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Abstract

Excavators are one of the commonly used types of hydraulic machines in earth moving
operations. The material handled is often transferred by dump trucks having a pay-
load capacity that should not be exceeded. Payload monitoring systems are needed
in order to prevent the possible problems during the delivery, increase the work effi-
ciency, reduce the cost, and obtain the product information automatically without the
requirement of truck scales. In this study, we propose a novel approach to estimate
the load weight in the bucket of the excavator when the machine links are in motion.
We consider the excavator as a three-revolute joint manipulator in vertical plane with
the boom, the stick, and the bucket links. We rewrite the dynamic torque equations
in a decoupled form as the linear combination of dynamic parameters and functions
of joint angles, velocities, and accelerations. We perform least squares estimation
to identify these parameters allowing us to predict the no load joint torques for any
configuration of the links. We show that the most accurate torque prediction is the
difference between the boom torque and the stick torque. We then derive the rela-
tion between the joint torques with and without the load, which are functions of the
dynamic parameters. Using these equations, we can estimate the load weight. The
relation becomes simpler when the links are stationary, since only the gravitational
parameters remain present in the torque equations. The relation in dynamic case re-
quires the parameters of the polar coordinates for the center of gravity of the bucket
and we show that these parameters can be estimated with the knowledge of the empty
bucket mass. We summarize our findings on load weight estimation for different cases
including stationary poses and dynamic trajectories on free space and discuss the res-
ults. Although the friction is neglected throughout the modeling, the results obtained
indicate that the effect of the static friction plays an important role in the accuracy of
the estimated payload mass. We show that our dynamic model based solution is very
promising, and exhibit only 2% error for high enough velocities.

Keywords: Load weight estimation, payload estimation, dynamic parameter estima-
tion, hydraulic machine, excavator

1 Introduction
Excavators play a significant role in variety of work sectors such as construction industry, mining, forestry activities
and agriculture. The weight of the payload on the dump trucks has to be measured since each truck has a payload
capacity that should not be exceeded for safety reasons. However, the use of truck scales increase the cost, and
they are not always available in every kind of work sites. Therefore, there is a need for payload monitoring systems
for excavators, in order to increase the work efficiency, lower the operational cost, and eliminate the need for truck
scales and automatically calculate the amount of work done. [1].

Different research works have been done in order to develop such payload monitoring systems for different hy-
draulically operating machines. There are existing methods proposed for wheel-loaders that use a neural network
approach [2] or generate the dynamic model of the wheel loader [3]. Also, there are algorithms developed for mini
excavators [4] and excavators [1, 5–8].

A research on available payload estimation systems for excavators have been presented in [9] and stated that the
load weight is calculated by making a linear interpolation using a map consisting of the data with two different
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load weights on a pre-defined range of motion. A method based on the static parameters of the dynamic model
of the excavator is developed in [4] for stationary poses. An analytical approach for payload estimation has been
presented in [8] for simulation environment and it is validated on a real excavator in [7].

In order to identify the dynamic parameters of the dynamic model of the excavators, the structural similarity of
the excavators to the serial link robot manipulators has been benefited. Since the excavator links, the boom, the
stick, and the bucket operate with the help of hydraulic actuators, change in the joint angles have been described
as functions of the linear displacement in these hydraulic actuators [10].

Problem of parameter estimation on excavators has been studied in different research works. Inertial parameters
are identified by making use of the dynamic model of the excavator with the displacement measurements of the
hydraulic cylinders and pressure readings in [11]. The link parameter values and friction terms have been estimated
in [12]. The dynamic parameters, gravitational parameters and Coulomb & Viscous friction parameters were
estimated in [4, 13, 14] as these parameters are necessary to develop weighing algorithms.

In this paper, a load weight estimation method is developed. The problem is divided into two parts as static
estimation and dynamic estimation. The static approach that is developed using a mini-excavator in [4] is tested
using a larger scale Komatsu 138PC-US8 excavator and the results show that the effect of static friction has a
significant effect on the estimated load masses. The dynamic weighing algorithm is developed assuming that
the bucket’s center of gravity is independent from the variable load weight in the bucket. The method proposed
requires the dynamic parameter estimation process so that the no-load torque values could be predicted accurately
as these predictions were needed in order to estimate the load mass.

The structure of this paper is as follows. Machine instrumentation is explained in the section 2 and the dynamic
model of the excavator is derived in the section 3. The static estimation and dynamic estimation and the results
obtained are discussed in the sections 4 and 5, respectively. Finally, the conclusion is given in the section 6.

