
Green Urban Mobility with Autonomous Electric Ferries: Studies of
Simulated Maritime Collisions using Adaptive Stress Testing

Jan-Marius Vatle,∗ Bjørn-Olav Holtung Eriksen,⋆ and Ole Jakob Mengshoel◦

Abstract— With 90% of the world’s goods transported by
sea vessels, it is crucial to investigate their safety. This is
increasingly important as autonomy is being introduced into
sea vessels, which transport goods and people. To study the
safety of an autonomous ferry’s collision avoidance system, we
consider the Adaptive Stress Testing (AST) method in this work.
AST uses machine learning, specifically reinforcement learning,
along with a simulation of a system under test—in our case, an
autonomous and electric ferry—and its environment. Whether
that simulation is fully or partially observable has implications
for the integration into existing engineering workflows. The
reason is that the fully observable simulation induces a more
complex interface than the partially observable simulation,
meaning that the engineers designing and implementing AST
need to acquire and comprehend more potentially complex
domain knowledge. This paper presents maritime adaptive
stress testing (MAST) methods, using the world’s first au-
tonomous, electric ferry used to transport people as a case
study. Using MAST in multiple scenarios, we demonstrate that
AST can be productively utilized in the maritime domain.
The demonstration scenarios stress test a maritime collision
avoidance system known as Single Path Velocity Planner (SP-
VP). Additionally, we consider how MAST can be implemented
to test using both fully observable (gray box) and partially
observable (black box) simulators. Consequently, we introduce
the Gray-Box MAST (G-MAST) and Black-Box MAST (B-
MAST) architectures, respectively. In simulation experiments,
both architectures successfully identify an almost equal number
of failure events. We discuss lessons learned about MAST
including the experiences with both the Gray-Box and Black-
Box approaches.

I. INTRODUCTION

Among the 17 sustainable development goals (SDGs) of
the United Nations, we find SDG 11:1 “Make cities and
human settlements inclusive, safe, resilient and sustainable.”
To meet this SDG, there is a move towards more sustainable
transportation, for example by means of electric vehicles
[30]. A recent development is the concept of small, electric,
autonomous passenger ferries for urban areas. Such ferries
can operate in networks on urban waterways, connecting
cities across rivers, canals, harbor basins, and lakes. With
growing cities in need of safe and sustainable transport
for all, this new mobility model can solve challenges with
increasing road congestion and emissions, enabling more
citizens to walk or bike and combine those transportation

∗Jan-Marius Vatle is currently with KodeWorks, Trondheim,
Norway. This work was done while he was at NTNU.
janmarius.vatle@outlook.com

⋆Bjørn-Olav Holtung Eriksen is with Zeabuz, Trondheim, Norway.
bjorn.olav.eriksen@zeabuz.com

◦Ole Jakob Mengshoel is with the Department of Computer Science,
NTNU, Trondheim, Norway. ole.j.mengshoel@ntnu.no

1https://sdgs.un.org/goals/goal11

Fig. 1: The world’s first autonomous electric passenger ferry,
milliAmpere 2 (mA2), in operation in Trondheim, Norway.

modes with other forms of micro-mobility. Autonomous op-
eration will be necessary to make this new mobility mode—
the small, electric passenger ferry—truly scalable and enable
ubiquitous availability.

With this backdrop, researchers at NTNU have since 2016
been developing supporting concepts and algorithms and
deployed two operational ferry prototypes: the milliAmpere
1 and 2 [24], [3]. In September 2022, the milliAmpere 2
(mA2) was put into trial operation in Trondheim, Norway,
transporting passengers across a canal in the city center as
shown in Figure 1. This became the world’s first autonomous
passenger ferry in public operation, completing 400 crossings
and transporting about 1,500 passengers over a period of
three weeks. This again leads to the maritime transport
company Torghatten and the NTNU spin-off company Ze-
abuz launching the world’s first commercial autonomous
passenger ferry, MF Estelle, in June 2023 in Stockholm,
Sweden.2

A previous version of the autonomous navigation system
for mA2 is the system under test (SUT) in this work.
Autonomous electric ferries like mA2 operate in complex
stochastic environments. As a consequence, it is very hard to
entirely eliminate their failures. Furthermore, real-world test-
ing can be too dangerous or too time-consuming to perform
during development, and the use of formal verification such
as model checking [5] may be too complex. Simulation-based
techniques resorting to statistical considerations can address
these issues, and simulation of autonomous vehicles and

2https://www.zeabuz.com/torghatten-and-zeabuz-make
-history-in-stockholm/

vessels is well-established [26], [15], [23], [10]. Moreover,
work done with airborne collision avoidance systems and
autonomous vehicles shows successful safety validation by
applying a stress testing framework called Adaptive Stress
Testing (AST). The framework is based on reinforcement
learning (RL) techniques and adaptively finds the most
likely path to a failure event for the SUT in a simulated
environment [15], [12], [17], [19], [10].

Among failure events, collisions are prominent in the
maritime sector. The European Maritime Safety Agency
(EMSA) reports the following in 2023 [1]: “From 2014 to
2022, there was a total of 6,781 injuries in 5,941 marine
casualties and incidents, the average of injuries in that period
was 753 injuries per year. [...] The main events resulting
in injuries from 2014 to 2022 were ‘slipping / stumbling
and fall’ for occurrences with persons and ‘collision’ for
occurrences with ships.”

