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Abstract—We explore the use of various machine learning
(ML) models for classifying lithologies utilizing data from X-
ray fluorescence (XRF) and X-ray computed tomography (XCT).
Typically, lithologies are identified over several meters, which
restricts the use of ML models due to limited training data.
To address this issue, we augment the original interval dataset,
where lithologies are marked over extensive sections, into finer
segments of 10cm, to produce a high resolution dataset with vastly
increased sample size. Additionally, we examine the impact of
adjacent lithologies on building a more generalized ML model.
We also demonstrate that combining XRF and XCT data leads
to an improved classification accuracy compared to using only
XRF data, which is the common practice in current studies, or
solely relying on XCT data.

I. INTRODUCTION

Drill cores are cylindrical rock samples drilled from the
earth, of which an example is shown in Figure 1. Identification
and classification of e.g. different rock types and lithofacies
in drill cores is an important stage of mineral exploration.

The process of identifying and classifying distinguishable
drill core depth ranges is often denoted as core logging [10].
Manual core logging can be inconsistent, leading to variability
that complicates the development of reliable geological models
[6], [10]. With the advent of new technologies for data collec-
tion from the drill cores using X-rays [1], [2], geochemical
analysis can be done at a greater flexibility compared to
traditional lab assays, also allowing for extraction of additional
information such as 3D rock structures. X-ray fluorescence
(XRF) scans are used to obtain elemental concentrations
from drill cores [3] and X-ray computed tomography (XCT)
scanning can give non-invasive access to the entire 3D volume
of the drill core at high spatial resolution [4]. XCT data enables
precise characterization of mineral grains based on density.
This approach is especially useful for identifying high-density
minerals such as gold, clearly differentiating them from other
minerals and metals [18]. Additionally, by using 2D slices
of attenuation values from 3D XCT data in machine learning
(ML) algorithms, we can identify and segment euhedral min-
erals in the drill cores, improving our insights into geological
structures [19]. Even though technology aids in collecting
a vast amount of data from drill cores more efficiently, the
analysis of this data still necessitates manual work and time.
ML could therefore be an ideal tool for better leveraging the
data at reduced manual effort.
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Fig. 1: Illustration of drill core samples from a geological
application arranged in a drill core tray.

For example, in a study of Zn-Pb-Ag deposits in a Swedish
mine [6], researchers utilized chemical compositional data ob-
tained from XRF analysis to assess the capabilities of various
ML algorithms, including Self-Organizing Maps (SOM) and
Classification and Regression Trees, in the classification of
rock types. Here the ML algorithms were evaluated based
on ground truth given by geologists, showcasing the utility
of such algorithms in geological studies. In another study
on the classification of rock types [7], SOMs were again
used to classify rock types based on elemental compositions.
Beyond the reliance on XRF data, the integration of digital
images has also been utilized, allowing for the classification of
rocks through their texture and color. This approach leverages
ML and convolutional neural networks (CNN), marking an
advancement in the field by combining traditional methods
with different data types to achieve a more detailed geological
analysis [8]–[10].

This study examines the integration of multi-modal data,
specifically XRF and XCT measurements for classification of
lithology in drill cores using ML. We tested our approach with
both traditional ML models, like Random Forest (RF) and XG-
Boost, and deep learning (DL) models, like Bayesian Neural
Networks (BNNs) and FT-Transformers.

II. DATA

Drill cores from three distinct mines were utilized. Specif-
ically, drill core samples from three holes (LOV19001,
LOV19002, and LOV19003) at the Lovisagruvan mine in
Bergslagen, Sweden; six holes (MP0777, MP0779, MP0794,
MP0802, MP0816, and MP0826) from the Mavres Petres mine
in Greece; and one hole from an undisclosed mine in Sweden
were used. These samples were scanned using Orexplore’s
GeoCore X10TM, which provides XCT, XRF, and density
data. The study utilized 662 meters of scanned drill core
data, specifically 421 meters from the Lovisagruvan mine,
42 meters from the Mavres Petres mine, and 199 meters
from the undisclosed mine in Sweden. When evaluating model



performance in later sections, we rely primarily on Lovisan-
gruvan as the most complete and insightful dataset using
the lithologies provided by geologists as ground truth. This
as domain experts have confirmed the lithologies in Mavres
Petres to be easily determinable even by visual inspection,
whereas privacy concerns prevents the disclosure of actual
lithologies and scan results details for the undisclosed dataset.

