the systems engineering
process.

Nevertheless, to emphasize the natural combination of
architecture and simulation, Modelica Association defined
a dedicated standard called SSP2, to apply simulation
models in an architectural (= structure) context, (Model-
ica Association 2022b). Different to that approach and
the available implementations, in this paper the relevant
information is reused from the systems model (SysML).
Such data, at first the logical structure or decomposition,
meaning the different subsystems and components as well
as their interrelations, enables an automatic generation of
a model template and corresponding library as shown in
Figure 3. This template replicates the system structure
and hierarchy without any modeling effort. Hence, the
design process time is significantly decreased, while it be-
comes more reliable regarding missmatching subsystems
and components as the degree of freedom of the design
engineer is limited because of predefined ports and con-
nections. However, it should be noted, that some infor-
mation have been traditionally missing in systems engi-
neering domain (SysML) and need special treatment to
bridge the gap from abstract functional system perspec-
tive to behavioural or physical view, (Cederbladh et al.
2024). Similar to SSP approach, the actual performance
simulation models will be then integrated by means of

2System, Structure and Parametrization

146 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207145 DOI

Figure 3. Cross-domain process to replicate system architecture information (logical structure) in automatically generated simula-
tion templates to aggregate native Modelica models or existing models from other sources by means of FMI

functional mockup interface FMI or native Modelica com-
ponents into these architectural templates. In particular,
the latest version 3 (Modelica Association 2022a) with the
support of physical connectors is a major improvement
towards automation and user convenience for the aspect
of continous integration between architecture and simula-
tion, see next section for details from practical application
perspective.

In a second step, the requirements or stakeholder needs,
which are connected to architectural components by trace
links in the SysML model, are used to extend the previous
architecture simulation models for the purpose of mission-
or scenario-based virtual architecture validation, as intro-
duced above. A more detailed, walktrough visualisation of
MBSE artefacts integration from requirements to virtual
testing is given in (Gottschall, Binder, and Castel 2022).

At this stage in the design cycle, the application of the
SSP technology mentioned above becomes obvious by
exporting such full architecture simulation models in a
tool agnostic model exchange container for collaborative
use cases.

In order to achieve such digital cross domain inte-
gration (not limited to architecture and performance),
we developed and applied a linked data approach, based
on microservices which are compliant to open standard
specification OSLC3, (Open Services Project 2021). As
shown in Figure 4, these webservices are acting as a mid-
dleware between frontend and backend tools, exposing
all relevant information, collected in a multidomain data-
model of overlapping entities, and providing consistency
throughout the various managed artefacts that are created
by the stakeholders of the process. Engineering tools are
connected by clients which implement discipline specific
workflows on that data. This way, the digital thread
approach becomes tool agnostic, since the frontend and

3Open Services for Lifecycle Collaboration

Figure 4. Middleware integration approach between engineer-
ing frontends (e.g. simulation tools) and data backends estab-
lishing coherent engineering artefacts to achieve a tool agnostic
digital thread along product lifecycle with contributions of vari-
ous disciplines

backend tools can be replaced while the datalayer stays
intact. Such non intrusive implementation supports the
best tool for the job paradigm, allowing the user to keep
his established ecosystem and dedicated workflows.

The benefits of continuous integration between systems
engineering and simulation for early-stage development
tasks will be demonstrated in the next section by top-down
virtual design of a rather complex electrical vehicle (EV)
system, applying incremental performance validation and
corresponding decisions to highlight the value of scenario-
based system simulation applications.

3 Complex System Development Pro-
cess Demonstration

As shown in Figure 1, a representative development pro-
cess starts with high level, mostly abstract requirements or
stakeholder needs. The subsequent system description and

147OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207145

decomposition in the design phase for products or systems
with sufficient level of complexity (like an EV) follows
MBSE methodology in a top-down fashion, including the
major abstraction layers and their relations:

• Requirements (R) are satisfied by functions (to be
provided by a system)

• Functions (F) are fulfilled by logical components
(contained in a system)

• Logical components (L) are implemented by physical
models

• Physical models (P) are used to validate systems
(subsystems, components, et.) against requirements

Such formal, hierarchical process allows breaking down
a complex design task, where requirements are progres-
sively derived and propagated along the different levels of
detail or abstraction from system (e.g. electric vehicle)
to subsystem (e.g. electrical system) to components (e.g.
battery), always based on the simulation results and deci-
sions made the step before, indicated by the green arrows
in Figure 1.

Use Case and Sample Tooling
With the demonstration, a model-based, incremental top-
down design and operation optimization use case is ex-
ecuted, applying either an electric truck (long distances)
or electric bus (short distances, not shown) ecosystem,
which results in different system architectures to be se-
lected based on the simulation results. Here, the exem-
plary engineering tooling listed below is used for visual-
isation purposes at the different stages of the process (as
mentioned above, tools can be replaced by the user):

• PTC Windchill Modeler (requirements and architec-
ture modeling, SysML)

• ESI SimulationX (1D modeling and simulation envi-
ronment based on Modelica)

• 3rd party 1D model sources like Simulink, GTSuite,
Dymola, etc. providing FMU

• ESI VCM4 (webbased virtual test management and
executation environment)

Depending on the type of utility vehicle, e.g. longrange
truck or city bus, the corresponding target and missions
are specified and applied for the product level stakeholder
needs, exemplarely listed below. Such performance re-
quirements will be the entry point into and drive the
design and verification process considering certification
standards like ISO 8714, or safety regulations on compo-
nents like fail safe battery design compliant to ISO 6469
or SAE J2929:

4Validation Campaign Manager

• Range: The vehicle must be capable to serve a dis-
tance of 350 km (+50 km safety margin), or a cycle
time of 4,5 hours, respectively before recharge or re-
fill is required.

• EnergyConsumption: The specific energy con-
sumption must be below the threshold of 1,20
kWh/km on customized, specific missions at maxi-
mum payload.

• ClimbingPower: The vehicle shall maintain a ve-
locity of 80 km/h at a road gradient of 7 percent with
maximum mass.

• CabinComfort: The thermal system must maintain
a cabin temperature between 18 - 25 deg Celsius, in
outside operating environmental conditions between
-40 and +50 deg Celsius with respect to heating and
cooling performance.

• BatterySafety: The maximum battery temperature
under peak load conditions must stay below 70 deg
Celsius.

Apart from technical requirements, also economical as-
pects may be considered and evaluated based on the sim-
ulated loadcases (still on high, abstract level) like

• Costs: The estimated, selected vehicle architecture
operating costs must stay below 0.40 C/km, also
considering personnel costs spent on downtime like
recharge cycles.

The payload of the EV or capacity of the power source
are design parameters among others listed in Table 1, re-
flecting variability between different configurations of the
same system architecture. It should be remarked, that the
given high level requirements are cascading along the sys-
tem decomposition and maturizing, where additional re-
quirements on the sublevels, e.g. recuperation or charging
power, are derived and validated accordingly.

Table 1. Examples of architecture design parameters for the EV

Subsystem Parameter Name

Powersource Capacity cap
Mechanical System No. of Motors nMot
Mechanical System Wheel Dimension rWheel
Mechanical System Total Mass mTot
Thermal System Climatisation Power hP
Thermal System Trailer Cooling Power cgP

Process and simulation-based Decision Making
Figure 5 summarizes the seamless integrated, collabora-
tive workflow using MBSE principles and virtual test-
ing to verify architecture performance. SysML models
are created by formal processes following a strict R-F-L
methodology to decompose the complex system of inter-
est, (Aleksandraviciene and Morkevicius 2018; Weilkiens

148 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207145 DOI

Figure 5. Integrated digital thread workflow spanning MBSE disciplines from requirements to architecture to physics for simulation
and application of the physical models in virtual testing scenarios for early stage validation and design decision feedback

2014). In such hierarchical approach, lower level require-
ments and specifications are derived from higher level en-
gineering results (e.g. system L defines F on subsystem,
subsystem F defines R on components, etc). Applying
"shift-left" paradigm by virtual design (with increasing
model capabilities and fidelity along the process) enables
decision making based on simulation results and the auto-
matic propagation of top level stakeholder needs through-
out the development task. In particular, use cases in this
publication like

1. Architecture exploration for electrical system (bat-
tery or fuel cell) and thermal system (cabin heating
with resistor or heatpump) with available or derived
simplified models e.g. transfer functions, validating
against high level performance indicators defined by
the requirements above

2. Scenario-based design optimization regarding sizing
and performance of subsystems on previously se-
lected architecture level, e.g. number of drive mo-
tors in mechanical system, or deriving geometrical
parameters and requirements for subsequent 3D de-
sign (CAD)

3. Operation and mission optimization for a given/
frozen design of the EV for in-service phases of the
system

4. Prediction of performance degradation after 5 years
or 2.000 cycles in operation, e.g. using aging mod-
els of power source system, and verification against
lifecycle requirements

will benefit from continous artefact integration (data) and
workflow automation, towards future AI5 supported engi-

5artificial intelligence

neering business. Further downstream, to enable a trace-
able application of the generated physical simulation mod-
els with respect to scenario-based architecture and system
performance validation, relevant information for this pur-
pose is reused from the abstract systems model in SysML.
More specifically, standard systems engineering entities
like structural diagrams (L) shown in Figure 5, are aug-
mented by stereotyping to specify the nature of physical
connections between the different elements (blocks) and
describe the architecture of the design system. Their allo-
cation to certain functions (F) allows a filtering of compo-
nents throughout the model generation in the simulation
tool, hence supporting the focus of dedicated engineering
teams. With the verification link given in requirement dia-
grams (R-L), specific parts of the system architecture can
be applied in dedicated virtual testing models representing
a specific scenario described by the linked requirement.
As shown in Figure 6, this way, the physical design model
(P), realizing the logical structure of the architecture, and
the requirement (R) become ingredients of the actual test-
model. This testmodel generation is semi-automatic by in-
stantiating the corresponding design component (as "Unit
under Test" uut) that is linked to the requirement, and en-
sures traceability along the artefacts generation. Since re-
quirements are often not formalized but given in natural
language, the design model augmentation by stimulation
and evaluation corresponding to the requirement is manual
modeling effort. However, in previous studies, these as-
pects have been already automated by applying standard-
ized interfaces for test automation6.

As already mentioned above, the aspect of configura-
tions of a product becomes more and more important in
engineering workflows incorporating modeling and simu-
lation shown in Figure 5, particularly for complex cyber-
physical systems OEMs or suppliers have to handle full

6ASAM XiL

149OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207145

Figure 6. Concept to reuse tracelinks between SysML artefacts to generate testmodels in Modelica. Allocation to system functions
allows filtering (left), verification links between logical layer and requirements (center) allow augmentation of design models with
corresponding stimulation and test verdict (right, failed test) for automatic virtual testing processes

Figure 7. Automatic cross-domain transfer of product configuration specification by utilizing SysML entities like stereotyping
(top left) and variant diagrams, decision sets (bottom left), and the Modelica replacable mechanism (right), to describe different
architecture or component implementations, demonstrated on the Thermalsystem and the inner, selected Heatpump structure

product families. The need for cost reduction drives the
modularization and identification of commonalities in de-
sign, and continous integration is a measure to achieve
that. Both, architecture and simulation provide techniques
to enable cross-domain transfer of such information, see
Figure 7 for an overview on the implementation. Two
main aspects need to be handled:

1. Express the variable component in the SysML model
(L) by stereotyping and tagging as shown top left and
transfer that information to the corresponding, auto-
matically generated Modelica template (P) using the
builtin replacable/redeclare mechanism in a certain
instance of a model, e.g. for testing, as shown for the
ThermalSystem block

2. Express the various, potential configurations of the
system of interest as shown bottom left for the Heat-
pump or Resistor Heating implementation of the

ThermalSystem, SysML tools offer dedicated arte-
facts like variant diagrams and decision sets to rep-
resent variability in a certain system, such expres-
sions are standardized by ISO 26550 and variabil-
ity or variants modeling is becoming a crucial part
of SysML v2 description language (Object Manage-
ment Group 2023), potentially leading to further en-
hanced capabilities and automation in this regard

In addition to the systems structure, the design parame-
ters, that are defined on architectural or systems engineer-
ing level and attached to the different blocks/components
(L), need to be handed over to simulation domain. Such
parameters, like in Table 1, have to be used for testcam-
paign definition to reflect the design space definition for
each physical implementation (P). Moreover, considering
the corresponding parameter ranges in an automated fash-
ion throughout the test description serves the use case of
estimating the impact of real product deviations or toler-

150 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207145 DOI

Figure 8. Automatic cross-domain transfer of global design parameters (default value, ranges and units) defined on architectural
level by utilizing SysML entities like Block Property (left), and corresponding Modelica implementation (center) to reuse in VCM
for experiment definition (right), visualised for the Thermalsystem verification

ances ("as manufactured"), to achieve a robust design right
from the beginning. Apart from such conventional use of
parameters for system or component sizing, the Modelica
language offers another beneficial option for the applica-
tion of architecture and structural decision making. Inte-
ger values on logical blocks are used to describe the num-
ber of instances of a same component inside that block,
without changing the architecture with respect to physi-
cal domains of interfaces. A visual example is the No.
of Motors parameter in Table 1, where the external struc-
ture and connectivity of the mechanical subsystem does
not change, but the desired number of electrical machines
connected to the outside interface (multiplier) is transfered
from systems engineering level to simulation and vice
versa. Optimization tasks like "Is one big motor better
or worse regarding overall energy consumption compared
to two smaller ones?" are significantly improved with bet-
ter traceability and user convenience across the different
development domains.

Again, the standard mechanisms of architectural and
physical modeling are used to express and transfer the
desig nparameters, their description, default values and
ranges, Figure 8. In a continous integration implemen-
tation, the test management and execution system in Fig-
ure 5 lists these parameters automatically, to be used for
the definition of the different experiments/ campaigns, ei-
ther single runs or multiple variants simulations in appli-
cations like design space exploration or optimization (de-
sign of experiments).

Since the different architectural components discussed
above, are linked to corresponding requirements that they
should fulfil, Figure 6, the information of test cases which
require a simulation model is automatically provided to
the simulation engineer in the physical modeling tool, see
Figure 9. Similar to the template generation of design
models shown in Figure 3, the testmodels will be auto-
matically generated by instantiating the correct modeling
component when the user selects a test case in the list.

These features highlight the contribution of cross-domain
integration to the scope of more efficient and reliable, col-
laborative engineering workflows. Aside of that, it should
be emphasized again, that the underlying linked data en-
sures strict traceability, and continous integration allows

Figure 9. Representation of requirements that need to be tested
by performance models in SimulationX Addin (right), defined
by verifies links on architectural models in SysML (left), shown
for the Powersource subsystem, see also Figure 6

for automatic top-down change transfer along the pro-
cess. Changes in parameters or architectural structure are
propagated and trigger model regenerations. On the other
hand, fully bi-directional automatic bottom-up updates,
like from 1D simulation results to architectural changes,
are ususally not allowed in real development processes of
complex systems, as they require impact assessment on
higher, holistic system level.

Commercial Electric Vehicle Example

With respect to page limit, the technical engineering so-
lutions described above, will be visualised by one specific
example of a long-range truck design and sizing. Based on
the explained high level requirements, system simulation
is used to verify the performance of different, potential
system architectures. This is a two-stage process, where
both, the architecture evaluation and the following system
and component sizing are verified on a detailed mission
simulation. Such inherent incremental maturity rise along
the development means, that the structure (L) of the sys-
tem determines the functions (F) to be provided by the
subsystem (and so on), hence lower level requirements are
derived based on higher level simulation results. Close to
state of the art parameter settings of heavy electric trucks
with cooled trailers have been applied for the simulations
below, as they became available and published recently.

Saying that, the scenario setup for the "architecture ex-
ploration" use case consists of two conditions for sum-
mer (30 °C) and winter (-15 °C). As mentioned above,
it should be investigated which configuration of the

151OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207145

Figure 10. Examplary routing from Munich to Dresden with av-
erage velocity and elevation profiles exported by a route planner

• PowerSource: Battery vs. Fuelcell

• ThermalSystem: Heatpump vs. electrical Heating

would be the best choice with respect to the decision
criteria of specific energy consumption for driving as well
as climatisation of cabin and trailer. The actual models in
the different domains have been created as explained and
visualised above and considering the resulting test matrix,
8 simulations have been executed. Please note, that the
physical implementations of the systems and subsystems
of interest (PowerSorce and ThermalSystem) are simpli-
fied at this stage. Usually, at these very early phases of
design more detailed models are simply not available,
or an enormous number of simulation runs is required
within multi-dimensional design space exploration of
complex systems and the computational performance
has to be maximised. Moreover, it should remarked
again, that the physical models that are plugged into the
architecture template by means of FMI originate from
different sources, or are represented by native Modelica
components.

However, all "full system" evaluations are done us-
ing the exemplary, envisioned route for the truck shown
in Figure 10. This is crucial, as the different system im-
plementations have different efficiencies and capabilities,
e.g. regarding recuperation. Hence, the route profile
of the specific mission has significant impact on the
selection of a certain architecture configuration. Relevant
information from the route like elevation (inclination) and
average velocity are imported to a "drivingCycle" block,
compare Figure 6, in the testmodels to apply proper
conditions for stimulation. Please note, the maximum
speed for heavy trucks is limited to 80 km/h on highways.
It should be also remarked, that the tested route has a
direction, means that the results will differ when going
in reverse direction. Such considerations are subject to
common trade-off studies.

A qualitative analysis is given in Figure 11 for first
step decision making. With respect to the overall spe-
cific energy consumption shown on top, it becomes ob-
vious that the battery configuration is the better choice,
independent of the ambient conditions. This is because of
several reasons. The major driver is the efficiency of the
fuelcell to convert the hydrogen into electrical energy, in
comparison to the battery that stores the required energy

Figure 11. Qualitative comparison of performance numbers for
the battery electric (BET) and fuel cell electric configuration
(FCET), top: overall energy consumption for electric heating
and heatpump configuration, each at summer (colored) and win-
ter (dotted) ambient conditions, bottom: heating energy for the
cold conditions, distributed over main consumers

directly. However, depending on the overall scenario, it
might be necessary to extend the system boundaries and
consider the costs and effort for external electrical energy
(for charging) as well, which might in turn change the out-
come as well. Aside of that, the energy comsumption in
could conditions is lower for both configuration because
of the lower demand by the trailer cooling system. Also,
it should be remarked, that the electric heating cabin cli-
matisation variant, seems to be slightly more efficient for
the summer scenario, compared to the more complex heat-
pump system. However, this is simply to the fact that the
eletric heating cannot cool the cabin in hot conditions, thus
there is no energy consumption at all in this case, but it
violates the functional requirement of "cooling" which is
indicated by a failed test for CabinComfort requirement.

Looking at the ThermalSystem performance at the bot-
tom of Figure 11, shows a clear benefit of the heatpump
configuration in cold conditions, because of the much
higher efficiency - as expected in this demonstration.

So, the overall architecture evaluation on this specific
customer mission results in a decision for the battery-
heatpump configuration. Based on this outcome, the
detailed design of the specific subsystem implementations
is taking place. The same architecture representation
in the system simulation tool is used, but the simplified
physical models of Heatpump and Battery are replaced
by enhanced, more sophisticated model components,
(Pukrushpan 2003; Hariharan, Tagade, and Ramachan-
dran 2018), as shown in Figure 7. In this step, subsystem

152 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207145 DOI

Figure 12. Test execution and requirements fulfilment overview
in VCM triggering design decisions, models in the driving per-
formance domain (top), models in the thermal performance do-
main (center), and models in the electric performance domain
(bottom) for a given, exemplary parameter setting

and component requirements are derived incrementally
throughout test execution with the detailed models,
requirements on charging features that depend on the type
of architecture.

Figure 12 provides an overview of test results (with
respect to passed/failed verdict) using the configuration
identified above, with a certain, exemplary setting of
design parameters selected from the given ranges as
shown in Figure 6 (right). It can be seen, that most of
the requirements are met by the design in the described
mission. However, the ClimbingPower and CabinComfort
tests are failed. The analyis requires a more detailed view
into the transient behaviour of a certain simulation, to
identify the root cause. As an example, the latter testcase
is executed in Figure 13 in a "design of experiments"
run, to figure out the impact of input conditions and
design parameter values. It can be seen, that some,
mainly the coldest ambient conditions, do not fulfil the
requirement of a cabin climatisation between 18 and 25
deg Celsius (left) for the particular parameter setting.
The VCM provides various analysis and data analytics
tools and capabilities. With the parallel coordinates on
the right, the ranges of relevant parameters (here the
climatisation power hP and the trailer cooling power
cgP) can be limited to valid combinations, that satisfy
the CabinComfort requirement. Such evaluation will be
feed back into the systems engineering design phase and
can be further automated, for applications like functional
optimization.

Once the ideal component design and parameter set-
ting regarding the different requirements are identified, the
configuration can be frozen and used for detailed transient
analysis and load case generation for design steps in the
3D geometry domain downstream the V-cycle, see sec-

Figure 13. Example of visualisation in VCM from the Cab-
inComfort testcase executed at 8 different ambient conditions
for demonstration of engineering tasks like design optimization
and parameter identification, transient results left, parallel co-
ordinates to narrow down valid parameter ranges within design
space satisfying the requirement (blue)

Figure 14. Example of a zoom into transient results from the
Range testcase running the mission in Figure 10 for design opti-
mization, bottom diagram indicates mechanical breaking action
when maximum recuperation is achieved on steep descents

tion below. In example, Figure 14 visualises the evolu-
tion of battery charge, recuperation power and mechan-
ical braking action along the route (excerpt), testing the
Range and Recuperation requirement. Aside of that, fur-
ther engineering tasks like mission optimization, or oper-
ational predictions like aging of battery power source are
supported by the digital twin character of the architecture
simulation models.

Finally, it should be mentioned that the results and de-
rived architecture and components look different for the
system of a city bus because of the different scenario.
However, the major benefit of such continous integrated
design process, is the agility to quickly identify new ar-
chitectures on changed requirements.

Reuse of Architecture Performance Models
As mentioned above, the simulation results gained in the
demonstrated process will serve as inputs further down-
stream the product development cycle, for geometrical
definitions (system sizing) or providing load cases for

153OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207145

Figure 15. Example of 1D physical model (ABS brake) inte-
grated into 3D FEM model by means of FMI for realistic pre-
crash simulation

detailed 3D CAE analysis tasks. Aside of these natu-
ral cross-domain interactions, particularely the Modelica
models generated for performance validation of system ar-
chitectures or subsystems can be reused as FMI integrated
components, for sophisticated, more realistic, scenario-
based 3D FEM simulations, as shown in Figure 15. With
such enhanced coupling, certification credits for crash
simulations on safety critical battery and fuel cell archi-
tectures (e.g. ISO 23273) in the challenging EV domain
are enabled and already demonstrated.

4 Conclusion
Establishing continuous and agile workflows in design
and validation of complex cyberphysical systems, by en-
abling collaboration on heterogeneous tool and stake-
holder ecosystems in early phases of development, lever-
ages the potential of ongoing digitalisation as shown in
the present demonstration. It addresses currently exist-
ing process and traceability gaps between the engineering
disciplines of requirements management, architectural de-
sign, physical development and virtual performance and
puts system simulation in a broader, holistic system con-
text. This way, 1D simulation evolves from an isolated ac-
tivity, acting in a silo with well known issues and friction
when it comes to integration, towards an integral part of
virtual development applying and following model-based
systems engineering methodologies to master present and
future process and product complexity. With its ability
of serving as model aggregator, Modelica plays a crucial
role in collaborative multipartner processes, examplary for
complex systems, early stage validation.

With the presented digital thread implementation, not
only design and verification becomes more efficient,
reliable and collaborative, but also sales engineering tasks
like RFP phases (request for proposal) benefits from much
reduced task cycle times. The cross-domain variability
support allows the fast and reliable selection of the best
configuration in a complex product family for a customer
specific mission.

In a next step, the architecture identification can be
automated by enabling experiment definitions on com-
ponent implementations. With the reuse of dedicated
SysML artefacts (variant diagram, decision set, etc) in

the test management system (e.g. VCM) design space
explorations can be easily executed and evaluated. This
would enable further AI support by simulation-based
decision making towards more autonomous processes.

Finally, with the upcoming layered standard on SSP
traceability, further automated test model generation with
respect to stimulation and evaluation of performance mod-
els, based on reusable meta data for test specification, is
expected.

References
Aleksandraviciene, Aiste and Aurelijus Morkevicius (2018). No-

Magic Magic Grid - Book of Knowledge. 1st ed. Vitae Litera.
Cederbladh, Johan et al. (2024). “Correlating Logical and Physi-

cal Models for Early Performance Validation - An Experience
Report”. In: IEEE Systems Conference SYSCON2024. IEEE.

Douglass, Bruce Powel (2016). Agile Systems Engineering.
1st ed. Morgan Kaufmann Publishers. ISBN: 978-0-12-
802120-0.

Gottschall, Marcel, Bastian Binder, and Alexis Castel (2022).
“Towards Certification by Simulation with model-based con-
tinuous Engineering Processes showcased on eVTOL Appli-
cation”. In: 78th VFS Forum and Technolgy Display. Vertical
Flight Society.

Hariharan, Krishnan, Piyush Tagade, and Sanoop Ramachan-
dran (2018). Mathematical Modeling of Lithium Batteries.
1st ed. Springer. ISBN: 978-3-319-03526-0.

Modelica Association (2021). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Speci-
fication Version 3.5. Tech. rep. Linköping: Modelica Associ-
ation. URL: https : / / specification .modelica .org /maint /3 .5 /
MLS.html.

Modelica Association (2022a). Functional Mock-up Interface
for Model Exchange and Co-Simulation Version 3. Tech. rep.
Linköping: Modelica Association. URL: https://fmi-standard.
org.

Modelica Association (2022b). System Structure and Parame-
terization Version 1. Tech. rep. Linköping: Modelica Associ-
ation. URL: https://fmi-standard.org.

Object Management Group (2022). OMG Systems Modeling
Language Version 1. Tech. rep. Massachusetts: Object Man-
agement Group. URL: https://www.omg.org/spec/category/
systems-engineering/.

Object Management Group (2023). OMG Systems Modeling
Language Version 2 - Language Specification. Tech. rep.
Massachusetts: Object Management Group. URL: https : / /
www.omg.org/spec/category/systems-engineering/.

Open Services Project (2021). Open Services for Lifecycle Col-
laboration Version 3. Tech. rep. Open Services Project. URL:
https://open-services.net/.

Pukrushpan, Jay Tawee (2003). “Modeling and Control of Fuel
Cell Systems and Fuel Processors”. Doctoral dissertation.
The University of Michigan, Department of Mechanical En-
gineering.

The INTO-CPS Association (2018). The INtegrated TOolchain
for Cyber-Physical Systems: a Guide. Tech. rep. INTO-CPS.
URL: https://into-cps.org/fileadmin/into-cps.org/Filer/INTO-
CPS-Manifesto.pdf.

Weilkiens, Tim (2014). Systems Engineering mit SysML/UML.
3rd ed. dpunkt. ISBN: 978-3-86490-091-4.

154 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207145 DOI

Multiphysics Acausal Modeling and Simulation of Satellites Using
Modelica Library

Salvatore Borgia1 Francesco Topputo1

1Department of Aerospace Science and Technology, Politecnico di Milano, Italy, salvatore.borgia@polimi.it

Abstract
The multiphysics modeling has a great importance when
a complex space system (as a satellite) is considered. In-
deed, it is necessary to analyse how the system’s behavior
is affected by the space environment or by on board fail-
ures. In this paper, the Modelica Library is used to hier-
archically build and connect the main subsystems that can
be found in a traditional satellite. Specifically, the mod-
eling and simulation of the entire system is carried out in
the Dymola1 environment. Finally, the FMI is applied to
simulate in Dymola some specific satellite models/logics
created with higher fidelity in the Matlab/Simulink2 do-
main.
Keywords: Multiphysics modeling, Space system, Model-
ica library, Dymola, FMI tool

1 Introduction
A space system is generally composed of several subsys-
tems belonging to different physical domains. A malicious
entity could compromise even one of them to produce es-
calation effects involving the whole system. In this sit-
uation, the modeling task requires a holistic approach in
order to simulate multiphysics interactions that occur in-
side the system. For this reason, the Dymola environment
has been used to build a hybrid-complex system from the
basic physical elements of the Modelica library exploit-
ing the acausal modeling technique (Tiller 2001). More-
over, thanks to Modelica text coding and FMI (Functional
Mock-up Interface) tool, ad hoc functions have been cre-
ated to connect physical variables (simulating their math-
ematical relation), and to import from other tools (as Mat-
lab/Simulink) the acausal model of system’s subparts.

1.1 Satellite system
In this paper, a small satellite is considered as an example
of space system. It is worth noting that each satellite has
its own architecture and on board equipment depending
on the specific mission to be accomplished. However, for
the purpose of modeling the multyphysics interaction and
creating a general simulation platform, a breakdown archi-
tecture (Figure 1) has been considered in order to catch the

1https://www.3ds.com/products/catia/
dymola

2https://it.mathworks.com/products/
matlab.html

main physical domains characterizing almost any satellite:
mechanical, thermal, fluid and electrical. Specifically, the
considered subsystems are:

• ADCS (Attitude and Determination Control Subsys-
tem): it allows to change/keep the satellite orienta-
tion in space through actuators (as reaction wheels
(RWs)), or estimate it using sensors (as gyroscope
(Gyro)).

• THR (Thermal subsystem): it allows to monitor the
satellite instrumentation temperature or surface tem-
perature keeping it within certain nominal bounds.

• PROP (Propulsion subsystem): it is responsible of
delivering thrust to perform/support ADCS attitude
maneuver or to counteract disturbance torques (as so-
lar radiation pressure (SRP)).

• EPS (Electrical Power Subsystem): it allows gen-
erating power on board, using for example photo-
voltaic (PV) solar panel, and consequently the Power
Management Unit (PMU) manages and distributes it
to all subsystems (exploiting Maximum Power Point
Tracking (MPPT), battery element, and DC-DC con-
verter (Czarkowski 2011)).

Figure 1. Satellite breakdown structure considered for Dymola
modeling.

