
Poisoning Attacks on Federated Learning for Autonomous Driving

Sonakshi Garg1,2, Hugo Jönsson2,3, Gustav Kalander2,4, Axel Nilsson2,3,
Bhhaanu Pirange2,5, Viktor Valadi2,6, and Johan Östman2

Abstract— Federated Learning (FL) is a decentralized learn-
ing paradigm, enabling parties to collaboratively train mod-
els while keeping their data confidential. Within autonomous
driving, it brings the potential of reducing data storage costs,
reducing bandwidth requirements, and to accelerate the learn-
ing. FL is, however, susceptible to poisoning attacks. In this
paper, we introduce two novel poisoning attacks on FL tailored
to regression tasks within autonomous driving: FLStealth and
Off-Track Attack (OTA). FLStealth, an untargeted attack,
aims at providing model updates that deteriorate the global
model performance while appearing benign. OTA, on the other
hand, is a targeted attack with the objective to change the
global model’s behavior when exposed to a certain trigger.
We demonstrate the effectiveness of our attacks by conducting
comprehensive experiments pertaining to the task of vehicle
trajectory prediction. In particular, we show that, among five
different untargeted attacks, FLStealth is the most successful at
bypassing the considered defenses employed by the server. For
OTA, we demonstrate the inability of common defense strategies
to mitigate the attack, highlighting the critical need for new
defensive mechanisms against targeted attacks within FL for
autonomous driving.

I. INTRODUCTION

Machine learning models deployed in-car are typically
trained centrally on vast amounts of collected data [1].
However, centrally stored data is subject to large costs and
may be subject to privacy concerns in relation to, e.g., the
GDPR [2]. Further, in the case of wireless data collection,
the data transmission requires significant bandwidth. To
remedy these shortcomings, federated learning (FL) has been
proposed as a potential solution. The main idea of FL is to
train machine learning models locally, thereby maintaining
data confidentiality, and then aggregate the locally trained
models centrally into a global model [3]. Several FL frame-
works, tailored for autonomous driving, have recently been
introduced [4], [5], [6].

Within the automotive sector, companies like Toyota and
Ford are exploring FL solutions across various applications,
e.g., object detection [7] and turn-signal prediction [8]. As
vehicular networks are intrinsically dynamic, a recent direc-
tion of research also pertains to developing novel protocols
for the selection of vehicle within the federation [9]. How-
ever, as control is moved from a central entity to the vehicles,
new attack surfaces emerge. For example, a given vehicle

1 Umeå University
2 AI Sweden
3 Royal Institute of Technology
4 Chalmers University of Technology
5 Dakota State University
6 Scaleout Systems

may manipulate their local model towards a malicious objec-
tive, referred to as a poisoning attack, which could ultimately
result in traffic accidents. Hence, in any FL application, it is
imperative to provide defences against vehicles with devious
intentions. A common mitigation strategy to such attacks
is to employ robust aggregation of local models where the
impact of outliers is limited [10], [11].

From the adversary perspective, poisoning attacks on FL
are commonly tailored towards classification problems [12],
[13] with only a small number targeting regression prob-
lems [14], [15]. However, regression tasks are common in
autonomous driving, e.g., vehicle speed prediction, distance
estimation, time-to-collision prediction, and vehicle trajec-
tory prediction. Therefore, in this paper, we investigate poi-
soning attacks on FL for regression tasks within autonomous
driving. We introduce two attacks coined FLSTEALTH and
Off-Track Attack (OTA). The former is a general untargeted
attack with the objective to deteriorate the global model
performance whereas the latter is a backdoor attack tailored
specifically to the problem of vehicle trajectory prediction.
We conduct an experimental study, using the Zenseact Open
Dataset (ZOD) [16], on the impact of untargeted attacks
on vehicle trajectory prediction and to what extent com-
mon defenses are effective. Furthermore, by using OTA,
we demonstrate that FL systems are vulnerable to targeted
attacks and that they may significantly impact the behavior
of the global model. Notably, common defense mechanism
are largely inefficient against OTA.

