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Abstract 

Axial piston machines are widely used in both stationary and mobile hydraulic 

systems due to their efficiency and robustness in high pressure applications. Important 

tribological contacts in axial piston machines are between pistons and bushings, 

sliding shoe and swash plate, as well as between cylinder block and valve plate. The 

analysis of these contacts is imperative to improve the overall performance of the 

machine, since they influence its efficiency to a high extend. This paper focuses on 

the contact between the valve plate and the cylinder block.   

High pressure forces acting on the cylinder block result in a tilted position, defining 

the shape of the interface with the valve plate. The tilted position is overlayed by the 

cylinder block’s rotation, resulting in unfavorable lubrication conditions and high 

contact pressure.   

Measures to actively influencing the cylinder block’s position during its rotation is 

currently researched at ifas. Using pressure pockets in the kidney grooves of the 

cylinder block is one of these measures and presented in this paper. The investigation 

is done simulative and experimental, using a 140 cm³ pump on a special test rig, 

measuring the cylinder block movement. The results of this are presented in this paper. 
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1 Introduction 

Axial piston machines are used in many mobile and stationary hydraulic systems, because they can deliver high 

volume flow rates at a high pressure with an overall efficiency of about 90 % in modern units [1]. Figure 1 shows 

the main components of an axial piston pump. Tribological contacts in this machine are defined as surfaces moving 

relative to each other, separated by a thin fluid film. Essential pairings are the pistons with their respective 

cylinders/bushings, the sliding shoe with the swash plate and the valve plate with the cylinder block [1]. Nearly 

90 % of the overall efficiency [2] can be traced back to these contacts. The research and further development of 

these tribological contacts in axial piston machines is therefore of great importance in context of resource 

efficiency, climate protection and emission laws. In context with the goal of removing leaded materials [4], which 

are partially used in these contacts, several aspects need to be combined to allow for improvements coming from 

different stakeholders. 
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The here presented analysis focuses on the contact between the valve plate and the cylinder block. The cylinder 

block is driven by the shaft which in turn is driven by the engine. Axially it is in contact with the stationary valve 

plate which inherits kidney shaped openings, connected to the inlet and outlet ports of the pump. The cylinders in 

the cylinder block are connected via bores to the interface and due to the rotational movement, each cylinder 

transitions from the low pressure port to the high pressure during each rotation, synchronized with the suction and 

pressure stroke of the piston. Therefore, this is a forced commutation. The main task of the interface is to seal high 

and low pressure areas and openings against each other and the housing/ambient pressure. To reach the sealing 

function, the axial gap between cylinder block and valve plate must be as small as possible, however the system 

should not introduce unnecessary friction. Therefore, it is designed as hydrostatic/hydrodynamic axial bearing, 

incorporating the described functionality. Pressurized surfaces within the cylinder block are balanced against the 

area of the axial bearing, compensating the acting forces with a small remaining force acting as “gap-closing” 

force, always ensuring a safe operation. Springs acting on the cylinder block create a preload force, pressing the 

cylinder block against the valve plate. This creates an offset to the force balance and accounts for low-pressure 

operations, going along with low pressure forces and the risk of a lifting the cylinder block off the valve plate. 

Forces acting in gap-closing direction are designed so that a good compromise between friction and volumetric 

losses is established. However, a safety margin to prevent lift-off, unintended machine usage and dynamic effects 

must be implemented, moving the design point away from the sweet spot in the direction of higher friction. Another 

problem results then for self-sucking pumps. The increasing gap at low pressure side loses its function of sealing. 

Therefore, the pressure can collapse. This effect limits the self-sucking speed of axial piston pumps. 

To account for tolerances, unfavorable lubrication conditions, high load peaks and to allow a run-in, the 

materials are often selected to be steel on one component, paired with a soft material on the other part (e.g., brass 

or bronze alloy). Lead within the alloy improves the durability and robustness, however it’s use is Hence lead is a 

toxic heavy metal and its use is strongly regulated in the EU due to its toxicity.  

