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Abstract— A recent report by the Swedish Authority for Privacy
Protection (IMY) evaluates the potential of jointly training and ex-
changing machine learning models between two healthcare providers.
In relation to the privacy problems identified therein, this article
explores the trade-off between utility and privacy when using privacy-
enhancing technologies (PETs) in combination with federated learn-
ing. Results are reported from numerical experiments with standard
text-book machine learning models under both differential privacy
(DP) and Fully Homomorphic Encryption (FHE). The results indicate
that FHE is a promising approach for privacy-preserving federated
learning, with the CKKS scheme being more favorable in terms of
computational performance due to its support of SIMD operations
and compact representation of encrypted vectors. The results for DP
are more inconclusive. The article briefly discusses the current reg-
ulatory context and aspects that lawmakers may consider to enable
an AI leap in Swedish healthcare while maintaining data protection.

I. INTRODUCTION

Recent advances in artificial intelligence (AI) have shown
great promise in improving diagnosis, treatment, personalized
medicine [1] and disease prevention by predictions [2]. Machine
learning algorithms can analyze vast amounts of medical data,
such as patient records, imaging scans, and genetic information,
to identify patterns and make predictions about the likelihood
of diseases and the effectiveness of treatments. Additionally,
computer vision algorithms can analyze medical images, e.g.
X-rays and MRI scans, detect abnormalities, and provide decision
support in diagnosing disease.

However, the use of AI in medical applications raises concerns
about privacy, as it involves the processing of sensitive personal
information protected by privacy laws and regulations, such as
the General Data Protection Regulation (GDPR) in the EU and
the Health Insurance Portability and Accountability Act (HIPAA)
in the USA, as well as country specific patient data regulations.
To facilitate the sharing of personal health information between
healthcare providers and digital health services, adequate privacy
protection is essential. Full anonymization (de-identification) is
often not possible as it impairs full utility of the data [3]. Therefore,
several alternative approaches have been proposed, including
cryptographic techniques, differential privacy, synthetic healthcare
data generation, federated learning, and pseudonymization [4].

One technology that shows great potential in privacy
preservation is fully homomorphic encryption (FHE) [5]. It
makes computation on encrypted data possible which enables
privacy-by-design cloud-based services. Federated learning allows
multiple parties to collaboratively train a machine learning model
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without exchanging actual data. However, all comprehensive
solutions must have a solid foundation in conventional security
technology, policies, and procedures.

There is often a utility versus privacy trade-off when using
privacy-enhancing technologies (PETs). However, for medical
applications, a decreased utility translates into suboptimal data
use, and loss of adequacy with regard to results and outcomes.
If utility loss is allowed prolonged suffering and possibly even
death may result. How can the application of advanced
privacy-enhancing measures in federated learning maintain
a preserved privacy without the undue compromise of utility?
We limit our exploration of this question to two privacy problems:
1) that the final model parameters can potentially disclose personal
data, and 2) that the sharing of model updates in the federated
learning process can potentially disclose sensitive information
from the respective parties’ data sets.

Motivation: Regulators are currently investigating how PETs
can unlock the potential of data-driven applications. We here
explore in practice how these technologies can enable an AI
leap in Swedish Healthcare already within the current privacy
legislation, as well as identify questions that lawmakers may
consider to achieve harmony with developments and demands.

Contribution: We discuss approaches to applying PETs to
improve data protection in federated learning. We compare two
quantum computer resilient FHE schemes and conclude that one
has an advantage in terms of computational performance. Our
experiments indicate that FHE is both feasible and favorable, as it
preserves utility while adhering to data use minimization and pur-
pose limitations. We also conduct numerical experiments with dif-
ferential privacy (DP), which confirm the view that it, in its strictest
form, may have significant utility degradation for trained models.

Outline: The next section provides Background to this work,
providing both technical details on the advanced PETs and a
summary of recent regulatory developments in Sweden. The
Methods section explains the proposed approach. It describes the
setup for the numerical experimentation, from which Results then
are presented in the next section. The Discussion section presents
an analysis of the pros and cons of the proposed alternative
use cases, both in relation to the results from the numerical
experiments and in relation to previously published work. The
article then concludes with some recommendations.

II. BACKGROUND

A. Machine learning context

Machine learning is a subfield of artificial intelligence that
involves training algorithms to learn patterns in data without
being explicitly programmed. Deep learning refers to algorithms
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Fig. 1. Binary tree structure where all aggregation is done under Fully Homomorphic Encryption (FHE) to protect model updates of individual parties. Only the
global update can be accessed in plaintext. All computations is done in Secure Processing Environments (SPEs), where intermediate results are erased immediately
after used. This framework is information symmetric and supports purpose limitations, data- and storage minimization.

that are based on neural networks with many intermediate layers
between the input layer and the output (prediction) layer. Deep
neural networks have been demonstrated to have great capacity
in identifying complex patterns. Model parameters (or weights)
are variables that the machine learning algorithm adjusts to
optimize its performance. For neural networks, this is often done
by gradient descent (or related methods) which iteratively adjusts
the parameters of a model to minimize the loss function.

Overfitting occurs when a model becomes too complex and fits
the training data too closely, resulting in poor performance on un-
seen data. Techniques such as regularization, cross-validation, and
early stopping can be used to avoid overfitting. Such settings are de-
noted hyperparameters, which in addition to controlling the behav-
ior of training typically also include parameterizing the machine
learning architecture, e.g., the size and depth of a neural network.