II. PRELIMINARIES

A. Federated Learning

Federated learning (FL) is a learning paradigm where mul-
tiple clients collaboratively train a model without revealing
their local data [3]. In particular, FL attempts to find a model
θ⋆ according to

θ⋆ = argmin
θ

1

n

n∑
i=1

E(x,y)∼Pi
[ℓ(x, y; θ)] (1)

where n is the number of clients in the federation, ℓ(x, y; θ)
denotes the loss function, parameterized by the model θ,
evaluated on a sample (x, y), Pi denotes the local data
distribution of client i ∈ [n], and E[·] is used for expectation.
Practically, the expectation is approximated locally by the
sample average over a training dataset Di sampled from Pi.

To solve (1), a server coordinates multiple clients over
several rounds, each initiated by broadcasting a global model.
The server then collects a locally updated version of the



broadcasted model from the clients and aggregates it into
an updated global model. This iterative procedure proceeds
until the global model converges or a predefined number of
training rounds is reached.

B. Poisoning Attacks in Federated Learning

FL is vulnerable to clients with malicious intent that may
manipulate their local updates before sending it to the server,
so-called poisoning attacks. Such attacks are multifaceted
and may be untargeted [17], [18], i.e., aim to deteriorate the
global model performance, or targeted, i.e., alter the behavior
of the global model on specific data samples [12], [19], [20].
Poisoning attacks may be divided into data poisoning [21],
[22], [23] and model poisoning [18], [24], [25], [26] where
the former alters the underlying dataset and the latter directly
manipulates the model weights. It should be noted that
any data poisoning attack can be replicated using a model
poisoning attack.

Some common untargeted attacks include label flipping,
gradient ascent attacks, and model shuffling. In a label
flipping attack, the attacker intentionally alters the labels
within its dataset to prevent the global model from learning
patterns in the data [27], [22]. In gradient ascent attacks, the
attacker updates the model in the direction that maximizes
the loss. The model shuffling attack aims at shuffling the
model parameters without notably changing the loss [28].

Backdoor attacks typically rely on triggers injected in
the data, causing the model to misbehave when exposed to
the trigger [23], [20]. An example pertaining to street-sign
detection is given in [29]. Therein, a street-sign detector
typically performs well but may incorrectly identify stop
signs with a particular sticker as speed limit signs. Such
a behavior can be achieved by the following optimization
procedure

θ⋆ = argmin
θ

∑
(x,y)∈DH

ℓ(x, y; θ) +
∑

(x,y)∈DB

ℓ(µ(x, y); θ)

(2)
where DH denotes an honest dataset and DB a byzantine
dataset to be used for the backdoor attack. Samples in DB are
manipulated using some perturbation mechanism µ aligned
with the backdoor objective. Notably, a backdoor attack
aligns with the global objective on the honest dataset.

C. Poisoning Mitigation Strategies in Federated Learning

Any convincing defensive mechanism should be able to
handle an arbitrary attack. For this reason, the byzantine
threat model, allowing an attacker to directly alter the model
weights to submit arbitrary updates, is prevalent. Within
byzantine resilient FL, there are two categories: robust ag-
gregation [10], [30], [31] and anomaly detection [32]. The
former category is based on outlier mitigation, i.e., it relies on
benign clients submitting similar models, whereas the latter
category attempts to directly identify misbehaving clients. In
this paper, we shall focus on the former class of strategies.

A non-exhaustive list of robust aggregation techniques
include KRUM [10], FLTRUST [11], TRIMMEDMEAN [30],
PCA Defence [22], loss-function based rejection (LFR) [25]

and Loss Defence. The first four methods relies on benign
clients being similar to each other or to a server-based model
whereas the last two removes clients that have a large impact
on the global loss obtained via a server-based validation
dataset.

III. NOVEL ATTACKS ON REGRESSION TASKS

In this section, our threat model is defined and two novel
attacks, pertaining to regression tasks in autonomous driving,
are introduced.

A. Threat Model

We consider a federation with an honest-but-curious server
and n clients out of which m < n are compromised.1 The m
malicious clients may collude to perform coordinated attacks.
Furthermore, the malicious clients may perform either data
or model-poisoning attacks.