As it can be noticed in Figure 1: the subsystems of
which the satellite is composed are at the first level (or-
ange boxes), the subsystems tasks are reported at the sec-
ond level (blue boxes), and the physical components (such

155OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 155

156 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

as actuators or sensors) to perform the tasks are depicted
at the third level (grey boxes). The proposed architecture
is more likely to be found in CubeSats (Song and al. 2018)
due to the choice of resistojet as propulsion solution (Tum-
mala and Dutta 2017). Apart from that, the structure can
be then easily adaptable for other cases like large space-
craft. In the following sections, the modeling design of
each subsystem and its principle of operation will be pre-
sented.

2 Modeling design
The main modeling steps of a general real system can be
summarized as (Umez-Eronini-Eronini 1999):

1. Extract a physical model from reality: this process
requires engineering judgment to isolate only the
physical (state) variables which play a dominant role
for the systems behaviour.

2. Extract the mathematical model from the physical
one: at this stage, the identified physics phenom-
ena shall be translated into mathematical expressions
through the constitutive law equations of the specific
physical component.

3. Simulate the mathematical model: the mathematical
model of the system then has to be resolved trough
the use of integrator scheme that returns the evolution
of the state variables in time.

4. Perform sensitivity analysis: from the previous stage,
it is possible then to compare the simulation results
with the real response matching the behaviour of the
digital world with the real one (state identification
problem). This procedure allows closing the mod-
eling loop and eventually obtaining a "digital twin"
(Singh, Fuenmayor, and al. 2021).

In Figure 2, an example of the modeling process (above
described) for the case of a typical electrical direct cur-
rent (DC) motor which drives a shaft. It can be noticed
how the initial complex real system is reduced to a phys-
ical representation governed by a set of simple first order
differential equations (Cannon 1967).

Figure 2. Modeling phases for a DC motor (Cannon 1967).

2.1 Satellite general architecture
After the definition of the high-level structure, the subsys-
tems correlation flow scheme has to be derived to under-
stand how the different physical variables interacts each
other within the satellite system. Figure 3 reports the
general satellite configuration considered for the model-
ing part and Figure 4 the relative actuators configuration.
Without loss of generality, to simplify the simulation part,
the PV arrays are rigidly connected with the main body
and the satellite center of mass (CM) is assumed to be
located at the origin of the Dymola world frame {xyz}
where the attitude dynamics equations are expressed. Re-
garding the thrusters, for modeling simplification, they are
assumed to be 6 and, according to which nozzle is acti-
vated, three-axis control torques are generated. Specifi-
cally, a water resistojet propulsion system is considered
for this work. Regarding the star trackers, there are 2 look-
ing at inertial fixed stars respectively along x and y direc-
tion. The satellite characteristic dimensions considered in
terms of main body and actuators size, together with the
main physical parameters of the system, are similar to the
one of a 16U CubeSat (as it will be ramarked in section 5).

Figure 3. The satellite external configuration.

Figure 4. The satellite actuators configuration.

2.1.1 Satellite subsystems interaction

According to the satellite architecture and relative config-
uration previously presented, the subsystems mutual in-
teraction is derived in Figure 5. From the diagram we can
notice that:

157OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

• the EPS bus voltage VBus, given by the DC-DC con-
verter, or the battery voltage VBatt feed RWs actu-
ators of the ADCS and the resistojet of the PROP
subsystem.

• The attitude matrix R̂123, expressed as euler se-
quence "123", determines the relative orientation
between Sun/Earth and Dymola body-frame. This
affects which surfaces are receiving radiation heat
or not as boolean vector νS. The latter vector is
computed by the shadow model knowing the iner-
tial Earth and Sun position (r̂Earth and r̂Sun, respec-
tively).

• The amount of power generated by the PV array is
affected by the PV-Sun incidence angle α̂SA.

• The steam obtained after a water mass flow rate ṁH20
is heated up from the electro-thermal circuit of the
resistojet, expands through the nozzle generating a
level of thrust F̂p function of the steam pressure Pst
and temperature Tst .

• The fuzzy logic regulates the firing time and the
thrust direction of each nozzle. In this case, the final
output is the relative torque induced on the satellite
T̂p.

• The battery temperature TBatt and PV array temper-
ature TSA are inputs for the EPS affecting the level
of power generated on board and the battery charge-
discharge profile.

• The SRP torque block is able to determine the dis-
turbance torques T̂srp acting on the satellite knowing
both the Sun inertial position and the satellite atti-
tude.

Figure 5. Satellite physical cross-interactions.

The subsystems interaction diagram just described is an
example of basic working logic that can be found in many
satellite (specifically in CubeSat). Again, each satellite
can implement its own architecture slightly changing how
the outputs of a subsystem affect the other ones. How-
ever, for the purpose of this work, the main multiphysics
connections are considered and they shall be taken into

account in the modeling part of the satellite physical com-
ponents. Moreover, during the modeling process, some
control logics have been assumed to link variables from a
physical world to another. In this way, the space system
simulated assumes the characteristics of a typical cyber-
physical system.

2.1.2 ADCS subsystem
In this section, the ADCS subsystem is analysed more in
details focusing on its working logic flow and on the cor-
responding modeling translation into Dymola. Figure 6
shows the specific subsystem logic, in particular from left
to right we have:

1. The error between the desired satellite attitude angles
α̂(123)

target (as Euler sequence "123") and the on bard es-

timation from sensors α̂(123)
sat is an input for the PID

(Knospe 2006) control block.

2. The PID block returns the continuous signal voltage
Ṽm to be supplied on the virtual DC motor in order to
match the ideal control torque with the one generated
by the virtual reaction wheel T̃RW .

3. According to the virtual RWs angular velocity ωRW ,
another PID block calculates the duty cycle Dc of
the H-bridge circuit to generate the needed square
voltage signal Vm of amplitude given by the EPS bus
voltage Vm.

4. The square signal Vm supplies the real DC motor
block. According to the motor angular rate ωM , the
real reaction wheel follows an angular velocity pro-
file similar to the virtual one. The final effect is the
torque released on satellite by the real RWs T̂RW due
to the principle of "action-reaction".

5. Besides the RWs, the SRP torques and the PROP
torques drive the attitude dynamics of the satellite as-
sumed to be a simple rigid-body. This latter simpli-
fication avoids us to model flexibility which is domi-
nant when large impulsive maneuvers occur on satel-
lite having long solar arrays (Wei, Cao, and al. 2017).
Indeed, for a small system, as the one considered in
this paper (16U CubeSat), the rigid-body assumption
makes more sense because of the short solar panel
length and dominant main-body inertia.

As explained in section 2, the mathematical model has
to be extracted from the physical world to simulate the be-
havior along the time. For the examined ADCS subsystem
(Figure 6), the main governing equations are:

Jω̇sat =−ωsat × (Jωsat)+ T̂srp + T̂p + T̂RW (1)

La
di
dt

=−Rai−KmωM +Vm (2)

Jmω̇M =−bωM +Kmi+ T̂RW (3)

Figure 6. ADCS subsystem modeling scheme.

where in Equation 1: J is the satellite inertia matrix, and
ωsat is the angular velocity vector expressed in body-frame
axes ({xyz} in Figure 3). In Equation 2: La and Ra are the
inductor and the armature resistance of the DC motor cir-
cuit, respectively; i is the current flowing in the circuit; and
Km is the motor constant that allows the coupling of the
electric domain with the mechanical one. In fact, in Equa-
tion 3, the torque produced by the motor (Kmi), together
with friction losses (bωM) and load torque given by the
RW, determines the angular speed of the DC motor with
inertia Jm. In this case, the motor shaft is directly con-
nected with the load (RW) without gear-box in between
(ωM = ω̂RW). In Table 1 it is reported the Modelica library
components used for modeling the ADCS subsystem in
Dymola. The external satellite configuration (Figure 3)
has been replicated with the basic rigid body element and
then, through links, PV arrays have been added to the
main body. The spherical joint is needed to simulate only
the three degree of freedom of the satellite. The world
frame in Dymola has been then connected to the spherical
joint in correspondence of the satellite CM, and the gravity
field option has been imposed to zero to replicate the deep
space condition. The radiator mechanism is allowed to ro-
tate only along the z-axis of Dymola frame thanks to the
revolute joint element. Assuming an ideal gyro, it is sim-
ple an angular velocity sensor in Dymola. Regarding the
DC motor speed controlled by the H-bridge electric cir-
cuit (Priyanka and Mariyammal 2018), the homonymous
components already existing in the Modelica library have
been exploited instead, for the RW, it has been modeled as
inertia load element attached to the DC motor shaft. The
Pulse Width Modulation (PWM) block in Modelica allows
to generate the real voltage signal with discrete values:
[−VBus, +VBus] and a variable duty cycle given by a lim-
ited [0 to 1] PID. The fixed rotation/translation element,
listed in the table, permits to link the main body with the
PV arrays or, eventually, to arrange the satellite rigid body
elements into another configuration.

In section 3, the Modelica text coding (within Dymola)
will be discussed in order to simulate: the TRIAD algo-
rithm, for estimating the attitude matrix exploiting the two
measured vectors by star trackers, the Gaussian noise ng
model of the star tracker, and the SRP torque computation
in Dymola body-fixed frame axes.

Table 1. Modelica structure of the ADCS subsystem

Physical element Modelica component

Rigid-body

World frame joint

World torque

Fixed rotation

Radiators joint

Voltage source

DC motor

RW

H-Bridge

PWM

GYRO

PID (limited)

2.1.3 THR subsystem

The thermal model has been tackled using the lumped ap-
proach (Cannon 1967). According to this method, the
satellite surfaces or internal instruments (like the battery)
are modeled as nodes with a certain thermal capacity (de-
pending on the material). The thermal nodes are capa-
ble to exchange heat each other, with the Sun/Earth, and
with the deep space. In Figure 7 it is reported the lumped
scheme of the satellite system presented in 2.1. In fact, the
lumped nodes (3-4-5-6-7-8) represent the surfaces of the
main body, the PV array surfaces correspond to the nodes
(1-2-9-10) instead the radiators surfaces correspond to the
nodes (11-12-13-14). As it can be noticed, the dominant
heat exchange ways considered are conduction and radi-
ation (the convection is not present or negligible in deep
space due to lack of air). The deep space acts as a sink

158 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

(average temperature of 3 [K]) with which each node ex-
changes heat by radiation. The PV array surfaces have
been split in four nodes to model the different thermal
properties between the top side (higher emissivity) and
the bottom one (higher absorptivity). Similarly for the ra-
diators with the difference of having higher emissivity at
nodes (12-14) and higher absorptivity at nodes (11-13).

Figure 7. Satellite thermal lumped model.

The THR subsystem logic flow scheme is shown in Fig-
ure 8. Specifically, we can observe that:

1. The subsystem receives as external inputs: the satel-
lite attitude matrix from ADCS, the sun position vec-
tor with respect to an inertial frame, and the solar ir-
radiance Eir with intensity depending on the satellite
to Sun distance.

2. The shadow model returns the boolean vector νS with
dimension equals to the number of thermal nodes (14
in this case). If the value is 1 means that the corre-
sponding node is receiving the Sun or Earth radia-
tion.

3. From the resulting satellite temperature distribution,
hysteresis logic can be adopted to maintain the av-
erage nodes temperature between a desired range.
The hysteresis logic will then open/close the radia-
tors surface through the control torque T̂c.

4. The opening of radiator will affect the heat transfer
coefficients of the thermal model both for the con-
duction Gc and radiation Gr.

5. Finally, from the radiator rotation angle α̂radiator
along z-axis of the body frame (Figure 3), the shadow
condition for nodes (11-12-13-14) can be estab-
lished.

Regarding the mathematical model, the main governing
equations of the THR subsystem can be summarized as
(Lienhard 2024):

Figure 8. THR subsystem modeling scheme.

Ci
dTi

dt
= Q̇i

Sun + Q̇i
Earth +∑

i j
Q̇i j

c +∑
i j

Q̇i j
r (4)

Q̇i
Sun = αiq̇SunAi (5)

Q̇i
Earth = αal q̇alAi +αirq̇irAi (6)

Q̇i j
c = Gi j

c (Ti −Tj) (7)

Q̇i j
r = Gi j

r (Ti −Tj) (8)

Gi j
c =

λ i j
c Ai j

c

si j
c

(9)

Gi j
r =

σB(Ti +Tj)(T 2
i +T 2

j)

1−εi
εiAi

+ 1
AiFi j

+
1−ε j
ε jA j

(10)

where in Equation 4: Ti is the temperature of the i− th
node, Ci is the thermal mass capacity of the i− th node,
Q̇i

Sun and Q̇i
Earth are the Sun and Earth radiation energy

falling into i− th node, respectively. The Sun energy is
computed through Equation 5 knowing the node absorp-
tivity αi, the Sun heat flux q̇Sun, and the node area Ai;
instead the Earth energy is calculated using Equation 6
knowing the albedo absorptivity αal , the infrared absorp-
tivity αir, the albedo irradiance q̇al , and the infrared ir-
radiance q̇ir perceived on s/c. In Equation 4: Q̇i j

c is the
conduction energy exchange between the i− th and j− th
node, and Q̇i j

r is the radiation energy exchange between
the i− th and j− th node. The conduction energy is gov-
erned by Equation 7 in which the thermal conductance Gi j

c

has to be determined assuming a contact area Ai j
c between

the nodes, a wall thickness si j
c , and the material thermal

conductivity λ i j
c (Equation 9). Regarding the radiation en-

ergy, it is calculated using Equation 8 knowing the radi-
ation conductance Gi j

r . This latter term can be estimated
through Equation 10 where: σB is the Boltzmann constant,
εi, j is the node emissivity, and Fi j is the radiative view fac-
tor between the i− th and j− th node (which can be ob-
tained analytically applying the geometrical equations in
(Martínez 2015)).

In Table 2, the Dymola structure of the just described
THR subsystem is reported. Particularly, it can be no-
ticed how the main physical variables of the mathemati-
cal model and logic in Figure 8 are acausally modeled by

159OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

a specific Modelica library component. In section 3, the
shadow self-built function will be discussed in details.

Table 2. Modelica structure of the THR subsystem

Physical element Modelica component

Thermal node

Thermal conductor

Radiation heat transfer

Heat transfer coefficient

Sun (Earth) radiation

Hysteresis control

Temperature sensor

Deep space sink

2.1.4 PROP subsystem

The PROP subsystem logic, for the considered satellite
architecture in Figure 1, is shown in Figure 9. From left to
right we have:

1. the target error, in terms of angle θ and angular rate
error θ̇ , are inputs for the fuzzy logic block which
returns the firing time of each satellite nozzle (Fig-
ure 4).

2. The EPS bus voltage is decreased to a suitable value
(∼ 0.5 [V]) to be applied at the extremes of the tung-
sten rod. The voltage conversion is done thanks to a
buck circuit (Czarkowski 2011). The final heat flow
Q f low released by tungsten, as result of Joule effect,
feeds the boiler’s furnace.

3. Inside the vaporizer, the liquid water flow ṁH2O
turns into vapour phase expanding towards the
convergent-divergent nozzle. The amount of liquid
phase in the boiler is controlled by a PID that main-
tains the furnace on.

4. From the nozzle moment arm Larm with respect to
CM, the propulsive torques T̂prop, due to the ex-
hausted steam mass flow, are calculated.

5. The valve element allows the steam generation and
consequently the thrust delivery on satellite. It can
be opened whenever an attitude maneuver with the
PROP subsystem shall be performed.

Figure 9. PROP subsystem modeling scheme.

In this case, the boiler is an in-built acausal Modelica
component which implements the drum-boiler dynamics
(Åström and Bell 2000). The other main equations of
the mathematical model involve the nozzle, and the fuzzy
logic block. The first block computes the thrust according
to the rocket equations (Sutton and Biblarz 2017) (assum-
ing the steam as an ideal gas):

F̂p = ṁstVe + peAe (11)

Ve = Me


γRTe (12)

pe

Pst
=


1+

γ −1
2

M2
e

−1

(13)

Te

Tst
=


1+

γ −1
2

M2
e

− γ
γ−1

(14)

Ae

A∗ =


γ +1

2

− γ+1
2(γ−1)





1+ γ−1

2 M2
e

 γ+1
2(γ−1)

Me


 (15)

where in Equation 11: ṁst is the steam mass flow rate pro-
duced in the boiler, Ve is the steam exhaust velocity, and
pe is the pressure at the exit area Ae of the nozzle. Equa-
tion 12 allows to estimate the exhaust velocity from the
exit Mach number Me, the heat capacity ratio γ , the steam
gas constant R, and the temperature condition Te at exit
nozzle area. The Mach number can be iteratively calcu-
lated, applying for example the Newton method (Galántai
2000), once the ratio between the nozzle throat area A∗

and the exit one is fixed (Equation 15). The missing quan-
tities of steam pressure and temperature conditions at the
exit can be determined respectively with Equation 13 and
Equation 14. The fuzzy logic has been designed using the
Mamdani GUI interface in Matlab (as it will be explained
in section 4). For the fuzzy rules, they have been chosen
following the procedure in (Nagi, Ahmed, and al. 2009).
Figure 10 shows the membership functions considered for
the design of the fuzzy bang-bang controller.

160 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

Figure 10. Fuzzy memebership functions used in Mamdani
model scheme.

In Table 3, the PROP acausal version in Dymola is
shown. Notice how the resistor component has the ther-
mal port enabled to simulate the dissipation heat Q f low
released by the tungsten mass. Moreover, the heat transfer
component is added to restore the nominal boiler condi-
tions (tungsten temperature ∼ 298 [K]) just after the PROP
is turned off.

Finally, the nozzle I/O (Input/Output) block in Dymola
will be presented in section 3 where the Modelica text cod-
ing has been applied to connect this element with the oth-
ers Modelica PROP components listed in Table 3.

2.1.5 EPS subsysyem
The EPS subsystem is now analysed to understand the
logic architecture assumed for this work. In Figure 11 it is
reported the subsystem operation:

1. The external inputs of: the Sun heat flux over the
PV array, the Sun rays incidence angle on the PV
surface, and the solar panel temperature are used to
estimate the photocurrent flowing in the PV array cir-
cuit.

2. The MPPT algorithm regulates the PV voltage to op-
erate at the maximum power possible. Then, the PV
voltage is increased or decreased, using a two-switch
buck-boost converter (Kim and al. 2022), to obtain
the operative bus voltage (for 16U CubeSat assumed
to be ∼ 13 [V]).

3. The battery is fed nominally on bus voltage and, ac-
cording to its state-of-charge (SOC) or eclipse condi-
tion (VBus ∼ 0 [V]), the BMS (Battery Management
System) unit regulates the current iBatt flowing in it.

4. When an eclipse occurs or, in general, the bus voltage
is too low, the switch is closed such that the battery
can supply power to the loads.

5. The charge-discharge battery profile is affected by
the temperature of the node associated to the battery
TBatt .

Table 3. Modelica structure of the PROP subsystem

Physical element Modelica component

Water source

Steam drum boiler

Steam sink boundary

Valve

Steam pressure sensor

Steam temperature sensor

Voltage source

Thermal resistor

Tungsten mass

Heat transfer

Figure 11. EPS subsystem modeling scheme.

Regarding the MPPT algorithm, Figure 12 shows the
logic scheme of the applied method to make PV array
operate at the maximum extractable power for different
photocurrent values. Instead, the BMS applies the typ-
ical Constant Current-Constant Voltage (CC-CV) algo-
rithm (Mostacciuolo, Iannelli, and al. 2018) during the
battery charging-discharging process.

In Figure 13, the Buck-Boost converter physical model,
considered for the Dymola simulation, is reported. It is
worth noticing that, in the context of acausal modeling ap-
proach, only the physical representation of the real system

161OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

Figure 12. MPPT algorithm scheme.

has to be extracted, while the constitutive equations are al-
ready embedded in each singular component of the Mod-
elica library. In this way, the modeling focus is moved
more on the physical concept rather than on the solving
procedure of the equations (Kulhánek and al. 2015). The
mathematical model of the EPS subsystem can be summa-
rized by the following main constitutive equations:

Idiode = Ids

[
exp

(
vd

Nvt

)
−1

]
(16)

vt =
σBTd

q
(17)

Vout =
d1

1−d2
Vin (18)

where in Equation 16: Idiode is the current flowing into a
single diode, Ids is the diode saturation current, vd is the
diode voltage drop, N is the diode emission coefficient,
and vt is the diode thermal voltage. This latter quantity
can be retrieved using Equation 17 knowing the Boltzman
constant, the diode (or solar array) temperature Td , and the
electron charge q.

In Equation 18, the voltage conversion of the two switch
buck-boost converter as function of: the duty cycles d1 and
d2 of the two switches (S1 and S2, respectively), and the
input circuit voltage Vin.

Figure 13. Buck-Boost converter electric circuit.

As it has been done with the previous satellite subsys-
tems, the Dymola EPS translation is listed in Table 4.
Specifically, the series/parallel connection of a singular

thermal diode element in Modelica allows to build the en-
tire PV array circuit with temperature as inputs. For the
MPPT logic, the Logical library has been exploited. Re-
garding the BMS unit, in section 4 it will be discussed the
modeling exportation from the Matlab/Simulink to Dy-
mola environment using the FMI interface.

Table 4. Modelica structure of the EPS subsystem

Physical element Modelica component

PV array diode

Photo-current

Resistor

Capacitor

Inductor

Switch (BB)

Diode (BB)

Power sensor

Ground

3 Modelica coding
In this section, the generation method of the ad hoc func-
tions presented so far is discussed. For the analyzed satel-
lite system, they can be summarized in:

• SRP torque

• ADCS sensor

• Shadow model

• Nozzle

• Photocurrent

These functions have dual objectives: modeling all that
specific algorithms or components to which a correspond-
ing acausal translation can not be found in the Modelica
Standard Library, and connecting a s/c subsystem to an-
other or to the space environment (like SRP torque func-
tion). The functions generation has been performed using

162 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

the Text option in Dymola starting from the basic lay-
out in the Blocks library (Modelica® - A Unified Object-
Oriented Language for Systems Modeling 2014). This op-
tion allows to design the block (I/O) ports and to write
inside of it the algorithm which relates the input with the
output. Specifically, the main algorithms/models used are:

1. The SRP torque generated by each satellite surface,
with respect to CM (Figure 3), depending on its ab-
sorption, diffuse reflection, and specular reflection
coefficients (Wertz 1978).

2. The perturbing matrix as Euler sequence "123", with
a rotation angle function of the gaussian noise ng, to
determine the vectors measured by the star trackers
in body-frame axes.

3. The TRIAD algorithm (Markley 1999) to estimate
the s/c attitude angles as euler sequence "123" (al-
phaX_est, alphaY_est, and alphaZ_est).

4. The determination of the shadow condition for each
lumped node (Figure 7) checking the value of the
scalar product between the Sun direction r̂Sun and the
normal of each s/c surface.

5. The converging-diverging isentropic flow expansion
(Sutton and Biblarz 2017).

6. The PV photocurrent mathematical model (X. H.
Nguyen and M. P. Nguyen 2015).

Figure 14 shows the corresponding Dymola layout of
the functions above described (highlighting the variables
discussed in the previous sections). In Listing 1 it is re-
ported an example of the Modelica text structure for the
Photocurrent block.

Figure 14. Dymola block functions architecture.

Listing 1. Modelica text of Photocurrent block function

block PhotoCurrent
extends Modelica.Blocks.Icons.Block;
Modelica.Blocks.Interfaces.RealInput I_sc

;
Modelica.Blocks.Interfaces.RealInput

ki_pv;

Modelica.Blocks.Interfaces.RealInput T_SA
;

Modelica.Blocks.Interfaces.RealInput E_ir
;

Modelica.Blocks.Interfaces.
RealVectorInput y_body[3];

Modelica.Blocks.Interfaces.
RealVectorInput r_Sun[3];

Modelica.Blocks.Interfaces.RealOutput
I_ph;

protected
Real cosine_alpha_SA;
Real nu_el;
Real cosine_alpha_SA;
Real F_sensitivity;
Real I_ir_SA;

algorithm

cosine_alpha_SA := y_body[1]*r_Sun[1] +
y_body[2]*r_Sun[2] + y_body[3]*r_Sun
[3];

if cosine_alpha_SA < 0 then
cosine_alpha_SA :=0;

end if;

I_ir_SA :=E_ir*nu_el*F_sensitivity*
cosine_alpha_SA;

I_ph :=(I_sc + ki_pv*(T_SA - 298.15))*(
I_ir_SA/1000);

end PhotoCurrent;

4 FMI interface
The Functional Mock-up Interface (FMI) is a powerful
tool when the modeling of complex hybrid system (as a
space system) is requested. Indeed, this interface allows:
the interaction between different programming language
(making the model more versatile), and the use of the po-
tentialities coming from each modeling platforms. For this
work, the FMI has been used for:

• The Fuzzy bang-bang logic (Figure 15).

• The Battery-BMS module (Figure 16).

Each of them has been acausally modeled exploiting
the Simscape library within the Matlab/Simulink en-
vironment. The choice of changing the modeling lan-
guage has been made for two reasons: speeding up the
implementation using the fuzzy logic designer app in Mat-
lab/Simulink, and taking advantage of the medium-high
fidelity model of the battery element in Simscape (espe-
cially for the temperature dependency effects).

5 Simulation results
Once the hierarchical model of the satellite system is done,
with the relative differential equations implicitly defined
for each physical component, the next step is to sim-
ulate the system (as described in section 2). The tab

163OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

Figure 15. The Dymola FMI block (top) and the relative
Simulink model (bottom) of the Fuzzy logic.

Figure 16. The Dymola FMI block (top) and the relative
Simulink model (bottom) of the Battery-BMS module.

Simulation in Dymola allows to integrate the entire
satellite mathematical model selecting a proper integration
scheme. Below are the main assumptions and parameters
selected to perform the simulation:

• The satellite is a 16U CubeSat with dimension: 0.2×
0.2×0.4 [m].

• The PV array dimension are: 0.2×0.4×0.01 [m].

• The DC motor nominal voltage is ∼ 12 [V].

• The RWs inertia is ∼ 0.0005 [kg m2].

• The peak power generated on board is ∼ 180 [W].

• The maximum battery voltage is ∼ 15 [V].

• The star tracker covariance is 1σ ∼ 10−4 [rad].

• The Mach number Me at each nozzle exit area is ∼
10.

• The satellite is in a heliocentric orbit receiving a con-
stant Sun heat flux of 1370 [W/m2].

• Only the Sun is considered as heat source for the
thermal model (no Earth contribution).

• The simulation time is ∼ 100 [s] in which the satel-
lite displacement is neglected considering the inertial
Sun direction fixed.

• No orbit propagation but only satellite attitude evo-
lution in time.

• The aluminium is assumed as the satellite main body
material and silicon one for the PV surfaces.

• The wall thickness considered for the thermal con-
duction is ∼ 0.01 [m].

In the following sections, the results of a singular satel-
lite subsystem and a scenario embedding more subsystems
will be analysed. Due to the high number of physical vari-
ables involved, in section 6 it has been reported the satel-
lite animation (obtained in Dymola) together with the evo-
lution of the main subsystems variables. Regarding the
integrator, to solve the mathematical model, the Dassl
scheme has been used for all the simulations except for
the last one (section 5) where the stiff scheme Sdirk34hw
has been proved to be more performing.

5.1 ADCS-Sensors simulation
The ADCS subsystem is now simulated in Dymola ac-
cording to the scheme presented in Figure 6. The simu-
lation assumes to have the Sun direction fixed at [0, 0, 1]
and the target ramp profiles shown in Figure 23b to be
tracked by the satellite (or spacecraft (s/c)). In Figure 17
it can be visualized the comparison between the ideal gyro
measurement integration and the TRIAD algorithm output
along x-axis body frame. Obviously, the estimated atti-
tude (black) differs from the real one (red) unless of the
Gaussian noise ng. The peak overshoot attitude error (Fig-
ure 23e) obtained during the maneuver is ∼ 0.34◦ (which
can be modified tuning the PID parameters). The real volt-
age square signal given to the DC motor of the RW1 is
depicted in Figure 23f. In this simulation, the PWM block
switching frequency is set at 1000 [Hz]. In Figure 23a the
satellite attitude animation, during the maneuver, is ex-
tracted thanks to the Animation tool in Dymola.

Figure 17. Satellite attitude angle comparison between the real
and the estimated one by the Sensor_ADCS block.

164 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

5.2 Fuzzy logic (FMI simulation)
The PROP architecture described in Figure 9 is now tested
in Dymola. As we noticed from the previous ADCS sim-
ulation (Figure 17), the TRIAD estimation doesn’t affect
the PID control which is able to bring anyway the satellite
at the desired attitude. So, from now on the ideal attitude
angles from gyro will be considered in place of star track-
ers measurements. Also in this case, the Sun direction is
fixed at [0, 0, 1] and the final desired attitude sequence
"123" is set to α̂target = [0.3, 0.8, 0.1] [rad]. Figure 18
shows the simulation results. It can be noticed how the
PROP system is able to maneuver the satellite reaching a
final attitude error (Figure 18d) of ∼ 0.06◦.

The Fuzzy FMI block outputs are reported in Figure 19
in terms of propulsive torques, expressed in Dymola body
fixed-frame, and the corresponding firing time/direction
associated to each satellite nozzle (Figure 4).

As expected from the exit vaporizer conditions in Fig-
ure 20, the resistojet gives a torque intensity in the order
of 10 [mNm] with a nominal steam pressure Pst = 13 [bar]
and a water mass flow rate, to maintain the vaporizer on,
of ṁH2O ∼ 0.13 [kg/s]. It is worth highlighting that the
mass of water storable inside the satellite is constrained
by the dimensions of the system itself so, according to the
mission design, the PROP subsystem parameters have to
be refined accordingly.

Figure 18. Fuzzy FMI block outcome: a) Satellite attitude ani-
mation during the propulsive maneuver; b) Satellite attitude Eu-
ler angles α̂(123)

sat ; c) Error profile between the target attitude an-
gles and the real ones; d) Zoom in of the attitude error in the
time interval [60-100] [s].

5.3 Battery-BMS (FMI simulation)
In this section, the Battery-BMS FMI block presented in
section 4 is simulated separately to visualize its behav-
ior in time. For this simulation, the simulink model has
been augmented of a load resistance of 0.1 [Ω] to repli-
cate the power absorption event when the battery feeds
the loads. Regarding the satellite bus voltage signal, it has
been imposed to be squared to simulate periodical eclipse
effects. Figure 21 shows the overall response of the bat-

Figure 19. Fuzzy logic FMI outputs: at the top the propulsive
torques profile T̂p in the Dymola body fixed-frame, and at the
bottom the firing time/direction for each nozzle in the time in-
terval [0-30] [s].