To test a collision avoidance system in the maritime
domain, this work3 proposes an architecture called Maritime
Adaptive Stress Testing (MAST). MAST extends the exist-
ing AST architecture [15], [17] for the purpose of testing
maritime autonomous collision avoidance systems, focusing
on the Single Path Velocity Planner (SP-VP) used by mA2.
Two MAST architecture variants are developed and studied,
namely Gray-Box Maritime Adaptive Stress Testing (G-
MAST) and Black-Box Maritime Adaptive Stress Testing
(B-MAST). They are used, respectively, for fully observable
(Gray-Box) and partially observable (Black-Box) simulations
of mA2’s performance when encountering other vessels in
1,000s of simulation runs. Using the Gray-Box simulator
with G-MAST requires more domain knowledge than testing
with a Black-Box simulator with B-MAST. On the other
hand, G-MAST gives more control than B-MAST. Given
this trade-off, investigating empirically the performance of
G-MAST versus B-MAST for the purpose of adversarially
generating failure events is of interest. Empirically, we find
that using B-MAST, approximately 8.1% of the simulations
resulted in failure events, while approximately 9% of the G-
MAST simulations gave failure events. This demonstration
suggests that both the G-MAST and B-MAST approaches
can be used to induce failure events in the maritime setting.
Furthermore, these results increase the confidence in mA2’s
behavior in a range of situations when using SP-VP.

II. BACKGROUND
In this section, we introduce the maritime setting and, in

particular, the dynamics of marine vessels including mA2.
We then cover mA2’s motion planning method before dis-
cussing previous research on stress testing, including AST.
Much previous work related to AST focuses on airborne
collision avoidance systems and autonomous systems, and
we consider key differences to our research in this paper.

A. Marine Vessel Dynamics

The dynamics of a marine vessel are often described using
Six Degrees of Freedom (6DOF), which are the set of inde-

3This paper builds upon the MS Thesis of Jan-Marius Vatle [31].

0 20 40 60 80
Position East E [m]

20

40

60

80

100

P
os

it
io

n
N

or
th
N

[m
]

ROC

HPR

LPR

Obstacle Vessel

Fig. 2: This is SP-VP’s obstacle representation. The obstacle,
a point, and its heading, a line segment, are in yellow. In
red is the Region of Collision (ROC), in green is the High
Penalty Region (HPR), and in blue is the Low Penalty Region
(LPR).

pendent displacements and rotations that define the displaced
position and orientation of the vessel. For marine vessels
that do not have actuation in all 6DOF and operate under
certain conditions, it is possible to simplify the simulation
and use reduced-order models [8]. For mA2, the following
assumptions apply [8]: First, marine vessels operating at
relatively low speeds can neglect the Earth’s rotation, and
thereby the Earth-centered, Earth-fixed coordinate system
ECEF-frame can be considered to be inertial. Second, for
marine vessels operating in a local area with approximately
constant longitude and latitude, an Earth-fixed tangent plane
on the surface of the Earth is used for navigation.4 Third, for
marine vessels that operate in the calm sea one can assume
that the displaced orientations in roll and pitch are to be
arbitrarily small. Therefore, the components corresponding
to heave, roll, and pitch can be neglected.5

The above three assumptions make it possible to describe
the dynamics of a marine vessel such as mA2 using Three
Degrees of Freedom (3DOF). Equation 1 expresses the
positions and orientations of the marine vessels in 3DOF
in vector form, represented by η:

η = [N,E,ψ]T . (1)

Here, N and E represent the marine vessel’s displaced posi-
tions in the reference frame, and ψ represents the displaced
orientation.

Equation 2 shows the mathematical notation for the ve-
locity components, which is divided into linear and angular

4Due to this, the NED-frame can be assumed to be inertial.
5Roll, pitch, yaw, surge, sway and heave describe different ship motions.

Roll, pitch, and yaw are rotaional motions while surge, sway, and heave are
translational motions.

velocities, represented by ν:

ν = [u, v, r]T . (2)

Here, u and v represents the linear velocities in surge and
sway, respectively, while r represents the angular velocity in
yaw. For horizontal plane models, the kinematic equations
can, when assuming calm sea and no weather such as wind,
be expressed as:

η̇ = R(ψ)ν,

Mν̇ +C(ν)ν +D(ν)ν = τ .
(3)

Here, M is the mass matrix, C(ν) is the centripetal and
Coriolis matrix, and D(ν) is the damping matrix. Since
the only rotation is about the z-axis (yaw), we get R(ψ)
in Equation 4 expressed as:

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (4)

The marine vessels in the simulator, including mA2, use
Equation (3) and Equation (4) for their dynamics.

B. Single Path Velocity Planner (SP-VP)

With the aim of ensuring collision-free maneuvers from
the start to its goal waypoint, mA2 uses SP-VP as its motion
planning system. SP-VP behaves as a maritime autonomous
collision avoidance system [28], [29], [2]. SP-VP is devel-
oped for autonomous passenger ferries operating in confined
waters, which is an area of the sea with a relatively narrow
waterway relative to the marine vessel’s ability to maneuver.
SP-VP is provided with a predefined waypoint mission,
which must be collision-free with respect to static obstacles,
such as islets and breakwaters. The collision avoidance prob-
lem thus becomes a velocity planning problem, which means
that mA2 only plans a velocity profile with speed change
maneuvers and does not apply course change maneuvers.

The SP-VP method does not fully align with the Inter-
national Regulations for Preventing Collision at Sea (COL-
REGs) when maneuvering in sight of other vessels [3]. The
reason is that COLREGs rules rely more on course change
maneuvers than speed change maneuvers to avoid collisions.
SP-VP tracks dynamic obstacles such as other vessels with
an update rate of 0.25 Hz, and applies a simplified obstacle
representation for robustness and ease of computation (see
Figure 2). Three diamond-shaped safety regions, each a Re-
gion of Collision (ROC), are shown. The ROCs surround the
point considered to be the obstacle represented in a North-
East-Down frame. The ROCs are slightly asymmetric with
an increased size on the starboard side. This is a common
approach for “motivating” collision avoidance algorithms to
choose more COLREGs-compliant maneuvers.

An ROC includes an obstacle’s dimensions and the di-
mensions of mA2. Consequently, mA2 can be considered as
a point when constructing SP-VP’s visibility graph. The re-
gions can be calculated using the method of Thyri et al. [29].
The obstacle vessels are transformed into a path-time space
and are then constructed as a conditioned visibility graph and

traversed with Dijkstra’s algorithm [7] in order to compute
a collision-free velocity profile. A similar decomposition
method is proposed by Kant et al. [11].

