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Abstract— Shapley values have multiple desired and theoret-
ically proven properties for explaining black-box model predic-
tions. However, the exact computation of Shapley values can
be computationally very expensive, precluding their use when
timely explanations are required. FastSHAP is an approach for
fast approximation of Shapley values using a trained neural
network (the explainer). A novel approach, called FF-SHAP, is
proposed, which incorporates three modifications to FastSHAP:
i) the explainer is trained on ground-truth explanations rather
than a weighted least squares characterization of the Shapley
values, ii) cosine similarity is used as a loss function instead of
mean-squared error, and iii) the actual prediction of the un-
derlying model is given as input to the explainer. An empirical
investigation is presented showing that FF-SHAP significantly
outperforms FastSHAP with respect to fidelity, measured using
Spearman’s rank-order correlation. The investigation further
shows that FF-SHAP even outperforms FastSHAP when using
substantially smaller amounts of data to train the explainer, and
more importantly, FF-SHAP still maintains the performance
level of FastSHAP even when trained with as little as 15% of
training data.

I. INTRODUCTION

The application of state-of-the-art machine learning algo-
rithms in solving real-world problems in many domains, e.g.,
medicine and law, is limited by that the algorithms often
produce black-box models [1]. Additionally, comprehending
the reasoning behind the predictions is essential for verifica-
tion and building confidence in such models [2]. Employing
algorithms that produce interpretable (white-box) models,
such as generalized linear models and decision trees, can
provide the needed insights into how the predictions are
derived. However, in many cases, using white-box models
results in a significant reduction in predictive performance
[3]. Therefore, the field of explainable machine learning
has become an active research area as a way to achieve
interpretability without compromising performance.

Explanation methods fall into two categories: model-
agnostic methods that can explain any black-box model and
model-specific methods that leverage the characteristics of
the underlying black-box model to generate explanations, tar-
geting models such as random forests [4], [5] and deep neural
networks [6], [7]. Model-agnostic methods, such as LIME
[8] and SHAP [9], focus on explaining a single prediction
by feature scores that reflect the relative importance of each
feature toward the predicted outcome. Methods that produce
Shapley values as explanations are favored since they provide
a solution that has been shown by [9] to be unique in the
class of additive feature attribution methods, and satisfies the
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desired properties of local accuracy (the explanation matches
the underlying model), missingness (a missing feature is
attributed a value of zero), and consistency (when a model
changes and a feature’s contribution remains the same or
increases, the Shapley value does too). However, exact
computation of Shapley values requires forming coalitions of
features and multiple model evaluations, and the number of
the required coalitions grows exponentially with the number
of features. Methods that do not produce Shapley values, e.g.,
LIME and Anchor [10], can also be computationally inten-
sive. For instance, LIME involves creating a local (white-
box) surrogate model that can be used to explain a single
prediction. Consequently, methods have been proposed to
reduce the cost of model-agnostic explainers, e.g., L2X [11],
INVASE [12], REAL-X [13], and FastSHAP [14]. Notably,
the state-of-the-art technique FastSHAP differentiates itself
from the others by approximating Shapley values using a
trained neural network (the explainer).

In this work, we propose a novel approach, called FF-
SHAP (high fidelity fast approximation method of Shapley
values), which makes three important modifications to Fast-
SHAP: i) the explainer is trained using ground truth Shapley
values, ii) cosine similarity is used as an objective function
to maximize the similarity between the approximated and
ground truth Shapley values, and iii) the black-box model
prediction is given as input to the explainer.

We will argue for why these modifications can be expected
to improve fidelity of the approximated explanations, without
sacrificing computational performance. This argumentation
is supported by presented results from an empirical investi-
gation, in which FF-SHAP is compared to FastSHAP, and
fidelity is measured using Spearman’s rank-order correlation
[15]. We also provide an ablation study where the effect of
the two last components is investigated.

The next section provides a brief background on explain-
able machine learning. In Section III, we briefly discuss
related work. In Section IV, the proposed method for ap-
proximating Shapley values is described and motivated. In
Section V, we present and discuss the results of the empirical
investigation. Finally, in Section VI, we summarize the main
findings and outline directions for future work.

II. BACKGROUND

Explainable Machine Learning is a field that focuses
on making opaque machine learning models more under-
standable to users. While state-of-the-art machine learning
models often deliver impressive performance, they usually
act as black boxes, making it challenging to understand how



they arrive at their decisions. Explainable Machine Learn-
ing methods aim to bridge this gap by providing human-
understandable explanations for model predictions, which
allow users to trust, validate, and comprehend the reasoning
behind the model’s outputs. Explainable Machine Learning
methods come in various forms, including visualizations, fea-
ture importance scores, surrogate models, and rule extraction
methods.

