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Abstract 

The availability of direct-to-consumer genetic testing services and genome sequencing data bring novel 

opportunities for applications like genomic risk scoring where a polygenic disease risk score is calculated 

considering the statistical distribution of the disease associated SNPs. Nowadays, various websites are offering 

polygenic risk score estimations for various complex diseases. However, these services require the upload of the 

genomic data to their sites, which is a fairly sensitive personal data. Since, genome data uniquely identifies a 

person, anonymization is not sufficient alone and may become a threat in the long run. A potential solution is the 

use of cryptographic techniques along this goal. We propose to deploy homomorphic encryption, a technique 

which enables to do computation in encrypted data, for a web server providing polygenic risk score estimation. 

We implemented a proof-of-concept software to measure the performance of such a service with current 

technology. We also developed a GUI which facilitates the usage of homomorphic encryption for non-technical 

users. We conclude that recently developed homomorphic encryption libraries enable practical privacy-

preserving genomic risk scoring services. Homomorphic encryption is becoming a strong alternative for practical 

secure privacy-preserving personalized medicine applications. 
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1 INTRODUCTION 

With the availability of direct-to-consumer genetic 

services, new types of web services are becoming available 

such as genotype imputation and polygenic disease risk 

prediction. A polygenic risk score (PRS) is an estimation of 

an individual’s tendency to diseases which is calculated by 

considering statistical distribution of SNPs. Although, PRS 

cannot be used directly for diagnosis, it provides valuable 

information for risk stratification, prediction of the drug 

response or prognosis. To benefit from such services, the 

upload of the genomic data to the server side is required. 

On the other hand, genome data is strictly personal and 

sensitive. Uploading genomic data to a web server leads to 

privacy issues. There is a requirement for a new generation 

of genomic services which are privacy-preserving services 

and compatible with regulations like GDPR and CCPA. 

Contribution. 

In this work we demonstrate a proof-of concept 

implementation of a privacy- preserving web server which 

computes genomic disease risk scores from encrypted data. 

We accomplish this task by using new Homomorphic 

Encryption tools. In our use case scenario, the user sends 

her genomic variants encrypted to the insecure cloud server 

where all the operations are performed in the encrypted 

domain. The user gets back the results where she will 

decrypt the results on the fly. In this way, privacy 

preserving versions of the existing web applications 

become practical. This is of critical importance, 

considering thousands of genomes are now being 

sequenced each day. This opens the way to get genomic 

consultancy about complex diseases without revealing 

sensitive variants and can be considered as a step towards 

the goal private personalized medicine services.  

The source code of the implementation of the case study is 

available in the GitHub repository: 

https://github.com/Shaedul/GenomeAnalysis_PySEAL 

2 RELATED WORK 

It is well known that genomic data is sensitive: it contains 

personal and confidential information such as the ancestry 

of an individual and of his/her kin, and their susceptibility 

and predisposition to specific diseases such as Alzheimer’s, 

schizophrenia, and cancer. Therefore, the leakage of 

genomic data leads to irreversible ethnic and social 

discrimination (e.g., see [12]). Genomic data should be 

stored, processed, and shared in a privacy preserving 

manner. 

Several methods have been proposed to enable genomics 

privacy. The most common choice, anonymization, is 

however provably ineffective in this case [9]. Very little 

piece of information, like 100 independent SNPs are 

enough to identify a person uniquely [13] and other sources 
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of information such as social media can be used to link with 

personal attributes [9]. Therefore, the natural choice is to 

resort to cryptographic methods. A practice which is also 

compliant with legal requirements in directives such as the 

Europe’s General Data Protection Regulation (GDPR) and 

the California Consumer Privacy Act (CCPA), is to encrypt 

the databases. This step is not enough though to ensure 

protection from privacy violation: if, for the purpose of 

processing, encrypted data sets are shared but decrypted 

before use, the risks of privacy violation remain. 

Alternative methods are using cryptographic protocols such 

as Differential Privacy, Secure Multiparty Computation 

(SCM) and Homomorphic Encryption (HE). Each method 

has its own pros and cons and has different use cases in 

genomics. 

Secure multiparty computation allows to collaboratively 

evaluate a function without revealing information to the 

parties. Jagadeesh et al. proposed to use SMC to identify 

diagnosis for monogenic rare diseases while preserving 

privacy for the remaining variants [11]. Later Akgun et al. 

improved the performance of the protocol [2]. Cui et al. 

proposed to use secure function evaluation to implement a 

privacy-preserving Human Leukocyte Antigen (HLA) 

matching [6].  

