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Abstract—Neural Ranking Models have shown state-of-the-art
performance in Learning-To-Rank (LTR) tasks. However, they
are considered black-box models. Understanding the logic behind
the predictions of such black-box models is paramount for their
adaptability in the real-world and high-stake decision-making
domains. Local explanation techniques can help us understand
the importance of features in the dataset relative to the predicted
output of these black-box models. This study investigates new
adaptations of Local Interpretable Model-Agnostic Explanation
(LIME) explanation for explaining Neural ranking models. To
evaluate our proposed explanation, we explain Neural GAM
models. Since these models are intrinsically interpretable Neural
Ranking Models, we can directly extract their ground truth
importance scores. We show that our explanation of Neural GAM
models is more faithful than explanation techniques developed
for LTR applications such as LIRME and EXS and non-LTR
explanation techniques for regression models such as LIME and
KernelSHAP using measures such as Rank Biased Overlap (RBO)
and Overlap AUC. Our analysis is performed on the Yahoo!
Learning-To-Rank Challenge dataset.

I. INTRODUCTION

Learning-to-rank (LTR) models are machine learning tech-
niques designed to automatically learn from training data
consisting of queries and corresponding ranked lists of docu-
ments (or sometimes called items) [1]. These models learn a
ranking function to increase the relevance of each document
to its corresponding query. LTR models are often complex
since they are trained using many parameters to achieve
high accuracy [2]. The complexity of ranking models can
sometimes undermine their efficacy, as humans struggle to
comprehend the rationale behind a particular order [3]. The
absence of transparency in these so-called black-box models
can cause prediction errors, biases, or even unethical behavior
[4]. Hence, there is a need to understand the complex black-
box models [5].

Generalized Additive Models (GAMs) are statistical models
that allow for flexible, non-linear relationships between the
input (predictor) and the output (response) variables. In these
models, the response variable is modeled by an additive combi-
nation of smooth functions on each predictor variable. Neural
Ranking GAMs [6] builds on using neural networks to model
the smooth functions for each predictor variable. Because of
this, Neural Ranking GAMS are intrinsically interpretable. In
[6], the authors showed that Neural Rank GAMs outperformed
other types of neural network-based LTR models across tabular
datasets.
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Explanation techniques provide information about the logic
behind the prediction of black-box models in a post-hoc
manner, i.e., after the models are trained. Explanations come in
different categories: feature attribution, counterfactual expla-
nations, etc. Feature attributions are among the most popular
explanations due to their flexibility and easy interpretation.
Feature attribution presents the explanations in terms of real-
valued importance scores, where each score depicts the impor-
tance of that feature to the predicted output of the black-box
model [7].

Feature attribution explanations are themselves further di-
vided into two categories: local and global explanations [8].
Global explanations provide feature importance scores to the
predicted output of black-box models for the entire dataset. On
the other hand, local explanations provide feature importance
scores for the predicted output of the black-box model for a
single data point. Global explanations summarize the dataset’s
important features, while local explanations excel when a user
needs to understand the underlying reasons behind the (possi-
bly wrongful) prediction of a single instance in a production
machine-learning model. For example, the surprising result of
a search query for a single in a music streaming app.

For LTR models, local feature attribution explanations are
further categorized into point-wise [9, 10] and list-wise ex-
planations [11]. Local point-wise explanations provide feature
importance scores for the predicted output of an LTR model
given a single document associated with a given query. Local
list-wise explanations provide feature importance scores for
the predicted output of an LTR model on the entire list of
documents associated with a query. Consider the case when
a user puts in the search query “The Wall album” in a music
streaming app and observes that the album “Off the Wall”
by Michael Jackson receives a low relevance score by the
black-box LTR model. Obtaining a point-wise explanation of
this document (or item) can help users understand the contri-
bution of features such as Term frequency–Inverse document
frequency (TF-IDF) to these surprisingly low relevance scores.

