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Abstract: As one of the most energy-intensive industries, mining accounts for over one-third of
industrial final energy consumption. With the growing mineral demand, combined with declining
ore grades, it is expected that the energy demand in mining will only grow in the future,
potentially increasing its already large greenhouse gas footprint. With rising energy costs,
renewable energy presents a viable option not only to improve the environmental footprint
but also to reduce overall costs with optimized operation of mines. While renewable energy
generators i.e., solar photovoltaics and wind turbines offer numerous benefits like modularity,
environmentally friendliness, and natural availability; the major drawbacks are their temporal
intermittency and seasonal and long-term variability. Hence, these generators pose a resource
risk that the actual quantity of wind and solar irradiation can be less than expected. The resource
risk imposes uncertainty in short-, medium- and long-term energy generation and
consumption. Hence such risk needs to be actively considered and mitigated during the
evaluation and operational phase of renewable or hybrid energy system projects. This
paper provides a comprehensive review of renewable resource risk quantification techniques.
Subsequently, a list of renewable energy resource risk quantification methods is discussed i.e.,
renewable reliability (i.e., the percentage of demand met by renewables), energy deficit and
energy oversupply index, probability of exceedance (PoE) for annual energy production (AEP),
probability of generating at least k MW of renewable power, capacity factor. Finally, some
selected matrices are used to assess the effect of different risk mitigation options, e. g. the
optimal size of energy storage.
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1. INTRODUCTION

Mining is one of the most energy-intensive industries. It
accounts globally for 11% of the total final energy con-
sumption and 38% of industrial final energy consumption
(McLellan et al., 2012). Also, being one of the largest
expenses in mining, energy on average accounts for 15%
to 40% of the total operational cost (Igogo et al., 2020).
Having said that, the sector’s final energy consumption
is still heavily dependent on fossil fuels, with 62% of
final energy consumption being made up of oil, gas, and
coal directly, while 35% is made up of electricity from
the grid that often includes fossil fuels (Maennling and
Toledano, 2018). With the increase in mineral demand,
combined with declining ore grades, it is expected that
the energy demands in mining will only grow in the fu-
ture, potentially increasing its already large greenhouse
gas (GHG) footprint (Nasirov and Agostini, 2018). Under
these circumstances, the mining industry has been under
enormous pressure to reduce its environmental impacts.
This is leading to an increasing interest in adopting renew-
able energy to power mining operations. With increasing
energy costs, renewable energy like solar and wind present
a viable option not only to improve the environmental

ous benefits such as environmental friendliness, natural
availability, and lower life-cycle cost; the major drawbacks
are their temporal intermittency and seasonal and long-
term variability. Therefore, renewable energy generators
pose a resource reliability risk that can be manifested as
a quantity risk—i.e., the risk that the quantity of wind
and sunshine will be less than expected (Bolinger, 2017).
The resource reliability risk imposes uncertainty in short-
, medium- and long-term energy generation and
consump-tion. Hence such risk needs to be actively
considered and mitigated during the evaluation and
development phase of renewable or hybrid energy
system projects. There-fore, a methodology is required
to quantify the energy supply risk in a renewable or
hybrid energy generation system. Subsequently, such risk
quantification method can be used to analyze the effect
of different risk mitigation options, e. g. the optimal
size of energy storage and/or backup/emergency energy
generator or through grid or de-mand flexibility. In this
paper, we have focused exclusively on battery energy
storage as a risk mitigation option. Nevertheless, the
methodology presented can be adapted to other
mitigation strategies as well.

footprint but also to reduce overall costs with optimized
operation of mines. While renewable energy generators i.e.,
solar photovoltaics (PV) and wind turbines have numer-
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Fig. 1. Hybrid energy generation system for mines

