
Can machine learning help reveal the competitive advantage of elite
beach volleyball players?

Ola Thorsen1, Emmanuel Esema2, Said Hemaz3,
Kai Olav Ellefsen4, Henrik Herrebrøden5, Hugh Alexander von Arnim6, and Jim Torresen7

Abstract— As the world of competitive sports increasingly
embraces data-driven techniques, our research explores the
potential of machine learning in distinguishing elite from semi-
elite beach volleyball players. This study is motivated by the
need to understand the subtle yet crucial differences in player
movements that contribute to high-level performance in beach
volleyball. Utilizing advanced machine learning techniques, we
analyzed specific movement patterns of the motion of the torso
during spikes, captured through vest-mounted accelerometers.
Our approach offers novel insights into the nuanced dynamics
of elite play, revealing that certain movement patterns are
distinctly characteristic of higher skill levels. One of our key
contributions is the ability to classify spiking movements at
different skill levels with an accuracy rate as high as 87 %.
This current research provides a foundation of what separates
elite players from their semi-elite counterparts.

I. INTRODUCTION

With the fast-paced evolution of sports analytics, using Ar-
tificial intelligence (AI) to accurately predict rally outcomes
in beach volleyball can aid in developing strategies and
enhance performance. AI-assisted analytics has the potential
to reduce the workload of analysts and provide real-time,
actionable insights for coaches and players. In beach volley-
ball, as in other sports, athletes display a rich diversity in
physique, technique, and performance, shaping their unique
approaches to the game.

Such variances present challenges when comparing and
contrasting performances across athletes. The fluidity and
versatility seen in beach volleyball mean that a single player
might approach the same task differently at different times.
One serve might be powerful and direct, while another
could be deceptive and well-paced. This complexity, when
coupled with the inherent differences between individual
players, makes it difficult to draw straightforward correla-
tions between technique and success. Variability underpins
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individual differences in motor control strategies and is vital
for optimizing training methods [1]

However, developments in machine learning (ML) provide
us with tools to gain insight into these nuances. Since
early applications in sports during the late 20th century,
ML-based analysis techniques have grown in sophistication
and potential applicability. Yet, their penetration into certain
sports such as beach volleyball remains nascent. Our work on
the other hand represents the opposite [2]. Like less broadly
popular sports such as table tennis and water polo, beach
volleyball lacks significant attention from the betting market.
As this market contributes to the drive towards advances
in performance prediction [3], there is a significant gap in
the literature specifically relating to the application of ML
techniques in the analysis of beach volleyball performance.
This paper aims to bridge this gap, exploring the potential
of ML in distinguishing between elite and semi-elite beach
volleyball players based on movement data.

Our central goals are: 1) To discern key differences in
movement patterns between elite and semi-elite beach volley-
ball players using ML techniques applied to data from torso-
mounted accelerometers. 2) To investigate which aspects
of the game most distinctly delineate elite from semi-elite
players, we chose side-out (which encompasses pass, set,
and spike). The side-out phase is when the ball is received
(passed) after the opponent’s serve, after which the ball is
set and spiked over the net 3) To explain and interpret the
results we get from the trained model when it comes to what
motion, or what part of the game, most clearly separates the
two groups of players.

Fig. 1: Beach volleyball training

II. RELATED WORK

A. General Trends in Sports Analysis

Data-driven approaches and ML in sports analysis have
been gaining momentum. A comprehensive literature review



by Rajšp [3] highlights the growing use of advanced data
analysis techniques in sports. This systematic review of 109
studies emphasizes the significance of harnessing advanced
data analysis techniques: Support Vector Machines (SVM)
and Neural Networks were used in 19 and 14 studies,
respectively. Focus on Popular Sports, such as soccer (12
studies) and running (11 studies), emphasizes the application
of AI in more globally recognized sports.

