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Abstract—The opaque nature of machine learning systems
has raised concerns about whether these systems can guarantee
fairness. Furthermore, ensuring fair decision making requires the
consideration of multiple perspectives on fairness. At the moment,
there is no agreement on the definitions of fairness, achieving
shared interpretations is difficult, and there is no unified formal
language to describe them. Current definitions are implicit in the
operationalization of systems, making their comparison difficult.
In this paper, we propose a framework for specifying formal
representations of fairness that allows instantiating, visualizing,
and comparing different interpretations of fairness. Our frame-
work provides a meta-model for comparative analysis. We present
several examples that consider different definitions of fairness,
as well as an open-source implementation that uses the object-
oriented functional language SODA.

Index Terms—Responsible artificial intelligence · Ethics in
artificial intelligence · Formal representation of fairness

I. INTRODUCTION

A key challenge in ensuring or assessing fairness is the
heterogeneity of perspectives on fairness, because there is
no canonical definition of what is fair and what is not. In
particular, fairness is not a “one-size-fits-all”-problem: there
is no unique operationalizable definition of fairness. In fact,
research in various areas of formal definitions of fairness has
increased considerably [15]. In the machine learning commu-
nity, different frameworks have been presented to quantify
fairness in classification [3], [5]. Even if fairness can be seen as
“the absence of prejudice or favoritism towards an individual
or group based on its inherent or acquired characteristics” [29],
different criteria can be used to determine fairness of decisions,
and many of them should be specifically formulated to be clear
to those involved. Determining what is fair varies between
cultures [10], and even within the same culture, different
individuals can perceive fairness differently [13].

Agreeing on a particular notion of fairness or facilitating
an understanding of the diversity of perspectives on fairness
can avoid conflicts. A structured discussion and analysis of
fairness requires a framework for specifying and comparing
perspectives on fairness to enable the elicitation of differences
and ultimately desiderata that stakeholders can agree on.
Although agreements on the interpretation of fairness or other
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societal values are complex, a growing number of approaches
are being proposed at both theoretical and practical levels,
particularly following the Design for Values methods [35],
[16], [36].

This paper uses the ACROCPoLis framework [2], which
provides a shared vocabulary for fairness assessments, making
explicit the relevant factors and their relations. This allows for
comparison of similar situations, highlighting differences in
dissimilar situations, and capturing different interpretations by
different stakeholders. This framework is the underpinning to
obtain an applicable framework for operationalizing fairness
by:

i. introducing Tiles (Transparent, Intuitive, Logical, Eth-
ical, and Structured), a visual specification language
especially tailored for fairness definitions;

ii. presenting a formal meta-model and examples of fair-
ness definitions using Tiles; and

iii. providing an implementation of Tiles in an object-
oriented functional language.

The remaining sections are structured as follows. Section II
provides an overview of the state of the art, and in particular
of challenges regarding the formalization of fairness. Then,
Section III provides an informal conceptualization of fairness
(drawing from existing research) and introduces a formal meta-
model for fairness, as well as Tiles, the corresponding ap-
proach to implementation and visualization of fairness models.
Formalization and implementation are illustrated using several
simple examples in Section IV. Finally, we conclude the article
with a discussion of related work and an outline of future
research directions in Section V.

II. BACKGROUND

While fairness is a crucial societal concept, its definition,
even in a specific context, is typically subjective. For example,
when a state provides childcare subsidies to a family, a “fair”
distribution may be colloquially defined in the following ways,
among others:

• per child, every family receives the same amount of
subsidies;

• per child, subsidies depend on family income, i.e., the
amount of subsidies increases with decreasing income;



• per child, subsidies depend on family income and the
number of older siblings, i.e., the amount of subsidies per
child increases with an increasing number of children.

Each option may be considered fair; one cannot objectively
stipulate that one option is necessarily “fairer” than the other.
Different communities may have different opinions about what
a fair childcare subsidy is [8]. For example, the province of
Manitoba, Canada, considers these relevant factors: family
income, number and age of the children, number of days
required for care, and reason for care [21]. Similarly, the
Australian Government publishes a structure diagram of how
some factors weigh on the allocation of the childcare subsidy,
especially income [12], as the subsidy rate is lowered, in
stages, as family income increases, and reaches zero for
families with an annual income of or above 352,453 AUD
(in 2019-2020).