The main challenge in using explanation techniques lies in
their evaluation [12, 13]. This is partly because the ground
truth importance scores cannot be directly extracted from com-
plex black-box models. However, since Neural Rank GAMs
have Generalized Additive components that are intrinsically
interpretable, we can extract the ground truth importance
scores, which we refer to as the “Ground Truth”1. Therefore,
we have a unique opportunity to evaluate local explanations

1The ground truth importance scores should not be confused with the
definition of ground truth in supervised learning, where ground truths are
discrete labels associated with data instances.
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of Neural Rank models by directly comparing them to the
Ground Truth.

In our study, we investigate the faithfulness of different
variants of Local Interpretable Model-Agnostic Explanation
(LIME) techniques for explaining Neural Rank GAM models.
We propose our variation of LIME with different sampling
techniques such as Gaussian, SMOTE, Latin Hypercube Sam-
pling (LHS), and Deterministic LIME (DLIME)2. We then
evaluate our proposed techniques against the point-wise expla-
nations of Locally Interpretable Ranking Model Explanation
(LIRME) [10] and Explainable Search (EXS) [9], and non-
LTR explanations of LIME in its official implementation
[14] and SHapley Additive exPlanations (SHAP) [15] on the
Yahoo! Learning-To-Rank Challenge dataset.

Our study is the first study to evaluate the explanations
of Neural Rank GAM models. Moreover, we are the first to
evaluate the local explanations of LTR models using ground
truth importance scores. We evaluate the explanations using
the Rank Biased Overlap (RBO) measure. Moreover, in our
study, we propose a measure called Overlap AUC for evalu-
ating local explanations using ground truth3. The code of our
experiments is available at https://github.com/amir-rahnama/
neural_ranking_exp.

More specifically, our main findings are as follows:
1) The faithfulness of Neural Ranking GAM explanations

depends on two main factors: the predicted rank of the
explained documents and the explanation sample size.

2) No single LIME-based explanations can be faithful with
respect to the two aforementioned factors using RBO and
Overlap measures in all cases.

3) Our proposed LIME explanations based on Gaussian,
DLIME, and LHS sampling provide the most faithful ex-
planations based on Overlap and RBO for the majority of
cases, outperforming point-wise explanations techniques
of LIRME, EXS, LIME (official implementation), and
KernelSHAP.

4) For specific choices of the explanation sample size pa-
rameters and when explaining documents ranked second
in the test set queries, the LTR-based explanations of
LIRME and EXS Score (S) can provide the highest
faithfulness based on the RBO measure.

5) We show that our proposed LIME explanation with
SMOTE sampling excels at reflecting the explained docu-
ments’ predicted rank in providing its local explanations.

6) We highlight that generated samples of explanation tech-
niques can be largely imbalanced depending on the
predicted rank of explained documents. We postulate that
this challenges developing faithful explanation techniques
for LTR models.

II. RELATED WORK

To the best of our knowledge, there have not been studies on
local point-wise explanations of Neural Rank GAM models.

2These sampling techniques are described in Section IV-A.
3These measures are defined in Section VI-C.

Moreover, no evaluation study has focused on comparing
LIRME and EXS explanations for tabular datasets.

LIME-based explanations of LIRME [10] and EXS [9]
were originally developed and evaluated on text datasets.
In their original study of LIRME, the authors showed that
LIRME explanations are both faithful based on Consistency
and Correctness. In the study, Consistency was calculated
as the similarity between the top-K important features of
LIRME explanations as its sample size increased. Correctness
was defined as the similarity between the tokens in top-K
important features and relevant terms in the text datasets. No
systematic evaluation exists in the original study of EXS.

In [16], LIME-based list-wise explanations of RankLIME
were shown to be more faithful than the explanations of
LIRME and EXS. However, the list-wise explanations are
outside the scope of our study.

III. BACKGROUND

A. Local Point-wise Explanations

Let X = (q,D) be the dataset comprising of query q
with a list of m documents D ∈ Rm, where document di
is represented by a feature vector d ∈ RM , with M as the
size of the feature vector.