2 Machine instrumentation
A Komatsu PC138US-8 excavator was used in data collection for this research. The CAD model of the excavator
can be seen in the figure 1 below. The excavator is taken into account as a three-revolute joint manipulator in
vertical plane with the boom, the stick and the bucket links. There are four IMU sensors installed on the cabin
frame, the boom link, the stick link, and the bucket that is the end-effector in order to measure the angular position
and angular velocity values of each link. The angular position measurements of each link are recorded with respect
to the previous link. In other words, angular position of the bucket is recorded with respect to the stick, angular
position of the stick is recorded with respect to the boom, and angular position of the boom is recored with respect
to the cabin frame. Furthermore, there are two pressure sensors located in each hydraulic cylinder. Therefore, there
are six pressure sensors used in total, to measure the pressures inside the chambers and to calculate the actuator
forces. All the sensors used operate at frequency of 200 Hz.

The boom, stick and bucket angular positions are shown in the figure 1 as θ2, θ3, and θ4, respectively. The constant
angles β1 and β2 are used to calculate the joint variable q2 and the constant angles β3 and β4 are used to obtain
the joint variable q3. The constant lengths L11 and L12 from boom joint to the both ends of the hydraulic actuator
are used together with the joint variable q2 in order to obtain the actuator length z2. Similarly, the constant lengths
L21 and L22 are used together with the joint variable q3 to calculate the actuator length z3. The actuator lengths
are used in calculation of cylinder Jacobians that is needed for calculating the torques exerted in each link. Since
the IMU sensor on the bucket was located on the dog bone, obtaining the joint variable q4 from the joint angle θ4
is more difficult. The dimensions of the four-bar linkage were needed in order to convert the joint angle θ4 to the
joint variable q4. Note that the index 1 is reserved for the cabin frame which is kept outside the scope of this study.

Torque calculation from the pressure readings and cylinder jacobians that are obtained using the angular position
measurements has been discussed in [1].

The simplest schematic diagram of the excavator is illustrated in the figure 2. The boom torque, the stick torque,
and the bucket torque are represented as τ2, τ3, and τ4, respectively. The parameters αi and ri are the polar
coordinates of the center of gravity (cgi) of link i. The angular position of the links are θ2 for the boom, θ23 =
θ2 +θ3 for the stick, and θ234 = θ2 +θ3 +θ4 + c for the bucket with respect to the horizontal plane, where c is a
constant angle, that is shown in the figure 1, used in order to map the bucket angular position measurement to the
bucket tip. Derivation of the constant angle c is discussed in [1].

3 Dynamic model of the excavator
Excavators are hydraulically actuating manipulators. Excluding the cabin frame from our research, and assuming
that the tiltrotator is only a series of offsets and nonfunctional, the excavator can be considered as a planar three-
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Figure 1: Excavator CAD Model [1]

revolute joint manipulator [13].

The following equation (1) describes the dynamic model of a robot manipulator [6, 15–17]:

τ = D(Θ)Θ̈+C(Θ,Θ̇)Θ̇+G(Θ) (1)

Where,

• τ is the joint torque vector,

• Θ is the vector of joint angles,

• D(Θ) is the inertia matrix,

• C(Θ,Θ̇)Θ̇ is the vector of Coriolis and centrifugal terms,

• G(Θ) is the gravity torque vector.

As pointed out in [17], the torque equation (1) can be written as the linear combination of dynamic parameters that
are assumed to be constant, π , and a matrix of functions of joint positions, velocities and accelerations Y (Θ,Θ̇,Θ̈):

τ = Y (Θ,Θ̇,Θ̈)π (2)

Neglecting the friction, we can assume that the system is conservative, i.e. the summation of kinetic energy and
potential energy is constant, and keeping the cabin frame stationary, the torque equations (3) were obtained using
Euler-Lagrange method [13, 14]:
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Figure 2: Excavator schematic diagram [13]

τ4 = (Ibu +Mbur2
4)θ̈234 +Mbua2r4[θ̈2cos(θ34 +α4)+ θ̇ 2

2 sin(θ34 +α4)]

+Mbua3r4[θ̈23cos(θ4 +α4)+ θ̇ 2
23sin(θ4 +α4)]+Mbugr4cos(θ234 +α4)

τ3 = τ4 +(Ist +Mstr2
3 +Mbua3

2)θ̈23 +Mbua2a3(θ̈2cos(θ3)+ θ̇ 2
2 sin(θ3))