Comparing different scenarios is a complex task, especially
for those who are not specialized in the topic. Thus, a formal
diagram can help visualize the differences between criteria
of two different countries, or the same country at different
points in time. However, creating a system to design such
diagrams is challenging, as informal descriptions carry the
risk of inconsistencies and flawed modeling. This risk may
be reduced if we are able to categorize the different fairness
scenarios and provide pre-built consistent blocks to model
them. Each block works as a logical unit that is small enough
to be fully understood, but powerful enough to require only a
few blocks for a standard diagram.

Two prominent categories of scenarios pertaining to fairness
are resource allocation scenarios and scoring scenarios. Given
a group of individuals, resource allocation scenarios focus
on how to find an optimal allocation of a fixed amount of
resources [24]. The value of resources is abstracted by a utility
function, which is a function that gives a comparable value to
resources. The utility function may represent qualities or quan-
tities, such as money, time, weight, and size. Implementing
fairness in resource allocation is a challenging task because
fairness and efficiency are competing objectives [6]. The Gini
index [19], [20] and the points on the Lorenz curve [17], [18]
are well-known approaches to fairness in resource allocation
scenarios and provide frequently used measures for wealth
(in)equality in a macroeconomic context.

Scoring scenarios focus on how fair a scoring of a group of
individuals is based on their individual attributes. Individuals
receive a score based on their attributes, abstracted by a
scoring function, which is a function that gives a comparable
score to individuals with respect to some aspect. This score
may assess the likelihood that an individual is able to repay a
loan or is a good fit for a particular job position.

To check whether the scoring function itself is fair with
different individuals, we could use a counterfactual check [25],
especially considering that protected attributes, such as gender,
ethnic origin, social status, age, and sexual orientation, can be
“noisy”, and produce unfair scoring [30]. However, removing
or exchanging protected attributes could have limitations, as
attributes often contain confounding factors and correlations

that are difficult to disentangle or even detect. We consider the
scenarios presented in [26] as a reference to identify common
real-world scenarios, where machine learning-based decision
making is used. We compare the scenarios in Table I.

Other scenarios include insurance policy prediction [38],
income prediction [28], equal opportunity policies for health
care [33], teacher evaluation and promotion [9], online recom-
mendation [23], and university ranking [27], [34].

With the rise of data science and machine learning in
recent years, research interest in statistical notions of fairness
has increased. Here, the most prominent examples are group
fairness and individual fairness [11]:

• Group fairness intuitively stipulates that groups that are
separated by protected properties (such as gender) are to
be treated in the same manner, i.e. that outcomes must not
differ, given everything else is equal between the groups.

• Individual fairness intuitively stipulates that individu-
als that are similar given their non-protected properties
should be treated in a similar manner.

Recent works attempt to reconcile the supposed conflict be-
tween group and individual fairness, but also call into question
the sufficiency of the statistical measures that operationalize
the concepts, and in particular individual fairness. For exam-
ple, claims of individual fairness can also exacerbate existing
biases that may then be reflected in the selection of desirable,
non-protected properties [14]. Furthermore, decisions made to
mitigate bias are not value-free [1].

Still, tools for operationalizing fairness, such as IBM’s AI
Fairness 360 [4], Google’s What-if tool [39], and Microsoft’s
Fairlearn [7], depend on these highly specific statistical for-
malizations that reflect group or individual fairness notions.
They also assume that high-quality data is available in a
rather unambiguous context that allows for the societally
beneficial operationalization of fairness using these notions.
Considering the recent academic discourse on the diversity
and heterogeneity of fairness definitions that are needed to
facilitate nuanced analysis and ultimately outcomes that are
societally desirable [2], [14], it is striking that there are no
formal meta-models of fairness that can instantiate a broad
range of fairness definitions and scenarios from different points
of view.

III. FORMALIZATION AND REPRESENTATION

Since our objective is to introduce an implementable and
ultimately operationalizable approach to instantiate and com-
pare context-dependent fairness definitions, our fairness for-
malization is grounded in conceptual approaches to fairness
of societal relevance. As observed in the previous section,
fairness typically pertains to decisions or actions that are made
based on the attributes of specific agents or groups thereof.
Each decision or action has a resource allocation or score as
an outcome. Decisions or actions can be abstract, e.g., the
execution of an action can be seen as assigning a score or as
the use of a resource. Somewhat reflecting this intuition, we
previously introduced ACROCPoLis, a conceptual framework
for making sense of fairness [2].