Learning-to-Rank (LTR) models learn a ranking function
f : D → ΠM from the data, which outputs a predicted score
πi for each document di, indicating its relevance to the query
q.

LTR models can be optimized using point-wise, pairwise, or
list-wise loss functions. The point-wise explanation technique
g : di → RM provides Φ ∈ RM , where ϕj (for j = 1, . . . ,M )
is the importance score of feature j with respect to f(D).

B. Neural Ranking GAMs

The neural Generalized Additive Ranking Model is an
additive ranking model. For each document d with m features
d = [d1, d2, ..., dm], the ranking score is:

f(d) = f1(d1) + f2(d2) + . . .+ fm(dm) (1)

where each feature is scored by a corresponding sub-model,
and the overall ranking score f(d)is the sum of all the
component fj outputs where j = 1, ...,M . Each component
is a standalone feed-forward network. The model is overall
implicitly interpretable, given that the contribution of each
feature di to the final ranking score f(d) can be easily
allocated to the output of fi(di) where i = 1, ...,m. Note
that no interaction terms exist between features.

C. LIME and KernelSHAP

The goal of LIME explanations is to allocate an importance
score to each feature in the explained instance d with respect
to the predicted output of a black-box model f .

The LIME explanations are obtained as follows. LIME
generates new samples based on adding Gaussian distribution
taken from the training data’s mass center. After repeating
this process T times, the sample D′ is created. LIME then
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Fig. 1: A graphical illustration of different components in
Neural ranking GAMs [17]. We can extract ground truth
importance scores from the additive components of the model.

weights these samples using an exponential kernel function
k(d,D′). After that, the black-box model f is used as an
oracle to generate labels for these samples, i.e., f(D′). After
performing Larspath feature selection to eliminate features
with co-linearity, an interpretable surrogate g is trained on
new samples with that subset of features selected by Larspath
and their sample weights and labels to minimize the loss:
ξ(f, g, πx). The explanations E are the weight Wg of the
surrogate model.

In [14], the authors show a geometrical interpretation of this
process. The surrogate model aims to fit a linear model to the
vicinity around the explained instance.

KernelSHAP [15] is a variation of SHAP that uses a
combinatorial kernel function that is shown to guarantee
certain theoretical properties, such as fairness in LIME ex-
planations. LIME and SHAP were originally proposed to
explain supervised learning models. They can provide point-
wise explanations of LTR models when they are used for
regression models.

D. LTR-based Explanations

LIRME [10] and EXS [9] are examples of explanation
techniques that have adapted LIME for LTR models. In this
section, we provide an overview of these techniques.

In their original study, LIRME and EXS used an inter-
pretable sampling of text data. In this study, based on the pro-
posal of [18], we have adopted LIRME and EXS’s sampling to
quantile interpretable sampling process that is the equivalent
sampling but for tabular datasets.

This sampling process transforms the explained instance
into a binary interpretable representation based on quantiles
of features. Feature values of explained instances are allocated
the number of bins they fall into. A sampling process generates
new samples d′ from the explained instance d. The samples are
generated by randomly selecting a subset of features in d, and
then, for each selected feature, one of four bins is randomly
selected. If the selected bin from the generated sample equals
the bin of the feature value in an explained instance, the sample
receives a value of one and zero otherwise. The sampling
process is performed T times to create D′ = {d′1, ...d′T } where

T is a hyper-parameter. For more details on this process, see
[18].

LIRME trains a Ridge surrogate model on pairs of
(D′, f(D′)) with the following loss function:

L(D′, fD′, k) =

T∑
j=1

k(d′j , d)(g(d
′
j)− f(d′j))

2 + α|Θ|, (2)

where Θ is the weight of the surrogate model and hence
are LIRME explanations.

