
Weight Rescaling: Applying Initialization Strategies During Training

Lukas Niehaus
Institute of Cognitive Science

University of Osnabrück
Osnabrück, Germany
luniehaus@uos.de

Ulf Krumnack
Institute of Cognitive Science

University of Osnabrück
Osnabrück, Germany
krumnack@uos.de

Gunther Heidemann
Institute of Cognitive Science

University of Osnabrück
Osnabrück, Germany
gheidema@uos.de

Abstract— The training success of deep learning is known to
depend on the initial statistics of neural network parameters.
Various strategies have been developed to determine suitable
mean and standard deviation for weight distributions based on
network architecture. However, during training, weights often
diverge from their initial scale. This paper introduces the novel
concept of weight rescaling, which enforces weights to remain
within their initial regime throughout the training process. It is
demonstrated that weight rescaling serves as an effective regu-
larization method, reducing overfitting and stabilizing training
while improving neural network performance. The approach
rescales weight vector magnitudes to match the initialization
methods’ conditions without altering their direction. It exhibits
minimal memory usage, is lightweight on computational re-
sources and demonstrates comparable results to weight de-
cay, but without introducing additional hyperparameters as
it leverages architectural information. Empirical testing shows
improved performance across various architectures, even when
combined with additional regularization methods like dropout in
AlexNet and batch normalization in ResNet-50. The effectiveness
of weight rescaling is further supported by a thorough statistical
evaluation.

I. INTRODUCTION

Regularization is used in machine learning, particularly in
training neural networks, to prevent overfitting and improve
the generalizability of models. It employs the idea that
adding some constraints or penalties on model parameters
can help avoid overfitting and lead to better performance
on unseen data. Some common regularization techniques
include weight decay or specifically L2-regularization, which
adds a penalty term proportional to the squared magnitude
of the weights during the optimization process [5]. It en-
courages smaller weight values and helps prevent overfitting
by limiting the influence of individual features in the model.
Another method is dropout, where some neurons are ran-
domly "dropped out" (set to zero) during training, forcing
other neurons to learn more efficiently. This is applied at
the layer level and can be used with any neural network
architecture [20]. Batch normalization is another common
regularization method, which helps stabilize training by
making the inputs of each neuron have a similar distribution
across different batches of data [10]. By doing so, it reduces
the need for learning large weights and prevents overfitting.
Early stopping follows the concept to stop training when

the performance degrades. The method uses a validation set
to detect overfitting. It helps prevent models from being
trained too long and memorizing noise in the data rather
than capturing useful patterns [15].

In this paper, we introduce a novel concept called weight
rescaling that combines findings from initialization strategies
and applies them during training to achieve regularization
effects. The study begins by discussing various regularization
methods, weight scaling approaches and initialization strate-
gies, followed by an exploration of why activation variance
changes in neural networks during the learning process.
Subsequently, the concept of weight rescaling is introduced
along with its application methodology. Following this, we
detail our experimental setup and evaluation metrics used to
assess the proposed technique’s effectiveness. Then the em-
pirical results of the experiments demonstrate the efficiency
and potential benefits of incorporating weight rescaling into
neural network training processes, backed up by a statistical
analysis. The final section presents a conclusion of the
findings and gives an outlook into further research questions.

The experiments encompass various architectures such as
Multi Layer Perceptron (MLP) [8], LeNet-5 [13], AlexNet
[12], and ResNet [6]. For the initialization methods we em-
ploy Xavier [4] and Kaiming [7] initialization. Furthermore,
we compare the performance of weight rescaling to weight
decay, assess its effectiveness on relu activations [2] and
tanh activations [8], and examine the efficacy when other
regularization methods are already applied, including dropout
[20] and batch normalization [10].

II. WEIGHTS

A well-designed initialization method ensures that net-
work weights are initialized in a manner preventing both
exponential growth and shrinkage during training. In this
context, utilizing relu as an activation function, we assume
that increasing weights cause larger activations, which subse-
quently results in growing gradients, which then leads to self
reinforcing effects of growing or shrinking variance of the
weights, activations and gradients. As training progresses,
neuron weights tend to develop Gaussian-like distributions
with nontrivial correlations between components [17]. The
majority of neurons approach zero values, while a few
become significantly large. Concurrently, although the mean
of weight distributions deviates around zero, the standard
deviation increases throughout the learning process.

This behavior can be observed in Figure 1, where a three-
layer MLP with the widths’ 32, 32, and 10 neurons is
trained on the CIFAR-10 dataset. The network was trained
for 100 epochs and initialized by sampling the weights from
a normal distribution with a standard deviation accoording
to Kaiming [7] initialization. The results demonstrate that
the standard deviation of weights in each layer increases
throughout training, such as in the first layer where it grows
more than five times its original size from 0.03 to 0.17.

Fig. 1: Weight Distributions for each layer of an MLP at
initialization in blue and after training for 100 epochs in
orange.

This phenomenon can lead to high fluctuations of the
activations in a neural network. Classical regularization tech-
niques, such as weight decay, counteract this issue by in-
corporating weight size into the loss function. By penalizing
large weights, these methods help prevent their development.

The question that arises is whether initialization strategies
can be employed during training to avoid the fluctuations and
create a regularizing effect. The experiments in this study
show that repeatedly rescaling the weight size according to
the distribution provided by an initialization method results
in improved performance and generates a regularizing effect.