2. MATERIALS AND METHODS

2.1 Hybrid Energy Generation System for Mines

A hybrid energy system combines multiple types of en-
ergy generators and/or backup energy sources like storage
or grid in a complementary fashion to ensure depend-
able power supply at a competitive cost (Fathima and
Palanisamy, 2015). One of the major benefits is that it can
capitalize on existing grid infrastructure and add different
components to help reduce costs, environmental impacts,
and system disruptions. Hence, a hybrid energy system
is a viable option that can help the mining industry to
transition away from fossil fuel-based operations. Depend-
ing on the renewable resource availability and economic
feasibility, a hybrid energy system for mines can consist
of solar PV, wind turbine along with diesel generators
(DG) and/or storage and grid as backup source, as shown
in Fig. 1. Of course, the actual configuration will vary
depending on site and mine-specific requirements. How-
ever, including solar and wind generators in mining energy
generation systems comes with disadvantages like tempo-
ral intermittency, and seasonal and long-term variability.
Traditional mining energy sources like diesel and grid can
deliver energy whenever needed. Contrarily, solar and wind
generators can only deliver energy when the sun is shining,
and wind is blowing. This makes both the demand side
and the generation side of the energy system variable. The
challenge lies in the need to constantly balance energy
demand with energy generation. Hence, backup sources
like storage, diesel generators, or connection to regional
electricity grids are essential for the security of supply.
Due to the remote nature of mining sites, combining solar
and wind energy with battery energy storage systems
(BESS) is seen as the most viable option to initiate energy
transition in the mining industry.

2.2 Wind Energy

The use of wind energy in electricity generation is
widespread in today’s world. Typically wind turbines, de-
vices that convert the kinetic energy of wind into electrical
energy, are used for this purpose. Wind energy can also be
used to complement solar energy due to its availability
during the night and on cloudy days.

Wind Resource Assessment

The economic value of wind energy generators depends
on the availability of wind resources at the intended geo-
graphical location. Hence, the wind resource assessment is

a crucial part of the feasibility study. Even though the ap-
proaches for resource assessment typically vary depending
on many factors like purpose, stage of development, and
generator types under consideration, such calculations are
often based on some on-site wind measurement, sometimes
augmented by meteorological modeling, and likely to be
combined with longer-term measurements from offsite (but
ideally nearby) reference stations. Typically, Weibull dis-
tribution is used to represent the frequency of wind speeds
at a specific location. The general form of the Weibull
distribution for wind speed takes the following form as
shown in equation (1) as presented in (Al Buhairi, 2006),
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c
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Wind Turbine Modelling

A model of a wind turbine is typically represented by a
power curve, which is a plot between power output and
wind speeds at a particular hub height. In this work,
a piecewise model of a power curve from Devrim and
Eryilmaz, 2021 is used as described in equation (2),

Pi(v) =


0 if v < vci or v ≥ vco
1 if vci ≤ v < vr
Pr if vr ≤ v < vco

(2)

where vci, vco, and vr are cut-in, cut-off, and rated wind
speeds respectively. Pr is the rated output power of the
wind turbine.

Specification data for different wind turbines can be ob-
tained freely from the wind turbine library maintained by
Open Energy Platform.

2.3 Solar Energy

Solar energy is one of the fastest-growing renewable energy
technologies available today. The most common options for
utilizing solar energy are PV and solar thermal systems.
In this paper, the focus will be on solar PV, which
are electronic devices that convert sunlight directly into
electricity.

Solar Resource Assessment

One of the major factors for the economic feasibility of
solar PV systems is the availability of solar energy that
can be utilized to produce electricity. Typically, solar
irradiation, the amount of energy that reaches a unit
area in a unit of time (expressed as Wh/m2), is used
to quantify available solar energy. There are different
methods available to estimate solar irradiation in a given
location such as based on in situ data, derived from
satellite data, or a combination of both. Typically, Beta
distribution is used to represent the solar irradiation data.
The general form of the Beta distribution is depicted in
equation (3) as described in Liu et al. (2016),

f(r) =
Γ(α+ β)

Γ(α)Γ(β)

(
r

rm

)α−1 (
1− v

A

)β−1

(3)
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where r and rm are the actual solar intensity and the
maximum intensity in a time period, α and β are the shape
parameters of Beta distribution, Γ is a function of Gamma.

Solar PV Modelling

The output power of solar PV is calculated from equa-
tion (4),

PPV = ηPV APV PRPV ×GHI (4)

where, ηPV , APV , PRPV and GHI denotes solar module
yield, area, performance ratio (also known as a coefficient
for losses that range between 0.9 and 0.5, the default value
is 0.75), and global horizontal irradiance. It’s worth noting
that the above formula is an estimation, as the actual
solar power generation depends on many factors such as
temperature, shading, dust, and the age of the panel. Some
of these factors can be covered by solar module yield.

