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Abstract— In line with global sustainability goals, such as
the Paris Agreement, accurate mapping, monitoring, and man-
agement of solar farms are critical for achieving net zero
emissions by 2050. However, many solar installations remain
undocumented, posing a challenge. This paper studies semantic
segmentation using deep neural networks, including networks
constructed using network architecture search (NAS), for solar
farm detection. Semantic segmentation has evolved through
technologies like Fully Convolutional Networks and U-Net,
which have shown strong performance on satellite imagery.
For NAS, Differentiable Architecture Search and its variants
like Auto-DeepLab have become efficient ways to automate the
creation of neural network architectures. This work compares
models generated using Auto-DeepLab to Solis-seg, a Deep
Neural Network optimized for detecting solar farms in satellite
imagery. Solis-seg achieves a mean Intersection over Union
(IoU) of 96.26% on a European Sentinel-2 dataset, with Auto-
DeepLab models lagging slightly behind. Our results for Solis-
seg also challenge the prevailing method of using transfer learn-
ing from classification tasks for semantic segmentation. Thus,
this work contributes to both the field of earth observation
machine learning and the global transition to renewable energy
by studying an efficient, scalable approach to tracking solar
installations. We believe that this paper offers valuable insights
into applying advanced machine learning techniques to solar
farm detection and can be useful for further research in earth
observation and sustainability.

I. INTRODUCTION

Context. With the Paris Agreement of 2015, most nations
globally have committed to reaching net zero emissions by
2050. Achieving this goal necessitates a large-scale shift
from fossil fuels to renewable energy alternatives, such as
solar and wind power. Currently, fossil fuels account for
approximately 80% of global energy consumption and are
responsible for the emission of large amounts of CO2. The
transition towards green energy sources—–including wind,
hydro, and solar–—is crucial for fulfilling the climate objec-
tives set by the Paris Agreement within the specified timeline.
Clearly, the development and management of a solar energy
infrastructure is a key component of this transition.

The satellite images we consider come from the European
Space Agency’s Sentinel project,1 specifically the Sentinel-2
mission. Sentinel-2, launched in 2015, focuses on tracking
changes on the Earth’s surface. It uses a multispectral cam-
era, which captures images across 13 spectral bands with a
resolution of 10m2 per pixel. While this level of resolution
could pose problems for certain tasks, it tends to be sufficient
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for large structures such as grid-connected photovoltaic (PV)
plants. These plants are often larger than 10,000m2 [11],
which makes them distinguishable even at these resolutions.

Challenges. Detecting solar panels from satellite images
promises to partly address the issue of managing the solar
energy infrastructure. One way to accomplish this detection
task is to use Machine Learning (ML), including Deep
Neural Networks (DNNs) [23], [11], [8], [4]. Despite the
demonstrated prowess of Neural Architecture Search (NAS)
in surpassing human-designed architectures in image classifi-
cation [6], its application in the field of solar farm segmenta-
tion from satellite imagery remains uncharted territory. While
PV plants often are large, Sentinel-2’s resolution of 10m2 per
pixel makes it a challenge to discern PV plants from similar-
looking structures, such as rice paddies, greenhouses, parking
lots, and lakes. Sentinel-2’s multispectral camera partially
mitigates this issue by utilizing the unique spectral profile of
solar farms [11], [9].

Even though NAS has seen extensive use in well-
established benchmarks, its practical application for novel
datasets is still under-researched [29]. Thus we consider
several research challenges and questions related to detecting
and segmenting solar farms in satellite images in this paper:
The questions relate to the performance of different DNN
architectures, DNN transfer learning with fine-tuning for
segmentation versus learning to segment from scratch, the
computational cost of NAS for DNNs, and the comparison
of NAS-generated DNNs versus foundation models.

Contributions. Recognizing the challenges mentioned
above, this work2 makes several contributions:

• Our Solis-seg DNN model clearly outperforms an in-
cumbent model, Solis-transfer. Solis-seg attains the
highest validation mIoU on a major solar farm dataset
with continental scale coverage known to us, outper-
forming SolarNet [8] and Kruitwagen et al.’s model [11]
on their respective datasets.

• Contrary to previous findings [8], our results suggest
that transfer learning (from image classification to seg-
mentation) may not work so well. Transfer learning
can be time-efficient, but may inadvertently compromise
segmentation performance when compared to training a
model from scratch, as we did with Solis-seg.

• Our focus on solar farm segmentation in Sentinel-2
satellite imagery serves as a real-world study of NAS
in semantic segmentation. Much NAS research focuses
on classification, especially on the ImageNet or CIFAR

2This paper builds upon the MS Thesis of Erling Olweus [21].



datasets, with few studies on semantic segmentation.
This work was conducted in collaboration with Atlas.3 One
application of Atlas’ cloud-native GIS technology is to
evaluate locations for solar farm development. Our focus
in this paper is on segmenting solar farms from satellite
imagery.