B. FLSTEALTH

Based on the threat model, we now introduce a novel un-
targeted attack on federated regression tasks. To circumvent
any defensive efforts, the attack attempts to deteriorate the
global model as much as possible while remaining stealthy.
This is achieved by creating two models, an honest and a
byzantine, both initialized from the global model. The attack
is divided in two steps where the first accounts to training
the honest model according as if the client was benign.
Thereafter, the byzantine model is trained to maximize the
loss while remaining close to the honest model. The resulting
loss function of the byzantine model is given as

ℓFLStealth(x, y, θH; θB) = −κℓ(x, y, θB) +MSE(θH, θB)
(3)

where κ ≥ 0 is a weighting constant, θi, i ∈ {H,B}, denotes
the honest and byzantine models, and MSE is the mean-
squared error. As can be seen, a lower κ results in a byzantine
model closer to the honest model.

C. Off-Track Attack

Next, we propose a novel backdoor attack crafted for
vehicle trajectory prediction. It is based on the principle
of triggers, as discussed in [23], [20], but adapted towards
the specific use-case of vehicle trajectory prediction. For
classification tasks, a backdoor attack can be as simple as
flipping a class label. However, for regression tasks there
are no classes, hence, the target has to be altered differently.
In trajectory prediction, the target trajectory may be altered
by slightly changing points resulting in an alternative path.
The details are presented in Section V.

IV. FEDERATED VEHICLE TRAJECTORY PREDICTION

A. Dataset

We utilize the Zenseact Open Dataset (ZOD) [16], a multi-
modal autonomous driving dataset collected over a period of
2 years across 14 European countries. The dataset contains

1We will refer to vehicles and clients interchangeably in the remainder
of the paper.



three subsets: frames that are primarily suitable for non-
temporal perception tasks, sequences that are intended for
spatio-temporal learning and prediction, and drives that are
aimed at longer-term tasks such as localization, mapping,
and planning. The frames consists of more than 100k traffic
scenes that have been carefully curated to cover a wide range
of real-world driving scenarios. From the original 100K
images in the ZOD-dataset, only 80k images were usable
after filtering for missing, incomplete, or erroneous data.
For each frame, the dataset contains annotations, calibration
data, blurred and Deep Natural Anonymization Technology
(dnat) images, ego-motion data, lidar data, and metadata on
driving conditions. In the experiments, only blurred images
were used.

Each image is associated with GNSS/IMU data that pro-
vides reliable navigation and positioning information. We
shall focus on the task of vehicle trajectory planning and
leverage the positioning information to automatically anotate
the image frames as in [33]. The ground truth is constructed
by interpolating 17 points from the GNSS/IMU data, 3D-
points in the trajectory from the original position of the car.
The target distances of the 17 points are given by {ti}17i=1

where ti = 5i for 1 ≤ i ≤ 8, ti = 10(i− 8)+40 for i ≤ 12,
and ti = 15i(i − 12) + 80 i > 12. Hence, the annotations
emphasizes accuracy in the predicted trajectory close to the
ego vehicle.

The dataset is split into a training, test and a server defense
set, as seen in Fig. 1. To facilitate federated learning, the
training set is further divided into separate sets for each
global round and client. This partitioning is different from
vanilla federated learning where the dataset remains static
at each client. In self driving, however, the car may be
unable to store the data locally and must, hence, discard
some of the data to make room for new. We capture this
behavior by replacing the local data of all clients in every
training round. The test set is used to evaluate the model
after each round. For the OTA, a test set was also created
by including the backdoor trigger pattern in each image,
leaving the ground-truth trajectory unchanged, to assess the
attack success. Finally the server defense set may be used
in conjunction with mitigation strategies employed by the
server during training.

B. Vehicle Trajectory Prediction

We employ the MobileNet-V3 [34] as the backbone
of the trajectory prediction, pretrained on the ImageNet
dataset [35]. MobileNet-V3 is a convolutional neural network
optimized for mobile phone CPUs. We replace the head
of network by 3 linear layers: 1024 neurons with ReLU
activation, 512 neurons with ReLU activation, and 51 neu-
rons without activation function. The 51 neurons in the final
layer correspond to the 17 three-dimensional points {p̂i}17i=1,
p̂i ∈ R3, representing the predicted trajectory. To facilitate
the learning, we let p̂ij ∈ [0, 1], j ∈ [3], and multiply p̂ij
with ti, to obtain the point’s position relative to the vehicle.
This allows the network to treat each predicted point equally.

