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Abstract— This study explores the effects of incorporating
demonstrations as pre-training of an improved Deep Q-Network
(DQN). Inspiration is taken from methods such as Deep Q-
learning from Demonstrations (DQfD), but instead of retaining
the demonstrations throughout the training, the performance
and behavioral effects of the policy when using demonstrations
solely as pre-training are studied. A comparative experiment is
performed on two game environments, Gymnasium’s Car Rac-
ing and Atari Space Invaders. While demonstration pre-training
in Car Racing shows improved learning efficacy, as indicated by
higher evaluation and training rewards, these improvements do
not show in Space Invaders, where it instead under-performed.
This divergence suggests that the nature of a game’s reward
structure influences the effectiveness of demonstration pre-
training. Interestingly, despite less pronounced quantitative
differences, qualitative observations suggested distinctive strate-
gic behaviors, notably in target elimination patterns in Space
Invaders. These retained behaviors seem to get forgotten during
extended training. The results show that we need to investigate
further how exploration functions affect the effectiveness of
demonstration pre-training, how behaviors can be retained
without explicitly making the agent mimic demonstrations, and
how non-optimal demonstrations can be incorporated for more
stable learning with demonstrations.

I. INTRODUCTION

Reinforcement learning (RL) is a classification of both a
problem domain and a set of solutions. It involves a prob-
lem domain where an agent interacts with an environment
and, through rewards and punishments, searches for optimal
strategies to achieve a goal [1]. An RL problem necessarily
requires an environment that can be sensed by an agent, and
allows for a goal that relates to the state of the environment.
As such, the most common RL methods also require the
agent to be able to perform actions to change states within the
environment. There are four key aspects that an autonomous
agent needs: an environment, sensation (or perception) of the
environment, action to change states within the environment,
and an agent goal [2]. Using a reward function defined within
the environment, an agent will search for an optimal policy
(set of actions) to maximize its accumulated rewards.

For RL problems, it is common to represent the environ-
ment as a Markov Decision Process (MDP), with a state
space S, action space A, a transition function P (s′|s, a),
a reward function R, and a discount factor γ. The MDP
is commonly represented as a tuple M := (S,A,R, γ, P ).
More specifically, when the decision maker is in state s ∈ S,
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they choose an action a ∈ A based on the current state. The
MDP then probabilistically determines the next state s′ ∈ S
and the reward r ∈ R based on the current state s, action
taken a, and the transition probabilities given by P . An RL
agent will typically search through states and perform actions
that maximize the expected reward. A collection of actions
to perform for each state is typically referred to as a policy
π, or more formally defined as any map π : S → A [3]. The
policy that yields the highest expected cumulative reward is
considered the optimal policy π∗ [2].

An agent’s exploration and learning function can be
thought of in a cognitive decision-making framework and,
more specifically, in terms of different learning strategies.
Rendell et al. [4] review the idea of social learning strategies
and explain that social learning is the strategy of learning
from social information, which can be observations, inter-
actions with other individuals, or its products. They contrast
this to asocial learning and give trial and error as an example,
which is analogous to the standard reinforcement models
learning from scratch. They explain that copying strategies
(social learning) from asocial learners (trial and error) is
advantageous at a low-frequency rate; thus, they can avoid
the cost of trialling the environment. Learning purely from
trial and error is rarely a learning strategy employed by
humans and animals [5]. Learning from copying strategies
can be represented in the form of demonstrating desirable
behaviors for the agent and is an idea that has proven
successful for reinforcement learning [5], [3], [6], [7], and
has spawned categories of algorithms like imitation learning,
learning from demonstrations, inverse reinforcement learning
etc.