II. BACKGROUND AND RESEARCH QUESTIONS

Identifying Solar Farms from Images. Several studies
have explored the detection of solar panels in satellite
imagery, utilizing both Artificial Neural Networks (ANNs)
and other methods. For instance, a random forest model
was employed by Plakman et al. [23] to detect solar panels,
and this model was trained and evaluated using a publicly
accessible dataset from the Netherlands. Hou et al. developed
SolarNet, a system that integrates Expectation-Maximization
Attention Networks and a U-Net architecture, to uncover
new photovoltaic (PV) systems in China [8]. Meanwhile, in
Brazil, a study used high-performing segmentation models
with different pre-trained backbones [4]. Stanford researchers
have identified and compiled US solar installations into the
publicly accessible DeepSolar database [31].4 Astraea Earth
trained a Deep Convolutional Neural Network in the US and
used it to identify new Chinese solar farms [12].

Kruitwagen et al. released a global dataset of solar en-
ergy facilities, expanding the existing asset-level data by
an impressive 432% [11]. This work represents the most
substantial single contribution to this field to date, measured
by the number of previously unknown facilities discovered
and added to public datasets. Focusing on PV platforms
larger than 10,000m2, they achieve a precision of 98.6%, a
recall of 90%, and an Intersection over Union (IoU) of 90%
for the segmentation task on their test set. They employ a
U-Net-based Convolutional Neural Network (CNN) model
and two sources of remote sensing imagery to achieve
these results. Non-visible bands of Sentinel-2 are utilized,
demonstrating their significant role in the model’s solar panel
recognition.

Research Question 1 (RQ1): How well do different DNN
model architectures, including NAS models, perform seman-
tic segmentation of solar farms in Sentinel-2 imagery?

Semantic Segmentation. Semantic segmentation is an
area where CNNs have success, sparked by the victory of
the Fully Convolutional Network (FCN) [17] in the COCO
segmentation task in 2014. This achievement is credited
to replacing the fully connected layers at the end of pop-
ular networks like AlexNet, VGG, and GoogLeNet with
convolutional layers. This modification led to significant
speed increases during both forward and backward passes in
training [17]. The method employs upsampling techniques
to restore the output feature map of the image to its original
size for pixel-by-pixel predictions.

U-Net was improved in 2017 by incorporating the output
before each subsampling stage as input during the upsam-
pling phase. This enhancement aids in more accurately

3https://atlas.co
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mapping recognized features back to the original image
size [24]. In comparison to other approaches, U-Net is
particularly effective for semantic segmentation on remote
sensing imagery due to its strong performance even with little
training data [27]. The U-Net architecture has been used for
semantic segmentation of solar farms [8] [11].

Dilated convolutions, also referred to as “atrous” convolu-
tions, are a variant of CNN layers that utilize dilated kernels
to enlarge the receptive field of a layer [1]. Traditional
CNNs determine the receptive field of a layer based on its
filter size and stride. However, dilated convolutions employ
filters with gaps or “dilations,” the size of which is decided
by the dilation rate, enabling the filters to cover a larger
input area without augmenting the number of parameters or
computational complexity. This benefits semantic segmenta-
tion, where maintaining spatial resolution while increasing
receptive field to capture long-range dependencies in data is
crucial [7].

Research Question 2 (RQ2): How does transfer learning
[8] (from image classification to segmentation) compare
to training a DNN model from scratch when it comes to
segmenting solar farms in Sentinel-2 images?

Neural Architecture Search. The roots of Neural Ar-
chitecture Search (NAS) can be traced back to 1989, when
an evolutionary algorithm was first applied to optimize
ANN architectures [18]. Since that seminal work, an array
of diverse algorithms has been introduced to enhance the
efficiency and robustness of neural architecture generation.
NAS algorithms fall into two main categories: one-shot
methods and black-box methods. A NAS method may not
fall squarely into either category and may straddle both [29].
Different NAS techniques, including Bayesian optimization,
evolutionary algorithms, and reinforcement learning, have
been widely adopted [16]. One downside of these techniques
is their significant computational cost. Some studies report
using thousands of GPU days for experiments [6], [29]. In
contrast, one-shot methods have gained traction due to their
considerable efficiency. These methods manage to generate
promising results within a far shorter time span [30].

NAS algorithms are designed to refine architectures within
a specific search space, with cell-based search spaces being
notable [29]. In these spaces, DNN architectures are concep-
tualized through a sequence of “cells.” A cell is a modular
component that, when combined with other cells, creates
larger neural networks [5]. Each cell represents a unique
arrangement of layers and connections and is typically re-
peated in a set macro-architectural pattern, facilitating the
creation of a wide array of network architectures [15], [20].

Differentiable Architecture Search (DARTS) [15] presents
a novel approach to network architecture search. DARTS
combines a cell-based search space and a gradient-based one-
shot model, facilitating efficient exploration and evaluation
of architectures. The search space is structured as a Directed
Acyclic Graph (DAG) where each edge performs one of eight
potential operations.

