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Abstract 

Good estimates of flow mapping for electrohydraulic valves are important in 
automation of fluid power system. The purpose of this paper is to propose adaptive 
identification methods based on a recursive least squares method (RLSM), a recursive 
maximum likelihood method (RMLM) and radial basis function neural network 
(RBFNN) to estimate the uncertain parameters in flow mapping for electrohydraulic 
valves. In order to reduce the complexity and improve the identification performance, 
model structures derived from prior knowledge are introduced. The methods are 
applied to map the pressure-flow characteristic of an electrohydraulic valve. With the 
help of simulation results, the accuracy and efficiency of these algorithms are 
demonstrated. Some issues like invertibility of flow mapping are discussed and 
suggestions to apply these methods are made.   

Keywords: adaptive identification, flow mapping, electrohydraulic valve, RLS, 
RML, RBF 

 

1 Introduction 

For many years, hydraulic-mechanical control systems have been characterized by extremely high requirements 
for good operability, high reliability, robustness and a favorable cost-benefit ratio. However, an increase in 
efficiency and productivity for control systems can only be achieved through the use of electrohydraulic 
components in combination with electronics, sensors and software. Among the many components that contributed 
to the success of electrohydraulic control systems, the proportional valve elements are of considerable importance. 
The flow rate of valves cannot be described precisely enough by simple physics-based equations because of highly 
non-linear characteristic. Offline-Identification of flow mapping is an efficient way to compensate the complex 
non-linearity in valves partially. Though offline-Identification cannot adapt to changes in the system properties 
over time, e.g. the influences of temperature, erosion on the valve edges and wear of valve spool. Therefore, a self-
learning system for adaptive identification of flow mapping for proportional valve elements in electrohydraulic 
system is crucial, in which not only the complex non-linearity can be compensated, but also the flow mapping can 
be adapted to the varying system parameters. Numerous system identification methods are now available, but the 
suitability of adaptive identification for valve elements has not been sufficiently investigated. In addition, it is 
necessary to make a prediction based on limited data about flow mapping at some cases. As for the application of 
flow mapping, various fields can be found such as demand-based flow rate control for energy-efficient operation, 
high precision control, autonomous control, maintenance and fault detection, condition monitoring and 
diagnostics. The present paper aims to analyze different adaptive methods for (inverse) flow mapping which could 
be acted as feedforward controller. If the flow rate characteristic relationship 𝑄 = 𝑓(𝑈, ∆𝑝, … ) is inverted to 𝑈 =
𝑓(𝑄, ∆𝑝, … ), the inverse flow mapping could also be used for feedforward control instead of traditional lookup 
table method. Compared with the direct mapping for 𝑈 = 𝑓(𝑄, ∆𝑝, … ), the inverse flow mapping can effectively 
reduce the complexity of computational effort while ensuing accuracy. 

Starting with research and comparison of different adaptive identification methods, suitable for an adaptive 
identification of flow mapping in electrohydraulic valves, considering online-processing capability, signal-to-noise 
ratio, model fidelity and amongst others. Different adaptive identification method based on RLSM, RMLM and 
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RBFNN are chosen for flow mapping of electrohydraulic valves. Examples of adaptive identification with RLSM 
can be found in the work by Vahidi et al. [1], C. Kamali et al. [2], S. Dong et al. [3] and M. Kazemi dt al. [4]. 
Similarly, RMLM is also the popular adaptive parameter estimation in the field of parameter identification. The 
origin of the RMLM can be traced back to R. A. Fisher [5]. L. Ma et al. [6] have applied the RMLM for the 
identification of Hammerstein ARMAX system and compared with RLSM in detail. In order to combine the 
advantages of Maximum Likelihood and RLSM, J. Li et al. [7] have used a maximum likelihood recursive least 
squares method for multivariable systems. Chen et al. [8] derived a filtering based maximum likelihood recursive 
least squares algorithm for reducing computational efforts. O. Nelles et al. [9] presented a comparison between 
RBF networks and classical methods for identification of nonlinear dynamic systems. RBFNN has wide 
applications in many areas such as computer science, aircraft and mathematics [10-14]. 

Besides the identification methods, the source data types play an important role in identification. Figure 1 proposes 
different source data types for identification. Static data are time independent. On the contrary, dynamic data are 
time dependent and the inertial effects have to be taken into account. The transition data type between them are 
quasi-static data, which are time dependent but slow enough to neglect its inertial effects. Usually, structured data 
characterize the flow behavior of throttle valves. These data are determined at discrete input signals, representing 
the operating range. There is a high resolution along the x-axis, whereas only a few data point exist along the y-
axis. The data-gap increases the requirements for the training procedures (optimization) and eventually creates 
great deviations between model and estimation. A comprehensive scatter data-set appears to be advantageous in 
terms of coverage. However, arbitrary data is difficult to interpret and to evaluate, which is why the use of such 
data is not very widespread. Limited and noisy flow data are more common. The restrictions mostly result from 
limited capacities of the test rig or system setup. Noise is inherent to measurement data, which requires filtering 
of data or smoothing capabilities of the approximation procedures. Operating point data contain operating point 
resulting from a typical working cycle of machine. In this paper, quasi-static data combined with structured data 
and scattered data are used for identification. 