AI and data mining are increasingly used for extracting
practical knowledge from vast amounts of data, with sports
like cross-country skiing [4], roller ski skating [5], and
overground running [6] following this trend. However, due
to the focus on individual sports in sports sciences, beach
volleyball has seen limited advances in and also because
of the relatively recent adoption of sensor technology in
connection with the world championship in Vienna in 2017.
There is therefore much potential for exploration in this
relatively new field.
Wenninger et al. [7] focused specifically on AI-assisted
analysis for beach volleyball. Various models were evaluated,
like Multilayered perceptron, convolutional neural networks
(CNN), Recurrent neural networks - Gated recurrent unit
RNN-GRU, and XGBoosted trees. The input variables were
3-dimensional Cartesian coordinates and two temporal coor-
dinates and performance indicators (various metrics such as
speed, accuracy, agility, strength, technique, strategy execu-
tion, etc..). The target for classification was the success of a
rally, the attack direction, and the attack technique based on
the events and/or positions that occurred in the rally before.
The advances in this study suggest that the models performed
better than random classification accuracy, ranging from 37
to nearly 60 percent for different tasks.

B. Use of Wearable Sensors

Wearable sensors, driven by advancements in sports sci-
ence, offer unprecedented opportunities for biomechanical
analyses outside the confines of a laboratory. Wang’s ex-
ploration with micro inertial measurement units in volley-
ball, particularly assessing spike movements, shows this
progression [8]. In this study, several ML classifiers were
tested for accuracy using acceleration data. Comparing the
classifiers showed that SVM achieves a high accuracy (94%)
in assessing the volleyball spiking skill level. The results
could help coaches and athletes keep track of condition
changes during a training season.

This analysis methodology is further exemplified in bas-
ketball in a study with the overall objective of developing an
advanced computational model to classify the skill level of
basketball players during free throw shots using data from
a single inertial sensor [9]. The results obtained, with clas-
sification accuracy, sensitivity, and specificity, were greater
than 85 percent.

Traditional evaluations, reliant on extensive setups with
motion-capture cameras, are giving way to more agile ap-
proaches utilizing wearable electronics. It is also worth
mentioning that in our case, it was difficult and even impos-
sible to use optical, IR-based motion-capture-based systems

because volleyball was played outside.

C. Spectrograms for CNN Classification Tasks
Spectrograms, time-frequency representations of signals,

are widely employed as input features for ML models
learning an embedding of time-series signals. A common
approach across multiple domains is to leverage the spec-
trogram as a visual representation of the time series and
combine this with the use of a Convolutional Neural Net-
work (CNN), an architecture that can learn a representation
of the data’s spatial structure. For example, spectrogram
representations of audio signals are commonly combined
with CNNs for tasks such as sound event detection [10]
and soundtrack classification [11], as well as several natural
language processing tasks [12]. Similarly, CNNs in combi-
nation with spectrogram representations of signals acquired
from motion sensors have been applied in various sports and
health science tasks, such as gait classification [13], human
activity recognition [14], and sport activity classification
[15]. Additionally, this was the approach taken by Guo et al.
[9] in the basketball skill level classification task mentioned
in the previous section, and which we likewise employ in
the work presented in this paper.

D. Explainability
To have a comprehensive understanding of our methodol-

ogy, the details of LIME have to be explored. LIME, which
stands for Local Interpretable Model-agnostic Explanations,
is a widely utilized tool in AI explainability research. Devel-
oped to enhance the interpretability of complex ML models,
it operates by approximating the local linear behavior of a
black-box model, making it model-agnostic meaning appli-
cable to a range of classifiers.

Originating from the work of Marco Tulio Ribeiro and
his collaborators, LIME aims to shed light on the decision-
making processes of ML models. In our case, it is employed
to discover the predictions of our Convolutional Neural
Network model.

Our choice of using LIME stems from its effectiveness in
generating human-understandable explanations for black-box
models and the use of spectrograms. It constructs a simpler,
interpretable model to approximate the complex decision
boundaries of the primary model by perturbing input data
and observing the model’s response. This process enables us
to visualize and understand the areas of the input space that
influence the model’s predictions.

LIME has demonstrated its utility beyond the realm of
sports, finding application in various domains. For instance,
it has been successfully employed in the National Basketball
Association, as evidenced by the work of Wang et al.
[16], showcasing its versatility and effectiveness in diverse
contexts.