2.4 BESS

BESS plays an important role in renewable energy inte-
gration due to its ability to directly address intermittency
issues that are inherent to renewable energies. Major bene-
fits of BESS include assistance in peak shaving, load shift-
ing, voltage and frequency regulation by adding virtual
spinning reserve, etc. Typically, a BESS consists of battery
cells connected in parallel and series configurations with
inverters to facilitate charging and discharging.

BESS Modelling

A simplified battery model based on charge quantity and
state of charge (SoC) calculation is used in this work.
The charge quantity of battery storage at the time t is
calculated by equation (5) according to Deshmukh and
Deshmukh (2008),

EB(t) = EB(t−1)(1−σ)+

(
EGA(t)−

EL(t)

ηinv

)
×ηbat (5)

where, EB(t) and EB(t − 1) are the charge quantities of
battery storage at the time t and (t − 1), σ is the hourly
self-discharge rate, EGA(t) is the total energy generated
by the energy source after energy loss in the controller,
EL(t) is load demand at the time t, ηinv and ηbat are
the efficiency of inverter and charge efficiency of battery
storage. The charge quantity of battery storage is subject
to the constraints represented by equation (6),

EBmin ≤ EB(t) ≤ EBmax (6)

where EBmax and EBmin are the maximum and minimum
charge quantity of battery storage.

When referring to BESS, it is more common to use an
empirical definition of SoC, as represented in equation (7),

SoC =
EB(t)

EBmax

(7)

2.5 Renewable Resource Risk

Often the availability of renewable resources dictates the
economic viability of renewable energy integration. Hence,
a feasibility study for renewable energy projects must
include resource assessment as a first step. Most often
a “P50” estimate of wind speed or solar irradiance is
used to calculate the annual energy production that forms
the basis for economic calculation. This introduces two
primary sources of potential error or bias: 1) the system-
atic bias from the resource measurement and/or modeling
techniques used and 2) the random error related to the
inherent short-, medium- and long-term variability of the
resource over time. There is a third error of systemic type
from energy converter models that are used to estimate the
amount of energy generation. Another aspect that is often
overlooked in such traditional approaches to the feasibility
study is that during the operational phase, the energy
demand must always be matched by the energy available
instead of ensuring only an annual balance. This means
energy must be balanced in short-terms like 15− minutes,
hourly, etc., and medium-terms like daily, weekly, monthly,
etc. to long-term like yearly and over the project lifetime.
Thus, the traditional methods overlook the dynamic en-
ergy supply risk and are unable to analyze and provide risk
mitigation options and their associated costs. In addition
to this, for completeness, such a feasibility study should
also consider options related to the other side of the energy
balancing act i.e., the demand side flexibility options.
Energy consumption peaks should be avoided to reduce
the risk of emergency shutdowns and high peak price
payments. At least, the decision makers need ways/tools
to compare different risk mitigation alternatives related
to both the supply- and demand-side that also include
associated costs of corresponding options. For example,
what are the overall costs and benefits of reducing peak
energy demand at rear times with no or exceptionally low
renewable generation against installing additional energy
storage or emergency backup generators to cover rear
peaks? There is a need for a well-defined method/tool
to quantify, predict, and reduce the operational risks of
energy supply and to evaluate means to reduce these risks.

There are multiple approaches used in the literature to
quantify the renewable resource risk. The most common
ways to quantify the renewable resource risk are:

• Probability of exceedance (PoE) for annual energy
production (AEP).

• Renewable reliability (i.e., the percentage of demand
met by renewables).

• Probability of generating at least k MW of renewable
power.