 
Figure 1: combination of source data types for identification [17] 

The subsequent paper is organized as follows: In Section 2, to be acquainted with the static characteristics of the 
electrohydraulic valve, a test rig in laboratory has been set up. After that, a virtual demonstrator with real-time and 
streaming OPC UA data has been completed, which was carried out in simulation environment to validate the 
adaptive parameter identification methods. Then the suitable adaptive identification methods are chosen and 
derived in Section 3, including LSM, RLSM, RMLM and RBF. In Section 4, the previously developed, adaptive 
identification methods have been applied and exemplified in order to obtain the evolving flow mapping of a piloted 
proportional valve, which belongs to the test rig. The results demonstrate that the adaptive identification methods 
have convincing performance for the flow mapping of electrohydraulic valves. Finally, conclusions are drawn and 
some issues to be solved are discussed in Section 5. 

2 Modelling and Test Rig of Electrohydraulic Valve 

2.1 Modelling of Electrohydraulic valve 
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Figure 2 shows the construction of proportional seat valve “Valvistor”, which is based on hydraulic position 
feedback. 

 
Figure 2: Construction for flow direction p1 to p2 (left)/ simplified simulation model structure (right) [17]  

Due to a negative overlap of the variable orifice between control chamber (2) and main poppet (3), the pressure 
𝑝஼  in the control chamber 𝑉஼ is equal to the pressure 𝑝ଵ at the valve inlet 𝑉ଵ. Because of the upper area of the main 
poppet is greater than the area facing 𝑝ଵ, the closing position of seat valve is ensured. Opening the pilot valve (1), 
pressure drop enables the pilot flow 𝑄௉௏  and reduces the control pressure  𝑝஼  in the control chamber. The main 
poppet starts moving until the equilibrium of forces is established. Neglecting flow- and friction forces and 
rearranging the force balance equation for the main poppet leads to: 

𝑝஼ =
௣భ

ఝ
+ ቀ

ఝିଵ

ఝ
ቁ 𝑝ଶ with 𝜑 =

஺భା஺మ

஺భ
 (1) 

The flow rate across control-orifice 𝐾஼  results in: 

𝑄஼ = 𝑄௉௏ = 𝐾஼(𝑥଴ + 𝑥ெ௉)ඥ∆𝑝ଵ஼  (2) 

Where 𝑥ெ௉ is the displacement of main poppet and 𝑥଴ is the negative overlap. According to eq. (1) and (2), the 
following interrelation can be obtained: 

𝑥ெ௉ = ቌ
𝑄௉௏

𝐾஼

ඨ
(𝜑 − 1)

𝜑(𝑝ଵ − 𝑝ଶ)
ቍ − 𝑥଴ (3) 

The flow rate across main poppet is given as: 

𝑄ெ௉ = 𝐾ெ௉𝑥ெ௉ඥ∆𝑝ଵଶ (4) 

Neglecting the negative overlap 𝑥଴ in eq. (3) and substituting eq. (3) into eq. (4), results in following equation: 

𝑄ெ௉ = ቌ
𝐾ெ௉

𝐾஼

ඨ
𝜑 − 1

𝜑
ቍ 𝑄௉௏ (5) 

The total flow rate is given as: 

𝑄் = 𝑄ெ௉ + 𝑄௉௏ (6) 

From eq. (5) and (6), it can be seen that Valvistor amplifies a small flow rate 𝑄௉௏  through the pilot valve, which 
is similar to a transistor. Therefore, the name “Valvistor” is derived from valve and transistor. More about the 
Valvistor can be found in [15], [16] and [17]. 

2.2 Test Rig and Results 

Figure 3 shows the hydraulic plan and corresponding test rig built in laboratory. It consists of hydraulic reservoir, 
adjustable pump, pressure relief valve, test valve (Valvistor), pressure control valve (load valve) and cooling 
system, which is not shown here. The instrumentations installed in the system are various pressure sensors, 
temperature sensor, a flow meter and displacement sensor, to measure the displacement of main poppet. For the 
static measurements, the hydraulic system could be seen as constant pressure system with 𝑝଴ = 200 bar. Because 
of limited power of pump, max. flow rate is restricted to 𝑄௠௔௫ = 200 l/min. Furthermore, in order to reduce 
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influence factor, the oil temperature in tank is set to 𝜗் = 40℃. To acquire the static characteristics of the 
electrohydraulic valve, the control signals for test valve are given in the manner of discrete values. At the same 
time, with the help of load valve, the outlet pressure p2 varies between maximum and minimum so that the flow 
rate through test valve is changed in a quasi-static manner. 

 
Figure 3: hydraulic plan for test rig (left) [17]/ Test rig in laboratory (right) 

Figure 4 presents the flow rate-pressure drop characteristic curves of test valve at different control voltages. As a 
whole, the simulation results are in good agreement with the measured results. Based on the validated model, it’s 
convenient to apply the adaptive identification methods in next section. 