+Mbua3r4[θ̈234(θ4 +α4)− θ̇ 2
234sin(θ4 +α4)]

+Msta2r3[θ̈2cos(θ3 +α3)+ θ̇ 2
2 sin(θ3 +α3)]

+Mbuga3cos(θ23)+Mstgr3cos(θ23 +α3)

τ2 = τ3 +[Ibo +Mbor2
2 +(Mst +Mbu)a2

2]θ̈2

+Msta2r3[θ̈23cos(θ3 +α3)− θ̇ 2
23sin(θ3 +α3)]

+Mbua2a3(θ̈23cos(θ3)− θ̇ 2
23sin(θ3)

+Mbua2r4[θ̈234cos(θ34 +α4)− θ̇ 2
234sin(θ34 +α4)]

+(Mbu +Mst)ga2cos(θ2)+Mbogr2cos(θ2 +α2) (3)

Where Ibo, Ist , and Ibu are the moments of inertia of the boom link, the stick link, and the bucket link, respectively
and the parameters Mbo, Mst , and Mbu represent the masses of the boom link, the stick link and the bucket link,
respectively. The parameter a2 is the linear distance between the boom joint and the stick joint. Similarly, the
parameter a3 is the linear displacement between the stick joint and the bucket link, and the parameter a4 is the
distance from the bucket link to the bucket tip.

4 Static estimation of the load weight
The torque equations given in the equation (3) are reduced to the following equation (4) when the machine links
are stationary, i.e. all the velocity and acceleration terms are set to zero:

τ4 = Mbugr4cos(θ234 +α4)

τ3 = τ4 +Mbuga3cos(θ23)+Mstgr3cos(θ23 +α3)

τ2 = τ3 +(Mbu +Mst)ga2cos(θ2)+Mbogr2cos(θ2 +α2) (4)

We rewrite the static torque equation (4) above in the decoupled form, that is the torque difference of the two con-
secutive joints and benefit from the well-known trigonometric identity, cos(α+β )= cos(α)cos(β )−sin(α)sin(β ),
and obtain the following equation (5):

τ4 = Mbugr4[cos(θ234)cos(α4)− sin(θ234)sin(α4)]

τ34 = τ3− τ4 = Mbuga3cos(θ23)+Mstgr3[cos(θ23)cos(α3)− sin(θ23)sin(α3)]

τ23 = τ2− τ3 = (Mbu +Mst)ga2cos(θ2)+Mbogr2[cos(θ2)cos(α2)− sin(θ2)sin(α2)] (5)
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The equation (5) can be converted into matrix form as stated in the equation (2):




τ4
τ34
τ23


= g




cos(θ234) −sin(θ234) 0 0 0 0
0 0 cos(θ23) −sin(θ23) 0 0
0 0 0 0 cos(θ2) −sin(θ2)







πs1
πs2
πs3
πs4
πs5
πs6




(6)

Where the vector
[
πs1 πs2 πs3 πs4 πs5 πs6

]T is named as the vector of gravitational parameters, πs:

πs =




πs1
πs2
πs3
πs4
πs5
πs6



=




Mbur4cos(α4)
Mbur4sin(α4)

Mbua3 +Mstr3cos(α3)
Mstr3sin(α3)

(Mbu +Mst)a2 +Mbor2cos(α2)
Mbor2sin(α2)




(7)

Note that the equation (6) is linear in the gravitational parameters. Once the torque vector
[
τ4,τ34,τ23

]T is obtained,
the vector of gravitational parameters, πs, can be found using Least Squares Estimation (LSE) as explained in the
section 4.1.

The pressure readings have been used to calculate the force (F) exerted on each hydraulic actuator using the relation
F = P1A1−P2A2, where P1 and P2 are the pressures in chamber A and chamber B of the hydraulic cylinders and
A1 and A2 are the cross-sectional areas of chamber A and chamber B, respectively.

The torque values for each joint has been calculated with the multiplication of the forces and cylinder jacobians.
Figure 3 visualizes the constant β1 and β2 angles that are used to calculate the boom joint variable, q2, together
with the measured boom angle, θ2, the constant lengths from boom joint to the both ends of the hydraulic cylinder
are represented as L11 and L12 that are used to calculate the length of the actuator, z2. The equation (8) shows the
calculation of the boom cylinder jacobian, Jbo. Similarly, how the stick cylinder jacobian and the bucket cylinder
jacobian are derived can be seen in [1].