Auto-DeepLab (ADL) is a specialized DARTS variant
developed to create effective architectures specifically for



Fig. 1: A typical ML pipeline for discovering new solar
farms, also showing how Solis-transfer is trained. Solis-seg is
trained in a similar but simpler way since there is no training
and transfer of a classification model backbone.

semantic segmentation within the DeepLab framework [14].
Originating from the work of Liu et al., ADL enhances the
DARTS-based, cell-centric search space [15] by incorporat-
ing a hierarchical component to manage spatial resolution
during the architecture search [19].

NAS is computationally demanding, introducing substan-
tial overhead to an ML pipeline. This raises the following
two research questions.

Research Question 3 (RQ3): When is the extra cost of
performing NAS worthwhile for the purpose of detecting and
segmenting solar cells in Sentinel-2 satellite imagery?

Research Question 4 (RQ4): How do highly specialized
models discovered through NAS stack up to generalized
foundation models, like GPT-4 [22] and SAM [10], that excel
across a multitude of tasks within a domain?

III. METHODS AND MODELS

A. Detecting Solar Farms

To discover solar farms in remote sensing imagery, certain
processes are smilar across various ML studies [12], [11],
[31], [8]. These processes form a complex, sophisticated
pipeline for both training an ML model and deploying it in
real-world scenarios. Although there are slight variations, the
core processes and their ordering remain largely consistent
as refleced in the pipeline of Figure 1.

The pipeline commences (see top of Figure 1) with the
identification and labeling of known solar farms on satellite
images as georeferenced polygons, often using a GIS tool
such as QGIS.5 These images then go through a series of
preprocessing operations, including cloud removal, image
standardization, and chipping or subdividing the images into
smaller segments that can be efficiently processed by the
network. These chips6 become our dataset.

The pipeline’s next phase involves training a classification
model using a dataset of chips, with and without solar farms.
Once trained, a segmentation head (see middle of Figure
1) is attached to the model and this amalgamated DNN
is further fine-tuned for segmentation tasks. Approaches
differ in whether they completely freeze the weights of the
backbone, or allow the weights to be modified in the training
of the segmentation model. Slight modifications are usually
introduced to the backbone to preserve spatial information
during its application for segmentation tasks [7].

Hou et al. largely attribute the success of this approach
to the activation mapping for the classification model, which
resembles a dense prediction or segmentation architecture
[8]. This claim is intuitively plausible, as the model needs to
learn the unique features of solar farms to correctly predict
their presence in an image. An advantage of this transfer
learning strategy is the time efficiency it offers compared to
training an entirely new network from scratch.

In the pipeline’s last phase, the trained models are de-
ployed over extensive areas as represented by the globe at the
bottom of Figure 1. The images of these areas undergo the
same preprocessing steps, without prior manual identification
and labeling of solar farms. Following this process, the
models’ findings are manually inspected and confirmed solar
farms are added to the dataset. The cycle can repeat, as
depicted in Figure 1, with the augmented dataset.

We contrast a model pre-trained on solar farm classifi-
cation with one exclusively trained for segmentation tasks.
We refer to these DNN models as Solis-transfer and Solis-
seg respectively. They are both ResNet-50 models with
dilated convolutions instead of strided convolutions and with
a DeepLabV3 segmentation head (inspired by previous re-
search [1]). The code to train the model is publicly available.7

5https://qgis.org/en/site/
6The chipped images derive their ground truth from the labeled polygons.

If any segment of the image overlaps with a part of the polygon, it is labeled
as a “solar farm”. For classification purposes, any chip encompassing a
portion of a solar farm is labeled as “solar farm”.

7https://github.com/TheAtlasRepository/solis.



TABLE I: Comparison of one-shot NAS methods specializ-
ing in segmentation on the Cityscapes test set

Architecture GPU Days (search) mIoU
Auto-DeepLab [14] 3 82.1
DCNAS [32] 5.6 84.3
GAS [13] 6.7 73.5
SqueezeNAS [25] 14.6 75.54
FasterSeg [2] 2 71.5

B. Network Arcitecture Search (NAS)

Determining the appropriate NAS methodology hinges on
several factors. For us, several criteria emerged as critical:
the computational expense associated with the search, the
task specificity, the documented performance of the algo-
rithm, and the availability of source code or libraries for
implementing the chosen method.

Our analysis, detailed in Section III-C, led us towards one-
shot models, primarily due to their computational efficiency
[29]. Among one-shot methodologies outlined in the NAS
surveys by White et al. [29] and Elsken et al. [19], Auto-
DeepLab (ADL) appeared as the best choice. Its focus on
semantic segmentation, coupled with our prior experiences
with DeepLab, contributed to our choice.

Since Auto-DeepLab’s introduction in 2019, various works
have built upon it, with changes to the search space or spe-
cific tailoring for tasks such as real-time video segmentation
[13], [2], [25]. Among these works, DCNAS by Zhang et
al. [32] is the one that directly enhances the performance
of ADL on inference (as measured in mIoU as shown in
Table I). Regrettably, the lack of public access to the DCNAS
code limits its experimental usage by others. DCNAS also
has almost double the search time of Auto-DeepLab, which
would make DCNAS challenging to use with our dataset.
Given these considerations, we opted for the original Auto-
DeepLab. The availability of Auto-DeepLab’s source code
simplifies its integration into our experimentation process.

