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Abstract—Machine learning algorithms, particularly
artificial neural networks, have shown promise in healthcare
for disease classification, including diagnosing conditions like
deep vein thrombosis. However, the performance of artificial
neural networks in medical diagnosis heavily depends on their
architecture and hyperparameter configuration, which presents
virtually unlimited variations. This work employs evolutionary
algorithms to optimize hyperparameters for three classic
feed-forward artificial neural networks of pre-determined
depths. The objective is to enhance the diagnostic accuracy of
the classic neural networks in classifying deep vein thrombosis
using electronic health records sourced from a Norwegian
hospital. The work compares the predictive performance of
conventional feed-forward artificial neural networks with
standard tree-based ensemble methods previously successful in
disease prediction on the same dataset. Results indicate that
while classic neural networks perform comparably to tree-based
methods, they do not surpass them in diagnosing thrombosis
on this specific dataset. The efficacy of evolutionary algorithms
in tuning hyperparameters is highlighted, emphasizing the
importance of choosing the optimization technique to maximize
machine learning models’ diagnostic accuracy.

I. INTRODUCTION

Deep Vein Thrombosis (DVT) [1] is a medical condition
characterized by the formation of one or more blood
clots, known as thrombi, in one of the body’s large veins,
commonly found in the lower limbs. These clots can partially
or entirely block circulation in the vein, potentially leading
to severe complications such as pulmonary embolism (PE).
Nearly half of DVT cases may present with minimal or no
symptoms, making early detection and diagnosis critical for
effective intervention [2].

Artificial Neural Networks (ANNs) [3] are machine
learning models widely used in various domains, including
medical applications, such as disease diagnostics. Their
computational algorithm is inspired by the biological
neural networks of animal brains, designed to imitate how
neurons in the brain process information. ANNs consist
of interconnected nodes organized into layers: input layer,
hidden layers, and output layer. Each connection between
nodes is associated with a weight that determines the strength
of the connection. During training, ANNs learn to adjust
these weights through a process known as backpropagation,
wherein the model iteratively updates its parameters to
minimize the discrepancy between predicted and actual
outputs.
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Machine learning (ML) models, including ANNSs, have
a range of hyperparameters (HPs) that play an important
role in their performance. These parameters control the
learning process of the algorithm and significantly influence
its predictive capability. Fine-tuning the HPs [4] is essential
in determining the efficacy of ML models. Various methods
for HP tuning exist [5], ranging from manual grid search
to automated techniques. In manual tuning [6], practitioners
iteratively adjust HPs based on domain knowledge and
intuition, which can be time-consuming and suboptimal,
especially for complex models. Grid search [7] techniques
systematically explore HP combinations within predefined
ranges to identify the optimal configuration. While being
effective, these methods may struggle with high-dimensional
parameter spaces and computational expense. Random search
techniques [8] explore HP combinations randomly within
predefined ranges, offering an alternative to grid search.
This approach may be more efficient for high-dimensional
parameter spaces and can sometimes outperform grid search
in finding optimal configurations. Bayesian optimization [9]
is another approach for HP tuning that uses probabilistic
models to select the next HP configuration based on the
previous results. This method efficiently balances exploration
and exploitation, often requiring fewer iterations to find
optimal or near-optimal configurations than grid or random
search, especially in high-dimensional spaces.

HPs in ANNs are parameters that govern the architecture
and learning dynamics of the network, distinct from the
weights learned during training. Key HPs include the number
of layers, the number of neurons in each layer, activation
functions and learning rates. The number of hidden layers
in a neural network significantly influences its performance
and efficiency. Adding hidden layers can enhance the
network’s ability to learn complex patterns and improve
accuracy. While more hidden layers can increase accuracy,
excessive complexity may lead to overfitting, where the
model performs well on training data but poorly on new
data. Typically, simpler models with one hidden layer may
struggle with complex patterns but are computationally
efficient. Increasing the number of layers will better balance
complexity and computational cost, allowing for better
representation of data features. Research suggests that
implementing three hidden layers often provides a balance
between time complexity and accuracy, offering optimal
performance [10]. Limiting the configurations to three depths
allows us to observe if the model complexity impacts
performance without overwhelming computational resources.
Training deeper networks can be computationally intensive;



hence, focusing on three depths allows for manageable
experimentation.

In this context, Evolutionary Algorithms (EAs) [11] have
emerged as a promising technique for efficiently searching
the vast space of HPs to enhance the performance of ML
models [12]. EAs draw inspiration from natural selection
and genetic inheritance, iteratively evolving a population of
candidate solutions to optimize a given objective function.
By simulating the principles of survival of the fittest and
genetic variation, EAs offer a robust and scalable framework
for HP optimization in ML tasks. Existing studies on EAs for
optimizing the HPs of ANNs have shown promising results
across various domains [13], [14]. However, in the specific
context of DVT prediction, this area remains underexplored.