Fig. 1: Visual representation of the dataset split, illustrating
the number images of the ZOD-dataset that were used for
training (and how they are partitioned among clients), testing,
and server defense.

During training, we employ the Adam optimizer with a
learning rate of 0.001, a batch size of 32, and the L1-loss
function. Hence, for a given data point, consisting of an
image x and a ground-truth trajectory {pi}17i=1, the loss is
obtained as

ℓ(x, {pi}17i=1; θ) =
1

17

17∑
i=1

∥pi − p̂i∥1 (4)

where {p̂i}17i=1 = θ(x) is the predicted trajectory.

C. Federated Learning

For the federated learning, we consider a network con-
sisting of 40 clients. The training is performed over 30
global training rounds where each round consists of 3 local
epochs. As already mentioned, the clients are assumed to
have collected a new dataset in the beginning of each training
round. This is illustrated in Fig. 1 where the 72K training
samples are split over the 30 training rounds and then,
within each training round, further split over the 40 clients
resulting in 60 data points per client. Note that the data
partitioning is performed randomly. Although a random data
partitioning is not realistic, e.g., consecutive data frames
have a strong correlation in environment and weather, such
partitioning was not feasible at the time of writing and left
as an interesting future direction of study.

We assume that 4 out of the 40 clients are malicious.
Furthermore, during the federation, the server randomly
samples 10 out of the 40 clients in each round. Hence, the
prevalence of malicious users may vary between 0% to 40%
in a given training round. The aggregation at the server is
achieved by federated averaging [3]. Pseudo code for the
federated learning procedure is provided in Algorithm 1.

V. EXPERIMENTS

In this section, we assess the robustness of FL using
various poisoning attacks and defense strategies. The ex-
periments were performed on a single NVIDIA Quadro



TABLE I: Training score of the resulting model in conjunction with a given attack-defense combination.

Attack Name No-Defense KRUM MULTI-KRUM LFR FLTRUST PCA DEFENSE LOSS DEFENSE TRIMMED MEAN LOSSFUSION

No Attack 3.114 3.564 3.460 3.057 3.043 3.260 3.027 3.158 2.990
Label-flipping 7.924 3.381 3.446 3.058 3.616 3.397 3.071 4.015 3.043

GRADIENT ASCENT 250.489 3.518 3.450 3.994 3.773 4.737 3.102 7.552 3.030
MSA 4.402 3.456 3.447 3.067 3.130 3.190 4.437 3.178 3.013

FLSTEALTH 34.23 · 1010 5.423 4.685 42.478 483.935 21.91 · 108 3.025 32.63 · 105 3.086

Algorithm 1 Federated Learning Procedure

1: Server side
2: θglobal ← pretrained MobileNetV3
3: for r from 1 to 30 do
4: Sr ← 10 clients selected at random
5: Broadcast θglobal to Sr

6: for client c ∈ Sr do
7: θc ← TrainClient(θglobal, r)
8: end for
9: θglobal ← Aggregate(θglobal, {θc}c∈Sr )

10: end for
11:
12: Client side
13: function TRAINCLIENT(θglobal, r)
14: Dr ← get dataset for current client and round
15: θclient ← θglobal
16: for each epoch e from 1 to 3 do
17: for each batch b ∈ Dr do
18: Update θclient using b
19: end for
20: end for
21: return θclient
22: end function

RTX5000 GPU with 8 cores, 40GB RAM and 500GB disk
space. The duration of one experiment on the entire dataset
is 20-30 minutes.

A. Untargeted Attacks

To measure the outcome from the federated training, the
test loss of the global model is averaged over the last 10
training rounds, we refer to this metric as training score.
A high training score indicates a global model with poor
performance, potentially due to a successful attack. On
the other hand, a good model yields a low training score,
possibly due to a weak attack or of a successful defense.
Moreover, we report the training scores as the average over
10 separate runs, i.e., each (attack, defense) combination is
executed 10 times.