The GeoCore X10TM drill core scanner is capable of mea-
suring XRF signals for elements with atomic numbers ranging
from 13 (Aluminum) to 92 (Uranium) [5], expressed as a
function of drill core depth at ∼ cm resolution. In contrast,
the XCT produces a full 3D reconstruction of the entire drill
core volume, expressed as X-ray attenuation values in a voxel
resolution of 0.2 mm [2]. To incorporate the XCT results in
tabular format for the current application, they are summarized
as statistical measures of the voxel-attenuation distribution,
accumulated over the same depth intervals as the XRF results.

There are two types of such attenuation-derived features:
percentile-based and volume fraction features. The percentile-
based features represent specific percentiles of the attenuation
values, covering all percentiles in steps of 5, from the 0th to
the 100th. Volume fraction features, on the other hand, utilize
sum of voxel counts within fixed ranges of attenuation values,
expressed as volumetric fractions of the material classified as
rock. In summary, the dataset has 68 distinct XRF features
corresponding to individual chemical elements, 21 percentile
feature columns plus 32 volume fraction feature columns (both
of which are referred to as XCT features). In this study, the
term ‘multi-modal data’ refers to XRF and XCT datasets, each
representing a distinct modality; XRF features corresponding
to individual chemical elements and XCT attenuation charac-
teristics, respectively. The XRF and XCT data are used to train
and test ML models. Data cleaning, in our context refers to
removing columns containing only zeros from the XRF+XCT
dataset.

III. METHODOLOGY

In problems involving tabular datasets, much of the existing
literature leans towards traditional ML model such as gradient
boosted decision trees [23]. Since this work is also based on
tabular datasets, we naturally go by this trend. To complement
this, we also explore the potential of some DL models on our
dataset, providing a comparison to identify the most effective
approach for our dataset. The ML models that we use in this
work are described below.

A. Random Forest Classifier

The first choice is a traditional ML classifier, the random
forest (RF) classifier. This ensemble technique operates by
constructing numerous decision trees, with the predicted class
determined by a majority vote across these trees. Compared
to individual decision trees, this method is less prone to over-
fitting, making it a more dependable option [11]. Moreover, the
ensemble approach of the RF model helps mitigate the impact
of data point outliers [11], establishing it as the preferred
method for predicting lithologies. Its robustness and efficiency

in handling complex datasets mark the RF classifier as a
standout choice in the field of geological analysis [11].

B. XG-Boost

XG-Boost, standing for Extreme Gradient Boosting [15],
which is the second choice of ML model in our study. Unlike
RF that operate on a majority voting principle from numerous
decision trees, gradient boosting combines predictions from
multiple decision trees sequentially. This approach aims to
enhance the overall prediction accuracy by optimizing the
model’s weights based on errors identified in previous iter-
ations. What sets XG-Boost apart is its incorporation of L1
and L2 regularization, which aids in constructing a more
generalized machine learning model, making it particularly
effective on sparse data [15]. This regularization approach
supports the efficiency and reliability of the XG-Boost ML
model.

C. Bayesian Neural Networks

The third choice of model in our study is Bayesian Neural
Networks (BNNs) because as demonstrated in [14] to predict
lithofacies boundaries, BNNs prevent over-fitting and the
uncertainty estimation from BNNs can be vital for meaningful
interpretation. BNNs are a type of AI models that are grounded
in probability theory, enabling reasoning about data variables
and incorporating prior beliefs about them [12]. They are
believed to perform better with small datasets and in situ-
ations of data uncertainties by treating network weights as
a distribution [13]. This probabilistic approach allows BNNs
to offer not just predictions but also measures of uncertainty,
making them especially valuable in applications where data
may be sparse or noisy, such as geological core logging. This
capability to quantify uncertainty in predictions sets BNNs
apart as a crucial ML model, providing an insight into the
reliability of the predictions made.

D. Feature Tokenizer Transformer

The fourth and final choice of ML model for comparison in
our study is a Transformer, a revolutionary concept introduced
in the seminal paper “Attention is All You Need" [16]. The
main principle behind this powerful ML model is the self-
attention mechanism, a process that assesses the relevance of
each part of the input data relative to the others, enabling
the model to concentrate on important features. Originally
developed for text data analysis and forming the backbone
of applications like ChatGPT, transformers have demonstrated
their versatility across various domains, including handling
tabular data [24]. The Feature Tokenizer Transformer (FT-
Transformer) represents a specific adaptation of the Trans-
former architecture to the tabular domain [17]. Similar to
how the original Transformer model converts words in text
to embeddings, the FT-Transformer transforms all features
in a tabular dataset, both categorical and numerical, into
embeddings. These embeddings are then processed using the
self-attention mechanism. This capability makes it particularly
advantageous for complex tasks involving large and intricate



datasets, such as the classification of lithologies using XRF
and XCT features.