 
Figure 4: flow rate- pressure drop characteristic curves at different control voltages Urel 

3 Adaptive Identification Algorithm 

3.1 Outline of Adaptive Identification 

Figure 5 shows the simplified basic sequence of the identification. The first step is to define the purpose of 
identification. The purpose of this paper is to identify the relationship among flow rate 𝑄, control voltage 𝑈 and 
pressure drop ∆𝑝 for electrohydraulic valves. With the help of a priori knowledge, it can be presented as: 

𝑄 = 𝑓(𝑈, ∆𝑝) 

The next step is determination of model structure. Model structure identification is based on the purpose of 
identification and the application of mathematical models in practice. Most of the mathematical model structures 
of linear systems can be easily identified by input and output data. However, since the static characteristics of 
electrohydraulic valves are more complex, which contain nonlinear factors, the model structures would mainly get 
through prior knowledge, assumptions and experiments. Based on these, there are two ways to determine the model 
structure.  

The first way is to linearize the nonlinear system at first. Then use the linear system identification methods. This 
method will be adopted with RLSM and RMLM in the following. After trial tests, with the help of prior knowledge 
and algebraic polynomials [17], following approximation for the Valvisor valve can be given: 

𝑄 = 𝑓൫𝑈, ඥ∆𝑝൯ = 𝑎ଵ + 𝑎ଶU + 𝑎ଷඥ∆𝑝 + 𝑎ସUඥ∆𝑝 + 𝑎ହ(ඥ∆𝑝)ଶ (7) 
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Where 𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎ହ are the parameters, which should be identified. Pressure drop ∆𝑝 is replaced by ඥ∆𝑝  in eq. 
(1). The reasons for that are closer to the theoretical flow rate formula and a kind of simple and efficient order-
reduction means. By means of this linearization, it can greatly expand the scope of identification methods. 

 
Figure 5: basic sequence of the identification [18] 

Then the system approximation can be simplified as: 

𝑄 = 𝑋்𝜃 (8) 

With 𝜃 = [𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎ସ 𝑎ହ]் and 𝑋 = [𝑋ଵ 𝑋ଶ 𝑋ଷ 𝑋ସ 𝑋ହ]் = ൣ1 U ඥ∆𝑝 Uඥ∆𝑝 (ඥ∆𝑝)ଶ൧
்
.  

The second method is to directly identify the nonlinear system model structure. For certain types of nonlinear 
system, models can be formulated that match well with the requirements on the model structure of known 
identification methods [18]. A nonlinear system identification using RBFNN will be covered in the following. 

The following task is applying of suitable identification methods to identify model parameters. By means of a 
weighted point evaluation on the basis of the criteria suitability for linear or nonlinear process, allowable signal-
to-noise ratio, suitability for offline or online processing, ability for time variant system and resulting model 
fidelity, preferred adaptive identification methods could be determined. At the end, least squares method (RLSM), 
recursive maximum likelihood method (RMLM) and radial basis function neural network (RBFNN) are therefore 
used for flow mapping of electrohydraulic valves and further investigated. Non-recursive least squares method 
(LSM) is introduced simply for derivation and comparison purposes in paper. 

3.2 Non-Recursive Least Squares Method (LSM) 

The non-recursive least squares method (LSM) can be utilized for linear systems. In general, the model estimation 
of electrohydraulic Valves is given as: 

𝑄ெ = 𝑎ଵ𝑋ଵ + 𝑎ଶ𝑋ଶ + ⋯ + 𝑎௡𝑋௡ (9) 

The error 𝜀 between measured output 𝑄௉ and model estimation 𝑄ெ is determined as: 

𝑄௉ = 𝑄ெ + 𝜀 = 𝑎ଵ𝑋ଵ + 𝑎ଶ𝑋ଶ + ⋯ + 𝑎௡𝑋௡ + 𝜀 (10) 

At different time t = 1, 2, ···, t, it is easy to get the measured inputs 𝑋௜ and output 𝑄௉, which can be noted as 𝑋ప̇(𝑡) 
and 𝑄௉(𝑡). Similarly, the error 𝜀 can be defined as 𝜀(𝑡). Then the system equations can be written as: 
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൞

𝑄௉(1) = 𝑎ଵ𝑋ଵ(1) + 𝑎ଶ𝑋ଶ(1) + ⋯ + 𝑎௡𝑋௡(1) + 𝜀(1)

𝑄௉(2) = 𝑎ଵ𝑋ଵ(2) + 𝑎ଶ𝑋ଶ(2) + ⋯ + 𝑎௡𝑋௡(2) + 𝜀(2)
⋮

𝑄௉(𝑡) = 𝑎ଵ𝑋ଵ(𝑡) + 𝑎ଶ𝑋ଶ(𝑡) + ⋯ + 𝑎௡𝑋௡(𝑡) + 𝜀(𝑡)

 (11) 

If the vector 𝜃 and 𝑋(𝑡) are defined as 𝜃 = [𝑎ଵ 𝑎ଶ ⋯ 𝑎௡]் and 𝑋(𝑡) = [𝑋ଵ(𝑡) 𝑋ଶ(𝑡) ⋯ 𝑋୬(𝑡)]். Then 
the system equation can be reduced to matrix form: 

𝑄௉(𝑡) = [𝑋ଵ(𝑡) 𝑋ଶ(𝑡) ⋯ 𝑋୬(𝑡)][𝑎ଵ 𝑎ଶ ⋯ 𝑎௡]் + 𝜀(𝑡) = 𝑋்(𝑡)𝜃 + 𝜀(𝑡) (12) 

