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Abstract— Detecting violations within fishing activity reports
is crucial for ensuring the sustainable utilization of fish
resources, and employing machine learning methods holds
promise for uncovering hidden patterns within this complex
dataset. Given that these violations are infrequent occurrences,
as fishermen generally adhere to regulations, identifying them
becomes akin to an anomaly outlier detection task. Since labeled
data distinguishing between normal and anomalous instances
is not available for catch reports from Norwegian waters, we
have opted for more conventional approaches, such as clustering
methods, to identify potential clusters and outliers. Moreover,
the catch reports inherently exhibit randomness and noise
due to environmental factors and potential errors made by
fishermen during report registration which complicates the
processes of scaling, clustering, and anomaly detection. Through
experimentation with various scaling and clustering techniques,
we have observed that many of these methods tend to group
the data based on the species caught, exhibiting a high level of
agreement in cluster formation, indicating the stability of the
clusters. Anomaly detection methods, however, yield varying
potential outliers as it is a more challenging task.

I. INTRODUCTION

Leveraging machine learning and data science for the
United Nations’ Sustainable Development Goals (SDGs)
offers a promising contribution towards their effective im-
plementation. Among the SDGs, SDG14 highlights the im-
portance of life below water and the imperative to enhance
sustainability within the fisheries industry 1. An essential
aspect of achieving this goal involves combating Illegal,
Unreported, and Unregulated (IUU) fishing 2, for which AI-
driven monitoring systems offer significant utility. Malde et
al. [1] and Handegard et al. [2] underscore the significance
of employing machine learning techniques in marine science
and promoting sustainable fisheries practices. Initially, scien-
tists utilized traditional machine learning models ([3]), but
have since transitioned to employing deep learning models
([4], [5], and [6]), for tasks such as fishing activity detection
and preventing overfishing.

Our research focuses on harnessing AI to analyze fishing
catch reports from Norwegian waters, aiming to support
regulatory authorities - in this case, the Norwegian Di-
rectorate of Fisheries (NDF) 3—in gaining comprehensive
insights into fishing activities over time. We aim to find any
hidden patterns in the required catch reports by fishermen,
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a huge amount of data over the last decades. These data
are, however, not annotated with kind of labels one normally
expects to have for machine learning. Hence, unsupervised
approaches for analysis is necessary to get insights into the
data.

A. Problem Relevance

While the majority of vessels adhere to regulations most
of the time, occasional violations occur. These deviations
from the norm, being rare events that deviate from expected
patterns, may be classified as anomalies or outliers [7].

A prevalent method for unsupervised anomaly detection
involves utilizing an autoencoder to reconstruct the training
data, which exclusively comprises normal data. A threshold
for reconstruction error is established using this training data.
During the testing phase, both normal and anomalous data
can be employed, and anomalies are identified as those with
errors significantly deviating from the threshold [8].

Monitoring fishing vessels comprehensively, especially
while they are at sea, presents a daunting challenge. Although
numerous catch reports are available, they consist of raw data
provided by fishermen and lack the annotations indicating
which are in some sense irregular or normal behavior.
Consulting experts for such annotations is impractical due
to both the efforts needed and the dynamic nature of fishing
regulations across different regions and times.

The dataset exhibits features with a variety of distribution
shapes, which needs to be handled according to recom-
mended practice. However, if we look at the effect of fishing,
namely the catch features (species and amount), they also
exhibit extra high degrees of randomness, making the use of
many unsupervised machine learning techniques challenging.

Our research still endeavors to uncover hidden patterns
within this complex dataset using machine learning models,
aiming to provide insights into fishing activities and facilitate
anomaly detection.

B. The Contribution

The catch reports are tabular data with both categorical and
numerical features including gear type, start and stop position
(latitude and longitude) of the fishing interval, duration of
the fishing interval, time of the catch activity, length of the
vessel, ID of the vessel (called callsign), round weight, and
species.

The objective is to analyze the dataset, identifying patterns
and potential anomalies, which may include erroneous or
suspicious reports. To our knowledge, this work marks a



pioneering application of machine learning models to analyse
fishery activity data in terms of deviating reports.

