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Abstract— Synthetic data promises to address several chal-
lenges in training machine learning models, such as data
scarcity, privacy concerns, and efforts for data collection and
annotation. In order to actually benefit from synthetic data,
its utility for the intended purpose has to be ensured and,
ideally, estimated before it is used to produce possibly poorly
performing models. Population fidelity metrics are potential
candidates to provide such an estimation. However, evidence of
how well they estimate the utility of synthetic data is scarce.

In this study, we present the results of an experiment in
which we investigated whether population fidelity as measured
with nine different metrics correlates with the predictive per-
formance of classification models trained on synthetic data.

Cluster Analysis and Cross-Classification show the most
consistent results w.r.t. correlation with F1-performance but
do not exceed moderate levels. The degree of correlation, and
hence the potential suitability for estimating utility, varies
considerably across the inspected datasets. Overall, the results
suggest that the inspected population fidelity metrics are not a
reliable and accurate tool to estimate the utility of synthetic
training data for classification tasks. They may be precise
enough though to indicate trends for different synthetic datasets
based on the same original data.

Further research should shed light on how different data
properties affect the ability of population fidelity metrics to
estimate utility and make recommendations on how to use these
metrics for different scenarios and types of datasets.

I. INTRODUCTION
The utilization of synthetic data in machine learning (ML)

model training has gained significant traction due to its
potential to address data scarcity, privacy concerns, and the
high costs and required time associated with data collection
and annotation [1], [2], [3], [4]. Synthetic data generation
techniques offer a promising avenue for augmenting training
datasets and improving the robustness and generalization ca-
pabilities of ML models [5], [6]. While the potential benefits
of synthetic data are evident, their actual effectiveness in
model training depends on the data’s utility, i.e. the degree
to which the data are suitable for training models that will
show the desired predictive performance and execute the
intended task well. Integrating synthetic data of low utility
into the training process can lead to poor generalizations,
biased models, or ineffective training, all of which might
cause poor performance of products and services based on
the trained models [2].

Therefore, it appears desirable to be able to reliably
estimate the utility of synthetic data before their integration

1CGI Sverige AB, Tynäsgatan 6, 652 24 Karlstad, Sweden
alexander.florean@cgi.com,
jonas.forsman@cgi.com

2Department of Mathematics and Computer Science, Karlstad University,
651 88 Karlstad, Sweden sebastian.herold@kau.se

into the training pipeline. Such an estimation could not
only make the model training process more efficient and
sustainable by avoiding unnecessary training iterations based
on poor synthetic data. It could also inform adjusting the
data generation process to reach desired or contractually
agreed upon levels of utility when synthetic data is shared
and help to accurately quantify trade-offs between privacy
preservation and utility.

Population fidelity is defined as the degree of accuracy
to which synthetic data mimic the original data in terms of
statistical properties and underlying characteristics or pat-
terns [7]. As great population fidelity means that a synthetic
dataset resembles the original dataset it is constructed from
closely, one would expect this measure to be a natural
substitute for utility. After all, we would expect similar
performance of models trained on different but highly similar
data, such as an original dataset and high-fidelity synthetic
data generated from it.

However, there is not a single, established way to com-
pute population fidelity, instead, the research community
has developed a corpus of different metrics over recent
years [8]. They differ in the techniques they utilize to
determine the level of similarity between an original dataset
and its synthetic counterpart and stretch, for example, from
comparing the distributions of values in the datasets with
means of statistical testing to applying machine learning
to measure how distinguishable the two datasets are. The
motivation of this study is to explore whether or not these
metrics confirm the assumed association between utility and
population fidelity. The goal is to address the following
research question: to what degree are different population
fidelity metrics capable of estimating how well ML-based
classification models trained on synthetic data will perform
compared to their counterparts trained on the corresponding
real data?

For this purpose, we conducted an experiment in which we
trained four different classification models for each of five
different original datasets. Additionally, we derived several
synthetic datasets from each original dataset and trained
classification models for the same tasks on the synthetic
datasets. All models were evaluated using their F1-score. For
all synthetic datasets, we computed nine different population
fidelity metrics, expressing, using different techniques, how
closely the datasets mimic the properties of the correspond-
ing original data. Finally, we performed a correlation analysis
between those metrics for each dataset and the F1 perfor-
mance of the corresponding models relative to the models
trained on the original data.



The remaining article is structured as follows. Section II
provides an overview of population fidelity metrics and sum-
marizes existing work on estimating synthetic data utility.
In Sec. III, we explain the experiment design in detail.
The results of the experiment are presented in Sec. IV and
discussed in Sec. V. Finally, Sec. VI completes the article
with concluding remarks.

II. BACKGROUND

A. Population Fidelity Metrics

Population fidelity, the degree to which synthetic data
resemble the original data, can be measured by different
metrics. In this section, we briefly explain the metrics that
were compared in this study.

Woo et al. describe the Cluster Analysis measure as a
population fidelity metric [9]. The fundamental idea of the
approach is to fit a clustering model to the dataset that results
from merging the original data and the synthetic data and
to analyse the distribution of synthetic and original data
points in each cluster. If the synthetic data resemble the
original data closely, the proportion of original data points
in each cluster should be similar and close to the overall
proportion. The metric therefore computes a sum of squared
error between these proportions per cluster and the overall
proportion, weighted by cluster sizes.

The same authors also describe the Propensity Mean
Squared Error (pMSE) as a population fidelity metric.
It is based on the idea of fitting a classification model to
the same merged dataset to predict whether a data point
is synthetic or original. For the resulting predictions, the
propensity score is computed [10]. In the case of a synthetic
dataset that is perfectly indistinguishable from the original
one, the expected propensity scores would be equal to the
proportion of synthetic data points in the merged data as
that proportion would correspond to the "probability" of
a randomly picked data point being synthetic. The overall
metric is therefore defined as the mean squared error between
the propensity scores and that proportion. The closer the
synthetic data resemble the original, the closer the resulting
value is to zero.