In their seminal work, Mnih et al. [8] explain that RL
agents have historically been limited to small problem do-
mains where state representation and features could be hand-
crafted. Real-world problems usually have high-dimensional
sensory inputs, and it is challenging to handcraft state repre-
sentations that also generalize to new experiences from past
experiences. Mnih et al. [8] created a Q-learning algorithm
that uses a convolutional neural net for its state representa-
tion, DQN. They showed that by using a neural network to
build abstract representations of raw image data, the DQN
could generalize an environment representation good enough
to learn and surpass human performance across 49 Atari
games. This, among other early applications of neural nets,
changed the viability of RL for more complex problems.
Today, it is widespread to integrate neural networks in RL
algorithms, and it has been shown to be able to solve
problems that traditional RL has not [9].

Building upon the DQN algorithm, DQfD [6] incorporates



demonstrations into the algorithm. It leverages a small set of
expert demonstrations to significantly improve the learning
process, enabling the agent to start with an improved policy
and continue improving through self-generated experience.
This approach is particularly valuable in scenarios where
agents must learn in real environments where the cost of
exploration is high, and access to large amounts of simulation
data is not feasible. DQfD demonstrates increased initial
performance compared to agents learning from scratch,
showcasing significant improvements on the first million
steps in 41 out of 42 games tested. Furthermore, it achieves
state-of-the-art performance in 11 games, underlining its
efficacy in utilizing demonstrations for rapid learning.

The DQfD algorithm retains the demonstrations perma-
nently throughout the whole training, and it guides the
agent to mimic these demonstrations. However, exploring
the effects of a simple pre-training with demonstrations,
without retaining these demonstrations for the entire training
duration, could shed light on whether initial exposure to
demonstrations alone can influence the long-term learning
trajectory and policy development of an agent. It may then
be able to find novel behaviors outside the demonstrations
that it would not otherwise when guided to mimic the
demonstrations throughout the whole training.

This study examines the impact of demonstrations, solely
as pre-training, on the behavior of an improved DQN agent
that is similar to DQfD. The focus of this study is to test if
the improvements to DQN with a pre-training with demon-
strations can show improvements to the agent’s training and,
beyond the learning process, explore the behavioral changes
that these demonstrations may induce. This comparison not
only highlights the potential for expert demonstrations to
guide the learning trajectory but also explores how augmen-
tations to the Deep Q-learning affect agent behavior.

A. Related Works

RL agents can effectively learn from sparse or incomplete
human demonstrations through various strategies. Brys et al.
[10] and Nair et al. [7] both propose the use of reward shap-
ing and demonstrations to speed up learning and overcome
the exploration problem, respectively. Martínez et al. [11]
introduce a model that requests teacher demonstrations only
when they are expected to improve learning significantly and
provides guidance to the teacher on which actions to demon-
strate. Wang and Taylor [12] present the Dynamic Reuse of
Prior (DRoP) algorithm, which combines offline knowledge
with online performance analysis to achieve superior learning
performance. These strategies collectively bridge the gap
between demonstrated behaviors and exploring novel actions
in RL.

Peng et al. [13] introduce what they call a goal-directed
reinforcement learning framework for physics-based char-
acter animation. They demonstrate that natural character
animations and behaviors can be imitated by an RL model
through demonstrations of motions from motion capture
data. The model could also learn complex control policies
for novel scenarios while still accomplishing user-specified

goals, e.g., imitating how to walk but also learning how
to recover from external forces acting on the agent while
walking (which was not present in the motion capture data).
They contrast their agent’s control policies to an agent that
has been trained without motion capture data and show that
training without motion capture data will cause the agent to
solve the task in unnatural and unwanted ways. The example
they show is an agent throwing a baseball as a human with
their method, and without motion capture data the agent runs
forward with the ball instead of throwing it.

II. DEEP Q-NETWORK AND DEEP Q-LEARNING FROM
DEMONSTRATIONS

A. Deep Q-Network

Algorithm 1 Deep Q-learning with Experience Replay.
Adopted from [8].