III. RELATED WORK

A. Dropout

Dropout was introduced in [20] and is a regularization
technique used to prevent overfitting in deep learning models.
It involves randomly dropping out, or setting to zero, some of
the neurons in the network during training. This effectively
reduces the capacity of the neural network and forces it to
learn redundant representations, subsequently reducing the
risk of overfitting. This forces the remaining neurons to
learn more robust and generalizable representations of the
data, resulting in improved performance on unseen test data.
Dropout has been shown to be effective in a variety of tasks,
including image classification, natural language processing,
and speech recognition. During testing or prediction, all
neurons are active.

B. Batch Normalization

Batch normalization was published in [10] and is a
now widely used technique for improving the stability and
performance of deep neural networks by reducing internal
covariate shift. The authors demonstrate that batch normal-
ization accelerates training by several orders of magnitude,
allowing deeper networks with more parameters to be trained
effectively. Furthermore, they show that batch normalization
improves generalization performance and robustness against
overfitting. Batch normalization is implemented as a layer
within a neural network, positioned between existing layers
to modify the input data prior to further processing. A batch
normalization layer introduces additional parameters to the
model in the form of scale and shift factors, which are
learned during the training process to optimize the transfor-
mation applied to each input mini-batch. Recent research has
shown that the effectiveness of batch normalization might
not primarily be due to mitigating internal covariate shift,
but rather through its ability to smooth the optimization
landscape [19] [3].

Batch normalization relies on mini-batches as its founda-
tion for calculating the mean and standard deviation of input
data, which effectiveness is highly dependent on the size of
the batches as a larger batch size leads to more accurate
statistical calculations. Large batches quickly exceed the
available memory capacity, especially in applications that
depend on high dimensional data like Computer Vision tasks
with high resolution images. On top of the growing memory
requirements associated with mini-batches and batch normal-
ization, there is also an extra computational overhead due to
the need to calculate the mean and standard deviation for
each input channel or feature map separately. The additional
trainable parameters increases the number of operations
required to compute the activations of each layer. Overall,
while batch normalization can improve the performance of
neural networks, it is important to consider the memory and
computational requirements associated with this technique
when designing and training deep learning models.

C. Weight Decay (WD)

Weight decay is a widely adopted regularization tech-
nique employed within the domain of machine learning,
particularly in neural network models. This method aims
to prevent overfitting by penalizing model parameters with
higher magnitudes during the training process. By imposing
this constraint on the weights, the model learns more gen-
eralizable and robust features while minimizing the risk of
overfitting to specific data points or patterns. Consequently,
weight decay enhances the overall performance and gener-
alization capabilities of machine learning models in various
applications [5]. In the following, θ denotes the parameters of
the neural network, which include the weights w and biases
b. Ldata(θ) denotes the loss function used to optimize the
network, like cross-entropy or mean squared error. R(θ) is
the regularization term and the final loss function L(θ) is

obtained by combining these as follows:

L(θ) = Ldata(θ) + λ ∗R(θ) (1)

λ is a hyperparameter that has to be choosen carefully when
applying weight decay. A λ that is too small does not prevent
overfitting and a λ that is too big leads to underfitting.
For this paper, we use the weight decay implementation
of the stochastic gradient descend optimizer from the deep
learning framework Pytorch, which utilizes a form of L2-
regularization. One disadvantage of weight decay is the need
for a λ hyperparameter, which is chosen by the user.

D. Generalization error

The generalization error is closely related to overfitting
or underfitting, which refers to the difference between the
performance of a neural network on the training data and its
actual performance on unseen test data. Overfitting occurs
when a neural network is too complex or there is not enough
data to represent the underlying data dirstribution. This
results in the model learning the noise and idiosyncrasies
present in the training set rather than capturing the underlying
patterns that are useful for making predictions on new, yet
unseen test data. In this case, the model’s performance on
the training dataset is high but fails to generalize well when
applied to new input. Underfitting, on the other hand, occurs
when a neural network is too simple or has not been trained
enough. This results in the model failing to capture essential
patterns present in the data and leads to poor performance
both during training and testing phases. The amount of
overfitting can be tested by cross-validation, where the whole
dataset D is split into three nonoverlapping subsets Dtrain,
Dval, Dtest, where Dtrain is used for training, Dval for model
validation and Dtest for testing [17].

The generalization error is represented by E . The loss is
represented by L and is calculated for both subsets Dtest
and Dtrain. The generalization error then is calculated by
subtracting the loss of the training data Dtrain from the loss
of the testing data Dtest.

E := L(Dtest)− L(Dtrain) (2)

Figure 2 shows the generalization error and compares no
regularization aginst weight decay with various λ values and
our new method of weight resclaing. The base/none experi-
ment without regularization shows the highest generalization
error but this was expected since it starts to overfit around
epoch 5. The line with weight decay and λ = 1e−4 still
exhibits significant overfitting, as the chosen λ is too small.
Conversely, the line for λ = 1e−2 shows that the value is
too large, resulting in excessive penalization of big weights,
which leads to underfitting. The line for weight decay with
a well-chosen λ = 1e−3, demonstrates a balance between
overfitting and underfitting while achieving high accuracies.
To this, the line for weight rescaling shows similar behavior
with a slightly lower generalization error.

Fig. 2: The y-axis shows the generalization error along the
epochs on the x-axis. The model is a three layer MLP
trained on CIFAR-10. The line in the middle shows the mean
generalization error for each experiment and the area shows
the min and max results for 100 repeated runs at the specific
epoch.

