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ABSTRACT

Safe overtakes in trucks are crucial to prevent
accidents, reduce congestion, and ensure efficient
traffic flow, making early prediction essential for
timely and informed driving decisions. Accord-
ingly, we investigate the detection of truck over-
takes from CAN data. Three classifiers, Artificial
Neural Networks (ANN), Random Forest, and Sup-
port Vector Machines (SVM), are employed for the
task. Our analysis covers up to 10 seconds before
the overtaking event, using an overlapping sliding
window of 1 second to extract CAN features. We
observe that the prediction scores of the overtake
class tend to increase as we approach the overtake
trigger, while the no-overtake class remain stable or
oscillates depending on the classifier. Thus, the best
accuracy is achieved when approaching the trigger,
making early overtaking prediction challenging.
The classifiers show good accuracy in classifying
overtakes (Recall/TPR ≥ 93%), but accuracy is sub-
optimal in classifying no-overtakes (TNR typically
80-90% and below 60% for one SVM variant). We
further combine two classifiers (Random Forest and
linear SVM) by averaging their output scores. The
fusion is observed to improve no-overtake classi-
fication (TNR ≥ 92%) at the expense of reducing
overtake accuracy (TPR). However, the latter is kept
above 91% near the overtake trigger. Therefore, the
fusion balances TPR and TNR, providing more
consistent performance than individual classifiers.
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1. INTRODUCTION

The development of Advanced Driver Assistance
Systems (ADAS) has emerged as one of the most
popular areas of research in artificial intelligence.
Through several sensors, ADAS is designed to alert
the driver of potential hazards or control the vehicle
to ultimately avoid collisions or accidents. For those
tasks, the vehicle must gather information about its
surroundings to decide what to do and how to do
it. Knowing the driver’s intention is an integral part
of the system, to determine if the ADAS should
activate, providing opportune aids or alerts, or even
overriding the driver’s inputs [1].

Among the most important driving manoeuvres
is the overtaking manoeuvre in particular. Lane
changes, acceleration and deceleration, and estima-
tion of the speed and distance of the vehicle ahead
or in the lane it is travelling in are all part of the
process. Though there is a lot of work in the lit-
erature that aims at predicting driving manoeuvres,
very few address overtaking [2, 3, 4], and no real-
world dataset is available due to the risk associated
with overtaking [5]. Most works address the esti-
mation of lane change [1] or turning intention at
intersections [6]. In doing so, different data sources
are typically used, including information from the
driver (via cameras or biosensors capturing EEG,
ECG, etc.), from the vehicle (CAN bus signals),
or the traffic (GPS position or relative position or
velocity of surrounding vehicles via cameras or
lidar).

In this paper, we present ongoing work on over-
take detection, in particular for trucks. Trucks carry
heavier loads than cars, so a truck accident can be



Table 1: Files employed per truck and class
for training and testing. t1, t2, t3 denotes
truck1, truck2 and truck3, respectively. class0=no-
overtake. class1=overtake.

class0 class1
t1 t2 t3 total t1 t2 t3 total

train 74 38 4 116 74 38 4 116
test 33 113 2 148 312 17 3 332

way more devastating. Accidents involving trucks
can also lead to traffic congestion and delays due to
their bigger size, and economic losses due to cargo
being transported. Ensuring driving security for
trucks is thus crucial, especially when compared to
lighter vehicles like cars. We perform the task via
CAN bus signals. We favour such signals because
they are readily available onboard without the need
for additional hardware like cameras or biosensors.
This also avoids privacy concerns related to cam-
eras looking inside or outside the cabin, or sensors
capturing data from the driver. We employ real
CAN data from real operating trucks provided by
Volvo Group participating in this research. The
contribution of this paper is that, to the best of our
knowledge, we are the first to study overtake de-
tection in trucks, particularly from real CAN bus
data. We also demonstrate that the fusion of classi-
fiers can help to obtain a balanced performance in
detecting the two classes (overtake, no-overtake).