At a general level the research task is to enable analysis
of data that exhibit some well-known problematic features,
like randomness, sloppy incorrect reporting, missing values,
and intended incorrect reporting. These issues still needs to
be overcome to be able to support the main purpose, i.e., the
application of data to support resource management.

Given the complex regulatory landscape established by
the NDF, detecting irregularities within the data poses a
significant challenge. Identifying deviations from legitimate
fishing activities is not straightforward.

Traditional machine learning approaches, such as clus-
tering techniques, have been used to address such issues.
Distinct clusters represent groups of data points sharing
similar patterns, while data points located far from any
cluster may be regarded as anomalies [9].

Additionally, we employ different dimensionality reduc-
tion techniques to facilitate the visualization of the data in
two dimensions, enhancing our ability to discern normal
behaviour patterns and anomalies effectively.

We have started out by focusing on bottom trawlers; nev-
ertheless, the methodology employed should hold relevance
for other geographic regions and various types of fisheries.

The next section delves into the problem’s background and
the related work on the selected methodologies. In Section
III, we provide an overview of the original dataset, detail
the pre-processing steps undertaken, and elucidate the final
dataset selection process. Moving forward, we illustrate the
data visualization and outcomes derived from the clustering
methods, along with identifying potential anomalies using
various techniques in Section IV. Section V concludes with
discussions and summarizing key findings.

II. BACKGROUND AND RELATED WORK

To comprehend and analyze this intricate dataset, we ad-
hered to the following steps, which are common in machine
learning and data science practices.

A. Dimensionality Reduction

Processing high-dimensional data, which often comprises
numerous features, demands significant time, computational
resources, and storage space. Dimensionality reduction tech-
niques aim to alleviate these challenges by eliminating redun-
dant information while preserving essential data with min-
imal loss, thus providing a more efficient low-dimensional
representation. Additionally, dimensionality reduction facil-
itates data visualization, which is crucial for gaining in-
sights into complex datasets. Dimensionality reduction can
be achieved through either feature selection or feature ex-
traction. Feature selection algorithms preserve the original
features, whereas feature extraction algorithms transform the
data into a new feature space.

One of the most widely used linear dimensionality re-
duction methods is Principal Component Analysis (PCA),
which seeks orthogonal directions that explain the maximum

variance in the data. Alternatively, autoencoders offer a non-
linear approach to dimensionality reduction. An autoencoder
is a neural network architecture designed to compress input
data into its essential features through an encoder and then
reconstruct the original input from this compressed represen-
tation efficiently though a decoder [10].

We employ both PCA and autoencoders to gain a better
understanding of the data through 2D visualization and
utilize the resulting 2D representations for clustering and
detecting potential anomalies.

B. Clustering

Clustering methods have been in existence for approx-
imately more than five decades. According to Saxena et
al. [11] clustering characterized as unsupervised learning,
where the labels for objects are not available. This makes
the task more difficult compare to the supervised approach
where the labels have the role of clues. Clustering entails
grouping objects based on inherent similarities among them.
The objects inside a cluster are more similar to each other
than to the objects belonging to other clusters. Numerous
clustering algorithms including hierarchical and partitional
have been crafted over time to cater to specific domains,
despite the absence of a universally acknowledged definition
for a cluster. Partitional clustering techniques are also divided
into distance-based, model-based and density-based methods.

In hierarchical clustering techniques, clusters are created
through an iterative top-down or bottom-up approach. There
are two main forms of hierarchical methods: agglomerative
and divisive hierarchical clustering. Agglomerative clustering
adopts a bottom-up strategy, initially forming clusters from
individual objects and progressively merging these atomic
clusters into larger ones until either all objects belong to
a single cluster or certain termination criteria are met.
Conversely, divisive hierarchical clustering employs a top-
down approach, starting with a single cluster containing all
objects and iteratively splitting it into smaller clusters until
each object forms its own cluster or specific termination
conditions are fulfilled.

In partitional clustering, unlike hierarchical clustering,
data points are allocated into K clusters without any hierar-
chical arrangement by optimizing a certain criterion function.
The Euclidean distance is the most frequently employed
criterion, which determines the minimum distance between
data points and existed clusters, thereby assigning the data
point to a cluster [11].