Federated learning: Federated learning is a type of machine
learning that allows multiple parties to train a shared machine
learning model, without directly exchanging their respective data.
This makes it suitable for use in scenarios where data is distributed
among different parties, and where privacy and security concerns
prevent the sharing of data. The case fits well for health- and
medical data [6]. For technical reviews of the current and future
applications of federated learning for biomedical data, see for
example [7]–[9]. Recent experimentation demonstrates that just
keeping the data locally is insufficient with regard to the security
of the data. Machine learning models are prone to several privacy
attacks which could expose sensitive data: 1) An attacker can
use the gradient information of the deep learning model to get the
sensitive data. 2) Even the trained local model parameters expose
information that can be used by an attacker to make an inference
about the federated learning participant. The next section goes
into some more detail about these types of privacy attacks.

B. Attacks on privacy

1) Membership inference attack: (MI) A membership inference
attack aims to determine whether a specific data point has been
used during the training of a machine learning model. This method

can potentially expose sensitive information about individuals,
i.e. whether a person with certain characteristics and a particular
medical condition has been included in the model’s training data.
The attacker can either have black-box access [10], where they only
have query access to the model, or white-box access [11], where
they have full access to the model’s parameters and architecture.
Shokri et al. [10] proposed one of the first attacks, which considers
an attacker who can query the target model in a black-box way
to obtain confidence scores for the queried input. Among the
multitude of attack procedures that were proposed later on, we
mention [11] that is computationally simpler, but requires that the
attacker can calculate the training loss of a candidate data point
threshold and compare it with a threshold (the average training
loss). A naive baseline procedure was proposed by [12], which
predicts a sample as a member if it is correctly labeled by the target
model and predicts it as a non-member if misclassified. In a recent
experimental comparison [13], the naive model demonstrates
similar performance as the more involved MI attack procedures.
The two approaches both have a high false positive rate. Indeed, MI
attack accuracy is reported to be highly correlated to the model’s
overfitting or generalization gap [19, 20, 22], and furthermore
troubled by high false positive [13]. The generalization gap refers
to the difference between the test set and training set performance.
As low as possible is generally desired as it reflects the extent to
which a model is overfitted. As overfitted models have limited prac-
tical use, it is questionable how well reported MI attack success
stories can be generalized to well-trained models [14]. Despite the
limitations of current MI attack strategies, it is important to study
and learn from them as superior attacks might appear in the future.

2) Model inversion attack: The aim of a Model inversion
attack is to learn hidden sensitive attributes of a test input given
knowledge about the non-sensitive attributes. This attack is also
called an attribute inference attack and is carried out as a search
for the value of the sensitive attributes that maximizes the posterior
probability given the non-sensitive attributes, model access, and
prior knowledge about the distribution of attributes [15]. This
attack exploits the correlation between the sensitive attribute



TABLE I
PRIVACY ATTACKS CONSIDERED FOR THIS WORK.

Membership inference attack

Model inversion attack
(attribute inference attack)

• Infer whether a specific data point has been used during
the training of a machine learning model.

• Infer hidden sensitive attributes of a training input given
knownledge about the non-sensitive attributes.

• Both attacks use similar procedure and input data (which
is why they are often treated together).

• A party in federated learning could use its own data and
a global model to learn about other parties’ data.

• Reported successful attacks may rely on model
overfitting. How relevant is this for more robust models?

• Although perhaps not practically possible today, superior
attack procedures may appear in the future.

Gradient inversion attack • Practical to reconstruct data points from gradients
averaged over several iterations or batches.

• Successful attacks recovered single data points from
batches of up to a hundred images or texts.

and the model output, which is encoded in the machine-learning
model. Many of the proposed attack procedures are modified
variations of membership inference attacks, for example, [11], why
it often makes sense to discuss both these attacks together. Also
related, are the memorization attack, which exploits the ability of
high-capacity models to memorize certain sensitive patterns in the
training data [16]; and the property inference attack, in which the
attacker tries to infer whether the training data set has a specific
property. Although these attacks are related to attribute inference,
it is rather the overall statistical patterns of the training data that
are exposed. As the topic of our discussion concerns the privacy
of the individual, it is sufficient to consider attribute inference.

3) Gradient inversion attack: The gradient used to improve the
model contains information about the batch of data points that were
used to calculate it. Early work that recovered data from gradient
information was limited to shallow networks of less relevance.
Later, it was shown to be [17] possible to reconstruct up to 8
images from their batch averaged gradients also for slightly deeper
neural networks. More recently, [18] explored settings encountered
in practice when training deep neural networks and showed that
even averaging gradients over several iterations, or several images,
does not protect the privacy of an individual data point in federated
learning applications. Indeed, by exploiting a magnitude-invariant
loss function, it is possible to faithfully reconstruct images at
high resolution from their parameter gradients for realistic deep
architectures like ResNet. The reconstruction is possible even
when averaging gradients over multiple epochs, using local
mini-batches, or even for a local gradient averaging of up to
100 images with deep networks, appearing to be as vulnerable
as shallow networks. Attacks against federated averaging of
parameters (instead of gradients) have also been devised [19].