SP-VP is summarized here to provide the domain knowl-
edge necessary to read this paper. We take SP-VP for granted
as it is used for the mA2 ferry. However, we do not test
every detail of SP-VP. Other methods to control the ferry
exist, such as model-predictive control [10], but SP-VP is an
important method for mA2.

C. Adaptive Stress Testing (AST)

AST was introduced by Lee et al. [15] in 2015 to test
airborne collision avoidance systems. AST uses Reinforce-
ment Learning (RL) to stress test a prototype of the next-
generation Airborne Collision Avoidance System (ACASX).
The goal is to find, using a simulator, the most likely path
to a near mid-air collision [15], [17]. This aerospace setting
induces a large search space, in which exhaustive search is
unrealistic and failure states can be hard to find.

Lee et al. discuss different AST architectures, with an
important consideration being whether the simulator is fully
observable or partially observable; this is what we refer to as
Gray-Box and Black-Box simulation respectively. A variant
of Monte Carlo Tree Search (MCTS), Monte Carlo Tree
Search for Seed-Action simulators (MCTS-SA), is proposed.
MCTS-SA only requires access to the pseudorandom number
generator of the simulator to overcome partial observability
and uses progressive widening. Progressive widening is in-
troduced due to the large action space consisting of all pos-
sible pseudorandom seeds. This simulator has deterministic
behavior since the same pseudorandom seed always leads to
the same next state from the previous state. In other words,
the transition behavior of the simulator is deterministic [17].

Lee et al. [18] extend the AST framework with regression
testing to find failures that occur in one system but not
in another. This extended framework is called Differential
Adaptive Stress Testing (DAST). DAST is used to compare
ACASX with Traffic Alert and Collision Avoidance (TCAS),
to test the performance of ACASX relative to TCAS. DAST
works by searching two simulators simultaneously and max-
imizing the difference between their outcomes [18].

It is essential to understand how failures occur to be able
to design, evaluate, and certify safety-critical systems. In this
context, AST and DAST contributed to the certification case
of the ACASX, which led to the technical acceptance of
ACASX [17].

Lipkis et al. [19] use AST to test the Airborne Collision
Avoidance System for smaller UASs (ACAS sXu). Their
work aims to provide detect-and-avoid capability for small
unmanned aircraft operating beyond line-of-sight. They use
a different approach compared to Lee et al. [17], in that they
apply Deep Reinforcement Learning (DRL) with a Proximal
Policy Optimization (PPO) algorithm [25]. The goal is to
search more efficiently through the large and continuous state
space. Using this approach they found several failure events,
which were useful for the refinement of ACAS sXu.

An autonomous vehicle needs to be equipped with a
decision-making system. Koren et al. [12] present a method
for testing the decision-making system of autonomous vehi-
cles. They formulate the problem as a Markov decision pro-
cess and use RL algorithms to find the most likely failures.
They show that extending AST to use DRL improves the
efficiency of the original AST, which uses an MCTS variant.
Koren et al. simulate autonomous vehicle scenarios involving
pedestrians approaching a crosswalk. They conclude that
DRL can find more likely failure scenarios than MCTS in
addition to finding them more efficiently [12].

We now discuss this work’s relationship to previous work.
First, we note that most previous AST research has focused
on aircraft [15], [16], [17], [19] or cars [12]. That said, there
is some AST research in the maritime setting [10]. Similar to
us, Hjelmeland et al. study AST as applied to an autonomous
small passenger ferry [10]. They demonstrate that AST
can be used to find failures, specifically collisions with
adversary vessels. Different from us, they do not consider
the interaction of mA2 using SP-VP with multiple obstacles
nor the question of Black-Box versus Gray-Box simulation
for AST. In fact, we are not aware of any previous work that
empirically studies the pros and cons of Black-Box versus
Gray-Box simulation for AST.

III. MARTITIME VESSEL SIMULATOR

Our simulator is a continuous-space and discrete-time
simulator that uses the assumptions presented in Section
II-A and flat earth navigation with 3DOF. It is purpose-
made for testing collision avoidance systems like SP-VP.
The simulator provides two types of vessels, mA2 and
obstacle vessels. The mA2 ferry operates with complex
dynamics and is always equipped with the SP-VP controller.
The obstacles are first-order control systems using first-
order differential equations for their transfer function and
proportional–integral–derivative (PID) controllers for speed
and heading control [32]. The marine vessels’ heading ψ
operates in the unit circle; their dynamics are based on the
kinematic equations discussed in Section II-A.

Figure 3 shows an example simulation frame consisting of
mA2 and two first-order obstacle vessels. The positions of the
three vessels are represented by solid circles with different
colors. Diamond-shaped dashed lines around the obstacles
are true ROCs. The true ROCs differ from the ROCs that
SP-VP uses to represent obstacles by not being affected by
noise or delayed due to SP-VP’s update rate of 0.25 Hz.

A. Failure Events

A failure event is defined as a collision between mA2
and one or more obstacles in the simulation. More formally, a
collision occurs if mA2 intersects one of the obstacle vessels’
true ROC. The failure events can, at an intuitive level, be
classified into: side collisions, which are when a vessel is
struck on the side by another vessel; bow-on collisions,
which is when two vessels strike each other head-on; and
stern collisions which take place when one vessel runs into
the aft of another. Other factors such as the speed and number

−100 −50 0 50 100 150

Position East E [m]

0

50

100

150

200

P
os

it
io

n
N

or
th
N

[m
]

Waypoint Mission

ROC

HPR

LPR

Obstacle 1 True ROC

Obstacle 2 True ROC

milliAmpere

Obstacle 1

Obstacle 2

Fig. 3: Two obstacles and mA2 are shown. The mA2 vessel
and its course are shown with an orange dot and solid line
segment, respectively. The dashed black line shows mA2’s
waypoints. The solid red, green and blue lines, are ROC,
HPR and LPR of SP-VP, respectively. The obstacles are
represented by markers for every second of the simulation.
Obstacle 1 is in light blue with circles as markers and
Obstacle 2 is in purple with diamonds as markers. True
ROC is an obstacle’s region that indicates an actual collision,
it differs from the SP-VP ROC due to noise given to the
collision avoidance system.

of obstacles also play important roles, as will be seen in
Section V.