Figure 20. Vaporizer state variables evolution with time during
the PROP maneuver.

tery. Specifically, when VBus is zero, the load switch is
activated with the effect of a drop battery voltage and con-
sequently discharge. Then, a sensitivity analysis has been
done for three different battery temperature: 283 [K], 293
[K], and 313 [K]. In Figure 22a it can be noticed how the
higher battery temperature accelerated the discharge time
(red SOC curve) against the case of a lower temperature
(green SOC curve). For the battery voltage instead, it can
be caught the effects of an increment of the battery charg-
ing voltage and higher loaded drop voltage at lower tem-
perature (Figure 22b).

5.4 THR-Radiator simulation
The THR subsystem, with the radiators active control ar-
chitecture shown in Figure 8, is simulated here in Dymola
considering: the inertial Sun direction at [0, −1, 0] and
then, after ∼ 6.9 [h], it changes at [0, 0, 1]; the control
is based on checking the temperature of node 8 and trying
to maintain it below 70 [◦C]. Moreover, when the radi-
ators are closed, they don’t exchange heat at all keeping
constant their temperature. The simulation results are re-

165OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

Figure 21. Battery-BMS simulation outputs.

Figure 22. Battery response for different temperature condi-
tions.

ported in Figure 24. Specifically, it can be noticed how the
radiators are opened when T8 reaches 60 [◦C](Figure 24c),
and they are closed again when T8 goes below 40 [◦C] to
avoid overcooling of the system. It is worth remarking that
due to the small satellite dimensions (16U CubeSat), the
symmetry of the thermal scheme (Figure 7), and the ho-
mogeneity of the material used, the temperature difference
among the nodes is small (as it can be seen in Figure 24d
and in Figure 24g). Finally, Figure 24e shows the incre-
ment of the heat radiation exchange to deep space when
high emissivity nodes (8-12-14) are active.

5.5 Multyphysics scenario
The last simulation involves all the satellite subsystems
except for PROP (the attitude maneuver is performed only
by RWs). The analysed multiphysics scenario is the fol-
lowing: the satellite (or s/c) shall perform a rotation of
180◦ around the fixed Dymola x-axis; the Sun direction
is fixed at [0, 1, 0]. In Figure 25 the overall system re-
sponse is reported. In particular, it can be noticed how the
power generation is higher at the beginning of the maneu-
ver (Figure 25b) and then zero when the nodes (1-2) are in
shadow (Figure 26a). In this latter case, the battery feeds
the RWs by discharging (Figure 25d) and delivering them
a voltage ∼ 13 [V] (Figure 25g). For this simulation, the
PWM signal frequency has been set to 100 [Hz].

In Figure 26b, the MPPT logics allows to make the
main bus operate at the nominal value ∼ 13 [V] despite the
PV array is working at higher voltage. Finally, Figure 26c
shows the real-time satellite attitude angle trajectory con-
trolled by the PID, and the corresponding angular velocity
of the RW1 in Figure 26d.

6 Conclusions
The main objectives of this work were: modeling and sim-
ulating an example of complex space system using the
Modelica tools; creating a platform where different tests
and failure analysis could be carried out. The future work
will be to expand the satellite model including also the
structure subsystem to study the flexibility effects (espe-
cially for large satellites). Lastly, the FMI option will help
on exporting the models into others programs to perform
parametric system identification (Gupta and al. 2018) or
nonlinear system identification in frequency domain (Pin-
telon and Schoukens 2012), using the real system teleme-
try, and to obtain higher fidelity models.

References
Åström, K.J. and R.D. Bell (2000). “Drum-boiler dynamics”.

In: Automatica 36.3, pp. 363–378. DOI: 10 . 1016 / S0005 -
1098(99)00171-5.

Cannon, Robert H. (1967). Dynamics of physical systems.
McGraw-Hill. ISBN: 0486428656.

Czarkowski, Dariusz (2011). Power Electronics Handbook
(Third Edition). Butterworth-Heinemann, pp. 249–263. DOI:
10.1016/B978-0-12-382036-5.00013-6.

Galántai, A. (2000). “The theory of Newton’s method”. In:
Journal of Computational and Applied Mathematics 124.1-
2, pp. 25–44. DOI: 10.1016/S0377-0427(00)00435-0.

Gupta, Sapna and et al. (2018). “Parametric system identifica-
tion and robust controller design for liquid–liquid heat ex-
changer system”. In: IET Control Theory & Applications
12.10, pp. 1474–1482. DOI: 10.1049/iet-cta.2017.1128.

Kim, Sunghwan and et al. (2022). “Modified Design of Two-
Switch Buck-Boost Converter to Improve Power Efficiency
Using Fewer Conduction Components”. In: Applied Sciences
13.1, p. 343. DOI: 10.3390/app13010343.

Knospe, C. (2006). “PID control”. In: IEEE Control Systems
Magazine 26.1, pp. 30–31. DOI: 10 . 1109 / MCS . 2006 .
1580151.

Kulhánek, Tomáš and et al. (2015). “Experiences in teaching of
modeling and simulation with emphasize on equation-based
and acausal modeling techniques”. In: 2015 37th Annual In-
ternational Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 3683–3686. DOI: 10.1109/
EMBC.2015.7319192.

Lienhard, John (2024). A Heat Transfer Textbook. 6th ed. Phlo-
giston Press.

Markley, F. Landis (1999). Attitude Determination Using Two
Vector Measurements. URL: https: / /www.researchgate.net /
publication/4706531_Attitude_Determination_Using_Two_
Vector _ Measurements / link / 0c960525b7927e11c5000000 /
download.

Martínez, Isidoro (2015). Radiative view factors. URL: http : / /
imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%
20factors.pdf.

166 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

Modelica® - A Unified Object-Oriented Language for Systems
Modeling (2014). URL: https : / / modelica . org / documents /
ModelicaSpec33Revision1.pdf.

Mostacciuolo, E., L. Iannelli, and et al. (2018). “Modeling
and power management of a LEO small satellite electri-
cal power system”. In: 2018 European Control Conference
(ECC), pp. 2738–2743. DOI: 10.23919/ECC.2018.8550095.

Nagi, Farrukh, S.K. Ahmed, and et al. (2009). “Fuzzy bang-
bang relay controller for satellite attitude control system”.
In: Fuzzy Sets and Systems 161.15, pp. 2104–2125. DOI: 10.
1016/j.fss.2009.12.004.

Nguyen, Xuan Hieu and Minh Phuong Nguyen (2015). “Math-
ematical modeling of photovoltaic cell/module/arrays with
tags in Matlab/Simulink”. In: Environmental Systems Re-
search 4.24. DOI: 10.1186/s40068-015-0047-9.

Pintelon, Rick and Johan Schoukens (2012). System Identifica-
tion: A Frequency Domain Approach. 2nd ed. John Wiley &
Sons Inc.

Priyanka, K. and A. Mariyammal (2018). “DC Motor Speed
Control Using PWM”. In: International Journal of Innova-
tive Science and Research Technology 3.2.

Singh, Maulshree, Evert Fuenmayor, and et al. (2021). “Digital
Twin: Origin to Future”. In: Applied System Innovation 4.2,
p. 36. DOI: 10.3390/asi4020036.

Song, Sua and et al. (2018). “Design and Implementation of 3U
CubeSat Platform Architecture”. In: International Journal of
Aerospace Engineering 2018. DOI: 10.1155/2018/2079219.

Sutton, George P. and Oscar Biblarz (2017). Rocket Propulsion
Elements. John Wiley & Sons Inc. ISBN: 1118753658.

Tiller, Michael (2001). Introduction to Physical Modeling with
Modelica. Vol. 615. Springer Science & Business Media.

Tummala, Akshay Reddy and Atri Dutta (2017). “An Overview
of Cube-Satellite Propulsion Technologies and Trends”. In:
Aerospace 4.4, p. 58. DOI: 10.3390/aerospace4040058.

Umez-Eronini-Eronini (1999). System dynamics and con-
trol. Pacific Grove : PWS Publishing Company. ISBN:
0534944515.

Wei, Jin, Dengqing Cao, and et al. (2017). “Dynamic modeling
and simulation for flexible spacecraft with flexible jointed so-
lar panels”. In: International Journal of Mechanical Sciences
130, pp. 558–570. DOI: 10.1016/j.ijmecsci.2017.06.037.

Wertz, James R. (1978). Spacecraft Attitude Determination and
Control. D. Reidel. ISBN: 9027712042.

167OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

Appendix: Simulation Graphs

Figure 23. ADCS subsystem simulation outcome: a) Satellite attitude animation at four different times; b) Target angles profile
α̂(123)

target ; c) RWs angular rate profile ωM; d) SRP torques profile in the Dymola inertial frame {xyz}; e) Error profile between the
desired attitude and the estimated one with TRIAD algorithm; f) The real voltage profile Vm applied to the DC motor of the RW1
in the time interval [30 - 30.2] [s]; g) Control torque profile from PID (red) and RW1 torque released along body x-axis (blue) in
the time interval [0 - 10] [s].

Figure 24. THR subsystem simulation outcome: a) Satellite radiators opening/closing animation; b) The evolution of the radiator
angle α̂radiator with time; c) The lumped temperature profile of nodes (8-11-12) as shown in Figure 7; d) Zoom in of the temperature
difference between nodes (8-11-12) in the time interval [5 - 5.1] [h]; e) The radiation heat transfer coefficient variation towards deep
space for nodes (8-11-12); f) The lumped temperature profile of nodes (1-3-9) as shown in Figure 7; g) Zoom in of the temperature
difference between nodes (1-3-9) in the time interval [5 - 5.1] [h].

168 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207155 DOI

Figure 25. Satellite multiphysics simulation outcome: a) Satellite animation during the attitude maneuver; b) Power generated by
a singular PV array surface; c) Photocurrent flowing into a singular PV circuit with time; d) SOC battery evolution with time; e)
PV array temperature evolution with time; f) Battery temperature profile with time; g) Battery voltage response with time.

Figure 26. Satellite multiphysics simulation outcome: a) The shadow conditions of the satellite lumped nodes coming from the
Shadow_Model block; b) The EPS voltage signals controlled by the MPPT algorithm; c) The satellite attitude Euler angles ("123")
evolution with time ; d) RW1 angular rate during the maneuver

169OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207155

170 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207 170 DOI

Advanced Edge Deployment: Abstracting
Cyber-Physical Models via FMU Mastery

Fanping Bu1 Mikalai Filipau1 Nikolay Baklanov1
1Integrated Productivity and Conveyance Center, SLB, USA,

{fbu2, mfilipau, nbaklanov2}@slb.com

Abstract
Deploying cyber-physical models at the edge or in the
cloud as software components is the key step of model-
based-design. Depending on run-time environment, an
extensive customization often needs to be made. To
streamline and facilitate the deployment of models and
simulators in production, a unified framework is
developed. The implementation utilizes functional
mockup units (FMUs) as the executable binary for the
models and JavaFMI as the simulation engine. Each
model deployment is encapsulated inside a microservice
with all the software dependencies, with communication
realized through RabbitMQ. A generalized approach to
manage the model namespace has been implemented,
ensuring that the FMU executor remains agnostic to
changes in both model and application, as long as the
AsyncAPI specification includes a mapping of the model's
input-output space to the protocol’s topics. Two examples
are presented to illustrate the convenience and
effectiveness of the proposed framework: a winch
controller at the edge for oil and gas wireline operation
and a wireline logging unit simulator in the Azure DevOps
pipeline for software-in-the-loop testing.

Keywords: FMU, Edge, Wireline, Oil&Gas, FMI, Cyber-
Physical Systems, Deployment, Microservices

1 Introduction
Rapidly evolving edge computing prioritizes convenience
of deployment of advanced physical models designed for
real-time control applications and data processing. The
shift from monolithic software architecture to
microservices has been facilitated by containerization
tools like Docker and Kubernetes, which allow isolation
of applications into distinct environments, thereby
enhancing the scalability and manageability aspects via
smaller and independently deployable services.

The workflow requires careful handling of parameters,
inputs, and outputs. Dealing with unique namespaces is a
part of a larger challenge - the need to manually adjust
naming conventions and identifiers for each functional
mockup unit (FMU) import, which significantly
complicates the deployment process. We present a
solution of using an interim Java layer to abstract the

FMU's namespace that addresses the “at the edge
integration” challenge by standardizing the interface
between the FMUs and the microservices architecture.

Before discussion of specifics of our proposed framework,
it is essential to provide an overview of the current state
of the art. This will contextualize our work within the
broader landscape of this technology block and highlight
gaps and opportunities that our approach aims to address.
The papers analyzed below stress the complexity and
challenges involved in FMU integration and deployment,
especially when FMUs from different tools form a single
simulation environment.

The functional mockup interface (FMI) has been
instrumental in advancing interoperability and integration
within the modeling and simulation community (Gomes
et al. 2018; Blochwitz et al. 2011). Multi-year efforts from
various cross-domain institutions have explored diverse
FMI applications. One of the earliest studies (Chen et al.
2011) introduces a generic FMU interface for Modelica
for enhanced reusability and interoperability within the
OpenModelica framework for multiple instances of an
imported FMU. While this approach effectively facilitates
FMU integration and connection within the designated
simulator engine, it lacks interoperability extension to a
wider range of modeling environments. The work by
Cabral et al. (2018) explores FMI applications in
industrial automation by enabling co-simulation (Gomes
et al. 2018) per the IEC 61499 standard for distributed
systems, which facilitates the virtual commissioning
process by allowing co-simulation of physical plants and
their PLC-based control by elevating mapping of internal
variables, parameters and inputs/outputs between IEC
61499 models and the FMI. Despite its contributions to
Industry 4.0 automation via paying great attention to
correlation between the inter-standard data types, this
research does not scale up deployment scenarios and
model types and thus avoids the context of cloud and edge
computing.

The co-simulation FMU-proxy framework (Hatledal et al.
2019) achieves language and platform independence
using a remote procedure call (RPC) technique in a client-
service architecture and offers FMU discovery. The
solution significantly contributes to collaborative
modeling and heterogeneous simulation expanding array

171OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

of previously unsupported languages and on incompatible
platforms. However, it primarily focuses on co-simulation
and intellectual property protection and does not address
the emerging need for flexible and scalable model
deployments, such as microservice-based architectures. A
recent work (Juhlin et al. 2022) breaks long-standing lack
of interoperability at the system level and presents a
cloud-enabled simulation platform for drive-motor-load
systems using asset administration shells 1 (AAS) and
FMUs. This approach significantly enhances the flexible
deployment of asset models in complex simulations by
leveraging containerization. However, it does not fully
exploit the potential of microservices for heterogeneous
applications, as it relies on a more rigid RESTful API
server architecture.

A noteworthy paper by Stüber and Frey (2021) presents a
cloud-native simulation as a service (SIMaaS)
implementation utilizing FMUs for co-simulation,
leveraging the FMPy2 framework. This implementation is
realized as a microservice in the form of a RESTful API.
In our development, though, we have identified that
JavaFMI3 is a more performant alternative (Hatledal et al.
2018). Our generalized approach for model namespace
management ensures that the FMU executor remains
agnostic to model-application mapping changes, with
much less restrictions on FMU parametrization as offered
in the analyzed paper. Furthermore, our study showcases
a practical, real-time, complex industrial automation
systems example (Segura et al. 2023), offering a
significant advancement in solution integration over the
SIMaaS demo.

2 Concepts
The method described below abstracts models from
Simulink or other modeling environments, enhancing
workflow efficiency and user-friendliness from inception
to Dockerized edge deployment using a microservices,
RabbitMQ, Linux VM, Kubernetes, and Rancher
ecosystem. The revealed methodology utilizes FMI and
streamlines model’s input/output space, to suit better
microservice deployments outside the original, often
Windows-based, software ecosystem. The FMI concept,
combined with our mapping explained below, ensures that
abstracted and vectorized models maintain their
functional integrity and ease integration with various
computational environments. The JavaFMI engine
enables cross-platform configuration and execution of
models, regardless of the originating modeling tool and
allows for scalable complexity. The presented technology
extends beyond the edge, allowing physical models to be
embedded as FMU objects in web applications and cloud

1 A central concept in the context of Industry 4.0, the digital
representation of an asset.
2 https://pypi.org/project/FMPy/
3 https://bitbucket.org/siani/javafmi/src/master/

platforms or even be invoked via command line interface
during quick prototyping.
In our approach, we introduce a novel concept of model
anonymization 4 , which allows integrators to use the
model without needing prior knowledge of the exact
namespace of its inputs and outputs. We employ I/O
vectorization specification and an inter-system mapping
layer on top of FMU, which generalizes the interface and
allows flexible interaction. This approach simplifies the
integration process and also somewhat obfuscates
sensitive details, while enhancing flexibility and ease of
integration in complex systems. Application teams can
now work with standardized interface definitions focusing
on a single or a limited set of specification files, such as
YAML for AsyncAPI/OpenAPI or similar, instead of
navigating through specific I/O names. This technique is
particularly beneficial in environments where model
reusability and interoperability are paramount, providing
a seamless cross-platform method for deploying and
interacting with models in real-world physical systems.

The abstraction of models from Simulink or other model-
based design tools for Dockerized edge deployment using
FMI is still an emerging concept, particularly in the
context of Kubernetes on Linux VM platforms. This area
appears to be underexplored in the current literature,
highlighting the avenue for our work. While the use of
FMU/FMI for model exchange and co-simulation is well-
adopted (Modelica Association 2022), the specific edge
deployments in containerized environments is less
discussed (Schranz et al. 2021).

Abstracting models to enhance workflow efficiency and
deploying them as microservices on the edge, while
preserving functional integrity through vectorized
mapping of I/O specifications, introduces a less explored
approach, particularly for the oil and gas industry, and
when integration with “system of systems” architecture
solutions is considered.

3 System Design and Implementation
In this section, system architecture and software stacks
chosen to enable easy deployable software for control and
simulation at edge or cloud are introduced. First, a
microservice based system architecture is described in
Section 3.1. Section 3.2 provides descriptions on how we
encapsulate the designed model in an FMU and how the
FMU is executed with a JavaFMI library. Section 3.3
illustrates how interfaces are defined among different
microservices with AsyncAPI, and data (or messages) are
shared among different microservices. Section 3.4

4 Not widely mentioned in literature in the context of
Modelica, Simulink, or other modeling languages. The
anonymization concept for hiding model's namespace
particularities seems has little to no explicit discussions.

172 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

describes how a JavaFMI-based wrapper and RabbitMQ
message passing are combined and executed inside a
Docker container-based microservice. Finally, the
development process of modeling and simulation
microservice, and how we can utilize DevOps pipeline to
automate it, is presented in Section 3.5.

3.1 System Architecture
The microservice-based system architecture is depicted
in Fig. 1. An FMU, combined with a JavaFMI-based
wrapper, is encapsulated within a Docker container-based
microservice. Data sharing and communication among
different microservices is realized through the open-
source message-broker software, RabbitMQ.

Figure 1. System architecture.

Microservice-based architecture has many advantages and
is popular for both cloud and edge development. Docker
container-based microservices package all the runtime
dependencies and thus can be deployed across different
platforms. At a high level, developers can choose
appropriate modeling software tools for the development
of physical system models, plants, or control algorithms.
If the selected software tool supports FMU export, the
exported FMU can be plugged into the proposed
framework for cloud or edge deployment. In a previous
iteration of our framework, we directly employed a binary
Linux shared library generated by Simulink to represent
the system model and control algorithm. This approach
constrained development to Matlab/Simulink and tied it to
a specific version of the software. With FMU, the tool
selection is more flexible if it conforms to the standard.

3.2 FMU Wrapper with JavaFMI
As shown in Fig. 2, the resulting core of the modeling
simulation microservice is a wrapper dealing with binary
inside an FMU. There are many existing libraries that can
run FMU simulations. We adopted JavaFMI for its fast
execution capabilities to meet the real-time requirements
of our field application deployments.

Figure 2 JavaFMI wrapper interface.

JavaFMI library is a suite of components to interact with
the FMU interface. The FMU wrapper is a key component
for easy access to the FMU models in co-simulation
mode. It provides access to the abstract simulation class
with a set of methods to interact with inputs, outputs, and
parameters. A typical algorithm of application to run an
FMU includes:

• Creation of simulation class with a pointer to the
FMU file: Simulation simulation = new
Simulation("path/to/file.fmu").

• Initialization with a start time and, optionally, an
end time using simulation.init (startTime,
stopTime) method.

• Writing parameters with simulation.write
method.

• Updating inputs in a loop with desired update
rate.

• Updating tunable parameters in a loop.
• Running one simulation step in a loop with the

simulation.doStep (stepSize) method.
• Reading outputs in a loop with the

simulation.read method.
• Resetting or terminating the FMU simulation.

Since the co-simulation mode is used, FMU has its
internal sampling rate, defined during the FMU
compilation stage. Method simulation.doStep (stepSize)
requires stepSize time to be a result of multiplying the
internal sample time by an integer number. To achieve
continuous model simulation, the process involves
reading inputs, updating tunable parameters, running the
FMU synchronously with a specified step size, and
generating outputs, as illustrated in Fig. 3.

RabbitMQ
brokerMicroservice 1 Microservice N

Microservice 2

FMU

Publish

Subscribe

Publish

Subscribe

FMU

javaFMI wrapper
simulation.write(...)

simulation.read(...)

simulation.doStep(...)

173OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

Figure 3 JavaFMI-based Java wrapper execution loop.

3.3 RabbitMQ and AsyncAPI
For proper execution and results exchange during the
active phase of FMU simulation, communication with
other microservices is essential. To fulfill this
requirement, we have adopted RabbitMQ, an open-source
message broker software. Initially designed to implement
the advanced message queuing protocol, RabbitMQ has
evolved through a plug-in architecture to support
additional protocols such as the streaming text-oriented
messaging protocol and MQ telemetry transport.

To define the specific content and format (schema) of
messages exchanged among different services, AsyncAPI
is used for RabbitMQ communication. The schema may
reference other files for additional details or shared fields,
but it is typically a single, primary document that
encapsulates the API description. Furthermore, the
AsyncAPI schema acts as a communication contract
between receivers and senders within an event-driven
system. It specifies the payload content required when a
service sends a message and offers clear guidance to the
receiver regarding the message's properties.

3.4 Modeling and Simulation Microservices
Modeling and simulation microservices are created by
combining JavaFMI-based execution wrapper for FMU
simulation and RabbitMQ communication with other
microservices. The integration code is implemented in a
Java loop, as shown in Fig. 4.

Figure 4 Modeling simulation microservice structure.

During the initialization phase, information about inputs,
outputs, and parameters are extracted from the FMU's
ModelDescription.xml to compare against the AsyncAPI
payload schema. All inputs and outputs are mapped to
periodically updated “state” topics to reproduce
continuous input/output signals. Tunable parameters are
mapped to “configuration” topics updatable by request
using RPC calls; for example, to achieve the
anonymization of a model, we map the I/O of an arbitrary
FMU to the AsyncAPI schema referring to the
ModelDescription.xml content. The internal structure,
calculation algorithms, and the origin of the FMU will not
impact RabbitMQ communication and other services. The
modeling and simulation microservice with the FMU
receives messages with inputs and parameters and sends
messages with outputs from the model.

An example of the definition for an input port of a model
in AsyncAPI properties is shown below. In this example,
topic “model.input.command.v1” contains a link to the
“input_port” model input of array type with four
elements.

channels:
 model.input.command.v1:
 subscribe:
 summary: Model input topic.
 message:
 $ref: "#/components/messages/model_input"

 schemas:
 model_input:
 type: object
 required:
 - input_field
 properties:
 input_field:
 type: array
 minItems: 4
 maxItems: 4
 items:
 type: number

Start

Write parameters

Write inputs

Do step

Read outputs

Sleep

YesNo
Update loop

Initialization

RabbitMQ

FMU

javaFMI

Docker

AsyncAPI

Microservice
base image

174 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

 x-units: NA
 x-inport: "input_port"
 x-initialvalue: [1.0, 1.0, 1.0, 1.0]

With a defined AsyncAPI document, it is easy to find the
corresponding “input_port” in ModelDescription.xml and
update the “input_port” of FMU with the values in the
message received through RabbitMQ.

The main update loop runs at a defined update rate and is
shown in Fig. 5 below.

Figure 5 Modeling simulation microservice loop.

The microservice code is responsible for

• Handling received configuration messages and
updating tunable parameters of the FMU by
request.

• Handling received state messages and updating
inputs according to the update rate and, in this
way, mapping sampled time series input signal to
the predefined input of the FMU.

• Executing the FMU by running the
simulation.doStep (stepSize) method.

• Updating RabbitMQ message topics mapped to
the outputs of FMU with desired update rate.

• Providing service information and statistics as
periodic state messages: model time and model
states (running/stopped/paused).

• Handling received control messages to start, stop,
pause, or reset the FMU.

3.5 Microservice Development Process for
Modeling and Simulation
Developers can choose any preferred software modeling
tools to develop models for physical systems or control
algorithms. FMUs can then be exported. Modeling and
simulation microservice can be built with following steps,
as shown in Fig. 6:

• Access is added to the FMU utilizing wrapper
with the JavaFMI library.

• Custom microservice implementation provides
an interface to the AsyncAPI and synchronization
of FMU execution and API state messages to and
from the microservice.

The last stage is deployment of the microservice as a
Docker container as a part of complex software
application.

All steps in building the pipeline may be automated and
integrated into DevOps pipeline (for instance, Azure
DevOps) with automated integration tests and API
validation, providing safe and robust application
deployment.

Figure 6 Modeling simulation microservice development

process.

4 Case Studies
To illustrate the effectiveness, convenience, and
versatility of the proposed framework in real production
software deployment, wireline automation development
for assisted conveyance in oil and gas operations at SLB
is used as an example. Two design cases are presented. In
the cloud, a wireline winch and cable simulator is
deployed in the Azure DevOps pipelines for software-in-
the-loop testing. At the edge, a winch controller is
deployed for an automatic winch control. Although the

Start

Load Model Description

Create List of Inputs, Parameters, Outputs

Update Inputs or Parameters

YesNo

Compare against asyncAPI and initialize

Run FMU

Update outputs

Topic received?

Model

FMU

FMU

javaFMI

FMU

javaFMI

Microservice base
image

FMU

javaFMI

Microservice base
image

Docker

Model
development

Artefact

MBD tools:
MATLAB&Simulink

Process Tool and
technoligy

Code generation FMU builder for
Simulink

javaFMI Wrapper
library

Integration into
Java class

Anonymization

Integration with
RabbitMQ
(AsynAPI)

Legacy MBD
microservice library

Docker

Kubernetes

Deployment

175OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

application environments are different between cloud and
edge, the same framework can be used due to the
portability of the FMU and microservice.

Wireline operation is widely used in the oil and gas
industry to measure the properties of a formation using
electronic instruments. Fig. 7 illustrates a typical wireline
logging operation. A drum of electric cable is driven by a
hydraulic winch with a toolstring packed with different
formation measurement sensors attached at the free end of
the cable. The winch drum is rotated by a hydraulic motor
that moves the toolstring up and down along the wellbore.
Sensors packaged inside the toolstring conduct sensing
measurements while moving and send back measurement
results through the connected cable. During operation, an
operator is required to control the hydraulic winch
manually so that the toolstring movement will follow a
desired motion profile.

Figure 7 Wireline logging operation for oil and gas industry.

4.1 Winch Simulator
The hydraulic winch drives the drum via a gear
transmission. As shown in Fig. 8, the hydraulic winch is a
hydrostatic transmission system consisting of a variable
displacement pump, a variable displacement motor, and a
charge pump. The pumps are driven by a vehicle engine
through gears. The drum is driven by variable
displacement motor through transmission gears.

Figure 8 Schematics of a hydraulic winch.

The winch simulator model is developed using the
Simulink/Simscape package from MathWorks. The

5 https://www.mathworks.com/help/hydro/ug/hydrostatic-
transmission.html

hydraulic circuit is modeled using components from the
MathWorks’ fluids library and is derived from the
hydrostatic transmission example5 shown in Fig. 9.

Figure 9 An exemplary model of a hydraulic circuit.

During wireline operation, the released cable can be over
thousands of feet long. Therefore, it is necessary to model
the dynamic effect of cable elasticity. The entire cable is
discretized into serialized mass-spring-damper blocks, as
shown in Fig. 10.

Figure 10 Mass-spring-damper node and serialized cable

model.

Calibration tests are conducted to collect data and identify
system parameters. The calibrated system response
matched actual system behavior, as shown in Fig. 11.

Figure 11 Simulation vs testing data.

176 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

Following the procedure described in previous sections,
FMU is exported from the Simulink/Simscape model and
packaged into a microservice. The resulting simulator
microservice was used for the software-in-the-loop testing
of the winch controller and other software services of
wireline automation. Software developers with no
knowledge of modeling software such as
Matlab/Simulink/Simscape could easily incorporate the
simulator microservice into their test need to mimic
hydraulic winch behavior if they follow the interface
specified in AsyncAPI. Those tests can be made automatic
and regressive and can run in Azure DevOps pipeline as
is done today for wireline automation development in
SLB. Other than software testing, the FMU-based
simulator microservice can be deployed in the cloud or at
the edge as the core of digital twin applications for
predictive maintenance, operation planning, and
optimization.

4.2 Winch Controller
As the first step toward automation of the wireline logging
operation, it is necessary to control the hydraulic winch,
or toolstring motion, following a desired motion profile,
automatically, without operator intervention. A nonlinear
model based adaptive robust controller (ARC) is designed
for this purpose. The detailed controller design can be
found in Bu (2020). The designed controller is
constructed in Simulink, as shown in Fig. 12.

Figure 12 Simulink diagram of winch controller.

The winch controller developed in Simulink can be
exported to FMU and packaged into the microservice the
same way as the winch simulator in previous sub-section.
The winch controller can be deployed via two scenarios,
as shown in Fig. 13:

• Software-in-the-loop testing is executed in the
Azure DevOps pipeline in the cloud together with
the winch simulator as a virtual winch. In this
case, a software "switch" will map winch
simulator inputs/outputs to the proper RabbitMQ

6 not limited to, can be a RESTful API wrapping

messages. From the winch controller point of
view, it is receiving sensor inputs, and sending
out actuator commands, from/to the real
hardware.