C. Privacy enhancing technologies

1) Homomorphic encryption: Fully homomorphic encryption
(FHE) allows mathematical operations to be performed directly
on encrypted data, without first decrypting the data, and without
access to a secret key. FHE is distinguished from conventional
uses of cryptography, where data is encrypted only while it is sent

between parties (in motion), and during storage on a file system
(at rest) but is decrypted for calculation and processing. This
last step of decryption introduces a vulnerability to conventional
cryptography, in that data can be read in hardware or software
layers, and that a secret key must be available on the server that
performs the calculations. FHE offers a solution that guarantees
that even a curious computing party can not see the data. It enables
privacy-preserving processing and analysis of data, for example
in a cloud-based AI service (Figure 2), where the original data
as well as all intermediate and final results are indistinguishable
from random noise to the computing cloud.
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Fig. 2. A two-party solution that uses homomorphic encryption to protect data
sent from a user device to be processed in the cloud. (Image from [20])

Decryption is possible only for the private key holder and consid-
ered unbreakable under very strong cryptographic guarantees for
most recent FHE schemes, e.g. even against hypothetical quantum
computer-based attacks [21]. We use the word plain text for unen-
crypted data and cipher text for encrypted data, as is conventional.

Fully Homomorphic Encryption differs from early schemes
referred to as Partially Homomorphic Encryption schemes in that
FHE can support both addition and multiplication. In this work,
the difference in terminology is not important as we only consider
schemes with full arithmetic support, and will refer to them either
as (Fully) Homomorphic Encryption or simply abbreviated as FHE.
Noise is added in the construction of the encrypted representation.
For every operation, this noise grows such that the result of
large computations can be meaningless after decryption unless
noise-mitigating measures like bootstrapping are used. In a leveled



approach one carefully manages the cryptographic noise-budget,
by which we mean the number of arithmetic operations one can
carry out before bootstrapping becomes necessary. Practically this
means that only a limited number of multiplications and additions
are allowed. This is controlled by the parameters selected for
encryption, which we will refer to loosely as "key size".

The CKKS scheme [22] named after its developers Cheon,
Kim, Kim, and Song, encrypts complex numbers and can perform
fixed-point arithmetics. Its security is based on the Ring Learning
With Errors (RLWE) problem. While many other schemes perform
exact arithmetics on encrypted integers, CKKS has become
popular for applications that only require approximate calculation.
The TFHE scheme developed by Chillotti and collaborators [23]
supports fast bootstrapping, arithmetic operations, and univariate
function evaluation thanks to its implementation of a type of look-
up mechanism. An important difference between the software
libraries used in this work is that the CKKS implementation [24]
supports SIMD operations, while the TFHE library [25] does
not. This means that the former can add (or multiply) vectors up
to a certain size at constant cost, while for the latter the cost of
additions of vectors is linear in the length of the vector.

Proposition for using FHE to enhance security in Federated
Learning applications have recently been put forward [26]–[29].
This provides efficient defense against the above-mentioned
attacks by only allowing the exchange of encrypted information
between the participants of the federation such that it can be
aggregated (i.e. averaged) under homomorphic encryption.
However, it comes with significant overhead in terms of
computation time and data transfer.

2) Differential privacy: Differential privacy is a framework for
privacy-preserving data analysis, where a randomized algorithm
A is considered (ϵ, δ)-differentially private [30] if for any
neighboring datasets D1 and D2 that differ, in at most, one record
and for any set of outputs S⊆Range(A),

P [A(D1)∈S]≤eϵP [A(D2)∈S]+δ,

where δ represents the maximum allowable probability that privacy
is violated. In other words, the (ϵ,δ)-differential privacy guarantee
provides a limit on the overall probability of privacy violation.

The noise that is added to a differentially private algorithm’s
output is calibrated based on the sensitivity of the function
being computed, which is defined as the maximum distance in
some norm, || · ||, between the outputs of neighboring data sets,
∆f=maxD,D′||A(D)−A(D′)||.

The Rényi mechanism [31] is a variant of differential privacy
that can be useful for machine learning applications as it allows
for fine-grained control over the level of privacy while maintaining
the accuracy of the output also over compounded applications.
It can be used to perturb training data or model updates, thereby
providing a privacy-preserving mechanism for training machine
learning models on sensitive data also in a sequential, iterated
application like gradient descent.

It is common to add noise as a perturbation to the gradients in
differential privacy applications for machine learning. To ensure
that the added noise is proportional to the sensitivity of the model,
the gradients are often clipped before the noise is applied. This
involves constraining the magnitude of the gradients to mitigate the

effect of high sensitivity. By controlling the amount of perturbation
and clipping, one can achieve a trade-off between privacy and
model accuracy. Questions have been raised about real-world
applications using very high epsilon to achieve utility over
composition [14], although recent work points to more favorable
trade-offs, e.g., for Stochastic Gradient Descent with noise [32].

3) Secure aggregation: Secure aggregation is a multi-party
computation technique enabling non-trusting parties with sensitive
data to privately compute an aggregate without depending on a
trusted third party. This process typically involves the following
steps: i) clients agree on pairwise private seeds, ii) each client
generates a private seed, iii) clients randomly mask their model
parameters using the seeds and communicate the masked model
to the server, and iv) clients distribute shares of the seeds to other
clients using a secret sharing scheme [33], [34]. The secret sharing
is based on a (t, n) secret sharing scheme and offers resilience
against dropouts and stragglers, i.e., clients not responding to
the server, by allowing the random seeds of each client to be
recovered from the collected shares of t out of the n clients. This
property is leveraged during aggregation where the server requests
shares from the available clients to reconstruct the sum of the
secret masks so they can be canceled out.