Examples of popular approaches for explaining machine
learning models by visualizations are Partial Dependence
Plots (PDPs) [16] and Individual Conditional Expectation
(ICE) plots [17], which visualize the relationship between
a feature and the model’s predictions while marginalizing
the remaining features. Another popular approach is rule-
based explanation methods, e.g., Anchors [10], which aim to
provide explanations by generating human-readable rules that
mimic the decision-making process of the model. Explaining
models through additive feature importance scores is one
more favored approach. The class of additive feature impor-
tance scores involves methods that quantify the contribution
of each input feature toward the model’s predictions in a
straightforward additive form. The importance scores provide
a clear understanding of which features greatly impact the
model’s output, making it a widespread method for inter-
preting and explaining complex machine learning models.
However, it’s essential to recognize that these scores may
not capture interactions between features accurately.

The concept of Shapley values is borrowed from cooper-
ative game theory and has found significant application in
explainable machine learning. Developed by Lloyd Shapley
in the early 1950s [18], Shapley values provide a principled
way to allocate each player’s contribution in a coalition
game. In the context of machine learning, the "players"
represent the input features, and the "game" represents the
predictive model. Explaining machine learning predictions
using Shapley values involves calculating the marginal con-
tribution of each feature towards a particular prediction
across all possible combinations of features [19]. Shapley
values ensure that the contributions of features are additive
and sum up to the overall prediction. An example of an
explanation based on Shapley values is illustrated in Figure
1.

III. RELATED WORK

Since the computation of the exact Shapley values can
be infeasible due to the number of coalitions that need
to be generated, recent research efforts on Shapley value
explanations have focused on reducing the computational
cost. Lundberg et al. [9] introduced KernelSHAP, a method
that approximates Shapley values by randomly sampling
feature coalitions and subsequently training a linear model
to approximate the Shapley values. Model-specific variants
can provide relatively faster approximations since they utilize
specific properties of the explained model, e.g., TreeSHAP
[20] for tree-based models and DASP [21] for deep neural
networks. [22] proposed L-Shapley and C-Shapley for text

Fig. 1: An example of an explanation generated by Ker-
nelSHAP for a positive prediction made by an XGBoost
model on the Adult dataset.

and image classification, which employ a graphical data rep-
resentation. H-Shap (Hierarchical Shap) [23] has also been
introduced for image classification explanations as a fast and
precise implementation to compute Shapley coefficients. [24]
proposed the unbiased version of KernelSHAP alongside
a convergence detection technique and variance reduction
through paired sampling that also helps in faster convergence.

Methods to generate explanations using a pre-trained
model have been investigated. [11] proposed to train a fea-
ture selection model by maximizing the mutual information
between the selected features and the predicted variable
by the black-box model. INVASE [12] is also conducting
feature selection, however, INVASE is composed of 3 neural
networks (a selector, a predictor, and a baseline), which
are employed to train the feature selector. CXPlain (causal
explanation) [25] trains a model to estimate the extent to
which specific inputs influence the outcomes of another
machine-learning model. Situ et al. [26] suggested that any
off-the-shelf explanation algorithm can be distilled into an
explainer neural network, with their approach named L2E
(Learning to Explain), primarily concentrating on emulating
explanations for text classification tasks. [13] introduced
REAL-X, an amortized explanation method designed to gen-
erate explanations that align closely with the observed data
in a single forward pass. As previously mentioned in Section
I, FastSHAP [14] is distinguished by approximating the
Shapley values using a trained model, a demanded property
as Shapley values provide the sole solution that satisfies local
accuracy, missingness, and consistency properties. FastSHAP
evades the need for generating training data of ground truth
Shapley values in order to train a model to approximate
these values, which is achieved by employing a custom
loss function with mean squared error (MSE) component
that ensures the global optimizer functions as a means that
produces the Shapley values. This methodology enables the
training of the explainer model in a convenient time.