 Due to unbalanced forces resulting from the pressure difference between the high and low pressure apertures, 

the cylinder block tilts during operation. By setting up the equilibrium of the forces and moments acting on the 

cylinder block, P. Achten investigates the tilting effect analytically in [5]. The obtained results showed that the 

forces and moments are heavily unbalanced during operation, mainly due to two characteristics of axial piston 

machines. First, greater differences in fluid volume in each displacement chamber are caused by different rotational 

angles of the swash plate, thus causing uneven centrifugal forces. Also, compressive forces resulting from the 

narrowing of the cross-section of the cylinder block bores are very different, especially in operation points with 

high load pressures. Therefore, the resulting pressure difference between the low pressure side and the high 

pressure side grows bigger, so that the cylinder block gives in towards the high pressure side. A simulation model 

was built up by S. Wegner for the investigation of the cylinder block’s movement. The description and validation 

of the model can be found in [6]. It is shown that the cylinder block tilts to the high pressure side and holds the 

attained position almost constantly during constant operating conditions, therefore supporting the statement of 

P. Achten’s investigation. The position of the minimum gap height of a 9 piston machine, while 4 and 5 pistons 

are pressurized, is shown in fig. 2. The shown simulative results are consistent with experimental 

investigations [6].  

Figure 1: Main parts of an axial piston machine [3] 
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Due to the negative effects named earlier, small gap heights increase the risk of high wear due to increased 

friction as well as local hot spots [7]. Especially the high temperature is a challenge for the material substitution. 

Coatings like “Diamond Like Carbon” (DLC) are very hard and have good tribology properties but are sensitive 

to high temperatures. Therefore, the development of design concepts with the aim to reduce tilting and temperature 

are of great interest. 

In the context of this work, there are some interesting approaches. In [8], a concept with punctual pressure field 

is presented. Bores are positioned in the outer support ring of the valve plate and connected to the high-pressure 

kidney . The resulting pressure field reduces the cylinder block’s tilting. A speed increase of 15 % in self-priming 

mode of the pump results. The additional manufacturing expenditure a disadvantage of this concept. In addition to 

the relief bores, the connecting bores must be drilled from the outside into a round surface and must then be sealed 

by a plug. The manufacturing of the relief bores into a spherical valve plate is very difficult and therefore expensive 

and there must be enough space in the sealing gap for these bores. Due to the additional leakage, the volumetric 

efficiency decreases. The aim of another concept is to avoid the tilting of the cylinder block by an additional 

device [9]. Compensation pistons are installed and connected to the flow channel to add a moment against the 

tilting. In [10] a concept with externally pressurized pressure pockets in the valve plate is patented. The moment 

against the tilting can therefore be controlled independently of the operating point. The disadvantages are the 

additional manufacturing costs and that the complex application of the control for each operating point. S. Haug 

investigates and extends these concept [11][12] and applies it to other tribological contacts. He develops an 

operating point dependent control and could prevent the tilting for all investigated operation points almost 

completely in this way. P. Achten investigates the effect of additional pressure pockets in the barrels of a floating 

cup axial piston [13]. They are connected with groves to the bores and build up a hydrostatic bearing in the contact 

between the barrel and the port plate. 

This work presents a new design concept for the cylinder block and its experimental investigation. Pressure 

pockets are placed at the outlet bores of the cylinder block. The underlying idea is to add an imbalance which 

relieves the area of minimum gap height for a short time to avoid the local temperature hot spots.  

2 Concept Development 

The development process is based on a simulation study with the simulation model, described in [6], developed at 

ifas. After a short explanation of the program, this chapter presents the simulation study and its results. 

2.1 Simulation Model 

A simulation model was created set up for the detailed analysis of the tribological contact between the cylinder 

block and the valve plate.  The simulation is a continuation of tribological simulations specialized on interfaces in 

hydraulic pumps [14]. A detailed explanation is given in [6], and will only be briefly described in this work. In 

fig. 3 the principle of the simulation is depicted. The following physical effects are included: 

 Fluid behavior using the Reynolds equation discretized on finite volumes 

 Lumped parameter simulation calculating the cylinder pressures in each time step 

Figure 2: Position of minimum gap height [6] 
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 Input of external forces, either quasi-static via look-up table or coupled to pressure variables resulting 

during the simulation 

 Contact pressure (Greenwood and Tripp/Williamson model) 

 Solid friction using the contact pressure acting on each finite volume (the interface surface) 

 Fluid friction 

 Solid body movement of the cylinder block 

 Surface deformation 

 

Figure 3: Chart of the Simulation model [15] 

In each time step, the lumped parameter simulation is set up first, analyzing connections between cylinder 

block and valve plate features and creating a non-linear set of equations. The result is a defined pressure value for 

each feature (e.g. cylinder block piston pressure or valve plate port pressure) which is a boundary condition for the 

second set of non-linear equations, covering the aforementioned physical effects. The implicit Euler method is 

implemented as integration method, the set of equations is solved using the monolithic approach using the solver 

KINSOL [16].  