In conclusion, our unique contribution lies in applying
LIME to spectrogram images from our CNN model. This
not only expands the application of LIME within the sports
domain but also contributes to the broader understanding of
how explainability tools can resolve the complexity of ML
models.



E. Summary

In summary, while traditional sports such as football and
running have seen significant applications of AI and ML,
less popular sports like beach volleyball are only beginning
to explore these advancements. The use of wearable sensors,
ML models like CNNs, and techniques like spectrograms are
contributing to more nuanced and detailed sports analysis.
Furthermore, the focus on explainability through tools like
LIME is important in making these sophisticated models
more accessible and interpretable for stakeholders.

III. METHODOLOGY

A. Dataset

Data was collected from 8 participants, comprising 4
world-class elite and 4 semi-elite players. For the world-
class elites, two of these are the focus of the data collection
and represent the highest level of elite play. The other two
also represent players among the best, but not quite to the
extent of the first two. This was collected as part of the
collection of a wider dataset involving multiple motion and
physiological sensors. We used acceleration data gathered
from each participant through the upper torso in our scope.
This was collected across an Equivital Lifemonitor worn in
a vest1

The dataset, sourced from the Equivital device, encom-
passes:

• Acceleration: Sampled at 256Hz in milli-g along three
axes.

The data extracted from the Equivital accelerometers is in
the form of comma-separated values (CSV) files, where each
line provides acceleration data along its lateral, longitudinal,
and vertical axes.

After some early testing, we quickly discovered that the
Equivital data was relatively stable both spatially and tem-
porally and that it gave good initial results in classification.

Fig. 2: Equivital monitor with vest

B. Data tagging

We employed an expert volleyball scout to code a video
recording of the training session with the software Data
Volley 4. This resulted in a series of timestamps for each
player relating to the performance of the various plays in

1https://equivital.com/products/eq02-lifemonitor

beach volleyball: serves (S), passes (R), sets (E), attacks (A),
blocks (B), and defenses (D), along with their outcomes (e.g.,
effective, error, or neutral). We extracted x second segments
from the acceleration data according to these timestamps

C. Models

1) Input features:
Data extraction: We first collected the labels cor-
responding to the movements we were interested in
(passes, sets, and attacks), and chose only the la-
bels that represented successful attempts at the given
moves.
Then, to locate the specific lines of raw accelerom-
eter data we wished to use, we cross-referenced the
timestamps of the raw data with that of the collected
labels. For each move we then extracted a total of 4
seconds of data, starting 2 seconds before and ending
2 seconds after the given label timestamp. These 4
seconds constitute one single sample. Considering the
accelerometer frequency of 256Hz, this equates to
1024 lines of raw data per sample. To increase the total
number of samples, we created three different samples
from each successful movement attempt, each offset
by 0.25 seconds or 64 lines. Augmenting the data in
this way is a useful tool when dealing with smaller
datasets [17]. The samples were then normalized in-
dividually. In total, we end up with 273 samples for
passing moves, 317 samples for setting moves, and 480
samples for attacking moves. Samples of the separate
moves are collected in three separate datasets, one set
for each type of move.
Data transformation: Next, using a Fourier transform,
we transformed the data from the time domain to the
frequency domain. This transformation enabled us to
create the time-frequency spectrogram representations
of each sample. We did this by utilizing the Hamming
window function, a segment length of 64, and an over-
lap of 48. The Hamming window function was chosen
for its good frequency resolution [18]. Considering
that the data was recorded at 256Hz, the segment-
and overlap values were chosen to give good time
resolution.
Spectrogram generation: Using these transformed
samples, we now create separate spectrogram images
for the three axes of acceleration, before concatenat-
ing the three into one single file (Figure 3). Then,
we export the concatenated spectrograms as portable
network graphics (PNG) image files and use them as
inputs for the network, retaining spatial and temporal
features from the original data. The final concatenated
image consists of the outputs of the Fourier transforms
side by side along the horizontal axis, while the vertical
axis represents frequency ranges. The brighter the im-
age is in a certain area, the stronger the corresponding
frequency in the source data.