Our earlier research [15] focused on optimizing ML
models for predicting DVT using traditional techniques like
grid search. Our findings showed that tree-based ML models
outperformed other classifiers in diagnosing DVT. In our
subsequent work [16], we employed an EA to fine-tune two
tree-based ensemble ML models, namely Random Forest
(RF) [17] and XGBoost (XGB) [18]. We analyzed the
results of this evolutionary optimization approach from
both single- and multi-objective perspectives and compared
them with a conventional technique, random search. The
outcomes confirmed that the EA approach is effective
for optimizing the HPs of RF and XGB models and
demonstrated comparable effectiveness or superiority over
the more traditional random search optimization approach.

Building on these promising results, our current work
focuses on utilizing an EA to enhance the predictive
capabilities of ANNs and tree-based ensemble models for
predicting DVT. We separately optimized three classic
feed-forward ANNs with one, two, and three hidden layers,
in addition to RF and XGB. Our research utilized the
Ri-Schedule dataset, which was acquired during the study
on the effectiveness of D-dimer testing as a stand-alone
method for excluding DVT [19]. Leveraging this patient
data, we compared the performance of optimized ANNSs
with that of tree-based ensemble models, RF and XGB,
which have previously shown effectiveness in DVT diagnosis
using the Ri-Schedule dataset [15], [16]. By benchmarking
the predictive accuracy of ANNs against XGB and RF, we
aim to assess the relative strengths and limitations of neural
networks in diagnosing DVT. This comparative analysis will
critically influence further research on predicting DVT with
our dataset, guiding future endeavors toward more effective
diagnostic approaches.

The organization of this paper is as follows: Section II
presents ANNs and their associated HPs. Additionally,
it introduces EAs and their approach to optimizing
HPs. Section III provides a comprehensive overview of
our implementation methodology, including a detailed
explanation of the employed optimization process. This
section also contains an exploration of the evaluation metrics
utilized to assess the effectiveness of our approach and a
description of the dataset used in the experiments. Section IV
presents and analyzes the outcomes of this study. In

conclusion, Section V summarizes our work by recapitulating
key findings, acknowledging its limitations, and proposing
directions for future research.

II. BACKGROUND

The healthcare sector’s integration of ML techniques has
witnessed a rapid surge in recent years, revolutionizing
traditional medical practices. ML algorithms have emerged
as indispensable tools, allowing clinicians to analyze vast
and intricate datasets, facilitating disease diagnosis and
enhancing patient outcomes. This paradigm shift has been
pivotal in augmenting medical research endeavors and
elevating the accuracy of medical predictions, consequently
leading to improved patient outcomes. Among the numerous
ML models, ANNs, RF and XGB stand out prominently
for their effectiveness in healthcare applications [15], [16],
[20]-[27].

ANNs [3] are computational models inspired by the
biological neural networks of the human brain. ANNs
excel at learning complex and nonlinear relationships
from data, making them well-suited for tasks involving
intricate patterns or high-dimensional feature spaces. ANNs
have demonstrated notable success in various healthcare
applications, including medical image analysis [28], clinical
decision support [29], and disease risk prediction [30], [31].
Their ability to automatically extract relevant features from
raw data and their capacity to model nonlinear relationships
contribute to their effectiveness in capturing subtle cues
and patterns indicative of disease states. The optimization
of ANNs for medical diagnosis tasks relies heavily on
fine-tuning the HPs, including the number of hidden layers,
neurons per layer, learning rates, and activation functions.
These HPs significantly impact the learning behavior
and predictive capabilities of neural networks. However,
traditional methods like grid search and random search
for HP tuning can be time-consuming and computationally
intensive [32].

EAs [11] have become powerful tools for solving
optimization problems within ML, including HP tuning.
These algorithms mimic natural evolutionary processes to
iteratively explore the vast HP space and identify optimal
configurations efficiently. Unlike traditional brute-force
methods, which exhaustively search through all possible
combinations of HPs, EAs employ a population-based
approach, which enables them to navigate complex,
high-dimensional spaces efficiently. Evolutionary operators,
such as mutation and crossover, play critical roles within
EAs by introducing genetic diversity and facilitating the
exploration of the HP space. By evaluating, evolving and
selecting candidate solutions over multiple generations,
EAs can effectively focus on promising regions of the
HP space, ultimately discovering configurations that yield
optimal model performance. This evolutionary approach to
HP optimization offers a robust and flexible framework for
fine-tuning ML models capable of accommodating various
optimization objectives and constraints while mitigating the
computational burden of exhaustive search methods.
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Fig. 1: ANN-III chromosome representation.
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Fig. 2: XGB chromosome representation.

In our previous work [16], the integration of EA for HP
tuning of RF and XGB models exhibited promising results,
surpassing the performance achieved through conventional
methods. Building upon this success, we extend our
approach to ANNSs, utilizing EA to optimize neural network
HPs. By applying EAs to ANNs, we aim to enhance
model performance further, capitalizing on the evolutionary
principles to achieve optimal configurations.