IV. RESULTS

A. Model Performance: Original Intervals vs. High Resolution
Intervals

Dataset Original Intervals High Resolution Intervals

Lovisagruvan 29 4340
Mavres Petres 576 4650
Undisclosed 37 1797

TABLE I: The number of samples in each dataset, original and
high resolution intervals, excluding depth intervals scanned to
less than 80% completeness from both the datasets.

Before comparing different ML models, We first introduce
a data augmentation that enables the results presented in later
sections. Similarly to image cropping, we utilize the inherent
∼ cm resolution of the scan data, to split each original log
interval (typically on ∼ meter scale) into a number of ∼ 10 cm
intervals, which greatly increases the total number of samples
as summarized in Table I. This assumes that the label applied
to an original log interval also applies for each ∼ 10 cm sub-
interval within it, which is not necessarily valid for all labels
and intervals. In fact, we find the assumption to be particularly
questionable for "boundary samples", i.e. the outermost sub-
intervals of each original log interval, as they often represent a
transitional region of uncertainty between more distinguishable
intervals, and therefore pay particular attention to this effect
in section IV-B.)

A RF classifier is used to demonstrate the effect of augmen-
tation, and given the limited size of the original interval dataset
an extensive validation method was used. Therefore, a valida-
tion method was implemented where all unique combinations
were generated to serve as individual test sets. Out of the 29
samples in the original interval dataset, 26 samples were used
for training, and the remaining 3 samples were used for testing
in each combination. The original interval dataset reflects the
natural form in which data is typically available for core
logging and is thus established as the baseline for this study.
This baseline is essential as it mirrors the standard conditions
under which geological data is collected, providing a reference
point against which the efficacy of data augmentation can be
assessed.

Lovisagruvan
Dataset Test Acc Precision Recall
XRF+XCT (Original intervals) 0.72 0.59 0.62
XRF+XCT (High resolution intervals) 0.93 0.93 0.93

TABLE II: Comparison of RF classifier on the XRF and
XCT combined original interval and high resolution interval
datasets.

Utilizing the high resolution dataset, RF classifier shows an
improved performance (see Table II) compared to a RF clas-
sifier on original intervals. This improvement in the accuracy

highlights the effectiveness of the high resolution dataset to
train ML models. Consequently, this study will proceed with
the high resolution dataset to explore further enhancements
and applications. The high resolution dataset is first split into
training and test sets, with a standalone test set used to evaluate
all the models in this study. While training the RF classifier
and XG-Boost models 5-fold stratified validation was used
to ensure a balanced representation of all the classes within
each fold. However, while training BNN and FT-transformer
a hold-out validation technique was used.

B. Assessment of Split Strategies on Model Performance

Boundary samples are those located at the edges of each
depth interval, representing the transition between different
rock types or lithologies. On the other hand, non-boundary
samples, are found away from these edges, typically within
the central portions of the depth intervals. They represent more
stable, homogeneous conditions and are crucial for analyzing
the attributes of a lithology without the variability introduced
by transitional zones. Together, boundary and non-boundary
samples can offer a holistic view of a geological study. ML
models are evaluated across distinct dataset split scenarios:
Random Split Evaluation, Testing with Only Non-Boundary
Interval Samples, Testing on Only Boundary Samples, and
Training and Testing without Boundary Samples. This allowed
us to understand model performance across all depths of a drill
core. In the study by Negin Houshmand et al. [10], a dataset
was divided using an approach where continuous segments of
each rock type was allocated across training, validation and
test sets. By doing so, only boundary samples were included
in the test set and this can hinder the performance of ML
models based on findings.

1) Random Split Evaluation: The results shown in Table
III show that RF and XG-Boost models show high accuracy,
precision, and recall across the dataset from Mavres Petres
and Lovisagruvan mine, achieving scores well above our
set baseline of 0.72. The performance of all models on the
dataset Mavres Petres mine has consistently been on the higher
side, because the lithologies present within this dataset are
quite straightforward for classification as mentioned in sub-
section II. In contrast, the BNN showed slightly lower per-
formance compared to the RF and XG-Boost models, except
in the undisclosed dataset where it performed better. The FT-
Transformer exhibited variable performance, with notably high
precision on the dataset from Mavres Petres mine but low
accuracy on the dataset from undisclosed and Lovisagruvan
mine. Generally, the combination of XRF and XCT data con-
tributed to better model performance than datasets featuring
either XRF or XCT features alone, highlighting the advantage
of using multi-modal data for an improved classification of
lithologies.