2. EXPERIMENTAL FRAMEWORK

2.1. Database

Our database consists of data from 3 real operating
trucks normally driving around Europe, provided
by Volvo Group participating in this research. The
trucks are equipped with a data logger that captures
CAN signals at 10 Hz. The signals employed in this
work include:

1. Position of the accelerator pedal

2. Distance to the vehicle ahead

3. Speed of the vehicle ahead

4. Relative speed difference between the vehicle
and the left wheel

5. Vehicle speed

6. Vehicle lateral acceleration

7. Vehicle longitudinal acceleration

8. Lane change status of the vehicle

9. Status of the left turn indicator

10. Status of the right turn indicator

To avoid running out of storage, the data log-
ger is programmed to record only when a precon-
dition trigger to detect potential overtakes is met.
Such trigger is activated based on specific thresh-
olds to certain signals: signal 8 (active), signal 5
(more than 50 km/h), signal 2 (less than 200 m), and
signal 4 (more than 0.1 km/h). When the trigger is
activated, the logger saves the CAN signals from 20
seconds before the trigger up to 45 seconds there-
after. Data also includes video from a camera in the
dashboard looking ahead the vehicle. Afterwards,
a person manually labels the files by watching the
videos and determines if it is an overtake or not.

With this procedure, we obtained 264 no-
overtake files and 448 overtake files. Notice that
the precondition trigger is designed to detect when
the vehicle is to change lane (signal 8), to be suf-
ficiently close to the vehicle ahead (signal 2), and
to move laterally to the left (signal 4), which are
indicative signs of an overtake. However, it is not
always the case, since around 37% of the obtained
files correspond to other driving situations. After
watching the videos, such no-overtake situations
occur, for example, when turning left at an intersec-
tion, or surpassing a stopped vehicle. Looking at
the left turn indicator (signal 9) would produce false
positives as well. Also, the minimum speed condi-
tion (signal 5) is designed to filter out situations that
can occur in city traffic at low speeds but are not
really overtakes. As a result, our files contain data
mostly from highways or non-urban roads.



Fig. 1: Boxplot of scores towards class0 (left column, no-overtake class) and class1 (right, overtake) from -
10 to +1 seconds around the trigger. From top to bottom row: ANN, RF, SVM linear and SVM rbf classifiers.
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RF: score towards class0 (v starttriger -10, v endtriger 1, window 1)
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RF: score towards class1 (v starttriger -10, v endtriger 1, window 1)
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SVMlinear: score towards class0 (v starttriger -10, v endtriger 1, window 1)
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SVMrbf: score towards class0 (v starttriger -10, v endtriger 1, window 1)
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SVMrbf: score towards class1 (v starttriger -10, v endtriger 1, window 1)

2.2. Classifiers

To detect overtakes, we have used 3 classifiers: Ar-
tificial Neural Networks (ANN), Random Forest
(RF), and Support Vector Machines (SVM, with
linear and rbf kernels). They are based on dif-
ferent strategies and are a popular choice in the
related literature [7]. An ANN consists of several
interconnected neurons that are arranged in lay-
ers (i.e., input, hidden, and output layers). Nodes
in one layer are interconnected to all nodes in the
neighbouring layers. Two design parameters of
ANNs are the number of intermediate layers and

the amount of neurons per layers. An extension of
the standard classification tree algorithm, the RF
algorithm is an ensemble method where the results
of many decision trees are combined. This helps
to reduce overfitting and to improve generalization
capabilities. The trees in the ensemble are grown by
using bootstrap samples of the data. Finally, SVM
searches for an optimal hyperplane in a high dimen-
sional space that separates the data into two classes.
SVM uses different kernel functions to transform
data that can be used to form the hyperplane, such
as linear, gaussian or polynomial.

In this work, the available files are cropped



Fig. 2: Precision-Recall curves of the classifiers at different moments before the overtake maneuver starts.
AUC (Area under the curve) values are given in Table 2.

