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Abstract— This study assesses two state-of-the-art (SOTA)
pointcloud registration approaches on industrially challenging
datasets, focusing on two specific cases. The first case involves
the application of Lidar-based Simultaneous Localization and
Mapping (SLAM) in a tunnel environment, while the second
case revolves around aligning RGBD scans from intricately
symmetrical cast-iron machine parts within the domain of
small-scale industrial production. Our evaluation involves test-
ing state-of-the-art pointcloud registration approaches both
with and without fine-tuning, and comparing the results to
a classical hand crafted feature extractors. Our experimental
findings reveal that existing SOTA models exhibit limited gener-
alization capability when confronted with the more challenging
pointcloud data. Moreover, robust generalizable methods be-
yond training are currently unavailable, highlighting a notable
gap in addressing challenges associated with industrial datasets
in pointcloud registration.

I. INTRODUCTION

Pointcloud registration is critical for different applications
such as SLAM (Simultaneous localization and mapping), 3D
reconstruction, robotic interaction, and more. For an optimal
point-cloud registration framework, key attributes such as
superior robust generalizability to unseen data, accuracy, and
acceptable efficiency are crucial. Nevertheless, striking the
right balance proves highly challenging as existing registra-
tion techniques often fall short in terms of generalization,
accuracy or efficiency. The fundamental question remains:
How can we develop a method that strikes a balance among
these essential elements to meet the requirements of various
applications? Compounding the challenge, state-of-the-art
registration approaches are typically tailored for a predefined
set of scenes and 3D sensors, limiting their adaptability
and usability in diverse settings. This limitation necessitates
additional training or fine-tuning to address alternative scenes
or sensors.

Several papers have reviewed pointcloud registration, con-
centrating on aspects like generalization, accuracy, or effi-
ciency [1], [2]. However, most of these evaluations either
focus on specific technical components rather than the entire
registration pipeline [1], or they use datasets of limited
scale, such as synthetically-generated data or LiDAR scans
of indoor objects [2]. These evaluations typically include
performance analysis of keypoint detection and description
algorithms [2], as well as cross-source pointcloud registration
between different sensor types, like Kinect and Lidar [1].
While these evaluations identify the best-performing algo-
rithms and registration strategies in terms of accuracy and
speed, their conclusions are often based on findings reported
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in the respective papers (datasets). While these assessments
provide valuable insights into specific technical aspects, it’s
important to acknowledge the disparity in achieving success-
ful registration between real-world scenarios and academic
benchmarks, particularly when dealing with complex and
diverse datasets.

In this paper, we aim to provide an alternative brief com-
parison of existing pointcloud registration methods, encom-
passing both feature-based registration and deep learning-
based approaches, along with their performance on two
novel real-world datasets. We assess three methods for
pointcloud registration: traditional hand-crafted feature ap-
proaches (FPFH) with RANSAC (Random sample consen-
sus) [3], deep learning-based learned feature with RANSAC
[4], and end-to-end registration approach [5]. These datasets
consist of two highly challenging test cases: tunnel lidar
scans with high self-similarity and RGBD scans of symmet-
rical cast-iron machine parts with low degree of overlapping
3D features due to self-occlusion. We use these test cases to
investigate the generalizability of models across datasets, and
to what extent the proposed approaches are able to produce
useful features for these challenging use-cases. Our results
and discussion highlight some of the remaining challenges
in pointcloud registration for scans from real-world scenarios
with limited training data.

II. BACKGROUND

In this section, we start by examining the constituent
elements of traditional pointcloud registration pipelines
(Correspondence-based approaches) before delving into
more recent End-to-end pointcloud registration algorithms.

A. Correspondence based approaches

The general pipeline for correspondence based pointcloud
registration follows a typical two-step process [6], [7], [8].
The first step is to extract correspondences between two
pointclouds. Subsequently, it recovers the transformation
between the clouds by aligning these correspondences using
robust pose estimators, such as RANSAC. These methods
can be further categorized into two classes according to how
they extract correspondences. The first class aim to detect
locally unique keypoints and learn more powerful descriptors
for the keypoints. While the second class retrieves correspon-
dences without keypoint detection by considering all possible
matches. In earlier works on keypoint based descriptors,
the focus was on characterizing local geometry through the
use of handcrafted features [3]. Although these features
often lacked robustness against clutter and occlusions, they
generalize across diverse datasets. In recent years, there has



been a shift towards learned 3D feature descriptors, which
have consistently outperformed the traditional handcrafted
ones in terms of performance, on the other hand, these
methods are oftentimes more specific to the data they were
trained on.