While using AST to search for failure events, we discov-
ered that most found events were caused by obstacle vessels
colliding with mA2 while mA2 was stationary, similar to a
kamikaze attack on a stationary ship. However, collisions
when mA2 is not moving are not really a failure in its
maritime collision avoidance system. Thus we redefined a
failure event as a collision when mA2 was also in motion.
After the search was finished, we manually reviewed the
failure events found by AST. Since AST assigns the highest
scores to the most likely failure events, we selected those.
We then looked at the failure events that we found most
interesting in terms of their realism and analyzed them
further. The overall approach is illustrated in Figure 4.

B. Simulator Interface

To make it possible for AST’s RL-agent to interact with
the simulator, the following functions are defined. These
functions are fundamental for both the G-MAST and B-
MAST architectures investigated in this work.

The steer-obstacles function makes it possible for the RL-
agent to steer the obstacle vessels. A reference surge speed
u∗ and vessel reference heading ψ∗ is chosen by the RL-
agent and given to the obstacle controllers, which in turn

Fig. 4: An overview of how MAST, which is the key part
of “Scanario-based testing,” fits into the overall engineering
workflow. Two MAST variants are considered, namely G-
MAST (Figure 5) and B-MAST (Figure 6).

controls the obstacles to achieve the reference speed and
heading.

The control-SP-VP-noise function is used to add noise
to the obstacle estimates that SP-VP uses. This is intended
to replicate the behavior of a sensor-based tracking system
which produces estimates with a certain amount of noise. To
model this, the simulator uses a Gauss-Markov process.

The is-failure-event function checks whether a failure
event, as defined in Section III-A, has occurred.

The calculate-distance function computes the distance
between two vessels in the NED-frame, using Euclidean
distance:

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2. (5)

Here, p and q are points with Cartesian coordinates (p1, p2)
and (q1, q2), respectively. When there are multiple obstacle
vessels in the simulation, the average of all distances between
mA2 and the obstacle vessels is returned.

The calculate-transition-likelihood function calculates
the simulator’s transition likelihood p(x|s). This function
is only needed for the B-MAST approach; the G-MAST
approach calculates the transition likelihood in the reward
function. In the simulator, a state transition occurs every 0.1s
second. In each transition, mA2 is controlled by SP-VP, and
the obstacle vessels are controlled by the RL-agent. During
this transition, the vessels are moved to their next position in
the NED-frame based on their given ν and η, as described in
II-A. The simulator transitions are deterministic when using
the Gray-Box approach, and deterministic given a pseudo-
random seed input when using the Black-Box approach.

To reset the simulator to its initial conditions and re-set
the initial seed, a reset function is implemented.

A step function is also implemented. In G-MAST, the
step function takes in disturbances x while B-MAST uses
pseudorandom seeds. These inputs are provided by the RL
agent and given to the simulator. The step function interacts
with the simulator at a rate of 1s, but the simulator is updated
at a rate of 0.1s. However, the state s is only returned to the
RL agent from the simulator with a rate of 1s. More details
about states and disturbances can be found in IV-C.

Speed Heading
Controller

Simulator

SP-VP Controller

Obstacle

Reward
Function

SP-VP
Noise

true
position

estimated
position

milliAmpere

Adaptive Stress Testing

Reinforcement
Learner

reward r

Failure event
checker and

distance
measure. State
format handler.

failure event e,
distance to failure event d

disturbance x:

Disturbance
handler

next state s'

Fig. 5: This illustrates the G-MAST architecture. The RL-
agent chooses disturbances that are sent to the simulator’s
disturbance handler. The simulator’s disturbance handler
sends the disturbances to the right parts of the simulator.
The reference surge speed u∗ and heading ψ∗ are sent to
the Speed Heading Controller. And the noise is given to the
SP-VP tracker. The simulator then updates and transitions
into its next state, and the state of the vessels is given to
the failure event checker, distance measure, and state format
handler. Then the simulator returns a boolean indicating if
the state is a failure state or not e, the distance to failure
d, and the next state of the simulator. The reward function
calculates the transition likelihood in this architecture and
the reward r is sent to the RL-agent.

IV. ADAPTIVE STRESS TESTING METHODS

We propose two adaptive stress testing architectures,
G-MAST and B-MAST, for use in fully observable and
partially observable simulators, respectively. The proposed
architectures enable MAST usage with both fully and par-
tially observable simulators. The G-MAST architecture (see
Section IV-A) is designed for fully observable simulators.
However, many simulators restrict access to some or all
state information for confidentiality reasons, due to privacy
concerns, or to make them more accessible to testers without
domain knowledge. In other words, such simulators are
not fully observable. Therefore, we introduce the B-MAST
architecture (see Section IV-B) to be used with partially
observable simulators.

A. Gray-Box Architecture

G-MAST extends the existing AST architecture by tai-
loring it to the maritime domain. G-MAST is a suitable
solution when the simulator makes its environment variables
and state available. The RL agent then samples the variables,
or disturbances, directly from probability distributions that
vary between disturbances (see Section IV-C).