C. Details of Selection Criteria

To study the effectiveness NAS on our task, we chose
Auto-DeepLab (ADL) as our NAS model. The selection was
based on multiple criteria:

• Computational Efficiency: One-shot models like ADL
significantly reduce the computational burden, making
experimentation quicker.

• Task Specificity: ADL specializes in semantic segmen-
tation, directly aligning with our research focus.

• Documented Performance: Previous works have vali-
dated ADL’s effectiveness, providing a reliable starting
point for our own evaluations [29].

The method for architecture search mirrors previous work
[14], with the main difference being that we run the search
on subsets of the dataset as discussed in Section IV. After
searching for 40 epochs we decode the best model found
and train it from scratch for 100 epochs on the entire dataset
with an 80/20 train test split.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Hardware: Most of the experiments were conducted
using hardware from the NTNU IDUN High-Performance
Computing Cluster [26]. This included either an NVIDIA
A100 GPU equipped with 40/80GB memory or an NVIDIA
V100 GPU with 32GB memory. An NVIDIA RTX 3090
GPU8 was also used for some tests.

2) Dataset: We use a proprietary dataset of Atlas, en-
compassing solar farms situated across Europe. This ex-
pansive dataset, consisting of 224x224 pixel chips from
12-band Sentinel-2 level-2A (l2a) images,9 contains more
than 200,000 images with about a 50/50 split between
positives (containing solar farms) and negatives. All the
positives additionally have masks. A couple of thousand are
manually drawn, and the rest are sourced from previous Solis
deployments, OpenStreetMap,10 or other sources with free
available masks for solar farms. While Sentinel-2 captures
13 bands, band B10 is excluded from l2a as it is used to
monitor the atmosphere rather than the ground.

Given the resource-intensive nature of NAS and concerns
about time spent, representative subsets of this dataset are
employed during the architecture search process. While some
of data are proprietary, the framework presented is dataset-
agnostic and could potentially be employed with similar
datasets, such as that of Kruitwagen et al.11

As highlighted by Elsken et al. [6], the scale of disparity
between the sampled and full dataset size can influence the
relative ranking of architectures. This is a potential concern,
given that our final objective is optimizing the validation
score on the larger dataset, not the subset. Nonetheless,
the two tasks are closely related, and we believe that a
random selection of images from a wide geographic coverage
incorporating diverse geographical features will mitigate po-
tential biases. Furthermore, the success achieved on relatively
smaller datasets (around 1000–2000 images) as reported
by Hou et al. [8] and Plakman et al. [23] is noteworthy.
Considering China’s diverse landscape, this observation is
particularly pertinent for Hou et al.’s SolarNet [8].

To further diversify the training process, both during the
search and retraining phases, we implement data augmen-
tation. Specifically, images are subjected to horizontal and
vertical flips with a 50% probability each before being fed
into the model within the training loop. This data augmenta-
tion strategy makes for a robust and varied training dataset,
enhancing the model’s generalization capabilities even with
smaller dataset sizes.

8https://www.nvidia.com/en-us/geforce/
graphics-cards/30-series/rtx-3090-3090ti/

9https://sentinels.copernicus.eu/web/sentinel/
sentinel-data-access/sentinel-products/
sentinel-2-data-products/collection-1-level-2a

10https://wiki.openstreetmap.org/wiki/Tag:
generator:source\%3Dsolar

11https://zenodo.org/record/5005868



Name Architecture mIoU F1-score
Solis-seg (our) ResNet+DeepLabV3 0.9629 0.9621
10k-L Auto-DeepLab 0.9593 0.9582
ADL-cs Auto-DeepLab 0.9586 0.9575
10k Auto-DeepLab 0.9567 0.9555
random Auto-DeepLab 0.9565 0.9552
Solis-transfer ResNet+DeepLabV3 N/A 0.89

TABLE II: Top five models ranked by validation mIoU
achieved during retraining; Solis-transfer is a reference point.

B. Experimental Objectives, Metrics, and Models

1) Objectives and Methodologies: Our research aims to
evaluate Auto-DeepLab’s performance, particularly focusing
on its adaptability to different input data sizes and types. This
is directly tied to Experiment 2, which aims to understand
how these factors influence the NAS process.

2) Performance Evaluation of Different Models: These
are the DNN models that we focus on here:

• Solis-transfer and Solis-seg: These ResNet-based mod-
els serve as points of comparison to the ADL models.

• 2k, 5k, 10k, 20k, and 20k: These ADL models result
from NAS experiments using corresponding Sentinel-2
dataset sizes.

• 10k-L: This ADL model results from taking the best-
performing model identified via NAS, 10k, and retrain-
ing it with a filter multiplier of F = 48, using the
Auto-DeepLab-L configuration [21].

• ADL-cs: This ADL model, found to be the best-
performing by Liu et al. during their Cityscapes search
[14], provides an external point of comparison.

• random: A randomly generated architecture, using
ChatGPT, is a second external point of comparison.