EXS, on the other hand, uses a Linear SVM surrogate and
has three labeling processes built for labels y, which leads to
three variants in the experiment comparison: Score-based (S),
Top-K binary (B), and Rank-based (R). In Score-based (S),
label equals 1− R(d′)−R(d1)

R(d1)
, where R(d1) is the rank of the

top-1 document in that query. Top-K binary (B) generates a
label one for sample d′ if its predicted rank is larger than
the rank of the Top-K document for the query. In Rank-
based (R), the label of d′ is zero if its rank is less than
the top-K document in the query. Otherwise, the label equals
1− R(d′)

k . EXS uses a hinge square loss or epsilon-insensitive
loss function to train its surrogate, depending on the type of
labeling used:

L(D′, y, k) =

T∑
j=1

k(d′j , d)yi(max(0, 1−ΘTD′)

+(1− y)max(0, 1 + ΘTD′),

where T is the sample size of perturbed documents and Θ is
the parameter of the surrogate linear SVM model g and hence
are the EXS explanations.

IV. METHODOLOGY

In our study, we propose different adaptations of the LIME
explanation for explaining Learning-To-Rank models. Our
adaptation has some differences with LIRME, EXS, LIME,
and SHAP. The most important difference is our sampling
process. Secondly, we skip the Lars path feature selection
process after training our surrogate model.

A. Sampling

As we mentioned, the first difference is that we do not sam-
ple based on quantile and binary representations like LIRME
and EXS. As other studies have shown [8, 19], transforming
the data into binary representations comes with a limitation:
we are operating in a data space that is different than the
original data space, and moreover, there is an information
loss. We propose four sampling techniques for LIME explana-
tions of LTR models on tabular datasets: Gaussian, SMOTE,
Latin Hypercube Sampling (LHS), and Deterministic LIME
(DLIME).

Gaussian sampling introduces perturbations to each feature
of the original instance by adding random noise drawn from
a normal distribution.
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SMOTE [20] is a variation of the Synthetic Minority Over-
sampling Technique that randomly selects one of the k-nearest
neighbors to the instance explained and then creates new
samples by interpolating between the feature values of pairs
of instances.

LHS [21] applies a structured approach to sample across
feature distributions. Formally, for each dimension j, i =
1, 2, ...,M , LHS divides the range of possible values into T
intervals and samples uniformly within each interval. Addi-
tionally, LHS ensures that only one sample is taken from each
interval along each dimension, which avoids the clustering
of samples. The process can be summarized as follows: 1)
Divide each dimension into T equal intervals; 2) Randomly
select one sample from each interval along each dimension;
3) Permute the samples randomly within each dimension to
eliminate any remaining order dependencies. The resulting set
of samples provides a more evenly distributed coverage of the
multidimensional space.

Finally, DLIME first generates samples using LHS and then
selects a subset of them by applying Agglomerative Clustering
and choosing the cluster that contains the nearest neighbors
of the explained document (target instances). Agglomerative
Clustering [22] is a hierarchical clustering technique used to
group similar data points into clusters. It starts with each data
point considered as a single cluster and iteratively merges the
closest pairs of clusters until a predefined stopping criterion
is met. Let n be the number of data points and d be the
dimensionality of the data. The process can be summarized
as follows: 1) Start with n clusters, each containing a single
data point; 2) Compute the pairwise distance or similarity
between all clusters; 3) Merge the two closest clusters based
on a linkage criterion (e.g., single linkage, complete linkage,
average linkage); 4) Update the distance matrix to reflect
the distances between the new cluster and the remaining
clusters; 5) Repeat steps 2-4 until a stopping criterion is met,
such as reaching a desired number of clusters or a specified
threshold distance. Specifically, agglomerative clustering is
computationally intensive, particularly for large datasets, as
it requires computing the pairwise distances between all data
points at each iteration. However, it often produces inter-
pretable hierarchical structures that can be visualized using
dendrograms.

B. Training the surrogate

The second difference between our approach and LIME and
KernelSHAP is that we skip the Larspath feature selection
step in LIME and SHAP. Moreover, our labeling process is
similar to the Top-K binary labeling of EXS. To re-iterate,
the generated sample based on d is labeled one if R(q, d′) is
greater than R(q, dk), being dk the k-th ranked document for
that given query.