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1,M do
5: Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 =

ϕ(s1)
6: for t = 1, T do
7: With probability ϵ select a random action at
8: otherwise select at = argmaxa Q(ϕ(st), a; θ)
9: Execute action at in emulator and observe reward rt and image

xt+1

10: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
11: Store transition (ϕt, at, rt, ϕt+1) in D
12: Sample random minibatch of transitions (ϕj , aj , rj , ϕj+1)

from D
13: Set

yj =

{
rj if terminates at step j + 1

rj + γmaxa′ Q̂(ϕj+1, a
′; θ−) otherwise

14: Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))
2 with

respect to the network parameters θ
15: Every C steps reset θ− = θ
16: end for
17: end for

The DQN algorithm [8] consists of the Q-learning algo-
rithm with a neural network for state space representation.
Depending on the neural network architecture, it can also
provide feature space representation and allows an agent to
learn from the same features a human would, e.g. sending
the game screen through initial convolutional layers of the
neural network. In addition to the neural net, Mnih et al. [8]
introduced three significant improvements to the algorithm
to stabilize the training of the neural network.

Reward clipping was used to avoid Q-values getting too
large and, as a result, avoid exploding gradients in the neural
network. Secondly, they implemented something they call
“fixed target Q-network”, which practically means that the
algorithm has two neural nets with the same architecture,
a target and a prediction network. The target network is a
“stale network”, meaning it has fixed parameters that are not
updated through gradient descent. Instead, the target network
periodically updates its parameters by copying the prediction
network’s parameters. The prediction network provides the



state-by-state predictions, and its parameters are updated
through gradient descent. The fixed target Q-network reduces
oscillations in the training since the target network provides a
moving target of a previous version of the network. The loss
between the prediction from the prediction network and the
fixed target Q-network is calculated for the backpropagation.
Since the target Q-network updates its parameters with the
parameters of the prediction network, the moving target will
improve as the prediction network improves.

The final improvement is the implementation of an ex-
perience replay buffer (ERB). An experience is defined as
et = (st, at, rt, st+1), where t is the time-step. The ERB
is a data set Dt = (e1, ..., et) created with experiences
from multiple episodes, where an episode is an agent acting
within the environment until a terminal state. In other words,
the ERB is a memory where the agent stores a tuple of
the transition between two states, what action it took to
cause the transition, and what reward it got for the action.
Batches of the ERB are randomly sampled to train the
prediction network. The authors explain that this approach
breaks the correlation between data points and thus reduces
data inefficiency and variance in the updates. The ERB also
allows for experiences to be used in multiple weight updates,
which increases data efficiency.

B. DQfD

Algorithm 2 Deep Q-learning from Demonstrations.
Adopted from [6].

1: Inputs: Dreplay, initialized with demonstration data set,
θ: weights for initial behavior network (random), θ−:
weights for target network (random), τ : frequency at
which to update target net, k: number of pre-training
gradient updates

2: for steps t ∈ {1, 2, . . . , k} do
3: Sample a mini-batch of n transitions from Dreplay

with prioritization
4: Calculate loss J(θ) using target network
5: Perform a gradient descent step to update θ
6: If t mod τ = 0 then θ− ← θ end if
7: end for
8: for steps t ∈ {1, 2, . . .} do
9: Sample action from behavior policy a ∼ πθ

10: Play action a and observe (s′, r)
11: Store (s, a, r, s′) into Dreplay, overwriting oldest

self-generated transition if over capacity
12: Sample a mini-batch of n transitions from Dreplay

with prioritization
13: Calculate loss J(θ) using target network
14: Perform a gradient descent step to update θ
15: If t mod τ = 0 then θ− ← θ end if
16: s← s′

17: end for

DQfD [6] uses a mix of demonstration data and data gener-
ated from the agent’s own interactions with the environment.

As seen in Algorithm 2, it initiates learning by filling the
replay memory and pre-training on demonstration data to
adopt an effective policy early on. It then continues to refine
this policy with an enhanced DQN as it interacts with the
environment.