IV. THE PROPOSED METHOD

The performance of FastSHAP has yet to be compared
to the training based on pre-generated ground truth Shapley



values, as it is not clear if FastSHAP is achieving the same
levels of fidelity as explainers trained on ground truth values.
Moreover, at the inference time, FastSHAP receives only the
features of the data instances without information about the
outcome of the underlying black-box model. Hence, it is
helpful to assess the impact of providing the explainer not
only with the input features but also with the output of the
underlying black-box model. Additionally, FastSHAP allows
only the use of MSE in the loss function. Consequently, using
ground truth Shapley values allows experimenting with other
objective functions rather than MSE.

[24] showed that KernelSHAP converges to the true
Shapley values when provided with a large number of
samples. Consequently, the ground truth training data (Φ)
can be obtained by allowing KernelSHAP to sample data
and evaluate until it converges to some values, which can
be time-consuming for high-dimensional data. However, the
ground truth values are generated once at the training time. In
contrast to FastSHAP, we propose that the input data instance
x composed of d features x = [f1, f2, ..., fd] can be supple-
mented by the predicted outcome of the black-box model p =
[p1, p2, ..., pc] to provide x∗ = [f1, f2, ..., fd; p1, p2, ..., pc],
and an explainer ϕff (x∗; θ) can be trained to learn a map-
ping from x∗ to ϕ = [δ1, δ2, ..., δd]. The FF-SHAP model
ϕff (x∗; θ) predicts an approximation of Shapley values ϕ̂i

for the i-th data instance, and a gradient-based optimization
is carried out to minimize the difference between ϕ̂i and
the ground truth ϕi using a loss function, e.g., MSE. The
proposed method is summarized in algorithm 1.

Algorithm 1: FF-SHAP
Data: data instances X, black-box model β, a loss

function γ, number of training epochs n and
KernelSHAP ϕkernel(x, β)

Result: FF-SHAP ϕff (x; θ)
Initialize ϕff (x; θ)
Φ← {}
for xi ∈ X do

explain Φ
+← ϕkernel(xi, β)

end
for number of training iterations n do

for xi ∈ X do
pi ← β(xi)
x∗i ← (xi;pi)
ϕ̂i ← ϕff (x∗i ; θ)
L ← γ(ϕ̂i, ϕi ∈ Φ)
Compute gradients ∇θL
Update θ ← θ −∇θL

end
end

Similarity metric. Picking the correct performance metric
sets the compass for a machine learning process, as it shapes
the optimization process and impacts the model’s ability to
meet the desired outcomes. [27] showed that Spearman’s
rank-order correlation is a suitable metric when it comes

to similarity measurement between explanations, and the
Euclidean distance, for example, can fail to detect similarity.

Since different estimations of Shapley values may bear
different scales, metrics affected by the magnitudes of the
features, e.g., l2 distance, can lead to a misleading impression
of closeness or similarity between approximated values and
the ground truth values. We devise a toy example for
illustration, where the ground truth is ϕ = [0.15, 0.2, 0.1] with
two estimations ϕ̂1 = [0.3, 0.45, 0.2] and ϕ̂2 = [0.01, -0.01,
0.0]. According to the results as shown in Table I, l2 distance
indicates that ϕ̂2 is a better approximation to the ground truth
than ϕ̂1 since it is a smaller distance, which is not true if the
cosine similarity or Spearman’s rank-order correlation are
used, where the cosine similarity measures the similarity in
the orientation between two vectors of feature scores [28],
and the Spearman’s rank-order measures the similarity in
ranking the feature scores [27].

TABLE I: The similarity between the ground truth ϕ and two
different approximations ϕ̂1 and ϕ̂2 using 3 possible metrics.

l2 distance Cosine Spearman

f (ϕ, ϕ̂1) 0.308 0.998 1.0
f (ϕ, ϕ̂2) 0.27 -0.131 -0.5

The previous claims are also supported by the following
observation from the Scene dataset1, where the magnitudes
of the computed Shapley values tend to get smaller with more
data sampling and KernelSHAP evaluation when explaining
the predictions of an XGBoost model, as shown in Figure
2a. Consequently, the user can get a false impression of an
increase in the accuracy of approximating the true values if
the l2 distance is used as a similarity measure where the
distance between smaller magnitudes is smaller. Such effect
is displayed in Figure 2b, where the l2 distance is computed
between FastSHAP explanations using a surrogate model
and the approximated Shapley values after each iteration
of KernelSHAP evaluation. However, such an increase in
similarity does not appear if a different metric is used, e.g.,
cosine similarity or Spearman’s rank-order correlation, as
illustrated in Figure 2c.