III. EVOLUTIONARY OPTIMIZATION OF
HYPERPARAMETERS IN ARTIFICIAL NEURAL NETWORKS
FOR CLASSIFICATION OF DVT

In our work, we employed an evolutionary algorithm to
optimize HPs for ML models. In the context of this study, the
chromosome serves as a genetic representation of the HPs
of conventional feed-forward ANNs, XGB, and RF models.

A. Chromosome representation

ANN chromosome: For the ANN chromosome, three
versions correspond to networks with 1, 2, and 3 hidden
layers. The genes in the chromosome represent learning
rate (LR), that defines the step size for weight updates
during the training process; neurons per layer, the number
of neurons in each hidden layer; activation functions, the
activation function for each hidden layer; and optimizer, the
optimization algorithm during model training.

The number of genes for neurons and activations is
determined by the number of layers in the ANN, ensuring
a flexible and adaptable chromosome configuration. Fig. 1
shows a sample chromosome for ANN with three hidden
layers. The value type and range of the genes are as follows:

« learning rate (Real): Initialized between 0.0001 and 0.1,
with 10 points equally spaced in logspace.

« number of neurons (Integer): Ranging from 16 to 2048.
Repetitive for each layer (1, 2, or 3 genes).

« activation function (Categorical): Options include
ReLU, Sigmoid, Tanh, and LeakyReLU. Repetitive for
each layer (1, 2, or 3 genes).

o optimizer (Categorical): Options include Adagrad,
Adam, RMSprop, and SGD.

XGB chromosome: The XGB chromosome contains the
following HPs controlling the behavior of the XGB model:
learning rate, that dictates the step size shrinkage during
each boosting iteration; gamma, represents the minimum
loss reduction required to partition a leaf node further;
number of estimators, determines the number of boosting
rounds; maximum depth, the maximum depth of the decision
tree; minimum child weight, the minimum sum of instance
weight needed in a child; subsampling ratio, control the
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Fig. 3: RF chromosome representation.

subsampling of training data; column subsampling ratio,
control the subsampling of feature columns. An example of
XGB chromosome is shown on Fig. 2. The value type and
range of the genes are as follows:

o learning rate (Real): Initialized between 0.01 and 1.0,
with 1000 points equally spaced in logspace.

o gamma (Real): Initialized between 0.01 and 10, with
1000 points equally spaced in logspace.

o number of estimators (Integer): Ranging from 100 to
500.

o maximum depth (Integer): Values ranging from 3 to 30.

o minimum child weight (Integer): Parameter values
ranging from 1 to 10.

o subsampling ratio (Real): Values ranging from 0.1 to
1.0, with discrete values such as 0.1, 0.2, ..., 1.0.

e column subsampling ratio (Real): Values ranging from
0.1 to 1.0, with discrete values similar to subsampling
ratio.

RF chromosome: The RF chromosome is composed
of the genes representing the following HPs: number of
estimators, that defines the number of decision trees in
the forest; maximum features, the maximum number of
features considered for splitting a node; criterion, defines
the function to measure the quality of a split; maximum
depth, the maximum depth of the tree; minimum samples
split, the minimum number of samples required to split an
internal node; minimum samples leaf, the minimum number
of samples required to be a leaf node. An RF chromosome
representation is shown on Fig. 3. The value type and range
of the genes are as follows:

o number of estimators (Integer): Ranging from 100 to
1200.

o maximum features (Categorical): Options include sqrt,
log2, and None.

o criterion (Categorical):
entropy.

o maximum depth (Integer): Values ranging from 5 to 30.

o minimum samples split (Integer): Parameter values
ranging from 2 to 100.

o minimum samples leaf (Integer): Parameter values
ranging from 1 to 10.

Options include gin: and

B. Evolutionary Operators

Evolutionary operators, such as crossover, simulated
binary crossover (SBX), mutation, and polynomial mutation
drive exploration and exploitation in EAs. They create new
candidate solutions from existing ones, imitating natural
selection. Understanding their interactions is essential for
effective EA design and implementation in solving complex
optimization problems, as they influence the algorithm’s
ability to navigate the solution space and achieve high-quality
solutions.



Crossover, or recombination, emulates genetic
recombination in biological organisms. It combines genetic
material from two parent solutions to generate offspring,
promoting exploration. Mechanisms like one-point,
two-point, or uniform crossover influence offspring diversity
and quality.

Simulated Binary Crossover (SBX) [33] is a specialized
crossover operator used in real-valued optimization
problems. Unlike conventional binary crossover, SBX
performs operations involving real-valued parameters.
Offspring are generated by randomly selecting a point
between parents and using a probability distribution
function based on a simulated binary distribution. This
capability is valuable for ML models dealing with continuous
HPs, allowing broader exploration beyond discrete choices.
SBX enables EAs to explore the entire continuum of real
values, enhancing HP space exploration, capturing subtle
interactions, and improving ML algorithm performance and
generalizability.