2) Target variables :
Due to the importance of their role in scoring in beach

https://equivital.com/products/eq02-lifemonitor
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(a) Spectrogram for a single axis of acceleration. For il-
lustration purposes, this image has added information about
frequency and time.

Vertical Lateral Longitudinal

(b) Concatenated spectrogram of all three axes of accel-
eration. For illustration purposes, the divides have been
highlighted and labeled.

Fig. 3: Spectrograms

volleyball, we decided to focus on passing, setting,
and attacking movements. This includes analyzing to
what degree a given movement (e.g. an attack) is
performed differently by the players at the two skill
levels, and also dissecting what these differences are.
The network thus had to find patterns and features
in the spectrogram images that signify they originated
from a player at either an elite or a semi-elite level.
The targets were the player numbers as coded by the

scout/groupings of the players into elite/semi-elite.
3) Convolutional Neural Network (CNN):

In this project, we opted for the use of CNNs because
they are widely recognized in the field, especially for
image classification tasks [9]. They offer a straightfor-
ward and intuitive approach to processing our spectro-
grams, which are represented as images. Their ability
to identify intricate patterns in images aligns well with
our goal of understanding the complex spatial aspects
of beach volleyball performance. Spectrograms don’t
include any spatial information, however, we did con-
struct spectrogram inputs in which spatial information
was contained in the form of concatenating the three
axes (vertical position relates to frequency, and hori-
zontal position relates to both time and acceleration).

4) Training:
The CNN (Figure 4) was trained on a series of spec-
trogram images using a 90-10 validation split. It uses
a Tensorflow sequential model with two 2D convo-
lution layers, both with Rectified Linear Unit (reLU)
activation functions. The first layer has 32 kernels
while the second has 64, with respective sizes of sizes
of 5x5 and 2x2 respectively. The data is max-pooled
with a size of 2x2 after each activation and passes
through one "flatten" and one "dense" layer at the end
before the final sigmoid output function. There are also
dropout layers after each max-pool layer which reset
20 percent of the weights to combat overfitting. We
chose the Adam optimizer for its superior performance,
especially when working on noisy data [19].
We then trained three separate models, one for each
of the three datasets (passes, sets, and attacks), with
slightly different hyperparameters. The models were
each trained for 20 epochs with a batch size of 32. The
loss was calculated using binary cross-entropy. For the
passing and attacking samples, we used a learning rate
of 0.0002. For the setting samples, we used a learning
rate of 0.0001.

5) Local Interpretable Model-Agnostic Explanations
(LIME):
LIME is then used to highlight the positive regions
in the correctly predicted spectrograms from our CNN
model for each distinct move type.

6) Evaluation :
The evaluation of our model is centered on the metrics
of accuracy, precision, recall, and the F1 score.
However, our data posed a significant challenge as it
was difficult to isolate the specific features we wanted
our CNN model to focus on. An example of this is that
a given player could have attributes in their movement
pattern that are not necessarily correlated to their skill
level. These unwanted features could then help the
models classify the players correctly on the wrong
grounds.
To address this issue, we created test sets with data
exclusively obtained by players that were not included
in the training data. This means, for example, that we
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Fig. 4: Layers of our CNN model

would train on data from players 1, 2, and 3 while
testing on data exclusively from player 4. In this way,
we can evaluate model performance purely on the task
of classifying different skill levels, isolated from any
individual player characteristics.
The test sets therefore vary somewhat in size, depend-
ing on the number of available samples. For passing
moves, the test set had a size of 63 (36/27) which gave
us a 77-23 train-test split. For setting moves, the test
set had a size of 105 (51/54) which gave us a 67-33
train-test split. Finally, for attacking moves, the test
set had a size of 102 (51/51) which gave us a 79-21
train-test split.
An additional challenge is that the elite and semi-elite
games were played on different days under slightly
different conditions. Therefore, there could be differ-
ences in the background noise of our data that can
help our model separate the two different skill levels.
Higher levels of moisture in the sand on one day could
for example alter the deceleration of a player landing
from a jump, compared to dryer sand.
To account for these irrelevant differences, we created
additional test sets. In these sets (hereafter referred to
as control sets) however, the samples are still extracted
from the players in the normal test sets, but from
random timestamps. In other words, the control sets
contain only noise that is randomly selected from the
dataset. If there is nothing in the background data

that the model can use in training, we would expect
no better accuracy than 50 percent from the control
sets, similar to random guessing. Any performance
above this would indicate that the model uses unwanted
background factors to separate elites from semi-elites,
and must then be taken into account.