• In the “edge at wellsite” application, the winch
controller microservice is deployed at the edge,
namely at the automation server physically
installed inside the wireline logging unit at a
wellsite. The software "switch" will map real
sensors and actuator signals from the hardware
interface microservice to the proper RabbitMQ
messages. The winch controller will be able to
control the actual winch drum for automation
purposes.

Figure 13 Winch controller deployments.

It should be noted that by adopting a model-based-design
process, the winch controller has been matured to the
product level and deployed in SLB’s wireline logging
units globally, completing over several million feet in
automated conveyance services.

5 Conclusions
Our work presents a versatile unified framework that is
not bound to specific platforms able to generate FMUs,
expanding FMU support to a broad range of environments
beyond Simulink, Modelica, and similar systems. It
covers the deployment needs of arbitrary multidomain
simulation engines. By fusing FMUs, JavaFMI, and an
AsyncAPI-based anonymization layer 6 , we provide a
standardized platform for co-simulation and verification
suitable for industrial automation systems and well
beyond, demonstrated with real-world O&G oil and gas
applications. This could be applied, but is not limited to,
advanced wireline conveyance assistance systems
comparable to automotive ADAS (MathWorks 2024;
Dassault Systemes 2024) and autonomous driving
functionalities.

Our microservice-based architecture is both flexible and
scalable, serving the needs of both edge and cloud model

RabbitM
Q broker

Hardware
interface

Simulator

Hardware

Winch
controller

Switcher

177OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

deployment, promoting collaboration and efficiency in
composite asset engineering. The presented
comprehensive approach enhances interoperability and
streamlines the model delivery process in production
software. It allows the automated wrapping and execution
of highly arbitrary models at the small cost of introduction
of a very thin model-to-RabbitMQ I/O mapping.

Our results demonstrate that the proposed solution enables
scalable, flexible, and practical modular deployment of
models as software components in cyber-physical and
control systems, with a particular focus on Docker and
Kubernetes for real-world commercial products in
modern computing environments (Segura et al. 2023).
Cross-platform model wrapping, configuration, and
execution enable the reuse of models in various
deployment scenarios.

Our future work focuses on scalability and performance
optimization for large-scale deployments, enhancing
security measures for edge and cloud, and integrating
alternative communication protocols for broader
interoperability. The introduced solution utilizes the FMI
2.0 standard, and we are moving onto FMI 3.0, which lets
us naturally reduce restrictions for data types.
Additionally, we are exploring automated mechanisms for
model updating and versioning, with deeper DevOps
pipeline integration.

Acknowledgements
The authors would like to thank Ken Ditlefsen (SLB) for
his initial “abstract executor” architecture and non-FMU
code implementation, which we developed and elevated
to the solution presented in this paper. We also express our
appreciation to MathWorks for providing consultancy
services for their tools, which significantly contributed to
the success of our project.

References
 Blochwitz, Torsten et al. (2011). “The Functional Mockup

Interface for Tool independent Exchange of Simulation
Models”. In: the 8th International Modelica Conference, 105-
14. Dresden, Germany. DOI: 10.3384/ecp11063105

Bu, Fanping. (2020). "Nonlinear adaptive robust motion control
for hydraulic winch in oil and gas wireline operation." In: 21st
IFAC World Congress, 8991-96. Berlin, Germany. DOI:
10.1016/j.ifacol.2020.12.2015

Cabral, J. et al. (2018). "Enable Co-Simulation for Industrial
Automation by an FMU Exporter for IEC 61499 Models." In:
2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 449-55.
Turin, Italy. DOI: 10.1109/ETFA.2018.8502654

Chen, Wuzhu et al. (2011). "A Generic FMU Interface for
Modelica." In: the 4th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools, 19-
24. Zurich, Switzerland.

Dassault Systemes. 2024. "Dymola". URL:
https://www.3ds.com/products/catia/dymola.

Gomes, Cláudio et al. (2018). "Co-Simulation: A Survey", In:
ACM Computing Surveys, 51: 1-33. DOI: 10.1145/3179993

Hatledal, L. I. et al. (2018). "FMI4j: A Software Package for
working with Functional Mock-up Units on the Java Virtual
Machine." In: The 59th Conference on Simulation and
Modelling (SIMS 59). Oslo, Norway. DOI:
10.3384/ecp1815337

Hatledal, L. I. et al. (2019). "FMU-proxy: A Framework for
Distributed Access to Functional Mock-up Units." In: the 13th
International Modelica Conference. 79-86. Regensburg,
Germany. DOI: 10.3384/ecp1915779

Juhlin, P. et al. (2022). "Cloud-enabled Drive-Motor-Load
Simulation Platform using Asset Administration Shell and
Functional Mockup Units." In: 2022 IEEE 27th International
Conference on Emerging Technologies and Factory
Automation (ETFA), 1-8. Stuttgart, Germany. DOI:
10.1109/ETFA52439.2022.9921678

MathWorks. (2024). 'What Is ADAS? 3 things you need to
know'. URL:
https://www.mathworks.com/discovery/adas.html.

Modelica Association. (2022). "Functional Mock-up Interface
for Model Exchange and Co-Simulation. Version 3.0 "
Modelica Association.
URL: https://fmi-standard.org/docs/3.0.1/

Schranz, Thomas et al. (2021). "Portable runtime environments
for Python-based FMUs: Adding Docker support to
UniFMU." In: 14th Modelica Conference 2021. 419-424
Linköping, Sweden. DOI: 10.3384/ecp21181419

Segura, J., Tran, V.V., Meirkhan, J. et al. (2023). "Autonomous
Slickline and Wireline Conveyance Improves Performance of
Offshore Interventions". Paper presented at the SPE Offshore
Europe, Aberdeen, Scotland, 5–8 September. SPE-215586-
MS. DOI: 10.2118/215586-MS

Stüber, Moritz, and Georg Frey. (2021). "A Cloud-native
Implementation of the Simulation as a Service-Concept
Based on FMI." In: 14th Modelica Conference, 393-402.
Linköping, Sweden. DOI: 10.3384/ecp21181393

178 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207 178 DOI

Integrating Generative Machine Learning Models and
Physics-Based Models for Building Energy Simulation

Luigi Vanfretti1 Christopher R. Laughman2 Ankush Chakrabarty2

1ECSE Department, Rensselaer Polytechnic, Troy, NY, USA, vanfrl@rpi.edu
2Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, {achakrabarty,laughman}@merl.com

Abstract
This paper describes the integration of generative deep
learning models for data-driven building energy simula-
tion. The generative models (GMs) are trained to learn
distributions of building input signals from data using
Python and PyTorch and interfaced with physics-based
Modelica models. The developed integration require-
ments provide background on typical needs that focus
on building energy simulation performance. Simulation
examples using models from the Buildings library, re-
factored to receive GM inputs, are presented to illustrate
the benefits of the proposed integration approach and how
GMs can be used for building energy performance analy-
sis.
Keywords: Machine learning, generative models, Build-
ings library, building energy simulation

1 Introduction
Building simulation tools are frequently used during the
design phase to size equipment and perform simulation-
based studies that help estimate annual energy use or car-
bon emissions. The demand for such simulation studies,
combined with the emergence of new design scenarios
such as building electrification, has driven the creation of
advanced physics-based building simulation models. The
Modelica Buildings library (Wetter, Wangda Zuo, T. S.
Nouidui, et al. 2014) is one of the best-known collections
of such models, which enable the simulation of the cou-
pled dynamic behavior of building envelopes and heating,
ventilation, and air conditioning systems (Chakrabarty,
Maddalena, Qiao, et al. 2021; Zhan, Wichern, Laughman,
et al. 2022). Modelica-based tools offer distinct benefits
in analyzing building performance, as they facilitate sys-
tematic controller design (Wetter, Ehrlich, Gautier, et al.
2022) and realistic closed-loop control performance as-
sessment (Stoffel, Maier, Kümpel, et al. 2023).

While such physics-based Modelica models can effec-
tively simulate the energy and mass transfer processes
for the building envelope, together with the thermofluid
physics of HVAC systems, there are other processes that
influence the heating and cooling load that the HVAC sys-
tem will experience that are not driven by physics alone,
but also by human actions. Building occupants generate
and absorb latent, sensible and radiant heat, and their ac-

tions can significantly impact the efficiency of an HVAC
system in terms of energy usage, comfort levels, and
indoor air quality, among other factors (Mirakhorli and
Dong 2016). As models of such behavior are also required
for building design and performance analysis, a common
practice is to make engineering assumptions that define a
‘nominal’ behavior for variables such as occupancy (num-
ber of people occupying a zone), activity level and sched-
ule, and then augmenting this nominal model by repre-
senting the time-varying behavior as an input disturbance
(e.g. a constant or ramp) during simulation. The reliabil-
ity of simulation outcomes is compromised by such a lim-
ited representation of human behavior variables influenced
by human behavior, as these variables are challenging to
model using physics-based or first-principles methods.

Data-driven approaches have demonstrated their effi-
cacy in characterizing the observed distribution of single-
output operational building profiles, such as energy us-
age (Ye, Strong, Lou, et al. 2022), thermal comfort (Das,
Tran, Singh, et al. 2022), and occupancy patterns (Chen
and Jiang 2018). A diverse set of building simulation
scenarios, including typical or extreme occupancy pat-
terns for a specific building, could be created by integrat-
ing these machine learning-based generative models with
Modelica-based building models. Such tools could assist
in pinpointing improvement opportunities in the existing
HVAC system (i.e. retrofitting) or assess the effectiveness
of a particular control scheme for existing buildings. and
would also enable the creation of data-driven occupancy
models to be used in building design when specifying and
calibrating the HVAC system to be deployed.

Although explicit neural network (NN) models have
previously been created in Modelica (Codeca and Casella
2006), this approach does not enable integration with ma-
jor ML platforms for NN design (e.g., PyTorch), and
attempting it would require a ground-up reimplementa-
tion in Modelica. This would require a parallel effort
to that in the discipline of machine learning, where ad-
vancements in ML platforms are made rapidly and by
a large community compared to that of Modelica spe-
cialists. Recent efforts have also been made to integrate
NNs with physics-based simulators, including the use of
the Functional Mock-Up Interface (Modelica Association
2019) to exchange the trained NN model with other frame-
works (The MathWorks n.d.). Two approaches of note that

179OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207178

support the use of trained NN models directly in Model-
ica include the SmartInt (XRG Simulation GmbH n.d.)
library, which allows the use of TensorFlow TFLite mod-
els (XRG Simulation GmbH n.d.) and the NeuralNet
library, which supports the Open Neural Network Ex-
change (ONNX) format (Wolfram Research n.d.). Un-
fortunately, limitations in the implementations of both of
these libraries make them unsuitable for this work. In
particular, the lack of support for NN models trained in
PyTorch and the added complexity caused by its depen-
dencies (e.g. TensorFlow API) made it difficult to use
the SmartInt library, whereas the NeuralNet library
is only available for use in the Wolfram SystemModeler
Modelica tool where, as of the time of writing, models
from the Buildings library cannot be compiled. More-
over, this tool requires the use of the ONNX Runtime li-
brary and its C API, which adds not only complexity but
also overhead in software integration.

In this study, we use trained Generative Models (GMs)
to provide input signals for building models, such as build-
ing occupancy and power demands. These GMs are spec-
ified via a set of input parameters and provide causal out-
puts to the building models, and as such provide valuable
"component models" for the overall building representa-
tion. While this could have been integrated with the build-
ing models via FMI, we chose to build a direct connection
between the GMs and Modelica tools to facilitate the it-
erative refinement of the building models and avoid the
inherent trade-offs that model exchange or co-simulation
has on simulation performance (Schweiger, Gomes, En-
gel, et al. 2019). We thus implement a requirements-based
light-weight integration of generative models trained in
Pytorch with building simulation models in a Modelica
environment, which is accomplished via the external func-
tion standard interface, as is also done in the SmartInt
and NeuralNet libraries. This approach can be of value
to other simulation researchers or practitioners as, for sim-
ulation purposes, it maintains a minimum number of de-
pendencies and attempts to prioritize simulation perfor-
mance.

The remainder of this paper is organized as follows.
Section 2 lists the requirements considered for the pro-
posed implementation shown in Section 3. The simula-
tion results obtained through this integration approach are
illustrated using a model from the Buildings library, and a
GM trained in PyTorch using real-world data are presented
in Section 4. Conclusions and further work are summa-
rized in Section 5, which concludes the paper.

Conventional Modelica notation is used extensively in
this paper. The typewriter font is used along the
dot notation to reference the syntax of the Modelica lan-
guage, including the names of Modelica libraries, mod-
els names, etc. Furthermore, the typewriter font is
used to refer to the names of other software packages.
Meanwhile, the dot notation is used to specify hierar-
chy in object-oriented modeling. As an example, con-
sider the model of a building containing a zone named

zon, which itself is composed of a room named roo.
To access a parameter value, for example, the constant
convection coefficient for room-facing surfaces of opaque
constructions, hIntFixed, the dot notation would be
building.zon.roo.hIntFixed. Finally, syntax in
code listings follows same as that in the Modelica Lan-
guage Specification1.

2 Model Integration Requirements
To combine GM models with building simulation models
based on Modelica, various factors have to be taken into
account. We outline the scope in three main categories: 1)
training and modeling of GM, 2) integration of GM mod-
els with building models, and 3) automation of the simu-
lation workflow. Figure 1 illustrates these categories and
shows how they interact to support building simulation.

2.1 GM Training and Modeling
An important consideration is that the GM models must
be designed to interact seamlessly with the building sim-
ulation model. The following requirements (Req.) must
be met by the GM models and their integration. These re-
quirements result in the implementation shown in Figure
1(A), which is discussed in Section 3.

Req. 1: Deep generative networks should be easily
trained (for example, in PyTorch) with real building
data. This requirement emerged from the need for a
research-focused framework on machine learning that
provides flexibility and ease of experimentation to test
new methods such as the one in (Salatiello, Wang,
Wichern, et al. 2023). Furthermore, the design of the
GM neural architecture should be such that the length
of the output (e.g., number of days a signal is gener-
ated) can be easily provided as a user-input.

Req. 2: The parameters of the trained generative model
must be exchanged in a manner that ensures they are
stored in the smallest possible file formats. Reading
the files must be fast and efficient, especially because
modern GM architectures contain a very large num-
ber of trained parameters. In this work, our GM has
multiple sub-network components to be trained, but
for signal generation (i.e., at inference), only a small
sub-module of the deep network is required: there-
fore, only a small subset of the GM weights need to
be stored.

Req. 3: The generative model must be incorporated into
the simulation environment and should operate with
high computational efficiency. The computational
load of running the generative models in conjunction
with the building model should be minimal (or in-
significant) when compared to running the building
model by itself.

1See Ch. 1.4 Notation in the Modelica Language Specifi-
cation: https://specification.modelica.org/master/
introduction1.html.

180 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178 DOI

cacheDataPath:
modelica://*/Resources/NetworkParams/

GM Training GM Model Implementation in C
and Interfacing with Modelica

Physical Model
Refactoring and GM Model Integration

Simulation Executable

Simulation Workflow AutomationGM Training and Modeling GM Model Integration with Building Models

Automation Functions

genCTS(const char *dataPath,
...double* timeSeries)

external "C" genCTS(
cacheDataPath,...,
timeSeries)

Measurement

Data

GM

Architecture

Training

Network Weights
*.bin files

Python and PyTorch

f

C Language

Calls

Returns

Modelica Lang. Modelica Lang.

Re-implement

Read

*dataPath:
modelica://*/Resources/NetworkParams/

Calls

Returns

Refactored Room Model with Fan

dymosim.exe

Dymola-Python
API

Dymola

Simulation Results
*.mat files

Python

dymola = DymolaInterface()
...
ok = dymola.simulateModel(
 myModelsName,
 startTime = tstart,...
 resultFile="dsres.mat");

Calls

Read

Calls

(A) (B) (C) (D) (E) (F)

Figure 1. Overview of the Desired Integration of a Generative Model with a Single-Zone Thermal Model of a Building

2.2 Interfacing Deep Generative Networks
with Building Simulation Models

Because the building models are implemented in the Mod-
elica language; thus, it is necessary to integrate the GMs
with them. To interface them the following requirements
are made:
Req. 4: The GMs need to be incorporated into the build-

ing simulation model using a tailored block. In-
puts to the GM should be routed through the Modelica
model. Outputs from the GM should be connected via
RealOutput or IntegerOutput interface blocks
from the MSL. These interfaces can, for instance, be
used to provide the occupancy, equipment, ventilation,
and lighting loads of the building.

Req. 5 The GM’s output should generate a time series
that fills a CombiTimeTable from the MSL with
predicted variable values at specified time intervals.
The lookup table must implement a sample-and-hold
mechanism and suitable methods for extrapolation for
values outside its defined range for each variable.
These features should be included within the block
described in Req. 4.

Req. 6: The block from Req. 4 must also provide the
parameters for the deep generative network. In the
case of the weights obtained through training, a string
parameter will indicate the location of the file(s) stor-
ing the weights.

These requirements guided the implementation shown in
Figures 1 (see labels (B)-(D)) and 2, which are discussed
in Section 3.

2.3 Simulation Workflow Automation
Referring to Figure 1 (see labels (E) and (F)), one final
aspect to consider in the scope of this work is that of sim-
ulation. As illustrated above label (E), once the GM and
building models are integrated, it is possible to create a
simulation executable and obtain simulation results. It is
beneficial to offer a method for automating the workflow,
specifically to alter parameters in the Modelica model pro-
grammatically, herein reflected by:
Req. 7: When possible, the simulation executable shall be

reused, i.e. limit the re-translation/compilation of the

Modelica model, to perform trade-off analysis stud-
ies. Such studies shall include changing any of the
parameters of the Modelica model, and allow for post-
processing of the simulation results.

3 Prototype Implementation
To meet the requirements emerging from the three aspects
considered in the previous section, the design choices and
implementation pursued are defined next. For illustrative
purposes, Figure 1 shows how the implementation was
carried out to meet the requirements. A detailed descrip-
tion of the implementation to meet the requirements above
labels (B)-(D) in Figure 1, explaining how the interfacing
between C and Modelica of the GM models was done, is
shown in Fig. 2.

The main goal of the software integration approach
used was to minimize dependencies (for both ease of
portability and simulation performance purposes) on ex-
ternal software tools other than the C compiler and the
Modelica tool, in this case Dymola (Bruck, Elmqvist, Ols-
son, et al. 2002; Dassault Systemes AB 2023), which re-
quires a C compiler itself. Hence, an attractive feature (as
discussed in the Introduction) is the use of the standard-
ized external function feature of the Modelica language.
Consequently, to minimize dependencies, the integration
of GMs with the simulation model must be done solely
using C. In turn, this requires one to interface the C imple-
mentation of the GMs with a Modelica model that can call
the C code. Meanwhile, simulation workflow automation
can be achieved by interacting with the Dymola-built sim-
ulator executable, which in the case of the approach shown
in Figure 1, contains both the GM and the building mod-
els, with a suitable scripting tool supported by Dymola.

3.1 GM Training and Modeling
Training the NN of the GM was conducted using Python
and PyTorch, as illustrated in Figure 1, in the portion over
the under-brace labeled with (A), which helps to meet
Req. 1. To train the models, measurement data and the
designed architecture for the NN are provided in PyTorch
to perform the training. This results in the weights of the
network, which are stored in *.bin files, i.e. binary data,
which helps to meet Req. 2.

181OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207178

GM Model in C Modelica GM Model Interface and Block

Within ./GMBuildSimpack/Resources/

conditionalGenerativeModel.c

*dataPath:

Calls

- Contains Implementation of Generative Model

- Input: Network Weights (*.bin files)

- Output: Time Series (Real valued matrix)

- Provides C-Modelica Interface function:

genCTS(const char *dataPath,
double* randomVector,
int roomIndex,
double* timeSeries) Returns

Uses Ancillary C Functions

3. timeSeries is Reshaped by Extern. Function

Within the GMBuildSimPack (package)

2. By Calling the External Function

model GenerativeModelBlock
parameter Real[...] timeSeries =
*.generateConditionalTimeSeries(...);

 generateConditionalTimeSeries.mo

Functions

Blocks
 GenerativeModelBlock.mo (Block)

1. This Block Defines Parameter timeSeries

parameter Real[...] timeSeriesReshaped =
*.reshapeMatrixConditional(timeSeries, ...);
4. timeSeriesReshaped defines lookUpTableValues
parameter Real[:,:] lookUpTableValues =
[tix, timeSeriesReshaped, timeSeriesReshaped];

5. lookUpTableValues specifies combiTimeTable data
Modelica.Blocks.Sources.CombiTimeTable
combiTimeTable(table=lookUpTableValues,...)

6. combiTimeTable outputs are mapped to interfaces from MSL

Reads data from directory: *.bin files

Modelica.Blocks.Interfaces.RealOutput power_equip_R1;
equation ...
connect(combiTimeTable.y[4], power_equip_R1);...
end GenerativeModelBlock;

GenerativeModelBlock

(Icon View)

GenerativeModelBlock

(Diagram View)

function generateConditionalTimeSeries
external "C" genCTS(cacheDataPath,
randomVector,roomIndex,...)

In the./NetworkParams/ (sub-directory)

In the ./Include/ (sub-directory)

modelica://GMBuildSimPack/Resources
 /NetworkParams/
Note: *.bin files contain the network weights that have been

obtained by training the NN in PyTorch.

- binaryFiles.h reads the *.bin files via
loadBinaryFile(...) function
- randomizer.h generates Gaussian random
number, and provides a C-Modelica interface
function:
genRandNormal(int seed, ...)
used by the genCTS (see above) C function and and
generateRandomVectorinC Modelica function.

Figure 2. Integration between C and Modelica

To meet the third requirement (Req. 3), the GM needs
to be translated to C, as illustrated above label (B) of
Figure 1. This implies that the network architecture and
different activation layers need to be coded, while the
weights resulting from training only need to be read. To
illustrate this, consider Listing 1. In lines 2-4, the NN’s
graph is defined via a structure, i.e., the architecture is
defined. Here, only one hidden layer is shown; how-
ever, the NN has others (see (Chakrabarty, Vanfretti, et
al. 2024)). Next, in lines 6-10, the activation functions are
defined, here only the Softplus(x) function is shown; how-
ever, other functions are used (see (Chakrabarty, Vanfretti,
et al. 2024). Finally, in lines 11-23, the fourth layer’s out-
put is calculated using the output of the previous layer, ap-
plying the weights for this layer, adding biases, and finally
applying the Softplus(x) function.

Listing 1. Excerpt of the GM Implementation in
conditionalGenerativeModel.c

1/∗ Structure to r ep r e s en t network graph ∗/
2typedef struct {...
3cLayer hidden4_output;
4} cGenerativeModel;
5...
6/∗ Sample Act i va t i on Funct ions ∗/
7double c_SoftPlus(double x) {
8return log(1 + exp(x));
9}
10...
11/∗ Sample Network Layer and Output ∗/

12double* c_forward(cGenerativeModel network,
double *input){

13...
14// Hidden Layer to Output
15for (int i = 0; i < c_layerSizes[5]; i++) {
16output[i] = 0;
17for (int j = 0; j < c_layerSizes[4]; j

++) {
18output[i] += hidden4[j] * network.

hidden4_output.weights[i *
c_layerSizes[4] + j];}

19output[i] += network.hidden4_output.
biases[i];

20output[i] = c_SoftPlus(output[i]);

While C-implementation of such kind of NN’s is not
trivial, this choice was intentionally made taking into ac-
count the needs to minimize dependencies and maximize
simulation performance. With the proposed approach, the
GM model becomes part of the source code of the simula-
tion executable, in Dymola (called dymosim.exe, see
Figure 1(F)). In addition to this, other C functions are
needed, e.g., to load the binary files, and provide other
functionalities (see Figure 2). Finally, in addition to im-
plementing the network, the C code needs to include a
function to interface with Modelica, as discussed next.

3.2 Interfacing GM Models with Building
Models

To fulfill the requirements pertaining this aspect, i.e.
Req. 4-6, it is useful to refer to Figure 1, paying

182 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178 DOI

attention to what is presented above the labels (B)-
(D). This gives a high-level overview of the main
parts of the interfacing. As can be observed, R4
and R5 are fulfilled by invoking a Modelica function,
generateConditionalTimeSeries (see above la-
bel (C) 1), which provides input parameters and invokes
the C-function, genCTS (see above label (B) 1), evaluat-
ing the GM and asking for its output to fill a lookup ta-
ble called timeseries. Meanwhile, to fulfill Req. 6,
the timeseries output is provided to a table within the
genModel, which is a block that is interfaced with the
building model (see above label (D) in Figure 1).

To expand on this overview and understand the inte-
gration, refer to Figure 2, which focuses only on the in-
tegration between C and Modelica for the GM alone. In
the LHS, the C implementation is shown, in the middle
the Modelica text is shown, and in the RHS the Modelica
graphical views for the developed package and the main
block component are shown. This figure should be pe-
rused from left to right to understand the implementation
details and from right to left to understand how the differ-
ent pieces work together from a user perspective.

Reading from the right-hand side (RHS), the
RHS corner of Figure 2 shows the structure of the
GMBuildSimPack package. It contains the Mod-
elica function and block that help to integrate
the GM model with the building. For the user, the
GenerativeModelBlock would be used to drag,
drop, and connect with the building model inputs.
When graphically instantiated as genModel, as shown
by the icon view, one IntegerOutput and several
RealOutput interfaces that route the output of the GM
model. This fulfills Req. 4. Meanwhile, the diagram
view of this block helps to see them in more detail, and to
observe that they are connected to a CombiTimeTable,
which was what Req. 5 requested. This table will be
populated with the timeseries output of the GM
model, which requires a few steps that are explained next.

Now, to understand how the CombiTimeTable
gets the GM model data, it is necessary
to understand how the Modelica function,
generateConditionalTimeSeries, interfaces
with the C function genCTS. This is illustrated in Listing
Listing 2 that shows the call to the external "C"
function in line 5, while also passing input parameters to
run the NN (lines 2-4), and obtaining the GM’s output in
line 5 of the listing, i.e., Real[384] timeSeries 2.

Using the GenerativeModelBlock in Listing 3,
will call genCTS in line 7, while providing it with dif-
ferent required parameters, see lines 2-5. The func-
tion generateConditionalTimeSeries in List-
ing 3 provides the timeSeries output that will pass
its data to lookUpTableValues in Line 9. Next,

2Note that in this prototype implementation the size of the output
timeSeries is fixed to 384 for illustration purposes. In a more
generic implementation, this parameter could be propagated to make
it easier for the user to modify it.

in line 7, CombiTimeTable is instantiated and data
are provided through the lookUpTableValues pa-
rameter. There are several steps required in this pro-
cess, which are listed as steps 3 and 4 in Fig. 2. Note
that in 10 of Listing 3, several modifiers that are needed
have been ommitted; these include those required to set-
up the sample-and-hold and periodic extrapolation (i.e.
smoothness=... and extrapolation=... mod-
ifiers), and the timeScale=... modifier defines the
GM’s output rate, which will be 15 min in the exam-
ples in the forthcoming section. Finally, in line 11,
power_equip_R1 instantiates a RealOutput inter-
face that is connected in Line 14 to the corresponding out-
put of the table, i.e. CombiTimeTable.y[4].

Listing 2. External Function in Modelica Linking the GM’s
Output

1function generateConditionalTimeSeries
2input String cacheDataPath = Modelica.

Utilities.Files.loadResource("modelica://
GMBuildSimPack/Resources/NetworkParams/");

3...
4output Real[384] timeSeries;
5external "C" genCTS(cacheDataPath,

randomVector, conditionalInputs,
timeSeries) annotation (

6IncludeDirectory="modelica://GMBuildSimPack/
Resources/Include",

7Include="#include \"
conditionalGenerativeModel.c\"");

8end generateConditionalTimeSeries;

Listing 3. Excerpt of the Source Code of the Generative Model
Block

1model GenerativeModelBlock
2constant String cacheDataPath=Modelica.

Utilities.Files.loadResource("modelica
://GMBuildSimPack/Resources/
NetworkParams/");

3/∗ Network Input Parameters ∗/
4constant Integer latentDim = 8;
5... /∗ Other parameters ommited .
6/∗ Network Output ∗/
7parameter Real[nSamplesPerDay*nSignals]

timeSeries = GMBuildSimPack.Functions.
generateConditionalTimeSeries(
cacheDataPath, randomVector,
conditionalInputs);

8... /∗ Ommitting : reshape t imeSe r i e s i n to
lookUpTableValues ∗/

9Modelica.Blocks.Sources.CombiTimeTable
combiTimeTable(table=lookUpTableValues

10... /∗ other mod i f i e r s ommitted ∗/)
11Modelica.Blocks.Interfaces.RealOutput

power_equip_R1;
12... /∗ Other i n t e r f a c e i n s t a n t i a t i o n s

ommitted ∗/
13equation
14connect(combiTimeTable.y[4], power_equip_R1);
15... /∗ many connect statmenets ommited ∗/
16end ConditionalGenerateTimeSeriesModel;

Under this category, only one requirement needs to be
addressed, Req. 6. To understand how this is fulfilled, it
can be observed in both Listings 2 (see line 2) and 3 (see

183OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207178

line 2) that the string called cacheDataPath points to
a specific directory where the *.bin files are located.
It should be noted in this Listing 2 the annotation
points Dymola to the location where the file that includes
genCTS is located, so that it can be included as part of
the integrated simulator code.

Finally, additional Modelica and C functions are built
to support the workflow. For example, the NN must be
initialized with a random vector, this is done through an-
cillary C code whose functions are depicted on the RHS
of Fig. 2, one of which has an accompanying Modelica
function, i.e. generateRandomVectorInC. Mean-
while, as it can be observed in steps 3-4 in Fig. 2, ad-
ditional Modelica functions (i.e., reshapeMatrix), re-
shape the GM’s output before feeding it to the table. We
omit further details about the integration of these fea-
tures, as it is similar to that explained for genCTS and
generateConditionalTimeSeries.

3.3 Simulation Workflow Automation
Finally, to facilitate the automation of the simulation
workflow and meet Req. 7, the only design choice to make
is the selection of one of the available scripting interfaces
provided by Dymola. Among the various interfaces, the
most attractive is the Python Interface for Dymola (Das-
sault Systemes AB 2023), an API to execute Dymola com-
mands using a Python program. This choice was made
because Python is already being used to train NN models
via PyTorch. Using this interface, the models parameters,
weather data files, etc., can be specified and used for spe-
cific simulation cases.