In addition to the pre-training, DQfD uses Prioritized
Experience Replay (PER) and a Dueling Network archi-
tecture (both are discussed in the next section) which are
two improvements to the original DQN. The demonstration
data is permanently stored in the replay memory. After the
pre-training, it is used in conjunction with a supervised
loss in order to ground the action values to imitate the
demonstrations when the agent generates its own data. DQfD
uses a weighted sum of three losses. Double Q-learning loss
is a standard Temporal Difference loss but with an added
n-Step improvement (as opposed to 1-step in regular DQN),
meaning it considers n-step returns for a longer horizon of
the reward estimate. Supervised Large Margin Classification
Loss, which is calculated from the demonstration data to
induce mimicking the demonstrations. L2 Regularization
loss, to prevent overfitting to the demonstration data.

III. DQN IMPROVEMENTS

Multiple studies have suggested improvements to the DQN
algorithm; here, we summarize the most relevant ones.

A. Double DQN

Double Q-learning [14], which is an improvement to the
classical Q-learning algorithm, also proved useful for DQN
[15]. Regular DQN has a tendency to overestimate Q-values
for actions in certain situations because the max operator
uses the same action value for selecting and evaluating
actions. Double DQN reduces the overestimation of Q-
values by separating the selection and evaluation of actions,
practically this is done when calculating the targets for the
backpropagation. For regular DQN, the target is calculated
by

Y DQN
t ≡ Rt+1 + γmax

a
Q(St+1, a; θ

−
t )

In contrast, the double DQN target is calculated by

Y DoubleQ
t ≡ Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θ

−
t )

The authors show that this decoupling of selection and
evaluation of action values provides better, more stable
training and better policies for larger-scale problems.

B. Prioritized experience replay

PER [16] is an enhancement of ERB based on improving
the efficiency of sampling from the memory by adjusting
the priority with which experiences are replayed. Traditional
ERB replays random samples from the experience memory,
which may not always be the most efficient method for learn-
ing. The main improvement in PER is to replay important
transitions more frequently, based on the principle that some
experiences are more important than others for learning. To



quantify the importance, the temporal difference (TD) error
is used as a proxy, where transitions with high TD error
are considered more significant and are thus replayed more
often. A high TD error transition means that the model has
a high error in its prediction of an action value, analogous
to making the transition more surprising and more valuable
to learn from.

This method of prioritization can introduce bias and lead
to overfitting if used greedily. This is due to initial high TD
error transitions getting replayed more frequently, which may
only be a small subset of the memory. This can be mitigated
through stochastic prioritization, which is a sampling method
that interpolates between greedy TD prioritization and uni-
form random sampling and is given by

P (i) =
pαi∑
k p

α
k

Where pi > 0 is the priority of transition i. The expo-
nent α determines the ratio of prioritization versus random
sampling, where α = 0 means only random sampling.

An additional bias occurs due to changing the distribution
of sampling. One of the main ideas of DQN is to remove
correlation from observations, which was achieved through
uniform random sampling. Even with stochastic prioritiza-
tion, there is still a bias of correlation with observations.
To correct this bias, importance-sampling weights are used,
given by

wi = (
1

N
· 1

P (i)
)β

Where β = 1 corresponds to the case of fully compensat-
ing for non-uniform probabilities.

In practice, PER involves:
1) Storing Transitions: As experiences are collected,

they are stored in a replay buffer with their correspond-
ing TD errors, which serve as their priorities.

2) Sampling Transitions: When selecting experiences
for replay, transitions are sampled based on their
priority or randomly, determined by stochastic prior-
itization.

3) Updating Priorities: After learning from a replayed
transition, its priority is updated based on the new TD
error, ensuring that the replay buffer reflects the current
learning state of the agent.

4) Correcting Bias: To account for the non-uniform
sampling, importance-sampling weights are applied to
the learning updates to correct for the introduced bias.

C. Dueling Network

The Dueling Network architecture [17] introduces a neural
network structure that separately estimates the state value
function and the advantages for each action. It is designed to
improve the learning of state value functions in environments
where the state value does not significantly vary across
actions. The Dueling Network divides the network into two
streams that converge through an aggregating layer. One
stream is responsible for estimating the state value function,

providing a scalar value that represents the value of being in
a particular state. The other stream estimates the advantage
function for each action, indicating the relative importance of
each action from that state. The final Q values, representing
the value of taking an action in a given state, are obtained
by combining these two streams.