Cross-classification takes the generated synthetic data
for training several classification models [11]. For each
categorical feature in the dataset, a model is trained with
that feature as the target and all other features as predictors.
The models are then tested on the original data. The average
performance of these models is interpreted as a measure of
population fidelity.

Likelihood measures fit probabilistic models to the syn-
thetic data that reflect the likelihood that the synthetic
data belong to the same distribution as the original data.
Bayesian Networks Log Likelihood (BNLogLikelihood)
fits a Bayesian Network to the original data and generates
a likelihood estimate for each synthetic data point [12].
The final score is the average of these estimates. Gaussian
Mixture Log Likelihood (GMLikelihood) works similarly
but fits a Gaussian Mixture Model instead [13].

TABLE I: Overview of the investigated population fidelity
metrics.

Value of
Metric Range Maximal Fidelity

BNLogLikelihood (−∞, 1] 1
Cluster Analysis [0,∞) 0
ContinuousKLD [0, 1] 1
Cross Classification [0, 1] 1
Chi-Statistic Test [0, 1] 1
DiscreteKLD [0, 1] 1
GMLogLikelihood (−∞, 1] 1
KSComplement [0, 1] 1
pMSE [0, 0.25]1 0

The Kullback-Leibler divergence (KLD) also known as
relative entropy or information divergence is a measure of
statistical distance [14], [15]. It quantifies the difference
between two probability distributions, offering a way to
measure the information loss when using one distribution
to approximate another. For the experiment, two different
variants were considered. DiscreteKLD considers only cate-
gorical while ContinuousKLD analyses numerical features.

The Kolmogorov-Smirnov Complement (KSComple-
ment) is a measure from the SDMetrics library used to
quantify the quality of synthetic data by comparing the
cumulative distribution functions (CDFs) of the original
and synthetic datasets [9]. It is based on the Kolmogorov-
Smirnov (KS) Statistic Test, a non-parametric statistical test
that evaluates the maximum distance between the CDFs of
two datasets. It tests the null hypothesis that the two datasets
are drawn from the same distribution, where a value of zero
indicates high similarity in distributions. The KSComplement
adapts this approach by providing the complement to the
traditional KS statistic, focusing on the similarity between
distributions, meaning the value of one indicates similarity
rather than zero.

The Chi-Statistic Test (CSTest) measure is based on the
statistical test of the same name to assess the similarity
between two distributions of data [16]. It is implemented in
the SDMetrics library as a population fidelity measure and
calculates the statistical significance of differences between
observed frequencies of values in the synthetic data and the
expected frequencies as present in the original data. This
measure only considers categorical features.

Tab. I lists the introduced population fidelity metrics, their
ranges, and values indicating maximal fidelity.

B. Related Work Investigating the Association between Pop-
ulation Fidelity and Utility

The literature addressing the question of to which degree
different population fidelity metrics are able to estimate
utility is scarce. Dankar et al., although not directly touching
upon the issue, describe a similar study that investigates
the utility of different synthetic data generators [8]. To that
end, they inspected different data generation methods and

1More general, the range is [0,max(c2, (1 − c)2)], c being the ratio of
synthetic data in the merged dataset. In the experiments, c is equal to 0.5.



evaluated the performance of classification models trained on
the generated synthetic data. Four different fidelity metrics,
including pMSE as only population fidelity metrics, were
computed for all synthetic datasets. While the main results
and discussion focus on the performance of the synthetic data
generators, a side result shows that there was only a low level
of agreement between the fidelity metrics on best-performing
data generators, and largely weak correlations between the
metrics. The authors conclude on that front that no single
metric might be sufficient to evaluate the utility of synthetic
data.

Goncalves et al. present a study on generating synthetic
patient data and evaluating utility and privacy risks [11].
They assess different synthetic data generation methods,
including probabilistic models, classification-based imputa-
tion models, and generative adversarial neural networks. The
study uses various metrics to evaluate data utility and privacy
risks. While the article reflects on the utility of synthetic data
using different population fidelity metrics, the focus is not on
investigating the relationship between utility and population
fidelity, the terms are used rather synonymously. Therefore,
no performance metrics were analysed and no correlation
analyses or analyses of the agreement between population
fidelity metrics were performed.

Dankar and Ibrahim investigate the various usage config-
urations for generating synthetic data and their effects on
its utility and resulting models [17], including the effect of
data preprocessing and whether tuning should be applied to
synthetic data for classification models. They also address
the question of whether pMSE can predict the accuracy of
the resulting classification models. Similar to the experiment
we present in this article, they generated synthetic datasets
based on several original datasets and analyse fidelity and
performance. In contrast to our work, in which we ignore
the technique used for data generation, Dankar and Ibrahim
analyse the results w.r.t. to the generation techniques applied,
and focus on accuracy as a performance measure only.

The results suggest that neither preprocessing data prior
to generating synthetic data nor tuning on synthetic data
yielded any significant benefit. The authors therefore argue
that there is a benefit in sharing tuning settings of the original
data along with synthetic data. However, this is based on the
ideal setting where the user knows beforehand of the type of
analysis that will be performed on the data or that the user
of synthetic data will have access to the original data, which
is rarely the case, in particular when synthetic data is used
to protect sensitive data [18].

As for the ability of pMSE to predict accuracy, the results
show only a weak correlation with the resulting performance,
which the authors measure as an absolute difference in
accuracy with models trained on original data.