Mutation introduces randomness into the population by
modifying individual solutions, helping maintain genetic
diversity and preventing premature convergence. It can alter
specific genes within predefined ranges. The mutation rate
and extent of changes influence the algorithm’s behavior.

Polynomial Mutation (PM) [34] is a mutation operator
designed for real-valued optimization problems. It introduces
small, controlled perturbations to gene values, emulating
random mutations in biological evolution. A polynomial
function controls the magnitude of changes, ensuring larger
changes are less likely than minor ones, preventing excessive
deviation from the current state. PM is characterized
by mutation probability (likelihood of occurrence) and
distribution index (degree of non-uniformity).

SBX and PM illegal values repair mechanism: While
the SBX and PM operators are potent tools for exploring a
problem’s search space and generating diverse solutions, the
offspring generated during the SBX or PM operation may
have values outside the acceptable range, termed "illegal
values." A repair mechanism is employed to address this,
such as random re-initialization that replaces illegal values
with valid ones. In this mechanism, a random value for
x is drawn from a uniform distribution within the range
defined by a valid parent gene and a boundary crossed by
an offspring’s gene value.

C. Optimization process

The primary objective of this study revolves around
the application of EA to fine-tuning HPs to enhance the
predictive accuracy of five ML models for diagnosing DVT.
These models include three traditional feed-forward ANN
models — configured with 1, 2, and 3 hidden layers and
denoted as ANN-I, ANN-II, and ANN-III, respectively —
as well as two tree-based ensemble models, XGB and RF.
The three ANNs, XGB and RF, undergo HP optimization
parallelly to ensure a fair comparison of their performance
in accurately classifying DVT.

5 independentruns ¢
Split dataset

Training set Test set

Create 5x inittal populations with randomly chosen HPs
{100x chromosomes each)

ANN- 1 ANNAI ANN-III XGB RF

Evolutionary optimization on the fraining set (30x cycles)

ANN-I ‘

XGB

ANN-1 ‘ ANN—II‘ ‘ RF ‘

Evaluation on the test set

Models with opfimized HPs

Fig. 4: Implemented optimization process.

The EA is configured with specific parameters, including
a population size of 100, 50 generations, and five runs
with distinct random states. The parameters 7. (crossover
distribution index) and 7,, (mutation distribution index)
are set to 20, while the crossover and mutation rates are
established at 0.9 and 0.3, respectively. These parameters
were chosen based on the previous experiments and research
work [16], where similar configurations were found to be
effective in achieving optimal results.

Fig. 4 illustrates the main stages of the implementation
process. Five initial populations of ANN-I, ANN-II,
ANN-III, XGB and RF models and the 60:40 training-test
dataset split are generated at the beginning of each of
the five runs using a new random state value. The
evolutionary process unfolds in parallel, resulting in five
unique sets of solutions during each cycle. A stratified
5-fold cross-validation approach is employed during training,
ensuring an even data distribution across folds while
maintaining consistent class distributions within each fold.

In each evolutionary cycle, the architectures of the ANN
models are initialized from the information encoded in
chromosomes. Subsequently, the ANNs undergo training,
where the weights are adjusted through the learning process
until a predefined stopping criteria is met. Similarly, the XGB
and RF models are constructed with HPs derived from the
chromosomes and trained using their respective algorithms.
This iterative process ensures that the models evolve and
improve performance over successive cycles. During the
evolutionary optimization process, evolutionary operators
such as crossover, mutation, SBX, and PM (depending on the



type of gene data) are applied. Throughout the training phase,
each solution is evaluated based on performance metrics
derived from cross-validation, accurately representing the
model’s performance across the entire training set.

After each of the five independent runs, the final
generation, which encapsulates HPs of ML models, is
evaluated on a holdout test set. The results are then
sorted in descending order based on the primary metric,
accuracy, followed by the secondary metric, recall. The
best-performing model is selected and its HPs and
performance metrics are documented and presented in
section IV.

D. Evaluation metrics

Our evaluation metrics primarily focus on accuracy,
a standard measure of classification performance, and
additionally include recall for a comprehensive comparison
[35]. Accuracy measures the overall correctness of the
model’s predictions, representing the ratio of correctly
predicted instances to the total number of instances.
Accuracy provides a general overview of the model’s
performance but may not be suitable for imbalanced datasets,
where one class dominates the other. Recall (also called
sensitivity) measures the proportion of actual positive
instances that are correctly identified by the model. Recall
emphasizes the model’s ability to capture positive instances
accurately, without missing them.

For a detailed account of our findings during training
sessions, we collected these metrics for each model:
accuracy (mean, min, max, std) and recall (mean, min,
max, std). The best HPs and classification metrics for
each model, derived from each of the five independent
runs, are reported, along with average values for the
entire experiment. We also utilize Receiver Operating
Characteristic (ROC) and Precision-Recall (PRC) plots to
visually represent the training results, showcasing our
models’ discriminative capabilities [35]. ROC plots illustrate
the trade-off between true positive rate and false positive
rate, offering a comprehensive view of model’s sensitivity
across different decision thresholds. Conversely, PRC plots
emphasize precision and recall, providing a more nuanced
perspective on model performance, especially in scenarios
with imbalanced class distributions [36].