Fig. 1: Regular DQN (top) and dueling network (bottom).
The dueling network splits into two streams where the output
of the value stream is a single neuron, and the output of the
advantage stream corresponds to the number of actions. For
the final output, the two streams are combined into an output
corresponding to the amount of actions.

D. Noisy Network

Noisy networks [18] introduces a novel method for im-
proving exploration in DQN by integrating parametric noise
directly into the weights of neural networks. This approach
makes the agent perform exploration by inducing stochastic-
ity in the agent’s policy, where the parameters of the noise
are optimized alongside the network’s weights using gradient
descent. Unlike traditional exploration techniques that rely
on external noise sources or perturbations, Noisy networks
achieve a state-dependent exploration strategy by affecting
the network’s internal parameters, leading to potentially
complex changes in policy across different states.

Noisy networks are implemented by adding noise to both
the weights and biases of the network, where the noise
parameters are learned. This also allows for an automatic
adjustment of the exploration intensity, removing the need for
manually tuning exploration hyperparameters. The authors
show that they achieve significant improvements across Atari
games compared to DQN with and without the Dueling
network.

IV. METHOD

For this paper, a comparative experiment is conducted in
which two games are set up for the agent to learn from. Two
models are trained on each game, one with demonstration
pre-training and one without. For the demonstration model,
the algorithm initiates with a pre-training phase utilizing
demonstrations from a human playing the game, in order to



provide the agent with initial behavioral guidance. This pre-
training ensures that the agent starts with a competent policy,
reducing the initial exploration time required to achieve
proficient performance.

A. Algorithm

Algorithm 3 Improved DQN with demonstration pre-training

1: Initialize PER Dreplay to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: τ : frequency at which to update target net
5: Sequence s = {x} and preprocessed sequence ϕ = ϕ(s)
6: k: number of episode demonstrations
7: for steps t ∈ {1, 2, . . . , k} do
8: select at = human action
9: Store transition (ϕt, at, rt, ϕt+1) in Dreplay

10: If step is terminal step then
11: Sample a mini-batch of n transitions from Dreplay with prioriti-

zation
12: Perform a gradient descent step to update θ, end if
13: end for
14: θ− ← θ
15: for episode = 1,M do
16: for steps t ∈ {1, 2, . . . ,m} do
17: select at = argmaxa Q(ϕ(st), a; θ)
18: Execute action at in emulator and observe reward rt and image

xt+1

19: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
20: Store transition (ϕt, at, rt, ϕt+1) in Dreplay

21: Sample a mini-batch of n transitions from Dreplay with
prioritization

22: Set yj = Rt+1 + γQ̂(St+1, argmaxa Q(St+1, a; θt); θ
−
t )

23: Perform a gradient descent step to update ϕ
24: If t mod τ = 0 then θ− ← θ end if
25: end for
26: end for

The algorithm used for this paper uses DQN as a foun-
dation (Algorithm 1). It integrates the pre-training step
of DQfD (steps 1-7 in Algorithm 2) as well as three of
its improvements: Double DQN to mitigate overestimation
bias by decoupling action selection and evaluation, PER to
emphasize learning from transitions with higher expected
learning utility, Dueling Network Architecture to refine the
estimation of action values by distinguishing between state
values and action advantages. A fourth improvement, Noisy
networks is implemented to enhance exploration through the
injection of parametric noise into the network weights. The
inclusion of a Noisy network means that steps 7 and 8 in
Algorithm 1 are removed. The PER memory is initialized
with data from a human giving demonstrations in real-time.
After the pre-training, the agent will start interacting with
the game and fill the PER memory with its own transitions.
The PER memory is a circular buffer, when the memory gets
full, the demonstrations will be replaced with new transitions.
The Neural Network structure for the Dueling Networks
consists of three convolutional layers and two noisy layers,
with rectified linear units used between all layers.