Our work aims to extend these insights in three ways.
Firstly, we believe that other performance metrics than
accuracy might be more accurate to relate population fidelity
with, as many classification problems are inherently imbal-
anced. Accuracy is, in those cases, not an appropriate perfor-
mance measure. Secondly, the practical question motivating

our research is whether or not synthetic data can replace the
original data for model training purposes, i.e., which level
of performance we get relative to using the original data.
Looking at the absolute performance difference like Dankar
and Ibrahim can be misleading: An absolute loss of 10% in
accuracy weighs heavier if the accuracy of the model trained
on original data was 40% than when it was 95%. Thirdly, we
extend the set of investigated population fidelity metrics to
get a more comprehensive picture of the relationship between
population fidelity and classification performance.

III. EXPERIMENT DESIGN

As introduced in Sec. I, the motivating research question
for this study is to which degree population fidelity metrics
can estimate the utility of synthetic tabular data for classifi-
cation tasks. The process of the experiment to address this
research question is illustrated in Fig. 1.

The starting point for the experiment is a set of original
datasets. Each of them is prepared and cleaned in step 1. The
resulting cleaned datasets serve as inputs for two subsequent
activities. In step 2, they are used for training baseline classi-
fication models using several supervised learning algorithms
for classification problems. These models are then evaluated
using several performance metrics, including the F1-score.
Step 3 consists of generating several synthetic datasets using
generative adversarial networks (GANs) [19], [20]. These
datasets then serve as training data for new classification
models in step 4, using the same classification algorithms
as in step 2. The resulting models are evaluated in terms
of a relative F1-score. This measure takes into account
how well the corresponding baseline model from step 2
performed such that the value reflects how a model trained
on synthetic data compared to the same model trained on
original data. In step 5, nine different population fidelity
metrics are computed for each synthetic dataset. After having
obtained the necessary values in steps 4 and 5, step 6
finally consists of performing several descriptive statistics
and a correlation analysis between the model performance as
measured as relative F1-scores and the considered population
fidelity metrics.

The following subsections explain the individual steps in
more detail.

A. Step 1: Prepare Data

The first step involved selecting appropriate datasets and
preparing them for the subsequent steps. The selection of
datasets had to meet several criteria:

• The datasets should contain tabular data of independent
data points (excluding, e.g., time series).

• The datasets should vary in number and types of pre-
dictors.

• The datasets should be of a manageable size as the
available computing resources were limited.

• The datasets should be freely accessible to allow the
research community to replicate the study.
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Fig. 1: Overview of the experiment.

TABLE II: The datasets selected for the study.

Dataset # samples # predictors # labels
name (original size) (num./cat./ord.)

D1: Adult 2261 (45222) 15 (6/8/1) 2
D2: Bank 2260 (45211) 16 (7/7/2) 2
D3: Diabetes 768 8 (8/0/0) 2
D4: MNIST 3500 (70000) 784 (784/0/0) 10
D5: Titanic 891 7 (4/3/0) 2

Tab. II lists the selected datasets. The Adult dataset
contains census data and has been used to showcase clas-
sifications for predicting high income based on personal
data [21]. The Bank dataset relates to direct marketing
campaigns by a Portuguese banking institute [22]. It has
been used for training models classifying whether or not a
client would subscribe to a financial product. The Diabetes
dataset centres around predicting early diabetes in female
patients based on diagnostic measurements [23]. The MNIST
dataset is a collection of images of handwritten digits in CSV
format [24]. Lastly, the Titanic dataset contains passenger
data of the famous vessel and its ill-fated voyage [25].
The data is often used for educational purposes to illustrate
ML-based classification, mostly in predicting the chance of
survival of passengers.

We included the MNIST dataset although it strictly speak-
ing does not contain tabular data but image data represented
in tabular format. Firstly, the number of features (represent-
ing individual pixels in a 28x28 picture) differs significantly
from the other datasets. Secondly, the data can be easily
visualized and provide a first intuitive grasp of the derived
synthetic versions’ utility (or the lack of it).

Due to resource limitations that were observed during
trial runs of the overall experiment, we downsampled the
Adult, Bank, and MNIST datasets to 5% of their original
size, using stratified sampling to keep imbalances in the
data. The remaining data preparations were largely about
imputation, i.e. dealing with missing values in the datasets.
Depending on semantic meaning and type of features, we
applied techniques that seemed adequate after discussions
among the authors. Please refer to the replication package
for more details on this process.

B. Step 2: Evaluate Baseline Models
In order to produce and evaluate baseline models to

compare the classification models trained with synthetic
data, we created classifiers applying four different classic
machine learning algorithms, Logistic Regression, K-Nearest
Neighbors, Random Forest, and Support Vector Machines.
This resulted in four baseline models Ba

i for each dataset
Di, a indicating the algorithm used for training.

The data was split into 80% training and 20% test data. For
hyperparameter tuning, we applied a 10-fold cross-validation
and we utilized the tree-structured Parzen estimator algo-
rithm from the Optuna library [26]. Although we focused
on the F1-score in the later analysis, we recorded several
additional performance metrics (measured on the test set),
such as accuracy, precision, recall, Matthews correlation
coefficient, and Cohen’s kappa score. This way, we (and
other interested researchers) can easily rerun the experiment
investigating the association between population fidelity and
these performance measures as well.