E. Weight Normalization (WN)

The method of weight normalization as proposed by
Salimans et al. [18] splits the weight vector w into two
trainable parameters for direction v and magnitude g., where
v is a k-dimensional vector, with the same dimensions as the
weights w and g is a scalar. Dividing v with its norm ||v||
and multiplying it with g allows to train the magnitude g
independent from the direction v.

w =
v

||v||
g (3)

weight normalization differs from weight rescaling as it
trains the magnitude for g directly, while in weight rescaling
the magnitude is rescaled periodically to the value defined by
the initialization method. Additionally, weight normalization
is incorporated into the optimization process, while weight
rescaling is executed once per epoch. The authors of weight
normalization report a speed up in the convergence during
training.

F. Weight ReScaling (WRS) by Liu et al.

Liu et al [14] proposed a method which rescales the
weight norm to the unit norm after a specified number
of optimization steps for each layer. The authors report
increased performance by their method.

w ← w

||w|| (4)

Unfortunately we were only made aware of this method
and its name during the final phase of creating this paper.
When we refer to this method we use Weight ReScaling
(WRS) by Liu et al. and when we refer to our method
we use weight rescaling. Our method rescales the weights
periodically during training just like this method. However,
weight rescaling does not scale the weight norm to the unit
norm, but to the scale according to the chosen initialization

method. Weight ReScaling (WRS) by Liu et al. is proposed
as an extension to batch normalization, while our method
of weight rescaling works independent of whether other
regularization methods are used.

G. Initialization

The goal of initialization is to set the neural network in a
trainable state. This includes breaking parameter symmetry
and establishing a descent flow of activations and gradients.
parameter symmetry is the concept, that if two neurons get
the same input, the same activation function and the same
initial parameters, then a deterministic learning algorithm
would always update the two neurons the same in the same
way, which hinders the learning process. If all parameters
are initalized with the same value, the network behaves like
it only consists of one neuron. To break parameter symmetry
we initialize the parameters of a neural network by a random
distribution. The inputs for a neuron can be described by
random variables, which are summed up. For the outcoming
variance it holds that the variance of the sum is the summed
up variance. Xavier et al. show in [4] that the variance of
a layer at initialization should be 1 to avoid exponentially
increasing or decreasing variance through the layers. This
means that the variance of each input should be at 1/n,
where n is the number of input features (not weights) coming
into the neuron. For the first layer in a neural network, n(1)

is the number of input features given by the data. We use
ℓ ∈ L = {1, . . . , L} as layer index for a network with
L layers to denote n(ℓ). If the layers are independent and
identically distributed (i.i.d) with a zero mean, having a
variance of 1 is helpful, since the resulting variance is a
product. If each layer variance is 1, the resulting product is
1 as well. With these findings Xavier et al. proposed [4] an
initialization method that is based on sampling initial weights
from a uniform distribution with suitable variance. In their
experiments they use a uniform distribution

w ∼ U
[
−σinit

√
3, σinit

√
3
]

(5)

with the standard deviation σinit given by

σ
(l)
Xavier :=

√
2

n(ℓ) + n(ℓ+1)
(6)

Xavier initialization was designed with a linear activation
function in mind. However, a neural network with linear
activation functions can only capture linear relationships
and a multi-layer network reduces into a single layer. With
nonlinear activation functions the neural network is able to
capture nonlinear relationships and multiple layers can be
stacked on top of each other. To introduce a nonlinear acti-
vation function Xavier et al. [4] use tanh in their experiments,
since it is zero-centered like a linear.

Pytorch [16] uses an optional gain scaling factor to
multiply with σ

(l)
Xavier, which Tensorflow [1] does not. The

scaling factor depends on the activation function, which is 1
when ignored, 5

3 with tanh and
√
2 with relu.

The authors of the Kaiming initialization develop their
method in [7] specifically for the nonzero-centered relu

activation function. Pytorch uses their method as default and
samples from a uniform distribution, where the boundaries
are defined by (5) with the standard deviation σinit given by

σ
(l)
Kaiming :=

gain√
n(ℓ)

(7)

The popularity of the Kaiming initialization method nowa-
days is mainly due to the populatity of relu as a nonlinear
activation function in neural networks. For our experiments
we initialize from a normal distribution with zero mean and
the standard deviation given by either σ

(l)
Xavier or σ

(l)
Kaiming for

the weights and setting the biases to zero.

H. Theory

We base the theory on the work of [4] and [7]. The pre-
activation p(ℓ) for one neuron of a dense layer is defined
as:

p(ℓ) = w(ℓ)x(ℓ) + b(ℓ), (8)

where w(ℓ) represents a n(ℓ) × n(ℓ+1) dimensional weight
matrix. At initialization, each element in w(ℓ) represents
a random variable, which is independent and identically
distributed (i.i.d.). x(ℓ) is the n(ℓ)-dimensional activation of
the previous layer, which we assume to be i.i.d. as in [4].
w(ℓ) and x(ℓ) are independent of each other. b(ℓ) is the
bias, which is 0 at initialization and is thus ignored for
the caluculation of the variance. By applying the activation
function ϕ to the pre-activations p(ℓ), we obtain the layer
output activations y(ℓ) = ϕ(p(ℓ)) that serve as inputs for the
next layer x(ℓ+1) = y(ℓ).