The primary metric is validation set mIoU, except for the
Solis-transfer model where F1-score is used due to mIoU not
being captured during training. Further details are provided
in Appendix A as well as accompanying Web sites.12

Final models were trained on the complete Solis dataset,
adhering to an 80/20 train-test split. This training regimen
aligns with our final experiment (see Section IV-F).

3) Performance Evaluation of Final Models: To assess its
generalization capabilities, the best-performing model from
the early experiments is deployed in a real-world scenario
to discover new solar farms. Here, we test the best model
on data from untrained regions, the state of New York (see
Section IV-F).

C. Experiment 1: Effectiveness of Transfer Learning

The purpose of this experiment is to evaluate the effec-
tiveness of transfer learning, particularly as employed by the
Solis-transfer model. Our intention is to investigate if the
prevalent approach of transfer learning from classification
tasks remains the preferred strategy or if training directly on
segmentation tasks from the outset can produce improved

12The Solis-transfer model can be found in the repository at https:
//github.com/TheAtlasRepository/solis as the fully trained
DeeplabV3 with ResNet50 backbone.

Name val mIoU
(search)

val mIoU
(retrain)

train mIoU
(retrain)

2k 0.536 0.9563 0.9637
5k 0.733 0.9550 0.9630
10k 0.741 0.9567 0.9653
20k 0.785 0.9531 0.9607

TABLE III: mIoU results for different dataset sizes; 10k is
considered the best-performing ADL model.

results. We also implement a variant of the Solis-transfer
model, Solis-seg, trained exclusively on segmentation.

Experimental results are shown in Table II. Contrary to
our expectations, not only did the Solis-seg model exhibit
a marked performance improvement compared to Solis-
transfer by increasing the best F1-score from 0.89 to 0.9621,
it even became the best-performing model (even though the
differences between the top models are relatively small).
With a final validation mIoU of 0.9629, it surpassed all the
models obtained through our NAS experiments, emerging
as the only model breaching the 0.96 threshold. Table II
provides a summary of the top five models, ranked based
on the mIoU scores achieved during the retraining phase. It
underscores the dominance of Solis-seg in this experiment.

D. Experiment 2: Impact of Dataset Size on NAS

In this experiment, we explored how the size of the
dataset influences the outcome of NAS. Due to computational
limitations, we opted for smaller subsets of the full dataset,
specifically sizes of 2,000, 5,000, 10,000, and 20,000 images,
referred to as 2k, 5k, 10k, and 20k respectively. These subsets
were considered to be representative samples for the purpose
of architecture discovery.

During the search, we observe a correlation between the
dataset size and the resulting validation mIoU as seen in
Figure 2. The smallest dataset (2k) shows more variability
in results, indicating sensitivity to data selection. Most of
the searches reached peak performance shortly after 20
epochs, thus we scrutinize the structural components of the
resulting architectures. Despite similar performance metrics,
the architectures exhibit considerable structural differences.13

When these architectures were retrained using the com-
plete dataset, the performance differences noted during the
search phase became less significant. The model initially
trained on the largest dataset (20k), which exhibited the high-
est mean Intersection over Union (mIoU) in the architecture
search, surprisingly showed the lowest performance upon
retraining with the full dataset, see Table III.

The results do not indicate a strong correlation between
dataset size and final performance, suggesting that either an
element of randomness was at play or that the smaller subsets
were sufficiently representative of the full dataset for this
application.



Fig. 2: Validation mIoU on y-axis for different dataset sizes during search. The numbers to the right (40,25, 23, and 20)
indicate in what epoch the best-performing architecture was found. The x-axis reflects the number of epochs. For each
graph, smoothed (strong color) and raw versions (faint color) are shown.

E. Experiment 3: Comparative Evaluation

With the launch of Meta’s Segment Anything Model
(SAM) [10], we aimed to measure its performance against
our best model, Solis-seg. Ideally, we would fine-tune SAM
and compare its performance metrics with those of Solis-seg.
However, as this exceeds the scope of our current study, we
instead used the publicly accessible SAM.14

For our comparison, we uploaded RGB images from the
validation set, on which Solis-seg was not trained, to SAM.
We used the “segment everything” function to analyze the
entire image for coherent structures. SAM was not given
any specifics about what to identify, nor were any images
provided for training. These results are in other words strictly
zero-shot, with SAM attempting to segment any structures
in the image.

Some experimental results are shown in Figure 3. Three
distinct outcomes emerge from this analysis. Notably, SAM’s
performance varies significantly across different images. In
image A, where the solar farm is almost invisible to the
naked eye, Solis-seg presumably gains an advantage through
the use of spectral bands, as SAM fails to detect it entirely.
In image B, SAM clearly distinguishes the solar farm from
its surroundings, arguably drawing a more refined boundary
than the ground truth. For image C, it not only identifies
the solar farm but also segregates the various racks into in-
dividual partitions. However, these solar farms are relatively
large, and many images depict smaller solar farms that blend
into the environment and are challenging to detect even with
the human eye. We suspect that a model trained solely on

13Due to limited space we are not showing the architectures in this paper
and refer to the MS Thesis [21].