C. Step 3: Generate Synthetic Datasets
For generating the synthetic data required for the exper-

iment, we used conditional tabular GANs (CTGAN) [27],
a variation of generative adversarial networks (GANs) [20],
for four of the datasets. GANs for synthetic data generation
are (pairs of) neural networks trained on original data that,
after training, are able to produce synthetic data statistically
similar to the original data. By changing the number of
training epochs, the fidelity of the resulting data can be
influenced: too few epochs during training will lead to
data that resembles the original data less accurately. The
possibility to easily manipulate the fidelity (and, hence, likely
utility) in creating synthetic datasets made GAN architectures
well suited for our experiment. As CTGANs were shown
to outperform other GANs for tabular data, we selected
these for generating synthetic data. In early test runs of the
experiment, the CTGAN model showed poor performance
for the MNIST dataset. Following Xu, we decided to use
the TVAE model for the MNIST dataset instead, significantly
improving the performance [27].

For each original dataset, we then created five different
generators, each trained for a different number of epochs
(10, 100, 500, 1000, 1500). Each generator was then run 10
times to generate synthetic datasets of the same size as the
original dataset. In total, this resulted in 50 synthetic datasets



per original dataset each of which can be described as Se
i,j ,

for j = 1, . . . , 10, a dataset based on the original dataset Di,
created by the generator trained for e-many epochs.

For details on settings used for training the synthetic data
generators, please refer to the replication package referred to
in Sec. III-G.

D. Step 4: Evaluate SD-Trained Models

This step closely followed the process outlined in Step
2, with two key distinctions. Firstly, while training was
performed on the synthetic datasets, testing and evaluation
were done on the original data, not a held-out part of the
synthetic dataset. Secondly, tuning comes in two flavours.
Each of the algorithms considered in step 2, was run twice to
create two different variants of setting the hyperparameters:

• Variant A, reusing the hyperparameters of the corre-
sponding baseline model from step 2.

• Variant B, based on newly tuned hyperparameters, de-
termined using the same technique as in step 2.

This choice was made to complement the results of Dankar
and Ibrahim who, in their experiments, did not see significant
differences between these two variants [17].

Overall, this resulted in eight classification models Me,a,v
i,j

for each synthetic dataset Se
i,j , a and v referring to the

algorithm used for learning and v to the tuning variant,
respectively.

As for the evaluation of performance, we compute in this
step a relative F1-score that enables us to easily compare
the performance of models trained on synthetic data with
the corresponding baseline model. We define the relative F1-
score of a model trained on synthetic data as

rel_f1(Me,a,v
i,j ) :=

f1(Me,a,v
i,j )

f1(Ba
i )

The relative variants of other recorded performance measures
(see Sec. III-B) can be defined analogously.

E. Step 5: Compute Population Fidelity Metrics

In this step, we computed the population fidelity metrics
explained in Sec. II-A for all the datasets Se

i,j . The met-
rics Cluster Analysis, Cross Classification, and pMSE were
implemented from scratch based on their definitions in the
literature. The implementations (provided by the first author)
were rigorously tested and reviewed by the co-authors to
identify bugs and establish a high level of certainty of the
implementations’ correctness. The remaining metrics were
computed using the SDMetrics library to compute [28].

As for the Cluster Analysis implementation, we used two
different clustering algorithms. Sklearn’s K-Means imple-
mentation is utilized for datasets with exclusively numerical
features. Other datasets are handled by using the KPrototypes
algorithm as implemented in the kmodes library, a versatile
clustering algorithm capable of handling mixed datasets [29].

For the classification as part of the Cross classification
metric, we use multi-layer perceptron (MLP) classifiers, ei-
ther as implementation for binary or multi-class classification
problems. To decide which one to use, the implementation

counts the number of different values for the feature of
interest and selects the classifier accordingly.

The first step in the implementation of the pMSE measure
is to merge the corresponding original dataset with the
synthetic one and augment the data points with a binary
target feature indicating their origin, original or synthetic.
The data is standardized and used for training a logistic
regression classifier as proposed in the literature [9]. Upon
training, the classifier predicts the likelihood of the test data
points being synthetic.

F. Step 6: Perform Data Analysis

In the last step of the experiment, we eventually analyse
the collected metrics to answer the motivating research
question of how well population fidelity metrics estimate
the performance of classification models trained on syn-
thetic data. This question is therefore translated into a set
of hypotheses that can be tested using statistical tests for
correlation analysis.

First, we test for the most generic hypothesis:

Null hypothesis HA
0 (pf): there exists no monotonic

relationship between the population fidelity measure
pf of a synthetic dataset and the relative F1-scores of
models trained on that dataset.
Alternative hypothesis HA

1 (pf): a monotonic relation-
ship exists between the population fidelity measure
measure pf and the relative F1-score.

After that, we refine this hypothesis to investigate possible
correlations with specific classification models:

Null hypothesis HB
0 (pf,a,t): there exists no monotonic

relationship between the population fidelity measure
pf of a synthetic dataset and the relative F1-scores of
models trained on that dataset using algorithm a and
tuning variant t.
Alternative hypothesis HB

1 (pf,a,t): a monotonic rela-
tionship exists between the population fidelity measure
measure pf and the relative F1-score of models using
algorithm a and tuning variant t.

Finally, we investigate to which degree a such correlation
can be found for the individual original datasets:

Null hypothesis HC
0 (pf,i): there exists no monotonic

relationship between the population fidelity measure pf
of a synthetic dataset based on Di and the relative F1-
scores of models trained on that dataset.
Alternative hypothesis HC

1 (pf,i): a monotonic rela-
tionship exists between the population fidelity measure
measure pf of a synthetic dataset based on Di and the
relative F1-score of models trained on that dataset.

All hypotheses were tested using Spearman’s rank corre-
lation coefficient at a significance level of α = 0.01.



Fig. 2: Baseline model F1-performances (trained on original
data).

Fig. 3: Mean F1-performance for each dataset and number
of generator training epochs.