If the vector 𝑸𝑷,𝒕  , 𝑿𝒕  and 𝜺𝒕  are defined as: 𝑸𝑷,𝒕 = [𝑄௉(1) 𝑄௉(2) ⋯ 𝑄௉(𝑡)]் ,  𝑿𝒕 =
[𝑋்(1) 𝑋்(2) ⋯ 𝑋்(𝑡)]்  and 𝜺𝒕 = [𝜀(1) 𝜀(2) ⋯ 𝜀(𝑡)]் . Then the system equations (11) can be 
reduced to matrix form: 

𝑸𝑷,𝒕 =  𝑿𝒕𝜃 + 𝜺𝒕 (13) 

Where 𝜃 is the parameter vector, which should be identified. According the principle of least square, the cost 
function: 

 𝐽(𝜃) = ෌ 𝜀(𝑡)ଶ =
௅

௧ୀଵ
෌ (𝑄௉(𝑡) − 𝑋்(𝑡)𝜃)ଶ = 𝜺𝒕

𝑻௅

௧ୀଵ
𝜺𝒕 = ൣ𝑸𝑷,𝒕 −  𝑿𝒕𝜃൧

்
ൣ𝑸𝑷,𝒕 −  𝑿𝒕𝜃൧ (14) 

To find the minimum of cost function, the first derivative with regard to the parameter vector 𝜃 is set to zero: 

𝜕𝐽(𝜃)

𝜕𝜃
ቤ

ఏ෡ಽೄ

= −2𝑿𝒕
𝑻൫𝑸𝑷,𝒕 −  𝑿𝒕𝜃൯ = 0 (15) 

This equation can be solved to provide an estimation for parameter vector 𝜃෠௅ௌ as: 

𝜃෠௅ௌ(𝑡) = (𝑿𝒕
𝑻 𝑿𝒕)ିଵ𝑿𝒕

𝑻𝑸𝑷,𝒕 = ൥෍ 𝑋(𝑡)𝑋்(𝑡)

௅

௧ୀଵ

൩

ିଵ

൥෍ 𝑋(𝑡)𝑄௉(𝑡)

௅

௧ୀଵ

൩ (16) 

Where L is the length of data. 

3.3 Recursive Least Squares Method (RLSM) 

The precondition for non-recursive least squares method (LSM) requires all the measured data had first been stored 
then estimates the parameter in one pass. Such a method requires also a lot of computational efforts, especially the 
matrix inversion in eq.(16). Therefore, the non-recursive least squares method (LSM) is not suitable for real time 
identification. In order to overcome these deficiencies, recursive least squares method (RLSM) is introduced. 
Furthermore, with appropriate modifications and forgetting factor, it’s easy to realize the adaptive identification 
and solve the data saturation problem at the same time. With 

𝑃ିଵ(𝑡) = 𝑿𝒕
𝑻 𝑿𝒕 = ෍ 𝑋(𝑡)𝑋்(𝑡)

௅

௧ୀଵ

= ෍ 𝑋(𝑡)𝑋்(𝑡)

௅ିଵ

௧ୀଵ

+ 𝑋(𝑡)𝑋்(𝑡)|௧ୀ௅ (17) 

The following equation can be given: 

𝑃ିଵ(𝑡) = 𝑃ିଵ(𝑡 − 1) + 𝑋(𝑡)𝑋்(𝑡), 𝑃(0) = 𝑃଴𝐼 > 0 (18) 

In order to reduce the error in matrix inversion of 𝑃(𝑡), according to matrix inversion lemma: 

(𝐴 + 𝐵𝐶)ିଵ = 𝐴ିଵ − 𝐴ିଵ𝐵(𝐼 + 𝐶𝐴ିଵ𝐵)ିଵ𝐶𝐴ିଵ 

The eq. (18) can be given as: 

P(𝑡) = ൫𝑃ିଵ(𝑡 − 1) + 𝑋(𝑡)𝑋்(𝑡)൯
ିଵ

= P(𝑡 − 1) − P(𝑡 − 1)𝑋(𝑡)൫1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)൯
ିଵ

𝑋்(𝑡)P(𝑡 − 1)

= ቆ𝐼 −
P(𝑡 − 1)𝑋(𝑡)𝑋்(𝑡)

1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)
ቇ P(𝑡 − 1) = ൫𝐼 − 𝐿(𝑡)𝑋்(𝑡)൯P(𝑡 − 1) 

(19) 
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178



Where 𝐿(𝑡) is the gain vector: 

L(t) =
P(𝑡 − 1)𝑋(𝑡)

1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)
 (20) 

Together with eq. (19) and (20), one then obtains: 

P(𝑡)𝑋(𝑡) = ቆ𝐼 −
P(𝑡 − 1)𝑋(𝑡)𝑋்(𝑡)

1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)
ቇ P(𝑡 − 1)𝑋(𝑡) =

P(𝑡 − 1)𝑋(𝑡)

1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)
= L(t) (21) 

According to the definition of 𝑸𝑷,𝒕 = [𝑄௉(1) 𝑄௉(2) ⋯ 𝑄௉(𝑡 − 1) 𝑄௉(𝑡)]் = [𝑸𝑷,𝒕ି𝟏 𝑄௉(𝑡)] and  𝑿𝒕 =
[𝑋்(1) 𝑋்(2) ⋯ 𝑋்(𝑡 − 1) 𝑋்(𝑡)]் = [ 𝑿𝒕ି𝟏 𝑋்(𝑡)], the eq. (16) can be transformed as: 