IV. RESULTS

A. Discriminating elites and semi-elites

The results of our trained models in discriminating elite
from semi-elite players are shown in Table I, Table II,
Table III, and Table IV. More precisely, these results show
the mean performance of each model when trained and tested
with unchanged hyperparameters 50 consecutive times. They
also show the corresponding confidence intervals (CI) at 95%
and the standard deviations (SD).

TABLE I: Accuracy scores from the test sets

Mean CI SD
Pass 0.826 ± 0.008 0.027
Set 0.729 ± 0.034 0.119
Attack 0.865 ± 0.024 0.082

TABLE II: Recall scores from the test sets

Mean CI SD
Pass 0.836 ± 0.021 0.072
Set 0.964 ± 0.018 0.062
Attack 0.987 ± 0.034 0.010

TABLE III: Precision scores from the test sets

Mean CI SD
Pass 0.863 ± 0.014 0.050
Set 0.678 ± 0.039 0.134
Attack 0.809 ± 0.028 0.097

Table IV and Table V show the results of our models
evaluated on the test and control sets. These scores originate
from the same 50 consecutive runs as the ones above. We use
the F1 score because it equally weights both false positives
and false negatives. This is advantageous in cases where the
sample sizes are slightly unbalanced. These results highlight
the difference in performance when evaluating our trained
models on the test data vs the control data (see details under
subsection III-C "Evaluation"), with confidence intervals at
95%.

TABLE IV: F1 scores from the test sets

Mean CI SD
Pass 0.845 ± 0.008 0.028
Set 0.784 ± 0.020 0.071
Attack 0.885 ± 0.017 0.058



TABLE V: F1 scores from the control sets

Mean CI SD
Pass 0.502 ± 0.032 0.113
Set 0.602 ± 0.022 0.078
Attack 0.707 ± 0.039 0.011

For the passes, sets, and attacks in the test sets, the Test F1
scores are as you would expect from observing the precision
and recall. Regarding the control F1 scores, we can see that
it is close to 0.50 for the passing moves. This means that,
when classifying in this category, the model is not finding
any features in the background noise. Rather, it is finding
features that most likely originate from the respective body
movement.

As for the setting moves, the control F1 score is somewhat
higher. This might indicate that the model is finding features
in the background noise and using them to classify with
slightly better performance than random guessing.

When it comes to attacking movements, we can see that
the control F1 score is even higher. This means that the
models were able to classify control samples with higher
performance than random guessing, indicating that there
were factors other than the attacking moves that it picked
up on. This might also explain why the models trained on
attacking moves perform the best across the board. However,
since there is still a gap of 0.178 between the means of the
test F1 and control F1 scores of the attacking moves, the
model is also able to find patterns that most likely originate
from the attacking moves to some degree.

For all three pairs of test and control F1 scores, Mann-
Whitney U rank tests were completed with the null hypoth-
esis being that the two sample distributions are equal. We
chose this test based on a histogram analysis that concluded
the data does not follow any normal distribution. For all
three pairs, the tests achieved values of p < 0.001, strongly
indicating statistically significant differences between test
and control performance, allowing us to discard our null
hypothesis.