1) Direct point-to-point pipeline: An example of this
approach is the FPFH method employed in this work. Here
locally unique points, referred to as keypoints, are detected
based on local geometry. Descriptors for each of these
keypoints are calculated. By matching these with descriptors
from a target pointcloud, point to point correspondences are
established. Another widely used technique is the Iterative
Closest Point (ICP) algorithm [9]. This method uses so called
"soft" correspondences, which are established on the basis of
closeness to a point in the target cloud. This means they are
sensitive to initialization and will typically converge to the
nearest local minima, which in many cases will not coincide
with the "true" alignment.

2) Coarse-to-fine pipeline: Such approaches start by es-
tablishing initial correspondences at the level of patches and
subsequently refine them to achieve a more precise matching
of individual points. These refined correspondences are fur-
ther extended to create dense point-to-point correspondences
within the specified patch region. For this study, we focus
on the course-to-fine pipeline specifically CofiNet [4], which
shows better performance over direct point-to-point methods.
CofiNet [4] addresses the challenge of extracting corre-
spondences for 3D pointcloud registration. The proposed
approach extracts hierarchical correspondences in a coarse-
to-fine manner without relying on keypoint detection. The
model initiates by learning to match down-sampled nodes,
generating initial node correspondences. Subsequently, these
node proposals are progressively expanded to form patches,
each comprising groups of points along with associated de-
scriptors. The correspondences at the patch level are further
refined down to the point level through a density-adaptive
matching module. The effectiveness of the proposed method
is evaluated on standard benchmarks for both indoor and
outdoor scenarios.

B. End-to-end approaches

The methods mentioned above are all establishing some
local correspondence between two pointclouds and then per-
form alignment based on these correspondences in a separate
step. The end-to-end registration methods on the other hand,
estimate the transformation directly during the optimization
process [10]. These methods can be further classified into
two classes. The first class follows the idea of ICP, which
iteratively establishes soft correspondences and computes
the transformation with differentiable weighted SVD (sin-
gular value decomposition). The second class first extracts
a global feature vector for each pointcloud and regresses
the transformation with the global feature vectors. Although
direct registration methods have achieved promising results
on synthetic shapes, they are less robust for large-scale
scenes. GeoTransformer [5] pointcloud registration method is
another end-to-end approach that is both keypoint-free and

Fig. 1: The Piloting platform in Coripe, Spain

RANSAC-free. Given a superpoint, [5] learns a non-local
representation based on pair-wise distances and triplet-wise
angles. The backbone downsamples the input pointclouds
and learns features in multiple resolution levels. The features
are iteratively encoded intra-point-cloud geometric structures
and inter-point-cloud geometric consistency. The superpoint
correspondences are then propagated to dense points. Finally,
the transformation is computed with a local-to-global regis-
tration method.

C. Datasets

There are several publicly available datasets for testing
and improving pointcloud registration algorithms, that has
facilitated the recent success of learning-based methods.
The 3DMatch dataset [11] provides real-world 3D point-
cloud data specifically designed for registration tasks with
primarily focuses on indoor scenes, such as living rooms
and offices. It also provides a more challenging benchmark,
3DLoMatch, where the pointclouds are cropped such that
there is less overlap. The KITTI dataset [12] offers data from
LiDAR and cameras used in autonomous driving in urban
and highway driving scenarios. The ModelNet40 [13] dataset
provides a collection of simple synthetic 3D CAD models
from 40 object categories for tasks like object recognition
and pointcloud registration.

The next section introduces two novel test scenarios de-
signed to assess the generalizability and real-world accuracy
SOTA pointcloud registration methods. These scenarios de-
viate from existing publicly available datasets, aiming to
provide a more challenging and realistic (out-of-domain)
evaluation.