𝜃෠௅ௌ(𝑡) = (𝑿𝒕
𝑻 𝑿𝒕)ିଵ𝑿𝒕

𝑻𝑸𝑷,𝒕 = 𝑃(𝑡) ൤
 𝑿𝒕ି𝟏

𝑋்(𝑡)
൨

்

 ൤
𝑸𝑷,𝒕ି𝟏

𝑄௉(𝑡)
൨ = 𝑃(𝑡) ቀ𝑿𝒕ି𝟏

𝑻 𝑸𝑷,𝒕ି𝟏 + 𝑋(𝑡)𝑄௉(𝑡)ቁ 

= 𝑃(𝑡) ቀ𝑃ିଵ(𝑡 − 1)𝑃(𝑡 − 1)𝑿𝒕ି𝟏
𝑻 𝑸𝑷,𝒕ି𝟏 + 𝑋(𝑡)𝑄௉(𝑡)ቁ =  𝑃(𝑡) ቀ𝑃ିଵ(𝑡 − 1)𝜃෠௅ௌ(𝑡 − 1) + 𝑋(𝑡)𝑄௉(𝑡)ቁ 

(22) 

Base on eq. (18), one can substitute 𝑃ିଵ(𝑡 − 1) = 𝑃ିଵ(𝑡) − 𝑋(𝑡)𝑋்(𝑡) in eq. (22) and obtains 

𝜃෠௅ௌ(𝑡) = 𝜃෠௅ௌ(𝑡 − 1) + 𝑃(𝑡)𝑋(𝑡) ቀ𝑄௉(𝑡) − 𝑋்(𝑡)𝜃෠௅ௌ(𝑡 − 1)ቁ (23) 

Which combined with eq. (21), one can write: 

𝜃෠௅ௌ(𝑡) = 𝜃෠௅ௌ(𝑡 − 1) + 𝐿(𝑡) ቀ𝑄௉(𝑡) − 𝑋்(𝑡)𝜃෠௅ௌ(𝑡 − 1)ቁ (24) 

From eq. (19), (20) and (24), recursive least squares method (RLSM) can be descripted by: 

⎩
⎪
⎨

⎪
⎧ 𝐿(t) =

P(𝑡 − 1)𝑋(𝑡)

1 + 𝑋்(𝑡)P(𝑡 − 1)𝑋(𝑡)

𝜃෠௅ௌ(𝑡) = 𝜃෠௅ௌ(𝑡 − 1) + 𝐿(𝑡) ቀ𝑄௉(𝑡) − 𝑋்(𝑡)𝜃෠௅ௌ(𝑡 − 1)ቁ

P(𝑡) = ൫𝐼 − 𝐿(𝑡)𝑋்(𝑡)൯P(𝑡 − 1)

 (25) 

If the estimation parameters of an electrohydraulic valve change abruptly, for example, damage of valve, RLSM 
can’t capture the new values in time. The estimation parameter from RLSM will vary continuously but slowly, 
this is co called data saturation. With some modification, RLSM can be changed to RLSM with forgetting factor, 
in which less weight is given to older data and more weight to recent information. With new definition: 

 𝑿𝒕 = ቎
 𝜆

ଵ
ଶ𝑿𝒕ି𝟏

𝑋்(𝑡)
቏    

Where 𝜆 is the forgetting factor and ∈ (0,1] . The eq. (17) can be modified as:  

𝑃ఒ(𝑡) = 𝑿𝒕
𝑻 𝑿𝒕 = ෍ 𝑋(𝑡)𝑋்(𝑡)

௅

௧ୀଵ

=
1

𝜆
෍ 𝑋(𝑡)𝑋்(𝑡)

௅ିଵ

௧ୀଵ

+ 𝑋(𝑡)𝑋்(𝑡)|௧ୀ௅ =
1

𝜆
𝑃ିଵ(𝑡 − 1) + 𝑋(𝑡)𝑋்(𝑡) (26) 

Thus, it follows: 

𝑃ఒ(𝑡 − 1) =
1

𝜆
𝑃ିଵ(𝑡 − 1) (27) 

If one substitutes the eq. (27) in eq. (25), RLSM with forgetting factor is given as: 

⎩
⎪
⎨

⎪
⎧ Lఒ(t) =

𝑃ఒ(𝑡 − 1)𝑋(𝑡)

𝜆 + 𝑋்(𝑡)𝑃ఒ(𝑡 − 1)𝑋(𝑡)

𝜃෠௅ௌ(𝑡) = 𝜃෠௅ௌ(𝑡 − 1) + Lఒ(t) ቀ𝑄௉(𝑡) − 𝑋்(𝑡)𝜃෠௅ௌ(𝑡 − 1)ቁ

P(𝑡) =
1

𝜆
ቀ𝐼 − Lఒ(t)𝑋்(𝑡)ቁ 𝑃ఒ(𝑡 − 1)

 (28) 
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3.4 Recursive Maximum Likelihood Method (RMLM) 