The authors of [7] show that the resulting output variance
for a neural network using the relu activation function at
initialization is

Var
[
y(L)

]
= Var

[
y(1)

](L∏
ℓ=2

n(ℓ)

2
Var

[
w(ℓ)

])
(9)

We discuss this relation under the conditions that arise during
training. (9) relies on the elements in w(ℓ) being i.i.d. with
zero mean, which is true for initialization, since we sample
the elements of w(ℓ) from a random normal distribution
with zero mean. Furthermore, w(ℓ) is independent to each
other layer. However, during training, the elements develop
correlations, which is why the variance through the network
can not be calculated as a product of the variances of the
weights anymore: Var[w(ℓ)w(ℓ+1)] ̸= Var[w(ℓ)]Var[w(ℓ+1)].
This means that the variance for Var[yL] is not the product of
the weight variances anymore like shown in (9). Furthermore,
their mean values deviate from zero. The definition for
Var[yL] becomes more dependent on the development of the
random variables, since their variance becomes dependent
on their mean and covariances. The fact that b(ℓ) could be
ignored at initialization is not the case for training, since their
mean, variance and covariance changes as well, additionally
influencing the variance calculation.

IV. WEIGHT RESCALING (WR)

We assume that Var[yL] becomes more volatile through
training and the variance per layer becomes more and more
chaotic as a self reinforcing mechanism. One of the goals of
initialization stated in [4] is for the variance to be the same
throughout each layer. We take this idea and apply it to the
training process, where the goal for the variance is to stay
approximately the same during training for each layer by

Var(y(ℓ)e) ≈ Var(y
(ℓ)
e+1) ℓ ∈ L, for e = e1, . . . , E − 1,

(10)
where E denotes the total amount of epochs a network is
trained. The optimal variance of a trained neural network
with correlating weights remains an open research question,
which is why we can not enforce it for now. However, we
introduce weight rescaling as a technique, by which we do
not determine the optimal variance of the trained neural
network but rescale the weights w(ℓ) to the initialization
variance after each epoch. With this, the development of the
variance is limited by the amount of data used in an epoch
and we introduce a form of upper/lower boundary for the
variance.

Weight rescaling sets the magnitude of the weights of
a neural network by standardizing the weights and then
scaling them according to a initialization method. Instead of
training parameters like in batch normalization, we take the
knowledge gained from initialization and rescale the weights
to the standard deviation σinit, which can be σ

(l)
Xavier, σ

(l)
Kaiming

or another initialization method. When interpreted as vectors,
weights w(ℓ) can be divided into their direction and magni-
tude. We assume that the orientation contains the structural
information of a given feature, while the magnitude describes
their descriptive strength. We do not want to change the
learned direction but only their magnitudes. In some sense,
by enforcing the standard deviation to scale back we can
re-initialize the weights but with a better internal structure.
The first step is to standardize the weights by calculating the
z-scores from the weights of a given layer w(ℓ) like shown
in (11). µ represents a function that calculates the mean, and
σ represents a function that calculates the standard deviation
of a given variable.

z(ℓ) ← w(ℓ) − µ(w(ℓ))

σ(w(ℓ))
(11)

In the second step, the z-scores z(ℓ) are multiplied with the
standard deviation given by the initialization strategy σinit.
If the mean of the weights µ(w(ℓ)) deviates from zero, the
z-score changes the signs of values close to the mean value.
To counteract this, the initial mean of the weights µ(w(ℓ))
has to be added again.

w(ℓ) ← z(ℓ) · σinit + µ(w(ℓ)) (12)

Weight rescaling only relies on the weights of a layer and
does not incorporate activation or gradient information. This
allows it to be applied at arbitrary moments during training.
Experiments show good results when weight rescaling is
applied once per epoch. This allows the variance of the

weights only to grow to a point given by the dataset. We
treat weight rescaling as a form of re-initialization and reset
the biases to 0 each time weight rescaling is executed. In the
experiments, weight rescaling is used on all fully connected
and conv2d Layers.

V. METHODS

The following segment shows a description of the evalu-
ation procedure that encompasses model selection for the
statistical analysis. This is followed by the experimental
setup, covering aspects such as training, dataset and model
architectures.

A. Evaluation Metrics

Each experiment describes a configuration on which a
model is trained, e.g., an architecture with weight rescaling
is denoted as an experiment and the same architecture with
no regularization method as a different experiment. To assess
the stochastic effects from random intialization and random
data shuffle during training, we execute the training multiple
times and call each execution a run. Taking the mean test
accuracy of all runs allows to observe the performance of the
training process and determine the amount of overfitting in
a plot. However, the mean test accuracy throughout training
is misleading to determine the experiments performance,
since the metric incorporates factors like overfitting and
model convergence speed, which are undesireable in the
performance metric. For a performance metric we have to
take into account how neural networks are used in practice,
which is the same reason, why overfitting is less problematic
than it first seems. In practice, a model selection step is
implemented which takes the epoch at which the model
performs best on the validation dataset Dval and then evaluate
on the test dataset Dtest. For an accurate metric the training
process is not important, but only the best performing model
of each run is. We randomly sample a family of runs R from
our random initialization distribution and execute each run
r ∈ R for E epochs. Let accr(e;Dval) denote the validation
accuracy on dataset Dval for run r at epoch e. Then, we
define the best performance of each run r over all epochs
as:

acc∗r(Dval) := max
e∈{1,...,E}

(accr(e;Dval)) for r = 1, . . . , R

(13)
Instead of selecting the best validation accuracy for each run
at every epoch, we want to select the epoch with the best
validation accuracy for each run. We define:

e∗r := argmax
e∈{1,...,E}

(accr(e;Dval)) for r = 1, . . . , R (14)