14https://segment-anything.com/demo

RGB might face increased difficulties with such images given
Sentinel’s resolution. While it might be possible to fine-tune
SAM with spectral bands, it is uncertain whether this would
enhance its accuracy [27].

Despite SAM’s impressive performance on some images,
this task of discovering new facilities might favor a special-
ized model such as Solis-seg over a generalized zero-shot
model. An interesting approach for future work would be to
combine SAM with a more specialized model to optimize
detection and obtain finer segmentations.

F. Experiment 4: Finding Solar Farms in New York

This experiment aims to deploy a model on novel satellite
imagery to identify solar farms, testing its viability as a
tool for discovering solar farms on unseen images. We
deployed Solis-seg, our best-performing model, to detect
new solar farms in satellite imagery covering New York
State from 2022. The model identified 874 polygons, which,
after accounting for multiple polygons representing single
facilities, represent approximately 583 potential solar farms.

Experimental results are illustrated in Figure 4 and Figure
5. Figure 4 depicts a solar farm found by our Solis-seg model.
Several of these locations are not documented in publicly
available databases such as OpenStreetMap.

While Solis-seg was effective in identifying numerous
solar farms, its performance was not as robust in the New
York dataset as it was with the solar farms in our validation
set. We noticed that the model detected some solar farms and
entirely missed others, suggesting challenges in generalizing
to new regions. A related challenge is the verification of the
model’s predictions due to the absence of up-to-date, high-
resolution imagery. As illustrated in Figure 5, this makes
it difficult to determine whether certain polygons are solar



Fig. 3: A comparison of predictions from our Solis-seg model
(third row) versus SAM [10] (bottom row) for three different
images A, B, and C.

farms or false positives. Despite these challenges, Solis-seg’s
real-world deployment was largely successful. We have made
the dataset of detected solar farms in New York publicly
available in a GitHub repository.15

V. DISCUSSION OF EXPERIMENTAL RESULTS

We now discuss the RQs identified in Section II in light
of the experimental results presented in Section IV.

A. Re-evaluating the Efficacy of Transfer Learning (RQ2)

The Solis-seg and Solis-transfer models differ solely in
their training methodology as detailed in Section IV-C.
Solis-seg is dedicated to the exclusive task of semantic
segmentation of solar farms, whereas the ResNet component
of Solis-transfer is initially trained to identify whether an
image does or does not contain a solar farm (classification),
and only thereafter it is trained for the task of segmentation.

Despite numerous trials with Solis-transfer, it has yet to
surpass an F1 score of 0.89 as seen in Table II. In contrast,
the single experiment conducted with Solis-seg yields a
significantly superior F1 score (0.962). This highlights the
effectiveness of Solis-seg’s task-specific training. The in-
crease in performance is attributable to the switch in training
strategy, as no other alterations were made during training.

This surprising outcome, in light of previous research [28],
suggests that the methods employed by the classification
model differ considerably from the pixel-wise recognition
performed during semantic segmentation. The competencies

15https://github.com/eolweus/autodeeplab.

Fig. 4: Example of a solar farm detected in New York state.

required for these tasks might diverge to the extent that
proficiency in one (classification) could potentially impede
the ability to learn the other (segmentation).

Moreover, the experimental results reported in Table II and
Table V highlight how the benefits of transfer learning are
not universally applicable, but are contingent upon various
factors including the degree of similarity between the source
and target tasks, and the specific nature of these tasks.

In summarizing our findings in Table V, we note that
our best-performing model surpassed the IoU score of 0.9
obtained by Kruitwagen et al. [11]. While an apples-to-
apples comparison between their and our DNNs using the
same datasets is infeasible, our results are notable given the
markedly higher relative score on our dataset.

B. Robustness for Satellite Image Segmentation (RQ1)

We now discuss our study of finding solar farms in images
for which the model was not trained. The results indicate
that we successfully identified solar farms in these untrained
images. An interesting finding from our experiments, re-
ported in Table V, is that out of 14 NAS trials, only a single
architecture outperformed any of the benchmarks, excluding
Solis-transfer. This raises questions about the effectiveness
and cost-benefit value of DARTS and Auto-DeepLab in this
context, which will be further elaborated in Section V-C.

Surprisingly, the randomly sampled architecture produced
by ChatGPT outperformed almost all of the architectures
identified via NAS (see the model referred to as “random” in
Table V). While this might be an outlier event and additional
random samples should be examined for validation, it raises
questions about the consistency and effectiveness of NAS in
yielding superior architectures for certain use cases.

Furthermore, in Table II, we observe that the performance
of most models was closely aligned with that of the random



Fig. 5: High-resolution image of an object the model thought
was a solar farm. It appears to be a gray rooftop.

model. This suggests that the search space may be densely
populated with models that deliver comparable performance,
making it difficult to continually progress toward an opti-
mal solution. This hypothesis is supported by studying the
search graphs, particularly the observation that most searches
peaked early. This pervasive challenge is credited by Chen
and Hsieh [3] to DARTS’ tendency to reach strong local
minima in the search space.