0 0.2 0.4 0.6 0.8 1

Recall

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

ANN

0s before

1s before

2s before

3s before

all samples

0 0.2 0.4 0.6 0.8 1

Recall

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

RF

0 0.2 0.4 0.6 0.8 1

Recall

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

SVMlinear

0 0.2 0.4 0.6 0.8 1

Recall

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

SVMrbf

Fig. 3: F1-score vs. threshold at different moments before the overtake maneuver starts.
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from -10 seconds to +1 around the precondition
trigger, following [6]. At 10 Hz, this gives 110
samples per file. The CAN signals are then ana-
lyzed via a sliding window of 1 second with 50%
overlap, resulting in 21 samples per file. For signals
1-7 (non-categorical), we compute the mean and
standard deviation of the samples inside the win-
dow [8], whereas for signals 8-10 (categorical) we
extract the majority value among the window sam-
ples. All samples from overtake files are labelled
as class1 (positive class or overtake), whereas all
samples for no-overtake files are labelled as class0
(negative class or no-overtake). The training data
is balanced per class. It means that we check how
many files of each class are available per truck, then
we take the 70% of the minimum. All other files are
used for testing. This results in the amount of files
indicated in Table 1.

Experiments are conducted using Matlab r2023b.
All classifiers are left with the default values (ANN:
one hidden layer with 10 neurons; RF: 100 decision

trees), except:

• ANN and SVM use standardization (subtract
the mean, and divide by std of training data)

• The ANN iteration limit is raised to 1e6 (from
1e3) to facilitate convergence

• Similarly, the SVMrbf iteration limit is raised
to 1e8 (from 1e6)

3. RESULTS

In Figure 1, we present the boxplots of the decision
scores of each classifier towards the two classes.
Notice that the classifiers are set to produce the
probability that a sample belongs to a specific class
(i.e. belonging to [0,1]). It can be observed that
the output probability of class1 (overtake) usually
increases as the precondition trigger approaches (x-
axis=0), whereas class0 keeps a stable or oscillating



Table 2: AUC-PR of the classifiers at different mo-
ments before the overtake manoeuvre starts (t cor-
responds to the precondition trigger, t-1 to one sec-
ond earlier, and so on). The PR curves are shown
in Figure 2. The row variation shows the difference
between RF+SVML and the best AUC (Area under
the curve) of the RF and SVML classifiers. The bold
number in each column indicates the results of the
best individual classifier. If the fusion RF+SVML
improves the best individual classifier, such a cell is
also marked in bold.

all
classifier t t-1 t-2 t-3 samples
ANN 0.931 0.914 0.907 0.890 0.880
RF 0.896 0.885 0.890 0.900 0.902
SVML 0.952 0.950 0.946 0.949 0.951
SVMrbf 0.914 0.915 0.903 0.906 0.897
RF+SVML 0.981 0.981 0.975 0.974 0.973
variation +0.029 +0.031 +0.029 +0.025 +0.022

probability, depending on the classifier. Thus, from
the right plot of Figure 1, it can be seen that it will
be easier to detect overtakes closer to the trigger.

We then report in Figure 2 the Precision-Recall
(PR) curves of the classifiers at different moments
before the precondition trigger. In choosing the met-
rics to report our accuracy results, we follow related
studies on driver intention prediction [7, 9, 6]. We
also provide results considering all samples of the
files at any given instant from -10 seconds to +1
seconds around the trigger. Table 2 gives the AUC
values. Precision measures the proportion of de-
tected positives which are actually overtakes, quan-
tified as:

P =
TP

TP + FP
(1)

Recall, on the other hand, measures the amount
of overtakes that are actually detected, as:

R =
TP

TP + FN
(2)

A summarizing measure of P and R is the F1-
score, defined as:

F1 = 2
P ×R

P +R
(3)

Figure 3 provides the F1-score for different val-
ues of the threshold applied to the decision scores.
The mentioned curves confirm the observation that
“the closer to the trigger, the better”. It can be seen
that orange curves (0s before the trigger) and red
curves (1s before the trigger) usually appear above
the others. The black curves (which use samples in
the entire range of -10 seconds to +1 seconds around
the trigger) always show the worst behaviour. This
confirms that samples earlier than 3 seconds before
the trigger actually provide worse detection capa-
bilities, making more difficult to predict overtakes
earlier.