2.2 Simulation Studies 

The development process of the new design concept presented in this work starts with the simulation pre-study, 

which is published in [15] and is only shortly concluded in the following. This study investigated the effect of 

additional forces, moving with the cylinder block at a defined radius, derived from the kidney’s shape. For the 

investigation of the effect of an additional imbalance, the forces are only active in the area of minimum gap height. 

With one force of 1.25 kN, acting at radius of 45.55 mm, which is the outer shape of the kidney, the minimum gap 

height is shortly increase of about 5 %, compared to the standard version. This leads to a reduction of the contact 

pressure of over 25 % and reduces therefore also the thermal load.  

Additional forces can be installed by pressure pockets. In another design concept, presented in [15], these are 

placed at the high pressure kidney of the valve plate. The result is a static pressure field which creates a constant 

moment against the tilting. First experimental results show that this concept reduces the friction torque within the 

interface. To create the aforementioned effect of an additional imbalance, the pressure pockets are placed on the 
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cylinder block. In this way, the forces investigated in the pre-study can be replicated, because of the pressure 

pockets are at high pressure side, they have great effect. But when they are at low pressure side, they have near no 

influence. In the concept of P. Achten [13], the surfaces are machined separated to the bores and then connected 

by groves to it. Another possibility, which is more easy to machine, is to integrate the pockets direct into the shape 

of the kidneys. Another advantage is that the pressure build up in the pockets is immediately when the bore joins 

the high pressure area. The limiting factor for these surfaces is the minimum sealing gap width. It should lay in 

the interval between 0.125 to 0.175 times the bore diameter [17]. For the geometry of the axial piston pump the 

sealing land should be 3.125 mm. The maximum width is then 0.925 mm for the outer and 3.125 mm for the inner 

pressure pocket. Figure 4 shows the new design of the cylinder block’s kidney shape in CAD and the prototype 

with their measured surfaces.  

 

Figure 4: Additional pressure pockets a) CAD and b) prototype 

The outer pocket is designed with the maximum width, while for the inner one 2 mm are used. This shape was 

then added to the simulation model for the analysis of this design concept. The main point of interest of the 

simulations was to investigate the effect of the pressure pockets in different configurations. The full study and its 

results are to find in [18] but are briefly explained here. The 12 different geometries, which are used are shown in 

fig. 5. Kidneys with the additional pressure pockets are black marked. They are measured and compared for one 

operation point with a rotational speed of 1500 rpm and a load pressure of 250 bar. Configuration one is the 

standard geometry without pressure pockets. The effect of a raising number of additional surfaces, which are 

asymmetrical distributed, is investigated with the versions two up to version ten. In the configurations eleven and 

twelve, the pockets are installed symmetrically. 

 

 

The simulation results show that the gap height is increased by the additonal pressure pocktes. Therefore, all 

configurations reduce the contact pressure from 17 % in case of one modified kidney to over 50 % for the version 

ten, where all are extended with the additional surfaces. Figure 6 shows the simulation results für the relative 

change of the tilt angle. The tilt angle of the cylinder block is only reduced for the configuration two and three 

with a small effect of less than 5 %. In the other versions with a higher number of pressure pockets, the tilting of 

the cylinder block increases. A possible explanation for this effect is  that the increased gap height simply allows 

for more tilting until the contact pressure counters the movement. The concept idea to add an additional imbalance 

finds its maximum with the configuration six. As explained previous, there are two extrem points in an axial piston 

pump with nine pistons, when four or five kidney are pressurized. The maximum amplitude is reached, when five 

Figure 5: Investigated configurations 
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modified cylinder block bores are pressurized, while the four cylinder block bores with standard geometry are in 

contact with the low-pressure kidney of the valve plate. 

 

Figure 6: Relative change of the tilt angle for the considered configurations 

The effect of an additional imbalance on the operating behavior of the pump cannot be estimated in advance. 

For this reason, a prototype was initially manufactured. For the initial test, configuration two was selected. 

Simulations for several operation points were carried out and evaluated. The operating points for the simulation 

are: speed (n) from 250 rpm to 2500 rpm in steps of 250 rpm; load pressure (p) from 50 bar to 250 bar in steps of 

50 bar. The results for the minimum gap height (h) and the contact pressure (cp) are to shown in fig. 7 and fig. 8. 