Homomorphic encryption technique enables to perform 

computation inside encrypted data. In this way, 

computationally expensive operations can be privately 

outsourced to an insecure party like a public cloud. The 

existence of a fully homomorphic scheme is first proven by 

Gentry [8]. The first implementations of fully 

Homomorphic Encryption were far from being practical. It 

was considered as much slower than Secure Multiparty 

computation [11]. However, recent improvements in the 

implementation techniques and novel libraries enabled to 

perform practical applications. 

Erman et al. used Paillier encryption system to implement 

a privacy-preserving cardiovascular disease risk analysis 

[3]. In [15] the authors developed a secure framework to 

conduct the rare variants analysis with a small sample size. 

Blatt   et al. demonstrated that GWAS analysis of a real data 

set consisting of 25.000 individuals can be executed 

practically on encrypted data [4]. Recently, Harmanci et al. 

developed a secure imputation web server based on 

homomorphic encryption where untyped variant data is 

predicted from available genotype data with the help of a 

reference panel [10]. The applications of HE is becoming 

more available and practical in genomics area. 

2.1. Polygenic risk scoring 

Estimating the susceptibility to a disease is invaluable in 

medicine considering outcomes such as early diagnosis and 

prevention of common adult-onset conditions. Mendelian 

traits can point out significant outcomes such as the use of 

BRCA mutations, but they generally cover a small fraction 

of the population since they rely on rare variants. However, 

recent GWAS studies pointed out that, for most complex 

human diseases, joint consideration of common and low-

frequency genetic variants that individually contribute 

small effects and provide much stronger predictions [14]. 

Generally, a polygenic risk score is calculated by 

computing the sum of risk alleles that are weighted by risk 

allele effect sizes.  The effect sizes are estimated using 

GWAS studies. We refer the interested reader to [5] for a 

comprehensive tutorial of polygenic risk scoring. 

In this paper we utilize the framework of Impute.me [7] for 

PRS scoring. For specific diseases such as Breast cancer, 

Type-1 Diabetes, Alzheimer disease and Celiac disease, we 

have considered the effect sizes provided in this work. For 

the top-SNP approach, where the authors consider the most 

significant SNPs, we benefit from the same list of SNPs. In 

this model the following scores were used: 

PopulationScoresnp = Frequencysnp × βsnp; 
ZerocenteredScore =  

βsnp×Effect-allele-countsnp-PopulationScoresnp; 
Z-score = ZerocenteredScore/σpopulation

where β is the reported effect size, Frequencysnp is the allele 

frequency for the effect allele and Effect-allele-countsnp is 

the allele count of the genotype data (0,1 or 2) and σpopulation 

is the standard deviation of the population. This final Z-

score is considered as the normalized metric for disease 

probability.   

2.2. Homomorphic encryption 

This cryptographic technique enables to perform 

computation on encrypted data with the help of a 

Homomorphic property, i.e. for every input plaintext pair 

x, y, we have: 

Enck(x + y) = Enck(x) ⊕ Enck(y), 

where Enc denote the encryption function, k the encryption 

key and ⊕ the homomorphic addition, respectively. The 

user encrypts the sensitive data by a public key and sends 

the encrypted data to an insecure party like a public cloud. 

Here, the insecure party performs operations in the 

encrypted data, without reaching the exact values of the 

data and sends the encrypted results to the user back. Here, 

the user decrypts the data with the secret key and obtains 

the desired result in his side. In this way, Homomorphic 

Encryption (HE) enables private outsourcing of 

computationally expensive operations to public clouds. 

This brings great flexibility from the security regulations 

(like GDPR) points of view since, even in the case of a data 

breach at the cloud side, no sensitive information is lost. 

Although the idea of a HE system existed previously, the 

existence of a fully homomorphic system was only shown 

in 2009 by Gentry [8] using lattice algebra. There are 

different types of Homomorphic Encryption operations 

such as Partially, Somewhat and Fully Homomorphic 

systems. Partially Homomorphic systems preserve the 

operations for one single operation whereas Somewhat 

Homomorphic systems support homomorphism for two 

different types operations (i.e. addition and multiplication) 

for a bounded number of operations. Finally, Fully 

Homomorphic systems preserve the homomorphism for 

both types of operations unbounded number of times. We 

refer the reader to [1] for a comprehensive survey on the 

theory and implementations of Homomorphic Encryption 

schemes. The initial implementations of HE were not very 

practical. It was taking days to make simple calculations. It 

has been suggested that HE computation is about 5.000-

10.000 times slower when compared to other privacy 

preserving techniques such as Secure Multiparty 

Computation [11]. Recently, new libraries and 
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implementations such as Microsoft’s SEAL and IBM’s 

Fully Homomorphic Encryption Toolkit For Linux have 

been made available for developing HE applications. These 

tools make HE applications more practical and available for 

a variety of cases including genomics analysis [15,10,4]. 