As shown in Figure 1 the Dymola-Python Inteface al-
lows to change the value of the models parameter within
the simulation executable, by instantiating the interface
(i.e. dymola = DymolaInterface()), and run-
ning a simulation through one of its commands (i.e.
dymola.simulateModel(...). To avoid the need
of retranslating/compiling the model, one option is to first
translate the model (see Chp. 1.3 of the Modelica Specifi-
cation) using the translate command of the Dymola-
Python interface, which generates the code of the simu-
lator that can simulate the model. Thus, every time that
parameters are changed3 within a look, the model does
not need to be translated; i.e. code generator is avoided,
reducing time.

4 Results
4.1 Building Models and GM Training Data
4.1.1 Building and System Model

In this section, examples demonstrating the integration of
GM and building models will be presented using the sys-
tem model depicted in Figure 3, which is divided into three
parts. The segment labeled (A) is designated for setting

3Provided that the parameter to be changed is non-structural (Mod-
elica Association 2017).

the temperature setpoints (TSetCoo and TSetHea), the
segment labeled (B) includes the physics-based and GM
models that will be elaborated on later, and finally, the seg-
ment (C) carries out calculations to track building perfor-
mance metrics such as the zone’s temperature (TRoom).

(A) (B) (C)

(a)

(b) (c) (d)

Figure 3. GM integrated with a Re-factored Single-Zone Build-
ing Model including a Fan Control Unit

Let us now describe the physics-based models. Above
the segment labeled (B) in Figure 3, there are four com-
ponents. GM models are identified with the label (a) and
have been described in detail in Section 3.2. Labeled (c),
a simple fan coil unit (FCU) is included to condition the
building, which is shown in Figure 4. The FCU is reg-
ulated by a simple thermostat, which is modeled by a
dual proportional and integral (PI) controller with dual set
point, shown in Figure 5, to maintain room temperature
within the set points of heating and cooling. When the

senSupTem

T

senRetTem

T

senSupFlo

m_flow

he
aC
oi+

T
Q
_f
lo
w

cooCoi

-

Q_flowT

k=eff

powHea

k=-1/COP

powCoo

fa
n

P
y_
…

M
y

cooCoi.Q_f…

qflow_cooCoiVal

heaCoi.Q_f…

qflow_heaCoiVal

fan.P

p_fanVal

returnAir

supplyAir

TSupSet

yFan

PFan

PHea

PCoo

Figure 4. Fan Coil Unit labeled (c) in Figure 3

FCU is activated, the supply fan runs at a constant speed
to circulate air through the heating and cooling coils, indi-
cated in Figure 4 as heaCoi and cooCoi, respectively.
The heating and cooling set points are converted to the
supply air temperature set point by the PI controller shown
in Fig. 54, and the coils are activated to reach the set
point. The conditioned air is then supplied to the build-
ing through the supplyAir interface in Figure 4, where
it is assumed to be well mixed. For the illustrative pur-
poses of the examples herein, the energy impact of FCU is

4Observe that the goal here was to provide a simple implementation
of the thermostat. To avoid numerical issues that could appear due to the
use of the Modelica.Blocks.Logical.GreaterThreshold
block set to > 0 could be made.

184 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178 DOI

simplified, i.e., simple electrical models are used to deter-
mine the consumed power. The electric heating coil has a
constant efficiency of 0.9, and the cooling coil operates at
a constant coefficient of performance (COP) of 3.0.

heaPID

PID

cooPID

PID

add

+
1

-1

TSupSwitch
TSupSetCooCon

k=TSupSetCoo

TSupSetHeaCon

k=TSupSetHea

0

greaterThreshold

0

greaterThreshold1

deaSwitch

notCoo

not
notHea

not

andDea

and

TZon

yFan

TSetHea

TSetCoo

TSupSet

Figure 5. Thermostat Model labeled (b) in Figure 3

Finally, consider the component labeled (d) in Figure
3, this is the building model, which is expanded in Fig-
ure 6. The modeling hierarchy is shown for three lay-
ers. In the layer labeled (A), it is shown how the GM
model is interfaced, and certain variables are scaled to
match the model’s units. In layer (B), further refactoring
and computations are performed, mainly the interfacing
with a weather data block with the GM and the computa-
tion of the total radiant, convective, and latent heat gains
from the prediction of the GM model. Finally, layer (C)
the underlying model refactored from the Buildings
library. Although the specific case shown here corre-
sponds to Case900FF of the ASHRAE BESTEST val-
idation models (ASHRAE 2007), the refactoring provides
an object-oriented hierarchy that allows one to easily mod-
ify other models by matching the interfaces for radiant,
convective, and latent heat flow (which are constant in the
original model), and move the weather data block to layer
(B) to adapt weather conditions based on input from the
GM.

The building represents a single zone with a window on
the south wall and a constant infiltration mass flow rate.
For the examples considered here, there are two variations
of construction, the light weighted Case600FFF and the
heavy weighted Case900FFF. The exterior walls and
roof of Case600FFF and 900 are, respectively, plaster
board with fiberglass insulation and concrete block with
foam insulation. The floor of Case600FFF is timber
construction and the floor of Case900FFF is concrete
slab.

4.1.2 Measurement Data for GM Training

To train generative models, we use measurement data
collected from SUSTIE, a cutting edge net zero-energy
commercial office building located in Japan5. The name
SUSTIE combines the words “Sustainability” and “En-
ergy” and the building is designed to investigate and
demonstrate technologies that can lead to energy savings
and worker health and comfort. The four-story SUSTIE
building has a total floor area of approximately 6456 m2

5See https://www.mitsubishielectric.com/en/
about/rd/sustie/index.html.

which includes nine office spaces (experimental rooms)
regularly used by around 260 office workers, an open
atrium area, a cafeteria and a gym.

The building management system at SUSTIE gathers
data on electrical energy usage, weather conditions, in-
door environmental parameters, occupancy levels, and
equipment operations to monitor and manage energy con-
sumption and comfort throughout the building’s opera-
tions. The electrical energy consumption is measured sep-
arately for different types of equipment (air conditioning,
ventilation, lighting, hot water supply, and elevators) and
for each room. The occupancy, i.e. the number of peo-
ple in each room, is counted by the access control system
using card readers installed in each area. This constitutes
hundreds of sensing instruments installed throughout the
building measuring more than 2,500 unique data signals
throughout the year, 24 hours a day, with a sampling rate
of 1 minute.

In this work a data set collected at SUSTIE over 20
consecutive months from January 2021 to August 2022
is used for training the GM’s used in the examples be-
low. For more information on the steps required for
pre- and post-processing of data and GM training, see
(Chakrabarty, Vanfretti, et al. 2024).

4.2 Illustrative Example
Let us now present some simulation results obtained by
simulating the model shown in Figure 3.

First, we present the GM predictions in Figure 7, which
correspond to the signals from genModel, (a) in Figure
3 that are fed to the building model (d) in Figure 3. These
figures display the mean of the distribution from the mea-
sured data (nom) as well as a realization from the gener-
ative model (GM). The output of the GM corresponds to
several variables (e.g., occupancy, equipment power, etc.)
that influence the radiant, convective, and latent heat gains
of the room shown, which is represented by a light blue
square with a gray edge in Figure 6 (C). As can be seen in
Figure 7, the GM model provides a time series that reflects
what is expected of such types of building operations. For
example, in Figure 7 (a) the occupancy increases in the
morning and falls to zero during the day, while in Figure
7 (b) the power consumed by the equipment is highest in
the morning and drops to a minimum at night. This il-
lustrates the expressiveness of these generative models, as
multiple simulations can be used to characterize the effect
of the uncertainty in these input quantities.

The influence of the GM model upon the radiant, con-
vective, and latent heat gains is shown in Figure 8. Ob-
serving the flow of radiant heat in Figure 8 (a) while at
the same time observing both the power of the equipment
in Figure 7 (b) and the global horizontal radiation in (f),
it can be observed that during the beginning of the day
both variables influence the radiant heat. Meanwhile, the
convective heat flow in Figure 8 (b) is not as drastically
affected at the beginning of each day by these variables.
Furthermore, it should be noted that the latent heat flow in

185OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207178

(A) (B) (C)

Instantiates
Instantiates

Figure 6. Hierarcichal Layers of the Single-Zone Building-Model labeled (d) in Figure 3. Observe that layer (C) is a refactored
model from the Buildings library, corresponding to Case900FF of the ASHRAE BESTEST validation models (ASHRAE
2007).

Figure 8(c) is dominated by occupancy. It is worth noting
that in the case of the latent heat flow, not having a good
estimate such as those from the GM can lead to a substan-
tial underestimation of latent heat, as shown by the case
where the variables are assumed to be some ‘nominal’ heat
loads obtained from a nominal schedule of energy use in
the zone.

The GM’s output also influences the heat
and mass balance in the moist air of the room.
Within the room in Figure 6 (C), the component
MixedAirHeatMassBalance determines the heat
and mass balance of moist air (M., W. Zuo, and T.
Nouidui 2011), as can be seen in the sensed air tem-
perature and flow rate of water added to the air using
the MixingVolumeMoistAir component from the
Buildings library. The resulting effect of the dif-
ference between the nominal inputs and a realization
from the generative model can can be observed in
Figure 9(a)-(c); the GM output allows a better estimation
of the resulting heat flow in the room (see (a)) and a
more realistic temperature estimate (see (b)), which can
serve in the sizing of the HVAC system and/or improving
its control. It should be noted that, although small, it is
also possible to quantify the rate of extraction of water
from moist air in Figure 9 (c), which would otherwise
be underestimated when using nominal values instead of
those of the GM.

Finally, to maintain the room temperature shown in Fig-
ure 9 (b) within the specified set points, the FCU and the
thermostat in Figures 4 and 5 must cool the air. The re-
sulting set point provided by the thermostat to regulate the
cooling is shown in Figure 10 (a), with the air flow from
the FCU shown in Figure 10 (b). From these figures, it
can be seen that the impact of including the GM serves
to adapt the performance of the cooling system according
to the operating needs of the building. Observe in Fig-
ure 10 (a) that the new setpoints adapt to changes in the
building conditions that are not prescribed by the mean
of the experimental measurements, allowing the user to

quantify the uncertainty in the system performance related
to variations in the building operation.

5 Conclusions
Bringing together physics-based buildings models with
models that describe variables driven by human interac-
tions has the potential to substantially improve the perfor-
mance of existing buildings or to develop better informed
building designs, particularly when considering heating
and cooling requirements that impact HVAC systems. To
explore this potential, this paper has presented the re-
quirements and a prototype implementation of the integra-
tion of machine learning generative models and physics-
based building models. Once the generative models were
trained, they were linked to a building model by exploit-
ing the external function interfaces for C defined in the
Modelica language specification. This enabled the reuse
of Modelica building models from the Buildings li-
brary, while simultaneously leveraging real-world occu-
pancy, power consumption, and other data for building
energy simulations, as demonstrated by the provided ex-
amples.

Although the prototype implementation proposed here
has proven beneficial in the development of novel building
control performance analysis techniques (Chakrabarty,
Vanfretti, et al. 2024), it has several other application do-
mains. For example, it can be used similarly to character-
ize load patterns and perform power system control perfor-
mance evaluations (Bombois and Vanfretti 2024). There is
also a great deal of room for improvement, for example,
to be able to use multiple and different types of generative
model architectures, which will be subject to future work.

Acknowledgements
Part of the work reported in this article was carried out by
the first author during his sabbatical at Mitsubishi Electric
Research Laboratories (MERL). The author thanks MERL
for the opportunity and support.

186 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178 DOI

Figure 7. Outputs of the GM model, (a) in Figure 3, for a 7-day period. (a) Occupancy. (b, c) Power consumed by equipment and
lighting. (d) Outdoor temperature. (e,f) Solar radiation, scattered and global.

Figure 8. (a) Radiant, (b) convective and (c) latent Heat Flow resulting from the GM and a Nominal signal.

187OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207178

Figure 9. Mixed air conditions in the room in Figure 6 (C). (a) Heat flow balance, (b) temperature and (c) water flow rate.

Figure 10. (a) Thermostat TSupSet output (see Figure 5) and (b) Supply air output measured from senSupFlo (see Figure 4)

188 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178 DOI

References
ASHRAE (2007). 140: Standard Method of Test for the Evalu-

ation of Building Energy Analysis Computer Program. Tech.
rep. ASHRAE.

Bombois, Xavier and Luigi Vanfretti (2024). “Performance
monitoring and redesign of power system stabilizers based
on system identification techniques”. In: Sustainable Energy,
Grids and Networks 38, p. 101278. ISSN: 2352-4677. DOI:
https://doi.org/10.1016/j.segan.2024.101278.

Bruck, D., H. Elmqvist, H. Olsson, et al. (2002). “Dymola for
Multi-Engineering Modeling and Simulation”. In: 2nd Inter-
national Modelica Conference, pp. 55–1 — 55–8. URL: https:
//modelica.org/events/Conference2002/papers/p07_Brueck.
pdf.

Chakrabarty, Ankush, Emilio Maddalena, Hongtao Qiao, et al.
(2021). “Scalable Bayesian optimization for model calibra-
tion: Case study on coupled building and HVAC dynamics”.
In: Energy and Buildings 253, p. 111460.

Chakrabarty, Ankush, Luigi Vanfretti, et al. (2024). “Assessing
Building Control Performance using Physics-Based Simula-
tion Models and Deep Generative Networks”. In: 8th IEEE
Conference on Control Technology and Applications (CCTA).
IEEE, pp. 1–8.

Chen, Zhenghua and Chaoyang Jiang (2018). “Building occu-
pancy modeling using generative adversarial network”. In:
Energy and Buildings 174, pp. 372–379.

Codeca, F. and F. Casella (2006). “Neural Network Library
in Modelica”. In: 5th International Modelica Conference,
pp. 549–557. URL: https : / / modelica . org / events /
modelica2006/Proceedings/sessions/Session5c3.pdf.

Das, Hari Prasanna, Ryan Tran, Japjot Singh, et al. (2022).
“Conditional synthetic data generation for robust machine
learning applications with limited pandemic data”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence.
Vol. 36. 11, pp. 11792–11800.

Dassault Systemes AB (2023-09). Dymola — Dynamic Model-
ing Laboratory — Full User Manual. Lund, Sweden.

M., Wetter, W. Zuo, and T. Nouidui (2011). “Modeling of Heat
Transfer in Rooms in the Modelica “Buildings” Library”. In:
12th Conference of International Building Performance Sim-
ulation Association, pp. 1096–1103.

Mirakhorli, Amin and Bing Dong (2016). “Occupancy behav-
ior based model predictive control for building indoor cli-
mate—A critical review”. In: Energy and Buildings 129,
pp. 499–513.

Modelica Association (2017). “Modelica Specification, Version
3.4”. In: URL: www.modelica.org.

Modelica Association (2019). “Functional Mockup Interface for
Model Exchange and Co-Simulation, Version 2.0.1”. In: URL:
www.fmi-standard.org.

Salatiello, Alessandro, Ye Wang, Gordon Wichern, et al. (2023).
“Synthesizing Building Operation Data with Generative
Models: VAEs, GANs, or Something In Between?” In: Com-
panion Proceedings of the 14th ACM International Confer-
ence on Future Energy Systems, pp. 125–133.

Schweiger, Gerald, Cláudio Gomes, Georg Engel, et al. (2019).
“An empirical survey on co-simulation: Promising standards,
challenges and research needs”. In: Simulation modelling
practice and theory 95, pp. 148–163.

Stoffel, Phillip, Laura Maier, Alexander Kümpel, et al. (2023).
“Evaluation of advanced control strategies for building en-
ergy systems”. In: Energy and Buildings 280, p. 112709.

The MathWorks (n.d.). Export Network as FMU. Accessed:
Feb. 2, 2024. Available since v. 2023b. URL: https : / /www.
mathworks.com/help/deeplearning/ug/export- network- to-
fmu.html.

Wetter, Michael, Paul Ehrlich, Antoine Gautier, et al. (2022).
“OpenBuildingControl: Digitizing the control delivery from
building energy modeling to specification, implementation
and formal verification”. In: Energy 238, p. 121501.

Wetter, Michael, Wangda Zuo, Thierry S Nouidui, et al. (2014).
“Modelica buildings library”. In: Journal of Building Perfor-
mance Simulation 7.4, pp. 253–270.

Wolfram Research (n.d.). NeuralNet: Library that provides
support for the use of neural networks in modeling. Ac-
cessed: Feb. 2, 2024. URL: https : / / reference . wolfram .
com / system - modeler / libraries / SystemModelerExtras /
SystemModelerExtras.NeuralNet.html.

XRG Simulation GmbH (n.d.). SmartInt: Simple Modelica Ar-
tificial Intelligence Interface. Accessed: Feb. 2, 2024. URL:
https://github.com/xrg-simulation/SMArtIInt.

Ye, Yunyang, Matthew Strong, Yingli Lou, et al. (2022). “Eval-
uating performance of different generative adversarial net-
works for large-scale building power demand prediction”. In:
Energy and Buildings 269, p. 112247.

Zhan, Sicheng, Gordon Wichern, Christopher Laughman, et al.
(2022). “Calibrating building simulation models using multi-
source datasets and meta-learned Bayesian optimization”. In:
Energy and Buildings 270, p. 112278.

189OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 189

Pipeline-based Automated Integration and Delivery Testing of
Simulation Assets with FMI/SSP in a Railway Digital Twin

Ozan Kugu1 Shiyang Zhou1 Stefan H. Reiterer2 Mario Schwaiger2 Lukas Wurth1 Manfred
Grafinger1

1Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria,
ozan.kugu@tuwien.ac.at

2Virtual Vehicle Research GmbH, 8010 Graz, Austria, stefan.reiterer@v2c2.at

Abstract
Railway infrastructure systems have recently been en-
hanced through the use of the digital twin (DT) concept,
enabling visualization and control in a virtual environ-
ment while effectively mitigating life cycle costs. This
work provides insights into the development and opera-
tions (DevOps) of a railway DT platform and highlights
the automation and management of asset integration and
processing based on the FMI and SSP interface standards
through the use of the Continuous Integration / Continu-
ous Delivery pipeline technology. This offers long-term
durability, pausability, remote triggering, open-source and
workflow design capabilities, and connectivity to other
tools such as version control systems and code analysis
tools. In this research paper, we present an anti-slip co-
simulation model of a railway vehicle as a use case exam-
ple to demonstrate the pipeline-oriented automation and
management in combination with a version control sys-
tem and code analysis tool within the platform.
Keywords: CI/CD Pipeline, DevOps, FMI, SSP, Automa-
tion and Management, Asset Integration and Processing

1 Introduction
Railways play a crucial role in modern public and freight
transportation due to their cost-effectiveness, energy-
efficiency and eco-friendliness. To reduce life-cycle costs,
conserve energy, and streamline maintenance and moni-
toring for railway operators and infrastructure managers,
railway infrastructure systems are being brought into the
virtual world through the use of the DT concept. As an
example, (Zhou et al. 2022) conceptualized a DT platform
called Rail for Future (R4F), where digital assets (mod-
els and data) from different railway subsystems, including
vehicles, tracks, turnouts, bridges and tunnels, can be in-
tegrated and interoperated with each other. This enables
end-users to control and visually analyze the railway sys-
tem.

There are challenges and limitations to overcome in
railway digitalization. For instance, raw simulation as-
sets of the subsystems cannot be run and easily man-
aged in the DT platform due to their software tool depen-
dence, operating system (OS) incompatibility, relatively

complex model and data structure. The use of interface
standards, offered by Modelica Association, shows great
potential for dealing with the adaptation of the simula-
tion assets to the platform. Some of these standards are
Functional Mock-up Interface, which provides an inter-
face between dynamic simulation models and software as
a ZIP-formatted container (simulation unit called Func-
tional Mock-up Unit (FMU)), is open-source and sup-
ported by more than 200 tools (Functional Mock-up In-
terface (FMI) Standard 2024), and System Structure &
Parameterization, which is used to containerize complex
simulation systems containing one or more FMUs and
ideal for co-simulation use cases (System Structure and
Parameterization (SSP) Standard 2024). This adaptation
process allows the assets to be seamlessly integrated and
processed in the platform. (Kugu et al. 2023) successfully
demonstrated this in their work by using the FMI and SSP
standards. In order to ease the asset integration and pro-
cessing task, we prefer to automate it and improve its man-
agement. This is a challenging mission, that requires com-
prehensive knowledge and experience about the assets, the
task and automation techniques to apply it to the platform.
This paper demonstrates the use of the Continuous Inte-
gration / Continuous Delivery and/or Continuous Deploy-
ment (CI/CD) pipeline technology for automated integra-
tion, processing and management of the assets with the
FMI and SSP standards in the R4F Platform. The technol-
ogy is foreseen as an effective method for the automation,
because it provides workflow design, open-source, de-
livery and/or deployment capabilities, remote-triggering
functions, pausability (ability to stop and wait for human
response), long-term durability and platform compatibil-
ity. Besides, the pipeline software tool can interoperate
and communicate with other software tools such as ver-
sion control systems and code analysis tools, which help
track and store the version of the assets and detect poten-
tial errors, vulnerabilities and redundancies in the codes
belonging to these assets. Thus, version control systems
and code analysis tools are applied to the pipeline in this
work, which effectively boosts the automation and man-
agement of the asset integration and processing task as a
part of the DevOps practice in the platform. Moreover,
there are open-source tools available for these two tech-

190 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207189 DOI

nologies. Considering all the features and open-source
materials, mentioned above, the CI/CD pipeline technol-
ogy is highly preferred for this research work.

Another issue to address concerns license management,
which is necessary to obtain permissions for running sim-
ulations of the assets in the pipeline of the platform, since
these assets were previously designed and configured with
an appropriate solver in commercial software tools. Ad-
ditionally, a thorough understanding of pipeline installa-
tion, configuration, and design is needed, which also de-
pends on the physical domain according to (Zampetti et
al. 2023)’s comprehensive study on CI/CD pipeline im-
plementation in a DT for Cyber Physical Systems (CPS)
incl. railways. Moreover, proficiency in installing, con-
figuring version control systems and code analysis tools,
and effectively interoperating the pipeline with them in the
platform is essential.

In this research paper, first, in Section 2, we give
insights about the benefits and limitations of railway
DTs, CI/CD pipeline technology, FMI and SSP standards
through different research examples. Second, in Section 3,
we define the FMI- and SSP-based asset integration and
processing task and its underlying goals. Then, in Sec-
tion 4, we present what kind of advantages the automation
and management of the task bring to stakeholders, how we
apply it to the R4F Platform, how we keep the stakehold-
ers updated through the use of the pipeline, version con-
trol system & code analysis tool methodologies and which
processes we defined and directly applied to the pipeline
in the platform. After that, in Section 5, we show an inter-
esting demonstration of how we automate and manage the
integration and processing of a co-simulation model con-
sisting of a multibody simulation (MBS) model of a rail-
way vehicle, and a Proportional-Integral-Derivative (PID)
controller model for anti-slip traction and vehicle speed
control of the vehicle. In Section 6, we discuss the sim-
ulation comparison results of the use case, and point out
limitations and challenges we encountered while integrat-
ing, processing the assets, then automating and managing
them in the pipeline. Finally, in Section 7, we briefly men-
tion the conclusion of this work and outline future work.

2 Related Work
2.1 Railway Digital Twin
In recent years, railway DTs have increasingly been de-
signed and developed by numerous researchers and engi-
neers to enhance operational, monitoring and maintenance
tasks within the virtual railway environment. For instance,
(Zhang et al. 2021) presented a DT-assisted approach for
fault diagnosis of railway point machines used to oper-
ate turnouts. They emphasized the significance of DTs
in enhancing fault diagnosis processes, thereby improv-
ing the reliability and efficiency of railway operations. In
2022, (Hamarat, Papaelias, and Kaewunruen 2022) intro-
duced a Peridynamics-based DT approach, which could
predict potential fatigue damage in railway turnout cross-

ings by integrating real-time data and simulations, facil-
itating proactive maintenance and improved safety. This
enhancement contributed to assessment and management
of railway infrastructure. Additionally, (Kaewunruen et
al. 2023) proposed employing DTs for managing railway
bridge maintenance, where they monitor and analyze the
structural integrity of railway bridges in real time. Their
study highlighted the role of DTs in improving decision-
making processes related to the maintenance, thereby en-
hancing the overall safety and reliability of railway infras-
tructure systems. As mentioned in Section 1, (Zhou et al.
2022) conceptualized a model-based DT platform called
R4F, capable of simulation, visualization, and predictive
analytics, enabling stakeholders to optimize operations,
maintenance, and resource allocation for comprehensive
management of large-scale railway infrastructure systems.
This advancement improved the efficiency and reliabil-
ity of the system. This paper aims to ease stakeholders’
aforementioned tasks by demonstratively automating and
managing the integration and processing of various rail-
way simulation assets within the platform.

2.2 CI/CD Pipeline for Digital Twins
Many researchers and software engineers prefer CI/CD
pipelines to automate and manage integration, simula-
tion, validation, delivery and deployment processes in a
DT of a physical system as DevOps practices. This ap-
proach facilitates easier analysis, monitoring, and evalu-
ation of the system. For example, (Hugues et al. 2020)
proposed the TwinOps process, which is a combination
of DevOps, DTs and model-based engineering, and used
it for automated code generation, condition monitoring
and data analysis of CPSs. (Villa et al. 2024) used the
CI/CD pipeline technology to reproduce protocol stacks
(e.g. cellular, WiFi) in both physical and digital environ-
ments in real time, which helps researchers to efficiently
and automatically test the protocols in a conceptual DT
for large-scale wireless networking. (Barbie, Hasselbring,
and Hansen 2023) enhanced the automated testing of their
DT prototype for smart farming applications through the
use of the pipeline technology. They noted relatively high
cost and time consumption of the hardware used for the
applications, making simulations a preferable choice over
the hardware for gaining virtual insights into the physical
system via the CI/CD pipeline. Consequently, we aimed
to work with multiple railway simulation assets, intend-
ing to automatically integrate and process them within our
CI/CD pipeline for this work.

Another crucial aspect to consider is the intercommuni-
cation of the pipeline with other tools, which helped us to
further improve the management of our automated asset
integration and processing task occurring in the pipeline.
For instance, (Kiran et al. 2021) suggested to work with
code analysis tools in their CI/CD pipeline for more reli-
able and secure software development life cycle and De-
vOps. Similarly, (Zampetti et al. 2017) did a relatively ex-
tensive comparative study, where they investigated the us-

191OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207189

age of several static code analysis tools in a CI pipeline for
static analysis of many different open-source software ap-
plications. They also gave many insights about how effec-
tively the static code analysis tools should be used with the
CI pipeline to detect bugs, errors and warnings in the ap-
plication examples, which is important for us to be aware
of possible failures, redundancies and vulnerabilities in
our asset applications. Besides, (Sethi 2020) proposed to
apply version control system to their CI/CD pipeline for
business intelligence solutions in order developers to keep
tracking and saving source code changes collaboratively.
Based on this, we found the version control system very
promising for tracking and storing our asset applications
with a version control system tool directly connected to
our CI/CD pipeline for this work.

2.3 FMI and SSP Standards for Railways
The FMI and SSP standards are preferred to be used in
many sectors including the railway sector, because these
strongly assist researchers to integrate and manage dif-
ferent railway simulation models in a virtual environment
by providing more tool-independence, file-portability, co-
simulation capability and less data complexity in spite of
particular limitations noted by railway experts.

(Pieper and Obermaisser 2018) introduced a distributed
co-simulation approach for conducting software-in-the-
loop tests of networked railway systems. In this ap-
proach, various subsystems of the railway network could
be simulated independently and in parallel by leveraging
FMI. They also highlighted the potential of FMI in en-
abling collaborative and scalable simulation of the sys-
tems, which is crucial for ensuring their reliability and
safety in operations. (Hotzel Escardo et al. 2021) designed
and developed a train driver behaviour model for railway
co-simulations, demonstrating how train driver behavior
models can be seamlessly integrated with other simula-
tion components, such as infrastructure and rolling stock
models by utilizing FMI. This approach allows for com-
prehensive simulations that capture the interactions be-
tween different elements of railway systems, ultimately
enhancing the understanding of system dynamics, sup-
porting decision-making processes in railway operations,
and planning. Besides, (Zhou et al. 2023) proposed to use
FMI to seamlessly integrate their machine learning based
surrogate model in the R4F Platform. This enables tool-
independency and interoperability with other future mod-
els. (Golightly et al. 2022) noticed several FMI-compliant
simulation tools (e.g. MATLAB/Simulink), used for rail
applications and thus showing great potential of the FMI
standard for the rail sector, while they studied the prac-
ticability of the multi-modelling approach for rail decar-
bonisation systems. On the other hand, they listed a cou-
ple of limitations of the FMI for railways such as lack of
clear presentation, data incompatibilities and intellectual
property (IP) issues related to railway simulation models,
which are surely to be considered while using FMI for
railway applications as well. (Hällqvist et al. 2021) dis-

cussed the utilization of the SSP standard to achieve engi-
neering domain interoperability, particularly focusing on
its application within railway systems. The study high-
lights how SSP facilitates interoperability between vari-
ous engineering domains, including railway systems, by
providing a common standard for describing system com-
ponents and their interactions. By adopting SSP, engi-
neers can enhance collaboration, optimize model integra-
tion processes, and increase the efficiency of complex rail-
way system development and analysis. Finally, (Kugu et
al. 2023) proposed to use both FMI and SSP to integrate
and simulate different railway simulation models such as
an MBS model of a railway vehicle, and residual life time
calculation model of a railway steel bridge in the R4F Plat-
form. They also pointed out the high potential of these
standards for the railway sector, which gave us enormous
inspiration to use the FMI and SSP technologies for our
asset integration and processing task in the CI/CD pipeline
on the platform in this work.

3 Asset Integration and Processing
The asset integration and processing task plays a signifi-
cant role in enabling various railway use cases to operate
within the R4F Platform. This task comprises two primary
components: Asset Integration and Asset Processing.