TABLE I
COMPARISON OF REAL-WORLD SCENARIOS.

Scenario Relevant Attributes (Input) Outcome (Output)
Job hiring affiliation, education level, job experience, IQ score, age, gen-

der, address
a decision and/or a score

Granting loans credit history, purpose of the loan, loan amount requested,
employment status, income, marital status, gender, age, address,
housing status, and credit score

decision and/or score

College admission institutions previously attended, SAT scores, extracurricular
activities, GPAs, test scores, interview score

decision or score

Criminal risk assessment number of arrests, type of crime, address, employment status,
marital status, income, age, housing status

score and decision

Child maltreatment prediction contemporaneous and historical information for children and
caregivers

score (likelihood) and decision

Health care disease (chronic conditions) prediction include vital signs, blood
test, sociodemographic data, education, health insurance, home
ownership, age, race, address

score (likelihood)

Facial analysis face (image) decision

ACROCPoLis identifies six entities that are general to
model fairness scenarios: Actors, Context, Resources, Out-
come, Criteria, and Power, as well as the Links connecting
them. In order to make the ACROCPoLis framework usable,
we made decisions on the formalization, which required a
trade-off between simplicity and generality. In our approach,
we consider Actors, Context, Resources, and Outcome, and
we add Measure, Aggregation, and Attribute, as we describe
in Table II. We encode Criteria, Power, and Links indirectly in
the other entities. Criteria are the explicit or implicit aspects
needed to make a decision, affect, or justify the outcome.
We interpret Power as an attribute of actors, which could
be indirectly used from the Context. Links are the relations
included in the attributes and in the aggregations.

This section introduces our formal meta-model of fairness
and explains how the meta-model can be applied to instantiate
fairness scenarios, with the notation that we provide.

A. Meta-model

Our meta-model requires two sets: I , which is a non-
empty set of identifiers, and M , which is a non-empty set
of measures. For the set of identifiers I , we also require a
relation ‘≤’ that is a total order. This means that, for every
a1, a2, a3 ∈ I ,

1) a1 ≤ a1 (reflexive);
2) if a1 ≤ a2 and a2 ≤ a3, then a1 ≤ a3 (transitive);
3) if a1 ≤ a2 and a2 ≤ a1, then a1 = a2 (antisymmetric);
4) a1 ≤ a2 or a2 ≤ a1 (strongly connected).

Some data types that could implement I are a set of strings
with alphabetical order, or a set of integers with a ‘less than
or equals to’ relation, or any other possibly infinite set with a
total order.

For the set of measures M , we require it to be a subset
of the real numbers R enriched with a distinguished element
NaN (‘Not a Number’), with the usual total order ‘≤’ for R,
and basic operations, like addition, subtraction, multiplication,
and division. M could be implemented by a floating point data
type [22]. In fact, NaN is a particular value of numeric data

types, such as the floating point number, and captures cases
where operations on floating point are undefined, e.g., when
dividing by 0.

Once I and M are defined, we can identify a specific
fairness scenario, which we call a context, and we just use an
identifier c ∈ I to refer to this. We do not need more structural
information regarding the context, because all the relevant
information of the context is in fact in other components of
the tuple. Similarly to the case of the context, we identify the
actors and resources by their identifiers, allowing functions on
them to provide relevant information about them. The set of
actors is Ac and the set of resources is R, and both are subsets
of I , i.e. Ac ⊆ I and R ⊆ I . We also require that there are no
common identifiers in both sets, and that both do not contain
c, i.e. Ac ∩R = ∅ and c /∈ Ac, c /∈ R.

Up to this point, we have defined the basic sets of identifiers
(I) and measures (M ), and some relevant elements of I , such
as the context c, the elements of Ac and the elements of R.
With these defined, we can define a set of attributes, which we
call At. This set is in fact a finite set of functions f that take
an identifier in Ac or R, and return either another identifier
in Ac or R, or a measure in M . To denote this, we define
Fun(A,B) as the set of functions from A to B:

Fun(A,B) := {f | f : A → B}.