G. Implementation and Replication Package

The experiment was implemented in Python. The code and
documentation are available in the replication package avail-
able at https://github.com/alexanderflorean/
SCAI2024_Estimating_Synthetic_Data

IV. RESULTS

Through the process in step 2, we obtained classification
models for each of the datasets. Fig. 2 shows their average F1
performance by training algorithm. As described in Sec. III-
C, we generated synthetic datasets with varying training
epochs for the underlying generator. This served the purpose
of obtaining datasets of varying utility as measured as the
F1 performance of the models being trained on the datasets
(see Sec. III-D). Fig. 3 illustrates the resulting averaging F1
performances over the number of epochs for each of the
datasets. While there is a general trend of the F1 performance
increasing with the number of epochs, the shape of the
increase varies across the datasets. The greatest variance in
F1 can be observed for the MNIST dataset (ranging from less
than 0.1 to over 0.7), while for the other cases, the values

TABLE III: Results of testing HA
0 (pf): Is there a monotonic

relationship between population fidelity and relative F1-
score?

Measure p-value Correlation / CI (99%)

BNLogLikelihood 0.0000 0.1761 [0.1031, 0.2471]
Cluster Measure 0.0000 -0.5370 [-0.5767, -0.4947]
ContinuousKLD 0.0000 0.2596 [0.2051, 0.3125]
CrCl 0.0000 0.4619 [0.4154, 0.506]
CSTest 0.0000 0.4300 [0.3674, 0.4887]
DiscreteKLD 0.0000 0.3414 [0.2741, 0.4055]
GMLogLikelihood 0.0188 0.0526 [-0.005, 0.1098]
KSComplement 0.0000 0.4425 [0.395, 0.4876]
pMSE 0.0000 -0.4589 [-0.5032, -0.4122]

range between 0.4 and 0.75. Fig. 4 shows the distribution
of population fidelity vs. relative F1-score for three selected
population fidelity measures. We limited the illustration to
three measures due to space limitations. The scatter plots
for the remaining population fidelity metrics are available in
the full documentation of the experiment (see Sec. III-G).

Each data point in each scatter plot represents a single
model Me,a,v

i,j trained in step 4 (see Sec. III-D) and its
relative F1-score and population fidelity metric. The general
distribution of data points hints at a potential negative corre-
lation for cluster measure and pMSE (which both decrease
in value with increasing fidelity) and a positive correlation
with cross-classification (CrCl). This appears even more
pronounced for individual datasets in some cases, like for the
MNIST dataset measures with Cluster Measure and CrCl, for
which the plots suggest a stronger correlation than for the
overall depicted dataset. However, there is also significant
spread of values for all measures.

These visual impressions (and the ones for the missing
population fidelity measures) are confirmed by the statis-
tical tests (see Tab. III). The test results for HA

0 (pf) are
statistically significant for all population fidelity metrics
but GMLogLikelihood. We therefore reject all HA

0 (pf) and
assume HA

1 (pf) for all metrics but GMLogLikelihood.
The correlation values and confidence intervals indicate

that the strength of the correlation varies across the measures.
BNLogLikelihood and ContinuousKLD show only weak cor-
relations while Cluster measure, CrCl, CSTest, DiscreteKLD,
KSComplement, and pMSE indicate moderate correlations.

Tab. IV summarises the test results for the hypothe-
ses HB

0 , a refined analysis looking at the correlations on
a per-algorithm basis. For five out of the nine popula-
tion fidelity metrics (Cluster Measure, Cross Classification,
CSTest, KSComplement, pMSE), we can consistently reject
the corresponding null hypothesis and assume the alternative
hypothesis is true across all learning algorithms and tuning
alternatives2. ContinuousKLD and DiscreteKLD do not ex-
hibit a significant correlation for one to two cases while,
on the other hand, BNLogLikelihood and GMLogLikelihood
show no correlation except for random forest models and k-
NN (BNLogLikelyhood only).

2In the table, the prefix o_ indicates reusing hyperparameters from tuning
the corresponding baseline model (see Sec. III-D)



(a) Cluster Analysis measure over relative F1

(b) Cross Classification over relative F1

(c) pMSE over relative F1

Fig. 4: Scatter plots for three selected population fidelity
metrics over the relative F1-score.

TABLE IV: Results of testing HB
0 (pf,a,t): Is there a mono-

tonic relationship between population fidelity and relative F1-
score for individual learning algorithms?

Algo- BNLogLikelihood Cluster M. (avg. -0.54, sd. 0.11)
rithm p-value Correlation / 99%-CI p-value Correlation / 99%-CI
knn 0.0038 0.2409 [0.0333, 0.4286] 0.0000 -0.6631 [-0.7453, -0.5611]
o_knn 0.2429 0.0988 [-0.1128, 0.3019] 0.0000 -0.6362 [-0.7238, -0.5283]
lr 0.9152 -0.0090 [-0.218, 0.2007] 0.0000 -0.6030 [-0.6971, -0.4884]
o_lr 0.3555 0.0783 [-0.1332, 0.283] 0.0000 -0.5916 [-0.688, -0.4748]
rf 0.0000 0.6166 [0.4676, 0.7315] 0.0000 -0.4236 [-0.5484, -0.2805]
o_rf 0.0000 0.5875 [0.4313, 0.7096] 0.0000 -0.3202 [-0.4588, -0.1665]
svm 0.6160 -0.0426 [-0.2497, 0.1683] 0.0000 -0.5870 [-0.6842, -0.4693]
o_svm 0.3928 -0.0724 [-0.2776, 0.139] 0.0000 -0.5012 [-0.6137, -0.3688]