V. EXPERIMENT SETUP

The experiments used two games, Car Racing and Atari
Space Invaders, from the Python library Gymnasium [19].

Fig. 2: Neural network structure of the algorithm. For the
Dueling Network, two of these are defined, with the network
for value approximation having an output of 1× 1.

The Car Racing environment provides a dense reward func-
tion that gives positive rewards for almost every action if
the optimal policy is followed. The Atari Space Invaders
environment provides a less dense reward function, only
giving rewards when the agent or player scores points in
the game, which only happens when an invader is shot. This
means that any change in positions, shots that do not hit
an invader, or the agent losing a life does not provide any
feedback.

For both games, the same four pre-processing steps are
done on each game frame, similar to [8].

• Frame skipping: The algorithm applies an action to
the game for four frames, but only every fourth frame
is processed and stored in the PER, essentially skipping
three frames. This is done to reduce computational time.

• Grayscale conversion: The RGB frame is converted
into a grayscale one-channel image.

• Downsampling: The grayscale frame is converted to
84× 84 pixels.

• Frame stacking: Four consecutive downsampled
grayscale frames are stacked together. Practically, they
are stacked as channels, meaning that for the convolu-
tional layers, the final processed frame has a shape of
84 × 84 × 4, where the four frames can be considered
channels for the convolutions.

(a) The Gymnasium Car Racing
game

(b) The Atari Space Invaders
game

Fig. 3: The two games used for the experiment.



A. Car Racing

The Gymnasium race car environment is a game where a
player or agent controls a car to navigate a track as quickly
as possible. The environment presents a 2D top-down view
of a race track (see Figure 3a), where the agent’s goal is
to complete the track. The track is randomized for each
episode reset. For this game, the models were trained for
1 000 episodes using the hyperparameters stated in Table I.

• Observation space: An observation is a 96× 96 pixel
image (RGB) representing the agent’s view of the
environment. This view includes the car, the track, and
the surrounding area.

• Action space: The action space contains five discrete
actions, do nothing (NOOP), turn left (LEFT), turn right
(RIGHT), and accelerate (GAS).

• Episode Termination: An episode ends when the car
goes off the track or after 250 time steps.

• Reward function: The race track contains tiles that
provide rewards for the agent when it crosses a tile. A
time step penalty is also present in order to encourage
faster completion. An accumulated episode reward of
around 850–950 is considered a successful episode.

TABLE I: Hyper-parameters of both games

Hyper-parameter Car Racing Space Invaders

Learning rate α 2.5 · 10−5 1 · 10−3

Reward discount γ 0.9 0.9
Target network update frequency τ 5 000 10
PER alpha 0.2 0.5
PER beta 0.6 0.4
PER sample batch size 256 128
PER memory size 1.0 · 104 1.0 · 105

B. Atari Space Invaders

The Gymnasium Space Invaders environment is part of
the Atari environment, which is a simulation of various
Atari 2600 games (see Figure 3b). In this game, the player or
agent controls a cannon at the bottom of the screen, aiming
to shoot down waves of alien invaders moving horizontally
across the screen while avoiding their attacks. The game
stays the same for every episode, making it deterministic
compared to Car Racing. For this game, the models were
trained once for 10 000 episodes, and once for 20 000
episodes using the hyperparameters stated in Table I. This
was done in order to investigate changes in behavior based
on training time.

• Observation space: An observation is a 210×160 pixel
image (RGB) representing the game screen, including
the player’s cannon, the invaders, the projectiles, the
score, and the lives left.

• Action space: The action space contains six discrete
actions, do nothing (NOOP), shoot (FIRE), move right
(RIGHT), move left (LEFT), move right and fire
(RIGHTFIRE), and move left and fire (LEFTFIRE).

• Episode Termination: An episode ends if the player or
agent loses all lives.