We consider 5 different poisoning attacks, including our
novel FLSTEALTH attack, and 8 different mitigation strate-
gies. As a baseline, we also provide the result without any
mitigation strategies referred to as No-Defense. For attacks
requiring parameters, we consider: 1) in the label flipping
ground truth trajectories are multiplied by -100, 2) for MSA,
we shuffle 100 random rows in the weight matrix of each
linear layer, 3) for FLSTEALTH, the byzantine model is
trained for 15 epochs using a learning rate of 0.0001 and

κ = 10−9. Note that a small value of κ is typically required
as the mean-squared error between the honest and byzantine
models is in general much smaller than the loss. Similarly,
for defenses requiring parameters, we use: 1) in Krum, we
use 4 byzantine clients, 2) in Multi-Krum, we use 4 byzantine
clients and 6 models to be aggregated, 3) in Trimmed Mean,
after ordering the client updates based on magnitude, two
clients are removed from the bottom and from the top of the
ordering, and 4) for PCA DEFENSE, LFR, LOSS DEFENSE,
and LOSSFUSION, 4 clients are excluded in each round. Note
that the parameters are chosen in favor of the defenses as the
correct number of malicious clients from the entire client set
is used.

The LOSSFUSION defense mehchanism is a simple fusion
of LFR and LOSS DEFENSE after running them separately.
In particular, let θLFR and θLD denote the resulting model
parameters after employing the two defense mechanisms
separately. Then, LOSSFUSION selects the model parameters
as

θLF =

{
θLFR for ℓ(Dserver; θLFR) < ℓ(Dserver; θLD)

θLD otherwise

where ℓ(Dserver; θ) is the average loss on the server’s defense
dataset using a model θ. LOSSFUSION aims at alleviating the
weakness of only considering pre-aggregation losses in LOSS
DEFENSE and of only looking at post-aggregated losses in
LFR. Hence, LOSSFUSION effectively eliminates attacks
targeting either LFR or LOSS DEFENSE since now both
defenses must be bypassed.

In Table I, we illustrate the average training score for
each attack-defense combination. It can be seen that some
combinations, particularly involving FLSTEALTH, results in
very high training scores. The reason for this is that some
of the attacks can be made arbitrary strong when able
to bypass the defense. Among the attacks, FLSTEALTH
achieves the largest training score for all defenses but the
LOSSDEFENSE. On the other hand, among the defenses,
LOSSFUSION achieves the lowest training score on all at-
tacks but FLSTEALTH.

B. Targeted Attacks

The design of our targeted attack, OTA, involves three
steps: 1) how to inject a trigger to an image, 2) how to alter
the ground truth trajectory, and 3) decide how large portion
of the data to poison.

1) Trigger Injection: Although there are many ways to
design a trigger, in this paper, a simple square pattern
was chosen. Based on this choice, multiple features were
studied, e.g., size, color, and total number of squares added.



Empirically, position and size surfaced as the main factors
for a successful attack; varying the color of the square
between red, green and white, or increasing the number
of squares did not affect the overall performance of OTA.
Hence, for simplicity, only one red square were used for the
final experiments.

To understand the impact of the square’s position, experi-
ments were conducted positioning it at the top-left corner, the
center of the image, or at a random position for each image
in the byzantine dataset. From these experiments, random
position often went unnoticed by the defenses and hence
that option was used for further experiments. However, we
remark that positioning the square in the center performed
the best but was deemed unrealistic, see Section VI-B).

Finally, the size of the square only matters when it gets
too small for the network to notice. The size was set as
a percentage of the height of the image and performance
dropped at around 5% of the height. Sizes of up to 16% of
the image height was used with success, and for consistency
in further experimentation a size of 10% was used.

2) Altering the Ground-Truth Trajectory: When a trigger
is injected to a data sample, the corresponding ground-truth
trajectory should also be modified in order to change the be-
havior of the model. We considered three such modifications:
1) make the car turn by the end of its path, 2) make the car
go straight, and 3) make the car sig-sag around the ground-
truth trajectory. From experimenting, the attack was deemed
successful only when the car was made to turn, hence, for
the final experiments, a trigger will force the car to turn.