Since secure aggregation occurs over a finite field, clients must
convert their model parameters accordingly. The size of the finite
field can impact the model utility of secure aggregation; larger field
sizes preserve model utility but increase communication overhead
whereas a smaller field size may result in loss of information.
Secure aggregation generally incurs extra communication
compared to differential privacy and homomorphic encryption.

Recently, researchers have combined secure aggregation with
differential privacy to mitigate the negative impact on model
utility caused by differential privacy [35]. The core concept is to
protect the aggregate of local models rather than individual local
models, resulting in the addition of less noise and, ultimately, a
lesser effect on model utility.

D. Regulatory environment

The purpose of GDPR and other privacy legislation is to protect
individuals’ personal data and privacy rights by establishing
clear principles for the collection, use, and processing of
personal data. Important principles include the lawful, fair, and
transparent processing of personal data, purpose limitation,
data minimization, accuracy, storage limitation, integrity and
confidentiality, accountability, and respect for individual rights.
In this article, we will particularly consider:

Purpose limitation: Personal data must be collected for
specified, explicit, and legitimate purposes and not processed in
a manner that is incompatible with those purposes.

Data minimization: Personal data must be adequate, relevant,
and limited to what is necessary for the purposes for which it is
processed.

Storage limitation: Personal data must not be kept for longer
than necessary for the purposes for which it is processed.

This work will now discuss how FHE and other PETs can
support the above general principles, and be relevant mitigations
to consider also in a specific use-case.



Changing environment: The Swedish government has launched
official investigations [36], [37] in order to achieve a national data
strategy aimed at increasing the access and beneficial utilization
of data. Such purposes include improved health applications
supported by artificial intelligence. During 2021-22, The Swedish
Authority for Privacy Protection (IMY) was commissioned by
the government to provide support and guidance to the innovation
system on data protection matters [38] Related to this mission,
IMY organized activities where experts and participants from
industry and public sector could interact. These included research
hearings on PETs, workshops, and seminars.

A recent report [39] commissioned by the Swedish eHealth
Agency explores the benefits of a national data space for medical
AI, particularly in image diagnostics and mammography. It
examines the concept of a Secure Processing Environment
(SPE), where data can be isolated and encapsulated to prevent
unauthorized access and protect sensitive information while still
allowing researchers and healthcare professionals to use the data
for research and analysis purposes. The report calls for deeper
investigations of how federated learning in a distributed ecosystem
of SPEs can facilitate the safe sharing of resources and data, and
increase opportunities for research and innovation while meeting
important integrity- and legal requirements.

The Swedish innovation agency Vinnova, in a recent report
commissioned by the government [40], discussed various aspects
of secure data sharing, including the need for increased dissemina-
tion and utilization of conventional privacy protection techniques.
It also highlights the importance of conducting research on cutting-
edge technologies, especially mentioning federated learning and
homomorphic encryption. Also, AI Sweden, the national center
for applied artificial intelligence, views decentralized AI as one
of the critical technologies for future AI development [41] across
several business and industrial sectors. Although new advanced
technologies for privacy protection hold much promise regarding,
on the one hand, legal and security requirements, and on the other
hand, exploiting the potential of data sharing and utilization in
health and medicine in Sweden, legal uncertainty still remains.

Regulatory sandboxes: Regulatory sandboxes aim to bridge
the gap between the rapid pace of technological development and
the slower pace of regulatory and policy development. They can
assist in identifying and developing new ways of working in the
public sector that could enable more agile and effective regulatory
and policy responses to emerging challenges. By engaging with
innovators and working together to identify legal ambiguity and
challenges, governing bodies that participate can promote a more
effective and efficient regulation that supports innovation while
still protecting the public interest.

Regulatory sandboxes have already been put in place in the UK,
Norway, and France with guidance that targets the application
of GDPR. The goal is to increase judicial predictability, reduce
time and risk for a product or service to reach the market, and
facilitate startup and small business growth by doing so. In the
EU [42], regulatory sandboxes have been highlighted as a way
to promote innovation and growth for companies, and the draft
AI regulation being negotiated currently includes proposals for
regulatory sandboxes to promote and facilitate the application of
AI. Regulatory sandboxes allow for exploratory, dialogue-based

guidance to be given to selected innovation projects in exchange for
the work being summarized in a public report that enables learning
for others. The approach helps to develop practical examples
in areas where both technology and law are complex, relatively
new, and untested, while also increasing regulatory authorities’
understanding of new technology and how it can be applied.

Sandbox: Decentralized AI in Healthcare: IMY participated in
a pilot project on regulatory sandboxing in 2022 and summarized
its conclusions in a public report [43]. The project, titled "Decen-
tralized AI in Healthcare - Federated Machine Learning between
Two Healthcare Providers" focused on evaluating the potential of
jointly training and exchanging machine learning models between
two healthcare providers, Region Halland and Sahlgrenska Univer-
sity Hospital, in order to predict heart failure patient readmissions
within 30 days of their last hospital stay. The project was facilitated
by AI Sweden, the national center for Applied AI.