A detailed breakdown of the model’s predictive
performance on the test set is provided through metrics
such as True Negatives (TN), False Positives (FP), False
Negatives (FN), and True Positives (TP). TN represents
instances correctly identified as the negative class, while
FP signifies instances incorrectly classified as positive.
Conversely, FN represents instances erroneously classified
as negative, and TP denotes instances correctly classified
as positive. We calculate other classification metrics,
such as specificity, precision and False Positive Rate,
presented in tables and used for graphic plots. Additionally,
Area Under the Curve (AUC) values for both ROC and
PRC quantitatively measure the models’ discriminatory
capabilities. AUC ROC evaluates the trade-off between

recall and specificity, while AUC PRC emphasizes precision
and recall [35].

We employed McNemar’s test [37] to systematically
compare and evaluate the performance of the five ML
models, utilizing a 95% confidence interval. McNemar’s
test is a statistical method suitable for comparing predictive
models, and it is particularly useful for detecting differences
in performance within paired datasets [38]. The outcomes
of these comparative analyses are collected in contingency
tables, offering a structured depiction of the models’
classifications and highlighting areas of agreement and
disagreement. These contingency tables serve as crucial
elements in calculating McNemar’s test statistic. McNemar’s
test assesses the significance of differences in predictive
accuracy between paired models by focusing on the
discordant cells. The test statistic (x?) is calculated as
follows:

b—c|—1)2
TS 0

where b represents the number of instances where one
model predicts positive while the other predicts negative,
and c represents the number of instances where one model
predicts negative while the other predicts positive in the
contingency table. This formula quantifies the discrepancy
between the two models in their misclassifications, providing
a statistical measure of the significance of the differences
observed.

E. Data Source

Our research utilized Ri-Schedule data [19] - an Electronic
Health Record (EHR) [39] dataset focusing on patients
suspected of having DVT. This dataset was gathered
at the Emergency Department of @stfold Hospital Trust
in Sarpsborg, Norway. The original Ri-Schedule dataset
consisted of 1800 patient records and 195 variables
containing numerical and categorical data. These variables
included personal details such as age, gender, weight,
height, clinical symptoms, risk factors, vital signs, laboratory
results, knee and ankle measurements, prescription and
follow-up data. The binary target variable represented a
positive or negative DVT diagnosis. The diagnosis was
decided through D-dimer [40] values and confirmed with
compression ultrasonography examinations.

Several steps were taken to pre-process the dataset
for machine learning analysis. Duplicate entries were
identified and removed, ensuring retention of the most
complete or latest information for each patient ID.
Subsequently, irrelevant attributes for ML analysis, those
with highly sparse data or conflicting information,
were eliminated. Additionally, two variables containing
circumference measurements of left and right knees and
ankles were combined into a new variable representing the
absolute difference in these measurements. We employed
univariate imputation to deal with missing fields, replacing
them with mean, median, and mode values depending on
the attributes’ meaning and valid ranges. Following these



pre-processing steps, the dataset comprised 1392 samples
and 44 independent variables. The target attribute contained
1116 negative and 276 positive values. At the beginning of
each experiment, the dataset was randomly split into training
(60%) and test (40%) sets, maintaining class distribution
through labels for stratified sampling. The training and
test sets contained 835 and 557 samples, respectively,
with a consistent negative-to-positive ratio (4:1). Finally, to
ensure uniformity, the magnitudes of values across different
independent variables were standardized to a range of [0, 1].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

With the goal of maximizing the predictive capabilities
of machine learning models for diagnosing DVT on the
Ri-Schedule dataset, this study utilized EA to fine-tune HPs
of ANN-I, ANN-II, ANN-III, XGB and RF models. Our
evaluation metrics primarily focus on accuracy, a standard
measure of classification performance, and additionally
include recall and other metrics for a comprehensive
comparison.

A. Training results

The evolutionary approach resulted in ANN-I's mean
accuracy of 88.22% and a mean recall of 51.80%. Similarly,
ANN-II and ANN-III achieved mean accuracies of 88.38%
and 88.22%, respectively, with slightly higher mean recalls
of 54.71% and 54.96%, respectively. Despite architectural
variations, the classic feed-forward ANN models exhibited
comparable accuracies, suggesting robustness in their
predictive capabilities and implying that the ANNs may
have reached their peak performance in terms of accuracy.
XGB and RF performed better than ANN models during
the training phase. XGB, in particular, demonstrated
performance with a mean accuracy of 89.05% and a
mean recall of 64.82%. RF exhibited a mean accuracy
of 89.15% and a mean recall of 56.74%. The detailed
results are shown in Tables I-V. The tables also contain
the tuned HPs for the models that achieved the highest
accuracy in each run. In Tables I to III, the abbreviations
LR, Neur, Act, Opt, Sig and LReLU stand for Learning
Rate, Number of Neurons, Activation Function, Optimizer,
Sigmoid and LeakyReLU respectively. Similarly, for Table
IV, the abbreviations NE, MD, MCW, Sub, and CS represent
the Number of Estimators, Maximum Depth, Minimum Child
Weight, Subsampling Ratio, and Column Subsampling Ratio,
respectively. Lastly, in Table V, the abbreviations NE, MF,
C, MD, MSS, and MSL denote the Number of Estimators,
Maximum Features, Criterion, Maximum Depth, Minimum
Samples Split, and Minimum Samples Leaf, respectively.