Then, we require that the following holds:
At ⊆ Fun(Ac,Ac) ∪ Fun(R,Ac) ∪

Fun(Ac,R) ∪ Fun(R,R) ∪
Fun(Ac,M) ∪ Fun(R,M).

We define the set of aggregation functions as a finite and
possibly empty set Ag that contains only functions that can
operate on any finite sequence of elements in either identifiers
in Ac, identifiers in R, or measures in M , and return a single
element of the same set as the domain. This can be denoted
as follows. Let Aggn(A) be defined as the set of functions in
sequences of elements of A of length n to an element of A,
denoted by:

Aggn(A) := {f | f : An → A},



TABLE II
ENTITIES

Entity Meaning Relation to ACROCPoLis
Actor is an individual or organization that participates in the fairness scenario, either

by receiving resources, distributing resources, or affecting the distribution of
resources.

the same as Actor

Context is an entity that contains relevant contextual and structural factors in a fairness
scenario.

the same as Context

Resource is a measurable element to be distributed to the actors involved in a fairness
scenario.

the same as Resource

Outcome is the association between actors and resources in a fairness scenario. the same as Outcome
Measure is the space of quantities and qualities to measure and compare attributes of

context, actors, and resources.
part of Links

Aggregation is the space of functions to combine quantities and qualities and preserve them
as measures.

part of Links

Attribute is the space of concrete relevant features of an actor, a resource, or the context,
especially reflecting a quantity or a quality.

part of Links, covering Power

where An denotes the n-ary Cartesian power of A. Then, we
say that:

Ag ⊆
⋃
k∈N

(Aggk(Ac) ∪Aggk(R) ∪Aggk(M))

We can define the outcome O of a scenario of fairness
as a finite possibly empty set of pairs, each pair called an
assignment, where each actor receives one resource. We can
denote this as O ⊆ {⟨a, r⟩ | a ∈ Ac, r ∈ R}. This outcome is
to be evaluated to determine whether it is fair or not according
to the definition of fairness defined by human evaluators.

Given that the components are defined above and assuming
that Ac, R, O, M , Ag, and At are all pairwise disjoint, we
can define the tuple for a given scenario of fairness as:

Fc = ⟨Ac,R,O,M,Ag,At⟩.

We name the whole framework above AcROMAgAt. Note that
I is only indirectly mentioned through its relevant elements,
namely c, the elements in Ac, and the elements in R.

B. Steps to identify the entities

As described above, resource allocation scenarios are in-
tended to allocate limited resources among actors. To identify
the abstract components in this kind of scenario, we want to
model whether a particular resource allocation satisfies the
needs of actors according to our definition of fairness. To
illustrate our definitions, we consider the entities involved in
modeling a childcare subsidy scenario.

The first step is to recognize the actors, the resources, and
the context. It might be the case that, for a given scenario,
some actors are not visible or not clearly identifiable, but we
focus on those receiving the resources in a particular context.
In the case of the childcare subsidy scenario, each actor would
be a family, the resources would be the amount paid, and the
context the name of the country or territory where the subsidy
is being considered.

We can then recognize the attributes of actors and resources
that are relevant in the given context. As we learn from the
requirements, some attributes would be the income of the

family, the number of children, and their ages. Attributes for
the resources could be the amount paid, and the currency. The
outcome can be defined considering actors and resources, and
the measures are those quantities and qualities that emerge
from the attributes. The outcome represents how much is given
to each family. Lastly, we identify aggregations to combine
quantities and qualities and compare them. Aggregations can
be seen as a collection of utility functions that help express
qualities and quantities as functions of basic values. For
example, if a family receives multiple childcare subsidies
instead of one, an aggregation function can ensure that the
total amount does not exceed the established cap per family.

In the case of scoring scenarios, the steps are analogous,
but there is an emphasis on the role played by the attributes,
since the score is what is being scrutinized for fairness. As in
the case of resource allocation, context attributes provide the
required additional information, such as historical information.
At first, we could consider scoring as the allocation of an
unlimited resource, but it is a limited resource in some cases,
as when choosing a candidate for a job interview, or when it
is used in an examination that is later normalized among all
results to follow a statistical distribution. We consider scoring
the allocation of an infinite abstract resource. Intuitively, there
may be an overlap between scoring and resource allocation,
e.g., if school grades must follow a pre-specified distribution;
in our interpretation, this is not a scoring scenario, because
the resource is finite (given a finite set of actors). The two
scenario categories are not disjoint. The same problem could
be modeled as a resource allocation scenario or a scoring
scenario, depending on what features are more predominant
or relevant for the particular use.