V. EVALUATION

As mentioned earlier in Section I, evaluating local expla-
nations is challenging and an open research problem [12].
However, in the case of Neural Rank GAMs, we have access

to the ground truth importance scores from the Generalised
Additive Model components.

Because of this, we can evaluate local explanations by
directly comparing them to the ground truth importance scores
obtained from Neural Rank GAM models. We make use of two
measures: RBO and our proposed Overlap AUC.

The RBO [23] measure compares two ranked lists, and
allocates a numeric value between zero and one to represent
their similarity. The measure is calculated as follows:

RBO = (1− p)×
n∑

k=1

pk × min(k,m)

k ∗m
+ pn × n

m
(3)

where p is a parameter between 0 and 1, indicating the
weight assigned to ranks, n is the depth at which the overlap
is calculated, and m is the length of the reference list. The
measure includes min(k,m) to ensure the calculation does
not go beyond the length of the lists. Faithful explanations
have a large value of RBO similarity to the ground truth.

Overlap AUC is our proposed measure for evaluating the
faithfulness of explanations with respect to the ground truth.
For calculating Overlap AUC, we first select the top-K impor-
tant features from an explanation ϕ and ground truth vector λ
where K = 1, ...,M and M is the total number of features in
the dataset.

Overlap(k, ϕ, λ) =
|Top(k, ϕ) ∩ Top(k, λ)|

k
, (4)

For each value of K, Overlap(k, ϕ, λ) allocates a value
between zero and one to represent the similarity. See Figure 6
for an example of how Overlap is calculated for explanations
with explanations of sample sizes 500 and 2000.
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Fig. 2: The Overlap of explanations with Ground truth for
documents with predicted rank of two in Yahoo dataset.

In order to reduce the dependence on the value of K, we
calculate Overlap AUC by marginalizing over the values of K
and calculating the area under the curve:

Overlap_AUC(ϕ, λ) =
∫ N

0

Overlap(k, ϕ, λ) dk, (5)

where K = 1, ...,M . Based on this, larger values of Overlap
AUC indicate that the generated explanations are more faithful.
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VI. EXPERIMENTS

In this section, we provide the result of our empirical
investigation. Firstly, we describe the setup of our experiments
in Section VI-A. After that, we peek into the ground truth im-
portance scores obtained from Neural Ranking GAM models
in Section VI-B. Our main evaluation analysis is presented in
Section VI-C.

A. Setup

This study uses the Yahoo! Learning-To-Rank Challenge
dataset [24]. This publicly accessible dataset includes two sets,
namely Set1 and Set2. Set1 is commonly used for learning to
rank evaluation and consists of three partitions for training,
validation, and testing. Each document in this dataset is
represented by 700 numerical features, normalized to a range
of [0, 1] using inverse cumulative distribution. The specific
meaning of each feature is not disclosed. The documents are
labeled with relevance labels ranging from 0 to 4.

For data preprocessing, we reduced the dimensionality of
the data from 700 features to 100 by performing feature
selection. This is because the large majority of features do not
have discriminative or predicted power. In our feature selection
process, we excluded the features that appeared in less than
fifty percent of the documents in the training dataset. Then,
we conducted a correlation study between features and their
relevance scores to find the top 100 features with the highest
discriminative power.

We have used the official Tensorflow implementation of
Neural GAM models. For training the Neural ranking GAM
model, we chose the hyper-parameter configuration in the
original study [6]. With the defined partitions of training and
testing, we obtained a Normalized Discounted Cumulative
Gain (NDCG) score [25] of 77.89% for the trained model.
The NDCG score measures a ranking algorithm’s quality by
assessing the retrieved items’ relevance and considering their
positions in the result list.

in the Neural Rank GAM model, the ground truth impor-
tance scores for feature j are extractable from the weight of
the component called “feature j subscore” where i = 1, ...,M .
See our implementation code for more details4.

To evaluate explanations, we randomly selected 20 queries
from the test set, each with 23 associated documents. For
each query, we explain the 2nd and 10th-ranked documents
by the Neural Ranking GAM model since we are interested
in investigating the effect of the predicted rank of documents
on the faithfulness of explanations.