In Figure 5, ROC and PRC plots are presented to visually
compare the performance of each of the five ML models
across five independent runs. XGB and RF consistently
exhibit higher curves for both ROC and PRC, indicating
greater discriminatory power in the DVT classification task
on the Ri-Schedule dataset compared to ANN models. The
clear delineation between ensemble tree-based and ANN
models emphasize the effectiveness of tree-based ensemble

learning techniques in handling the complexities of DVT
prediction tasks.

B. Test results

The classification metrics for each model on the test set
are presented in Table VI. The abbreviations used in these
tables are as follows: True Negatives (TN), False Positives
(FP), False Negatives (FN), True Positives (TP), Area Under
the Receiver Operating Characteristic Curve (AUC ROC),
and Area Under the Precision-Recall Curve (AUC PRC).
The primary metrics considered were accuracy and recall,
with supplementary metrics providing additional context. RF
emerged as the best-performing model on the holdout test
set, with a mean accuracy of 89.01% and a mean recall
of 57.45%. RF consistently demonstrated a high accuracy
and recall across different runs, showcasing its robustness in
handling the DVT classification task. XGB closely followed
RF, with a mean accuracy of 88.01% and a mean recall of
64.18%. XGB demonstrated high accuracy and particularly
exceled in recall, indicating its effectiveness in correctly
identifying positive instances.

The three ANNs exhibited competitive performance, with
mean accuracies ranging from 86.82% to 87.86% and
mean recalls ranging from 47.82% to 49.09%. While
ANNs performed reasonably well, they generally lagged
behind XGB and RF in terms of both accuracy and
recall. The tree-based ensemble models showcased superior
performance, particularly in the recall, indicating their
efficacy in correctly identifying positive instances.

To conduct a McNemar’s test, we created contingency
tables that showed the number of cases where each
model correctly or incorrectly predicted the outcome. Based
on these tables, the test calculates a X2 statistic and
p-values, which can provide insights into the significance of
differences in predictive performance between model pairs.
Table VII presents the mean values of the contingency tables,
x? values, and p-values based on the predictions of different
model combinations across five different runs.

Initially, our analysis focused on the p-values obtained
from McNemar’s test. When comparing ANN models with
XGB and RF, in most cases, the p-values were higher than
0.05, indicating no significant difference in performance
between ANN models and XGB or RF. Expanding our
analysis, we examined instances where ANN models had
more incorrect predictions than XGB and RF, providing
additional insights into relative performance. The pairwise
comparison of the number of wrong predictions for each
ANN model against the tree-based models revealed that
in each combination of ANNs with XGB or RF models,
both XGB and RF had fewer incorrect predictions. Overall,
there was no consistent evidence across multiple runs
indicating a significant difference in performance between
ANN models and tree-based models based on McNemar’s
test statistical method. However, the analysis of instances of
misclassification showed that ANN models exhibited a higher
frequency of incorrect predictions than XGB and RF in all
the comparisons.



TABLE I: Hyperparameters and classification metrics for ANN-I on training set.