C. Fairness pipelines with Tiles

For modeling AcROMAgAt fairness scenarios, we intro-
duce Tiles, which is a system to define rules based on
the composition of building blocks (tiles). To demonstrate
how Tiles work, we assume an abstract fairness scenario
Fc = ⟨Ac,R,O,M,Ag,At⟩. Each tile has an identifier or
function, an input, and an output, depicted as follows:



�� ��input function output

Tiles can be connected to create a composite tile, where
the output of one tile is the input of another. They can
be seen as compositions of tiles. They are connected using
connection ports (the inputs and outputs of the function), and
in some cases, a tile may have multiple input connection ports
and/or multiple output connection ports. A tile with multiple
input ports can be interpreted as a function with multiple
parameters, or similarly of just one parameter which is a tuple
of multiple ports. A tile with multiple output ports, instead,
is interpreted as the replication of the output of the tile seen
as a function. Multiple ports are denoted using commas, i.e.
(a0), (a1) denotes two ports of one sequence each, where both
possibly empty sequences have the exact same number of
elements. This allows us to re-write it as a sequence of pairs
(⟨a0, a1⟩).

A pipeline is a special case of a composite tile, which has a
starting tile and an ending tile. The starting tile does not have
an input, and the ending tile has a single value as output, which
is usually a Boolean value. An unfold tile generates a sequence
from a single value, for example, if given the number n, it
creates a sequence of n elements. A fold tile generates a value
from a sequence, for example, if it computes the sum of all the
elements in a sequence. When configuring a pipeline, each tile
can use contextual information and the outcome O all along the
pipeline. The contextual information and the outcome remain
constant with respect to the pipeline.

Let us see how AcROMAgAt fairness scenarios are rep-
resented by Tiles. Actors can be represented by the tile�� ��all-actor (a) , which returns a sequence of actors, denoted
by (a), i.e. (a) = ⟨a0, ..., an−1⟩, where each ai ∈ Ac, and for
1 ≤ i < j ≤ |Ac| and ai, aj ∈ Ac, we have ai ̸= aj . This
sequence is sorted by identifier.

Based on the sequence of actors, we can define a tile that
retrieves the resource for each actor. This is achieved by the
tile

�� ��(a) received (m) , which, given an aggregation function
σ ∈ Ag, σ : M → M , and an attribute p ∈ At, for each a in
the input sequence of actors, returns a measure m such that:

m = σ ({p(r) | ⟨a, r⟩ ∈ O}).

To avoid verbosity in the tiles, we use the following notation
conventions.

• We use a variable of a type to denote the type or the
variable, depending on the context. For example, in the
case of a for Ac, a can denote the type Ac or a variable
of type Ac.

• We denote (·) as the sequence type and its elements. For
example, (a) is a sequence of actors.

• We use a without index to denote an element of the
sequence.

• When dealing with multiple ports, the variables in the
input ports are independent from the variables in the
output ports. For example, in

�� ��(m0),(m1) plus (m0) , the m0

in the output port can be different from the m0 in the
input port.

The tile
�� ��(m) all-equal b is true if and only if all the

elements in the input sequence are equal. With the tiles defined
above, we can define the tile

�� ��equality b as a pipeline as
shown in Figure 1.

We can use similar definitions to encode equity, where ac-
tors receive resources according to their need, which depends
on the actor and on the context, but not on the given resource.

The tile
�� ��(a) needed (m) is a function that, for each actor

a ∈ Ac, returns the need (measure) m ∈ M with respect
to an attribute p ∈ At. The tile

�� ��(m0),(m1) all-at-least b ,
given a pair of sequences, returns true if and only if for
m0,m1 ∈ M , each pair m0,m1 verifies m0 ≥ m1. The
tile

�� ��all-actor (a0),(a1) works similarly to
�� ��all-actor (a) , but

returns a pair of sequences, where each pair duplicates the
same actor, for parallel processing. Figure 2 shows how we
encode equity.

We see how we distinguish connections between tiles by
giving subindices to their connecting variables, regardless of
the fact that a0 and a1 are the same actor.