Agglomerative clustering with single linkage can be a suit-
able method for our task because it uses minimum distance
and the clusters merged in later stages may reveal potential
anomalies, which aligns with our objective. However, we
also tried some of the partitional methods such as K-means
[12] as a distance-based method, Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [13] as a
density-based method, and Self-organizing map (SOM) [14]
as a model-based method since our data is complex and there
is not a single ideal method for it.



C. Anomaly Detection

Anomaly detection pertains to identifying patterns within
data that deviate from expected behavior. These deviant data
points are termed anomalies or outliers. A direct approach to
anomaly detection involves defining a region that encapsu-
lates normal behavior and flagging any observation outside
of this region as an anomaly. However, implementing this
straightforward approach in real-world scenarios presents
numerous challenges, including a scarcity of labeled data
for training. To effectively learn the patterns within normal
data, it’s imperative to have annotations that help distinguish
normal data from anomalies [7].

Given the absence of available labels for our problem,
employing the anomaly detection methods described in [8] is
not viable. Nonetheless, we have opted to examine the results
generated by clustering methods as an alternative approach
to uncover potential anomalies.

III. DATASET AND PRE-PROCESSING

The dataset utilized in our study is known as DCA, or daily
catch reports, which is published by NDF and is publicly
available 4. This dataset encompasses the fishing activities
of various fishing vessels in Norwegian waters. Given the
variability in regulations and environmental conditions from
year to year, we selected 2018 as a representative sam-
ple. The two-dimensional visualization of the data obtained
through Principal Component Analysis (PCA) for both 2018
and 2019 is presented in Figures 1 and 2 . We observe
that the 2019 version has a similar overall pattern to the
2018 visualisation, but they are presenting somewhat skewed
distributions (relative to each other) along their respective
principal components.

Fig. 1. Two-dimensional representation of data, showing the result of
using PCA on DCA data 2018. The logarithm function is used to scale
round weight and Standard Scaler is used for the rest of the features.

This dataset comprises numerous features, including the
start and stop positions (latitude and longitude) of each catch
interval, the time and duration of each catch, the type of
gear used for the catch, the species caught, the main species
(wherein each catch consists of different species and the one
with the highest weight is considered the main one), the
length of the vessel, and the vessel’s ID (callsign).

After applying pre-processing steps, the initial dataset of
120,000 datapoints representing partial reports for bottom

4A part of the electronic reporting by NDF: https://www.fiskeridir.no/Tall-
og-analyse/AApne-data/elektronisk-rapportering-ers

Fig. 2. Two-dimensional representation of data, showing the result of
using PCA on DCA data 2019. The logarithm function is used to scale
round weight and Standard Scaler is used for the rest of the features.

trawlers was refined to approximately 35,000 reports. This
reduction was achieved by selectively considering reports
featuring species with over 2,000 occurrences and total round
weight exceeding 100,000 kg. This focused approach aims to
analyze common high catches, facilitating the identification
of prominent patterns within the data. Additionally, we
consolidated different species (each from a partial report)
within each catch into a single row, enhancing the dataset’s
coherence and simplicity. Consequently, the dataset now
exclusively comprises numerical features for streamlined
analysis.

A. Randomness and Distribution of Catch Data

The data, particularly the ’round weight’ feature, encom-
passes a level of inherent randomness. One should, however,
expect that modern industrial fisheries would enable us to
get reasonable predictions of catches from data like location,
gear and vessel size. The catch quantity is contingent upon
environmental conditions, the presence of various species in
a specific area on a given date, the ability of the fishermen,
and even irregular registration of data contributing to the
stochastic nature of this variable. All the data distribution
deviates significantly from a normal distribution, posing
challenges in identifying the optimal scaling method. Further,
the unpredictable nature of the data introduces complexity to
the task of discerning patterns within them.

To better understand the randomness in the ’round weight’,
we have developed a supervised model that predicts total
catches for a bottom trawler data set, but slightly reduced
in terms of data points and features. The regression value
is the log with base 10 (log10) of total catch. A Xgboost
(eXtreme Gradient Boosting) model was able to predict the
log10 of the total catch with a coefficient of determination
(R2) of 0.70 (5-fold cross-validation), meaning that 30% of
the variation in the log10 catch could not be explained by the
model. This indicates a fairly good model, and an analysis
of the residuals or prediction errors showed that they had a
mean of 0.0 and a standard deviation of 0.22.