III. IN-THE-WILD TEST CASES

Extracting correspondences from pointcloud data for the
purpose of registration is an active field of research and new



methods are being presented continuously. Commonly some
way of sparcifying the data is performed, (keypoints, uniform
down sampling, coarse to fine), before feature estimation and
a correspondence search is performed. In cases where point-
clouds contain repeated geometric structures, symmetries, or
no locally unique geometries at all, correspondence search
will be prone to errors as viewpoint can be the dominating
contribution towards the uniqueness of a descriptor.

In the following, two such challenging cases will be
investigated. One case is tied to performing Lidar based
Simultaneous Localization and Mapping (SLAM) in a tunnel
environment, and the other is aligning RGBD scans from
highly symmetrical cast-iron machine parts in the context of
automating small-scale production.

A. Tunnel Case

A challenge for any pointcloud registration algorithm is
the case when the geometry of a pair of scans are not
sufficiently constraining a rigid transform (6DoF) along all
degrees of freedom. This is the case when aligning simple
shapes such as planes, tubes and spheres and also more
complex shape containing repeated structures or symmetries.
Such a case was encountered in connection with the H2020
project PILOTING [14].

1) Tunnel dataset: The tunnel dataset was recorded in
connection with [15], where an autonomous robot (Fig 1)
which performs visual inspection of tunnels was developed.
To allow the robot to navigate autonomously as well as
report the position of damages that were detected, an accurate
localization solution was required. A hardware / software
solution which estimates ego motion based partly on scan
registration was developed. To capture sufficient information
to solve for localization, data from a Ouster OS0-128 LiDAR
and a forward-facing FLIR BFS-U3-17S7M-C camera was
combined. Sensors were time synchronized and intrinsics /
extrinsics were estimated through calibration. The project
made available a dataset consisting of three runs through a
175 meter straight tunnel-stretch outside the city of Coripe,
Spain. In addition to lidar scans and images, the dataset
contain ground truth positional data recorded with a Leica
robotic totalstation.

The dataset present a particularly challenging case as
geometry is almost identical for each scan along the tunnel
except for small geometric features in the shape of lighting
armatures in the roof and small 20x20 concrete blocks
supporting a drainage pipe along the tunnel wall. See fig. 4
for example pointclouds. To create scan pairs, we have set
the dataloader to pair scans which are between 1 meter and
4 meter apart. This interval secures that we have a high
density overlap between the scans, while ensuring that they
are reasonably spaced.

B. Cast Iron parts Case

Registration of cast manufactured parts is a prerequisite for
automation of tasks such as sanding, welding and assembly
in low-volume production. Typically, the part is placed with
an arbitrary pose on a table surface or bin, and scanned

Fig. 2: Sensor setup for 3D scanning of cast parts.

once from one angle only. The pointcloud from the scan
should be matched against a target scan or a CAD model to
facilitate downstream tasks like computation of robotic tool
path. While scan-to-CAD matching problems can utilize cor-
respondences from the whole source pointcloud to compute
the registration, scan-to-scan problems can suffer from low
overlap between source and target. Other typical challenges
are rotation symmetry and lack of distinctive local geometric
features.

1) Cast manufactured parts dataset: We use 3D data of
cast manufactured parts acquired for the scan-to-cad dataset
in [16] to construct a scan-to-scan dataset. The cast parts are
brass parts from from Mjøs Metallvarefabrikk, approximately
30-40 cm in diameter, and 20 individual physical items. The
capture setup is shown in fig. 2. The parts were put on a
turntable and scanned with a Zivid 3D camera (with HD
resolution RGBD output) from 8 different angles, with 3
different heights of the camera, giving 24 scans per unique
part, i.e. 480 scans in total. The ground truth registration was
found through RGB pose estimation with aruco markers, but
only the depth information is used in the datasets for this
paper.

For each unique part, we pick two sets of scan-pair
combinations for scan-to-scan registration: 1) scans with high
overlap (less than 50◦ difference in rotation), and 2) scans
with low overlap (more than 50◦ difference in rotation).
Example pointclouds for the two different datasets are shown
in fig. 3. Due to occlusions, the scans with low overlap
have very few common 3D features, which creates a very
challenging dataset.