Speed Heading
Controller

Simulator

SP-VP Controller

Obstacle

Pseudorandom
Number Generator

Reward
Function

SP-VP
Noise

true
position

estimated
position

Speed and
Heading

Reference

milliAmpere

action-seed

Adaptive Stress Testing

Reinforcement
Learner

reward r

Failure event
checker and

distance measure

transition likelihood ,
failure event e,

distance to failure event d

Fig. 6: This shows the B-MAST architecture. The RL-agent
sends an action-seed to the simulator in each simulator
step. The pseudorandom number generator in the simulator
is used to sample environment disturbances internally. The
disturbances are the reference surge speed u∗ and heading ψ∗
and noise to SP-VP. The transition likelihood is calculated
internally in the simulator for B-MAST.

Figure 5 shows the G-MAST architecture and how it inter-
acts with the maritime vessel simulator, using the functions
discussed in Section III-B. It is possible to simulate more
than one obstacle, but for simplicity, only one obstacle vessel
is illustrated. In each iteration, the simulator checks if the
current state is a failure event e, computes the distance to
failure d, and formats the state to a one-dimensional vector
which is sent back to AST. The reward function calculates
the transition likelihood in this architecture and returns the
reward r to the RL-agent.

B. Black-Box Architecture

The B-MAST architecture, see Figure 6, is suitable for
simulators that do not reveal their environment variables and
where all the updates of the simulator happen internally. Only
a random seed, referred to as an action-seed x̄, is chosen
by the RL-agent and given to the pseudorandom number
generator of the simulator. The pseudorandom number gen-
erator is then used by the Speed and Heading Reference
handler to sample a random reference surge speed u∗ and
heading ψ∗ for the obstacle’s Speed Heading Controller.
The pseudorandom number generator is further used to
generate random noise in the SP-VP tracking system. The
simulator works similar to the G-MAST approach, but the
disturbances in the environment are now sampled internally
in the simulator. The B-MAST approach is suitable, as an
example, for simulators that are provided as software binaries
not revealing their internal states [17].

C. States and Disturbances

In the G-MAST architecture, a state is returned to MAST.
The state s is represented as:

s = [Nm, Em, ψm, No1, Eo1, . . . , Non, Eon, ψon], (6)

where N , E, and ψ are the North position, the East position,
and the heading of a vessel, respectively. The subscript m
denotes mA2, which is the SUT. The subscript on denotes
that the vessel is an obstacle o and the number of the obstacle
vessel n. Due to its simulator-internal handling, the B-MAST
architecture does not pass the state s from the simulator to
AST. The state is considered terminal if the simulation has
reached its user-defined maximum number of steps or if it
has resulted in a failure event as described in III-A.

The disturbances are sampled from the same types of
distributions in both G-MAST and B-MAST. We use three
types of disturbances, namely the reference surge speed u∗,
the reference heading ψ∗ of the obstacle vessel, and the
noise to SP-VP. The vessel reference speed u∗ and reference
heading ψ∗ are sampled from a truncated normal distribution
[4]. The reference surge speed u∗ use the truncated normal
distribution with a minimum allowed velocity umin and a
maximum allowed velocity umax. The mean of the distri-
bution is set to the velocity that should be treated as most
likely in the given scenario. The standard deviation σ is set to
sample both the minimum and maximum values with some
frequency. The same approach is used for the heading ψ,
but here the mean is set to the initial heading. This makes
the initial heading of the vessel most likely, while deviation
from it are less likely. The noise is sampled using a Gaussian
distribution with the mean µ = 0 and standard deviation
σ = 1.0.

D. Reward Functions

The G-MAST and B-MAST architectures use different
types of reward functions. Since the simulator in the G-
MAST architecture returns the state s, the G-MAST reward
function calculates the transition likelihood similar to previ-
ous work [15], [17]:

R(s, x) =

RE if s is terminal and s ∈ E

−d if s is terminal and s /∈ E

log(p(x|s)) otherwise.
(7)

Here, RE is the reward when a failure event e is found.
This is set to be high enough to outweigh the maximum
cumulative unlikeliness.

In contrast, the B-MAST reward function is:

R(ρ, e, d, τ) =

RE if τ ∧ e
−d if τ ∨ ¬e
log ρ otherwise.

(8)

The B-MAST reward function does not have the state s and
the disturbance x available from the partially observable sim-
ulator. Instead, the simulator returns the transition likelihood
ρ, a boolean indicating if it is a failure event e, a miss
distance d, and a boolean indicating if the simulator is in

TABLE I: mA2 SP-VP regions configurations

SP-VP Obstacle Region Margins
Fore lf Starboard ls Aft la Port lp

ROC 32.5 22.5 22.5 22.5
HPR 37.5 32.5 27.5 27.5
LPR 52.5 37.5 32.5 32.5

a terminal state τ . The transition likelihood ρ is calculated
internally in the simulator for B-MAST.

If we compare the reward function for the G-MAST
approach and the B-MAST approach, we see that the reward
is calculated in the same way. The difference is that some of
the parts needed in the equations are calculated internally in
the partially observable simulator for the B-MAST approach.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We search for failure events by considering three types
of scenarios: The first scenario type involves fast-moving
obstacles, the second type involves slow-moving obstacles,
and the last one contains two fast-moving obstacles.6 The
maximum time for each simulation is 100 seconds for fast-
moving obstacles and multiple fast-moving obstacles, and
150 seconds for slow-moving obstacles.

In single-obstacle scenarios, the initial position of the
obstacle vessel was chosen on the starboard side of mA2.
An additional obstacle was placed on the port side of mA2
in the experiments with multiple obstacles.

The existing SP-VP simulator, previously used for manual
testing, was adapted for automated use within MAST. Code
implementing the definition of a failure event and the RL-
agent’s steering of obstacle vessels were among the things
added. Both variants of the MAST architecture, namely G-
MAST and B-MAST, were implemented.

The specifications of the computer and software used in
experiments are as follows. The operating system is Arch
Linux x86_64, with the kernel version 5.19.5-arch1-1. The
CPU is a Intel i7-6700K 4.2 GHz, the GPU is NVIDIA
GeForce GTX 980, and 32 GB RAM. The programming
languages used were Python 3.9.13 and Julia 1.7.3. The
AST software used was the Julia package AdaStress 0.1.0,
developed by the Robust Software Engineering technical
area, based in the Intelligent Systems Division at NASA’s
Ames Research Center.