B. LIME-analysis

Figure 5 shows an example of the spectrogram data
our model sees (the "Original Image") above the type of
explanation we can expect from LIME (the "Explanation
Image"), with the red and yellow lines highlighting the
regions that played a positive role in the CNN model’s pre-
diction of an elite player for this input data (which represents
an elite player’s attack). By interpreting the Explanation
Image we can begin to understand why the CNN model
classified the Original Image as an elite player move. For
this example, we see that the LIME explanation emphasizes
specific movements, mainly lateral ones ranging from 0.1 Hz
to approximately 115 Hz, with additional smaller regions in
longitudinal movements featuring frequencies between 0.1
Hz and 80 Hz. After collecting Explanation Images for
each move type—passes, sets, and attacks, all generated
by the same trained model, we employed an aggregation
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Fig. 5: Explanation Of An Elite-player Attack Move From
LIME

process. Aggregation, in this context, involves layering each
Explanation Image on top of the others, creating a composite
view. This method allows us to unveil shared regions and
frequencies crucial for accurate predictions from our CNN
and LIME models across various move types. It’s essential to
clarify that these Aggregated Explanation Images are derived
from different instances of the same trained model, each
corresponding to a specific move type. The resulting Aggre-
gated Explanation Images, illustrated in Figure 6 to Figure 8,
further emphasize this, with lighter regions signifying higher
importance and darker regions vice versa.

Our analysis of the Aggregated Explanation Mask images
for elite players’ passes (shown in Figure 6) reveals that the
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Fig. 6: Aggregated Explanation Mask For Elite Passes
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Fig. 7: Aggregated Explanation Mask For Elite Sets
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Fig. 8: Aggregated Explanation Mask For Elite Attacks

focus of our CNN model’s prediction is mainly on lateral
movements with frequencies ranging from 0.1 Hz to about
90 Hz, with more focus in the 20 Hz to 70 Hz range. In the
context of beach volleyball, lateral movements are crucial
for successful receiving actions, as players need to quickly
adjust their position to the trajectory of the ball. Similarly,
for set moves (as shown in Figure 7), the focus is on vertical
and longitudinal movements with frequencies ranging from
0.1 Hz to roughly 65 Hz. This aligns with the strategic
importance of precise vertical and longitudinal movements
in setting up plays. More emphasis on vertical movements
of frequencies 0.1 Hz to 35 Hz indicates the specific nuances
associated with setting actions in beach volleyball.

Our findings remained consistent across various trials of
the Aggregated Explanation Images for attacks, as depicted
in Figure 9. This emphasizes the crucial role of specific
frequency ranges (15 to 85 Hz) in lateral and longitudinal
movements for distinguishing between player classes. When
we say ’multiple runs’, we mean different instances of the
same trained model, each associated with different accuracies
observed during the testing phase of the CNN model. This
sustained consistency can be attributed to maintaining con-
stant hyper-parameters, ensuring the reproducibility of LIME
plots. The uniformity observed in these diverse runs under-
scores the model’s resilience in recognizing key features,
providing reliable insights into player classification across
various scenarios.

V. DISCUSSION

These initial results are promising, with the passes being
particularly auspicious. As previously stated, these results are
obtained from predicting the class of samples from players
not included in the training sets. Therefore, even with the
limited size of our dataset, they should not be severely
impacted by overfitting. They should also not be affected by
recognizable elements of a given player’s movement pattern.

One of the main challenges of this project was to find
a robust methodology with which to determine the success
of our classifiers. We ultimately decided to utilize the test
and control sets and compare the respective scores with
one another. Taking these comparisons into consideration,
we see a statistically significant performance increase in
our test data versus our control data. This means that the
classifiers are in fact able to recognize differences in athlete
movements related to their skill level. When we also consider
the relatively small differences in skill level between the elite
and semi-elite players to an average player, our contributions
assume additional value.

The high accuracy rates achieved in distinguishing be-
tween elite and semi-elite players underscore the potential of
these methods in identifying nuanced differences in playing
styles and techniques. Particularly noteworthy is the capabil-
ity of our model to identify specific frequency ranges and
movement patterns that are characteristic of elite players.
These findings resonate with the broader goal of sports
analytics to offer precise, data-driven insights that could
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(a) Run 1 with accuracy = 0.85
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(b) Run 2 with accuracy = 0.902
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(c) Run 3 with accuracy = 0.823

Fig. 9: Multiple Runs Of The Aggregated Mask Images For
Attack Moves

revolutionize training and performance evaluation in beach
volleyball.