For SMOTE sampling, the number of neighbors is set to
10. This value is the optimum minimum for the surrogate loss
among the values between 3 and 20.

For LIME and SHAP, we use all the test data as background
datasets. This choice has been shown to provide the most
optimal performance in [26]. For the LHS sampling [21],
the number of clusters is set to 3. The choice is made
after observing this value provides the max silhouette scores

4More specifically, see line 279 of the file: generating_exp.py.

among the clusters in the range 2 to 11. For EXS, the anchor
ranked document is set to the predicted rank of the explained
document, i.e., rank 10 and 2. Additionally, our random base-
line (referred to as “Random” in the comparison) generates
importance scores uniformly at random for all features.

B. Ground truth importance scores
In Fig. 3, we present the ground truth importance scores

obtained from Neural Ranking GAMs for documents ranked
second (left) and 10th (right). Note that since we have per-
formed feature selection and have reduced the set of features
to the one with predictive scores, most features have absolute
importance scores greater than zero in the figure.
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Fig. 3: The ground truth importance scores of Neural Ranking
GAMs for documents ranked 2nd (Left) and 10th (Right).

In Fig. 4 and 5, we provide the frequency of top-10
important features obtained from the explanations and the
ground truth importance scores (see Fig. 3) for documents with
predicted rank of two and ten, respectively. For the documents
with predicted rank 2, our proposed explanation techniques
based on SMOTE and LHS sampling can detect the top-1
important feature from the ground truth. On the other hand,
no explanation technique has detected the top-1 important
features for documents with predicted rank of 10. We provide
an intuition for this in Section VI-E.
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Fig. 4: The frequency of Top-10 Important Features from
Explanations and Ground Truth for the explanations of all test
documents with the predicted rank of 2.

C. Evaluation
In this section, we present our evaluation of the faithfulness

of our studied explanation techniques beyond visual inspec-
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Fig. 5: The frequency of Top-10 Important Features from
Explanations and Ground Truth for the explanations of all test
documents with the predicted rank of 10.

tions of previous sections. Table I and II show the faithfulness
of explanations for documents with the predicted rank of
second and tenth, respectively. Note that we have included the
results with varying sample sizes for a conclusive comparison.

Overall, we can see that our proposed explanations provide
the most faithful explanations across numerous measures and
sample sizes. What is most important is that the faithfulness of
these explanations is consistent with varying values of sample
size. However, there are a few exceptions to this. In Table I,
EXS (S) provides the most faithful explanations based on RBO
for sample sizes 2000 and 5000 and is on par with LIRME
for sample size 3000. In Table II, LIME, SHAP, and Random
explanations provide the most faithful explanations based on
the RBO measure for sample size values of 500 and 1000.

There is a clear explanation behind the faithfulness of
random baseline explanations with smaller sample size values.
In smaller sample sizes, the surrogate model is trained on a
small subset of data that includes only a few angry changes
in the explained documents and their predicted output by the
black-box model. Because of this, our explanations are as
faithful as a random baseline.

By comparing the results from Table I and II, we can see
that our proposed explanations, along with the majority of
explanations, are more faithful for documents in predicted
ranks of 10 compared to those of predicted rank second. This
can indicate that the faithfulness of LIME-based explanations
depends on the predicted rank of explained documents. We
analyze this phenomenon later in Section VI-E.

D. Overlap based on Predicted Rank

One natural question is to what extent two explanations from
a single explanation technique overlap for two documents at
two predicted ranks associated with the same query.

For our investigation, we can measure the overlap of top-K
important features between two explanations from each expla-
nation technique for two documents, one with the predicted
ranks of two and another one with the predicted rank of ten
for the same associated query.

We expect that if explanation techniques show a high
level of overlaps between the explanation of documents with

different predicted ranks, they may not have leveraged the
importance of the predicted rank of explained documents
efficiently in their explanations.