When we look into the real values computed from the
exponential of log10 values, we get results which are less
convincing on behalf of the predictability of the catches.
The errors in catch prediction ranged from 72,265 kilos too
low to 17,868 kilos too high. The skewed interval indicates
that the model is not able to predict the really big catches,



which are those with high economic value, but also with high
environmental impact.

A histogram showing the distribution of the real sizes of
catches compared to the predicted sizes is shown in Figure 3.
The long tail effect is visible. The presence of numerous
extremely small and large catches will undoubtedly pose
challenges for anomaly detection and clustering within the
dataset. In addition, there is the problem of which species
will be caught in by-catches and the amount. These features
may in themselves be even more challenging sources of
randomness.

Fig. 3. Comparison of real catches and catches predicted by an xgboost
model

B. Scaling The Data

The subsequent stage involves scaling the data, which is
essential as we utilize PCA and autoencoder for dimension-
ality reduction and visualization purposes. We experimented
with various methods, and three distinct approaches are
outlined here for their potential insights into the data. The
first approach entails applying the Standard Scaler to all
features. This will transform our dataset such that each
feature will have a mean of 0 and a standard deviation of 1.
In the second approach, we altered the scaling method solely
for the ’round weight’ feature, while retaining the previous
scaling for the remaining features. Given the considerable
skewness in the distribution of ’round weight,’ we opted to
employ the logarithm function to scale its values. In the third
method, we initially take the log10 of the ’round weight’ and
subsequently scale all features to fall within the range of -1
and 1. The distinctions among these methodologies become
apparent in the visualizations presented in the following
section.

IV. DATA VISUALIZATION AND ANALYSIS

A. Dimensionality Reduction and Two-dimensional Visual-
ization of The Data

As discussed in the previous section, the choice of scaling
method for round weight impacts the distribution of the

data observed in two-dimensional visualization. Initially, we
explore the application of PCA with all scaled versions of
the dataset. Subsequently, we’ll transition to using auto-
encoder as the dimensionality reduction tool. By employing
PCA, we aim to capture the underlying structure of the data
and visualize it in a lower-dimensional space. Next, we’ll
explore the use of auto-encoder, which can potentially reveal
additional insights into the data by reconstructing it from a
compressed representation.

Additionally t-SNE [15] is employed for visualization pur-
poses. However, as we did not achieve a clearer visualization
compared to PCA, we report the results using PCA.

We ended up using Relational Autoencoder (RAE) [16]
when utilizing logarithm of round weight, since it shows
better performance. This is done utilizing the vanilla version
of an autoencoder, where we scale all the features using
standard scaling. The architecture of both is the same and
quite simple, both the encoder and decoder part have a
dense layer with 10 neurons as the only hidden layer. The
input dimension is 22, while the latent dimension is 2. RAE
captures both the relationships between input features and
the relationships between individual data points which can
help to improve the reconstruction task [16].

Visualizations of data using PCA are shown in Figures 1,
4, and 5 and the ones with autoencoder are depicted in Fig-
ures 6 and 7. In these visualizations we can see differences in
the resulting distributions as a consequence of various scaling
and dimensionality reduction methods. However, across all
visualizations, discernible patterns, clusters, and anomalies
are apparent. In the subsequent section, we will delve into
these topics comprehensively.

Fig. 4. Two-dimensional representation of data, showing the result of using
PCA on DCA data 2018. Standard Scaler is used to scale all the features.

B. Clustering Results and Possible Anomalies

Regulatory conditions can vary greatly from one day to
another, further complicating the identification of normal
and anomalous instances. Even domain experts may not
possess all the requisite details, exacerbating the difficulty of
distinguishing between regular and exceptional occurrences.
Given the absence of prior annotations, we have opted to
employ more conventional machine learning approaches,
such as clustering, to mitigate reliance on normal data during
training. Our aim is to cluster the data and classify data points
that are distant from any clusters as potential anomalies.
This strategy allows us to approach anomaly detection in a



Fig. 5. Two-dimensional representation of data, showing the result of using
PCA on DCA data 2018. First we take the logarithm of round weight then
scale all features so that they are placed inside the range -1 and 1.