3 PRIVACY PRESERVING GENOMIC RISK 
SCORING 

We briefly explain our privacy preserving scheme. When a 

user, Alice, who owns her genomic variants (as a .vcf file) 

decides to benefit from the PPPRS (Privacy- preserving 

Polygenic Risk Score) web server, she carries out the 

following tasks, respectively: 

1. Alice generates a pair of Public and Private keys, denoted

by PK and SK, respectively. She sends a copy of the Public

Key to the cloud server and keeps the secret key to herself.

2. She requests a PRS for a specific disease from the web

server.

3. The web server sends the list of related SNPs which had

previously been determined with GWAS studies.

4. Alice encrypts the list of related variants and sends the

encrypted list to the cloud.

5. The cloud server performs PRS calculations using

encrypted values according to Algorithm and sends the

encrypted PRS result to the user.

6. Alice uses her secret key to decrypt her PRS score.

The general outline of this application is depicted in Figure 

1. 

Figure 1. Privacy Preserving PRS. 

4 IMPLEMENTATION 

4.1. User side 

To facilitate the use of the system, we have developed a 

Graphical User Interface (GUI). The structure of the GUI 

can be observed in Figure 2. The main aim of the GUI is to 

facilitate the use privacy preserving operations for the 

disease risk scoring. The operation of the client site is 

completed in a few steps. First, the user must register and 

log in with an anonymous user id and email address. Then, 

she generates the Public-Secret key pair, where the Public 

key will be shared with the cloud server to enable to encrypt 

the data and send to cloud. The user needs to store the secret 

key privately. Later, the user browses the genome variants 

data in VCF file format and selects the trait to interpret the 

disease risk score. After this step, the genomic variants data 

are encrypted, and the status field shows the progress of the 

encryption process. Finally, the encrypted data is sent to the 

cloud for further analysis. After the analysis is performed 

inside the cloud, the user receives the encrypted results and 

decrypts in this GUI platform using the Secret key. A the 

end of the process the user could observe both the 

calculated normalized Z-score as well as the graphical 

interpretation of this Z-score.  

4.2. Cloud side 

We have implemented the homomorphic operations in the 

cloud site by using Amazon Web Service (AWS), EC2 

environment. The cloud server has GWAS reference data 

in unencrypted form to support the PRS calculation. The 

reference data obtains the related Chromosome Number, 

SNPs ID, Effect size, Minor/Allele Frequency (MAF). 

When the cloud receives any encrypted genome variants 

data with the request of PRS for a specific disease, then 

reference data related to the disease will also be encrypted 

using the user public key. Afterwards, the cloud performs 

the computation for the risk score and sends the result to the 

client in encrypted form. We setup the Microsoft PySEAL 

(Python version of Simple Encrypted Arithmetic Library) 

library to implement the homomorphic encryption 

environment inside the cloud.  

Computational Performances. 

 The time performance of the HE experiments is provided 

in Table 1. These experiments are carried out with a laptop 

with i-7 1.8- 2.3 GHz. CPU and 16 GB RAM with 64-bit 

Windows Enterprise operating system. We used Python 

version 3.7.4 on the Spyder Environment for the 

implementation. 

Figure 2. GUI of the Privacy-Preserving PRS Software. 

Disease # SNPs Enc. Dec. Cloud 

Celiac 19 1.557 0.007 1.88 

Alzheimer 33 2.803 0.012 3.27 

T I Diabetes 45 3.564 0.016 4.47 

Breast Cancer 635 255.422 0.23 262.83 

Whole Genome 3800000 1528 1.406 376.10 

Table 1. Time performance of HE operations (seconds). 

5 DISCUSSIONS 

What we have exposed so far shows that is feasible to 

conduct secure genomic polygenic risk scoring using 

homomorphic encryption. If the number of SNPs 

associated with the disease is around 100, then whole 

operation can be executed in seconds. We note that another 

possibility is the encryption of the whole variant set (around 

3.5-5 million variants) in the .vcf file once and then carry 
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out the required operations. In this case, the dominant part 

of the computation is the encryption part. 

6 CONCLUSION 

In this work we have presented a proof-of-concept secure 

web server for the estimation of polygenic risk scores by 

implementing an algorithm using Homomorphic 

Encryption (HE). With the recently deployed secure 

imputation this study fills the gap for privacy preserving 

genomic analysis. Our study demonstrates that recent HE 

libraries enable to do risk score estimations without 

revealing the sensitive genome information. We have 

conducted experiments for various diseases and number of 

SNPs. 
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