Unlike the deterministic parameters in RLSM, the parameter and output can be seen as random variables. In 
RMLM, the parameter vector 𝜃 has the probability density function 𝑝(𝜃) and the output vector 𝑸𝑷,𝒕 is based on 
the conditional probability density function 𝑝(𝑸𝑷,𝒕ห𝜃). According to the statistical property, RMLM can derive a 
solution to the parameter identification problem. Because of the space limitations, this paper can’t give the 
derivation of recursive maximum likelihood method (RMLM). More Information about the derivation please to 
refer to [6] and [18]. RMLM for flow mapping is obtained as follows [6]: 

⎩
⎪
⎨

⎪
⎧

𝐿(𝑡) = P(𝑡 − 1)ℎ௙(𝑡)(1 + ℎ௙
்(𝑡)P(𝑡 − 1)ℎ௙(𝑡))ିଵ

εො(𝑡) = 𝑧(𝑡) − ℎ்(𝑡)𝜃෠ெ௅(𝑡 − 1)

𝜃෠ெ௅(𝑡) = 𝜃෠ெ௅(𝑡 − 1) + 𝐿(𝑡)εො(𝑡)

P(𝑡) = (𝐼 − 𝐿(𝑡)ℎ௙
்(𝑡)]P(𝑡 − 1)

 (29) 

With 

⎩
⎪⎪
⎨

⎪⎪
⎧

ℎ(𝑡) = [−z(𝑡 − 1) ⋯ −z(𝑡 − 𝑛௔) u(𝑡 − 1) ⋯ u(𝑡 − 𝑛௕) εො(𝑡 − 1) ⋯ εො(𝑡 − 𝑛ௗ)]்

ℎ௙(𝑡) = ൣ−𝑧௙(𝑡 − 1) ⋯ −𝑧௙(𝑡 − 𝑛௔) 𝑢௙(𝑡 − 1) ⋯ 𝑢௙(𝑡 − 𝑛௕) εො௙(𝑡 − 1) ⋯ εො௙(𝑡 − 𝑛ௗ)൧
்

𝑧௙(𝑡) = z(𝑡) − 𝑑መଵ𝑧௙(𝑡 − 1) ⋯ − 𝑑መ௡೏
𝑧௙(𝑡 − 𝑛ௗ)

𝑢௙(𝑡) = u(𝑡) − 𝑑መଵ𝑢௙(𝑡 − 1) ⋯ − 𝑑መ௡೏
𝑢௙(𝑡 − 𝑛ௗ)

εො௙(𝑡) = εො(𝑡) − 𝑑መଵεො௙(𝑡 − 1) ⋯ − 𝑑መ௡೏
εො௙(𝑡 − 𝑛ௗ)

 

3.5 Radial Basis Function Neural Network (RBFNN) 

RBFNN has recently drawn much attention due to their good generalization ability and a simple network structure 
that avoids unnecessary and lengthy calculation as compared to the multilayer feed-forward neutral network 
(MFNN). RBFNN has three layers: the input layer 𝑋௜, the hidden layer 𝐻௝ and the output layer 𝑄ெ, which are 
shown in Figure 6. 

 
Figure 6: typical RBFNN structure 

The input vector 𝐗 and radial basis function vector 𝐇 in RBFNN are defined as: 𝑿 = [𝑋ଵ 𝑋ଶ ⋯ 𝑋௡]் and 
𝑯 = [𝐻ଵ 𝐻ଶ ⋯ 𝐻௠]்  with 𝑖 = 1, 2, ⋯ , 𝑛  and 𝑗 = 1, 2, ⋯ , 𝑚 . Where 𝐻௝  is the Gaussian function value, 
which is given as: 

𝐻௝ = exp (−
ฮ𝑿 − 𝐶௝ฮ

ଶ

2𝑏௝
ଶ ) (30) 

Where 𝐶௝ = [𝑐௝ଵ 𝑐௝ଶ  ⋯ 𝑐௝௡]்  is the center vector of neural net 𝑗 and 𝑏௝ is the width of Gaussian function for 
neural net 𝑗 . The width vector of Gaussian function can be given as 𝐵 = [𝑏ଵ 𝑏ଶ  ⋯ 𝑏௠]் &  𝑏௝ > 0 . 
Furthermore, the weight vector is 𝑤 = [𝑤ଵ 𝑤ଶ  ⋯ 𝑤௠]். 

The output of RBFNN is: 

𝑄ெ(𝑡) = 𝐻𝑤் = 𝐻ଵ𝑤ଵ + 𝐻ଶ𝑤ଶ + ⋯ + 𝐻௠𝑤௠ (31) 

The cost function of RBFNN can be defined as: 

𝑋ଵ

𝑋ଶ

⋮

𝑋௡

𝐻ଵ

𝐻ଶ

𝐻௠

⋮

෍

 

 

𝑖 𝑗

𝑤ଶ
𝑄ெ

The 17th Scandinavian International Conference on Fluid Power
SICFP’21, June 1-2, 2021, Linköping, Sweden
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𝜀(𝑡) =
1

2
(𝑄௣(𝑡) − 𝑄ெ(𝑡)) (32) 

According to gradient descent method, RBFNN is given as: 

∆𝑤௝(𝑡) = −𝜂
𝜕𝜀(𝑡)

𝜕𝑤௝

= 𝜂(𝑄௣(𝑡) − 𝑄ெ(𝑡))𝐻௝ (33) 