Figure 2 shows the comparison of confusion matrices for
various models on the dataset from Lovisagruvan. The RF
classifier exhibits strong performance in classifying Dolomite
(DOLO) with 174 true positives and also achieves high accu-
racy for Volcanic Sand Siltstone (VSST) with 151 true posi-



TABLE III: Performance metrics on the test set across all the models and datasets. In the table, yellow highlights indicate the
highest performance metrics for each dataset.

Model / Data Lovisagruvan Mavres Petres Anonymous
Acc Prec Rec Acc Prec Rec Acc Prec Rec

Random Forest
XRF+XCT 0.93 0.93 0.93 0.95 0.95 0.96 0.85 0.85 0.85
XRF+XCT Cleaned 0.92 0.92 0.92 0.95 0.95 0.96 0.82 0.82 0.83
XRF 0.84 0.84 0.83 0.95 0.95 0.96 0.81 0.81 0.81
XCT 0.84 0.84 0.83 0.95 0.95 0.96 0.74 0.74 0.75
XG-Boost
XRF+XCT 0.90 0.90 0.90 0.95 0.95 0.96 0.86 0.86 0.86
XRF+XCT Cleaned 0.90 0.90 0.90 0.95 0.95 0.96 0.85 0.85 0.85
XRF 0.80 0.80 0.79 0.95 0.95 0.96 0.84 0.84 0.85
XCT 0.80 0.80 0.79 0.91 0.91 0.91 0.74 0.74 0.74
BNN
XRF+XCT 0.82 0.83 0.82 0.72 0.61 0.72 0.82 0.82 0.82
XRF+XCT Cleaned 0.84 0.84 0.84 0.72 0.62 0.72 0.82 0.83 0.82
XRF 0.80 0.81 0.80 0.93 0.93 0.92 0.82 0.83 0.82
XCT 0.81 0.81 0.81 0.93 0.91 0.91 0.65 0.60 0.65
FT-Transformer
XRF+XCT 0.82 0.84 0.74 0.95 0.97 0.92 0.70 0.70 0.68
XRF+XCT Cleaned 0.83 0.80 0.79 0.86 0.86 0.80 0.78 0.81 0.79
XRF 0.83 0.82 0.83 0.76 0.73 0.71 0.61 0.62 0.62
XCT 0.85 0.82 0.82 0.92 0.96 0.88 0.60 0.57 0.58

(a) Random Forest (b) XG-Boost

(c) Bayesian Neural Network (d) FT-Transformer

Fig. 2: Confusion matrices of various models on the the combined XRF and XCT dataset from Lovisagruvan.

tives. However, it has confusion between Carbonate (CARB)
and DOLO, misclassifying 12 instances of CARBs as DOLOs.

The XG-Boost model has an improved DOLO classification
with 178 true positives and mirrors this strength in VSST



classification with 153 true positives. Yet, it displays a slightly
higher rate of confusion between CARB and DOLO, with
27 instances being misclassified, highlighting a challenge
in differentiating these two lithologies. In classification of
DOLO, BNN records 177 true positives, ranking second only
to XG-Boost. Additionally, it achieves 153 true positives in
VSST classification, equaling XG-Boost, the best model in
classification of VSST. The FT-Transformer model, while
presenting a lower true positive count for DOLO at 158,
maintains consistent performance for VSST with 151 true
positives, aligning with the other models. However, the FT-
Transformer model faces difficulty in distinguishing between
CARB and DOLO compared to its counterparts, with a higher
misclassification count of 30. Across all models, the consistent
challenge lies in the misclassification of CARB, albeit to
varying degrees. Despite this, all models demonstrate a shared
strength in accurately classifying VSST, indicating a common
proficiency across the different machine learning approaches.

TABLE IV: RF classifier results for the combined XCT and
XRF dataset tested on only non-boundary interval samples.