IV. EVALUATION METHODOLOGY

A. Overview of methods

We evaluate three existing methods on our two test cases,
representing different approaches; a classical hand-crafted
approach (FPFH [3]) combined with RANSAC for pose
estimation, a learning-based approach (CoFiNet [4]) com-
bined with RANSAC for pose estimation, and an end-to-end
learning-based approach without RANSAC ([5]).

To assess generalizability, we evaluate the performance
of models pretrained on public datasets 1 that are aquired

1Pretrained models for COFiNet: https://github.com/haoyu94/
Coarse-to-fine-correspondences and GeoTransformer https:
//github.com/qinzheng93/GeoTransformer/releases

https://github.com/haoyu94/Coarse-to-fine-correspondences
https://github.com/haoyu94/Coarse-to-fine-correspondences
https://github.com/qinzheng93/GeoTransformer/releases
https://github.com/qinzheng93/GeoTransformer/releases
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Fig. 3: Example pointcloud pairs, registration results and ground truth registration for cast parts data. a)-d): Example
pointcloud pair with high overlap (small angle between aquisitions), e)-h): example with low overlap (aquisition from
opposite sides of the part). In c) the estimated transform has only a small error, but in g), the estimated transform places
the part upside down.

with similar sensor types as our test data (but from different
domains). For the tunnel case, we use models trained on
the LIDAR part of the well known KITTI dataset [17],
containing scenes from driving in urban environments. For
the cast parts case, we use models trained on 3DMatch [18],
which consists of a large collection of RGBD scans from
indoor scenes.

To assess whether the proposed methods are able to
produce relevant features for these challenging use-cases, we
also evaluate performance of models trained on our datasets.

B. Learning-based methods

1) Tunnel case: As we test pointcloud registration tech-
niques based on pure geometry, only the lidar data was
used for benchmarking. The data was split in three equal
parts for training/testing/validation. We have evaluated the
performance of CofiNet [4] and GeoTransformer models [5],
both using weights from training on the kitty dataset, as
well as weights from training on the lidar data from the
above mentioned tunnel data. The tolerances for qualifying
a registration as a success was set to 30 cm and 3 degrees.

2) Cast parts case: We used the same overall network
architectures as for the tunnel test case (CoFiNet combined
with RANSAC and GeoTransformer end-to-end and with
RANSAC). It should be noted that the GeoTransformer with
and without RANSAC are both trained in the same end-to-
end manner, but are evaluated using different pose estimation
methods.

The pretrained methods were trained on the 3DMatch
dataset [18]. To compensate for different scales in our scenes

and the 3DMatch scenes, the pointcloud coordinates of our
dataset were scaled by 0.1. Otherwise, the same parameters
and metrics were used as for 3DMatch in [4]; RANSAC
with an inlier threshold of 3 cm and 5000 samples, and a
registration recall threshold of 5 degrees rotation error and
20 cm translation error.

For training models on cast parts data, we used both
high overlap and low overlap scan pairs, as described in
section III-B.1. The models were finetuned with the same
parameters as in the original code, except from the parame-
ters mentioned above.

The two test datasets consists of 235 high overlap point-
cloud pairs and 433 low overlap pointcloud pairs from other
physical parts than those seen during training.

C. Classical method

For comparison with a classical pointcloud feature extrac-
tion method, we use FPFH in combination with RANSAC,
using the same parameters as described in the previous
section. As this is not a learning-based method, the results
are not affected by training data.

D. Evaluation metrics

Registration results are reported using 1) registration re-
call (RR), the fraction of successful registrations (with a
transformation error smaller than a certain threshold) and
2) transformation error between estimated and ground truth
transformations.

More specifically, the transformation error is defined as the
relative error between the estimated transformation T̂ and the



ground truth pose T. We report it as Relative Rotation Error
(RTE) and Relative Translation Error, which are defined as

RRE = arccos(
trace(R̂TR)− 1

2
) (1)

and
RTE = ∥t̂− t∥ (2)

where t̂ and R̂ are the estimated translation vector and
rotation matrix, and t and R are the ground truth equivalents.