𝑤௝(𝑡) = 𝑤௝(𝑡 − 1) + ∆𝑤௝(𝑡) + 𝛼(𝑤௝(𝑡 − 1) − 𝑤௝(𝑡 − 2)) (34) 

∆𝑏௝(𝑡) = −𝜂
𝜕𝜀(𝑡)

𝜕𝑏௝

= 𝜂(𝑄௣(𝑡) − 𝑄ெ(𝑡))𝑤௝𝐻௝

ฮ𝑿 − 𝐶௝ฮ
ଶ

𝑏௝
ଷ  (35) 

𝑏௝(𝑡) = 𝑏௝(𝑡 − 1) + ∆𝑏௝(𝑡) + 𝛼(𝑏௝(𝑡 − 1) − 𝑏௝(𝑡 − 2)) (36) 

∆𝑐௝௜(𝑡) = (𝑄௣(𝑡) − 𝑄ெ(𝑡))𝑤௝

𝑿ି஼ೕ

௕ೕ
మ   (37) 

𝑐௝௜(𝑡) = 𝑐௝௜(𝑡 − 1) + 𝜂∆𝑐௝௜(𝑡) + 𝛼(𝑐௝௜(𝑡 − 1) − 𝑐௝௜(𝑡 − 2)) (38) 

Where 𝜂 ∈ (0, 1) is the learning rate and 𝛼 ∈ (0, 1) is momentum factor. 

4 Results Analysis and Verification 

The last step is the performance evaluation of the identified methods, the so-called verification by comparison of 
measured plant output 𝑄௉  and predicted model output 𝑄ெ . In order to identify the parameters of the 
electrohydraulic valve, following structured data in Figure 7 are used. To get the system excited enough, the signals 
cover the total operating range 𝑈 ∈ [0, 100]% and ∆𝑝 ∈ [0, 200]bar. 

 
Figure 7: process of structured data to identify 

In order to identify the parameters of the electrohydraulic valve, following scattered data in Figure 8 can been also 
utilized. For a better comparison, the signals cover the same range 𝑈 ∈ [0, 100]% and ∆𝑝 ∈ [0, 200]bar like in 
structured data. 

 
Figure 8: process of scattered data to identify 
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181



In order to illustrate the merit of the above-mentioned methods, it is appropriate to use the following signals for 
verification purposes. The test data include data that does not exist in the training data. 

 
Figure 9: process of input and output data to verify 

Table 1 shows verification of RLSM using different forgetting factors and RBFNN with structured data. In order 
to compare the goodness of identification for the different methods, the estimated flow rate 𝑄ெ are plotted against 
the real flow rate 𝑄௉  from test data. With an ideal identification, all points would lie exactly on the 45° red diagonal 
curve. For RLSM with different forgetting factors, the well-known phenomenon of parameters “fluctuation” can 
be deduced during increase of forgetting factor. It is noted that decreasing the forgetting factor will only worsen 
the situation. It could be found that RLSM with 𝜆 = 0.995 cannot get convergence at the end. If the forgetting 
factor is set to 1 (𝜆 = 1), RLSM with forgetting factor will be degenerated as classical LSM, which will eliminate 
the fluctuation. However, classical LSM deals with all the past data equally and can result in data saturation 
problem. Therefore, it is necessary to select suitable forgetting factors in practice. Under the premise of predicted 
accuracy guarantee, the parameters fluctuation should be controlled at reasonable area at the same time. Compared 
with RLSM, the merit of RBFNN is the best fitting results regarding accuracy at the end, although the rate of 
convergence is slow. From these comparisons in Table 1, the conclusion can be drawn that that RLSM with 
forgetting factor shows better extrapolating behavior than RBFNN. Both methods show suitable identification 
results. Furthermore, to use the identified flow mapping of valve, the characteristic interrelation 𝑄 = 𝑓(𝑈, ∆𝑝) 
needs to be inverted to 𝑈 = 𝑓(𝑄, ∆𝑝). In terms of invertibility, it’s obvious that RLSM with model structure in 
eq.(7) is easy to transform. Whereas, it is very hard to get explicit mathematical description directly from RBFNN. 
A feasible way is to reidentify and change the inputs, output and model structure at the same time. As for RMLM, 
this method with structured data cannot converge to desired results. Therefore, it doesn’t show up in the table. 
About the reasons for non-convergence, please refer to problems of convergence of maximum likelihood iterative 
procedures in multi-parameter situations by N. Mantel et al. [19]. 

Table 2 shows verification of RLSM under different forgetting factors and RMLM with scattered data. For RLSM 
with different forgetting factors, problems of convergence can also be seen during increase of forgetting factor. 
Compared with structured data, a wider range of forgetting factors is tolerable with scattered data. Without 
consideration for difficulty in data acquisition, methods with scattered data are much faster than methods with 
structured data in terms of the rate of convergence. Compared to RLSM, RMLM shows almost the same results 
regarding accuracy at the end, although the rate of convergence is slower. Regarding of RMLM, previous non-
convergence problem in structured data seems to have been solved with scattered data. In conclusion, both of 
methods show good identification results. As for RBFNN, this method with scattered data cannot converge to 
desired results. Therefore, it doesn’t show up in the Table 2. In RBFNN, the parameters of 𝑐௝௜ and 𝑏௝ must be 
adjusted according to the scope of the input values. For arbitrary scattered data, the parameters are adjusted 
inappropriately, Gaussian function will not be effectively mapped and RBF network will be invalid [20]. 
Summarizing, the gradient descent method is not suitable to adjust 𝑐௝௜ and 𝑏௝ in RBFNN with scattered data.  