By collecting the epochs at which the run reaches its max-
imum valudation accuracy we can observe if the experiment
has the ability to increase in performance, if the training
coninues for longer. For this we set:

e∗ = [e∗1, . . . , e
∗
R] (15)

Taking the mean of e∗ is a metric which indicates that the
model shows overfitting at an early point in training, while a

big mean epoch indicates that the model still has the ability
to improve the performance when training is continued. For
the performance metric, we take the best performing e∗r from
Dval and compute the corresponding accuracy on test dataset
Dtest. We set:

accr(Dtest) := accr(e
∗
r ;Dtest) (16)

Finally, we set acc(Dtest) as a collection of test accuracies
for the best performing runs.

acc(Dtest) := [acc1(Dtest), . . . , accR(Dtest)] (17)

This allows to reduce the impact of the selection process
on the metric. To make statements about the performance
of an experiment, we calculate the mean and standard
deviation of acc(Dtest). Afterwards we use the distribution
of acc(Dtest) for each experiment and test with the Two
sided Mann-Whitney-U-Test if the experimental differences
are significant.

B. Experimental Setup

In the optimization process, we employ Stochastic Gra-
dient Descent (SGD) with a momentum of 0.9 and a static
learning rate of 1e−3 to minimize the cross-entropy loss. The
dataset is CIFAR10, which Alex Krizhevsky [11] proposed.
This dataset consists of 60,000 RGB color images with
dimensions of 32 × 32 pixels which belong to 10 distinct
classes. The categories encompass real-life objects such as
airplanes, cats, or trucks. The CIFAR10 dataset is partitioned
into three subsets: a training set Dtrain containing 40,000
images, a validation set Dval with 10,000 images, and a
testing set Dtest consisting of another 10,000 images. The
MLP contains three fully connected layers with the input
layer having 32 neurons, the hidden layer 32 neurons and
the output layer having 10 neurons for the 10 classes
of CIFAR10. The number of trainable parameters in this
architecture is 199,082 and it uses relu as activation function.
LeNet-5 was introduced in [13] and consists of Convolution,
Maxpooling and Dense Layers. The architecture contains
62,006 trainable parameters and uses tanh as activation
function. AlexNet was introduced in [12] and can be seen
as a bigger version of LeNet-5. However, it incorporates
relu instead of tanh as the activation function. The architec-
ture contains 57,044,810 trainable parameters. For AlexNet
we use the architecture implemented in Pytorch and adapt
the last layer to contain 10 neurons instead of 1000. The
architecture contains dropout as regularization method for
the fully connected classifier. ResNet was introduced by [6]
and uses residual layers which forward the activation of a
layer by adding the previous activation on top of the current
activation. For ResNet we use the architecture implemented
in Pytorch, which includes batch normalization, and we
adapt the last layer to contain 10 neurons instead of 1000.
The architecture contains 23,520,842 trainable parameters
and uses relu as activation function.

VI. RESULTS

The paper presents empirical evidence regarding the ap-
plication of weight rescaling in various deep learning mod-
els trained on the CIFAR10 dataset. In the first section,
we compare the performance of weight decay with weight
rescaling using a MLP with relu activation functions. The
second section investigates the impact of weight rescaling
when the activation function is tanh in the LeNet-5 model.
In the third section, we apply weight rescaling to an AlexNet
model with dropout regularization. Finally, we examine the
effectiveness of weight rescaling on a ResNet-50 model
with batch normalization. All experiments were repeated
multiple times and tested against random fluctuations to
ensure statistical significance. The sample size for the ex-
periments ranges between 100 to 20, which is why we take
the standard threshold of αbase = 5e−2 as a baseline. Since
we apply multiple statistical comparisons on the results we
have to counteract the family-wise error rate, which we do
by applying the Holm-Bonferroni method [9]. We do this by
calculating a specific α for each comparison by dividing the
αbase by the number of tests T by that are done on the data.

α =
αbase

T
. (18)

In the tables a * indicates that the p-value is below the α for
this comparison.

A. MLP: Weight Decay vs. Weight Rescaling

Weight decay and weight rescaling show similarities as
they both do not change the models’ architecture but are
employed in the training process. This section serves to show
the similarities and differences among weight decay and
weight rescaling on the MLP model, where each experiment
contains 100 runs. In order to establish an appropriate weight
decay setting, three distinct λ values (1e−2, 1e−3, 1e−4)
are chosen based on best practices and empirical testing.
The optimal value for λ, is likely situated between these
options and depends on both, the architecture of the model
and the characteristics of the dataset. Figure 3 shows the
MLP training process for each experiment. The experiments
for base/none without regularitation and weight decay with
a small λ = 1e−4 show clear overfitting by spiking around
epoch 10 and dropping of afterwards. With a big λ = 1e−2

the test accuracy does not show overfitting. However it does
not reach its full potential, recalling the observations of the
low generatlization error in Figure 2. Weight rescaling and
weight decay with λ = 1e−3 show a similar training curve
of the test accuracy without overfitting. However there is
one striking difference between the training curve of weight
rescaling and weight decay with λ = 1e−3, which is that
weight rescaling converges slower than weight decay with
λ = 1e−3.