The Asset Integration in this work means direct adapta-
tion of the simulation assets consisting of model and data
to the platform through the use of interface technologies
such as FMI and SSP. Before the Asset Integration part,
these assets were manually designed and processed in a
Graphical User Interface (GUI) - supported software tool
(e.g. MATLAB, Simpack,...), which is very handy to cre-
ate, configure, optimize and simulate a physical system.
The system can be a railway vehicle as an example from
the railway sector. Of course, these assets need to be fur-
ther prepared to properly use it with the interfaces in the
platform. In this preparation, input parameters, input and
output channels are defined and assigned to the simula-
tion assets. This is necessary to address the right inputs
and outputs for the asset simulation, so that the input pa-
rameterization and output generation work in a right man-
ner during the asset simulation executed by the pipeline
in the platform. After that, these assets are packed into
FMU and lastly into SSP, where the FMUs are connected
to each other resp. co-simulated. This helps to achieve the
assets as a container in ZIP format including the entire as-
set description (model metadata, parameters, connections,
connectors). This container can technically be analyzed,
simulated in the platform, and therefore makes the assets
independent from their GUI-based default tool as found
out in this work.

Asset Processing occurs subsequent to Asset Integra-
tion. In this case, the assets, integrated with FMI and SSP,
are tested, optimized and then released to be completely
sure that these function in a right manner. For this, nec-
essary software tools, libraries, packages and licenses are

192 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207189 DOI

pre-installed on a computer as first step. After that, codes
of the assets are manually analyzed to find out errors and
then fix bugs. After the code analysis, these assets are sim-
ulated and finally their outputs are generated by executing
a simulation code script on the computer (see the model
simulation approach of (Kugu et al. 2023)). Prior to deliv-
ery, all aspects related to the simulation test undergo peer
review by the Asset Integrator to evaluate the test and de-
termine whether to release the assets.

4 Automation & Management
4.1 Benefits
The asset integration and processing are automated and
managed by the Asset Integrator through the use of the
pipeline, version control system and code analysis tool in
the R4F Platform as previously mentioned in Section 1.
The reason for this is that it brings significant advantages
as follows:

- Time-efficiency in the asset integration and process-
ing through the automation,

- Money-saving, because open-source tools are imple-
mented for the automation and management work,

- Stakeholders need less prior knowledge about the
asset integration and processing through the Asset Inte-
grator’s great contribution to the automation and manage-
ment,

- Long-term durable, pausable and workflow-based
asset integration and processing through the pipeline tech-
nology,

- Better quality control through analysis and valida-
tion processes,

- Better control of the tracking and storage of the
simulation assets between different stakeholders by using
the version control system, therefore easier collaborative
work between them.

4.2 Environment Overview

Figure 1. Simplistic Landscape of the CI/CD Pipeline-based
Automation and Management of the Asset Integration and Pro-
cessing in the R4F Platform.

Figure 1 provides an overview about how, in what kind
of environment and among which layers of the R4F Plat-
form landscape (as outlined in (Zhou et al. 2022)) the asset
integration and processing task is automated and managed
by using the CI/CD pipeline technology. As first step, the

railway raw assets, which are provided from the asset layer
into the integration layer of the platform, are adapted to the
platform through the use of the FMI and SSP within the
scope of the Asset Integration part. Then, as first of the
Asset Processing part, these integrated assets are stored
and tracked in the Asset Integrator’s version control sys-
tem, which is directly connected to a pipeline by using
a Source Code Management (SCM) plugin in order the
pipeline to keep and track these assets in its own server
as well. Of course, the pipeline should be comparable
with the ones in the R4F Platform function layer, where
pipelines for particular functions (e.g., predictive mainte-
nance) are used, because all the assets must work in the
function layer’s pipelines to be able to visualize and con-
trol these assets in the visualization layer of the platform.
Thus, the Asset Integrator initiates a virtual machine (VM)
with Linux OS and then installs a software tool where they
created the pipeline. Besides, the pipeline is directly con-
nected to a code analysis tool installed in the same VM,
so that the tool extracts the codes of the assets from the
pipeline, and then publishes the code analysis results to the
Asset Integrator. In these results, they can detect poten-
tial errors, redundancies, bugs and vulnerabilities, which
helps them to further improve the code quality of the assets
in advance. Finally, the refined assets are delivered to the
version control system of the R4F Platform infrastructure
layer, where the Asset Integrator conducts simulations and
oversees function layer pipelines through pipeline execu-
tion, subject to manual approval.

4.3 Followed Approach
Figure 2 reveals the exact methodology to realize the au-
tomation and management of the asset integration and pro-
cessing task, where the Asset Integrator plays their main
part, in the pipeline. First, they get the raw prototypical
simulation assets from the Asset Provider as usual. Af-
ter manually preparing these assets as mentioned in Sec-
tion 3, the Asset Integrator uses their Command Line In-
terface (CLI) tool, which is very handy to execute com-
mands without any GUI in background. In the CLI, they
start a shell script, which is a text file and contains a se-
quence of commands to be executed for process automa-
tion in the CLI. As first step, this script pushes all the as-
sets (pre-asset), configuration files (pre-configs), includ-
ing necessary software libraries and packages for the as-
set simulation, and a pipeline code, defining the work-
flow of the pipeline, to the integration layer’s version con-
trol system software repository by using the Git command
(see Git Documentation (2024)). Besides, the shell script
pushes notification to all the stakeholders via email by us-
ing an open-source mail transfer agent software to inform
them about the pipeline execution start. One notification
email is sent to the Asset Integrator and includes four
links with corresponding port numbers belonging to the
pipeline, code analysis tool, version control system and
pipeline console output, helping them to directly moni-
tor and handle the whole progress of the asset integration

193OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207189

Main Procedure Followed
1 Start the Shell Script
2 Push Pre-Assets and Notifi-

cation
3 Remotely Trigger Pipeline
4 Provide Input for Simulation
5 Start the FMI-based SSP

Simulation
6 Generate Results
7 Manually Approve the Deliv-

ery
8 Deliver Asset

Figure 2. Overview of the Automation and Management Environment.

and processing. Another email is redirected to the Asset
Provider, and includes only the pipeline start message, not
the four links due to the IP protection of the pipeline au-
tomation methodology. After the pushing step, the shell
script triggers the pipeline remotely through the use of
the pipeline server’s token so that the pipeline starts au-
tomatically and extracts all the pre-asset, pre-configs and
pipeline code through the SCM from the Asset Integra-
tor’s version control system. After that, the principal in-
put parameterization, asset simulation and its output gen-
eration occur one after the other in the pipeline. In the
meantime, all the codes related to the pre-asset are auto-
matically reviewed by the Asset Integrator’s code analy-
sis tool. Then, the Asset Integrator checks the code anal-
ysis results, pipeline console outputs and simulation re-
sults, generated as curves and output files for data analy-
sis and validation purposes, after getting the Manual Ap-
proval message with the pipeline link as an email automat-
ically sent from the pipeline. It should be noted that the
manual checking process can be fully automated in future
as (Reiterer, Schiffer, and Schwaiger 2023) did Key Per-
formance Indicator evaluation and quality check by using
post-processing tools in their work. After they finish to
adapt the simulation of the FMI- and SSP-standardized as-
set to the pipeline, they decide to deliver the asset as final
asset, and its belonging log file (pipeline console output)
directly to the infrastructure layer’s version control system
through another push command execution by the pipeline
like the previous one in the shell script. If the pushing suc-
ceeds, a Delivery message is automatically sent to all the
stakeholders via email in order to inform them about the
asset delivery.

4.4 Designed Workflow of the Pipeline

In this subsection, the workflow, designed and applied to
the pipeline through the use of the pipeline code, is further
concretized and described by defining main processes and

their sub-processes. First, we automatically integrate our
asset application into the R4F Platform through the use
of the version control system, FMI and a couple of Linux
commands in the pipeline within the Build process in or-
der to be able to test the application there. After the Build,
in the Test process, we do semi-automated testing and val-
idation of the whole application by using the FMI, SSP,
code analysis tool and Linux commands in the pipeline for
quality assurance of the asset simulation in the platform. If
the simulation shows relatively high resilience, code qual-
ity and result consistency, the Asset Integrator decides to
deliver the final asset to the infrastructure layer’s version
control system software repository, which happens in the
Deliver process. Otherwise, the asset application requires
further improvement and development, leading to the en-
tire automated asset integration and processing starting
again from the Build process.

4.4.1 Build

1) Checkout SCM: Connection of the Asset Integrator’s
version control system to the CI/CD pipeline through
SCM.
2) Update Software: Update necessary software pack-
ages, libraries and tools for the asset simulation in the
pipeline.
3) Build FMU: Automated packaging railway simulation
assets into the FMUs.

4.4.2 Test

4) Analyze Codes: Scan source codes related to the assets
with the code analysis tool.
5) Validate FMU: Check, if the FMUs work properly.
6) Gather Info FMU: Extract all metadata from the
FMUs to display these data in the pipeline console out-
put.
7) Update SSP: Load the FMUs into an example SSP file.
8) Simulate SSP: Test the FMI-based SSP co-simulation
of the assets.

194 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207189 DOI

9) Generate Results: Publish results in different formats
for data analysis and result validation.
10) Manual Approval: Notify the Asset Integrator about
the completed asset simulation in order them to approve
the asset delivery.

4.4.3 Deliver

11) Deliver Asset: Release the whole asset application to
the infrastructure layer’s version control system and then
inform all the stakeholders about it as confirmation.

5 Use Case: Anti-Slip Traction & Ve-
hicle Speed Control System

In the following use case, we established a traction con-
trol alongside a vehicle speed control for an existing MBS
train model, having two bogies with four wheel sets (two
wheel sets per bogie), based on the Manchester Bench-
mark (Iwnicki 1998), designed in the commercial soft-
ware tool Simpack from Dassault Systèmes, and provided
by Virtual Vehicle Research GmbH. This control is able
to keep the longitudinal slip of each train wheelset on a
constant user input value, while simultaneously control-
ling the vehicle speed based on a linear function with user
input variables. The purpose of this use case is to enhance
the extent of usage of the already existing train model by
providing the option of simulating scenarios that are closer
related to actual situations, such as accelerating and brak-
ing the vehicle for arrival and departure at different train
stations.

For the anti-slip traction control, the MBS model was

co-simulated with a control model based on a PID con-
troller and designed in MATLAB/Simulink. It was estab-
lished through the use of the SIMAT method, which serves
as a co-simulation interface between the Simpack server
and MATLAB client. This interface was implemented as a
SIMAT block, representing the MBS model, and directly
connected its input and output channels to the input and
output ports of the PID controller model in Simulink. The
controller model uses the current vehicle speed and four
wheel speeds of the four wheel sets in the two respective
bogies as inputs. By calculating the current slip and the
deviation to the desired slip, which is processed by the PID
controller, the controller model generates an output signal.
This output signal then results in an additional torque on
the axis of the respective wheel sets, thus braking or ac-
celerating the wheels. The vehicle speed control was im-
plemented as a polynomial 1st order MATLAB function,
with acceleration input variable as the slope parameter and
the initial vehicle speed input variable as the offset param-
eter. The eventual outputs of this control were the vehicle
position, speed and acceleration, which were handed over
to the MBS vehicle model as constraints for its speed con-
trol. (for more information about the physical structure
and implementation of the co-simulation model see (Zhou
et al. 2024))

To integrate this model into the R4F Platform we used
an open-source library for Simulink called FMI Kit for
Simulink (see GitHub - FMI Kit for Simulink (2024)).
This facilitated the packaging of the PID-based Simulink
controller model into an FMU file, which is directly ex-
ecutable in the platform. After defining the input and

Figure 3. An Overview of the Physical Structure of the Anti-Slip Co-Simulation Model Adapted to the R4F Platform with FMI/SSP.
(see (Zhou et al. 2024))

195OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207189

Figure 4. Automated Integration and Processing of the Anti-Slip Co-Simulation Model.

output channels of the MBS model in Simpack, we eas-
ily exported the model to the FMU by using Simpack
itself. Then, we connected these two FMU files in
Model.CONNECT, which is a co-simulation tool and pro-
vided from AVL List GmbH, to each other. Within the
tool, we conducted tests to verify the co-simulation of
these two models. After that, we used Model.CONNECT
to pack the entire co-simulation model into an SSP exam-
ple file, which contains the whole system structure and
parameter description files with system metadata, con-
nectors (input and output channels), connections and two
FMU components belonging to these two models. Figure
3 shows an overview of the physical structure, input and
output flow, described in the previous paragraph and oc-
curring between the two FMU components in the SSP, of
the entire co-simulation model.

Figure 4 illustrates the complete implementation of the
use case in our CI/CD pipeline with the FMI, SSP stan-
dards, code analysis tool and version control system soft-
ware repositories. Before the pipeline execution, first, the
Simpack MBS model and Simulink PID controller model
are manually processed by the Asset Integrator, by which
scenario parameters (e.g., initial vehicle speed, desired

slip, vehicle acceleration, etc.) given by the user are de-
fined and configured. Besides, necessary input and out-
put channels are created for their further interconnection
and output generation. Following the manual processing,
the pipeline extracts all asset files, including pre-configs,
the PID controller model, MBS model, pipeline code, in-
put JSON file, simulation results from the SIMAT, SSP
example file, simulation code script, and use case spe-
cific result generator, from the Asset Integrator’s reposi-
tory through the SCM. Then, the pipeline updates all the
software libraries and packages from the pre-configs in its
server with a software package manager. For the Build
FMU step, we preferred to use libraries and modules from
the pre-configs, belonging to the open-source FMI Kit
for Simulink, the commercial software tools Simpack and
MATLAB without GUI, which helps us to overcome the
OS dependency of the FMUs in the platform. In the next
step, the source codes of the asset (incl. the simulation
code script, use case specific code generator and some
of the pre-configs) are analyzed and right after that their
analysis reports are published in the code analysis tool.
By using the FMPy Python package (see GitHub - FMPy
(2024)), the two FMUs are easily validated and then their

196 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207189 DOI

metadata are directly extracted from themselves. After
the pipeline updates the example SSP with these FMUs
through Linux command executions, it directly executes
the simulation code script to simulate the SSP as a black-
box. For simulation purposes, we once again employ
FMPy again and further developed the simulation code
script, belonging to the SSP subfolder of the FMPy, for
input parameterization and output generation. During the
simulation testing progress, first, the input JSON, simula-
tion results from SIMAT, and the SSP, containing the SSD
system structure, SSV parameter files and FMUs, are read
by the code script, then the simulation runs with a fixed
step size and solver. Finally, the CSV results are gener-
ated for data analysis through the execution of the use case
specific result generator code script, which generates val-
idation curves and output JSON based on R4F standards.
Penultimately, the Asset Integrator receives an email from
the pipeline with its link, where they check all the console
outputs, code analysis and simulation results. If satisfied
with the entire asset integration and processing test, they
deliver all asset files, including the SSP simulation results,
and pipeline console outputs (excluding the pipeline code
due to IP protection), to the version control system repos-
itory of the R4F Platform infrastructure layer.

6 Results and Discussion
In this section, first, we shortly discuss the simulation re-
sults coming from the FMI-based SSP simulation of the
anti-slip traction & vehicle speed control co-simulation
use case executed by the pipeline. Then, we address diffi-
culties and challenges we faced related to the license man-
agement, pipeline configuration, automation and manage-
ment of the asset integration and processing task in the
pipeline on the R4F Platform.

6.1 Simulation Results

Figure 5. Result Validation and Optimization of the Anti-Slip
Use Case in the CI/CD Pipeline.

In the left side of Figure 5, two different SIMAT and
SSP simulation results of the pre-asset, belonging to the

anti-slip use case, are displayed. These are actual val-
ues of the vehicle speed and longitudinal wheel slip of
the first wheel set of the vehicle, which characterize the
anti-slip use case. In the right side, the new SSP simu-
lation results, coming from the final asset, are compared
with the same SIMAT outputs after a demonstrative opti-
mization of the SSP results by decreasing the simulation
step size by a factor of ten, as previously discovered for
this work. By this optimization, we aimed to reduce the
unexpectedly arising little oscillations, differing from the
SIMAT results and addressed with red circles in the figure.
Besides that, the slip outputs give comprehensive insights
about the anti-slip behavior of the model, which actually
works well in the CI/CD pipeline, as realized in the fig-
ure. Lastly, it is remarkable that the constant acceleration
of the vehicle functions in a right manner according to the
relatively linear increase of the vehicle speed outputs.

To generate the whole picture in Figure 5, we used
matplotlib, which is a Python library for visualization
(see (Hunter 2007)). In general, the SSP simulation in
the pipeline shows relatively consistent outputs with the
SIMAT results by successfully optimizing the simulation.
This also proves the success of our work with the pipeline
at the end.

6.2 Challenges and Limitations
Software License Management: As mentioned in Sec-
tion 1, we need software licenses, which are commercial
and allow us to run the asset simulations after modeling
the assets in their software. In the use case example, we
needed the Simpack license to simulate the MBS model,
and the MATLAB license to simulate the PID model for
the SIMAT co-simulation. For the SSP co-simulation in
the pipeline, we needed only the Simpack license and had
to connect our VM to the Simpack license server through
the use of the Virtual Private Network service by logging
in with our username and password. Moreover, we used
these licenses to automatically build the FMUs of these
models in the pipeline without opening any GUI window.
In addition, we had a Model.CONNECT license, by which
we built the SSP example file of the complete anti-slip co-
simulation model once as mentioned in Section 5.
Pipeline Installation and Configuration: To implement
the pipeline in a right manner, we as Asset Integrator
needed much know-how and experience with DevOps
practices regarding to the CI/CD pipeline technology. Es-
pecially, it was very important to get to know how to in-
stall and configure the VM, software tools, packages, li-
braries, and then interoperate them with each other in har-
mony. For this work, we decided to use plugins in the
pipeline server for the interoperation, code analysis tool
for code analysis, version control system for asset track-
ing and storing, CLI for pipeline remote control, mailing,
asset pushing, and basic execution commands, belonging
to the software tools, packages and libraries, to apply the
sub-processes defined in Subsection 4.4 to the pipeline.
Automation Testing: After providing the necessary soft-

197OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207189

ware licenses, installing and configuring our pipeline, we
needed to test the entire asset integration and processing
incl. the asset simulation as automated in the pipeline.
Therefore, we always needed to do research, find out pos-
sible ways and then try them step by step to make every
sub-process, implemented in the pipeline code, working in
a right manner. Besides, there are use case specific limita-
tions for the simulation test in the pipeline. For example,
the anti-slip use case shows smaller oscillations by refin-
ing the simulation step size, which significantly improves
the quality of the simulation results while increasing the
simulation runtime on the contrary as previously discov-
ered in this work.

7 Conclusion and Outlook
Based on our experience, the CI/CD pipeline technology
is practical and interactive for automating and managing
the entire FMI- and SSP-based asset integration and pro-
cessing with the version control system and code analy-
sis tool in a collaborative work environment on the R4F
Platform. In addition, the FMI and SSP standards greatly
facilitated the adaptive simulation of the assets in the plat-
form, specifically in terms of tool independence, asset de-
scription and file portability. This was also demonstrated
in the work of (Kugu et al. 2023). Furthermore, we suc-
cessfully co-simulated multiple FMUs as one SSP for the
anti-slip use case, which has shown relatively consistent
results based on the validation curves in Figure 5. For
this succession, we encountered challenges and restric-
tions related to the license management, pipeline config-
uration, automation and management of the asset integra-
tion and processing task in the pipeline on the platform,
which should not be neglected.

In future, we plan to fully automate the asset integra-
tion and processing task by automating the model prepa-
ration and validation processes in the pipeline. In addi-
tion, we consider combining the automation and manage-
ment approach with the dynamical and auto-pipeline gen-
eration (see (Reiterer, Schiffer, and Benedikt 2022)) and
visualization prototype to enhance the DevOps practice in
the platform. Furthermore, we plan to find out solutions
to completely ensure the IP protection of the simulation
models in the platform. We plan to simulate these mod-
els as servers connected to the pipeline without uploading
them into the platform.

Acknowledgements
The authors would like to acknowledge the financial sup-
port of the COMET project Rail4Future (882504) within
the COMET Competence Centers for Excellent Technolo-
gies from the Austrian Federal Ministry for Climate Ac-
tion (BMK), the Austrian Federal Ministry for Digital and
Economic Affairs (BMDW), the Vienna Business Agency
and the Styrian Business Promotion Agency (SFG). The
Austrian Research Promotion Agency (FFG) has been au-
thorised for the COMET program management. We fur-

ther thank for the support from ÖBB-Infrastructure AG
and Siemens Mobility Austria GmbH.

References
Barbie, Alexander, Wilhelm Hasselbring, and Malte Hansen

(2023). “Enabling Automated Integration Testing of Smart
Farming Applications via Digital Twin Prototypes”. In: 2023
IEEE Smart World Congress (SWC). IEEE, pp. 1–8. DOI: 10.
1109/SWC57546.2023.10449240.

Functional Mock-up Interface (FMI) Standard (2024). URL:
https://fmi-standard.org/ (visited on 2024-08-09).

Git Documentation (2024). URL: https://git- scm.com/docs/git
(visited on 2024-04-18).

GitHub - FMI Kit for Simulink (2024). URL: https://github.com/
CATIA-Systems/FMIKit-Simulink (visited on 2024-04-18).

GitHub - FMPy (2024). URL: https : / / github . com / CATIA -
Systems/FMPy (visited on 2024-04-18).

Golightly, David et al. (2022). “A feasibility assessment of
multi-modelling approaches for rail decarbonisation systems
simulation”. In: Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit 236.6,
pp. 715–732. DOI: 10.1177/09544097211039395.

Hällqvist, Robert et al. (2021). “Engineering domain interop-
erability using the system structure and parameterization
(ssp) standard”. In: Proceedings of 14th Modelica Conference
2021, Linköping, Sweden, September 20-24, 2021, pp. 37–48.
DOI: 10.3384/ecp2118137.

Hamarat, Mehmet, Mayorkinos Papaelias, and Sakdirat
Kaewunruen (2022). “Fatigue damage assessment of
complex railway turnout crossings via Peridynamics-based
digital twin”. In: Scientific reports 12.1, p. 14377. DOI:
10.1038/s41598-022-18452-w.

Hotzel Escardo, Tomas et al. (2021). “Modelling train driver be-
haviour in railway co-simulations”. In: Software Engineer-
ing and Formal Methods. SEFM 2020 Collocated Workshops:
ASYDE, CIFMA, and CoSim-CPS, Amsterdam, The Nether-
lands, September 14–15, 2020, Revised Selected Papers 18.
Springer, pp. 249–262. DOI: 10 .1007 /978- 3 - 030- 67220-
1_19.

Hugues, Jerome et al. (2020). “Twinops-devops meets model-
based engineering and digital twins for the engineering of
cps”. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. New York, NY, USA: As-
sociation for Computing Machinery, pp. 1–5. DOI: 10.1145/
3417990.3421446.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”.
In: Computing in Science & Engineering 9.3, pp. 90–95. DOI:
10.1109/MCSE.2007.55.

Iwnicki, Simon (1998). “The Manchester Benchmarks for Rail
Vehicle Simulation”. In: Vehicle System Dynamics 30.3-4,
pp. 295–313. DOI: 10.1080/00423119808969454. URL: https:
//api.semanticscholar.org/CorpusID:110412927.

Kaewunruen, Sakdirat et al. (2023). “Digital Twins for Man-
aging Railway Bridge Maintenance, Resilience, and Climate
Change Adaptation”. In: Sensors 23.1. ISSN: 1424-8220. DOI:
10 .3390/s23010252. URL: https : / /www.mdpi .com/1424-
8220/23/1/252.

Kiran, Kumar H K et al. (2021). “An Approach to basic
GUI-enabled CI/CD pipeline with Static Analysis tool”. In:
vol. 23. 6. Journal of University of Shanghai for Science and
Technology, pp. 683–693. DOI: 10.51201/JUSST/21/05317.

198 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207189 DOI

Kugu, Ozan et al. (2023). “An FMI-and SSP-based Model Inte-
gration Methodology for a Digital Twin Platform of a Holistic
Railway Infrastructure System”. In: Proceedings of the 15th
International Modelica Conference 2023, Aachen, October
9-11, pp. 717–726. DOI: 10.3384/ecp204717.

Pieper, Tobias and Roman Obermaisser (2018). “Distributed co-
simulation for software-in-the-loop testing of networked rail-
way systems”. In: 2018 7th Mediterranean conference on em-
bedded computing (MECO). IEEE, pp. 1–5. DOI: 10.1109/
MECO.2018.8406023.

Reiterer, Stefan H, Clemens Schiffer, and Martin Benedikt
(2022). “A Graph-Based Metadata Model for DevOps in
Simulation-Driven Development and Generation of DCP
Configurations”. In: Electronics 11.20, p. 3325. DOI: 10 .
3390/electronics11203325.

Reiterer, Stefan H, Clemens Schiffer, and Mario Schwaiger
(2023). “A graph-based meta-data model for devops: Exten-
sions to ssp and sysml2 and a review on the dcp standard”. In:
Proceedings of the 15th International Modelica Conference
2023, Aachen, October 9-11, pp. 159–166. DOI: 10 . 3384 /
ecp204159.

Sethi, Farhana (2020). “Automating software code deployment
using continuous integration and continuous delivery pipeline
for business intelligence solutions”. In: Authorea Preprints.
DOI: 10.22541/au.160373745.57814465/v1.

System Structure and Parameterization (SSP) Standard (2024).
URL: https://ssp-standard.org/ (visited on 2024-08-09).

Villa, Davide et al. (2024). “Colosseum as a digital twin: Bridg-
ing real-world experimentation and wireless network emula-
tion”. In: IEEE Transactions on Mobile Computing, pp. 1–17.
DOI: 10.1109/TMC.2024.3359596.

Zampetti, Fiorella, Simone Scalabrino, et al. (2017). “How open
source projects use static code analysis tools in continuous in-
tegration pipelines”. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE,
pp. 334–344. DOI: 10.1109/MSR.2017.2.

Zampetti, Fiorella, Damian Tamburri, et al. (2023). “Continu-
ous integration and delivery practices for cyber-physical sys-
tems: An interview-based study”. In: ACM Transactions on
Software Engineering and Methodology 32.3, pp. 1–44. DOI:
10.1145/3571854.

Zhang, Shiyao et al. (2021). “A digital-twin-assisted fault di-
agnosis of railway point machine”. In: 2021 IEEE 1st In-
ternational Conference on Digital Twins and Parallel Intelli-
gence (DTPI), pp. 430–433. DOI: 10.1109/DTPI52967.2021.
9540118.

Zhou, Shiyang, Stefan Dumss, et al. (2022). “A conceptual
model-based digital twin platform for holistic large-scale
railway infrastructure systems”. In: Procedia CIRP 109,
pp. 362–367. DOI: 10.1016/j.procir.2022.05.263.

Zhou, Shiyang, Ozan Kugu, et al. (2024). “A Reinforcement-
Learning-based Parameter Tuning Methodology for Traction
Control in the Holistic Railway Digital Twin System”. In:
Procedia CIRP 128, pp. 828–833. DOI: 10 . 1016 / j . procir .
2024.06.040.

Zhou, Shiyang, Alexander Meierhofer, et al. (2023). “A
Machine-Learning-based Surrogate Modeling Methodology
for Submodel Integration in the Holistic Railway Digital
Twin Platform”. In: Procedia CIRP 119, pp. 345–350. DOI:
10.1016/j.procir.2023.02.141.

199OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 199

Thermo-Fluid Modeling Framework for Supercomputer Digital
Twins: Part 1, Demonstration at Exascale

Vineet Kumar1 Scott Greenwood1 Wesley Brewer2

David Grant3 Nathan Parkison3 Wesley Williams1

1Fusion and Fission Energy and Science Directorate, Oak Ridge National Laboratory, USA,
{kumarv, greenwoodms, williamswc}@ornl.gov

2Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, USA, brewerwh@ornl.gov
3Facilities & Operations Directorate, Oak Ridge National Laboratory, USA, {grantdr, parkisonjn}@ornl.gov

Abstract
A thermo-fluid modeling framework is being developed
for ExaDigiT—an open-source framework for developing
comprehensive digital twins of liquid-cooled supercom-
puters. The work is being conducted in two parts, and dis-
cussion is divided into two companion papers. The work
documented in this paper focuses on the development of a
cooling system library in Dymola for the Frontier super-
computer at Oak Ridge National Laboratory. The second
part, outlined in a companion paper, focuses on a templat-
ing structure called Auto-CSM for easily creating model-
agnostic, physics-based thermo-fluid cooling system mod-
els for liquid-cooled supercomputers using a text-based
schema. The cooling model is being developed using
primarily the open-source Transient Simulation Frame-
work of Reconfigurable Models (TRANSFORM) library.
The library follows the templating architecture developed
within the TRANSFORM library for modeling subsys-
tems. A full-system validation was performed to validate
a very simple model that is integrated with the system con-
trols, and the results are presented herein.

Keywords: cooling system, liquid-cooled supercomputers,
Frontier, Modelica

1 Introduction
The electricity consumption of data centers is projected
to increase in the United States from around 200 TWh in
2022—which represents about 4% of the country’s total
electricity demand—to 260 TWh, which is expected to be
around 6% of the total electricity demand (IEA 2024). Ad-
ditionally, water consumption is expected to be significant
for both direct and indirect liquid-cooled supercomputing

This manuscript has been authored by UT-Battelle, LLC under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Ac-
cess Plan (http://energy.gov/downloads/doe-public-access-plan).

clusters. It is projected that approximately 15–27% of the
energy consumed by data centers can be reduced via ad-
vanced cooling technologies, such as natural and liquid
cooling techniques (Zhu et al. 2023). Therefore, there is
an acute need for dynamic modeling of liquid-cooled su-
percomputing clusters using open-source tools like Mod-
elica. The potential use cases for such a model could in-
clude the design and commissioning phase of new liquid-
cooled data centers, as well as for operational optimiza-
tion of existing facilities (Todd et al. 2021). ExaDigiT
is a comprehensive open-source framework under devel-
opment at Oak Ridge National Laboratory (ORNL) that
focuses primarily on liquid-cooled supercomputers. Fig-
ure 1 shows the high-level architecture of the ExaDigiT
framework, which consists of three main modules: (1)
the cooling model discussed here, (2) a resource allocator
and power simulator (RAPS), (3) a visual analytics mod-
ule consisting of both an augmented reality component for
3D interactive visualization and a web-based dashboard
for launching experiments and creating 2D plots of power
and cooling behavior. The development of ExaDigiT is
currently centered around the 2 exaflop Frontier super-
computer, which was deployed in 2022 at ORNL’s Oak
Ridge Leadership Computing Facility (OLCF) (Atchley et
al. 2023).