Figure 3: Boom joint angle and joint variable [1]
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q2 = β1 +β2 +θ2

z2 =
√

L2
11 +L2

12−2L11L12cos(q2)

Jbo =
dz2

dθ2
=

L11L12sin(q2)

z2
(8)

After obtaining the torque values, the gravitational parameters can be found using the following equation (9):

π = (Y (Θ)TY (Θ))−1Y (Θ)T τ (9)

Where Y (Θ) is the regressor matrix, and defined as follows:

Y (Θ) = g




cos(θ234) −sin(θ234) 0 0 0 0
0 0 cos(θ23) −sin(θ23) 0 0
0 0 0 0 cos(θ2) −sin(θ2)


 (10)

4.1 Static parameter estimation

The estimation of the gravitational parameters that are given in the equation (7) allows us to predict the torque
values in decoupled form, when the bucket of the excavator is empty.

In order to obtain the gravitational parameters, a training data set consisting of 38 different static postures of the
machine links has been collected. In the data set, angular positions of the boom link, the stick link and the bucket
link has been recorded together with the pressure readings of the hydraulic cylinders.

After gathering the data and making use of the equation (10), the gravitational parameters are estimated as given
in the table 1.

Table 1: Estimated gravitational parameters

Parameter Estimated Value (kgm)

πs1 189.85
πs2 318.80
πs3 2753.27
πs4 132.33
πs5 8297.89
πs6 1156.44

As can be seen from the table 1, all of the parameters are found to be positive, as expected.

The estimated gravitational parameters have been tested on a test data set consisting of 19 different static postures
that are different than the ones in the training data set. The mean absolute percentage value of the error (MAPE)
in the predicted torque values are reported in the table 2 below:

Table 2: Accuracy of predicted no-load torque values

Predicted Torque MAPE

τ4 40.98%
τ34 10.25%
τ23 8.31%

From the results presented in the table 2, we conclude that the most accurate torque prediction is τ23, that is the
difference between the boom torque and the stick torque. The highest error has been obtained for the bucket toruqe,
τ4, and the possible reasons of the error are listed below:

• The effect of static friction is more dominant compared to other torque values,

• The test data of the bucket angular measurements exceeds the range of the ones in the training data.
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4.2 Load weight estimation using the gravitational parameters

For an arbitrary mass in the bucket of the excavator, M̂, the static torque equations given in the equation (5) can be
rewritten by replacing Mbu with Mbu + M̂ and the following equations (11) can be obtained:

τ4 = (Mbu + M̂)gr4cos(θ234 +α4)

τ34 = (Mbu + M̂)ga3cos(θ23)+Mstgr3cos(θ23 +α3)

τ23 = (Mbu + M̂+Mst)ga2cos(θ2)+Mbor2cos(θ2 +α2) (11)

These torque equations given in the equation 11 are valid for any value of the load in the bucket and can be written
as the summation of the no load torque and the torque due to the load in the bucket as stated in the following
equation (12) [4]:

τ4L = τ4NL + M̂gr4cos(θ234 +α4)

τ34L = τ34NL + M̂ga3cos(θ23)

τ23L = τ23NL + M̂ga2cos(θ2) (12)

In the equation (12) above, the subscript NL represents the no load torque value and the subscript L denotes the
torque with the load. We can predict the no load torque values by making use of the estimated gravitational
parameters. In the light of the results presented in the table 2, the most suitable torque equation is the difference
between the boom torque and the stick torque, τ23. We can predict the value of τ23 by making use of the last two
elements of the gravitational parameter vector, πs5, and πs6 and solve the equation 12 for M̂ as in the equation (13)
below [4]:

M̂ =
τ23L − τ23NL

ga2cos(θ2)
(13)

In order to validate the usability of this approach presented above, we collected data sets with two different refer-
ence load masses that are 250 kg and 500 kg. The collected data sets have 37 different static postures for 250 kg
and 42 different static postures for 500 kg. The results of the estimated load weight are presented in the table 3
below:

Table 3: The results of static load weight estimation using the estimated gravitational parameters

Load Weight MAPE Standard Deviation

250 kg 13.98% 13.56%
500 kg 9.42% 6.78%

The possible sources of the error are listed below:

• The static friction is kept outside of this study and the static friction might be different even for the same
static posture with different load weights in the bucket.

• The accuracy of the predicted no load torque is directly related to the gravitational parameters. Increasing
the number of static postures in the training data set and covering more parts of the excavator’s working
space would result in better no load torque estimations; therefore, the error in the load weight estimation
would be lowered.