The influence of spectral bands in Sentinal-2 images on
NAS emerged as a significant factor. Separate trials were
conducted with architectures identified using a 10,000-image
dataset.16 A model trained solely with RGB data underper-
formed compared to models that utilized additional spectral
bands. Further trials are needed to conclusively attribute
this performance discrepancy to spectral band usage, but
this hints at Auto-DeepLab’s potential to leverage this extra
information effectively.

Overall, the top-performing NAS model, 10k-L, only
slightly lags behind the best-performing model, Solis-seg
(see Table II). This suggests that under appropriate condi-
tions, NAS can generate architectures that approach or even
match the state-of-the-art, even in specialized applications
such as satellite imagery segmentation. The robustness and
adaptability of NAS, despite its complexities and challenges,
underscore its potential.

C. Computational Trade-offs in NAS Application (RQ3)

In evaluating the efficiency of NAS, two main aspects
come into play: the potential performance gain and the im-
portance of this gain for the specific application. In our study,
NAS proved to be less time-efficient when compared to

16We refer to the MS Thesis [21] for details.

Dataset size Search time (h)
2k 20
5k 41

10k 62
20k 104

TABLE IV: Dataset size and search time.

Name Architecture mIoU F1-score
Solis-seg ResNet+DeepLabV3 0.9629 0.9621
10k-L Auto-DeepLab 0.9593 0.9582
ADL-cs Auto-DeepLab 0.9586 0.9575
random Auto-DeepLab 0.9565 0.9552
2k Auto-DeepLab 0.9563 0.9550
Solis-transfer ResNet+DeepLabV3 N/A 0.89

TABLE V: The top 5 models ranked by validation mIoU
obtained during retraining. The model 10k is omitted as it has
the same architecture as 10k-L. It would have been placed
between ADL-cs and random, see Table II.

traditional methods (see Table IV). Specifically, the Solis-seg
model took 46 hours to train, while the average training time
for NAS-derived architectures was around 59 hours. These
figures do not yet account for the additional search time
required by NAS, as shown in Table IV. When considering
both the search and training times, the total computational
time for NAS architectures vastly exceeds that for Solis-
seg. This casts doubt on the cost-effectiveness of NAS,
particularly when an off-the-shelf model like ResNet50-
DeepLab (Solis-seg) performed best on our dataset after 14
NAS trials (see Table II).

Reflecting on the top five models derived from our study,
as shown in Table V, three out of the five top perform-
ers are baseline models that we originally proposed for
comparison. Interestingly, even a randomly suggested model
outperformed all but one model discovered through NAS.

While the search outcomes reported in Table III might not
seem particularly outstanding—failing to surpass a ResNet-
based model, marginally exceeding a model found by search-
ing on a different dataset, and the curious case of a random
model outperforming all but one NAS architecture—it is
important to recognize that the top model found through
the search, 10k-L, does not lag significantly behind the best
model, Solis-seg.

In Table III and V we note that all models outperform
Solis-transfer, implying that the DARTS search space is
replete with viable architectures. Additionally, given the low-
resolution nature of the images in this study, this presents a
relatively unconventional segmentation problem. Considering
this, the results speak to the robustness and versatility of the
models derived from the DARTS search space.

Moreover, the high computational cost of NAS, see Ta-
ble IV, could potentially deter researchers with constrained
computing resources. Without access to a computing cluster,
this research project would have likely spanned well over a
hundred continuous training days on an NVIDIA RTX-3090
GPU. All these considerations should be factored in when
deciding whether to employ NAS, further emphasizing the
need for a case-by-case approach to the application of this



technology.

D. NAS versus Foundation Models (RQ4)

NAS offers a mechanism to craft models optimized for
particular tasks or datasets. This specialization, as our Exper-
iment 4 suggested, can exploit additional image information
like Sentinel-2’s spectral bands, typically overlooked by
broader models like SAM. This ability to tailor architec-
tures to specific problems pushes performance boundaries,
provides valuable insights into the nature of tasks, and can
lead to efficient models adept at solving unique problems.
However, this comes at a substantial computational cost, and
the solutions may lack generalizability across diverse tasks.

Conversely, generalized models such as GPT-4 and SAM
are designed to perform well across a broad range of
tasks within a specific domain. These models leverage large
amounts of diverse data, becoming proficient in multiple
areas. They offer a holistic approach, handling various
tasks without task-specific customization. However, their vast
size may not result in the peak task-specific performance
achievable by a NAS-generated model. Additionally, their
large sizes often translate to high resource requirements and
substantial environmental impact, restricting who can train
these new networks. Once trained, many of these models
become openly available and can be used for various tasks.

The balance between specialized and generalized models
will likely continue to shift as technological advances and
computational resources evolve. Future research may explore
hybrid strategies, blending the customization of NAS with
the broad applicability of large-scale generalized models,
or new approaches may emerge. The trade-offs between
these paradigms suggest potential integration in hybrids. It is
plausible that NAS could design future massive generalized
models. While large, generalized models have proven pro-
ficient, the ability of NAS to tailor architectures to specific
problems could refine such models, ensuring efficiency and
improving performance.