The results show that weight rescaling does in fact avoid
overfitting, just like weight decay does, if a good λ value
is selected. However, another important feature of regular-
ization is to increase the performance. By selecting the best
performing models of a run according to (17) and calculating

Fig. 3: MLP trained on CIFAR10 for the Base/None exper-
iment without regularization, weight rescaling and weight
decay with various λ values. The line in the middle shows
the mean test accuracy and the area shows the min and max
results for 100 repeated runs at the specific epoch.

their distributional statistics an increased performance is
revealed. The mean and standard deviation are shown in
Table I. The results display increased performance for weight
rescaling and weight decay with λ = 1e−3.

TABLE I: The mean and standard deviation for the test
accuracies calculated by 17 and the overfitting indicator
calculated by 15 for the MLP experiments.

Regularization acc(Dtest) e∗

Base/None 48.72%± 0.48 14.02± 04.40
WR 50.08%± 0.50 76.01± 20.52
WD: λ = 1e−2 48.00%± 0.45 58.93± 24.27
WD: λ = 1e−3 50.17%± 0.48 61.41± 23.76
WD: λ = 1e−4 48.90%± 0.53 15.86± 05.17

While the performance is increased we have to check
if the effect is significant and is not explained by random
sampling. Table II shows the Mann-Whitney-U-Test of the
acc(Dtest) distributions. Due to combinatory complexity the
table does not list the test results for weight decay with a
λ = 1e−2 and λ = 1e−4, since they show results close
to the Base experiment. The results show small p-values
for weight rescaling and weight decay with λ = 1e−3

when compared to the Base/None experiment, which strongly
indicates that their results stem from different distributions.
This concludes that the performance increase is not due to
random fluctuations but due to a significant impact of weight
rescaling and weight decay with a λ = 1e−3. Even though
weight rescaling shows a slightly lower mean accuracy than
weight decay with λ = 1e−3, the p-value between them is
large, indicating that the performance increase between them
is not significant.

B. LeNet-5: Tanh as Activation Function

Figure 4 shows the test accuracy for LeNet-5, where each
experiment contains 50 runs. LeNet-5 does not utilize any
measures for regularization which is why clear overfitting is

TABLE II: Results of the two sided Mann Whitney U Tests
for independent samples on the MLP experiments. The *
indicates significant differences in the rank sum of the two
groups with a p-value below α = 1.6e−2.

Group 1 Group 2 Mann-Whitney-U-Test
statistics p-value

Base/None WR 1.20e1 1.01e−31*
Base/None WD: λ = 1e−3 3.00e0 1.87e−32*
WR WD: λ = 1e−3 2.08e3 1.31e−1

visible in the lines for Base/None. Since LeNet-5 utilizes
tanh for this comparison we experiment with the initial-
ization methods for Xavier and Kaiming in combination
with weight rescaling. Like stated in III-G Pytorch allows
to use of the gain scaling factor with Xavier initialization.
Experiments with different different gain values show similar
results, which is why we only report the results for gain = 1.
For the Kaiming experiments we act like relu is used and
take gain =

√
2 to calculate σ

(l)
Kaiming. Even Though weight

rescaling reduces overfitting when applied with Xavier or
Kaiming, it does not entirely avoid it like in the MLP results
3 with relu.

Fig. 4: Test accuracy graph of LeNet-5 where each exper-
iment contains 50 runs. Showing strong overfitting for the
base experiments without weight rescaling and less overfit-
ting in experiments With weight rescaling. Even though the
network uses tanh as an activation function weight rescaling
with Kaiming shows better results.

Figure 4 demonstrates the Test Accuracy during training.
Interestingly, LeNet-5 achieves better results when using
Kaiming initialization with or without weight rescaling com-
pared to Xavier initialization, despite tanh being its activation
function. This is unexpected because the experiments from
Xavier et al. [4] were done with tanh and we expected
that Xavier initialization would create better results with
activation functions that are zero-centered like the linear
activation function. Kaiming initialization was developed
with relu in mind, which is not zero-centered.

Furthermore, it appears that our regularization method of
weight rescaling is less effective in enhancing models with
tanh as their activation function compared to those using

relu.

TABLE III: LeNet-5 CIFAR10 result table which shows that
Kaiming initialization and weight rescaling works better than
Xavier even though tanh is used in the LeNet-5 architecture.
However, the low mean e∗ shows that all experiment are
overfitting.

Regularization acc(Dtest) e∗

Base: Xavier 53.99%± 1.22 06.04± 01.51
WR: Xavier 54.21%± 1.19 15.76± 20.31
Base: Kaiming 55.49%± 0.99 04.78± 00.97
WR: Kaiming 56.22%± 1.06 17.18± 22.03

The acc(Dtest) and e∗ results in Table III confirm these
observations. The mean e∗ for weight rescaling is higher
than for the Base/None experiment. The mean e∗ is low when
compared to the results of the MLP in Table I or the results
for AlexNet and ResNet-50 in Table V. The mean acc(Dtest)
with weight rescaling is slightly increased compared to the
base model in the case of Xavier with 54.21%− 53.99% =
0.22%. However the performance increase is much larger
in the case of Kaiming with 56.22% − 55.39% = 0.73%.
Another interesting fact is that initialization using Kaiming
performed better in general with a difference of 55.49% −
53.99% = 1.5%.

TABLE IV: Comparison between LeNet-5 with and without
weight rescaling when applied with Xavier or Kaiming
initialization. Significance is shown by the two sided Mann
Whitney U test for independent samples. The * indicates
significant differences in the rank sum of the two groups
with a p-value below alpha = 8.3e−3.