By contrast, RLSM with forgetting factor is more suitable for real application. At first, RLSM with forgetting 
factor is able to deal with all kinds of data types. Furthermore, another advantage of RLSM with forgetting factor 
in contrast to other methods is that it enables to integrate multi-dimensional dependencies with a reduced set of 
parameters in the software development for embedded systems. Unlike RLSM, an implementation of RBFNN in 
embedded systems could be problematic, since massive floating-point calculations are inevitable. Regrading to the 
fitting quality of RLSM, one way to improve the accuracy is to adopt partition identification for local area. The 
second way is to increase order in eq. (7) until the accuracy meets the requirements. 
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Table 1: Verification of RLSM and RBFNN with structured data 
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Table 2: Verification of RLSM and RMLM with scattered data 

The 17th Scandinavian International Conference on Fluid Power
SICFP’21, June 1-2, 2021, Linköping, Sweden
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5 Conclusion and Outlook 

In this research, the different flow mapping identification methods for electrohydraulic valves are proposed. This 
paper presented an analysis and comparison of different identification methods and data structures for 3D-flow 
mapping. The proposed methods can be applied to adaptive identification for real machines in the future and 
occupies small memory capacity at the same time. Moreover, their identification accuracy and convergence 
property have been sufficiently investigated. 

So far, the flow mapping identification methods have been applied for only one valve with little hysteresis and at 
a constant temperature. In order to improve the generalization of the methods and obtain a flow mapping with 
higher precision, the next investigation steps are concerned with the further development of the proposed methods 
with respect to 4D-flow mapping or even more such as temperature and hysteresis. After that, the inverse 
multidimensional flow mapping in precision motion control applications should be further tested. At last, it is 
worth mentioning that some research on dynamic characteristics of the electrohydraulic valve with help of same 
test rig has been done. Identification for dynamic characteristics of electrohydraulic valves as the next challenging 
task would be further studied.  

Nomenclature 

Designation Denotation Unit 
Fi Force N 
a1, a2, …, an Estimated parameters - 
A Matrix - 
A1 Piston area of main poppet in inlet mm2 
A2 Ring area of main poppet in outlet mm2 
bj Width vector - 
B Matrix - 
cji Parameter in center vector - 
C Matrix - 
Cj Center vector - 
di Coefficient for error vector - 

𝑑መ௜ Estimated Parameter in Parameter vector for noise - 
h(t) Data vector - 
hf(t) Revised data vector - 
H Radial basis function vector - 
H1, H2, …, Hm Gaussian function value - 
I Index - 
I Unit Matrix - 
L Gain vector - 
j Index - 
J(θ) Cost function - 
KC Flow coefficient of control-orifice l/min·bar-0.5·mm-1 
KMP Flow coefficient of main poppet l/min·bar-0.5·mm-1 
p0 Constant system pressure bar 
p1 Pressure in valve inlet bar 
p2 Pressure in valve outlet bar 
pc Pressure in the control chamber bar 
P(t) Data matrix - 
P0 Initial data matrix - 
Q Flow rate through valve l/min 
QC Flow rate through control-orifice l/min 
Qmax Max. Flow rate through main poppet l/min 
QM Estimated flow rate for valve(model) l/min 
QMP Flow rate through main poppet l/min 
QP  Measured flow rate for valve(plant) l/min 
QP,t Measured flow rate vector - 
QPV Flow rate through pilot valve l/min 
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QT Total flow rate through valve l/min 
t Time s 
u(t) Input data - 
uf(t) Revised input data  - 
U Input voltage for valve V 
V1 Valve chamber in inlet mm3 
V2 Valve chamber in outlet mm3 
VC Control chamber in valve mm3 
w1, w2, …, wm Weight vector - 
x Input variable - 
xMP Displacement of main poppet mm 
x0 Negative overlap of control-orifice mm 
X Matrix for inputs - 
X Input vector - 
X1, X2, …, Xn Input parameters in input matrix - 
Xt Input parameters matrix - 
y Input variable - 
z(t) Output data - 
zf(t) Revised output data  - 
Z Output variable - 
∆p Pressure drop through valve bar 
∆p12 Pressure drop between inlet and outlet bar 
∆p1C Pressure drop between inlet and control chamber bar 
α Momentum factor - 
ε Error - 
εො௙ Estimated Error - 
ε t Error matrix - 
φ Area ratio - 
ϑ Temperature °C 
ϑT Temperature in tank °C 
θ Vector for estimated parameter - 
𝜃෠௅ௌ(t) Estimated parameter vector in LSM - 
𝜃෠ெ௅(t) Estimated parameter vector in MLM - 
λ Forgetting factor - 
η Learning rate - 
ARMAX Autoregressive moving average with exogenous 

inputs model 
 

MFNN Multilayer feed-forward neutral network  
OPC UA Open Platform Communications Unified 

Architecture 
 

RLSM Recursive least squares method  
RMLM Recursive maximum likelihood method  
RBFNN Radial basis function neural network  
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