• The used reference loads are concrete blocks. Thus, the load is not uniformly distributed in the bucket.
The position of these concrete blocks in the bucket might have an affect on the pressure readings and the
measured torque value, τ23L in the equation (13) might change.

5 Dynamic estimation of the load weight
The dynamic torque equations given in the equation (3) can also be written in the decoupled form and using the
well-known trigonometric identities cos(α+β ) = cos(α)cos(β )−sin(α)sin(β ) and sin(α+β ) = sin(α)cos(β )+
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cos(α)sin(β ), we can write the dynamic torque equations in matrix form as done in the equation (14). Note that
the equation is in the form of τ = Y (Θ,Θ̇,Θ̈)π as mentioned in the equation (1).

∆τ =




τ4
τ34
τ23




3×1

=




y11 0 0 y14 y15 0 0 0 0
0 y22 0 y24 y25 y26 y27 0 0
0 0 y33 y34 y35 y36 y37 y38 y39




3×9




πd1
πd2
πd3
πs1
πs2
πs3
πs6
πs5
πs6




9×1

(14)

Where the subscripts s and d stand for static and dynamic parameters, respectively, and

y11 = θ̈234

y14 = a2θ̈2cos(θ34)+a2θ̇ 2
2 sin(θ34)+a3θ̈23cos(θ4)+a3θ̇ 2

23sin(θ4)+gcos(θ234)

y15 =−a2θ̈2sin(θ34)+a2θ̇ 2
2 cos(θ34)−a3θ̈23sin(θ4)+a3θ̇ 2

23cos(θ4)−gsin(θ234)

y22 = θ̈23

y24 = a3θ̈234cos(θ4)−a3θ̇ 2
234sin(θ4)

y25 =−a3θ̇ 2
234sin(θ4)−a3θ̇ 2

234cos(θ4)

y26 = a2θ̈2cos(θ3)+a2θ̇ 2
2 sin(θ3)+gcos(θ23)

y27 =−a2θ̈2sin(θ3)+a2θ̇ 2
2 cos(θ3)−gsin(θ23)

y33 = θ̈2

y34 = a2θ̈234cos(θ34)−a2θ̇ 2
234sin(θ34)

y35 =−a2θ̈234sin(θ34)−a2θ̇ 2
234cos(θ34)

y36 = a2θ̈23cos(θ3)−a2θ̇ 2
23sin(θ3)

y37 =−a2θ̈23sin(θ3)−a2θ̇ 2
23cos(θ3)

y38 = gcos(θ2)

y39 =−gsin(θ2) (15)

It can be realized from the parameter vector (π) that one dynamic parameter (πdi ) is introduced for each torque
equation and the parameter vector is given in the equation (16) below.

π =




πd1
πd2
πd3
πs1
πs2
πs3
πs6
πs5
πs6




=




Ibu +Mbur2
4

I +Mstr2
3 +Mbua2

3
Ibo +Mbor2

2 +(Mst +Mbu)a2
2

Mbur4cos(α4)
Mbur4sin(α4)

Mbua3 +Mstr3cos(α3)
Mstr3sin(α3)

(Mbu +Mst)a2 +Mbor2cos(α2)
Mbor2sin(α2)




(16)

The torque values have been obtained using the pressure readings and angular position measurements of the ma-
chine links as described in the section 4. After constructing the regressor matrix Y (Θ,Θ̇,Θ̈) it is possible to estimate
the dynamic parameters using Least Squares Estimation as explained in the section 5.1.

5.1 Dynamic parameter estimation

In order to perform the dynamic parameter estimation using the Least Squares Estimation method, five different
data sets with empty bucket over the similar trajectories have been collected. In order to avoid the contact force
between the bucket and the ground, the trajectories have been generated on free space.
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One of the five data sets have been used for estimating the parameters given in the equation (16), and the other
four data sets have been used to compare the predicted torque values that are found using the estimated dynamic
parameters with the actual torque values.

In order to construct the regressor matrix Y (Θ,Θ̇,Θ̈), the angular velocity and the angular acceleration values of
the boom link, the stick link, and the bucket link are needed as can be seen in the equation (15). Due to the
practical limitations, the angular acceleration values could not be recorded; therefore, these values were needed
to be estimated. Using a polynomial fitting approach, the angular acceleration values have been estimated. The
smoothing splines method have been utilized in MATLAB in order to fit the piece-wise polynomials on the angular
position data and the angular velocities and angular accelerations have been found by taking the derivatives of the
fitted polynomials. Once the angular velocity estimations matched the angular velocity measurements, the angular
acceleration estimations have been assumed to be correct.