Following the definition in [4], the mean rotation and
translation errors are computed using only the point cloud
pairs with a successful registration, by the same definition
as for registration recall. When interpreting the results, it
should be noted that RRE and RTE only capture the smaller
differences of the registrations that are considered a success,
while the large errors are captured by the recall value. As
mentioned, for the tunnel case, we set the threshold values
at RTE < 0.3 m and RRE < 3 degrees. While we used a
similar threshold values as for the 3DMatch data in [4] for
the cast parts case: RTE < 0.2 m and RRE < 5 degrees.

V. RESULTS

A. Tunnel Case

Registration results for the tunnel test case are shown in
table I. We see that the FPFH approach is struggling with
alignment and achieve a 5% registration recall. This was
expected as the method rely on locally unique geometrical
shapes, which are lacking in the tunnel. As for the pretrained
learning based approaches, we see CoFiNet is completely
failing with a 0.5% recall ratio. While GeoTransformers is
also performing poorly it is outperforming FPFH with a
14.5% registration recall, indicating that this method is able
to pick up some useful information from the scans.

When comparing with the results of both methods trained
on the tunnel data we see a big improvement in performance,
particularly GeoTransformer which has a registration recall
of almost 60% on this challenging data.

One of the main challenges with this dataset is that most
of the points represent only a smooth wall, and does not
contribute to any distinct features useful for localizing the
tunnel along its length axis. This is a possible explanation
why the classical method and pretrained methods fail, as
they are not sufficiently amplifying the sparse useful infor-
mation contained in the scans. Two examples of successful
registrations can be seen in fig. 4

TABLE I: Registration results tested on our tunnel (PILOT-
ING) dataset, comparing a classical approach, pretrained
models trained on the KITTI dataset and models trained on
our PILOTING data.

Method - training data Mean RRE [deg] Mean RTE [m] RR
FPFH - N/A 1.038 0.174 0.050
CoFiNet - Kitti 1.082 0.159 0.005
CoFiNet - PILOTING 0.788 0.114 0.458
GeoTransformer - Kitti 0.764 0.152 0.145
GeoTransformer - PILOTING 0.525 0.141 0.591

B. Cast parts
Results for registration on our cast parts data are shown

in table II for the high overlap case and table III for the low
overlap case. We see that this use case has an overall higher
recall score than the tunnel use-case.

For the high overlap case, the best performing method is
GeoTransformer finetuned on our data and with RANSAC
pose estimation, with a registration recall of 0.93. In general,
finetuning gives an increase in registration recall of around
0.1, which is expected. Even without finetuning, the end-
to-end approach outperforms the others with a significant
margin.

The low overlap case is more challenging, and without
finetuning best recall is only 0.28 (with ransac in evaluation).
CoFiNet gets a small improvement after finetuning, but
GeoTransformer gets a significant performance increase to
0.73 (with RANSAC in evaluation). A closer inspection
reveals that most of the errors are around 180 degrees, which
corresponds to a flipped part. By looking at the overall
rotation errors (not the recall errors reported by the standard
metrics), we see that GeoTransformer (without RANSAC)
has an overall mean rotation error of 127,3 degrees, which
is reduced to 55,7 degrees after finetuning. There are also
fewer examples of flipped parts after finetuning.

Visualizations of two example registration results are
shown in fig. 3; one with high overlap (45 degree rotation)
between the scans and one with low overlap (scanned from
opposite sides), to illustrate typical errors for the two cases.
For the pointclouds with high overlap, there is a slight
angular error in the estimation, while for the pointclouds
with low overlap, the estimated transformation has flipped
the part upside down. This is because the two scans contain
points from opposite sides of the symmetric part, which
will give similar features, and an erroneous solution in the
RANSAC step. This is a particularly challenging feature
of this problem, which is different from for instance the
3DLoMatch benchmark, which contains cropped pointclouds
from similar viewpoints.

TABLE II: Registration results on our cast parts dataset, high
overlap test case.