Since the cosine similarity, as well as Spearman’s rank-
order can provide better metrics to measure the performance
of an explainer in terms of how accurate the predicted scores
are in approximating the true Shapley values, it can be
useful to use such metric as a loss function to be optimized.
Therefore, we propose to use the cosine similarity as an
objective function to learn an accurate mapping from the
input features to the corresponding Shapley values, as shown
in Equation 1.

L = 1− ϕ̂ϕ

∥ϕ̂∥∥ϕ∥
(1)

where ϕ̂ is the approximated values, and ϕ is the ground
truth Shapley values.

1The dataset is available on openml.org with ID: 312

openml.org
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Fig. 2: Comparison of different similarity metrics. Figure a shows that the summation of the absolute Shapley values
tends to get smaller with more evaluations of KernelSHAP. Figure b shows the l2 distance between kernelSHAP values after
each iteration and the values approximated by FastSHAP. In Figure c, we use cosine similarity and Spearman’s rank-order
correlation to measure the similarity instead of l2.

V. EMPIRICAL INVESTIGATION

In this section, we present results from two sets of ex-
periments. In the first experiment, we compare FF-SHAP
to the baseline method, FastSHAP. Afterward, we conduct
an ablation study where we evaluate the effect of using the
cosine similarity as an objective function and also the effect
of augmenting the input features with the predicted outcome
by the underlying black-box model.

A. Experimental Setup

In the experiments, we used ten publicly available
datasets.The black-box models are XGBoost classifiers
trained using the default settings. Each dataset is split into
training, development, and test sets, where the training set
is used to train the black-box model as well as training
FF-SHAP and FastSHAP models. The development set is
used for early stopping detection during the training phase.
Finally, the test set is used to evaluate the trained explain-
ers. The ground truth Shapley values are obtained using
an online efficient open-source implementation2, and the
values are determined after KernelSHAP’s convergence. The
Spearman’s rank-order correlation is the similarity metric
between explanations.

FastSHAP and FF-SHAP share identical architectures and
use the same set of hyperparameters. Therefore, both have
the same computational cost at the inference time, i.e.,
explanation time. 3

B. Experiments

In the following experiments, first, we compare the per-
formance of FF-SHAP to FastSHAP when trained on the
full training set. Then, we assess the effect of using different
training set sizes.

FastSHAP is trained on the entire training data set, while
FF-SHAP is compared when trained on the entire set, 60%

2https://github.com/iancovert/shapley-regression/
3The source code is available at:

https://github.com/amrmalkhatib/ff-shap

of the training data, 30% of the training data, and 15% of the
training data, in order to find out if FF-SHAP can achieve the
performance level of FastSHAP using substantially smaller-
sized datasets, which is particularly important since gener-
ating ground truth values can be computationally costly in
high-dimensional data.

The trained FF-SHAP explainers generally showed higher
fidelity than FastSHAP, even when trained using only 15%
of the available training data. To test the null hypothesis
that there is no difference in the fidelity, as measured by
the Spearman’s rank-order test, between FastSHAP and FF-
SHAP explainers when compared to the ground truth Shapley
values, we carried out statistical significance tests between
FastSHAP and each training split size of FF-SHAP using
the Wilcoxon signed-rank test [29]. The null hypothesis may
be rejected at the 0.05 level for all the pairs compared
except for FastSHAP and FF-SHAP trained using 15% of the
data, which indicates that FF-SHAP can significantly achieve
higher fidelity using substantially smaller size datasets. The
detailed results are available in Table II

C. Ablation Study

In the following experiments, first, we assess the effect of
using the cosine similarity as an objective function instead
of MSE, and then, we evaluate the effect of augmenting the
features with the predicted outcome by the black box on the
fidelity of the generated explanations.

1) Objective Function: The results of training FF-SHAP
using both MSE and cosine similarity as objective functions
are available in Table III. The results demonstrate that cosine
similarity helps to learn explainers with higher fidelity to the
ground truth Shapley values. The results have been proven
to be statistically significant when the Wilcoxon signed-
rank test is applied, and the null hypothesis that there is
no difference can be rejected at the 0.05 level.

2) Features Augmentation: In order to evaluate the effect
of augmenting the input features with the predicted outcome
by the black-box model, we train the FF-SHAP explainers
without any augmentation to the input features and compare

https://github.com/iancovert/shapley-regression/
https://github.com/amrmalkhatib/ff-shap


TABLE II: The similarity between the ground truth Shapley values and the explanations generated by FastSHAP and FF-
SHAP. FastSHAP is trained using all the training data, while FF-SHAP is trained using different training data sizes.