ContinuousKLD Cross Class. (avg. 0.47, sd. 0.08)
knn 0.0000 0.3567 [0.2062, 0.4907] 0.0000 0.4720 [0.3353, 0.5893]
o_knn 0.0000 0.2666 [0.1088, 0.4112] 0.0000 0.3394 [0.1873, 0.4756]
lr 0.0000 0.3814 [0.2334, 0.5122] 0.0000 0.4590 [0.3204, 0.5783]
o_lr 0.0000 0.3520 [0.201, 0.4866] 0.0000 0.4878 [0.3534, 0.6025]
rf 0.0014 0.2065 [0.0456, 0.357] 0.0000 0.6086 [0.4951, 0.7017]
o_rf 0.8830 0.0096 [-0.153, 0.1718] 0.0000 0.5559 [0.4325, 0.6589]
svm 0.0000 0.3040 [0.1489, 0.4445] 0.0000 0.3969 [0.2506, 0.5255]
o_svm 0.0000 0.2835 [0.1269, 0.4263] 0.0000 0.4392 [0.298, 0.5616]

CSTest (avg. 0.46, sd. 0.06) DiscreteKLD
knn 0.0000 0.5350 [0.3667, 0.6693] 0.0000 0.3631 [0.1664, 0.532]
o_knn 0.0000 0.4691 [0.288, 0.6177] 0.0009 0.2747 [0.0693, 0.4577]
lr 0.0000 0.4462 [0.2613, 0.5995] 0.0021 0.2551 [0.0484, 0.4409]
o_lr 0.0000 0.4514 [0.2673, 0.6036] 0.0010 0.2715 [0.066, 0.455]
rf 0.0000 0.5413 [0.3744, 0.6742] 0.0000 0.7172 [0.5977, 0.8056]
o_rf 0.0000 0.4700 [0.2892, 0.6185] 0.0000 0.6438 [0.5021, 0.7518]
svm 0.0000 0.3742 [0.1789, 0.5412] 0.0469 0.1672 [-0.0437, 0.3638]
o_svm 0.0000 0.3620 [0.1652, 0.5311] 0.0747 0.1502 [-0.061, 0.3486]

GMLogLikelihood KSComplement (avg. 0.45, sd. 0.12)
knn 0.3619 0.0597 [-0.1038, 0.22] 0.0000 0.4937 [0.3601, 0.6074]
o_knn 0.1603 0.0917 [-0.0718, 0.2504] 0.0000 0.3687 [0.2193, 0.5011]
lr 0.1111 -0.1040 [-0.262, 0.0595] 0.0000 0.4525 [0.313, 0.5728]
o_lr 0.2580 -0.0740 [-0.2336, 0.0896] 0.0000 0.4344 [0.2926, 0.5575]
rf 0.0000 0.3364 [0.184, 0.473] 0.0000 0.7296 [0.6434, 0.7975]
o_rf 0.0000 0.3261 [0.1728, 0.464] 0.0000 0.5366 [0.4099, 0.643]
svm 0.2548 -0.0745 [-0.2341, 0.0891] 0.0000 0.3413 [0.1894, 0.4773]
o_svm 0.1138 -0.1032 [-0.2613, 0.0602] 0.0000 0.2815 [0.1248, 0.4246]

pMSE (avg. -0.50, sd. 0.07)
knn 0.0000 -0.5805 [-0.6789, -0.4616]
o_knn 0.0000 -0.5677 [-0.6685, -0.4465]
lr 0.0000 -0.4941 [-0.6077, -0.3606]
o_lr 0.0000 -0.4900 [-0.6043, -0.3558]
rf 0.0000 -0.5604 [-0.6625, -0.4378]
o_rf 0.0000 -0.4530 [-0.5732, -0.3136]
svm 0.0000 -0.4686 [-0.5864, -0.3313]
o_svm 0.0000 -0.3651 [-0.4980, -0.2154]

The five consistent metrics all exhibit moderate correlation
with the relative F1-score on average with slightly higher
values for the Cluster Measure. Cross classification, CSTest,
and pMSE, however, show less variance in the correlation
across the different algorithms.

Re-tuning the hyperparameter of models seems favourable
over re-using them in some cases for the consistent pop-
ulation fidelity measures, e.g. KSComplement for random
forests. In many cases though, the distinction does not
influence the resulting correlation significantly.

Tab. V illustrates the results related to HC
0 . As the

Diabetes and the MNIST dataset do not contain categori-
cal/cardinal features, the hypothesis could not be tested for
metrics BNLogLikelihood, CSTest, and DiscreteKLD. These
metrics take only categorical/cardinal features into account
and can hence not be applied to these two datasets. Cluster
measure and Cross-Classification are the only two population



TABLE V: Results of testing HC
0 (pf, i): Is there a monotonic

relationship between population fidelity and relative F1-score
for individual datasets?

BNLogLikelihood Cluster M. (avg. -0.54, sd. 0.26)
Dataset p-value Correlation / 99%-CI p-value Correlation / 99%-CI
Adult 0.0000 0.4413 [0.3316, 0.5393] 0.0000 -0.3848 [-0.4892, -0.2696]
Bank 0.0000 0.3961 [0.2818, 0.4992] 0.0002 -0.1827 [-0.3042, -0.0555]
Diabetes n/a n/a 0.0000 -0.7347 [-0.7887, -0.6693]
MNIST n/a n/a 0.0000 -0.9121 [-0.9314, -0.8876]
Titanic 0.0000 0.3432 [0.2245, 0.4518] 0.0000 -0.4765 [-0.5701, -0.3706]