It should be noted that a turn change can be achieved in
several ways, e.g., by changing the angle of the turn, the
sharpness of the turn, or the direction (left/right). As most
variations demonstrated similar result, a set-up with a turn to
the right by modifying the last 5 points of the ground truth
was chosen.

3) Number of Poisoned Examples: The final component
of the OTA is to choose the amount of data samples to
poison. From experiments with 20% to 100% of the data
samples being poisoned, a trade-off was identified. A too
large portion resulted in the backdoor becoming ineffective
as the trigger is mostly present resulting in the entire dataset
being poisoned and, consequently, the client model being
easily identified as malicious. On the other hand, a small
portion of poisoned data resulted in the model not learning
the trigger at all. Empirically, we found that a portion of 30%
of the dataset being poisoned yielded good results. In Fig. 2
the loss trajectories are illustrated for a successful targeted
attack. From the test loss trajectory on the backdoor test set,
see Section IV-A, we notice that the loss trajectory increases
by the end of the learning procedure which indicates a
successful attack, i.e., the predicted trajectory deviates from
the ground-truth trajectory in the presence of a trigger.
Another way of visualizing a successful backdoor attack is
by the attention heat maps, as shown in Fig. 3. The series
of images shows how the attention of the model is shifted
from the road to the top left corner after the attack.

Fig. 2: Loss trajectories for a successful targeted attack
(OTA) against LFR defense.

TABLE II: Training and backdoor score from an OTA.

Defense Training score Backdoor score Difference

No defense 3.19 3.52 0.33
LFR 2.92 3.31 0.33

LOSS DEFENSE 2.99 3.18 0.19
PCA DEFENSE 3.27 3.48 0.21
MULTI-KRUM 3.24 3.30 0.06

FLTRUST 3.01 3.40 0.39
LOSSFUSION 3.08 3.28 0.20

4) Results: To measure the success of OTA, we consider
both the training score, similar to untargeted attacks, but
also a metric called backdoor score, computed similarly to
the training score but over the backdoor test dataset, i.e.,
the same test set as in the training score but with triggers
injected in images. We expect a successful OTA to achieve
a low training score, i.e., perform well on images without
triggers, while simultaneously achieving a large backdoor
score, i.e., deviate from ground-truth trajectories when trig-
gers are present. Table II illustrates the performance of OTA
against six defense mechanisms with parameters chosen as in
Section V-A. The difference between the training score and
the backdoor score indicates the effectiveness of the attack
with a larger difference yielding a more successful attack.
The values in each row in Table II is the average over 5
independent runs.

From Table II, it can be seen that LOSS DEFENSE and
LOSSFUSION are effective at mitigating OTA, yielding a
difference of 0.19 and 0.20, respectively. Although MULTI-
KRUM displays the lowest difference of 0.06, the training
score is large. Visual inspection of predictions obtained
from models trained with MULTI-KRUM mitigation also
entails that the model is poisoned, i.e., predictions follow
the expected behavior when exposed to the trigger.

To further test the robustness of OTA, an attack was
performed in a more realistic setting, as shown in Fig. 4.



(a) Attention heatmap of global model on
a normal image.

(b) Trigger injected (a red square) in the
top left corner.

(c) Attention heatmap of global model
after backdoor is added to the image.

Fig. 3: Change of model attention when a backdoor is added to the picture (Frame #074220 in the ZOD-dataset)

Fig. 4b displays a road with a person showing a trigger
pattern on a computer screen. A photo without the person
was then generated, using image processing tools, in order
to keep the environment fixed. The model, subject to the
OTA, employing the LOSS FUSION defense was then used
to predict the trajectory on each image. Without the trigger
pattern the model produces a reasonable prediction of the
trajectory, see Fig. 4a, and when the backdoor pattern was
introduced, the model sends the car to the right, see Fig. 4b,
which, in this case, is the opposite of the intended direction.

VI. DISCUSSION

In the following section, we discuss our results pertaining
to untargeted and targeted attacks, respectively.