• Reward function: The agent receives the game score
as a reward. This means that it only gets rewards
when an invader is shot. Since the termination of an
episode only ends when all lives are lost, theoretically,
the maximum reward is infinite. However, clearing the
screen (shooting every invader) will net the player or
agent a score of 630. For this study, getting a minimum
of 630 is considered a successful episode.

VI. RESULTS

As mentioned in the experiment setup, one comparison
experiment was done on Car Racing for 1 000 episodes, and
two comparison experiments were done for Space Invaders,
one for 10 000 episodes and one for 20 000 episodes. Going
forward, the Space Invaders models will be referred to as
10k and 20k, respectively. In total, 6 models were trained.
During the training, rewards and actions were logged at
each time step and then aggregated to their corresponding
episode. Actions were also recorded for the demonstrations.
Two metrics are used for learning performance analysis: the
total reward per episode during training and an evaluation
reward when letting the model play the game after being
trained. For the Car Racing game, 50 evaluation episodes
were run on each model and the mean is presented. For
Space Invaders, only one evaluation episode was run, due
to the deterministic nature of the game, every episode plays
out the same during evaluation. For the behavioral analysis,
the action distribution comparisons between the models and
the demonstration will be used as a metric.

A. Learning performance

TABLE II: Model episode reward during evaluation

Game Model Evaluation reward

Car Racing With pre-training 805
Car Racing Without pre-training 718
Space invaders With pre-training 10k 345
Space invaders Without pre-training 10k 670
Space invaders With pre-training 20k 495
Space invaders Without pre-training 20k 545

Fig. 4: Episode rewards during training for Car Racing.



Fig. 5: Episode rewards during training for Space Invaders
10k.

Fig. 6: Episode rewards during training for Space Invaders
20k.

B. Action distributions

Figure 7 shows a normalized distribution of actions, with
demonstration actions recorded from pre-training and model
actions recorded during evaluation. Figure 8 shows kernel
density estimations of actions during the Space Invaders
evaluation episode, where the X-axis shows the time-step in
the episode. Due to the stochastic nature of the randomized
Car Racing game, a kernel density estimation is not provided.
Figure 8a and 8d show a cutoff in the plot due to the
demonstration not using the RIGHTFIRE and LEFTFIRE
actions.

VII. DISCUSSION

The overall results met initial expectations in some aspects
but did not in others. Specifically, the outcomes for the
Car Racing game align to some extent with the preliminary
hypothesis that demonstration pre-training has a positive
impact on learning performance as seen in Figure 4. Demon-
stration pre-training allowed the model to converge faster,
and to a higher evaluation score after training, as shown
in Table II. The same cannot be said for Space Invaders,
which showed an overall worse training score, see Figure 5
and 6, and showed a clearly worse evaluation score, see
Table II. This discrepancy might stem from the differences
in reward structures across the two games; the Car Racing
game frequently rewards actions, possibly amplifying the
effectiveness of demonstrations. In addition, it was easier
to perform a high scoring episode for the demonstration

with Car Racing compared to Space Invaders. Contrary to
expectations and differing from findings by Hester et al. [6],
the introduction of demonstrations did not markedly improve
performance compared to the non-demonstration approach
and, in fact, worsened it. Although, in the DQfD approach,
the demonstrations are kept throughout the training, and it
is possible that better demonstrations were given, due to
the authors stating they were using expert demonstrations.
The demonstrations performed in this study were done by
playing the games after some practice, the goal was not to
try and achieve a proficient score, but to achieve a successful
episode. In addition, the incorporation of a noisy network,
which introduces stochasticity into the model’s weights,
could diminish the utility of demonstrations by perturbing
the guidance they provide; this will be studied further in the
future.