VI. CONCLUSION AND FUTURE WORK

Addressing the global need for renewable energy moni-
toring, this work introduces Solis-seg, a DNN for solar farm
segmentation in Sentinel-2 satellite imagery. Solis-seg has a
strong mean Intersection over Union (IoU) of 96.26% on a
continental-scale dataset. We also demonstrate the practical
application of NAS in semantic segmentation of Sentinel-2
satellite imagery, a largely unexplored domain for NAS. Our
results suggest that NAS methodologies, specifically Auto-
DeepLab [14], can leverage additional image data, such as
spectral bands, offering avenues for creating data-rich models
in specialized tasks.

Contrary to popular practice, our results lead us to ques-
tion the efficacy of transfer learning from classification
to semantic segmentation, suggesting that this approach
may compromise performance. Our study also emphasizes
the need to weigh the benefits of NAS against practical
constraints like computational resources, particularly when
computing resources are limited. Finally, we contribute an

open dataset of New York solar farms, enriching publicly
available resources for further research in this field.

The decision of whether or not to use NAS hinges on
the importance of incremental performance improvement and
the available alternatives to increase the performance of the
model. In our case, it might be more productive to allocate
resources toward enhancing other aspects of the model,
such as augmenting the quality and volume of data [12] or
investigating the optimal combination of spectral bands.

Future research could combine our models with Kruit-
wagen et al.’s dataset. This would enable apples-to-apples
evaluation of our models in a more expansive and diverse
setting. Unfortunately, developing a data pipeline, akin to the
one employed by Kruitwagen et al., that integrates their data
with one of our trained models, is a substantial undertaking.
This is due to the complex nature of these pipelines. This
complexity is why we have not tried to perform this integra-
tion in our current study. The challenges uncovered in the
New York pilot study, discussed in Section IV-F, underscore
the importance of diverse training data. The model’s struggle
to generalize indicates that it could benefit from a more
diverse dataset that includes various architectural styles,
landscapes, and environmental conditions. Future work on
creating and distributing such datasets would be fruitful.

Finally, it is crucial to remember that NAS is a relatively
nascent field, despite much progress [6], [29]. As with many
emerging technologies, it will likely undergo considerable
refinement and become more efficient and accessible in the
coming years. Future advancements might mitigate many
of the current limitations, enabling more widespread and
accessible usage.

APPENDIX

A. Training Environment and Data

Our experiments were conducted on a Computing Cluster
equipped with NVIDIA A100 and V100 GPUs. Some tests
also utilized an NVIDIA RTX 3090.

A collection of over 200,000 Sentinel-2 level-2A images,
serves as the empirical foundation of our research. We will
refer to this dataset as the Solis dataset. Each image is
a 224x224 pixel chip with 12 bands, and approximately
half are positive examples featuring solar farms. The masks
are either hand drawn, sourced from OpenStreetMap,17 or
generated by prior deployments of our Solis-transfer model.
To counter potential biases and overfitting, we employed a
diverse set of images from various geographical regions. Data
augmentation techniques, including random horizontal and
vertical flips, were applied to enhance model robustness.

B. Implementation and Parameter Selection

We use Auto-DeepLab (ADL) in experiments, specifi-
cally we study the impact of how ADL enhances a cell-
centric search space [15] via a hierarchical component to
manage spatial resolution during search [19]. In line with
DeepLab conventions, the architecture search concludes with

17https://wiki.openstreetmap.org



an Atrous Spatial Pyramid Pooling (ASPP) module [1].
However, unlike traditional DeepLab models, ADL utilizes
only three branches in the ASPP module instead of the
typical five [14].

Our research utilized a PyTorch adaptation of the original
ADL model18 modified to work with our data loaders and
with minor enhancements to memory usage, code readability,
checkpointing, and model monitoring. This codebase serves
as the foundation for all our experiments and is available for
public scrutiny. In terms of parameter settings, we followed
Liu et al. [14], with modifications to suit our specific
hardware. For instance, we adjusted the batch sizes to 22
or 12 depending on the available GPU memory.

C. On the Random Model

Auto-DeepLab architectures are represented by two arrays,
detailing macro- and micro-architecture, each bound by
specific constraints. To illustrate, here’s the prompt given to
ChatGPT:

Give me two random arrays that look kind of like
this: [0 0 0 1 2 1 2 2 3 3 2 1] [[0 7] [1 4] [2
4] [3 6] [5 4] [8 4] [11 5] [13 5] [17 5] [19
7]] For the first array, the length should be 12,
and the numbers have to be in range 0-3, also,
the difference between subsequent numbers cannot
be larger than 1. For the second array, the right
number in each instance is between 0-7; the left
side is between 0 and 19.

The constraints for the micro-architecture (the second
array) are a bit stricter in reality. Still, after making it retry a
few times, ChatGPT generated arrays that, with the modifica-
tion of just one out of 20 numbers in the micro-architecture
array, conformed to these constraints. This encoding system
is not described in the original paper [14].
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