The root-mean-squared error (RMSE) values for each link are reported in the table 4 below.

Table 4: Root-mean-squared error values for estimated angular velocities

Estimated Angular Velocity RMSE (deg/s)

Boom velocity θ̇2 0.33
Stick velocity θ̇23 0.35

Bucket velocity θ̇234 0.34

After estimating the angular velocity and angular acceleration values for all the links with acceptable error rates,
the regressor matrix Y (Θ,Θ̇,Θ̈) has been constructed and the parameter estimation has been performed on the
torque difference between the boom joint and the stick joint, τ23 that is given in the equation (17) below.

τ23 =




θ̈2
a2θ̈234cos(θ34)−a2θ̇ 2

234sin(θ34)
−a2θ̈234sin(θ34)−a2θ̇ 2

234cos(θ34)
a2θ̈23cos(θ3)−a2θ̇ 2

23sin(θ3)
−a2θ̈23sin(θ3)−a2θ̇ 2

23cos(θ3)
gcos(θ2)
−gsin(θ2)




T 


Ibo +Mbor2
2 +(Mst +Mbu)a2

2
Mbur4cos(α4)
Mbur4sin(α4)

Mbua3 +Mstr3cos(α3)
Mstr3sin(α3)

(Mbu +Mst)a2 +Mbor2cos(α2)
Mbor2sin(α2)




(17)

Parameter estimation has been performed over 10 seconds of a time interval on one of the five dynamic trajectories.
In other words, 2000 data samples have been used. The values of the parameters given in the equation (17) have
been found using the formula given in the equation (18), and listed in the table 5 below.

π = (Y (Θ,Θ̇,Θ̈)TY (Θ,Θ̇,Θ̈))−1Y (Θ,Θ̇,Θ̈)T τ23 (18)

Table 5: Estimated values of parameters appearing in the dynamic torque difference between the boom and the
stick

Parameter Estimated Value Unit

πd3 28827.71 kgm2

πs1 298.04 kgm
πs2 592.86 kgm
πs3 8228.37 kgm
πs4 2571.05 kgm
πs5 8927.32 kgm
πs6 1386.54 kgm

Note that all the parameters given in the table 5 above are positive, as expected. It is possible to predict the torque
difference between the boom and the stick, τ23, for any position, velocity and acceleration values of the excavator
links. Note also that the estimated gravitational parameters are not the same with the results obtained in the static
estimation that is discussed in the section 4.1. Since the static friction is eliminated in the dynamic estimation of
the parameters, the results of torque predictions on dynamic trajectories are more consistent. In order to check the
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reliability of these parameters, the torque values of the remaining four data sets have been predicted and compared
with the actual torque values that are calculated based on the pressure readings and angular position measurements.
The mean-absolute-percentage-error (MAPE) values of torque predictions for each data set are listed in the table
6.

Table 6: Accuracy of predicted dynamic no-load torque values

Predicted τ23NL MAPE

Data set #1 4.20%
Data set #2 5.24%
Data set #3 5.67%
Data set #4 3.85%

The predicted torque values have an error around 5%, meaning that the parameters given in the table 5 estimated
accurately. Figure 4 illustrates the predicted torque values together with the actual ones.

Figure 4: Measured ( ) and predicted ( ) torque values

5.2 Load weight estimation using the dynamic parameters

Assuming that the bucket center of gravity is fixed and does not change depending on the variable load weight in
the bucket, the dynamic torque equation representing the difference between the boom torque and the stick torque,
τ23, can be obtained by replacing Mbu with Mbu + M̂ where M̂ is the arbitrary load mass in the bucket as given in
the equation 19

τ2L − τ3L = τ23L = [Ibo +Mbor2
2 +(Mst +(Mbu + M̂)a2

2)]θ̈2

+Msta2r3[θ̈23cos(θ3 +α3)− θ̇ 2
23sin(θ3 +α3)]

+(Mbu + M̂)a2a3(θ̈23cos(θ3)− θ̇ 2
23sin(θ3)

+(Mbu + M̂)a2r4[θ̈234cos(θ34 +α4)− θ̇ 2
234sin(θ34 +α4)]

+(Mbu + M̂+Mst)ga2cos(θ2)+Mbogr2cos(θ2 +α2) (19)

The equation (19) above can be rearranged as the summation of the no load torque and the torque due to the load
weight in the bucket. The resulting torque equation is given in the equation (20) below.
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τ23L = τ23NL + M̂a2
2θ̈2 + M̂a2a3(θ̈23cos(θ3)− θ̇ 2

23sin(θ3))

+ M̂r4a2θ̈234cos(θ34 +α4)− M̂r4a2θ̇ 2
234sin(θ34 +α4)+ M̂ga2cos(θ2) (20)

The torque value with the load (τ23L ) in the bucket is calculated using the pressure measurements from the cylinders
and the angular position measurements of the links, as discussed earlier. Furthermore, the no load torque value
(τ23NL ) can be predicted for the same angular position, velocity and acceleration values. Then, M̂ can be found
using the difference between τ23L and τ23NL as stated in the equation (21) below [1].