When it comes to the behavior of the agent, there are some
interesting potential findings. Figure 7b shows that the 10k
model without pre-training had a strong tendency to move
right in the game. It also tended to fire less. The pre-training
10k model shows a tendency towards the demonstration
when it comes to no action (NOOP) compared to no pre-
training. The pre-training 10k model’s action distribution
seems to differ from the demonstration, but looking at the
action density during an episode in Figure 8a and 8b, the
action densities follow the demonstrations closer than the
model without pre-training temporally, see Figure 8c. The
FIRE and NOOP densities for the pre-trained model have
a tendency towards following the demonstration densities,
compared to the model without pre-trainng that has a high
tendency to FIRE and RIGHTFIRE in the beginning and
then go right without firing towards the end of the episode.
For the 20k models, both the pre-trained and non pre-trained
models seem to converge to similar action distributions (see
Figure 7c) and densities (see bottom row of Figure 8). This
could be due to the agent gradually forgetting the demon-
stration policies with extended training. Therefore, it is likely
that any policies the agent learns from the pre-training will
be more prevalent early in training. This, in conjunction with
the reward mechanism of Space Invaders, may also explain
why the pre-trained models generally perform worse than the
non pre-trained model in the beginning, if the demonstrations
are not optimal.

After qualitative analysis of watching the agent play the
game, the models trained with demonstrations tended to
eliminate alien spacecraft column by column in the early
time-steps, following the strategy used in some of the demon-
strations. Conversely, models trained without demonstrations
preferred a row-by-row approach and ended up with a wider
field of enemies towards the end. In addition, the Car Racing
models seemed to show differences in behavior after a lap
was completed, where the pre-trained models tended to go off
the track after finishing a lap, while the model without pre-
training tended to not. It may be the case that this behavior
was retained due to the model stops receiving rewards after
a lap is finished and thus does not receive feedback to
over-write this behavior with a more optimal one. This is



(a) Car Racing. (b) Space Invaders 10k. (c) Space Invaders 10k.

Fig. 7: Histograms of action distributions. Figure 7a shows distributions for the Car Racing game, where similar policies
between the models with and without pre-training can be interpreted. Figure 7b illustrates differences in action distributions
between both models and demonstration, which indicates differences in policy. Although the distributions between the pre-
trained model and demonstrations diverge, they indicate a closer similarity in overall behaviors compared to the model
without pre-training and demonstration. Figure 7c presents distributions for models with longer training, and the two models
show a larger similarity compared to the 10k models, suggesting that extended training pushes the two models to similar
policies.

(a) Demonstration for 10k models (b) 10k model with pre-training (c) 10k model without pre-training.

(d) Demonstration for 20k models (e) 20k model with pre-training (f) 20k model without pre-training.

Fig. 8: Action densities for actions (y-axis) over an episode time-steps (x-axis). The figures on the top row show the densities
of the 10k models, with the pre-trained model showing more similarities to the demonstration in FIRE and NOOP compared
to the model without pre-training. The model without pre-training also indicates a preference for RIGHT action. The figures
on the bottom show the action densities for the 20k models. These models’ densities present closer similarity and a more
uniform density distribution, most likely due to the longer training.

something that happened in some demonstrations for the Car
Racing game, where the car was driven off the track after a
lap. It should be noted that these are subjective interpretations
of visually inspecting the agent playing, it may also be
caused by randomness in training. These observations are
mentioned as curiosities and should be seen as grounds for
further investigation.

VIII. CONCLUSIONS

To conclude, demonstration pre-training alone may show
improvements in learning and performance for an agent, but

most likely, it depends on the quality of the demonstration
and the reward mechanisms of the problem. Most likely, non-
optimal demonstrations and less dense or delayed rewards
may not provide the guidance for an initial policy to help the
learning, and may, in fact, be a detriment to learning. Either
incorporation of demonstration with reward function needs
to be explicitly planned (as seen with DQfD [6]), or further
investigation needs to be done on how to incorporate human-
like non-optimal demonstration into the learning process
in order to make demonstration pre-training more stable.



Demonstration pre-training has shown indications that the
model retains behaviors of the demonstrations but has shown
to lose these behaviors during extended training. It may be
the case that these behaviors can be retained through other
means than explicitly mimicking the demonstrations as long
as the reward function allows it; this will be an interesting
path for future investigations.
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