B. Configurations for mA2

The same mA2 configurations are used in all of the exper-
iments. The regions for the SP-VP obstacle representations
are shown in Table I. The reason why the margins are so
large is due to including the dimensions for the mA2 vessel

6While collisions with moving obstacles are an important maritime safety
concern [1], it would be very interesting to consider other hazards. This
includes, for example, stationary objects in the path of the mA2 vessel. In
this case, unless there is a collision, mA2 using SP-VP adequately deals with
that situation by stopping up. However, this is an example of a potential
problem that would not be found with the current RL problem formulation
in MAST. Handling such potential deadlocks would be an interesting area
of future research.

itself and added 10 meters for the obstacle vessels and some
safety factors and perimeter size.

Furthermore, mA2 has an initial position of 10 meters
North N and 0 meters East E with a heading straight towards
North, in the northeast frame. The initial position is the start
waypoint of the waypoint mission given to the vessel, and
the goal waypoint is 200 meters straight North N . The SP-
VP collision avoidance system is tracking obstacle vessels
with an update rate of 0.25 Hz. The max velocity of mA2 is
1.2 m/s and the min velocity is set to −0.2 m/s. The mA2
is also configured with gains and time constants in use by
the SP-VP noise model [31].

C. Adaptive Stress Testing Results

Goal. Is MAST able to find interesting failure events for
SP-VP in single- and multiple-obstacle settings, and what
do failure events look like?
Method and Data. To study this question, 1,000 single- and
1,000 multiple-obstacle simulations were generated using
G-MAST and B-MAST respectively. Both fast-moving and
slow-moving obstacles were simulated. But due to their
higher risk and more complex behavior we discuss a few
manually selected, fast-moving scenarios in detail.
Results and Discussion. One interesting failure event found
with fast-moving obstacles is the bow-on collision shown
in Figure 7. In this case, mA2 is, in fact, moving when
the collision occurs at time t = 60 seconds, with a speed
of 0.73m/s. Interestingly, it looks like the obstacle vessel
“tricks” mA2 into crashing by changing its heading from
almost straight west to almost straight south and towards
mA2 at time t = 53 seconds. The graph for the surge speed
u for mA2 shows that it has an almost constant speed over
10 seconds before the collision occurs.

Figure 8 shows a failure event found with multiple obsta-
cles. The first image shows the simulation at time t = 28.
Both obstacles have a course toward mA2’s path. The SP-
VP tracking system was updated at time t = 28. The next
image shows the simulation frame at time t = 52. The SP-VP
tracking system was updated at time t = 52 as well. In this
frame, mA2 is trapped between the two obstacles and tries
to speed away from Obstacle 1 and pass behind Obstacle 2.
The last image shows the simulation frame at time t = 55.6,
when SP-VP’s tracking system is not updated. Because of
Obstacle 2’s rapid course change, it blocks mA2 from being
able to pass behind it and causes a collision instead. Figure
9 shows the surge speed u and heading ψ at each simulation
time step. We observe how “confused” mA2 is by looking
at the big variations in mA2’s surge speed in Figure 9. The
figure also shows the course change of Obstacle 2 from time
t = 48 until the end of the simulation.

In general, both G-MAST and B-MAST are able to find
many interesting failure events similar to those discussed
above (see also Section V-D). The degree of realism varies
between the events, and their correspondence to real-world
collisions can be debated, due to the often observed “irra-
tional behavior” of an obstacle. This is similar to previous

0 50 100 150 200
Position East E [m]

0

50

100

150

200
P

os
it

io
n

N
or

th
N

[m
]

Waypoint Mission

Obstacle 1 True ROC

milliAmpere

Obstacle 1

(a) Northeast plot.

0 10 20 30 40 50 60

0

2

4

6

S
u

rg
e

S
p

ee
d
u

[m
/s

]

milliAmpere Obstacle 1

0 10 20 30 40 50 60
Time t [s]

−3

−2

−1

0

H
ea

d
in

g
ψ

[r
a
d
]

(b) Surge speed u and heading ψ.

Fig. 7: This shows a bow-on collision between mA2 and a fast-moving obstacle vessel, found with G-MAST. Figure 7a
shows how the obstacle’s trajectory changes right before the collision at time t = 60 seconds. The change in the obstacle’s
heading ψ is shown clearly in Figure 7b where the heading changes from almost straight west to almost straight south and
towards mA2 at time t = 53. Further, mA2 has an almost constant speed for over 10 seconds before the collision occurs.
The speed of the mA2 and the obstacle vessel is 0.73 m/s and 4.59 m/s, respectively, when the collision occurs.

−200 −100 0 100 200
Position East E [m]

−100

0

100

200

300

P
os

it
io

n
N

or
th
N

[m
]

Obstacle 1 Tracked

Obstacle 2 Tracked

Waypoint Mission

ROC

HPR

LPR

heading

Obstacle 1 True ROC

Obstacle 2 True ROC

milliAmpere

Obstacle 1

Obstacle 2

−200 −100 0 100 200
Position East E [m]

0

50

100

150

200

250

300

350

P
os

it
io

n
N

or
th
N

[m
]

Obstacle 1 Tracked

Obstacle 2 Tracked

Waypoint Mission

ROC

HPR

LPR

heading

Obstacle 1 True ROC

Obstacle 2 True ROC

milliAmpere

Obstacle 1

Obstacle 2

−200 −100 0 100 200
Position East E [m]

0

50

100

150

200

250

300

350

P
os

it
io

n
N

or
th
N

[m
]

Obstacle 1 Tracked

Obstacle 2 Tracked

Waypoint Mission

ROC

HPR

LPR

heading

Obstacle 1 True ROC

Obstacle 2 True ROC

milliAmpere

Obstacle 1

Obstacle 2

Fig. 8: This scenario illustrates the behavior of mA2 when two fast-moving obstacles are present. The three images show the
simulation frames at time t = 28, t = 52, and t = 55.6 seconds. Here, the mA2 is trapped between the two obstacles and
is unable to resolve the situation. Towards the end, mA2 plans to pass behind Obstacle 2, but this is blocked by Obstacle 2
applying a rapid course change. Corresponding surge speeds and headings are in Figure 9.