ContinuousKLD Cross Class. (avg. 0.62, sd. 0.17)
Adult 0.0000 0.2851 [0.1625, 0.399] 0.0000 0.4615 [0.3539, 0.557]
Bank 0.1435 -0.0733 [-0.2, 0.0558] 0.0000 0.5498 [0.4533, 0.6336]
Diabetes 0.0000 0.7293 [0.6629, 0.7843] 0.0000 0.7750 [0.7179, 0.8217]
MNIST 0.0000 0.8972 [0.8688, 0.9197] 0.0000 0.8574 [0.8191, 0.8881]
Titanic 0.0000 0.3787 [0.263, 0.4838] 0.0000 0.4475 [0.3384, 0.5448]

CSTest DiscreteKLD
Adult 0.0000 0.3315 [0.212, 0.4413] 0.0546 0.0962 [-0.0328, 0.222]
Bank 0.0002 -0.1833 [-0.3047, -0.0561] 0.0002 -0.1849 [-0.3062, -0.0577]
Diabetes n/a n/a n/a n/a
MNIST n/a n/a n/a n/a
Titanic 0.0000 0.2178 [0.0918, 0.3369] 0.0000 0.4326 [0.3219, 0.5316]

GMLogLikelihood KSComplement
Adult 0.0578 -0.0949 [-0.2208, 0.034] 0.0000 0.4333 [0.3227, 0.5322]
Bank 0.1411 -0.0737 [-0.2004, 0.0554] 0.0980 0.0828 [-0.0462, 0.2092]
Diabetes 0.0000 0.3552 [0.2375, 0.4626] 0.0000 0.6148 [0.5279, 0.6889]
MNIST 0.0000 -0.3946 [-0.4979, -0.2803] 0.0000 0.9253 [0.9044, 0.9419]
Titanic 0.0000 0.2151 [0.089, 0.3345] 0.0000 0.4727 [0.3664, 0.5668]

pMSE
Adult 0.0000 -0.2457 [-0.3628, -0.1209]
Bank 0.2574 0.0568 [-0.0723, 0.184]
Diabetes 0.0000 -0.7424 [-0.7951, -0.6787]
MNIST 0.0000 -0.9197 [-0.9374, -0.8972]
Titanic 0.0000 -0.4683 [-0.563, -0.3615]

fidelity metrics for which the corresponding null hypothesis
HC

0 could be consistently rejected for all datasets and the
alternative hypothesis could be assumed. The correlation
with the relative F1-score varies a lot across the datasets,
even for these two metrics showing standard deviations
of 0.26 (Cluster Measure) and 0.17 (Cross Classification),
respectively. Overall, the strongest correlation can be ob-
served for the MNIST dataset with only GMLoglikelihood
(and the inapplicable metrics) being not strongly correlated
with relative F1-performance. The correlation appears to
be weakest for the Bank dataset across all metrics, which,
for some metrics, is even the single dataset for which a
correlation is not statistically significant (ContinuousKLD,
KSComplement, pMSE).

V. DISCUSSION

In the following, we discuss the results and their implica-
tions on the suitability of population fidelity for estimating
utility, provide recommendations for practitioners, and elab-
orate on the limitations and validity of the study.

A. Suitability of Population Fidelity to Estimate Utility

As outlined in Sec I, the motivating research question of
the presented study is to which degree population fidelity
can estimate the performance of classification models trained
on synthetic data. The experiment explained in the previous
sections therefore measures population fidelity with several
metrics and checks for correlations with the relative F1-score.

Most population metrics exhibit moderate correlations
with relative F1 performance. Only BNLogLikelihood and
and ContinuousKLD show weak correlations and GMLog-
likelihood fails to show statistically relevant correlations. It
must be stated though that even moderate levels of correla-
tion are insufficient for estimating utility. As can be seen in
Fig. 4, the data points scatter considerably. Models with a
relative F1-score of around 0.8 have a corresponding Cluster
Analysis value between 1 and 18, a Cross-Classification
score between 0.13 and 0.61, and a pMSE score between
0.01 and 0.17. For reliable utility estimations, this variance
is too large.

Cluster Analysis, Cross-Classification, CSTest, KSCom-
plement, and pMSE appear relatively robust against the
choice of learning algorithm used for the classifier as the
evidence provided for HB

0 shows. CSTest and pMSE exhibit
a little less variance in the correlation than Cluster Analysis,
Cross-Classification, and KSComplement.

The variance is even lower if we only consider the results
for models that were fine-tuned newly in step 5, i.e., when
new hyperparameters were computed (see Sec. III-D). In
general, in contrast to previous results from similar studies,
the results indicate that, in most cases, computing new
hyperparameters leads to better (or at least equally good)
results in terms of correlation. This is a positive result as the
motivation for having population fidelity as a utility estimator
is to avoid training a model on real data in the first place
and tuning would need to happen based on synthetic training
data anyway.

More influential to the degree of correlation than the
learning algorithm used seems to be the datasets themselves.
The dataset-specific results (HC

0 ) show much more variance.
For the Diabetes and MNIST datasets, five out of six metrics
that can deal with datasets of only numerical features have a
strong correlation with the relative F1-performance and score
highest for MNIST and second-highest for Diabetes. For the
Bank dataset, only for BNLogLikelihood and Cross Clas-
sification a moderate correlation was observed while Con-
tinuousKLD and GMLogLikelihood indicated weak inverse
correlations. Overall, there is some disagreement between the
metrics in terms of correlation which makes us assume that
certain dataset properties allow different metrics to estimate
utility less or more accurately. As the Diabetes and MNIST
datasets show high correlations, a first point might be to
clarify the influence categorical and ordinal features have on
population fidelity metrics. However, other aspects, like the
distribution of features or, the relevance of a feature for the
resulting classification need to be investigated further as such
a detailed investigation was beyond the scope of this study.