In Fig. 6, we see the result for explanations of documents
averaged over all test queries. In the figure, we can see that
our proposed explanation based on SMOTE sampling shows
the least increase of overlap as values of K increase. This
can partially explain the success of SMOTE sampling in the
results from Table I and 5. On the other hand, LIME, LIRME,
EXS Binary, and EXS Score (S) show the largest overlap
between their explanations for documents between the two
ranks. The result is surprising, particularly for EXS (S), as its
labeling process is also defined based on the predicted rank
of explained documents.
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Fig. 6: The average Overlap of Explanations of documents
with rank two and ten with varying Top-K important features
for sample sizes 500 and 2000.

E. Sampling imbalance

In the previous section, we showed that our proposed
explanation techniques provide more faithful explanations for
documents with predicted ranks of ten instead of two. We
have identified that the cause of this phenomenon is a sample
imbalance problem.

In our labeling process, i.e., EXS’s Top-K binary (B)
labeling, depending on the predicted rank of the explained
document by black-box model f , the labels generated by
the black box can be largely imbalanced in a given sample.
This is because, as we have realized, achieving the predicted
relevance scores of documents in the top (or bottom) ranks
is increasingly harder than those with moderate ranks in the
list of documents associated with queries. In Fig. 7, we can
see an example of this phenomenon. In SMOTE sampling, the
number of generated samples with label one can incrementally
increase. The results are averaged over all test documents and
query pairs. This phenomenon affects the explanations at both
tails, namely, the documents ranked at the top and bottom of
the list.

To address this issue, we added an extra step to our sampling
process: oversampling using the SMOTE technique for the
minority class. In Fig. 8, we show the difference in Overlap
measure between our original method in comparison to when
using the samples generated by each sampling technique have
gone through an extra step of oversampling. We can see that
oversampling does improve the median Overlap faithfulness
scores of some sampling techniques, e.g., LHS and DLIME
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TABLE I: Predicted Rank 2: Faithfulness of explanations of Neural GAM model with different sample sizes. Bold values
indicate the most faithful explanations for each measure.

Sample Size 500 1000 2000 3000 5000

Measure RBO Overlap RBO Overlap RBO Overlap RBO Overlap RBO Overlap
SMOTE 0.18 2.05 0.2 2.13 0.19 2.12 0.2 2.13 0.19 2.12
Gaussian 0.19 2.36 0.2 2.41 0.19 2.44 0.2 2.43 0.2 2.44
LHS 0.2 2.34 0.21 2.43 0.19 2.44 0.2 2.44 0.21 2.46
DLIME 0.22 2.28 0.23 2.36 0.22 2.39 0.19 2.42 0.19 2.42
LIRME 0.2 1.99 0.23 1.98 0.2 1.98 0.22 1.98 0.2 1.98
EXS (B) 0.12 1.98 0.12 1.99 0.14 1.96 0.11 1.98 0.15 1.96
EXS (R) 0.2 1.93 0.21 1.96 0.21 1.96 0.2 1.89 0.2 1.9
EXS (S) 0.18 1.99 0.19 1.98 0.24 1.97 0.22 1.98 0.22 1.99
LIME 0.2 1.92 0.19 1.95 0.22 1.95 0.19 1.95 0.19 1.94
SHAP 0.2 1.96 0.2 1.96 0.2 1.96 0.2 1.96 0.2 1.96
Random 0.2 1.9 0.2 1.85 0.19 1.9 0.21 1.9 0.19 1.93

TABLE II: Predicted Rank 10: Faithfulness of explanations of Neural GAM model with different sample sizes. Bold values
indicate the most faithful explanations for each measure.