The purpose of the project was to explore the potential of
regulatory sandboxing as an approach to address complex
societal challenges and to help regulators and policymakers better
understand and analyze new technologies that fall within their
regulatory frameworks. Specifically, the project aimed to provide
in-depth guidance on how data protection regulations should be
interpreted and applied to a specific innovation initiative involving
advanced technologies like AI and federated machine learning.

The following paragraphs summarize the parts of the report
which are important for our discussion in this article, starting with
its three focus questions:

Question 1: Is there a legal basis for local processing of per-
sonal data, i.e., when healthcare providers train the machine
learning model locally only on their own patient data? IMY’s
assessment is that there is a legal basis for local processing of
personal data. The key factor is that IMY believes there is support
for a dynamic and technology-neutral interpretation of the purpose
provisions in the Patient Data Act and the Health and Medical
Services Act, which means that what falls within these provisions
can change over time, with regard to technological development.

Question 2: Does personal data disclosure occur between
healthcare providers in the federated machine learning in this
case? IMY’s assessment is that Region Halland and Sahlgrenska
University Hospital are at risk of disclosing personal data to each
other in the current case when the knowledge gained from local
training is combined into a joint machine learning model. Either
party could, if it gathers the necessary expertise and purposeful
intent, launch two types of privacy-harming attacks, namely,
Membership Inference Attack and Model Inversion Attack to
infer information about persons in the other party’s data set.

Question 3: Is there a legal basis for disclosure of personal
data between healthcare providers? IMY has not made any
assessment of whether any confidentiality-breaking provision
could be applicable in the current case. However, if Region
Halland and Sahlgrenska University Hospital, both being
authorities, were to request patient data from each other with the
support of the Public Access to Information and Secrecy Act,
such disclosure could possibly be allowed provided that the data
is not confidential. However, patient data within healthcare is
generally confidential. The legal basis for personal data disclosure
between healthcare providers under certain circumstances may



be in place but requires a case-by-case assessment.
IMY limited their investigation to the use case at hand:

federated learning between two public health care providers. As
a precaution in the project, the two healthcare providers only used
data that did not contain personal information.

TABLE II
INFORMATION ASSUMPTIONS IN FRAMEWORK

Trivially known by all parties
• Model architecture
• Training hyperparameters such as learning rate,

regularization (gradient clipping, etc)
• The aggregation topology (tree)

Each party knows at the end
• Content of their own data set (1)
• The final model parameters (2)

Each party at each iteration
• Their own (local) model update (3a)
• The global model update (3b)

The central party
• Knows and holds the secret key
• Distributes the public keys

III. METHOD

A. Problem statement

Here we restate the objective from the Introduction: How
can we design privacy-enhancing measures for a federated
learning effort such that privacy is best preserved without unduly
compromising the utility of the trained model? We also limited
the exploration in this work to two privacy problems:

P1: the parameters of an AI model can potentially leak
personal data, and

P2: in the federated learning process parties can potentially
leak information about their data set through the
(iterated) exchange of model updates.

The IMY report primarily discussed (P1) in how it opens
up vulnerability to membership inference attacks, and model
inversion attacks. Here we also want to highlight that (P2) should
be considered carefully as it has been demonstrated that inference
of private data from model gradients is practical for certain
machine learning models and settings [18].

B. Target Framework

The overarching intention of the federated learning framework
discussed below is to promote data- and storage minimization,
purpose limitations, and symmetric distribution of information,
such that every party is trusted only with the data it needs to
perform a task according to the original intentions while avoiding
trust asymmetries where some party has privileged access to the
information of others.

Preparaion stage: One of the parties in the federation is
selected to create a secret key which is used to produce the public
keys that it distributes to the other parties.

1) Secure processing environments: First and foremost we
will assume that each party carries out all computations in a
Secure Processing Environment under strict access control. They
are furthermore obliged by contractual agreements to follow
the machine learning protocol and take appropriate storage
minimization measures, like deleting intermediate model updates
immediately after they are used.

2) Homomorphically encrypted: Homomorphic encryption
is used throughout the federated learning process to encrypt
individual parties’ model updates with a public key that they
have received before the model training exercise. This contributes
towards the goals of data minimization and purpose limitation.

3) Aggregation over binary-tree: Encrypted model updates
are aggregated between parties in a binary tree structure of Figure
1. It is strictly not necessary to use a binary tree, as long as the
top party receives only the encrypted global aggregate, which
it decrypts and distributes to all other parties. This removes the
information advantage of the party that holds the secret key and
decrypts the global model update. Every party now only has
access to its own model update and the aggregated global model.

4) Differential privacy: Differential privacy has the potential to
protect against both problems P1 and P2, but one carefully has to
consider for each particular use case if it has adverse implications
for utility. Even if one does not promise full differential privacy,
the addition of noise at a higher value of ϵ (together with other
regularization) can help avoid overfitting, which also combats
privacy attacks.

On completion: At the end of the training effort, all hardware
that has touched the data is thoroughly erased (or even destroyed).
The key holding party must similarly permanently delete the
decryption key.

Information symmetry: Table II summarizes the information
that each party knows throughout the exercise.

C. Models and Materials

Numerical experiments were carried out to investigate the
performance of differential privacy and federated learning that
uses homomorphic encryption during parameter aggregation. For
these experiments we used two different models chosen such that
both a very simple as well as a moderately complex architecture
were examined, that is a logistic regression model (LogReg) and
a deep learning model for image analysis (ResNet-18) whose
features are both summarized in Table IV.