Through the interpretability provided by LIME’s explain-
able images, our analysis uncovered consistent movement
patterns across different volleyball actions—passes, sets,
and attacks. While the challenge remains in transforming
these abstract data patterns into actionable training interven-
tions, these findings provide a foundational entry point for
further investigation. Integrating this data-driven approach
with video analysis could offer a more holistic view. By
aligning the frequency importance from our model with
video footage of player movements, coaches can visually
correlate the model’s insights with actual gameplay, making
the data more tangible and actionable. This method facilitates
a deeper understanding of how specific movements translate
into successful gameplay strategies.

In dissecting these data patterns, it is observed that elite
player passes are predominantly characterized by lateral
movements spanning frequencies of 20 Hz to 70 Hz. These
lateral movements, crucial during elite player passes, in-
volve dynamic sideways motions that reflect the player’s
ability to optimally position themselves for effective ball
control. Similarly, set moves primarily involve vertical and
longitudinal movements, with a notable emphasis on vertical
movements ranging from 0.1 Hz to 35 Hz. For attack moves,
the distinguishing characteristics are found within frequency
ranges of 15 to 85 Hz, encompassing both lateral and
longitudinal movements.

These insights strongly suggest that certain movements
within specific frequency ranges are pivotal for the accurate
classification of player performances in beach volleyball.
They provide valuable insights that could inform player
development and coaching strategies, potentially enhancing
training regimens and tactical approaches. [20].

To bridge the gap between frequency-based explanations
and practical training applications, we propose developing
a comprehensive framework that maps these spectrogram
features to specific volleyball techniques and exercises. This
framework could fro example include:

• Lateral movement drills: Based on the frequency
range identified for elite passes, incorporate agility
ladder drills, side-to-side shuffles, and reactive lateral
movement exercises to improve players’ quickness and
positioning.

• Vertical precision exercises: For setting actions, focus
on plyometric exercises, vertical jump training, and pre-
cise ball-handling drills to enhance vertical movements
within the identified frequency range.

• Attack power training: Emphasize strength and condi-
tioning exercises that enhance power generation in the
identified frequency range for attacks, such as resistance
band exercises, medicine ball throws, and plyometric
push-ups.

From an applied perspective, the findings from our LIME
analysis can serve as an entry point for further investigation
into the critical aspects of elite beach volleyball performance.
For example, the identified movement patterns and frequency



ranges can be used to guide more detailed analyses of specific
game situations and player actions. This approach can help
coaches and analysts prioritize their focus, saving time and
effort by concentrating on the most impactful aspects of
player performance. In elite sports, where time and resources
are limited, leveraging machine learning to identify key
performance indicators can streamline the analytical process.
By pinpointing the critical movements and frequencies that
differentiate elite players, teams can allocate their resources
more efficiently, focusing on refining these essential skills.

There are several limitations to this study. The constrained
dataset size and the potential for overfitting necessitate a
cautious interpretation of our results. Future studies could
benefit from larger datasets, possibly encompassing a broader
range of skill levels and more varied playing conditions. This
could help in refining the model further and enhancing its
applicability in an applied context.

Therefore, we advocate for further investigation in this
area, ideally with a broader participant base to enhance the
validity and applicability of the findings.

VI. CONCLUSION

By building on data from some of the world’s best beach
volleyball players, this study has given a unique insight into
the possibility of using ML to discern elite from semi-elite
players and explain what features of their motions are most
important in this classification
Our findings have several implications. Firstly, the high
accuracy in classifying player movements underscores the
potential of ML in enhancing training and performance
strategies. Coaches can leverage these insights to tailor
training programs, focusing on specific movement patterns
and frequencies characteristic of elite performance. This
approach could lead to more effective training methodolo-
gies, potentially improving some standards of play in beach
volleyball.