Group 1 Group 2 Mann-Whitney-U-Test
statistics p-value

Base: Kaiming WR: Kaiming 1.16e2 5.38e−4*
Base: Kaiming Base: Xavier 9.25e1 4.80e−10*
Base: Kaiming WR: Xavier 1.60e2 5.04e−8*
WR: Kaiming Base: Xavier 6.80e1 2.94e−13*
WR: Kaiming WR: Xavier 7.20e1 3.95e−12*
Base: Xavier WR: Xavier 5.20e2 2.66e−1

For the statistical analysis in Table IV, most groups show
significant differences to the other group with a small p-
value. This tells us that the performance improvements from
weight rescaling with Kaiming are significant. However,
the p-value for "Base: Xavier" and "WR: Xavier" is large,
which indicates that weight rescaling has no impact on the
performance when used with Xavier initialization on a tanh
network. The results show that weight rescaling improves
the performance on tanh networks, but it does not avoid
overfitting. This indicate that weight rescaling does not create
optimal results when combined with an activation function
with a "s-shaped curve" like tanh compared to a noncurved
activation function like relu. For all other experiments in this
paper we use weight rescaling with Kaiming.

C. AlexNet: Dropout and Weight Rescaling

Figure 5 shows the test accuracy during training for the
AlexNet architecture. The Base experiments with dropout is

shown in blue and the experiment with dropout and weight
rescaling is shown in orange. Upon examining the blue
line, it is evident that the performance of the experiment
without weight rescaling differs from those observed in MLP
VI-A and LeNet-5 VI-B. The other experiments display
a sharp increase followed by a decline in test accuracy.
However, AlexNet demonstrates distinct behavior. Its test
accuracy rises and stays steady until reaching epoch 20,
at which point the runs begin to deteriorate rapidly. Unlike
the overfitted models that remain well beyond chance level,
AlexNet experiences a total collapse and does not fully
recover. The dropout rate is 50% and AlexNet shows a
regularizing effect in the beginning, but it might be too high
for longer training. Adding weight rescaling to the training
process fixes the model collapse. The results of AlexNet in
combination with LeNet-5 show that weight rescaling does
not only create significantly better results on Fully Connected
Layer, but in architectures with Conv2d Layers as well.

Fig. 5: Test accuracy graphs for the AlexNet experiments
with dropout in blue and dropout plus weight rescaling in
orange, where each experiments contains 20 runs.

D. ResNet-50: Batch Normalization and Weight Rescaling

Figure 6 shows the accuracy Test Accuracy during training
of 40 repeated runs. The blue line shows the Base experiment
with batch normalization and the orange line shows the
experiment with batch normalization and weight rescaling.
Compared to AlexNet, ResNet-50 does not collapse and it
shows no signs of overfitting. Generally the two curves look
simlar to each other, indicating successful regularization in
both experiments.

The result in Table V show the performance of AlexNet
and ResNet with and without weight rescaling. We can see
that in both cases weight rescaling increases the performace
of the architecture. For AlexNet the performance increase is
70.63%− 68.33% = 2.33% and for ResNet-50 the increase
is 70.31% − 69.46% = 0.85%. While the performance
improvement for AlexNet is much larger, Table VI shows
that both improvements are significant.

In addition to the significantly improved performance,
weight rescaling improved the ability to reach better per-

Fig. 6: Test accuracy for ResNet-50 with batch normalization
in blue and with batch normalization plus weight rescaling
in orange, where each experiment contains 40 runs.

TABLE V: Performance Table of AlexNet and ResNet with
and without weight rescaling. For both architectures weight
rescaling did improve the performance

Architecture Regularization acc(Dtest) e∗

AlexNet Base 68.33%± 0.42 18.20± 03.59
AlexNet WR 70.63%± 0.54 80.10± 16.30
ResNet-50 Base 69.46%± 0.80 76.50± 22.30
ResNet-50 WR 70.31%± 0.86 61.17± 19.18

formance on later epochs on AlexNet, by stabilizing training
as well.

TABLE VI: The tests show that the performance improve-
ments by weight rescaling with Kaiming for AlexNet and
ResNet-50 are significant. Significance is shown by the two
sided Mann Whitney U test for independent samples. The *
indicates significant differences in the rank sum of the two
groups. Since the test uses different data for each test the
alpha = 5e−2 is equal to the αbase.

Group 1 Group 2 Mann-Whitney-U-Test
statistics p-value

AlexNet: Base AlexNet: WR 0e0 6.80e−8∗
ResNet: Base ResNet: WR 1.10e1 5.53e−4∗

With the experiments we are able to show that each archi-
tecture shows a significant boost in performance by adding
weight rescaling. The results are comparable to weight
decay, without the need to define additional hyperparameter.
Weight rescaling works best on architectures utilizing relu as
activation function with Kaiming initialization and Kaiming
based weight rescaling. While a tanh architecture can be
significantly improved by Kaiming based weight rescaling
it still showed overfitting, which was not present in any of
the relu architectures. For the case of AlexNet with dropout,
weight rescaling showed stabilizing properties in the training
process in addition to significantly improving the perfor-
mance. Finally weight rescaling was able to significantly
improve the results of ResNet-50, which already utilizes
batch normalization.