1) Logistic Regression: A logistic regression model was
trained to estimate the risk of future coronary heart disease (CHD)
based on a patient’s information such as demographic, behavioral,
and medical factors. The dataset is publicly available on the
Kaggle website [44], and it is from an ongoing cardiovascular
study on residents of the town of Framingham, Massachusetts.
It includes over 4,000 records and 15 attributes, from which a
balanced subset of 1,000 records and 8 attributes was selected
(such that positive and negative labels were equally frequent). A
test set of 200 records was set aside, while the remaining 800
records were used for training the logistic regression model.

2) Deep Neural Network: ResNet-18 is a large image
classification based on deep neural networks, which is described
later in this section. It was trained to classify images from



TABLE III
DP ANALYSIS STATS.

inf 0.1 0.3 1.0 3.0 10.0 30.0

LogReg 68.9±0.9 67.3±2.2 68.1±1.6 67.9±1.5 68.5±1.6 68.6±1.5 68.2±1.5
ResNet 64.7±2.1 19.2±1.1 29.7±1.1 35.6±0.4 39.6±0.0 41.5±0.2 45.1±0.1

TABLE IV
SUMMARY OF MODELS

LogReg ResNet

total params 10 11511784
train params 10 3591
data set name FraminghamCHD DermaMNIST
data size used 1000 10015

the DermaMNIST/HAM10000 [45] collection of multi-source
dermatoscopic images of common pigmented skin lesions. The
dataset consists of 10,015 dermatoscopic images categorized as
7 different diseases and was downloaded using the MedMNIST
software library [46], [47].

Training Procedure: About 20% of the data for each model
was set aside as a test set. The remaining 80% of the data was
used for training. The models were trained for a total of 5 epochs.

Differential Privacy: Each model was trained under the Rényi
mechanism for compounded (ϵ,δ)-differential as implemented in
the Opacus [48] library for PyTorch. Standard settings were used
for δ and gradient clipping, while ϵ was varied over a fixed range
from ϵ=0.1 (relative strong privacy) to ϵ=30 (weak privacy).

Federated Learning: For each model, a federated learning
set-up was simulated that at the end of each epoch, encrypted
parameters were aggregated across the nodes organized in a binary
tree-like topology (Figure 1), with the number of nodes taken as
n∈{2,4,8,16}. The training data was split evenly between the
nodes that were part of the federated exercise. Each model was
trained using the two different homomorphic encryption schemes,
TFHE and CKKS, each with two different parameter settings.
For comparison, each model was also trained with plain text
aggregation for each node configuration. The training was repeated
100 times to gather statistics about the variation in performance.

IV. RESULTS

A. Differential Privacy Experiments

Table III reports the mean accuracy with 95% confidence
bands for each examined machine learning model. Each column
represents a target ϵ, where the first column reports the case of no
differential privacy, i.e., when no noise was added. For the LogReg
model, we see that the estimated mean accuracy falls within the
confidence bands of the non-private model for all but the lowest
ϵ values. There doesn’t seem to be a significant adverse effect on
utility from adding differential privacy for this case. The results
are very different for the deep learning model. The estimated mean
accuracies for all the differentially private ResNet models are far
below the lower confidence bound for the non-private model.

TABLE V
MEAN TEST SET ACCURACY FOR LOGREG (WITH SAMPLE STD).

2 4 8 16

tfhe 256 68.6±1.3 68.1±1.6 64.1±4.5 58.3±6.1
tfhe 512 68.8±1.1 68.8±0.9 68.9±0.8 69.4±0.7
plain text 68.8±1.0 68.7±1.0 69.0±0.9 69.3±0.8
ckks 4096 68.7±0.9 68.8±0.8 69.1±0.9 69.2±0.7
ckks 8192 68.8±1.0 68.9±1.0 69.1±0.9 69.2±0.8

B. Federated Learning Experiments

1) Logistic regression model.: Table V displays the mean
accuracy obtained for the logistic regression model, together with
the observed standard deviation across the 100 repetitions of the
experiment. The accuracy appears relatively unaffected by the
encrypted aggregation, except for the smaller key size for the
TFHE scheme for the size n=8 and n=16 node configurations
where mean accuracy is more than 2 std worse than for the
corresponding plain text configuration. For all other model
configurations, the results using homomorphically encrypted
aggregation are not significantly different from the plain text case.

Execution times were also collected throughout the numerical
experiments. For the LogReg model, the measured average
time in milliseconds for the central cryptographic operations is
displayed in Table VI. For both schemas, encryption of the model
parameters ("enc time") dominates both the time it takes to carry
out the additions ("add time") and the time it takes to decrypt the
aggregated results ("dec time"). Here TFHE appears to be overall
faster, although we note that CKKS outperforms for the addition.