M̂ =
τ23L − τ23NL

a2
2y33 + r4cos(α4)y34 + r4sin(α4)y35 +a3y36 +ga2cos(θ2)

(21)

Where the parameters y33, y34, y35, and y36 are given in the equation (15).

It should be noted that the polar coordinates of the bucket center of gravity, r4 and α4 that can be seen in the figure
2 are needed in order to estimate the payload mass in the bucket that is given in the equation (21) above. Estimation
of these parameters is discussed in the section 5.2.1.

5.2.1 Estimation of the polar coordinates of the bucket center of gravity

In order to estimate the polar coordinates of the bucket center of gravity, one can use the second and the third
elements of the dynamic parameter vector that is described in the equation (16), πs1 and πs2, together with the
mass of the bucket and tiltrotator assembly. Knowing the fact that the bucket-tiltrotator is 750 kg, the parameter
α4 can be found taking the inverse tangent of the division of πs2 to πs21 gives us the parameter α4 as shown in the
equation (22) below.

α4 = tan−1
(

πs2

πs1

)
(22)

Once the value of α4 is obtained, the parameter r4can be found using one of the following relations given in the
equation (23) below.

r4 =
πs1

Mbucos(α4)

r4 =
πs2

Mbusin(α4)
(23)

Once the values of the parameters α4 and r4 have been obtained, it becomes possible to estimate the load weight
in the bucket using the equation (21) above.

5.3 Collected data sets and the results

In order to find out the usability of the method developed, five data sets with 318 kg reference load and five data
sets with 618 kg reference load have been collected using similar trajectories on free space. The mass estimation
formula given in the equation (21) has been used for every sample in the used data sets and an array of mass
estimation is created and the mean value is reported as the final result of the estimated load weight.

Three scenarios have been generated and the load weight estimation has been performed in each scenario that are
listed below:

• Load weight estimation over five seconds of time intervals where the machine links have velocities higher
than 2 deg/s in magnitude.

• Load weight estimation using the dynamic parts of the data sets, i.e. the data samples when the machine
links are stationary discarded.

• Load weight estimation using all the samples in the data sets including the stationary parts as well.

The load weight estimation for these three scenarios stated above are presented in the tables 7, 8 and 9, respectively.

The 17th Scandinavian International Conference on Fluid Power
SICFP’21, June 1-2, 2021, Linköping, Sweden
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Table 7: The results of dynamic load weight estimation over 5 seconds of time intervals

Test Data Estimated Load Weight Error (%)

Data set #1, 618 kg 614.22 kg 0.61%
Data set #2, 618 kg 612.39 kg 0.91%
Data set #3, 618 kg 610.89 kg 1.15%
Data set #4, 618 kg 623.53 kg 0.90%
Data set #5, 618 kg 621.33 kg 0.54%
Data set #1, 318 kg 319.24 kg 0.39%
Data set #2, 318 kg 313.99 kg 1.26%
Data set #3, 318 kg 317.19 kg 0.26%
Data set #4, 318 kg 321.68 kg 1.16%
Data set #5, 318 kg 332.69 kg 4.62%

Table 8: The results of dynamic load weight estimation using only the dynamic parts of the data sets

Test Data Estimated Load Weight Error (%)

Data set #1, 618 kg 630.77 kg 2.07%
Data set #2, 618 kg 642.37 kg 3.94%
Data set #3, 618 kg 621.90 kg 0.63%
Data set #4, 618 kg 606.41 kg 1.87%
Data set #5, 618 kg 612.75 kg 0.85%
Data set #1, 318 kg 336.17 kg 5.71%
Data set #2, 318 kg 310.63 kg 2.32%
Data set #3, 318 kg 310.84 kg 2.25%
Data set #4, 318 kg 349.36 kg 9.86%
Data set #5, 318 kg 323.26 kg 1.65%