AST results for autonomous cars and pedestrians [12]. How-
ever, we believe that these are interesting results that increase
the confidence in mA2’s behavior in a range of situations.
Further, the results provide a basis for using MAST to test
other scenarios, which can potentially find other and more
realistic failure events.

D. Black Box versus Gray Box Testing

Goal. If an SUT simulator contains complex parts that
are very difficult to understand without substantial domain
knowledge, the simulator does not reveal its internal variables

or state, or the tester is not the same person as the one
designing the simulator, the Black-Box approach of B-MAST
can be used with great benefit. Specifically, the B-MAST
architecture only requires the tester to provide an action-
seed to step the simulator. The simulator designer needs
to provide: a boolean indicating if the simulator is in a
failure state or not, the transition likelihood from one state
to another, and a failure distance measure. On the other
hand, the fact that the Black-Box simulator in B-MAST
does not reveal its internals may lead to limited configuration

0 10 20 30 40 50

0

2

4

6

8
S

u
rg

e
S

p
ee

d
u

[m
/s

]
milliAmpere Obstacle 1 Obstacle 2

0 10 20 30 40 50
Time t [s]

−2

0

2

H
ea

d
in

g
ψ

[r
a
d
]

Fig. 9: Surge speed u (top) and heading ψ (bottom) for
multiple obstacles. Corresponding simulation frames are in
Figure 8.

options, which may negatively impact performance. How do
the B-MAST and G-MAST architectures perform for mA2,
and does performance differ much in light of the above
differences?
Method and Data. Implementations of the B-MAST and G-
MAST architectures with mA2 were both tested in 50,000
simulation episodes for each setup, and the number of failure
events was recorded.
Results and Discussion. Figure 10 contains a comparison
of the resulting performance of the B-MAST and G-MAST
approaches. Using B-MAST, approximately 8.1% of the
episodes were failure events, while approximately 9% of the
simulation episodes were failure events with G-MAST.

In other words, both architectures successfully found a
relatively high number of failure events and the number of
failure events was quite similar between the two architec-
tures. While a detailed study of the failure events is on-going,
these results suggest that B-MAST can be recommended.
This is due to its ease-of-use for testers, along with its similar
failure event-finding performance to G-MAST.

VI. CONCLUSION AND DISCUSSION

In light of the world’s need for autonomous and sus-
tainable transportation at sea, we investigate the problem
of stress-testing a navigation system for the world’s first
autonomous, electric ferry used to transport people. Specif-
ically, a new architecture coined MAST is proposed. The
architecture uses AST [15], [17] for testing a maritime
autonomous collision avoidance system, in particular the SP-
VP method implemented in the prototype passenger ferry
mA2. The MAST architecture is able to find interesting
failure events in the system, some of which are discussed
here. Which type of architecture, G-MAST or B-MAST,

0 10000 20000 30000 40000 50000
Episodes

100

101

102

103

F
ai

lu
re

E
ve

n
ts

Gray-Box

Black-Box

Fig. 10: G-MAST and B-MAST results. The figure shows
the number of failure events found over 50,000 simulation
episodes. Black-Box found 4035 failure events, and Gray-
Box found 4493. The Fast-moving obstacle scenario was
used.

is best suited for testing maritime autonomous collision
avoidance systems with AST really depends on how complex
the different parts of the simulator are and how much
domain knowledge the tester has. The Black-Box approach is
preferred if the simulator is complex to understand and if the
tester does not have much domain knowledge. In this case,
the simulator should be built by application professionals.
The Gray-Box approach might be the best solution if the
simulator does not consist of too complex parts and the tester
has sufficient domain knowledge.

From a tester’s practical point of view, the results in
this paper suggest that the choice of architecture depends
on whether a simulator is already available or not. If a
simulator is available (i.e., has been implemented) and is
fully observable, the tester may want to consider G-MAST
(as it is slightly better in finding failure events). If a simulator
is available and is partially observable, B-MAST can be used
without much concern for substantially worse performance
than with G-MAST. If a simulator has not been implemented
yet, this paper provides guidelines on how to implement it for
AST in a maritime environment. This can make the testing
process easier for the tester.

Due to limited space, we have omitted several important
topics that have received attention in the AST literature.
These topics may also deserve future research. First, when
simulations are used for AST, computational time and cost
can be a serious problem [15], [23], [13], [10], [21]. In fact,
the problem of fitness function evaluation cost, where “cost”
may refer to computational cost, energy cost, engineering
cost, or other costs, is a more general problem in AI [27], [9],
[14], [20], [22]. Second, failure events other than collisions

are of great interest. Such other failure events could for
example be deadlock situations, and at least some of them
can be formalized by changing AST’s reward function [6],
[13], [10]. Third, there is the discussion of which changes
does the SUT need to undergo to be corrected in order to
reduce the number and probability of failure events? Here,
the answer is highly application-dependent and typically
involves data analysis, such as clustering, of the time series
that result from 100s or 1,000s of simulation runs with AST
[16], [13], [10] along with engineering judgment from the
maritime domain.

REFERENCES

[1] European Maritime Safety Agency. Annual overview of marine
casualties and incidents 2023. Technical report, European Maritime
Safety Agency, June 2023.

[2] H. Berget. An area-time trajectory planning approach to collision
avoidance for confined-water vessels. Master’s thesis, NTNU, 2021.