TABLE VI
TIMED OPERATIONS FOR LOGREG IN MS.

context enc time add time dec time

tfhe 256 0.334 0.088 0.015
tfhe 512 0.623 0.162 0.028
ckks 4096 4.03 0.059 0.962
ckks 8192 10.071 0.149 2.916

2) ResNet-18 model.: ResNet-18 is a convolutional neural
network that is 18 layers deep [49] and has more than 11 million
parameters. We used a version of the network that was pre-trained
on more than a million images from the ImageNet database [50]
on the task to classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. The network has thus
learned a rich feature representation for a wide range of images,
which is can be leveraged for the medical image classification task.
When data is scarce, one can sometimes take a model trained on
data from a related task and then fine-tune the model by training
it on the target task, which is an example of transfer learning (see



TABLE VII
MEAN TEST SET ACCURACY FOR RESNET-18 (WITH SAMPLE STD).

scheme 2 4 8 16

tfhe 256 68.1±0.7 67.3±0.8 66.3±0.9 64.7±1.5
tfhe 512 68.4±0.6 68.0±0.7 67.5±0.5 67.2±0.5
ckks 4096 68.3±0.6 67.9±0.5 67.6±0.5 67.1±0.5
ckks 8192 68.4±0.6 68.1±0.5 67.6±0.5 67.2±0.5
plain text 68.5±0.6 67.9±0.6 67.5±0.5 67.2±0.5

for example a recent review [51]) Thus we can obtain acceptable
performance after only 5 epochs of training on a relatively small
data set of 8007 images of skin changes. In fact, we only let the
3591 parameters of the top layer be trainable, and keep all other
layers at their pre-trained values.

Similar results as for the logistic regression case are observed
also for the accuracy of the ResNet18 model trained on the
DermaMNIST data. Table VII shows an impairment of the
accuracy of at least two standard deviations for the configurations
with the smaller key size of the TFHE scheme. For the other
configurations using homomorphic encryption aggregation the
difference compared to the plain test case is not significant.

TABLE VIII
TIMED OPERATIONS FOR RESNET-18 IN MS.

scheme enc time add time dec time

tfhe 256 46.1 128.4 1.9
tfhe 512 85.1 309.5 4.1
ckks 4096 8.0 0.6 2.0
ckks 8192 17.2 1.3 3.0

Table VIII displays the execution times for the operations
that support the homomorphic encryption aggregation. Here,
performance is reversed such that CKKS outperforms TFHE,
since the former supports SIMD (Single Instruction Multiple Data)
execution, meaning that the summation of parameters from two
different nodes can be "vectorized", i.e. carried out in parallel over
the entries in the same position as the encrypted representation can
hold vectors. Thus we can benefit from SIMD when summing the
3591 parameters of the ResNet-18 top layer from two nodes. At
the time that we carried out the experiments the TFHE software
implementation [25] that we used did not support SIMD and thus
had to encrypt each individual entry of a vector separately. It was
supported by the CKKS implementation [24] that we used.

Data size overhead: The encryption inevitably results in
storage and communication overhead since the encrypted
representations are larger than the plain text. This effect is very
noticeable for the two encryption schemes considered in this
work, which is evident in Table IX that lists the file storage size
in kilobytes (KB). Column headers identify the number of stored
values, i.e. the length of a vector of real numbers. Columns with
labels 10 and 3591 lists the size of the representations for the
LogReg and ResNET-18 models, respectively. We note that data
size requirements are lower for THFE for the LogRes model with
only 10 parameters, while the requirements for ResNet are (much)
smaller for CKKS than for TFHE (last column).

CKKS natively stores vectors and have more compact

TABLE IX
FILE SIZE (KB) FOR DIFFERENT PARAMETER SIZES.

context 1 10 100 3591

tfhe 256 5.458 53.629 535.323 19223.441
tfhe 512 10.682 105.88 1057.892 37988.886
ckks 4096 80.897 80.908 80.904 161.809
ckks 8192 334.32 334.298 334.314 334.314
plain text 0.025 0.255 2.549 91.55

representations, which are in fact invariable to the size of the
plain text vector for lengths up to half of the key size (poly mod);
therefore CKKS 8192 can store the entire vector of trainable
parameters for ResNet-18 in a single file since it has length 3591
which is smaller than 8192/2=4096.

For the smaller LogReg model, the data size is increased
by about three orders of magnitude compared to the plain text.
For the larger model (ResNet-18) CKKS outperforms thanks to
its compact representation and only shows a modest overhead
compared to the plain text.

V. DISCUSSION

The healthcare providers that participated in IMY’s regulatory
test operation were data controllers for local patient data processing.
The setup in the IMY study required a central party that was given
plain text access to all the model updates at each iteration. This was
considered a potential transfer of personal data, however, IMY did
not assess whether there is a legal basis for a healthcare provider to
process personal data originating from another healthcare provider.

Other examples of issues that were not considered in the pilot
project, including how the right to information of the registered
individuals should be met and the question of the data controller’s
requirement not to handle more personal data than necessary (the
principle of data minimization).

Information symmetry: In the federated learning framework
proposed in this article based on encrypted aggregation in a
tree-like structure, all parties have symmetric information access.
There is thus no party with privileged access to the plaintext
model updates of all other parties. Each party knows its own
local data and model update, as well as the corresponding global
information (recall Table II).

A curious participant can additionally subtract their own model
update from the global update, to learn the aggregate model
update of all other parties (except themselves). Because of the
encrypted aggregation, they do not directly access the model
update from any individual party. In a set-up with more than two
parties, the information from a single party is now blended with
that of many other parties.

With a larger aggregate batch size (in the hundreds of data
points), gradient inversion attacks like [18] should be difficult
to launch successfully, especially if they target a single party’s
data that is now diluted in the aggregate. The addition of
noise in the training process should make it harder, even if full
differential privacy may not always be appropriate because of the
utility-privacy trade-off.