Run LR Neur Act Opt Accuracy Recall
mean min max std mean min max std
1 0.0242 1300 Tanh Adam | 0.8778 | 0.8323 | 0.9042 | 0.0259 | 0.4635 | 0.3636 | 0.5455 | 0.0821
2 0.0536 1670 LReLLU Adam 0.8790 0.8503 0.9222 0.0247 0.4824 0.3939 0.7273 0.1240
3 0.0267 1888 | LReLU | Adam | 0.8898 | 0.8683 | 0.9281 | 0.0206 | 0.5667 | 0.5000 | 0.7273 | 0.0822
4 0.0234 1438 Tanh Adam | 0.8743 | 0.8503 | 0.8982 | 0.0182 | 0.5121 | 0.4242 | 0.5758 | 0.0511
5 0.0272 819 Tanh Adam 0.8898 0.8623 0.9281 0.0223 0.5656 0.4546 0.6765 0.0894
Mean 0.8822 | 0.8527 | 09162 | 0.0223 | 0.5180 | 0.4273 | 0.6504 | 0.0858
TABLE II: Hyperparameters and classification metrics for ANN-II on training set.
Run LR Neur Act Opt Accuracy Recall
mean min max std mean min max std
1 0.0126 | 169 | 1896 | Tanh | ReLU | Adam | 0.8778 | 0.8264 | 0.8982 | 0.0264 | 0.5722 | 0.5152 | 0.6364 | 0.0409
2 0.0121 | 443 | 1607 | Tanh | LReLU | Adam | 0.8790 | 0.8443 | 0.9162 | 0.0252 | 0.4945 | 0.3030 | 0.6667 | 0.1468
3 0.0098 | 248 | 1603 | Tanh | ReLU | Adam | 0.8874 | 0.8623 | 0.9222 | 0.0198 | 0.6203 | 0.5455 | 0.6667 | 0.0502
4 0.0104 | 236 | 1775 | Tanh | ReLU | Adam | 0.8826 | 0.8623 | 0.9102 | 0.0184 | 0.5182 | 0.3939 | 0.6061 | 0.0732
5 0.0070 | 1876 | 152 | Tanh | LReLU | Adam | 0.8922 | 0.8683 | 0.9281 | 0.0227 | 0.5305 | 0.4242 | 0.6667 | 0.0845
Mean 0.8838 | 0.8527 | 0.9150 | 0.0225 | 0.5471 | 0.4364 | 0.6485 | 0.0791
TABLE III: Hyperparameters and classification metrics for ANN-III on training set.
Run | LR Neur Act Opt Accuracy Recall
mean | min max std mean | min max std
1 0.0015 | 719 | 1910 | 632 | Tanh | Tanh Sig | Adam | 0.8767 | 0.8503 | 0.8982 | 0.0154 | 0.5423 | 0.4546 | 0.6061 | 0.0511
2 10.0012| 592 | 588 | 1936 | Tanh | LReLU | Tanh | Adam | 0.8790 | 0.8563 | 0.9162 | 0.0222 | 0.5184 | 0.3939 | 0.6667 | 0.1015
3 10.0019 | 1845 | 582 | 1449 | Tanh | LReLU | Tanh | Adam | 0.8862 | 0.8683 | 0.9162 | 0.0169 | 0.5845 | 0.5455 | 0.6364 | 0.0329
4 0.0023 | 1511 | 1736 | 464 | Tanh | LReLU | Tanh | Adam | 0.8767 | 0.8623 | 0.8862 | 0.0097 | 0.5549 | 0.4412 | 0.6667 | 0.0747
5 10.0039 | 1429 | 458 | 331 | Tanh | LReLU | Sig | Adam | 0.8922 | 0.8623 | 0.9281 | 0.0211 | 0.5480 | 0.4242 | 0.7273 | 0.1041
Mean 0.8822 | 0.8599 | 0.9090 | 0.0171 | 0.5496 | 0.4519 | 0.6606 | 0.0729
TABLE IV: Hyperparameters and classification metrics for XGB on training set.
Run LR | Gamma | NE | MD | MCW | Sub | CS Accuracy Recall
mean min max std mean min max std
1 0.0165 | 0.1604 | 219 | 25 1 0.7 | 0.7 | 0.8778 | 0.8323 | 0.9042 | 0.0253 | 0.5902 | 0.4849 | 0.6667 | 0.0661
2 0.0206 | 0.4333 | 268 | 26 1 0.7 1 0.5 ]0.8862 | 0.8563 | 0.9102 | 0.0211 | 0.6264 | 0.4242 | 0.8182 | 0.1254
3 0.0198 | 2.9385 | 233 | 29 1 0.9 | 0.6 | 0.8946 | 0.8623 | 0.9162 | 0.0210 | 0.7168 | 0.6667 | 0.7576 | 0.0317
4 0.0623 | 0.3002 | 450 | 19 1 0.9 | 0.7 | 0.8922 | 0.8743 | 0.9102 | 0.0137 | 0.6390 | 0.5588 | 0.7273 | 0.0567
5 0.0373 | 0.2901 | 147 7 1 0.9 | 0.6 | 0.9018 | 0.8563 | 0.9401 | 0.0297 | 0.6688 | 0.5455 | 0.7576 | 0.0735
Mean 0.8905 | 0.8563 | 0.9162 | 0.0221 | 0.6482 | 0.5360 | 0.7455 | 0.0707
TABLE V: Hyperparameters and classification metrics for RF on training set.
Run | NE | MF C MD | MSS | MSL Accuracy Recall
mean min max std mean min max std
1 718 | None | entropy | 18 2 1 0.8814 | 0.8443 | 0.9042 | 0.0229 | 0.5358 | 0.4242 | 0.6364 | 0.0819
2 696 | sqrt | entropy | 18 4 2 0.8910 | 0.8683 | 0.9222 | 0.0179 | 0.5300 | 0.3939 | 0.6667 | 0.0898
3 486 | sqrt | entropy | 16 8 1 0.8970 | 0.8743 | 0.9162 | 0.0167 | 0.5840 | 0.4546 | 0.6471 | 0.0693
4 328 | sqrt | entropy | 14 9 2 0.8934 | 0.8743 | 0.9102 | 0.0116 | 0.5850 | 0.4706 | 0.6667 | 0.0644
5 259 | sqrt | entropy | 29 10 3 0.8946 | 0.8743 | 09162 | 0.0154 | 0.6023 | 0.5455 | 0.6667 | 0.0490
Mean 0.8915 | 0.8671 | 0.9138 | 0.0169 | 0.5674 | 0.4578 | 0.6567 | 0.0709
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Fig. 5: ROC and PRC curves for ANN-I (green), ANN-II (yellow), ANN-III (gray), XGB (red) and RF (blue) for runs 1-5
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TABLE VI: Mean values of classification metrics for ML models on test set.