Table 9: The results of dynamic load weight estimation using all the samples in the data sets

Test Data Estimated Load Weight Error (%)

Data set #1, 618 kg 618.87 kg 0.14%
Data set #2, 618 kg 510.55 kg 17.39%
Data set #3, 618 kg 603.33 kg 2.37%
Data set #4, 618 kg 567.38 kg 8.19%
Data set #5, 618 kg 541.41 kg 12.39%
Data set #1, 318 kg 279.24 kg 12.19%
Data set #2, 318 kg 298.28 kg 6.20%
Data set #3, 318 kg 290.09 kg 8.78%
Data set #4, 318 kg 340.66 kg 7.13%
Data set #5, 318 kg 301.64 kg 5.15%

The 17th Scandinavian International Conference on Fluid Power
SICFP’21, June 1-2, 2021, Linköping, Sweden
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As can be seen from the results, the best results are achieved with high velocity values and the worst results are
obtained with the inclusion of the stationary parts of the data sets. The possible sources of the errors are listed
below:

• The frictional parameters are neglected in dynamic modeling but the effects of the friction was present in the
data sets.

• Used reference load weights were concrete blocks; therefore, the center of gravity has changed with different
load weights in the bucket but it assumed to be unchanged.

• The accuracy of the dynamic parameters have an effect on the torque predictions and more accurate estima-
tions would yield more accurate torque predictions.

• Angular velocity estimations and angular acceleration estimations were not 100% accurate. Therefore, the
predicted torque values have been affected and resulted in an increase for the error of the dynamic load
weight estimations.

6 Conclusion
We presented solutions for load weight estimation problem on excavators. We proposed two different methods
based on static and dynamic models. The dynamic model of the excavator is developed considering the excavator
as a planar robot manipulator with three-revolute joints: the boom, the stick and the bucket. The cabin frame is
kept outside the scope of this research and the tiltrotator is assumed to be non-functioning and only a series of
offsets. Due to the practical limitations, we were not able to record the angular acceleration measurements and we
estimated these values using a polynomial fitting approach. Even though the friction is neglected throughout the
study for simplicity, effects of the static friction was present in the data and it was observed in the results of static
estimation of the load weight. A dynamic load weight estimation method is proposed assuming that the bucket
center of gravity is independent from the load mass in the bucket and the results show that the approach can work
accurately with high velocity motion trajectories. The proposed method for dynamic estimation of the load weight
can be implemented real-time if the angular acceleration values can be measured together with the angular position
and angular velocity values. Accurate results could be obtained real-time when the friction is not dominating. Also,
the idea of dynamic parameter estimation and using the torque difference between the case when the end effector
carries load and the case when the end effector is unloaded could be extended to other machines such as cranes
but needs further investigation. Finally, the possible sources of the error for the estimated load weights have been
discussed.
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102



[9] Nureddin Bennett, Ashwin Walawalkar, and Christian Schindler. Payload estimation in excavators: Model-
based evaluation of current payload estimation systems. 03 2014.

[10] N. G. Hareesha and K. N. Umesh. Kinematic and isotropic properties of excavator mechanism. 07 2018.

[11] Seungjin Yoo, Cheol-Gyu Park, and Seung-Han You. Inertial parameter estimation for the dynamic simula-
tion of a hydraulic excavator. Journal of Mechanical Science and Technology, 32(9):4045–4056, 2018.

[12] Yahya H. Zweiri. Identification schemes for unmanned excavator arm parameters. 5(2):185–192, 2008.

[13] Shahram Tafazoli, Peter. D. Lawrence, and S.E. Salcudean. Identification of inertial and friction parameters
for excavator arms. IEEE Transactions on Robotics and Automation, 15(5):966–971, 10 1999.

[14] Shahram Tafazoli. Identification of frictional effects and structural dynamics for improved control of hy-
draulic excavators. PhD thesis, University of British Columbia, 1997.

[15] Yunfei Dong, Tianyu Ren, Ken Chen, and Dan Wu. An efficient robot payload identification method for
industrial application. Industrial robot, 45(4):505–515, 2018.

[16] N. R. Parker, S. E. Salcudean, and P. D. Lawrence. Application of force feedback to heavy duty hydraulic
machines. In IEEE Int. Conf. Robot. Automat., pages 375–381, 5 1993.

[17] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics Modelling, Planning and
Control, chapter 7. Springer, 2009.

The 17th Scandinavian International Conference on Fluid Power
SICFP’21, June 1-2, 2021, Linköping, Sweden
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