VII. DISCUSSION

In this section we go back to the theory presented in III-H
and explain how the variance propagation through training
changes when weight rescaling is applied. The upper plot
of Figure 7 shows the variance of the pre-activations in
each layer without regularization. The Figures show the pre-
activations p(l) instead of the activations after the activation
function for consistency sake, since the last layer of the MLP
does not include a relu activation function. All 100 runs were
initialized by a normal distribution with a standard deviantion
given by σ

(l)
Kaiming. The pre-activation increases quickly after

initialization and does not decrease during training The pre-
activation variance for the input and output layer increase
much slower compared to the hidden layer. We assume that
the pre-activation variance for the input and output layer are
bound by the data in the supervised classification task on
CIFAR10. The drastic increase in variance in the hidden layer
indicates that the model becomes less stable. Small changes
in the incoming activations to the hidden layer can result in
big changes to the output of the hidden layer, which makes
the model more sensitive to noise.

Fig. 7: The x-axis shows the epoch and the y-axis shows the
pre-activation variance. The plots show the three layers of
100 MLP networks, where each color represents a different
layer. The upper plot does not use regularization, while the
lower plot uses weight rescaling.

The lower plot of Figure 7 shows the variance of the

pre-activations in each layer with weight rescaling as reg-
ularization method. At the beginning of training, models are
initialized with low variance, but after the first epoch, the
variance increases rapidly. The difference between having
no regularization and using weight rescaling is evident. In
contrast to unregulated models, where variance grows indef-
initely, weight rescaling limits the variance for each layer.
This prevents self-reinforcing effects on variance growth,
making the model more stable and less sensitive to noise.
Additionally, the goal definition from (10) holds true for later
epochs but not for early ones where the variance deviates
before it appears to converge towards a layer-specific point.

VIII. CONCLUSION AND OUTLOOK

In general, using initialization strategies during training
has proven to be an effective technique for stabilizing the
training process and improving performance in neural net-
works. One such method is weight rescaling, which serves
as a regularization technique without requiring additional
hyperparameters while being efficient in terms of memory
requirements and computational resources. With the advance-
ment of new initialization strategies that involve sampling
weights from random distributions, weight rescaling can be
further improved by incorporating their standard deviation
σinit into the scaling formula from (12).

In the future, we aim to demonstrate the effectiveness of
weight rescaling beyond just supervised classification tasks.
This includes scenarios where batch normalization cannot
be applied, such as in recurrent models or highly sensi-
tive applications like reinforcement learning and generative
models. To further explore this topic, additional experiments
could involve modifying the variance convergence point
by adjusting the learning rate, applying weight rescaling
multiple times within an epoch, or changing the layer width.
In this context it might be beneficial to incorporate weight
rescaling into the loss function by approximating optimal
variance for each layer, which develops in the lower plot
of Figure 7. Another interesting area for exploration could
involve rescaling biases in a similar manner to weights
instead of resetting them to 0. Furthermore, comparing the
performance of weight rescaling with other regularization
techniques like layer normalization could be of interest.

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - 456666331

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zhang. Tensorflow: A system
for large-scale machine learning. CoRR, abs/1605.08695, 2016.

[2] Abien Fred Agarap. Deep Learning using Rectified Linear Units
(ReLU), February 2019. arXiv:1803.08375 [cs, stat].

[3] Johan Bjorck, Carla Gomes, Bart Selman, and Kilian Q. Wein-
berger. Understanding Batch Normalization, November 2018.
arXiv:1806.02375 [cs, stat].

[4] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 249–256. JMLR Workshop and Conference Proceed-
ings, March 2010.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, November 2016.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition, December 2015.
arXiv:1512.03385 [cs].

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. CoRR, abs/1502.01852, 2015.

[8] Jeff Heaton. Ian Goodfellow, Yoshua Bengio, and Aaron Courville:
Deep learning. Genetic Programming and Evolvable Machines,
19(1):305–307, June 2018.

[9] Sture Holm. A Simple Sequentially Rejective Multiple Test Procedure.
Scandinavian Journal of Statistics, 6(2):65–70, 1979.

[10] Sergey Ioffe and Christian Szegedy. Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift,
March 2015. arXiv:1502.03167 [cs].

[11] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. University of Toronto, 2009.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, November 1998.

[14] Ziquan Liu, Yufei Cui, Jia Wan, Yu Mao, and Antoni B. Chan. Weight
Rescaling: Effective and Robust Regularization for Deep Neural
Networks with Batch Normalization, June 2022. arXiv:2102.03497
[cs, stat].

[15] N. Morgan and H. Bourlard. Generalization and Parameter Estimation
in Feedforward Nets: Some Experiments. In Advances in Neural
Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. CoRR, abs/1912.01703,
2019.

[17] Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of
Deep Learning Theory, May 2022. arXiv:2106.10165 [hep-th, stat].

[18] Tim Salimans and Durk P Kingma. Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Networks.
In Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[19] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Madry. How Does Batch Normalization Help Optimization?, April
2019. arXiv:1805.11604 [cs, stat].

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

	INTRODUCTION
	Weights
	Related Work
	Dropout
	Batch Normalization
	Weight Decay (WD)
	Generalization error
	Weight Normalization (WN)
	Weight ReScaling (WRS) by Liu et al.
	Initialization
	Theory

	Weight Rescaling (WR)
	Methods
	Evaluation Metrics
	Experimental Setup

	Results
	MLP: Weight Decay vs. Weight Rescaling
	LeNet-5: Tanh as Activation Function
	AlexNet: Dropout and Weight Rescaling
	ResNet-50: Batch Normalization and Weight Rescaling

	Discussion
	Conclusion and Outlook
	References