Lovisagruvan
Model Accuracy Precision Recall
XRF+XCT 0.88 0.88 0.87
XRF+XCT Cleaned 0.88 0.88 0.88
XRF 0.78 0.78 0.78
XCT 0.78 0.78 0.78

2) Testing with only Non-Boundary Interval Samples: In
the analysis of non-boundary samples, the RF model, on the
combined XRF and XCT dataset, the metrics in Table IV
demonstrates robust performance with accuracy and precision
both at 0.88, and recall of 0.87. Although the performance
surpasses our baseline metrics, it falls short when compared
to results from a randomly split dataset. When the XRF+XCT
dataset is cleaned, there is no significant changes in the perfor-
mance. In contrast, performance declines when the model is
trained solely on XRF or XCT data, with accuracy, precision,
and recall all dropping to 0.78. This highlights the advantage
of using multi-modal data.

3) Testing on only Boundary Samples: When focusing on
performance on boundary samples (see Table V), the RF
classifier, using the combined XRF and XCT dataset, has an
accuracy and a precision of 0.65, alongside a higher recall of
0.76. However, after cleaning the XRF and XCT combined
dataset, there’s a slight improvement in the model’s accuracy
and precision to 0.69, with recall of 0.75. There is decline
when the model is restricted to using only XRF or XCT data,
with accuracy and precision dropping further to 0.63 and recall
to 0.67. Compared to the performance on the non-boundary
sample test set, there’s a decrease in the performance, under-
scoring the challenges faced by the ML model in classifying
boundary samples. Additionally, it’s important to highlight
that the accuracy on boundary samples falls slightly below
our baseline, again, emphasizing the increased difficulty in
predicting outcomes accurately in these edge cases.

TABLE V: RF classifier results for Lovisagruvan dataset tested
on only boundary interval samples.

Lovisagruvan dataset
Random Forest Test Acc Precision Recall
XRF+XCT 0.65 0.65 0.76
XRF+XCT Cleaned 0.69 0.69 0.75
XRF 0.63 0.63 0.67
XCT 0.63 0.63 0.67

4) Training and Testing without Boundary Samples: When
excluding boundary samples from both the training and testing
sets, and using the combined XRF and XCT data, the RF
classifier achieves notable accuracy, precision, and recall of
0.91. When the dataset is cleaned, it further enhances the
model’s performance, with accuracy, precision, and recall
slightly increasing to 0.92. This improvement suggests that
cleaning the data of non-informative values might lead to
more accurate predictions. Additionally, when the RF model
is trained on data using only XRF or only XCT, it still exhibits
commendable performance, with accuracy and precision at
0.85 and a marginally higher recall of 0.86. These results col-
lectively underscore the efficacy of the RF model in handling
varied datasets, particularly when the ML model is trained
without boundary samples, and the accuracy achieved is above
our established baseline.

TABLE VI: RF results for the dataset trained and tested on a
dataset excluding all the boundary samples.

Lovisagruvan
Random Forest Test Acc Precision Recall
XRF+XCT 0.91 0.91 0.91
XRF+XCT Cleaned 0.92 0.92 0.92
XRF 0.85 0.85 0.86
XCT 0.85 0.85 0.86

V. DISCUSSIONS
A. Effect of Integrating XRF and XCT Data

The combination of XRF and XCT enhances the classifica-
tion of lithologies, as evidenced by the comparative analysis of
model performances across different test set splits. While the
XRF features offer individual chemical elements details crucial
for identifying specific lithologies, XCT data offers insights
into the distribution of XCT attenuation values, which may
vary among different lithologies due to differences in density,
mineral composition, and porosity. For instance, a highly
porous rock type or a lithology can typically exhibit lower
attenuation values at lower percentiles compared to a denser
one. These are insights that are not apparent in chemical data
alone. This combination is particularly effective in lithologies
with similar XRF features but differing in structures. CARB
and DOLO are two such lithologies that have similar XRF
features [20] and we can notice in Figure 3a this confusion in
classifying them when only using XRF features. However this
confusion reduces when the model used only XCT features to
classify these lithologies, as seen in Figure 3b. Thus, merging
these two diverse sets of features allows us to take advantage
of each, resulting in an improved classification performance.



(a) Confusion matrix of the XRF based RF model on the
XRF Lovisagruvan dataset.

(b) Confusion matrix of the XCT based RF model on
the XCT Lovisagruvan dataset.

Fig. 3: Confusion matrices of RF model on Lovisagruvan
dataset using scanned XRF and XCT features respectively.