The change of minimum gap height depends on the load pressure. This was expected. With the increasing speed, 

the effect of the pressure pockets is decrease by dynamical effects. The maximum reduction of the contact pressure 

is of near 15 % at low speed while maximum pressure. 

 

Figure 7: Minimum gap height and its relative change 

 

Figure 8: Contact pressure and its relative change 
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3 Experimental Investigation 

3.1 Test Rig 

For the experimental investigation of the tribological contact focused in this work, a test rig was developed and 

built up at the institute, shown in fig. 9. The test pump (p1) is driven by a 160 kW motor. s5 and s6 are used for 

torque, speed and angular position measurement. Oil delivered from the filling pump p2 is filtered through f1. At 

the inlet and outlet of the test pump pressure (s2 & s9) and temperature (s2 & s8) are measured, the outlet flow is 

measured by s10. The load pressure is controlled by the load valve block (LV). The pump p4 delivers the fluid for 

the hydrostatic bearing (explanation in the following). The bearing pressure is set by valve (B). The leakage of the 

hydrostatic bearing and the test pump is delivered to the tank by the pump p3. In the secondary circuit, which 

includes the pump p5, the filter f2 and the water cooler c1, the oil is conditioned. 

 

The test bench was dimensioned for the analysis of a 140 cm³ axial piston pump with a maximum pressure of 

340 bar and a maximum drive speed of 2400 rpm. The main drive components are placed in the test pump, which 

is presented in fig. 9. For the measurement of the friction torque between the valve plate and the cylinder block, a 

hydrostatic bearing was developed, which is also part of the test pump. The swash plate angle can be adjusted by 

means of spacers with the fixation bolt from 0° to 16°. The main components of the hydrostatic bearing are the 

housing (blue) and the inner runner (green), which is externally pressurized. Six eddy current sensors (s7 in fig. 8), 

three in radial direction (black arrows in fig. 10) and three in axial direction (red arrows in fig. 10) are installed for 

the measurement of the cylinder block’s movement as well as the gap height.  

 

Figure 10: Drive train of the test pump and detailed view of the hydrostatic bearing [19] 

  

Figure 9: Test rig and hydraulic circuit diagram 
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3.3 Experimental Results 

Due to the risk of damaging the test rig or the sensor system in the start-up of the first test series, the test pump 

was not fully loaded. The range of rotational speed was limited to 1000 rpm, setting measuring points every 

250 rpm for the initial tests. The pressure was limited to 250 bar, increasing from 100 bar in 25 bar steps for each 

speed. The swivel angle was set to 8°, resulting in a displacement of 70 cm³. The hydrostatic bearing was 

pressurized to 100 bar. The suction side was set to a pre-load pressure of 8 bar. All measuring points were 

approached three times. Figure 10 shows the measured friction torque between valve plate and cylinder block for 

the standard configuration (gray) and the modified component (indicated with (Pro) in black). As expected from 

previous investigation, both configurations show a linear increase of the frictional torque at different pressure and 

speed level. 

 

 

The relative change in frictional torque is plotted in fig. 12. In the prototype configuration, the friction torque 

is significantly reduced in all measuring points. At 100 bar, the largest friction torque reduction is measured over 

the measured speeds range, reaching a maximum reduction of about 15 % at 250 rpm and 500 rpm. With increasing 

load pressure, the reduction decreases almost linearly, but is still significantly reduced at 250 bar. The relative 

change in volumetric efficiency is shown in fig. 13. Particularly at low rotational speed, leakage increases notably, 

resulting in a significant reduction in volumetric efficiency. With increasing speed, this effect is less predominant, 

amounting to a maximum of about 2 % efficiency reduction. 

Figure 11: Friction torque for different pressure levels and rotation speeds 
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Figure 13: Relative change of volumetric efficiency 

The goal of the design concept is to install an additional imbalance. Therefore, the measurements of the eddy 

current sensors are compared in the following. Using the same coordinate system from fig. 2, the black h1 line 

denotes the axial and radial sensor position at 60°, the red h2 line at 180° and the green h3 line at 300°. The sensor 

position is visualized in fig 14. 

Figure 12: Relative change of friction torque 
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Figure 14:  Sensor position of the axial and radial eddy current sensors 

Different alloy compositions of the cylinder block material affecting the eddy-current sensors, machining 

inaccuracies of the targeted surface, differences in height adjustment of the sensors and further imperfections of 

the rotating system. For a better understanding, the raw sensor signal of h2, the distance to target (cylinder block), 

over one rotation at 100 bar (blue line) and 250 bar (red line), which therefore includes all of the pre named 

influences is plotted in fig. 15. However, the gap height reduction from 100 bar to 250 bar at high pressure region 

is clearly visible. The movement of the cylinder block depending on the pressurization of each of the nine pistons 

can be identified better in the red line as in the blue one. 