Fig. 6. Two-dimensional representation of data, the result of using RAE
on DCA data 2018. The logarithm function is used to scale round weight
and Standard Scaler for the rest of the features.

manner less dependent on pre-existing norms. Despite the
persisting challenge posed by data randomness discussed
in previous section, clustering methods are able to identify
certain underlying patterns within the dataset.

We experimented with two scenarios for all clustering
methods: firstly, utilizing all 22 features, and secondly,
employing a 2D representation. We then examine the re-
sulting clusters to determine which scenario produces more
reasonable results. The scenario that yields more reasonable
clusters is considered to have better performance.

In line with the details outlined in Section II-B, we em-

Fig. 7. Two-dimensional representation of data, the result of using
autoencoder on DCA data 2018. Standard Scaler is used to scale all the
features.

TABLE I
CLUSTERS WITH ONE DATAPOINT FROM FIGURE 8, SOME OF THE

POTENTIAL OUTLIERS OBTAINED AFTER USING AGGLOMERATIVE

CLUSTERING ON 2D DATA FROM PCA. THE THIRD ROW TO THE

SIXTEENTH ROW INCLUDE THE ROUND WEIGHT OF COMMON SPECIES

DURING THAT CATCH IN KG. THE LAST FOUR ROWS ARE THE START AND

STOP POSITION OF THE CATCH INTERVAL.

cluster 10 cluster 11 cluster 15 cluster 19
vessel length 33.95 29.92 33.95 19.75

month 4 5 11 7
duration 425.0 283.0 117.0 360.0

Cod 3.0 6.0 84.0 5.0
Saithe 10.0 0.0 4826.0 0.0

Haddock 0.0 0.0 32.0 0.0
Rosefish 0.0 0.0 0.0 0.0

Caridean shrimp 0.0 0.0 0.0 0.0
Ling 30.0 15.0 0.0 0.0

Beaked redfish 0.0 0.0 0.0 0.0
Greenland halibut 0.0 0.0 0.0 0.0

Spotted wolffish 0.0 0.0 0.0 0.0
Hake 0.0 4.0 0.0 0.0

Atlantic wolffish 0.0 0.0 0.0 0.0
Angler 0.0 30.0 0.0 0.0
Halibut 0.0 0.0 0.0 0.0
Pollack 0.0 0.0 0.0 0.0

start latitude 65.7 64.258 68.907 71.175
start longitude 9.433 8.723 13.508 28.434

stop latitude 65.683 64.371 68.824 71.149
stop langitude 65.683 9.139 13.275 28.646

ployed agglomerative clustering to simultaneously identify
clusters and potential outliers within the dataset. Following
parameter adjustments, we generated Figure 8, the clusters
are achieved using the 2 principal components and depicted
using 2D visualization in Figure 5. There are 8 main clusters
which are grouped mainly based on the combination of
species present in the catch, the rest seems to be deviations
from the main ones. For example it is evident that cluster 7 is
a notably small cluster, appearing to diverge from cluster 1.
Upon closer examination of the features, cluster 7 comprises
five data points, with one species shared with cluster 1.
However, the vessel size and the duration of catch within
this cluster is considerably smaller compared to those within
cluster 1, despite capturing the same species.

Some of these potential outliers exhibit deviations from
the nearest cluster in terms of the catch amount, either being
excessively small or large, and sometimes they encompass
different combinations of species. Interestingly, cluster 7
and 19 belong to the same vessel. Hence, it’s apparent that
certain vessels have experienced more deviations compared
to others. In the case of cluster 19, there is only one data
point with very small catch of only one species. Furthermore,
clusters 14 and 15 are associated with the same vessel, yet the
combination of species differs slightly, despite being caught
in the same area.

The total count of data points distant from larger clusters
but associated with very small clusters is 30. Table I displays
the features of some of these data points, with the features
contributing to the deviation highlighted in bold. All these
data points are candidates for being classified as anomalies.

Furthermore, according to [9], in order to detect outliers
using hierarchical clustering, we can generate a dendrogram
of the clustering method applied to the data. This visualiza-



tion allows us to identify clusters that are distinctively distant
from others. Data points belonging to such clusters can then
be considered potential outliers. The dendrogram is depicted
in Figure 9.