A tile pipeline, such as the one in Figure 2, can intuitively
be seen as a directed acyclic graph, where the tiles are the
vertices, the starting tiles are the source vertices, the ending
tiles are the sink vertices, the edges are the connections
between tiles, and the edge direction is implicit by connecting
the output of one tile to the input of another.

D. Tiles for scoring scenarios

Based on Table I, we provide tiles centered on statistical
approaches for scoring scenarios. In Figure 3, we present
one possible pipeline of tiles to determine whether there is
a correlation between an attribute and the performance of a
prediction on individuals. Finding a correlation between values
does not ensure causality, but it can serve as an indicator to
detect possible unfair situations.

We assume that there is a threshold such that the values m
above that threshold are positive and those below are negative.
Alternatively, the implementation of these tiles could abstract
such a threshold by returning Boolean values true or false.
Without loss of generality, we assume that m is 0 for false
and 1 for true. We use these values to calculate the Pearson
correlation coefficient [37].

The tile
�� ��all-actor (a0),(a1),(a2) is a tile that allows for three

connection ports and produces three identical sequences of
actors. The tile

�� ��(a) prediction (m) takes a sequence of actors,
with each actor a ∈ Ac, returns the predicted values with
respect to an attribute p ∈ At as a sequence of measures m ∈
M . The tile

�� ��(a) result (m) takes a sequence of actors, with
each actor a ∈ Ac, and returns the actual values with respect
to an attribute p ∈ At as a sequence of measures, m ∈ M .
In the case of the prediction of recidivism, the prediction can
be taken from the data two years before the evaluation and
the results from what actually happened. Both sequences are



�� ��equality b :=
�� ��all-actor (a) →

�� ��(a) received (m) →
�� ��(m) all-equal b

Fig. 1. Pipeline for equality: it is defined with three tiles, one producing actors, then a tile that retrieves what each actor receives, and the last one that checks
whether all received the same.

�� ��all-actor (a0),(a1)

�� ��(a0) received (m0)�� ��(a1) needed (m1)

�� ��(m0),(m1) all-at-least b

Fig. 2. Representation of equity using Tiles. The first tile on the left creates the sequence of actors that are processed in parallel, but respecting the order,
by two tiles. These tiles return how much an actor received and how much the actor needs. The last tile on the right compares both values.

�� ��all-actor (a0),(a1),(a2)

�� ��(a0) prediction (m0)�� ��(a1) result (m1)�� ��(a2) with (m1)

�� ��(m0),(m1) false-pos (m0)

�� ��(m0),(m1) correlation m

�� ��m decision b

Fig. 3. Example of a configured correlation pipeline to measure the bias on false positives. The tile on the left creates triples of actors. The three branches
are the original prediction on an actor (‘prediction’), the actual result of an actor (‘result’), and if the actor has a given property (‘with’). With the original
prediction and the actual result, the false positives are calculated. This, together with the characteristic of a property, is given to compute the correlation.
Ultimately, we find the decision of whether there is a significant bias based on the correlation.

combined to estimate false positives, which is done by the tile�� ��(m0),(m1) false-pos (m) .

The tile
�� ��(m0),(m1) false-pos (m) , given a pair (m0,m1),

m0,m1 ∈ M , returns 1 if the pair is a false positive, and
0 otherwise. A false positive is that the prediction is 1 and
the actual value is 0. The tile

�� ��(m0),(m1) false-neg (m) returns
1 if the pair is a false negative, and 0 otherwise. A false
negative is that the prediction is 0 and the actual value
is 1.

�� ��(m0),(m1) true-pos (m) and
�� ��(m0),(m1) true-neg (m) are

analogous, but return 1 if given (m0,m1), m0 = m1, and 0

otherwise. The tile
�� ��(a) with (m) retrieves from all actors an

attribute p, for example, the skin color. Binary attributes can
be encoded with 0 and 1 to compute the correlation.

The tile
�� ��(m0),(m1) correlation m computes a correlation

coefficient for the subsets filtered by attributes with respect
to the score. We chose the Pearson correlation coefficient, but
other correlations can be used in this diagram, as long as they
respect the same input/output ports. The Pearson correlation
is defined, for a sample of size n, for xi, yi (1 ≤ i ≤ n)
individual sample points, for x̄ = 1

n

∑n
i=1 xi, the sample

arithmetic mean, and the same for ȳ as follows:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

A final tile
�� ��m decision b makes the decision about whether

the correlation is acceptable. For example, some arbitrary
categorization could define the ranges (0, 0.3] as weak corre-

lation, (0.3, 0.5] as moderate correlation, and (0.5, 1] as strong
correlation.