Most of the work on data center cooling has been
focused on air-cooled systems—see, for example, (Lee
and Chen 2013; Ham and Jeong 2016; Fu, Wetter, and
Zuo 2018)—especially on cooling efficiency. Zhang et
al. (Zhang et al. 2022) built a digital twin for air-cooled
data centers using a combination of computational fluid
dynamics (CFD) using 6SigmaDC (DataCenter Design
Software n.d.) and an AI-based XGBoost model. They
used AI to optimize the control parameters of the air con-
ditioning system so as to optimize the power usage effec-
tiveness (PUE) of a data center. Heydari et al. (Heydari et
al. 2022) performed extensive analysis of secondary flow
loops to deploy liquid-cooled systems in air-cooled data
centers by a combination of numerical modeling and ex-
perimental testing of four different cooling loops. The nu-
merical modeling for different cold plate designs was per-
formed using a commercial CFD solver 6SigmaET (Data-

200 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207199 DOI

Figure 1. ExaDigiT architecture overview (Brewer et al. 2024)

Center Design Software n.d.), and flow network modeling
of a liquid-cooled rack was performed with a custom sys-
tem model and the commercial CFD solver 6SigmaRoom
(DataCenter Design Software n.d.). Modi et al. (Modi
et al. 2023) performed transient CFD simulations to op-
timize different flow configurations for rack-level models
using the commercial CFD solver 6SigmaET. Modelica
has been previously used by Fu et al. (Fu, Wetter, and
Zuo 2018) to model air-cooled data center systems, which
also used the Modelica buildings library (MBL) (Wetter
et al. 2014). Leva et al. (Lee and Chen 2013) developed
an open-source Modelica library using an object-oriented
modeling (OOM) framework to model both air-cooled and
liquid-cooled supercomputing clusters, and it can couple
with 3D-ICE for chip simulations.

The current study primarily uses the Transient Sim-
ulation Framework of Reconfigurable Models (TRANS-
FORM) library, which is a Modelica-based open-source
library developed at ORNL to enable rapid development
of dynamic, advanced energy systems with an extensible
system modeling tool (M. S. Greenwood 2017). TRANS-
FORM is organized as a series of packages, each of which
has a general application; the library sub-categorizes mod-
els within each package, which helps users easily locate a
component (M Scott Greenwood et al. 2020). Additional
details on the TRANSFORM library, including model
templates and the supervisory control system, can be
found in previous work by the authors (M. S. Greenwood
2017; Michael Scott Greenwood et al. 2017). TRANS-
FORM was developed using the commercial integrated
development environment (IDE) Dymola by Dassault Sys-
tèmes (Systèmes 2022) but should be compatible with
other IDEs that are compatible with the Modelica specifi-
cation 3.4+ (M. S. Greenwood 2017). In the current study,
Dymola was used as the IDE. The current library has an
additional dependency on the Buildings library (Wetter et
al. 2014) for the variable speed cooling tower model.

This study is divided into two parts. The objectives of
this work that form part one of this study are (1) to demon-
strate a use case of the templating structure that is being
laid out for modeling liquid-cooled supercomputing clus-
ters in part 2—documented in a companion paper—and
(2) to perform a validation exercise of the overall model
using telemetry data. The supercomputing cluster chosen

for validation is that of Frontier at ORNL. The validation
exercise is divided into two parts: a component valida-
tion effort and the overall validation effort. The validation
for the overall model serves to demonstrate how this li-
brary can be used to create very simple system models
upon which additional complexity can be layered.

2 Frontier Model Description
2.1 Physical Facility Description
Frontier consists of 74 liquid-cooled HPE Cray EX su-
percomputing cabinets, which hold a total of 9472 com-
pute nodes (Atchley et al. 2023; Choi 2022). Each Fron-
tier node, designated as Cray EX 235a, contains one
AMD 7A53 EPYCTM 64-core “Trento” processor and
four AMD Instinct MI250x GPUs. Each cabinet of Fron-
tier consists of four shelves, each shelf has two chassis,
and each chassis contains four active rectifiers and eight
compute blades—a total of 64 blades and 32 rectifiers per
cabinet (Brewer et al. 2024). Each cabinet is directly sup-
plied with three-phase power from the distribution trans-
former switchboard, which is converted from 480 V AC
to 380 DC voltage using AC-DC rectifiers and is subse-
quently stepped down to 48 V DC using super interme-
diate voltage converters (SIVOCs). The 48V DC is what
supplies power to the node. Since each blade contains two
nodes, there are two SIVOC converters per blade. Each
HPE Cray EX cabinet can support up to 400 kW of power.
Further details regarding the Frontier compute architec-
ture can be found in (Atchley et al. 2023), whereas details
regarding the Frontier system power conversion, including
modeling conversion losses, are covered in forthcoming
papers (Brewer et al. 2024; Wojda et al. 2024).

A simplified schematic of the overall cooling system
layout for Frontier is shown in Figure 2; locations are
marked in the figure to indicate the current cooling model
outputs. The cooling system can be divided into three
cooling loops, referred to in this paper as the cooling
distribution unit (CDU) loop, the intermediate or high-
temperature water (HTW) loop, and the cooling tower wa-
ter (CTW) loop. The CDUs are used to remove heat from
the compute nodes via forced convective liquid cooling.
The CDUs deployed for the Frontier system can remove
approximately 1.6 MW of heat, which translates to four
cabinets. In practice, each CDU serves three cabinets at
most, and some CDUs serve two cabinets. In total, there
are 27 CDUs installed in the data center to serve the com-
pute cabinets; of these, 25 are in operation, serving the 74
cabinets. The data center room contains piping underneath
the raised floor which distribute primary flow to the CDUs.
Additionally, the room also contains air handling systems
and other auxiliary systems; these systems are not covered
here, as they were not modeled. These systems serve a
number of functions, including maintaining the dew point
temperature in the data center room within an adjustable
setpoint. Therefore, they will be considered in a more de-
tailed modeling effort in the future.

201OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207199

Figure 2. Simplified schematic of Frontier cooling system. Locations at which the cooling model predicts pressures, temperatures,
and flow rates are numbered

From the current modeling perspective, the primary
flow pumped from the HTW loop is used to remove the
CDUs heat load generated primarily by the compute nodes
in the CDU heat exchanger (shown as HEX-1600 in Fig-
ure 2). The secondary side of the CDU supplies pres-
surized liquid coolant via two pumps in parallel with a
flow rate of ∼ 250–300 gpm at a system (gauge) pressure
of ∼ 3.5 bar. This supply coolant is distributed in par-
allel to the cabinets/racks. In each rack, the flow passes
through the 64 compute blades and the 32 rectifiers, with
both actively cooled. Each compute blade consists of CPU
and GPU cold plates, as well as cooling channels for pe-
ripheral components from a heat load perspective, such
as memory, network interface cards (NICs), and SIVOCs.
The hot water from the return side of the secondary CDU
loop is cooled in the heat exchanger, which completes the
loop. There is a tank on the secondary side to maintain
the system pressure, as well as instrumentation that con-
sists principally of temperature sensors, pressure gauges,
and flowmeters. The primary side has a control valve that
regulates the flow into the CDU based on the supply-side
temperature, which is discussed further in Section 2.3.

The intermediate loop (or the HTW loop) provides up
to 40 MW of process cooling at around 12–32 ◦C. The
intermediate loop mainly consists of four variable-speed
HTW pumps (HTWPs), expandable to 8 pumps; five econ-
omizer heat exchangers (EHXs) (four are considered in
the model), expandable to 8 heat exchangers; and associ-
ated piping, which connects to the data center room for
supply and return. The intermediate loop also consists of
air separator pumps (denoted as ASP in Figure 2), HTW
water bag filter (denoted as BF in Figure 2), and other sys-
tems that are peripheral to the current modeling perspec-
tive. The HTWPs supply water to the data center room at
approximately 5000–6000 gpm at a gauge (system) pres-
sure of ∼ 6.2 bar. The majority of this flow is directed
toward the CDUs. About 10–15% of the flow is diverted
through the bypass flow valve when system flows are low,
and is mixed with the hot return, which results in a slightly

decreased bulk return temperature. Some of the HTW flow
also provides cooling for the Orion file system (∼ 10%)
when operating with supply temperatures less than 18 ◦C.
This aspect was not modeled but would be considered in
the future. The piping network in the central energy plant
and the data center room are vast and complex. Here, con-
siderable simplifications were made to capture the essence
of the piping network; these simplifications are discussed
in Section 2.3.

The CTW loop principally consists of five counter flow
cooling towers, expandable to ten cooling towers, and four
variable-speed CTW pumps (CTWPs), expandable to ten
pumps. Each cooling tower (CT) has four independent
cells with individual control valves and four correspond-
ing variable-speed CTs fans. The CTWPs supply water at
approximately 6000–10000 gpm at a gauge (system) pres-
sure of approximately 1.5 bar. The CTW loop also con-
sists of strainers for cooling water blowdown as well as
other systems associated with chemical treatment of the
cooling tower water, which are not shown in Figure 2.
These systems are currently ignored in the model. The
main flow path in the CTW loop (see Figure 2) starts from
the hot water from the primary return side of the EHX,
which flows to the cooling towers located on the roof of
the central energy plant; the cold return from the cooling
towers is pumped to the primary supply side of the EHXs.
In the current model, only four cooling towers were mod-
eled (i.e., 16 independent cells). This is a reasonable ap-
proximation, as generally 9–15 cells were in operation for
the range of data that was analyzed. However, the cur-
rent model could be easily expanded to include the addi-
tional CT or any of the other components with the templat-
ing system that is being put into place to easily generate
Modelica models for liquid-cooled supercomputing clus-
ters (S. e. a. Greenwood 2024).

2.2 Library Structure for the Frontier Model
The Modelica model library for the Frontier system is
currently hosted in an internal ORNL Git repo: https:

202 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207199 DOI

//code.ornl.gov/exadigit/coolingModel. It is
expected to be open-sourced within the next few months.
The library relies primarily on components from the
TRANSFORM model, as previously discussed. An addi-
tional dependency is the Buildings library from Lawrence
Berkeley National Laboratory (Fu, Zuo, et al. 2019) for
the variable-speed CT model. The library is being devel-
oped in Dymola (Systèmes 2022) as the TRANSFORM
library was developed in Dymola. In the future, the li-
brary will be extended to work with Open Modelica. The
library structure for the Frontier cooling model follows
from the subsystem templating approach used in TRANS-
FORM library. This structure allows for ease of modeling
integrated systems, and it is extensively discussed in pre-
vious work by Greenwood (M. S. Greenwood 2017). A
sample of the subsystem templating is shown in Figure 3
for the CDU subsystem.

In the figure, the left-hand side shows the struc-
ture of the library for the CDU package, which opens
to a directory structure with the following packages:
‘Examples’, ‘Components’, ’Data’, ‘ControlSystems’,
and ‘BaseClasses’. The physical models that are lo-
cated in the top-level directory extend from the ‘Par-
tial_SubSystem model’ within the ‘BaseClasses’ pack-
age. The ‘BaseClasses’ directory also defines signal
buses and actuator buses for the input and output sig-
nals, respectively, from the ‘Partial_SubSystem model’ to
the ‘Partial_ControlSystem model’. The models within
the ControlSystems package are inherited from the ‘Par-
tial_ControlSystem’ model. Similarly, the data records
within the ‘Data’ package extend from the ‘Record_Data’
record within the ‘BaseClasses’ package. The ‘Examples’
directory contains example tests for the physical models.
This type of layout, which exploits the inheritance and re-
placeability features of Modelica, allows for easily lay-
ering complexity. As an example, the compute cabinet
model shown in Figure 3 is inherited from ‘PartialCabi-
netModel’ and is a simple model. This simple model can
easily be replaced with a better-resolved model which also
inherits from ‘PartialCabinetModel’, without requiring the
modification of any higher-level models. More details on
the layout can be found in (M. S. Greenwood 2017). A
user of this library could easily copy an existing model, the
CDU model and adapt it to their supercomputing facility
as long as the input structure to their model remain un-
changed. As noted earlier, the AutoCSM model is specif-
ically being developed for this purpose.

The three main loops—that is, the CDU loop, the HTW
loop, and the CTW loop—follow a similar structure to
those of the CDU model and are part of the systems pack-
age. The reason why the systems package does not con-
tain subsystem-specific models for blades and cabinets is
that the control systems operate only at the level of the
CDU. Beyond the ‘System’ package, there are four other
top-level packages in the library: ‘SubComponents’, ‘Ex-
amples’, ‘Icons’, and ‘FMUs’. The ‘Examples’ package
consists of integrated subsystem model tests. The ‘Icons’

package defines the icons used for the various subsystems,
as well as some of the components. The ‘Controls’ pack-
age hold the sub-models used in the control system models
in the systems package, as well as unit tests. The ‘Sub-
Components’ package mainly contains packages for the
‘Media’ used throughout the library and a ‘Fluid’ pack-
age that holds the major components used in the differ-
ent loops—CTs, heat exchangers, and pumps—along with
unit tests for each. A cold plate model is currently under
development within the ‘Fluid’ package.

Two fluid media have been used with the models in the
library, specified in the ‘Media’ package within the ‘Sub-
Components’ package. The first, taken from the Modelica
Standard Library, is water with constant properties, and
the second is water with linear properties, which was taken
from the TRANSFORM library. The principal disadvan-
tage of the constant properties medium is that a tank must
be modeled that fixes the pressure at the location of the
tank. Therefore, the linear properties model was used in
the current study as a balance between the constant proper-
ties model and the more comprehensive water model from
the Modelica Standard library, which often presents con-
vergence issues. In the actual system, the coolant has ad-
ditives that inhibit bacterial growth. Here, it is assumed
that the thermal properties of the medium are largely un-
changed with the addition of a small concentration of ad-
ditives.

The system model that was built for the current study
was simplified by replacing pipes with a combination of
fluid volumes and hydraulic resistances to model fluid
mass and pressure drop, respectively. The hydraulic resis-
tances were tuned with telemetry data. The heat exchang-
ers were also approximated as a combination of fluid vol-
umes and hydraulic resistances in series for each stream,
with thermal data obtained from the manufacturer either as
performance curves of overall heat transfer coefficient as
a function of flow rates or constant values of overall heat
transfer coefficient. For the pump models, pump curves
were obtained from publicly available manufacturer data
for all the pumps at their corresponding nominal pump
speeds. The system controls were incorporated into the
simple model, as the focus was to accurately capture the
system dynamics. It must be noted that in the absence of
pipes, the model lacks accuracy in capturing fluid flow dy-
namics, especially during sharp transitions. However, the
compromise was a model with a shorter run time that can
reasonably capture system dynamics for the range of data
tested. Future extensions to this model could easily be
made to incorporate pipe flow models with the templating
structure in place.

The present model only simulates to the level of the
CDU, and the cabinets are represented as a combination
of simple volume components and hydraulic resistances
from the TRANSFORM library (shown as ‘Compute Cab-
inets’ in Figure 3). Similar approximations have been used
to model the heat exchangers, whereby the fluid flow in
the primary and secondary streams is replaced by volumes

203OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207199

Figure 3. CDU model in Dymola based on the subsystem specific TRANSFORM library template (M. S. Greenwood 2017)

and resistances, and the overall heat transfer coefficients
are taken from data. Lastly, publicly available data were
used for all the pump curves.

2.3 Controls System Modeling
Figure 4 depicts the simplified control system logic cur-
rently implemented for the cooling model. The control
system logic is divided into the central energy plant and
the data center. A detailed overview of the control sys-
tem logic is beyond the scope of this paper. The Mod-
elica model captures the essentials of the control logic,
which activates once the auto-operation of the physical
cooling system has commenced after the start-up sequence
has been completed. At this stage, the fail-safe configura-
tion has not been implemented into the control logic, but
the existing model could easily be extended to include it.
The control logic for the system can be described as fol-
lows from Figure 4. Any disturbance in the CDU loop
in terms of changes in the load, the HTW inlet pressure,
or the HTW supply temperature would trigger the control
system to bring the system back to an operational set point.
Any given CDU can regulate its primary valve as its com-
pute demand changes, and, consequently, the demand for
more or less coolant flow in the primary side is regulated
by the speed of the HTWPs via the differential pressure
setpoint in the HTW loop. HTWPs stage up or down at
a given moment depending on the % relative speed of the
pumps currently in operation. A change in the primary
supply temperature, on the other hand, is regulated by the
CT loop by staging the number of CTs up or down. CTs

stage up when the CTW return (CTWR) header pressure is
at its maximum boundary and the HTW supply (HTWS)
temperature is increasing, and, consequently, they stage
down when the CTWR header pressure is at its minimum
set point and the HTWS temperature is decreasing. Addi-
tionally, EHXs are staged up or down depending on the
number of CTs in operation. Therefore, the criteria to
achieve HTWS temperature stability inform both the stag-
ing of the CTs directly and the EHXs indirectly. Finally,
the CTWPs maintain the header pressure in the CT loop
within certain bounds by regulating its speed and staging
the number of pumps in operation. Once the HTWS tem-
perature has stabilized within certain bounds and the dif-
ferential pressure setpoint in the HTW loop is met, the
compute CDU is satisfied, as shown in Figure 4.

A proportional-integral-derivative (PID) controller is
used to regulate the CDU relative % pump speeds based on
the CDU loop differential pressure in the current model.
Both the CDU pumps are assumed to be in operation at
all times with the same speeds. This is a reasonable ap-
proximation based on telemetry data. A control value on
the primary side, as just discussed, is used to regulate the
primary coolant flow based on the secondary supply tem-
perature setpoint. A snapshot of the controls used for the
CDU loop is shown in Figure 5. At the start of the simu-
lation, the CDU pumps and the control valve are fixed for
numerical considerations and a 1.0 second delay clock is
used to switch to the PID mode for both the pumps and the
valve. Additional low-pass filters are employed to filter
the output from the PIDs to prevent very high oscillatory

204 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207199 DOI

Figure 4. Frontier cooling model controls summary

behavior and to ensure numerical convergence.

Figure 5. CDU controls model snapshot in Dymola

The intermediate loop similarly has a PID controller for
the four HTWPs. The HTWPs are staged up or down de-
pending on the relative % pump speeds of the running
pumps, as previously discussed. The controls logic has
been templated where possible, such as for the staging
of the pumps. This should allow for easier extensions to
other systems by users of the library. It must be noted that
the HTW loop relies on the number of CTs in operation
for staging the EHXs, and the staging of the CTs, in turn,

relies on the HTWS temperature. This cross-flow of in-
formation exchange among subsystems is handled in the
model by using a delay transfer function between the in-
termediate loop and the CT loop. A future scope would be
to optimize the control parameters to achieve better sys-
tem stability as well as respond quickly to a surge in the
load.

3 Validation of the cooling model for
Frontier

3.1 Component validation
Component validation was conducted as a first step before
undertaking the full system validation. Component Ver-
ification & Validation (V&V) tests are important to en-
sure that model performs as expected—firstly, to validate
the range of the expected telemetry data, and secondly to
validate the components individually using telemetry data
as boundary conditions before integration into the larger
system. These tests can help to identify input errors in
component parameters such as pump curves and heat ex-
changer data. Verification tests were not explicitly per-
formed because the majority of the components used in the
library were taken primarily from the TRANSFORM li-
brary and one component from the Buildings library, with
modifications made in the margins which do not warrant a
thorough verification process.

An example of component validation for the counter-
flow CDU heat exchanger is shown in Figure 6. This val-
idation was performed using 22000 seconds of telemetry
data for the primary flow rate, primary return pressure, pri-
mary supply temperature, secondary flow rate, secondary
supply temperature, and secondary return pressure. As
shown in the figure, the model can predict the primary
(Facility) and the secondary (Cabinet) return temperatures

205OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207199

with reasonable accuracy. The over-prediction in the fa-
cility return temperature is most likely because of the sec-
ondary flowmeter instrument uncertainty. The lower end
of the prediction uncertainty shown in Figure 6, matches
the prediction data well for the majority of the ∼ 6 hour
snapshot.

Figure 6. Modelica model predictions vs. telemetry data for the
CDU return temperature for a ∼ 6 hour snapshot

Another validation test, shown in Figure 7, was used
to test the control logic for the CTWP speed control,
which is regulated by the CTWR header pressure setpoint.
Similar to the CDU heat exchanger validation, telemetry
data of the CTWR header pressure was used to test the
model. The model can respond to the sharp changes in the
pump speed after approximately 17 hours for this partic-
ular dataset but essentially filters the header pressure for
smaller variation. Further improvements are required in
the model to match the CTWP speed variation for changes
of smaller magnitude the CTWR header pressure.

Figure 7. Modelica model predictions vs. telemetry data for the
CTWP relative % pump speed for a 1 day snapshot

3.2 Complete system validation
A validation study of the entire cooling model (shown in
Fig. 8) was conducted using ∼15 hours of telemetry data
for a given day from the central energy plant and the data
center down to the level of the CDU. The only inputs to
the model were the power to the 25 CDUs and the wet
bulb temperature as a function of time. The run time of the
model exported as an an Functional Mock-up Unit (FMU)
to simulate ∼15 hours of telemetry data on a standard win-
dows workstation was about ∼20 minutes. Significant im-
provements have been made to the model to reduce the
number of nonlinearities, and the current model runs 2-3x
faster than the model discussed here. The translated model
discussed here has 912 states with ∼14000 time varying
variables and ∼13000 alias variables. The model outputs
for the model exported as an FMU, have been listed in Ta-
ble 1. The power to the CDUs for the validation exercise
was calculated from the heat removed by the cooling wa-
ter using telemetry data. This was found to closely match
the power sensor data, which were obtained after the vali-
dation study was performed. After the Resource Allocator
and Power Simulator (RAPS) module being developed as
part of the ExaDigiT digital twin framework has been thor-
oughly validated with power sensor data, it will be utilized
as an input to the cooling model.

Parameter Description

Pressure at locations shown in Figure 2
Temperature at locations shown in Figure 2
Flow rate at locations shown in Figure 2
Pump speed % speed of HTWPs & CTWPs
Pump staging operational HTWPs & CTWPs
EHX staging operational EHXs
CT staging operational CTs
Power consumption HTWPs, CTWPs & CT fans
PUE for the entire facility

Table 1. Outputs for the cooling model exported as an FMU.

The first second of predictions was removed from the
analysis of ∼15 hours because the model predictions are
biased by initial conditions at the very start of the tran-
sient. The resolution of the telemetry data varied from
15 seconds at the level of the CDU to 10 minutes for some
of the facility telemetry data. For consistency, all mea-
surements and predictions were interpolated to 15 seconds
intervals for comparison. The annotations on the plots in
Fig. 8 (a–e) correspond to stations in Fig. 2. A few ob-
servations can be made when comparing model predic-
tions with telemetry data. The Frontier system was idle
for about half a day because of system upgrades, which is
why the cooling system load is at a minimum beyond ∼
10 hours. This coincidentally proved to be a good tran-
sient test to see how the model performs in transition from
a loaded system state to an idle state. For most of the
predicted parameters, some of which are shown in Fig.

206 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207199 DOI

8, the trend-wise predictions are good up to about ∼ 10
hours, after which some deviation occurred in the pre-
dicted facility parameters when the power to the CDUs is
at a minimum. This can be confirmed by the good agree-
ment in the primary flow rates (shown in Fig. 8(a)) up to
∼ 10 hours. However, in the physical system, the primary
flow in the intermediate loop is maintained at a minimum
of ∼3000 gpm, whereas the model predicted a minimum
flow of ∼2300 gpm (not shown). This flow difference is
attributed to an additional bypass flow of ∼700 gpm in the
actual system. Improving this aspect of the model should
improve the prediction when the system transitions to an
idle state. The model predictions for the CDUs secondary
supply temperatures (not shown) show greater fluctuation
than the physical system, which does a good job maintain-
ing the temperature at the setpoint. This result suggests
that the controls for the primary valve in the CDU must
be further investigated. The staging of the HTWPs is pre-
dicted to occur earlier than it does in the actual system.
The staging of the CTWPs and the CTs (not shown) must
also be improved. It must be noted that there are man-
ual overrides within the system, such as those for man-
ually staging the CTs, which were deployed during this
particular transient. This is a feature that could be intro-
duced into the model in the future. Overall, the root mean
square error (RMSE) of the parameters shown in Fig. 8
are within reasonable bounds, and a future study would
focus on model uncertainty.

Finally, the comparison between the PUE predicted by
the model and that calculated from telemetry data is shown
in Fig. 8(f). The predicted PUE is within four percent of
the calculated PUE, within the range of data tested (∼8.3
hours). It must be noted that in both the calculations, the
auxiliary systems considered for power consumption are
the following: CDU Pumps (CDUPs), HTWPs, CTWPs,
and CT fans. Other auxiliary systems such as the air-
handling system are not considered in the calculation, as
they were not modeled. Therefore, it is expected that the
actual PUE would be higher.

4 Conclusions
This paper presents the cooling model that is being devel-
oped in Modelica using Dymola as part of the ExaDigiT
project to develop digital twins for liquid-cooled exas-
cale supercomputers. The cooling model is being devel-
oped using primarily the open-source TRANSFORM li-
brary developed at ORNL, with the cooling tower model
from the Buildings library. The overall goal is to develop
a templating structure, Auto-CSM, for creating physics-
based thermo-fluid cooling system models. Auto-CSM
seeks to streamline the creation of cooling system model
(CSM) for integration into the ExaDigiT framework, and
that work is covered in Part 2 of the study and is docu-
mented in a companion paper. While Auto-CSM is be-
ing developed, the current study (Part 1) focuses on the
cooling system library that is being developed and demon-

(a) Primary CDUs flow rate pre-
dictions (Station 12 in Fig. 2)

(b) Primary CDUs return temp.
predictions (Station 12 in Fig. 2)

(c) HTW return temperature pre-
diction (Station 10 in Fig. 2)

(d) HTWP staging (Station 10 in
Fig. 2)

(e) HTW return pressure predic-
tions (Station 10 in Fig. 2)

(f) PUE Modelica model predic-
tions

Figure 8. Modelica model predictions (exported as an FMU) vs.
telemetry data for the CDU and the central energy plant.

strated on the cooling system of the 2 exaflop Frontier su-
percomputer at ORNL. The library follows the templating
architecture developed within the TRANSFORM library
for modeling subsystems and integrating them to quickly
model complex systems. Although the library is currently
hosted in an internal Git repo, it is expected to be open-
sourced within the next few months.

The subsytems used for the cooling system library to
model Frontier are the following: the CDU loop, the HTW
loop, and the CT loop. It remains to be seen how gen-
eralizable these subsystems are to other supercomputing
clusters. The simplified model, which makes use of fluid
volumes and hydraulic resistances in place of pipes, ex-
tends only to the level of the CDU and is integrated with
system controls. Extending the model to the level of the
compute blade would result in a more accurate thermal re-
sponse prediction with the downside of an increased run

207OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207199

time. A component validation was conducted before per-
forming the full model validation with telemetry data for
an approximately 15 hour snapshot that was provided for
a given day. The model performed reasonably well, es-
pecially when the system was loaded, and significant im-
provements have been made to improve model perfor-
mance in terms of runtime and robustness. Future use
cases for such a model could be both in the design phase
when designing new systems or optimizing the operation
of existing systems.

Acknowledgments
This research was sponsored by and used resources of
the Oak Ridge Leadership Computing Facility (OLCF),
which is a DOE Office of Science User Facility at the Oak
Ridge National Laboratory (ORNL) supported by the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

References
Atchley, Scott et al. (2023). “Frontier: Exploring Exascale”. In:

Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–
16.

Brewer, Wesley et al. (2024-11). “A Digital Twin Framework
for Liquid-cooled Supercomputers as Demonstrated at Ex-
ascale”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis.

Choi, Charles Q. (2022). Beneath the Hood of the First Exas-
cale Computer. https://spectrum.ieee.org/frontier-exascale-
supercomputer. [Online; accessed 4-April-2024].

DataCenter Design Software (n.d.). Available at https://www.
cadence.com/en_US/home/resources/datasheets/datacenter-
design-software-ds.html. Accessed: 2024-03-12.

Fu, Yangyang, Michael Wetter, and Wangda Zuo (2018). Mod-
elica models for data center cooling systems. Tech. rep. Univ.
of Colorado, Boulder, CO (United States).

Fu, Yangyang, Wangda Zuo, et al. (2019). “Equation-based
object-oriented modeling and simulation of data center cool-
ing systems”. In: Energy and Buildings 198, pp. 503–519.

Greenwood, M Scott et al. (2020). “Demonstration of the ad-
vanced dynamic system modeling tool TRANSFORM in a
molten salt reactor application via a model of the molten
salt demonstration reactor”. In: Nuclear Technology 206.3,
pp. 478–504.

Greenwood, M. S. (2017-09). TRANSFORM - TRANsient Simu-
lation Framework of Reconfigurable Models. Computer Soft-
ware. Accessed on August 30, 2023. DOI: 10 . 11578 / dc .
20171025.2022. URL: https://github.com/ORNL-Modelica/
TRANSFORM-Library.

Greenwood, Michael Scott et al. (2017-08). “A Templated Ap-
proach for Multi-Physics Modeling of Hybrid Energy Sys-
tems in Modelica”. In: DOI: 10.2172/1427611. URL: https:
//www.osti.gov/biblio/1427611.

Greenwood, Scott et al. (2024-10). “Thermo-fluid Modeling
Framework for Exascale Supercomputing Digital Twins: Part
2, Automated Cooling Models”. In: Proceedings of the Amer-
ican Modelica Conference 2024. Under review.

Ham, Sang-Woo and Jae-Weon Jeong (2016). “Impact of aisle
containment on energy performance of a data center when us-
ing an integrated water-side economizer”. In: Applied Ther-
mal Engineering 105, pp. 372–384.

Heydari, Ali et al. (2022). “Liquid to Liquid Cooling for High
Heat Density Liquid Cooled Data Centers”. In: Interna-
tional Electronic Packaging Technical Conference and Exhi-
bition. Vol. 86557. American Society of Mechanical Engi-
neers, V001T01A007.

IEA (2024). Electricity 2024. Tech. rep. INTERNATIONAL
ENERGY AGENCY.