A. Untargeted Attacks

The FLSTEALTH attack aims to deteriorate the global
model while remaining undetected. This proves to be ef-
fective against all considered defenses, apart from LOSS
DEFENSE and LOSSFUSION. For KRUM, MULTI-KRUM,
FLTRUST and PCA DEFENSE, these results are expected as
they rely on a similarity score for each client and mitigate the
impact of dissimilar clients. Since FLSTEALTH is designed
to provide poisoned models similar to those of honest clients,
the malicious clients will have a similar similarity score
to an honest client. FLSTEALTH is also expected not to
bypass LOSS DEFENSE as it is designed to increase the loss
which is exactly the signal that LOSS DEFENSE operates on.
Decreasing κ will improve the chances of bypassing also
LOSS DEFENSE but will also reduce the effect of the attack.

Interestingly, FLSTEALTH and the related GRADIENT
ASCENT attack both perform well against LFR. We observe
that this is because the attack sometimes, but rarely, bypasses
LFR completely. For each such instance, at least two at-
tackers are present and removing one of them results in a
worsened model. This counter intuitive phenomenon is due to
the inner workings of LFR that removes clients sequentially
based on the loss impact of each client. When multiple
attackers are present, their updates may partially cancel out
and may, in some cases, result in a low loss when both are
included but an increased loss when one is removed. Since
LFR does not take into account the relationship between
multiple clients, the defense will not realise that the best
strategy is to remove both clients but will, instead, remove

4 other clients, amplifying the attack further since it now
contributes more to the averaged model.

B. Targeted Attacks

OTA successfully evades all the defenses, hence poisoning
the global model and injecting the trigger into all vehicles
in the federation. Since the model is trained to make good
predictions when no trigger pattern is present the targeted
model will have low loss. This is the reason why loss-based
mitigation strategies are unsuccessful. The second category
of defenses focus on the similarity of the received client
gradients. However, as the malicious clients only poison 30%
of their local data, their updates will be similar to that of a
benign client, rendering similarity-based defenses ineffective.

During the experiments, some defenses were sometimes
able to counter or cancel out OTA in a single training
round. However, if the malicious client manages to bypass
the defense in only a single round, the trigger will be present
for all clients going forward. This may further allow the
attacker to bypass the defense in future rounds, amplifying
the effect of the attack.

As mentioned in Section V-B, there are several ways of
adding trigger patterns. The empirical results suggested that
the best positioning for a trigger pattern is in the center of
the image. This is expected since that square would cover the
most important part of the image, where the model’s attention
is focused, i.e., the road. However, in real life this would
limit the position of the attacker and make the attack more
difficult to execute, hence, this positioning was rejected.

VII. CONCLUSION

This paper studies vulnerabilities of federated learning
applied in the area of regression tasks within autonomous
driving. We have introduced two novel attacks: 1) an untar-
geted attack called FLSTEALTH tailored to deteriorate the
global model while remaining stealthy and 2) a targeted
attack OTA aiming to inject triggers to make the car turn
when exposed to the trigger. A thorough assessment of the
attack success was performed by comparing to other types
of attacks and to common poisoning mitigation strategies in
federated learning.

Our results have highlighted the significant threat posed
by backdoor attacks, calling for effective detection methods
and exploring ensemble techniques that combine different
approaches that could enhance defenses against targeted



(a) Trajectory prediction on road in Singapore (b) The same image as Fig. 4a but with a malicious actor
showing the trigger pattern.

Fig. 4: OTA performed in practice.

attacks. Notably, we observed that none of the existing de-
fenses effectively countered OTA. Finally, we demonstrated
the benign effects of combining multiple defensive strategies,
as demonstrated by the introduced LOSSFUSION defense.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End
to end learning for self-driving cars,” arXiv:1604.07316, 2016.

[2] European Union, “General data protection regulation (GDPR) infor-
mation portal,” 2023. Available at: https://gdpr-info.eu.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in AISTATS, 2017.

[4] M. Aparna, R. Gandhiraj, and M. Panda, “Steering angle prediction for
autonomous driving using federated learning: the impact of vehicle-
to-everything communication,” in IEEE Int. Conf. on Comp. Comm.
and Netw. Technologies (ICCCNT), 2021.