A fact that complicates the effective use of population
fidelity metrics to estimate utility is the number of parameters
that can be changed. Many of the metrics make use of
machine learning themselves, such as pMSE makes use
of classification to compute propensity scores, or Cluster
Analysis computes clusters in the data merged from original
and synthetic data. Therefore, the specific implementation of
a population fidelity metric can be influenced by the choice



of learning algorithm, model parameters, hyper-parameters,
and settings for training and evaluation. Although literature
sometimes recommends certain settings, parameter values,
or algorithms, these recommendations are far from complete
and do not seem to be evaluated empirically. For pMSE, for
example, the literature suggests fitting a logistic regression
model to the data while other classification models are, of
course, possible (as long as they express class membership as
a value that can be interpreted as probability). However, spe-
cific model parameters (like, the degree of the polynomial),
hyperparameters (e.g., regularization strength), or training
and evaluation settings are all parameters that can influence
how well the resulting metric estimates the utility of the
dataset at hand. A sloppily trained, underfitting model could
falsely indicate high-fidelity, synthetic data while, in reality,
it does simply not represent a good effort to tell synthetic
from original data.

This performance competes with the level of compu-
tational complexity that is affordable and reasonable to
compute population fidelity. Considering, for example, all the
relevant settings, parameters, and hyperparameters in Cross-
Classification, ideally as average over models trained with
different algorithms, might be too expensive. In the end, one
goal of being able to estimate the utility data of synthetic
data is to avoid potentially expensive iterations of training
the intended model. This reduction in cost and effort should
not be made null and void by overly expensive estimators.

B. Recommendations for Practitioners

For estimating the utility of synthetic data based on their
population fidelity, the results lead to the recommendation to
take fidelity scores with a pinch of salt. They are too impre-
cise to infer a certain classification performance of potential
classification models trained on the evaluated synthetic data.

This does not mean that population fidelity metrics
are useless in this context. Cluster Measure and Cross-
Classification, and to a somewhat lesser extent, CSTest,
KSComplement, and pMSE, can certainly be used to point
out qualitative utility differences between synthetic datasets
based on the same original dataset. In particular, if classifi-
cation models trained on synthetic data already exist and
new synthetic data needs to be generated (for example,
due to unsatisfactory model performance), a comparison of
population fidelity scores might be informative to steer the
generation efforts.

However, practitioners should be aware of the lack of
quantitative information that those metrics currently provide.
An increase/decrease in population fidelity measured with
any metric cannot, with current techniques, be translated
into a proportional change in utility. In addition, population
fidelity scores are not comparable across different datasets.
Generic scores and any assurances or agreements on syn-
thetic data quality based on them, for example, offered by
parties providing synthetic data generation services, should
be scrutinized carefully.

In order to provide more accurate utility estimations,
research needs to investigate the influence of dataset charac-

teristics on population fidelity measures and develop recom-
mendations on how to measure utility in different scenarios.

C. Limitations & Validity

We limited the experiment in several aspects. Firstly, we
only consider structured data consisting of independent data
points, i.e., tabular data without any associations between
data points as they would exist, e.g., in time series. The
rationale for this was to keep the scope of the study at
a manageable scope while covering a practically relevant
type of data. Other types of data would require different
ways of expressing classification performance and fidelity as
well as other techniques to generate synthetic data, e.g. time
series [30]. We will address other types of data in the near
future.

Secondly, the experiment focuses on classification tasks
only, again, to keep the study scope manageable. Future
work will include regression as intended task, unsupervised
learning, and forecasting for time series data.

Thirdly, we limited the data analysis to a correlation
analysis towards the relative F1-score, ignoring other perfor-
mance measures or alternatives to represent the performance
difference between original and synthetic training data. Other
measures will be considered in our future work.

The restriction to five datasets as subjects of the study
may pose a threat to the external validity of the results.
We believe, however, that the discovered challenges with
using population fidelity metrics as estimators for utility are
not limited to the sample but that they, in fact, may be
generalized to a large number of other datasets. The datasets
were picked based on availability, popularity in the machine
learning community, and technical criteria (see Sec. III-A)
without any knowledge about their suitability for synthetic
data generation or their fidelity. We therefore consider any
selection bias towards the desired results highly unlikely.

The lack of recommended values for the parameters of the
considered population fidelity metrics was already explained
in Sec. V-A. This naturally forms a threat to construct
validity, together with the limited empirical evidence on the
"right" way to parameterize the metrics. We followed advice
from the literature as far as possible in using and implement-
ing them. Design/parameterization choices are documented
in the replication package for other researchers to review and
repeat the experiment with different settings. The same holds
for the choice of the relative F1-score as the classification
performance measure, which can easily be replaced by
others.

VI. CONCLUSION

Synthetic (training) data have to meet several quality
attributes. In many scenarios, they should protect sensitive
information contained in original data. If used as training
data in machine learning, synthetic data must show high
utility, i.e. lead to models of high predictive performance.
In this article, we addressed the question to which degree
population fidelity metrics can be applied to estimate this
utility for classification models trained on synthetic data.



The first contribution of the article is the results of
an experiment that analyses the correlation between nine
different population fidelity metrics and the F1 performance
of classification models trained on synthetic data based on
five different datasets. As the results suggest, those metrics
are too weakly correlated to serve as estimators in general
but some of them can be used to indicate trends in utility
among different synthetic datasets based on the original
data. The second contribution is an experimental framework
that enables other researchers to easily investigate similar
correlations with more datasets, other population fidelity
metrics, and different performance measures.

The results so far show that the degree of correlation
depends a lot on the datasets and their characteristics. Future
work needs to investigate which, and how, data character-
istics influence the ability of population fidelity metrics to
estimate utility. Only then, reliable estimations of synthetic
data utility based on population fidelity will be possible.
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