E. Implementation

Tiles can be configured for specific scenarios. Each con-
figuration should be implemented in a more fine-grained
language. Considering such a configuration, we believe that
the language in which Tiles can be configured should have
good readability, although this is a property that is difficult
to measure. We chose SODA [32], [31] because it is an
object-oriented functional language, especially designed to
describe, analyze, and model human-centered problems. The
tiles used in the examples are summarized in Table III,
and we provide an open source implementation of them at
https://julianmendez.github.io/tiles .

F. Assumptions

We assume that the information we have is consistent, that
the resources have either a utility function or a score, and that
we are provided with complete information of the outcome,
which means that we know exactly what each actor receives.
In practice, we may need to detect that a system is not fair
before analyzing all assignments. Nevertheless, we can still
model the problem for a particular instance at a particular
point in time.

Finally, another assumption is that each tile is decidable, and
that the complexity of the whole pipeline does not impede
the execution possibility. Although we provide the elements
to check fairness and also examples, we do not state if the

https://julianmendez.github.io/tiles


TABLE III
SUMMARY OF ACROMAGAT TILES USED IN THE EXAMPLES.

Generic Tile Meaning�� ��(α) all-satisfy p b Given a sequence of objects of type α, it returns true if and only if all the elements satisfy property p.

�� ��(α0),(α1) f(α0, α1) (α)

Given a pair of sequences of two objects of the same type α, it returns a sequence of objects of the same type,
resulting from applying the function f to both elements of the pair. If the parameters are omitted, the order is as
expected. For example, for measures,

�� ��(m0),(m1) plus (m) denotes that each element m in the output sequence

is computed by applying the function plus (+) to two measures, i.e. m = m0 +m1.�� ��(α) p? (α)

Given a sequence of objects of type α, it returns a possibly empty sequence of objects of the same type such
that all of them satisfy the property p.�� ��all-actor (a)
Returns a sorted sequence of actors (a), where each a ∈ Ac occurs exactly once.

�� ��(a) received (m)

Given a sequence of actors (a), with a ∈ Ac, it returns a sequence of measures (m), m ∈ M , such that each
m is the aggregated value using the aggregation function σ applied to the set produced by the resource attribute
p, based on the outcome O.�� ��(m) all-equal b Given a sequence of measures (m), m ∈ M , it returns true if all values are equal.

Customized Tile Meaning�� ��(a) needed (m)

Given a sequence (a), for each a ∈ Ac, and the attribute p ∈ At, it returns a sequence of measures (m), where
each m ∈ M has the need of that actor with respect to p.�� ��(m0),(m1) all-at-least b
Given a pair of sequences (m0), (m1), where each m0,m1 ∈ M , it returns true if for all pairs, m0 ≥ m1, and
it returns false otherwise.�� ��(a) prediction (m)

Given a sequence of actors (a), it returns a sequence of measures (m), such that for each actor a ∈ Ac, for a
measure m ∈ M , it holds that m = 1 if based on the outcome O the prediction with respect to an attribute
p ∈ At is positive, and m = 0 if it is negative.�� ��(a) result (m)

Given a sequence of actors (a), it returns a sequence of measures (m), such that for each actor a ∈ Ac, for
a measure m ∈ M , it holds that m = 1 if based on contextual information in c, the result with respect to an
attribute p ∈ At was positive, and m = 0 if it was negative.�� ��(m0),(m1) false-pos (m)

Given a pair of sequences (m0), (m1), where each m0,m1 ∈ M , it returns a sequence of measures (m),
m ∈ M , such that m = 1 if the value of m0 = 1 and m1 = 0, and m = 0 otherwise.�� ��(a) with (m)

Given a sequence of actors (a), a ∈ Ac, it returns a sequence of measures m ∈ M containing the characteristic
value: 1 for those actors that have the attribute p and 0 otherwise.�� ��(m0),(m1) correlation m
Given a pair of sequences of measures, (m0), (m1), where each m0,m1 ∈ M , it returns a single value m ∈ M ,
which is the Pearson correlation coefficient.�� ��m decision b Given a correlation measure m ∈ M , it returns true if and only if the correlation is considered significant.

elements we provide can model all possible fairness definitions
or if it is feasible to model all possible fairness definitions.