Fig. 8. Clusters and potential outliers using agglomerative clustering on
two-dimensional representation that is the result of PCA, features are scaled
to range -1 and 1. Numbers close to the arrows show the cluster number.

Fig. 9. Dendrogram of agglomerative clustering on 2D data achieved by
PCA, number of data points within a cluster is written inside the parenthesis.
Clusters without parenthesis have only one datapoint and the number written
is the index of that datapoint. These types of clusters and clusters with very
small number of datapoints are potential outliers that merge later to the
closest cluster.

Additionally, there’s the opportunity to examine the dis-
tribution of the data to determine the most suitable cluster-
ing method. Based on the 2D visualization of the data, it
appears that there are distinct clusters with varying shapes,
indicating that a density-based clustering method would be
another suitable choice [13]. To delve deeper into potential
clusters within the data, we employed the enhanced version
of DBSCAN algorithm known as HDBSCAN (Hierarchi-
cal Density-Based Spatial Clustering of Applications with

Noise) [17]. We observed improved performance when uti-
lizing all 22 features compared to using fewer features. We
also utilized the outlier detection functionality provided by
the HDBSCAN library in Python. However, the identified
outliers did not appear to be reasonable, which we attribute
to the complexity of the dataset.

HDBSCAN identified 14 distinct primary clusters, each
meticulously delineated in Figure 10. These main clusters
predominantly center around a narrow selection of species,
exhibiting a notable degree of purity in their composition
unlike the striking lighter blue background (cluster -1),
a sizable conglomerate encompassing all data points not
affiliated with these main clusters. No discernible patterns
emerge regarding the combination of species and their spatial
distribution. For a clearer depiction of the main 14 clusters,
we present them separately in Figure 11.

Despite the disparate nature of the data within this back-
ground cluster, our density-based method unified them into a
single cohesive cluster. To explore this amalgam further, we
applied alternative clustering techniques, namely K-means
and agglomerative clustering. Remarkably, both methods
yielded strikingly similar outcomes shown in Figures 12 and
13. The majority of the large dense areas are classified as the
same cluster using both methods, as depicted with identical
colors in both figures. Comparing the outcomes of various
clustering methods to identify shared information is part of
clustering ensemble problem, which is inherently more com-
plex than comparing the outcomes of different classification
methods. This complexity arises because cluster labels are
symbolic, introducing the need to address a correspondence
problem [18]. To tackle this challenge, we utilized the ad-
justed Rand Index, which quantifies the agreement between
these methods in assigning clusters to data points, revealing
a similarity score of approximately 0.8. We also incorporated
the SOM clustering method into our analysis, Figure 14.
While the similarity score between this method and the other
two is slightly lower, it still demonstrates a significant degree
of concordance. These methods primarily clustered the data
based on the combination of species.

Fig. 10. Clusters obtained using HDBSCAN clustering. Logarithm function
is used to scale round weight and Standard Scaler is used for the rest of
the features.

We also noted that when applying HDBSCAN to the data
with all features scaled using standard scaling, one of the
clusters (Cluster -1 in Figure 15) appeared exceptionally
small. The data points inside this cluster seems to be far from
any other cluster, indicating potential outliers. These data



Fig. 11. 14 main clusters achieved using HDBSCAN clustering. Logarithm
function is used to scale round weight and Standard Scaler is used for the
rest of the features. These are cluster 0 to 13 from Figure 10.

Fig. 12. Clusters achieved by K-means clustering. Logarithm function is
used to scale round weight and Standard Scaler is used for the rest of the
features. K-means clustering is applied to cluster -1 from Figure 10.

Fig. 13. Clusters achieved by agglomerative clustering. Logarithm function
is used to scale round weight and Standard Scaler is used for the rest of the
features. Agglomerative clustering is applied to cluster -1 from Figure 10.

Fig. 14. Clusters achieved by SOM clustering. Logarithm function is used
to scale round weight and Standard Scaler is used for the rest of the features.
SOM clustering is applied to cluster -1 from Figure 10.

points differ primarily in certain features, notably the amount
of catch from the cluster they are closer to. Clusters 1, 2,
and 3 exhibit higher purity in terms of species combination,
encompassing only a limited number of types compared to
Cluster 0, which includes all types of species. Additionally,
Cluster 2 and Cluster 3 share the same geographic area and
are distinct from Cluster 1.