Dataset FastSHAP FF-SHAP FF-SHAP 60% FF-SHAP 30% FF-SHAP 15%

Abalone 0.81 0.861 0.851 0.827 0.803
Bank32nh 0.598 0.692 0.67 0.632 0.6
Churn 0.311 0.534 0.511 0.49 0.462
Delta Ailerons 0.867 0.906 0.891 0.868 0.848
Electricity 0.625 0.702 0.699 0.678 0.655
Elevators 0.828 0.855 0.848 0.836 0.829
Higgs 0.678 0.721 0.698 0.638 0.58
JM1 0.781 0.849 0.835 0.808 0.787
MC1 0.198 0.723 0.717 0.71 0.692
PC2 0.299 0.588 0.581 0.572 0.565

TABLE III: The similarity of the generated explanations to
the ground truth Shapley values when FF-SHAP is trained
using the mean squared error (MSE) vs. when trained using
the cosine similarity as an objective function.

Dataset Cosine MSE

Abalone 0.861 0.857
Bank32nh 0.692 0.652
Churn 0.534 0.404
Delta Ailerons 0.906 0.905
Electricity 0.702 0.725
Elevators 0.855 0.853
Higgs 0.721 0.72
JM1 0.849 0.837
MC1 0.723 0.208
PC2 0.588 0.43

the similarity to the ground truth Shapley values of the test
set. The results in Table IV show better performance for the
explainers trained using augmented features. Again, these
results are subjected to the Wilcoxon signed-rank test, which
also allowed us to reject the null hypothesis at the 0.05 level
that there is no difference in the fidelity when the explainers
are trained with and without input features augmentation with
the black box’s prediction.

TABLE IV: The similarity between the ground truth Shapley
values and the explanations generated by FF-SHAP when
trained with and without augmentation of the features by the
predicted outcome by the underlying black box.

Dataset Augmented Input Original Input

Abalone 0.861 0.843
Bank32nh 0.692 0.684
Churn 0.534 0.525
Delta Ailerons 0.906 0.905
Electricity 0.702 0.676
Elevators 0.855 0.847
Higgs 0.721 0.712
JM1 0.849 0.844
MC1 0.723 0.724
PC2 0.588 0.585

VI. CONCLUSION

We proposed a method to approximate Shapley values
of the predictions using a pre-trained neural network with
higher similarity to the ground truth values compared to the
baseline method, FastSHAP. The proposed method employs
cosine similarity as an objective function and augments
the input features with the underlying model’s prediction
when fitting the explainer. We showed through an empirical
investigation that the proposed approach outperforms the
baseline, even when using a substantially smaller amount
of training data and reaches the performance level of the
baseline using only 15% of the training data. Moreover,
we carried out an ablation study to evaluate the effect of
using cosine similarity instead of MSE as a loss function,
as well as the effect of augmenting the input features with
the predicted outcome by the black-box model. The results
indicate that using cosine similarity as an objective function
and augmenting the input features significantly improve the
learned explainer’s performance.

A possible direction for future work is to quantify the
uncertainty of the approximated Shapley values using, for
instance, Venn prediction [30]. Also, validity guarantees for
all the approximated scores using the conformal prediction
framework can be investigated using an approach similar
to conformal multi-target regression that has been proposed
by Messoudi et al. [31]. Finally, the effects of additional
loss functions on the fidelity of the trained explainer can be
studied.
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APPENDIX

VII. INFORMATION ABOUT THE USED DATASETS

This subsection provides a summary of the datasets uti-
lized in the experiments. In Table V, we provide information
about the used datasets including the number of features, the
size of the dataset, the size of the training, validation, and
test splits, and finally the ID of each dataset on OpenML.



TABLE V: The dataset information.

Dataset Features Size Train. Set Dev. Set Test Set OpenML ID

Abalone 8 4,177 2,672 669 836 720
Bank 32 nh 32 8,192 5,242 1,311 1,639 833
Churn 20 5,000 3,200 800 1,000 40701
Delta Ailerons 5 7,129 4,562 1,141 1,426 803
Electricity 8 45,312 28,999 7,250 9,063 151
Elevators 18 16,599 10,623 2,656 3,320 846
Higgs 28 98,050 88,245 4,903 4,902 23512
JM1 21 10,885 6,966 1,742 2,177 1053
MC1 38 9,466 6,057 1,515 1,894 1056
PC2 36 5,589 3,576 895 1,118 1069
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