Sample Size 500 1000 2000 3000 5000

Measure RBO Overlap RBO Overlap RBO Overlap RBO Overlap RBO Overlap
Smote 0.19 2.07 0.22 2.09 0.2 2.12 0.18 2.13 0.19 2.13
Gaussian 0.21 2.21 0.21 2.27 0.21 2.3 0.21 2.3 0.19 2.31
LHS 0.2 2.23 0.19 2.27 0.23 2.3 0.23 2.3 0.23 2.31
DLIME 0.2 2.14 0.22 2.26 0.21 2.26 0.22 2.27 0.21 2.29
LIRME 0.18 1.97 0.21 1.97 0.21 1.96 0.2 1.96 0.2 1.97
EXS (B) 0.11 1.96 0.12 1.97 0.15 1.96 0.11 1.98 0.16 1.94
EXS (R) 0.19 1.88 0.21 1.88 0.2 1.87 0.19 1.89 0.19 1.98
EXS (S) 0.18 1.96 0.19 1.96 0.19 1.96 0.2 1.96 0.22 1.96
LIME 0.21 1.97 0.19 1.98 0.18 1.97 0.2 1.96 0.2 1.97
SHAP 0.21 1.98 0.21 1.98 0.21 1.98 0.21 1.98 0.21 1.98
Random 0.21 1.91 0.22 1.89 0.19 1.95 0.19 1.88 0.2 1.93
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Fig. 7: SMOTE sampling: The average ratio of our generated
samples obtaining label 1 when our labeling process is EXS
(Top-K binary) for explaining test documents with predicted
rank of 2.

for the sample size of 500 and SMOTE for the sample
size of 2000, but only to a small degree. We consider this
problem to arise in other explanation techniques and believe
that future studies can investigate this problem further and
propose alternative solutions to fix this problem.
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Fig. 8: The box plot showing the Overlap measure when using
oversampling after our sampling process for sample sizes 500
(Left) and 2000 (Right). The results are for the explanation of
documents ranked second in our Yahoo test dataset.

VII. DISCUSSION

Based on our empirical investigation of Yahoo datasets, we
can see the LIME-based explanations of LIRME and EXS
fail to consistently provide faithful explanations based on the
ground truth extracted from the Neural Rank GAM model.

We can identify a set of limitations of these techniques by
means of comparison. There are two main differences between
our proposed approaches and LIRME and EXS.

First is the sampling process. The sampling techniques
of LIRME and EXS are quantile-based sampling. Quantile-
based sampling replies on interpretable binary representations
of tabular data. In our proposed LIME explanations, we
have abandoned this step, and we can see a clear indication
of improvement in the faithfulness of our local point-wise
explanations.

The second difference between EXS and our proposed
LIME explanations is that, unlike EXS with its linear SVM
surrogate, we use LIME’s original Ridge classifier.

We showed that the overlap between explanations of a
single technique for two documents at predicted rank 2nd
and 10th is a reliable indicator of the failure of LIRME and
EXS explanation techniques. This can directly show that these
techniques do not leverage the predicted scores information in
their explanations.

VIII. CONCLUSION

In our study, we evaluated local point-wise explanations of
a state-of-the-art LTR model, Neural Ranking GAM models.
Given that this model has intrinsically interpretable compo-
nents based on the Generalized Additive Model, we extracted
the ground truth importance scores and evaluated local ex-
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planations using two evaluation measures, namely RBO and
Overlap AUC.

Overall, our proposed explanations provide the most faithful
explanations across numerous measures, sample sizes, and
predicted ranks of explained documents, except in a few
cases. For documents with the predicted rank of two, EXS (S)
provides the most faithful explanations based on RBO for
sample sizes 2000 and 5000 and is on par with LIRME for
sample size 3000. For documents with a predicted rank of ten,
LIME, SHAP, and Random explanations are the most faithful
based on the RBO measure.

Among all explanations, we showed that our proposed
explanation based on SMOTE sampling excels at using the
predicted rank information for obtaining its explanations. We
showed this by calculating the Overlap of important features
between the explanations of documents at the second and tenth
rank in each query.

We showed that our proposed explanation technique suffers
from a class imbalance problem. This phenomenon happens
for the labels of generated samples when explaining docu-
ments with top or low ranks in a list of documents. We
consider the sample imbalance problem to be an important
challenge in providing faithful local explanations for LTR
models. Even though our extra oversampling step showed
small improvements in faithfulness, we consider this problem
to be an open research problem in this domain.
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