Lee, Kuei-Peng and Hsiang-Lun Chen (2013). “Analysis of en-
ergy saving potential of air-side free cooling for data centers
in worldwide climate zones”. In: Energy and Buildings 64,
pp. 103–112.

Modi, Himanshu et al. (2023). “A Transient CFD Study on Im-
plementation of Dynamic Liquid Cooling for Series and Par-
allel Arrangement of Components in a Server at Rack Level”.
In: 2023 39th Semiconductor Thermal Measurement, Mod-
eling & Management Symposium (SEMI-THERM). IEEE,
pp. 1–6.

Systèmes, Dassault (2022). Dymola. URL: https : / / www. 3ds .
com/products - services /catia /products /dymola/ (visited on
2023-02-10).

Todd, Austin et al. (2021). Artificial Intelligence for Data Center
Operations (AIOps). Tech. rep. National Renewable Energy
Lab.(NREL), Golden, CO (United States).

Wetter, Michael et al. (2014). “Modelica buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270.

Wojda, R et al. (2024-10). “Dynamic modeling of power con-
version stages for an exascale supercomputer”. In: Proceed-
ings of the IEEE Energy Conversion Congress & Exposition
(ECCE). Under review.

Zhang, Ziting et al. (2022). “Smart DC: an AI and digital twin-
based energy-saving solution for data centers”. In: NOMS
2022-2022 IEEE/IFIP Network Operations and Management
Symposium. IEEE, pp. 1–6.

Zhu, Hongyu et al. (2023). “Future data center energy-
conservation and emission-reduction technologies in the con-
text of smart and low-carbon city construction”. In: Sustain-
able Cities and Society 89, p. 104322.

208 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207 208 DOI

Thermo-Fluid Modeling Framework for Supercomputing Digital
Twins: Part 2, Automated Cooling Models

Scott Greenwood1 Vineet Kumar1 Wesley Brewer2

1Fusion and Fission Energy and Science Directorate, Oak Ridge National Laboratory, USA,
{kumarv, greenwoodms}@ornl.gov

2Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, USA, brewerwh@ornl.gov

Abstract
The development of digital twins for the purpose of im-
proving the energy efficiency of supercomputing facili-
ties is a non-trivial endeavor that is complicated by the
difficulty of creating physics-based thermo-fluid cool-
ing system models (CSMs). Within ExaDigit—an open-
source framework for liquid-cooled supercomputing dig-
ital twins—a thermo-fluid modeling framework is being
developed. This effort has been segmented into two with
two companion papers describing each portion of the over-
all effort. Part 1 focuses on the development of a cooling
system library in Dymola for the Frontier supercomputer
at Oak Ridge National Laboratory (Kumar et al. 2024).
Part 2, this paper, describes an effort to create a template-
based auto-generation methodology for CSMs, called Au-
toCSM. In this paper, an overview of the initial AutoCSM
architecture and workflow is provided, along with a prac-
tical example using the Oak Ridge Leadership Comput-
ing Facility’s (OLCF) Frontier supercomputer CSM. Au-
toCSM will (1) improve ExaDigiT’s user accessibility by
providing a flexible workflow for modularizing the cre-
ation of the CSM system and control logic, (2) decrease
the development time of CSMs, and (3) standardize the
method for incorporating CSMs into the ExaDigiT frame-
work.
Keywords: digital twin, automation, cooling system, su-
percomputer, architecture, framework

1 Introduction
Across myriad disciplines, high-performance supercom-
puting facilities have long been a key resource for ex-
ploring complex scientific and engineering challenges,
spurring technological innovation and opening new av-
enues of discovery (National Research Council 2005). As

This manuscript has been authored by UT-Battelle, LLC under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Ac-
cess Plan (http://energy.gov/downloads/doe-public-access-plan).

the problems being explored increase in complexity, and
therefore computational cost, it will become increasingly
difficult to make significant advances in energy efficiency.

1.1 Motivation
Fully operational in 2022, the Frontier supercomputer at
Oak Ridge National Laboratory became the world’s first
exascale supercomputer (Atchley et al. 2023). It could be
argued that the ability to achieve this milestone was fea-
sible principally because of the enormous gains in hard-
ware optimizations that have been made over the past
decade. For example, if the technology of 2009 used
in the Jaguar Supercomputer were used for the Frontier
facility, the power requirements would have been multi-
ple gigawatts. Instead, Frontier consumes only approxi-
mately 20 MW while achieving 1,000 times higher perfor-
mance than Jaguar. Although enormous strides have been
made in the past decade on computational hardware, it is
postulated that hardware optimizations have approached
their limits of being the primary means of obtaining ef-
ficiency improvements; instead, future efficiency gains
will be dominated by software innovations such as op-
erational performance (i.e., controls, job staging/predic-
tion) (Brewer et al. 2024). The use of digital twins is one
such software innovation that may be a primary means of
achieving the necessary performance efficiency improve-
ments for current and future supercomputing systems.

1.2 Digital Twins
A digital twin is defined as a virtual representation of a
real-world system that synchronizes and exchanges infor-
mation with the real-world system. In the context of exas-
cale computing facilities, the digital twin is expected to re-
quire, at minimum, connections to- and models of- power
consumption, the cooling system, and network behavior.
A digital twin should also incorporate human–computer
interfaces and optimization capabilities. The realization
of a digital twin for such computing facilities is non-trivial
given the complexity and scale of the facility, components,
and data.

1.3 ExaDigiT
To help accelerate the development of exascale facil-
ity digital twins and their value in achieving efficiency

209OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207208

gains, Oak Ridge National Laboratory created ExaDigiT,
an open-source framework for developing comprehensive
digital twins for liquid-cooled supercomputers (Brewer
et al. 2024). This framework is intended to stream-
line the creation and connection of the necessary cross-
disciplinary systems and data as well as to provide meth-
ods of performing advanced analysis and predictive explo-
ration to build toward sustainable, energy-efficient super-
computing.

1.4 Cooling System Model (CSM) Develop-
ment

The broader development approach to ExaDigiT takes into
account that an effective digital twin of an exascale facil-
ity will likely require physics-based system models of the
liquid cooling system at various levels of fidelity through-
out the system’s life cycle—and that it must also be ca-
pable of capturing the transient operations of the system
for optimization and scenario exploration. In support of
ExaDigiT’s development, a Modelica model of Frontier’s
cooling system was completed and is detailed in a com-
panion paper (Kumar et al. 2024). Part of that modeling
efforts purpose was to provide insights into the value of
the cooling system model (CSM) toward delivering effi-
ciency improvements and into how the CSM would be in-
tegrated into ExaDigiT .

1.5 AutoCSM
The Frontier CSM described in (Kumar et al. 2024)
adopted a preliminary template architecture based on
previous efforts (Greenwood et al. 2017a). However,
as the ExaDigiT framework matured and more specific
users of the framework were identified, it became appar-
ent that supercomputing facilities—and datacenters more
generally—could benefit from a CSM template approach
more tailored to the way the systems are hierarchically de-
signed, constructed, and operated. The creation of suffi-
ciently accurate physics-based CSMs is a non-trivial ex-
ercise that requires domain-specific knowledge and good
modeling experience and best practices. The additional
complexities of iterative development and the integration
of the model into a broader digital twin exacerbate the
difficulty of achieving proper value from a CSM in the
broader digital twin. Therefore, the creation of a template
system-of-systems modeling approach for automating the
development, deployment, and integration of CSMs for
supercomputing facilities was proposed. This methodol-
ogy is called AutoCSM.

The remainder of this paper describes the AutoCSM
proof-of-concept methodology in the broader ExaDigiT
context in which it is situated. A description of the current
architecture and general workflow of the AutoCSM is then
provided. An illustrative example of the adaption of the
original Frontier model to the AutoCSM approach is then
provided as well as the extension of that AutoCSM based
model for exploration of a parallel datacenter study. Fi-
nally, because the users of ExaDigiT are expected to have

limited familiarity with Modelica, and to help clearly ad-
dress the role of AutoCSM in ExaDigiT explicitly, a sec-
tion of exploring potential questions regarding AutoCSM
is provided.

2 ExaDigiT & AutoCSM
The CSM within ExaDigiT consumes telemetry data (e.g.,
facility operation and job loading data, weather data), cou-
ples with the power simulator (RAPS), and ultimately pro-
duces operational predictions that can be leveraged for
scenario exploration and facility health analysis. The
CSM also provides data to reduced-order models for
AI/ML facility studies, optimization, and visual analytics
(Figure 1). Given the wide adoption of the open-source
Functional Mock-up Interface (FMI) standard (Functional
Mock-up Interface n.d.) by various tools and programming
languages—and given its direct application to dynamic
simulations at the levels of fidelity that are expected to
be valuable for supercomputer digital twins—using Func-
tional Mock-up Units (FMUs) was identified as the pri-
mary method of standardizing the incorporation of the
CSM into the broader ExaDigiT framework. However, a
question was posed about how the process for generating
the FMU could be simplified for the user, making it less
error prone and less time-intensive, as well as requiring
less experience, while remaining agnostic to the underly-
ing technology (e.g., commercial software, programming
languages) used to create the CSM. This line of reasoning
led to introducing AutoCSM as an optional interface layer
for streamlining CSM model generation to FMU deploy-
ment. In the framework depicted in Figure 1, AutoCSM
provides a means of automating the process for creating a
simulation-ready CSM FMU, depicted on the left side.

3 AutoCSM
The motivating philosophy behind AutoCSM is to remove
as many barriers as possible to incorporating CSMs into
a facility’s digital twin. Therefore, attention was given to
identifying the broad architecture, identifying functional
requirements, and determining how AutoCSM develop-
ment could be compartmentalized and focused to achieve
near-term impact. This section touches on each of these
topics and provides a pseudo-code example of the Au-
toCSM workflow.

3.1 Architecture
AutoCSM is intended to be an optional interface that can
be used to automate the generation of system models that
have adopted a template architecture for rapid deployment
to simulation-ready FMUs. The AutoCSM interface, or
AutoCSM API (Figure 2), relies on the implementation of
an API that has a language- or modeling-specific exten-
sion. That extension will be used to script the generation
of the CSM in that language using a user template strategy
that can be unique to their facility and language. Finally,
the scripted model will be exported as an FMU using ex-

210 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207208 DOI

Figure 1. The base ExaDigiT framework, incorporating telemetry data, a power simulator (RAPS), visual analytics, and a CSM.
(Brewer et al. 2024)

Figure 2. AutoCSM API in the broader ExaDigiT procedure. Dotted line indicates scope of AutoCSM.

isting tools. Again, the tool used will be user-definable
and can be chosen according to the user’s preferred mod-
eling approach and tool (e.g., integrated development en-
vironment or language FMU export library). This FMU
will then be consumed within the broader ExaDigiT CSM
Simulator. At each step, AutoCSM is intended to remain
as agnostic to specific facility requirements as possible by
abstracting and reducing modeling requirements to the in-
put specification (to be discussed).

Internal to the AutoCSM API is a specific procedure
that is used to create an FMU export from user-input spec-
ification. Figure 3 illustrates the process of consuming in-
put specifications. Additional details of the principal focus
areas of the API are discussed in a subsequent section.

3.2 Functional Requirements
The functional requirements for the development of Au-
toCSM are identified below. Some have been mentioned
previously but are repeated here for completeness. In gen-
eral, the broad theme of the requirements is to provide
the framework and avoid encroaching on a user’s meth-
ods. AutoCSM will:

1. conform to the deployment requirements of
ExaDigiT (e.g., open-source),

2. be language/tool agnostic (both across and within
tools),

3. support custom specification extensions,

4. leverage existing solutions/methods where possible
(e.g., third-party Python libraries),

211OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207208

Figure 3. Internal to AutoCSM API procedure for CSM creation.

5. produce an FMU consistent with the requirements of
ExaDigiT,

6. assemble pre-configured systems and subsystems
(i.e., it will not generate the internals to a system
model itself, such as connecting or creating pipes,
volumes, etc.), and

7. not dictate the modeling template approach.

3.2.1 Modeling Approach Requirements
As shown in Figure 2, AutoCSM requires a modeling ap-
proach (e.g., Modelica, Julia, or other software/languages
and libraries) that supports the creation of a formal model-
ing structure or template approach for the assembly of the
FMU. To use AutoCSM for a selected modeling approach,
three requirements have been identified.

1. Be templatable (i.e., able to organize models into
system-subsystem architectures)

2. Be scriptable at the level of system assembly (i.e., not
binary or otherwise inaccessible from outside tools)

3. Support FMU export

Satisfying these three requirements allows AutoCSM
to support virtually any modeling approach a user may
want to employ. If a requirement is not met with a se-
lected tool, then the user will need to decide if that is
an insurmountable issue with that tool (e.g., commercial
software unable to be adapted) or if investment in an Au-
toCSM extension for that tool is feasible. As an open-
source project, AutoCSM will be open to community con-
tributions, and users may develop proprietary extensions
that are not shared with the broader community.

3.3 AutoCSM Focus Areas
The development of the AutoCSM API consists of three
distinct focus areas: input specification, the automated
CSM generator, and an example template architecture for

demonstration and development. Figure 3 provides an
illustration of these areas within the internal AutoCSM
methodology, from input specification to model creation
to FMU generation. The following subsections elaborate
on the role of each of these focus areas.

3.3.1 Input Specification

AutoCSM requires a standardized means of collecting the
necessary information into a form that can be incorporated
into the broader ExaDigiT input requirements. As refer-
enced in Figure 3, the specification that proceeds to the
CSM generation stage is an amalgam of the CSM-specific
settings and additional information from other ExaDigiT
pieces that a CSM may indirectly require. From a user’s
perspective, the CSM settings are what a modeler would
define, and the CSM generator would use those CSM
settings after they have undergone a settings compilation
step. Potential examples of CSM input include the num-
ber of various systems used, modifications on parameters
and input, and/or specification of the different versions of
systems to be used.

3.3.2 AutoCSM Generator

The AutoCSM Generator provides the necessary logic to
automatically translate the input specification into a com-
plete system model that can be used within the ExaDigiT
framework. The initial demonstration uses the Modelica
language, but the API is extensible so that other languages
or tools can be added as needed by users (e.g., Julia).
To limit scope creep and edge cases, the initial develop-
ment focused on the creation of co-simulation FMUs as
the product of the automation process for use in the digital
twin.

3.3.3 ExaDigiT Modelica Library

To enable automated generation of a CSM, a formalized
architecture or template approach that compartmentalizes
the facility into standardized systems, subsystems, and
control logic is required. This is achievable because of
how supercomputer facilities are constructed and orga-

212 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207208 DOI

nized and because of the level of fidelity necessary from
the CSM for ExaDigiT’s purposes. Therefore, work in this
focus area involved creating a proof-of-concept template
approach for assembling the facility.

As previously noted, a CSM for Frontier was developed
(Kumar et al. 2024) to provide support to its operations
and contribute to the development of ExaDigiT (??). The
model outlined in the aforementioned work leveraged a
template approach previously developed for advanced en-
ergy systems studies contained within the TRANSFORM
Modelica library (Greenwood et al. 2017b). Although the
adopted template approach has been adequate for its orig-
inal purposes, the CSM would benefit from an adapted
template approach that aligns better with a nested struc-
ture that could be leveraged by external programming
languages and be better aligned with ExaDigiT. There-
fore, an ExaDigiT specific Modelica template prototype
was developed using other Modelica template approaches
(Modelica Asscotiation 2024; Greenwood et al. 2017a)
for inspiration and the Frontier CSM modeling efforts as
a use case demonstration. Figure 4 shows the outline
of the developed Modelica template system. This lever-
ages identical underlying structures–BaseClasses–and re-
placeable components to create a common template–
TemplateSystem–that can be duplicated by AutoCSM or
a user and serve as the foundational structure to create an
AutoCSM compliant model.

In addition to a common structure, at each system level
the models are implemented as arrays such that all input-
s/outputs to the simulation can be readily associated with
ExaDigiT input/output requirements and the ExaDigiT
user can easily customise the structure of their facility.
For example, to access the summary output of a partic-
ular model a path of the following form can be utilized:
system[i].systemA[j].systemB[k].summary.VAR where i, j,
and k are the index of the instance reference. Finally, if
desired, parallel flow logic may be implemented for situa-
tions where computational performance is more important
than model fidelity. If employed, the parallel logic treats
an array of model system as a single representative model
(i.e., without parallel logic an array may have 10 instances
but with it included and enabled an array will be reduced
to a 1 instance). This feature is built into the input specifi-
cation and Modelica template library structure.

Figure 5 shows an example of a system model using
the ExaDigiT Modelica template library. One of the ad-
vantages of this approach is that no matter which level in
the hierarchy a system exists it has the same foundational
components shown in the figure–i.e., structure, summary,
inputs, control system, data, and the sensor bus. Every-
thing beside those components are definable by the user
for that system–e.g., alternative fluid ports, or none at all.
Below is a description for each of these components.

• structure: instances of the same name as system-
models used at that level. This component contains
information that requires recompilation of a model

such as the number of instances and a flag to enable
a parallel model.

• summary: user-defined variables or calculations of
interest to users of the model that are not readily ac-
cessible or desired to be highlighted–e.g., some type
of calculation of many variables.

• inputs: replaceable model containing time-
dependent variables for external access.

• control system: replaceable control system model for
that model.

• data: replaceable data for containerizing information
for that model.

• sensorBus: An expandable model for collecting sig-
nals for communicating to/from inputs, control sys-
tems, or other levels in the hierarchy.

This template approach directly informs the input spec-
ification development and is used by the automation pro-
cess. Although AutoCSM does not require the use of this
specific template approach, this library can also serve to
accelerate the development of the system models them-
selves, as well as modified template approaches that may
be more appropriate for a specific supercomputing facil-
ity. Additional features of the ExaDigiT Modelica Library
are templates for testing system models for verification
purposes. Leveraging the overall template approach and
the practices demonstrated therein should provide signif-
icant efficiency gains for supercomputer facility model-
ers and analysts. To help orient a new user to using Au-
toCSM, a simplified Modelica library—GenericCSM—
demonstrating the use of the template library is included
with the AutoCSM source code. It is expected that new
adopters of AutoCSM using Modelica would take that
model and then adapt it to their system.

3.4 Example AutoCSM Workflow
Figure 6 provides a step-by-step pseudo-code workflow
of AutoCSM’s use, along with a description of each step.
The current version of AutoCSM is written in Python and
adopts a RedFish-style (REDFISH | DMTF n.d.) JSON in-
put specification. The FMU is generated using Dymola’s
Python API, and simulation of the generated FMU is per-
formed via FMPy (CATIA-Systems 2024). To reiterate,
the use of tool-specific choices (i.e., Dymola) is not dic-
tated by AutoCSM.

4 Frontier AutoCSM Demonstration
The Frontier CSM detailed in (Kumar et al. 2024) was
modified and updated to use the ExaDigiT Modelica tem-
plate library as described above and AutoCSM API for
model generation. This section will first briefly discuss
key aspects of that conversion and FMU auto-generation
process. The ability to then extend this approach to ex-
tension of that base model to a preliminary exploration of

213OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207208

Figure 4. ExaDigiT Modelica template library. All systems use a common TemplateSystem that is then modified for the specific
system. The TemplateSystem relies on replaceable components built on the (BaseClasses) models.

Figure 5. Example of a system model using the ExaDigiT Modelica template library. This is the Frontier AutoCSM model cooling
tower loop. Every system model has a common set of components for use by the AutoCSM API or for internal-to-model usage.

two parallel datacenters with a single heat rejection system
will be presented.

4.1 Conversion of Frontier to AutoCSM

The conversion process of taking the pre-AutoCSM Fron-
tier model and converting it to the AutoCSM approach
involved four general steps. In each of these steps, as-

214 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207208 DOI

Figure 6. Pseudo-code workflow of the AutoCSM workflow with descriptions of each of the steps.

sociated variables for control, summary, or external input
where also updated accordingly. Once all steps were com-
plete, the Frontier model was properly formatted into a hi-
erarchical structure Figure 8 and accessible by AutoCSM
for the auto-generation of the FMU.

1. Identify and convert models to arrays and then cre-
ate template-based System packages accordingly–
e.g., the compute blocks that make up the datacenter
Figure 7.

2. Break models into compartmentalized sections and
convert, as with the first step, or turn into component-
only models.

3. In parallel two the previous two steps, create test sim-
ulations for dynamic and steady-state to verify the
models returns the expected results. Typically these
tests only use a small number of instances of a partic-
ular system model to be tested sufficient to verify the
behavior and performance–e.g., 2 compute blocks in-
stead of 25. The input JSON file facilitates creation
of the complete model.

4. Improve numerical or structural issues uncovered via
the tests to reduce or eliminate numerical issues (e.g.,
numerical Jacobians and non-linearities).

4.2 Frontier to AutoCSM FMU

A nested hierarchical modeling approach for Modelica
was implemented in AutoCSM API. Therefore, with the
Modelica model updated to this approach the input JSON
specification was created that reflects the desired overall
model structure including instances of each model and
parallel logic flags Figure 10. The JSON file is then
processed and an FMU is generated using the AutoCSM
Python API Figure 10. If needed, the intermediate .mo file
generated in this process is accessible and can be loaded
into a Modelica IDE for simulation, debugging, or manual
FMU generation. After the Frontier model was converted
to the AutoCSM approach, and various numerical issues
were resolved, the simulation time was cut approximately
by one-third while significantly improving the tractability
and robustness of the model.

215OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207208

Figure 7. Example of the datacenter portion of the Frontier CSM before and after using the ExaDigiT Modelica AutoCSM template
library where the compute blocks were able to be modified to an array.

Figure 8. Subset of the Frontier CSM model implemented using the ExaDigiT Modelica AutoCSM template library demonstrating
the nested hierarchy of the model structure. The dots at the bottom indicate that the levels of the hierarchy may continue as needed.

4.3 Extension to Alternative Studies

The migration to an AutoCSM approach enabled the ex-
ploration of a secondary test at Oak Ridge National Labo-
ratory (ORNL). ORNL is beginning to assess whether its
heat rejection system can support both Frontier and the
next flagship supercomputer simultaneously. Although a
detailed performance analysis of this system is beyond the
scope of this work, it’s worth discussing how AutoCSM
could be adapted for that study.

A key requirement for this effort is that the new super-
computer will be structurally differ from Frontier. Since
Modelica doesn’t support arrays of replaceable models
from different classes, a second datacenter was added in
parallel to Frontier instead of simply increasing the in-
stance number by one. The datacenter-level structure

component was modified to include this addition. With the
new model and associated sub-models created, the JSON
file was updated to include a new Datacenter system under
the ORNLSupercomputing node, named datacenter_new.
The entries for the new datacenter were populated, and an
FMU was generated without changes to the Python code.

This exercise demonstrated the flexibility of the Au-
toCSM approach to meet the needs of various datacenter
studies with minimal effort. Originally designed for a su-
percomputer facility, AutoCSM is also likely applicable to
most datacenter modeling activities and could likely serve
as a starting point for any system modeling effort with a
hierarchical architecture.

216 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207208 DOI

Figure 9. Part of the Frontier input JSON specification file for
AutoCSM used to auto-generate the FMU.

Figure 10. The python code required to process the input JSON
file to create a Frontier FMU.

5 Potential Questions
During the exploration and development of AutoCSM,
several common questions were identified, especially
from the perspective of a potential user unfamiliar with
Modelica. Below is a non-exhaustive list of questions that
may be relevant to a potential AutoCSM user. While some
of these questions or their answers are addressed in part
within this paper, they are repeated here for completeness.

What is the value of an AutoCSM API in ExaDigiT?
Creating CSMs is a time-consuming process that typically
requires a deep understanding of the facility and expertise
across various domains, such as thermal-hydraulics and
controls. Additionally, integrating the model demands an-
other specialized skill set, further complicating CSM de-
velopment. AutoCSM accelerates this process by offering

a step-by-step framework that allows for greater compart-
mentalization between the CSM developer and the user
(in ExaDigiT). Another key time-saving benefit of Au-
toCSM lies in its support for exploratory studies, from
analyzing subsystems at different levels of fidelity to ex-
ploring what-if scenarios to understand how design or op-
erational changes might affect facility performance. Ulti-
mately, time savings is the core value of AutoCSM.

What is the value of having a CSM in ExaDigiT? The
benefit of having a CSM in ExaDigiT is to allow a user to
understand how all aspects of their facility interact—for
example, how job loading, facility cooling, and facility us-
age all respond to each other. This type of information can
then be leveraged for exploration and optimization during
all facility life cycles—across the processes of design, up-
grades/downgrades, and operation. Thus, a CSM within
ExaDigiT enables improvements and changes in facility
design and operational efficiency that otherwise may not
be possible.

If a user’s digital twin needs do not require the use of
the same or all subsystem levels as those of the template
example library, how will the template system handle
this scenario? The template system assumes top-down
assembly of the CSM, allowing users to abstract lower-
level facility components. The automation process adapts
to the user’s desired level of detail. For instance, if indi-
vidual blades don’t need modeling, the user can specify
this in the input, omitting lower-level template subsystem
models. The CSM modeler must only ensure that the mod-
els necessary for an ExaDigiT study are included.

As many Modelica integrated development environ-
ments (IDEs) are commercial software, is there con-
cern that the template library will become tool spe-
cific? Although this work will use the commercial Mod-
elica IDE Dymola to accelerate development, the proof-
of-concept development will use pedantic mode to strictly
enforce language standards such that the library should be
usable with any Modelica-compliant IDE (e.g., Dymola,
Modelon Impact, OpenModelica, ANSYS Twin Builder).
Although this requirement will not be enforced upon users
of ExaDigiT, the template library and any components
used to create the example facility will be cross-tool com-
pliant. To satisfy this requirement, components from ex-
isting libraries will be used, if possible; otherwise, modi-
fied components that satisfy the requirement will be cre-
ated. However, this work prioritizes the input specification
and API over the Modelica library, so the initial version
will only include essential model development.

Is the limited availability of Modelica expertise a
concern in AutoCSM value and adoption? While the
methodology is language-agnostic, Modelica is chosen
for initial demonstration due to its established capabili-
ties. Alternatives like Julia’s ModelingToolkit may be vi-
able in the future, but uncertainties exist regarding prob-
lem size handling, solver availability, language stability,
and domain-specific libraries for CSM-relevant dynamic
system modeling. Lessons learned from Modelica are ex-

217OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207208

pected to be transferable to other approaches. More gen-
eraly, Modelica has a proven track record of signficantly
decreasing model development time as compared to other
approaches. Therefore, with AutoCSM and other open li-
braries available to users, it is expected that the creation
of CSM subsystems for use in ExaDigiT, even by novice
Modelica users, will not be a barrier to using ExaDigiT.

What is the advantage to using Modelica over al-
ternative modeling languages? The advantages of using
Modelica for this type of application derives from the ma-
turity of the Modelica Language Standard and of the in-
tegrated development environments which implement it.
The three primary relevant aspects is the importance of
supporting extends, replaceable, and the language being
acausal. The acausal nature assists in rapid and flexible
model creation. The other two are foundational for creat-
ing architecture based implementations.

How will the AutoCSM process know how to model
a user’s facility? The template architecture provides
the framework for connecting systems. This system-of-
systems abstraction is therefore abstracted to a level where
the method of defining the interfaces is the critical enabler
for automating CSM creation. The architecture will not
create the internal logic of individual subsystems. For ex-
ample, the specific way to model the manner in which a
blade or GPU is cooled will not be automated. The user
must create the subsystem internal model by using Mod-
elica components and then connect that internal model to
the subsystem template.

6 Conclusions
The development of digital twins is a non-trivial endeavor.
Methods that can help standardize and streamline the
process for model development and incorporation into a
framework used to operate a digital twin are critical. Au-
toCSM is one such methodology that aims to accelerate
CSM development for integration into ExaDigiT’s digital
twin framework for supercomputing facilities. It strives
to enhance speed, robustness, and the quality of results
by enabling users to focus more on specific problems
by abstracting out of the workflow, to the greatest ex-
tent possible, the infrastructure requirements for connect-
ing models. This paper provides an overview of the Au-
toCSM methodology and workflow and provides an ex-
ample overview of AutoCSM being used on the ORNL
Frontier supercomputer facility. Future efforts in Au-
toCSM development will be driven by community adop-
tion and feedback to the open source code base. There-
fore, if AutoCSM is relevant to a potential user’s needs,
they are highly encouraged to provide feedback to the
authors or directly via the code repository (https://
code.ornl.gov/exadigit/AutoCSM).

Acknowledgments
This research was sponsored by and used resources of
the Oak Ridge Leadership Computing Facility (OLCF),

which is a DOE Office of Science User Facility at the Oak
Ridge National Laboratory (ORNL) supported by the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

References
Atchley, Scott et al. (2023). “Frontier: Exploring Exascale”.

In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
New York, NY, USA: Association for Computing Machinery,
pp. 1–16. DOI: 10.1145/3581784.3607089.

Brewer, Wesley et al. (2024-11). “A Digital Twin Framework
for Liquid-cooled Supercomputers as Demonstrated at Ex-
ascale”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis. To be published. Atlanta, GA.

CATIA-Systems (2024). CATIA-Systems/FMPy. https://github.
com/CATIA-Systems/FMPy. Published 2017.

Functional Mock-up Interface (n.d.). https://fmi-standard.org/.
Accessed April 19, 2024.

Greenwood, Scott et al. (2017a-08). A Templated Approach for
Multi-Physics Modeling of Hybrid Energy Systems in Mod-
elica. Technical Report 10.2172/1427611. DOI. URL: https:
//www.osti.gov/biblio/1427611.

Greenwood, Scott et al. (2017b-09). TRANSFORM - TRANsient
Simulation Framework of Reconfigurable Models. DOI: 10 .
11578/dc.20171025.2022. URL: https://www.osti.gov/biblio/
1503596.

Kumar, Vineet et al. (2024-10). “Thermo-Fluid Modeling
Framework for Supercomputing Digital Twins: Part 1,
Demonstration at Exascale”. In: Proceedings of the America
Modelica Conference. Storrs, CT.

Modelica Asscotiation (2024-05). VehicleInterfaces Library.
https://github.com/modelica/VehicleInterfaces.

National Research Council (2005). The Future of
Supercomputing–Conclusions and Recommendations.
Washington, DC: The National Academies Press. DOI:
10.17226/11148.

REDFISH | DMTF (n.d.). https : / / www. dmtf . org / standards /
redfish. Accessed April 19, 2024.