IV. EXAMPLE

Let us consider an example to which the Tiles framework
can be applied. For that, we go back to the childcare subsidy
scenario. For the purpose of this scenario, a family has one or
more parents or (legal) guardians, who are responsible for one
or more children. Guardians may receive different childcare
subsidies depending on the definition of fairness used. Some
possible criteria for the amount of money that each family
could receive are listed here:

• (no subsidy) no subsidy is given to any family (Figure 4);
• (per child) give to all families the same amount for each

child (Figure 5);
• (per family) give the same amount of money to each

family, regardless of the number of children (Figure 6);

• (single guardian) give the subsidy when the family has
only one guardian (Figure 7).

In our diagrams, each actor is a family (as defined in this
scenario). Some of the properties of a family are:

• number of adults: a positive integer (1 or more);
• number of children: a positive integer (1 or more);
• a (yearly) income: a non-negative integer (0 or more).
These properties are considered contextual information and

do not change across the pipeline. The resource is money for
the childcare subsidy, and it is represented by a non-negative
integer. The measures are then non-negative integers.

V. CONCLUSION

In this paper, we have presented a formal meta-model for in-
stantiating definitions of fairness, supported by a visualization
approach and a proof-of-concept implementation. We envision
the presented work as a step towards making differences



�� ��all-actor (a) →
�� ��(a) received (m) →

�� ��(m) all-satisfy (m = 0) b

Fig. 4. Pipeline for no subsidy. The tile on the left provides all actors. The tile in the middle computes how much resource each actor received. The tile on
the right checks that all resources are equal to 0.

�� ��all-actor (a0),(a1)

�� ��(a0) received (m0)�� ��(a1) children (m1)

�� ��(m0,m1) m0/m1 (m)

�� ��(m) all-equal b

Fig. 5. Representation of “per child” using Tiles. The tile on the left provides actors, which are divided in two branches. The upper branch computes how
much each actor (a family) has received and the lower branch how many children the family has. Both values are zipped back to compute the division. Note
that we assume that each family has at least a child, but otherwise, if the number of children is 0, the division would be computed as NaN.

�� ��all-actor (a) →
�� ��(a) received (m) →

�� ��(m) all-equal b

Fig. 6. Representation of “per family” using Tiles. This is equivalent to a standard equality pipeline where each actor receive exactly the same amount of
resource.

�� ��all-actor (a0),(a1)

�� ��(a0) (adults(a0) = 1)? (a)�� ��(a1) (adults(a1) > 1)? (a)

�� ��(a) received (m)

�� ��(a) received (m)

�� ��(m) all-equal b0�� ��(m) all-satisfy (m = 0) b1

�� ��b0,b1 and b

Fig. 7. Representation of “single guardian” using Tiles. This pipeline has two main branches. The upper branch accepts only families with one adult, i.e.
single-parent/guardian families. The lower branch accepts all remaining families. It is worth noting that the sequences in both branches may have different
number of elements and cannot be zipped back. On the other hand, the Boolean computation is combined with the ‘and’ tile, on the right.

between approaches to fairness in a given context explicit and
qualitatively comparable.

For the next steps, our aim is to validate the framework
and to expose it to domain experts and decision-makers that
work on fairness-related specifications, for example, in the
context of organizational and public policies, in order to elicit
guidelines for practical use.

Future research can extend our work primarily in two
directions. One direction from a formal perspective is to define
axioms/principles for fairness scenarios. These may be related
to the expected behavior of the underlying functions. For
example, in a resource allocation scenario, an outcome func-
tion should exactly allocate the initially specified resources
without “creating” or “wasting” any resources. Beyond that,
one may specify principles that constrain subjective aspects
of fairness scenarios, for instance, to gauge whether different
formalizations of the same real-world scenario agree on a
shared set of fundamental ideas. From an applied perspective,
we aim to further advance our toolkit to define, visualize, and
compare fairness definitions so that it is more accessible to
practitioners such as analysts working on policy and process
design, or decision automation, for example, by developing a
visual interface to connect the tiles and automatically generate
the source code.
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