Data minimization: The minimal information that is needed
by each party for improving the model (in addition to their own



data) is the global model update. This is the only (non-trivial)
information that is shared in plain text in the proposed framework.
If one further requires these to be deleted after used to update the
model, one additionally meets storage minimization criteria.

Purpose limitations: During model training, the encrypted
model updates that are sent up in the binary tree have to be added,
but this is also the only meaningful use (for a non-malicious
participant as in our trusted-but-curious set-up). The parties that
participate in the exercise, have agreed not to make unintended use
of the information they are trusted with; however, data remaining
on the system could be used by a future actor with other intentions.
Therefore model updates should be deleted after use. The final
parameters of the model are, however necessary to maintain for
the deployment of the model.

Deployment: A party must know the global model parameters
for deploying the resulting model on its own system. Model
parameters are thus to be considered part of the minimal set in
a self-deployment scenario. It is, however not necessary for every
party to keep the model parameters if the model is run by a single
member of the federation. This opens new privacy concerns when
data is sent for inference to the centrally hosted model, which
can be mitigated by the use of homomorphic encryption for the
transferred data. A remaining concern in such a setup may be that
the model hosting party must be trusted with plain-text access to
the model parameters.

In an effort of extreme data minimization, each party could
encrypt model parameters with their own secret key and outsource
the running of the model to a third party (that does not have
access to the decryption key). They then permanently erase all
traces of the model parameters (and model updates) in their own
systems and only use the hosted encrypted models, in each request
sending it data encrypted with their own key. They must maintain
the secret key in order to decrypt the returning results. Albeit
computationally expensive, such a solution mitigate membership
inference attacks and model inversion attacks by preventing an
attacker from knowing the model parameters (white-box), reducing
opportunities to a much harder black-box access-only scenario.
However, because of the high computational cost, one should first
consider plain text deployment in a secure processing environment
where data is protected with conventional encryption while being
transferred between client and server in the organization.

Scaling: It may be preferable to use a scheme that supports
SIMD operations, as the ability to encrypt vectors and carry out
parallel element-wise addition greatly improves performance for
larger models. This was illustrated in this work by the comparison
of training the smaller logistic regression model and the larger
ResNet model. The performance versus accuracy trade-off
was more favorable for CKKS as this scheme supports SIMD
operations and compact representation of an encrypted vector,
which reduces both the computational effort and the data file size.
For the federated learning under FHE experiment, only the top
layer (of 3591) parameters of ResNet-18 were trained, which
could fit within two ciphertexts for CKKS with the smaller key
size. If we were to train all layers in the network with 11511784
parameters, it would instead require 5621 cipher texts. Assuming
linear scaling, the computation time for adding the numbers would
grow to 3.4 s (although the operations could be parallelized over

the ciphertexts for faster execution). Similarly, the file size would
grow to almost 460 MB. For TFHE, this would require one cipher
text per parameter, with clearly worse scaling of time and memory
cost by factors of hundreds compared to the CKKS estimates.

Total overhead: If we exclude the loading of keys and other
operations that do not cause repeated overhead and only consider
the overhead for using homomorphic encryption that is part of
each federated learning iteration, we have

1) τenc: encryption of parameter vectors
2) τadd: addition of encrypted vectors
3) τcom: transfer of encrypted vectors
4) τdec: decryption of aggregated vector
Of these, we count (1) only once as it is carried out in parallel

across all parts of the federation. The overheads from (2) and (3)
are counted once per level in the aggregation tree, as they happen
simultaneously for all participants at that level, and hence have
an impact logarithmic in the size n of the federation. Finally, (4)
is done only by the aggregating party and also only happens once.
The total overhead then be estimated as

τtot=τenc+τaddlog2n+τcomlog2n+τdec,

where we have assumed that the data processing and transport
is synchronized between the parties to avoid lag.

Legal uncertainty: Homomorphic encryption, differential
privacy, and federated learning are not well covered by existing pri-
vacy laws and regulations, and their use can raise questions about
compliance and liability. On the other hand, it can help manage
and mitigate legal and regulatory risks by providing organizations
with more robust and verifiable mechanisms for complying with
privacy laws. For example, an organization can provide evidence
of its efforts to protect personal data. Furthermore, the combined
use of the technologies may enable organizations to collaborate
on new research and development projects that would otherwise
not be feasible. Such efforts could improve AI-based treatment
methods that lead to better health outcomes as well as commercial
opportunities without compromising the privacy of the individuals
who ultimately contributed the data.

VI. CONCLUSIONS

Numerical experiments where two standard text-book
models were trained both under differential privacy and in a
federated learning set-up that uses homomorphic encryption for
model parameter aggregation. The experiments confirmed that
differential privacy can have a significant adverse impact on utility
for some training scenarios. For the use of FHE, it was concluded
that the approach was feasible not only for the trivial regression
model but also for the more advanced deep learning model. Of the
two FHE schemes tested, the performance versus accuracy trade-
off was more favorable for CKKS as this scheme supports SIMD
operations and compact representation of an encrypted vector,
which reduces both the computational effort and the data file size.

Future Work: We would like to extend the numerical
experiments to also compare the framework based on FHE with
alternatives that use secure aggregation in combination with
differential privacy. We will continue to explore implementation
together with Swedish healthcare providers to gain a roadmap
to practical PET application.
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