[5] S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri,
“Opportunities of federated learning in connected, cooperative, and au-
tomated industrial systems,” IEEE Communications Magazine, vol. 59,
no. 2, 2021.

[6] A. Nguyen, T. Do, M. Tran, B. X. Nguyen, C. Duong, T. Phan,
E. Tjiputra, and Q. D. Tran, “Deep federated learning for autonomous
driving,” in IEEE Intelligent Vehicles Symposium (IV), 2022.

[7] Y. Chen, C. Wang, and B. Kim, “Federated learning with infrastructure
resource limitations in vehicular object detection,” in IEEE/ACM
Symposium on Edge Computing (SEC), 2021.

[8] D. S., K. N., and S. Athavale, “Turn signal prediction: A federated
learning case study,” arXiv 2012.12401, 2020.

[9] D. Deveaux, T. Higuchi, S. Uçar, C.-H. Wang, J. Härri, and O. Al-
tintas, “On the orchestration of federated learning through vehicular
knowledge networking,” in IEEE Vehicular Networking Conference
(VNC), 2020.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Neurips, vol. 30, 2017.

[11] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLtrust: Byzantine-robust
federated learning via trust bootstrapping,” arXiv 2012.13995, 2020.

[12] A. Huang, “Dynamic backdoor attacks against federated learning,”
arXiv 2011.07429, 2020.

[13] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, and J. Liu, “Data
poisoning attacks on federated machine learning,” IEEE Internet of
Things Journal, vol. 9, no. 13, 2021.

[14] X. Li, G. Kesidis, D. J. Miller, and V. Lucic, “Backdoor attack and
defense for deep regression,” arXiv:2109.02381, 2021.

[15] S. Wang, Q. Li, Z. Cui, J. Hou, and C. Huang, “Bandit-based data
poisoning attack against federated learning for autonomous driving
models,” Expert Systems with Applications, vol. 227, 2023.

[16] M. Alibeigi, W. Ljungbergh, A. Tonderski, G. Hess, A. Lilja,
C. Lindström, D. Motorniuk, J. Fu, J. Widahl, and C. Petersson,
“Zenseact open dataset: A large-scale and diverse multimodal dataset
for autonomous driving,” in IEEE/CVF International Conference on
Computer Vision, 2023.

[17] S. Mahloujifar, M. Mahmoody, and A. Mohammed, “Universal multi-
party poisoning attacks,” in ICML, 2019.

[18] R. Guerraoui, S. Rouault, et al., “The hidden vulnerability of dis-
tributed learning in byzantium,” in ICML, 2018.

[19] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in ICLR, 2019.

[20] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in AISTATS, 2020.

[21] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in AISec, 2017.

[22] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in ESORICS, 2020.

[23] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
production federated learning,” in IEEE Symposium on Security and
Privacy (SP), 2022.

[24] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circum-
venting defenses for distributed learning,” Neurips, vol. 32, 2019.

[25] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in USENIX, 2020.

[26] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Op-
timizing model poisoning attacks and defenses for federated learning,”
in Network and Distributed Systems Security Symposium, 2021.

[27] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against
support vector machines,” arXiv:1206.6389, 2012.

[28] M. Yang, H. Cheng, F. Chen, X. Liu, M. Wang, and X. Li, “Model
poisoning attack in differential privacy-based federated learning,”
Information Sciences, vol. 630, 2023.

[29] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
2019.

[30] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018.

[31] V. Valadi, X. Qiu, P. P. B. de Gusmão, N. D. Lane, and M. Al-
ibeigi, “Fedval: Different good or different bad in federated learning,”
USENIX, 2023.

[32] M. Xhemrishi, J. Östman, A. Wachter-Zeh, and A. G. i Amat, “FedGT:
Identification of malicious clients in federated learning with secure
aggregation,” arXiv:2305.05506, 2023.

[33] A. Viala Bellander and Y. Ghafir, “Towards federated fleet learning
leveraging unannotated data,” Master’s thesis, Chalmers University of
Technology, 2023.

[34] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for
mobilenetv3,” in IEEE/CVF International Conference on Computer
Vision, 2019.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-



genet: A large-scale hierarchical image database,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2009.