[3] E. F. Brekke, E. Eide, B.-O. H. Eriksen, E. F. Wilthil, M. Breivik,
E. Skjellaug, Ø. K. Helgesen, A. M. Lekkas, A. B. Martinsen, E. H.
Thyri, et al. milliampere: An autonomous ferry prototype. In
Journal of Physics: Conference Series, volume 2311, page 012029.
IOP Publishing, 2022.

[4] J. Burkardt. The truncated normal distribution. Department of
Scientific Computing Website, Florida State University, 1:35, 2014.

[5] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem, et al. Handbook
of model checking, volume 10. Springer, 2018.

[6] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer.
Adaptive stress testing with reward augmentation for autonomous
vehicle validatio. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 163–168. IEEE, 2019.

[7] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[8] T. I. Fossen. Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[9] D. Guirguis, N. Aulig, R. Picelli, B. Zhu, Y. Zhou, W. Vicente, F. Iorio,
M. Olhofer, W. Matusik, C. A. Coello Coello, and K. Saitou. Evolu-
tionary black-box topology optimization: Challenges and promises.
IEEE Transactions on Evolutionary Computation, 24(4):613–633,
2020.

[10] H. W. Hjelmeland, O. J. Mengshoel, B.-O. H. Eriksen, and A. M.
Lekkas. Identification of failure modes in the collision avoidance
system of an autonomous ferry using adaptive stress testing. In
14th IFAC Conference on Control Applications in Marine Systems,
Robotics, and Vehicles, September 2022.

[11] K. Kant and S. W. Zucker. Toward efficient trajectory planning: The
path-velocity decomposition. The international journal of robotics
research, 5(3):72–89, 1986.

[12] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer. Adaptive stress
testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1–7. IEEE, 2018.

[13] M. Koren, A. Corso, and M. J. Kochenderfer. The adaptive stress
testing formulation. arXiv preprint arXiv:2004.04293, 2020.

[14] E. H. Lee, D. Eriksson, V. Perrone, and M. W. Seeger. A non-
myopic approach to cost-constrained Bayesian optimization. CoRR,
abs/2106.06079, 2021.

[15] R. Lee, M. J. Kochenderfer, O. J. Mengshoel, G. P. Brat, and M. P.
Owen. Adaptive stress testing of airborne collision avoidance systems.
In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),
pages 6C2–1. IEEE, 2015.

[16] R. Lee, M. J. Kochenderfer, O. J. Mengshoel, and J. Silbermann.
Interpretable categorization of heterogeneous time series data. In
Proceedings of the 2018 SIAM International Conference on Data
Mining, pages 216–224. SIAM, 2018.

[17] R. Lee, O. J. Mengshoel, A. Saksena, R. W. Gardner, D. Genin,
J. Silbermann, M. Owen, and M. J. Kochenderfer. Adaptive stress
testing: Finding likely failure events with reinforcement learning.
Journal of Artificial Intelligence Research, 69:1165–1201, 2020.

[18] R. Lee, O. J. Mengshoel, An. Saksena, R. Gardner, D. Genin, J. Brush,
and M. J. Kochenderfer. Differential adaptive stress testing of airborne
collision avoidance systems. In 2018 AIAA Modeling and Simulation
Technologies Conference, page 1923, 2018.

[19] R. Lipkis, R. Lee, J. Silbermann, and T. Young. Adaptive stress
testing of collision avoidance systems for small UASs with deep
reinforcement learning. In AIAA SCITECH 2022 Forum, page 1854,
2022.

[20] P. Luong, D. Nguyen, S. Gupta, S. Rana, and S. Venkatesh. Adaptive
cost-aware Bayesian optimization. Knowledge-Based Systems, 232,
2021.

[21] B. Lytskjold and O. J. Mengshoel. Speeding up adaptive stress testing:
Reinforcement learning using monte carlo tree search with neural
networks and memoization. In The 37th AAAI Conference on Artificial
Intelligence, 2023.

[22] O. J. Mengshoel, E. L. Flogard, T. Yu, and J. Riege. Understanding the
cost of fitness evaluation for subset selection: Markov chain analysis
of stochastic local search. In Proc. GECCO, page 251–259, 2022.

[23] I. Porres, S. Azimi, and J. Lilius. Scenario-based testing of a
ship collision avoidance system. In 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pages 545–
552, 2020.

[24] N. P. Reddy, M. K. Zadeh, C. A. Thieme, R. Skjetne, A. J. Sørensen,
S. Aa. Aanondsen, M. Breivik, and E. Eide. Zero-emission au-
tonomous ferries for urban water transport: Cheaper, cleaner alter-
native to bridges and manned vessels. IEEE Electrification Magazine,
7(4):32–45, 2019.

[25] J. Schulman, F. Wolski, Pr. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[26] A. C. Schultz, J. J. Grefenstette, and K. A. De Jong. Adaptive testing
of controllers for autonomous vehicles. In Proceedings of the 1992
Symposium on autonomous underwater vehicle technology, pages 158–
164. IEEE, 1992.

[27] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. In Proc. NeurIPS, pages
2951–2959, 2012.

[28] E. H. Thyri. A path-velocity decomposition approach to collision
avoidance for autonomous passenger ferries. Master’s thesis, NTNU,
2019.

[29] E. H. Thyri, M. Breivik, and A. M. Lekkas. A path-velocity decom-
position approach to collision avoidance for autonomous passenger
ferries in confined waters. IFAC-PapersOnLine, 53(2):14628–14635,
2020.

[30] United Nations. Sustainable transport, sustainable development. In-
teragency report for second global sustainable transport conference,
2021.

[31] J.-M. Vatle. Adaptive stress testing for safety validation of maritime
autonomous collision avoidance systems. Master’s thesis, Norwegian
University of Science and Technology (NTNU), 2022.

[32] L. Wang. Basics of PID control. In PID Control System Design and
Automatic Tuning using MATLAB/Simulink, pages 1–30. Wiley-IEEE
Press, 2020.