 

Figure 15: Raw sensor signal of h2 for 100 bar and 250 bar 

For the analyzation of the influence of the new design to the movement of the cylinder block, the measured 

distance to target is averaged over one revolution and then compared for the operation points at 100 bar and 

250 bar, by building the difference between this two points. This is done for all considered drive speeds. Figure 16 

shows the change of distance for the axial eddy current sensors h1 (black), h2 (red) and h3 (green) for the prototype 

(full line) and the standard (dashed line) configuration. From the simulation results it was expected that the cylinder 

block tilts in way that a minimum gap height occurs at approx. 130° (see fig. 2). The change of distance in fig. 16 

show also this trend of the tilting direction. Compared to the high pressure operation point, the distance form h1 

and h2 to the cylinder block is decreased, while it is increased for h3. For the prototype configuration the calculated 

change of distance is different. There is a lower reduction at h2 and a higher increase at h3. Very interesting is that 

the distance between h1 and the cylinder block is more reduced on average over one revolution. This indicates a 

change in the movement and therefore the tilt angle. 
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Figure 16: Change of distance from 100 bar to 250 bar for both configurations 

For the understanding and visualization of the changed movement of the cylinder block, the orthogonal vector 

of the plane given by the measured distance of the axial sensors is calculated. Then, its direction is projected to a 

coordinate system. This method as well as the movement from 100 bar (origin) to 250 bar for all measurements is 

shown in fig. 17. The projection of the orthogonal vector lays in a very close area for the standard as well as for 

the prototype configuration. There is a significant change in the movement. While the cylinder block without 

pressure pockets tilts more to the high pressure side as expected from the simulations, the direction of the tilting 

for the prototype is very different. 

 

Figure 17: Projection of the orthogonal vector 

4 Conclusion and Outlook 

In a simulation study, fully presented in an earlier work of the author, the effect of additional pressure pockets was 

analyzed. Twelve configurations with a different number and position of pressure pockets are investigated in it. 
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The greatest reduction of the cylinder block’s tilting angle was calculated for the configuration with only one 

optimized kidney groove. Further simulations over a wide range of operating points, which are presented in this 

work, show that this design increase the gap height which leads to a significant reduction of the contact pressure. 

A prototype was machined and tested on the test rig. The experimental results show that the new design concept 

with the additional pressure pockets in on kidney of the cylinder block has significant effects to the tribological 

contact. The friction torque is reduced up to 15% for lower speeds, 250 rmp and 500 rpm, at 100 bar. Because the 

part of fluid friction increases, the reduction of friction torque is lower for 750 rpm and 1000 rpm. The difference 

between the standard and the prototype configuration decreases linearly with increasing load pressure, but is also 

significant at 250 bar. As it was expected, the volumetric efficiency is reduced. The smaller gap width, due to 

additional surfaces, has the same effect as a throttle where the length is reduced. Therefor the additional leakage 

is pressure depending and more or less statically for the different speeds. Because of this, the volumetric losses 

are at the higher speeds less than 2 %. The evaluation of the eddy current eddy-current sensor data two different 

load pressure operation points show that the standard cylinder block tilts to the high pressure side, thus confirming 

the simulation results and the previous study in [6]. Because of the imbalance added by the additional surfaces, 

the prototype cylinder block show on average over one revolution another tilting direction. This validates the 

simulations and the effect of the new design concept. Due to this imbalance, there is no local constant area of 

minimum gap height. This avoids the building of high temperature hot-spot in the tribological contact. The next 

steps are to validate the temperature effect by simulations and experiments. 
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Nomenclature 

Designation Denotation Unit 

c1 Cooler 1 - 

cp Contact pressure MPa 

DOR Direction of rotation - 

f1...2 Filter 1…2 - 

h Axial gap height µm 

h1 Sensor position at 60° - 

h2 Sensor position at 180° - 

h3 Sensor position at 300° - 

ifas Institute for fluid power drives 

and systems 
- 

LV Load valve - 

n Drive speed rpm 

p Pressure bar 

p1…5 Pump 1…5 - 

PI PI controller - 

s1…10 Sensor 1…10 - 
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