Method - training data Mean RRE [deg] Mean RTE [m] RR
FPFH - N/A 2.316 0.031 0.664
CoFiNet - 3DMatch 1.734 0.028 0.696
CoFiNet - Cast parts 1.634 0.026 0.779
GeoTransformer end-to-end - 3DMatch 1.306 0.012 0.793
GeoTransformer w/RANSAC - 3DMatch 0.888 0.008 0.802
GeoTransformer end-to-end - Cast parts 0.723 0.0073 0.894
GeoTransformer w/RANSAC - Cast parts 0.843 0.009 0.930

VI. DISCUSSION

We have in this work assessed the performance and
generalizabillity of two state of the art in learning based
registration methods, on two real world datasets which both
present particular challenges.
The tunnel dataset contain scans with a high degree of sim-
ilarity. In this dataset viewpoint dependent artifacts outnum-
ber the subtle geometrical details containing the information



(a) Input clouds (b) GT alignment (c) CoFiNet

(d) Input clouds (e) GT alignment (f) CoFiNet

Fig. 4: Example registration results from two samples of the tunnel dataset, comparing ground truth to CoFiNet registration
trained on the tunnel data. Note how the small protruding structures on the side of each sample are roughly aligned.

TABLE III: Registration results on our cast parts dataset, low
overlap test case.

Method - training data Mean RRE [deg] Mean RTE [m] RR
FPFH - N/A 2.920 0.0610 0.106
CoFiNet - 3DMatch 3.120 0.074 0.150
CoFiNet - Cast parts 2.628 0.0607 0.319
GeoTransformer end-to-end - 3DMatch 1.606 0.0176 0.213
GeoTransformer w/RANSAC - 3DMatch 2.193 0.0208 0.280
GeoTransformer end-to-end - Cast parts 0.892 0.0095 0.679
GeoTransformer w/RANSAC - Cast parts 1.427 0.0144 0.731

necessary for a successful registration. On the other hand, in
the cast parts dataset, distinct features are abundant, but the
particular symmetries of the part can be a source of noise
when aligning scans.
When examining the tunnel data, it becomes evident that a
model trained on the kitti dataset struggles to perform well
in tunnel scenarios. This highlights the fact that learning-
based registration remains largely influenced by the specific
training data it has encountered. However, it’s noteworthy
that one of the two methods still surpasses handcrafted
feature-based registration by nearly threefold, illustrating the
promise of learning based methods. Furthermore, despite
both the kitti datset and the tunnel dataset was captured
using a 360-degree rotating lidar, the significant performance
enhancements that were observed when training the models
specifically on tunnel data could be attributed the the network
parameters adapting to the particularities of this kind of
environment.
As for the cast parts dataset, we see that all approaches
perform well on the large overlap scans, but that both models
has a superior performance when they are trained on similar
data. It is also interesting to note that in contrast to the
findings in [19] we see that GeoTransformer perform better
when we use a RANSAC based outlier rejection scheme then
if we use the learned scheme embedded in the end to end
method. For the low overlap dataset, we see a significant
improvement when training both models on the cast parts

dataset, compared to the pretrained model, but we also
see a much improved performance of Geotranformers over
CoFiNet. A possible explanation could be that training in an
end-to-end manner (as in GeoTransformer) results in features
that are more specific for the registration problem. This
enables the model to optimize the features to give a small
registration error on this challenging use-case, which requires
features with more global context the original 3DMatch
case due to symmetries and occlusions. Even though strong
features are found by the pretrained model, these lead to
erroneous matching due to the symmetric properties of the
cast parts.

VII. CONCLUSION

In summary, while learning-based pointcloud registration
methods are demonstrating enhanced performance, even in
difficult scenarios such as tunnels and symmetrical cast iron
parts, their specificity becomes evident when evaluated with
out-of-sample or out-of-distribution data. To address this
limitation, further refinement of these approaches or the
implementation of a more inclusive training regimen will
be essential for these models to effectively accommodate
a broader range of domains. There is also a need for
more challenging large-scale open datasets and benchmarks
that address challenges specific to real-world use-cases and
realistic 3D sensor setups.
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