We then select the threshold of each classifier
and moment that provides the highest F1-score. Ta-
ble 3 reports P , R and F1, whereas Table 4 reports
the true positive rate (TPR) and false positive rate
(FPR), calculated as follows:

TPR =
TP

TP + FN
(4)

TNR =
TN

TN + FP
(5)

TPR measures the amount of overtakes that are
actually labelled as overtakes, whereas TNR mea-
sures the amount of no-overtakes that are actually
labelled as no-overtakes. Notice that TPR = R.
The bold values in the tables show that Random
Forest (RF) usually stands out as the best individ-
ual classifier, consistently obtaining the highest F1
at any given moment in time. To better observe the
evolution of TPR/TNR, we graphically show in
Figure 4 their values at different moments before the
trigger. TPR stands above 90% for all classifiers,
even when using all samples within 10 seconds be-
fore the trigger, meaning that actual overtakes can
be well detected. Random Forest gives the best ac-
curacy (>98% at t-1), although its performance is
somehow more erratic across time. ANN is the clas-
sifier with the most stable TPR at any time (above
94%). Interestingly, not all classifiers have their best
TPR at t (exact moment of the trigger). As it was
observed in the boxplots of Figure 1, the score to-
wards the positive class (right columns) tends to de-
crease abruptly exactly at the trigger. This could be



Table 3: Precision, recall and F1-score (values in %) of the classifiers at different moments before the
overtake manoeuvre starts (t corresponds to the precondition trigger, t-1 to one second earlier, and so on).
We use the threshold (th) which gives the maximum F1-score (Figure 3). The row variation shows the
difference between RF+SVML and the best of the RF and SVML classifiers. The bold number in each
column indicates the results of the best individual classifier. If the fusion RF+SVML improves the best
individual classifier, such a cell is also marked in bold.

t t-1 t-2 t-3 all samples
classifier Prec Rec F1 th Prec Rec F1 th Prec Rec F1 th Prec Rec F1 th Prec Rec F1 th
ANN 90.12 94.51 92.26 0.13 91.12 93.90 92.49 0.24 84.27 96.34 89.90 0.00 84.97 94.82 89.63 0.01 84.52 94.72 89.33 0.00
RF 95.05 92.47 93.74 0.56 88.35 98.19 93.01 0.33 91.82 91.27 91.54 0.47 88.45 94.58 91.41 0.37 86.84 94.75 90.62 0.33
SVML 90.80 93.29 92.03 0.48 91.32 92.99 92.15 0.52 89.38 92.38 90.85 0.46 91.13 90.85 90.99 0.48 87.11 93.13 90.02 0.36
SVMrbf 83.38 96.34 89.39 0.18 81.94 95.43 88.17 0.17 83.29 94.21 88.41 0.18 83.06 94.21 88.29 0.18 82.25 91.49 86.63 0.18

RF+SVML 97.12 91.27 94.10 0.59 95.91 91.87 93.85 0.57 97.00 87.65 92.09 0.59 96.99 87.35 91.92 0.59 92.99 88.45 90.66 0.51
variation +2.07 -2.03 +0.36 +4.59 -6.33 +0.84 +5.18 -4.73 +0.55 +5.86 -7.23 +0.51 +5.88 -6.30 +0.04

Table 4: TPR/TNR of the classifiers at different moments before the overtake manoeuvre starts (t cor-
responds to the precondition trigger, t-1 to one second earlier, and so on). The row variation shows the
difference between RF+SVML and the best of the RF and SVML classifiers. The bold number in each
column indicates the results of the best individual classifier. If the fusion RF+SVML improves the best
individual classifier, such a cell is also marked in bold.

classifier t t-1 t-2 t-3 all samples
TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