Furthermore, the application of LIME has brought an
essential element of transparency and explainability to our
model, providing coaches, players, and stakeholders with
a view of the factors contributing to elite performance.
This understanding is crucial for the ethical and responsible
application of AI in sports, ensuring that decisions based
on these models are well-informed and fair. However, while
LIME has undoubtedly enhanced the transparency and ex-
plainability of our model, it is imperative to acknowledge
its limitations. The interpretability granted by LIME pri-
marily extends to local contexts around specific predictions,
and extrapolating global model behavior solely from LIME
explanations may lead to oversights. Thus, while LIME
contributes significantly to transparency, there remain aspects
beyond its scope, and caution should be exercised in drawing
broader conclusions solely from LIME plots. This nuanced
perspective is vital for a comprehensive evaluation of our
model’s performance and a responsible integration of AI in
sports analysis.

It is important to acknowledge the limitations of our study
concerning the size and diversity of the dataset. Future re-

search could expand upon this work by incorporating a larger
and more varied dataset, possibly including more nuanced
player data and different levels of skill. Such expansion could
enhance the model’s accuracy and reliability, making it a
more robust tool for player analysis.

In addition, the torso acceleration data employed in the
current work comprises a small part of a larger dataset
collected from the volleyball players, which also consists
of acceleration data collected from sensors mounted on
additional body parts such as the dominant wrist, as well
as various physiological signals (ECG, respiration rate), and
high-resolution video recordings. Leveraging the additional
data modalities for multimodal learning approaches offers a
further path for future research.

In summary, our study contributes to the growing body
of knowledge in sports analytics by offering novel insights
into the physical characteristics that differentiate elite beach
volleyball players. It underscores the potential of ML in
transforming sports training and strategy, providing a pos-
sible path for further research.

VII. ETHICS STATEMENT

1) Consent: Prior to the data collection phase, informed
consent was obtained from all the participants involved
in the study. They were comprehensively briefed on the
aims of the research, the methodologies employed, and
the potential outcomes. All participants were ensured
of their right to withdraw from the study at any given
time without any consequences.

2) Anonymity and Confidentiality: The data obtained
from the participants has been treated in line with
GDPR. Personal identifiers were stripped from the
dataset to ensure the anonymity of the participants. Our
analysis does not focus on individual performances, but
rather on general patterns that differentiate skill levels.
Thus, specific identities linked to the data cannot be
deduced from our findings.

3) Data Handling and Storage: Data obtained from
the players, especially sensitive information such as
ECG and respiration rates, have been securely stored
in encrypted formats. Access to this data is restricted
to the primary researchers of this project. Upon the
conclusion of this research, all raw data will be stored
securely for a stipulated duration, post which it will be
responsibly disposed of.

4) Transparency: All methodologies and processes ap-
plied in this study have been transparently commu-
nicated in the paper. This includes not only the data
collection methods but also the algorithms and analysis
techniques employed.

5) Potential Implications: We recognize the implications
of our findings, especially for athletes and trainers
who might consider integrating ML tools in their
training regimes. While our results aim to provide
insights into movement patterns, they are not definitive
judgments of players’ abilities. As such, they should be



interpreted with caution and supplemented with human
expertise.

6) Helpfulness: The primary intention behind this re-
search is the advancement of knowledge in the fields
of sports analysis and ML. We believe our findings
can contribute positively to training methodologies and
enhance the sport of beach volleyball. However, we
also advise caution in directly implementing any rec-
ommendations without considering the broader context
and individual differences.

7) Explainability: Explainability is a key ethical consid-
eration, especially in deep learning applications like
ours, which are often perceived as black boxes. By in-
corporating LIME to introduce an explainable compo-
nent, we enhance the transparency and trustworthiness
of our CNN-based model. This move towards greater
explainability allows stakeholders to understand, trust,
and critically evaluate the model’s outputs, which is
essential for ethical AI deployment in sports. It not
only facilitates easier identification and correction of
potential errors but also contributes to accountability
and fairness by exposing any underlying biases in the
model. Consequently, this approach ensures informed
decision-making by providing clear insights into how
the model processes and analyzes data. As sports
analytics increasingly influence critical decisions in
training and strategy, our commitment to explainable
AI aligns with the ethical standards of transparency
and fairness, crucial for maintaining the integrity of
the sport and its athletes.
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