Fig. 15. 5 clusters achieved using HDBSCAN clustering. Standard Scaler
is used to scale all the features.

We also employed the two-dimensional representation
generated from the RAE and applied the agglomerative
clustering method to identify clusters and potential outliers.
The result is depicted in Figure 16. For instance, Cluster 11
is situated between Cluster 4 and Cluster 6. The geographical
area where this catch occurred aligns with Cluster 4, yet the
species composition of this catch differs—it corresponds to
one of the species caught in Cluster 6. Another example is
Cluster 13, wherein a data point contains the same species
and geographical area as Cluster 14, albeit with a lower
catch amount than the minimum observed in Cluster 14.
Furthermore, clusters that align along a diagonal line, such
as 1, 2, 4, 16, 17, and even 11, share the same geographical
area. They are a bit distant from Cluster 10 and even more
so from Clusters 13 and 14.

As we discussed earlier, visualizing a dendrogram can
help us recognizing potential outliers. The dendrogram for
agglomerative clustering on the 2D representation obtained
by RAE is shown in Figure 17.

Fig. 16. Clusters and potential outliers achieved by agglomerative cluster-
ing on two-dimensional representation that is the result of using RAE on
DCA data 2018. The logarithm function is used to scale round weight and
Standard Scaler is used for the rest of the features. Numbers close to the
arrows show the cluster number.



Fig. 17. Dendrogram of agglomerative clustering on 2D data achieved
by RAE. The number of data points within a cluster is written inside the
parenthesis. Clusters without parenthesis have only one datapoint and the
number written is the index of that datapoint. These types of clusters and
clusters with very small number of datapoints are potential outliers that
merge later to the closest cluster.

V. CONCLUSION AND DISCUSSION

Machine learning offers a valuable tool for analyzing
fishing activity reports submitted by fishermen, enabling
us to identify and prevent violations of regulations and
instances of overfishing. With vast datasets available from
Norwegian waters, harnessing machine learning technologies
holds significant potential in promoting sustainable fishing
practices.

During the analysis of this complex dataset, we encoun-
tered several challenges while striving to uncover its underly-
ing patterns. One of the most daunting features in the dataset
is the variability in catch weight, influenced by a multitude
of factors such as environmental conditions and potential
errors made by fishermen during registration. The skewed
distribution of the data adds another layer of complexity,
making decisions regarding scaling, clustering, and anomaly
detection more intricate.

Furthermore, the absence of labeled data restricted our
choice of pattern detection algorithms. Without prior knowl-
edge of normal reports and violations or anomalous data, we
opted for an entirely unsupervised approach using clustering
methods to identify clusters and potential outliers. Given
the absence of an ideal definition for clusters or outliers,
we experimented with various clustering techniques. While
these methods exhibited a high level of agreement in identi-
fying clusters, the identification of potential outliers differed
among them. Another anomaly detection method to consider
for further work can be Isolation Forest [19].

As expected, due to the intricate nature of the data and the
inherent randomness involved, anomaly detection emerged

as the most challenging aspect of the analysis. Although we
sought assistance from experts, their input was limited due to
the dynamic nature of regulations and their cautious approach
in providing feedback on potential outliers at this stage.

Achieving a higher level of verification from experts would
necessitate additional efforts, including detailed discussions
about the desired user interface for inputting their insights.
However, this process requires substantial time and resources
and is thus earmarked for future endeavors.

While our focus was on reports concerning one type of
gear in 2018, it’s worth noting that this type of analysis can
be extended to other gear types and across multiple years in
the future. This approach can help explore similarities and
differences over time and among different gear types.

After analyzing the dataset in our current work, we’ve
identified a promising avenue for future research: employ-
ing transformer models for regression tasks on this tabular
dataset. Additionally, upon gathering feedback from domain
experts regarding anomalies, transformers can be leveraged
for anomaly detection tasks having some annotated data.
Given recent advancements in research focusing on attention
mechanisms between data points besides attention between
features, transformer models exhibit considerable potential
for effectively handling tabular datasets [20], combining this
technique with nearest neighbors can further enhance the
efficiency [21].
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