ANN 94.51% 76.39% 93.90% 79.17% 96.34% 59.03% 94.82% 61.81% 94.72% 60.48%
RF 92.47% 89.19% 98.19% 70.95% 91.27% 81.76% 94.58% 72.30% 94.75% 67.79%
SVML 93.29% 78.47% 92.99% 79.86% 92.38% 75.00% 90.85% 79.86% 93.13% 68.62%
SVMrbf 96.34% 56.25% 95.43% 52.08% 94.21% 56.94% 94.21% 56.25% 91.49% 55.03%

RF+SVML 91.27% 93.92% 91.87% 91.22% 87.65% 93.92% 87.35% 93.92% 88.45% 85.04%
variation -2.03% 4.73% -6.33% 11.36% -4.73% 12.16% -7.23% 14.06% -6.30% 16.42%

because the window is capturing a portion of sam-
ples after the trigger, which is shown to actually be
detrimental to the detection. Regarding TNR (left
plot of Figure 4), its values can diminish to as low
as the 50-60% range, meaning that a substantial per-
centage of no-overtakes would be actually labelled
as overtakes. Here, RF and ANN show better num-
bers (TNR above 70-80%). Also, in this case, it
is actually observed that the farther away from the
trigger, the lower the TNR.

From the results above, we observe that TNR is
not as high, so the classifiers are not as good in clas-
sifying no-overtakes. Also, ANN and SVMrbf show
some strange behaviour, such as that the threshold
of maximum F1 is too low (Table 3), or the P-R
curves are too “shaky”. This suggests that the de-
fault values of these classifiers may not be the best
choice. We thus take RF and SVM linear further and
fuse their output scores by taking their mean. The

AUC, P , R, F1, TNR and TNR of the fusion have
been also provided in Tables 2-4. It can be observed
that AUC, Precision, F1 and True Negative Rates
improve for all moments before the trigger. On the
other hand, Recall and True Positive Rates are seen
to decrease. The observed effect of the fusion is
that the ability to classify no-overtakes is increased,
at the cost of reducing overtake detection capabili-
ties. However, the increase in TNR is much bigger
than the decrease in TPR (Tables 4). Overall, the
fusion provides a more balanced accuracy of these
two metrics, situating them beyond 91%. For ex-
ample, at t-1 or earlier, TNR was below 80%, but
after the fusion, as early as 3 seconds before the trig-
ger, both classes have an accuracy of 87% or higher.
Such stability and well-balanced accuracy can also
be observed in Figure 4.



Fig. 4: Graphical plot of TPR/TNR at different moments before the overtake manoeuvre starts (t corre-
sponds to the precondition trigger, t-1 to one second earlier, and so on).
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4. CONCLUSIONS

We demonstrate the suitability of CAN bus data to
detect overtakes in trucks. We do so via traditional
widely used classifiers [7], including Artificial Neu-
ral Networks (ANN), Random Forest (RF), and
Support Vector Machines (SVM). To the best of our
knowledge, we are the first to apply machine learn-
ing techniques for overtake detection of trucks from
CAN bus data. The classifiers employed performed
well for the overtake class (TPR ≥ 93%), although
their performance is not as good in the no-overtake
class. With the help of classifier fusion, the accu-
racy of the later class is observed to increase, at the
cost of some decrease in the overtake class. Overall,
the fusion balances TPR and TNR, providing more
consistent performance than individual classifiers.

As future work, we are exploring the optimiza-
tion of classifiers beyond their default values [10].
Parameters like the size of the sliding window em-
ployed or the time ahead of the precondition trig-
ger are also subject to discussion in the literature
[1, 7]. There is the possibility of capturing large
amounts of continuous unlabeled data from Volvo
Group participating in this research. We are also
considering the improvement of the developed clas-
sifiers by training them on a larger dataset obtained
via pseudo-labeled data [11], for example, selecting
samples with high prediction probability as given
by the classifiers trained with labelled data. This
would avoid the time-consuming manual labelling
issue. A bigger dataset would also enable the use

of data-hungry popular models such as Long Short-
Term Memory (LSTM) networks [12].
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