Model | TN |FP|FN |TP | Accuracy | Recall | Specificity | Precision | AUC | AUC
ROC | PRC

ANN-I |431(16|57 |53 | 0.8686 [0.4782| 0.9647 0.7728 |0.8584|0.7057
ANN-II (43314 | 58 | 52| 0.8715 |0.4764| 0.9687 0.7922 |0.8547]0.7030
ANN-IIT | 430| 17 | 56 | 54 | 0.8682 |0.4891| 0.9615 0.7619 |0.8478|0.6914
XGB [420(27|39 (71| 0.8801 |0.6418| 0.9387 0.7255 10.9024|0.7663
RF (4331447 |63 | 0.8901 |0.5745| 0.9678 0.8167 |0.9080|0.7754

TABLE VII: Contingency table for McNemar’s test (average values across 5 runs).

Model 1 | Model 2 Both Model 1 | Model 2 | Both x> p-value
correct | wrong wrong | wrong
ANN-I ANN-II 476.0 9.4 7.8 63.8 0.62 0.62
ANN-I | ANN-III | 474.0 9.6 9.8 63.6 1.14 0.44
ANN-I XGB 464.0 26.2 19.8 47.0 1.07 0.5
ANN-I RF 4704 254 134 47.8 3.81 0.21
ANN-II | ANN-IIT | 475.6 8.0 9.8 63.6 | 0.39 0.67
ANN-II XGB 463.4 26.8 22.0 44.8 0.89 0.43
ANN-II RF 471.8 24.0 13.6 476 | 2.72 0.2
ANN-IIT XGB 462.0 28.2 21.6 452 1.49 0.29
ANN-IIT RF 4704 25.4 132 48.0 3.87 0.13
XGB RF 481.0 14.8 9.2 52.0 1.23 0.45

ANN s are generally less efficient than tree-based ensemble
models like RF and XGB for tabular datasets with a
relatively small number of samples and a mix of feature
types (integer, real, categorical, Boolean). Tree-based models
are more robust to the presence of uninformative or
redundant features in the dataset. ANNSs, on the other hand,
struggle with such features, and their performance degrades
significantly when uninformative features are present [41].
Tabular datasets often contain a mix of numerical (integer,
real) and categorical (Boolean, ordinal, nominal) features.
Tree-based models can naturally handle heterogeneous data
types without the need for extensive feature engineering or
encoding schemes, while ANNs require special architectures
and techniques to handle such data effectively [42], [43].
Moreover, tree-based models are better suited for learning
irregular and complex patterns in the data, which are
common in tabular datasets. ANNs, particularly standard
architectures, tend to learn overly smooth solutions and
struggle with capturing such irregularities [41]. While deep
learning approaches may achieve competitive performance
on very large tabular datasets [42], tree-based ensembles
like XGB remain the state-of-the-art for most small to
medium-sized heterogeneous tabular datasets, which are
common in many applications [43]. In summary, the
robustness to uninformative features, ability to handle
heterogeneous data types, capacity to learn irregular patterns,
and efficiency with limited data and training time make
tree-based ensemble models more effective than ANNs for
tabular data such as the Ri-Schedule dataset.

V. CONCLUSION

The analysis of the models’ performance on both the
training and holdout test sets reveals that the tree-based
ensemble models, XGB and RF, outperform conventional
feed-forward ANNs for classifying DVT on Ri-Schedule
data. Although ANNSs exhibited comparable performance,
their accuracy and recall were slightly lower than those of the
tree-based models. XGB and RF consistently demonstrated
superior performance across various evaluation metrics,
showcasing their effectiveness in handling the complexities
of the disease classification task. These tree-based ensemble
models leverage the collective intelligence of decision trees,
effectively capturing intricate patterns within the dataset
and yielding higher predictive accuracy. However, the
ANN models demonstrated stability and consistency across
different HP configurations, suggesting their reliability in
predictive tasks. The results of this study suggest that further
research in enhancing DVT diagnostics on the Ri-Schedule
dataset should explore tree-based ensemble methods, such
as XGB and REF, rather than classic feed-forward ANNs. In
conclusion, the comparative analysis provided insights into
the relative performance of ANNs and tree-based ensemble
methods for DVT diagnosis, highlighting the importance of
algorithm selection in clinical decision-support systems.
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