B. Effect of Boundary and Non-Boundary Samples

Here we discuss the impact of various dataset splitting meth-
ods on model’s outcomes having recognized the advantages
of using the combined XRF and XCT dataset. The strategy of
random splitting consistently achieved the highest performance
across all models when applied to the combined XRF and
XCT dataset with accuracy, precision, and recall all above
0.90 for the dataset from Lovisagruvan. This superior perfor-
mance suggests that training on randomly selected samples,
which contains a broad range of geological characteristics and
boundaries, more accurately captures the complexity of natural
environment. Despite the success of the random split method
in providing a comprehensive training through a diverse rep-
resentation of lithologies, other splitting strategies were also
explored. Comparing random split with tests containing only
non-boundary samples, since these two splits included more
boundary samples while training the models than other splits,
the latter showed a slight reduction in accuracy, precision, and
recall (approximately 0.88 for XRF+XCT) for the Lovisagru-

van dataset. Conversely, tests solely on boundary samples saw
the lowest performance, underscoring the challenges models
face in predicting lithologies from transitional zones where
features may blend with neighboring lithologies or appear less
distinct.

Excluding boundary samples from both the training and
testing phases has improved the performance of ML models.
However, the results still lags behind those obtained from a
random split that includes both boundary and non-boundary
samples. This indicates that models classify distinct, homoge-
neous lithologies with relative ease.

C. Evaluation of ML Models

Across all models, the recurring misclassification between
CARB and DOLO points to a potential intrinsic similarity
in how these lithologies are represented in the dataset. The
variability in geological features across different depth ranges
within a drill core, although slight, does exist. However,
this variability is often overlooked in ML model training, as
samples are randomly divided into train and test sets without
considering depth ranges. Despite this, the high recall observed
across models suggests their effectiveness in broadly classify-
ing lithologies, even when characteristics vary by depth. RF
classifiers, in particular, demonstrate a high recall, highlighting
their ability to classify lithologies amidst these variations.

Geological datasets are susceptible to noise, incomplete-
ness, measurement errors, and limited sample availability,
making a model’s resilience to such imperfections can be
valuable. Unlike traditional CNNs, which primarily focus on
point estimates, BNNs provide a probabilistic approach to
predictions. As shown in an application of BNNs in lithology
[14], BNNs prevent overfitting and provide uncertainty esti-
mates, key factors in developing reliable geological models.
Transformer based models have the ability to emphasize key
features because of their self-attention mechanism. E.g. in [25]
Vision Transformer (ViT) is used in image-based lithology
classification. Traditional neural networks are only capable
of collecting local information, which makes it difficult to
identify complex patterns while ViT’s self-attention technique
enables it to identify complex patterns and offers insights
through attention rollout visualizations, as detailed in [26].
These visualizations in [25] elucidate the decision-making pro-
cess, reflecting geological expertise. Given the demonstrated
effectiveness of BNN and transformer models in lithology, as
shown in the cited works, we compare the accuracy of BNNs
and FT-Transformers to traditional ML models. Analyzing the
results further from these models is a scope for future work.

VI. CONCLUSION

Our study of lithology classification, using the combined
capabilities of XRF and XCT data, highlights the promise of
ML models in the field of drill core logging. The integration
of XRF and XCT data notably enhances the performance
of these models, offering an improvement over approaches
that rely solely on either XRF or XCT for training. The
combination of XRF and XCT features not only increase the



accuracy of the classification outcomes but also shows the
value of multidimensional data analysis in geological studies.
We tested four different ML techniques on scanned drill core
data collected from three distinct mine sites. RF classifier, XG-
Boost, and FT-Transformer showed strong performance on the
dataset from the Mavres Petres mine. XG-Boost excelled with
the dataset from an undisclosed mine and RF classifier stood
out for its effectiveness on the dataset from Lovisagruvan.

Augmenting the scanned data, where lithologies are iden-
tified over larger depth intervals, by segmenting them into
finer slices of 10cm, can significantly boost the performance
of ML models. Another advantage of high resolution data is
the ability to be re-composited into different depth intervals
like e.g. those corresponding to the intervals selected for
geochemical lab assays. Our findings indicate that classifying
samples near lithological boundaries presents a challenge.

This work lays a foundation for future exploration into
hybrid models that merge the strengths of RF classifier,
BNNs, and FT Transformers, potentially leading to more
comprehensive lithology classification methods. A direction
for future research is to include additional types of data, like
digital images of the drill cores or 2D slices from XCT scans,
together with XRF and XCT data used in this study. Further
work on how to use the uncertainty estimates from Bayesian
Neural Networks in real-world geological decisions could be
important, especially given the requirements in exploration
and resource estimation. By following these paths, future
research can make lithology classification models not just
more accurate and reliable, but also more useful in practical
situations.
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