• Energy deficit index and energy oversupply index
• Capacity factor

One of the most widely used matrices is the probability
of exceedance for annual energy production (illustrated
in Fig. 2(a), which, with just a few key inputs, can
be used to estimate the probability that, for example,
the wind or solar generation at a given site will fall
below a given level (Bolinger, 2017). This also allows
comparison of the resource risk among multiple project
sites in terms of probabilistic values. Probability of
exceedance is often represented as “P −level” which
ranges from P 1 (i.e., there
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is only a 1% chance that actual generation will exceed the
P1 estimate) to P99 (i.e., there is a 99% chance that actual
generation will exceed the P99 estimate). In comparison
to the central or median estimate that is equivalent to
the “P50” estimate, the probability of exceedance allows
the project analyst to choose different “P − level” for
wind and/or solar generation. Another common way to
quantify the renewable resource risk is by calculating
the reliability (i.e., the percentage of demand met by
renewables) (Tong et al., 2021). Devrim and Eryilmaz
(2021) proposed calculating the probability of generating
at least k kW of renewable power. Additionally, simple
indicators like the energy deficit index, energy over-supply
index, and capacity factor can be calculated to quantify
energy supply risk.

According to Tong et al. (2021), the renewable energy
system’s reliability index is the percentage of the total load
that is met by renewables at a given time, as depicted in
equation (8),

Ireliability =
Renewable generation at time t

Load at time t
× 100% (8)

The energy deficit index is defined as the ratio between
energy shortage and energy demand in a particular hour,
as described in equation (9),

Ideficit =
Energy deficit at time t

Load at time t
× 100% (9)

Similarly, the energy oversupply index is the ratio between
energy oversupply and energy demand in a particular hour,
as shown in equation (10),

Ioversupply =
Energy over supply at time t

Load at time t
× 100% (10)

The capacity factor of a renewable energy system is a
measure of how much electricity the system generates com-
pared to its maximum potential output. It is calculated by
dividing the actual energy generated by the system over
a certain period of time by the maximum possible energy
that could have been generated during that same period
(Ahmad et al., 2018). The result is then expressed as a
percentage. The formula for calculating the capacity factor
can be expressed as below,

CF =
Actual energy generated at time t

Maximum possible energy generation
×100% (11)

2.6 Renewable Resource Data

There are several ways to obtain solar and wind resource
data for a specific location. The historical wind data can
be obtained from various sources such as the National
Renewable Energy Laboratory (NREL) or other national
meteorological services. These datasets usually provide
data in the form of wind speed and direction measurements
at a specific location and time. Some of these datasets
can be downloaded in bulk, while others require you
to request access or download data on a case-by-case
basis. Similarly, the historical solar radiation data can be

Fig. 2. Illustration of (a) probability of exceedance, (b)
reliability (% of load met by renewables), (c) proba-
bility of generating at least k kW of renewable power,
and (d) energy deficit and oversupply index, are visu-
alized.
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obtained from various sources such as NASA’s Surface
Meteorology and Solar Energy (SSE) dataset, the NREL
or other sources. These datasets usually provide data
in the form of solar radiation measurements (usually
in kWh/m2 or W/m2) at a specific location and time.
Some other online databases and platforms provide solar
and wind data, such as the European Renewable Energy
Data Platform (EURODATA) and Renewable Resource
Data Center (RReDC). It’s important to note that using
historical data alone may not provide a complete picture
of the renewable energy resources available in a specific
location, and it’s recommended to combine with other
sources of information, such as on-site measurements, local
weather patterns, topography, and land use, etc. to get a
more accurate assessment.

In this work, NASA’s Solar and meteorological resource
data- “POWER data” are used for wind and solar resource
assessment (NASA, 2024). This satellite and modeled-
based database are accurate enough to provide reliable
solar and meteorological resource data over regions where
surface measurements are sparse or non-existent and offer
two unique features – the data are global and contiguous
in time (Pavlović et al., 2013). Microgrid design tools such
as HOMER and RETscreen also use “Power data” as
one of the data sources. Most importantly, the data from
“POWER data” is available at multiple temporal levels:
hourly, daily, and monthly.

For this work, the hourly data for wind speed, GHI,
atmospheric temperature, and pressures are collected over
21 years from 2001 to 2021 for a location in Scotland
(Latitude: 57.0161 and Longitude: −2.8719; referred to
as location-1). To get an overview of the data, wind

speed, and solar irradiation are visualized in Figs. 3

and 4. The wind speed shows greater variability with
a mean around 7.4 m/s. Interestingly, for the selected
location the wind speed is slightly higher in winter than
summer. This is linked to the fact that the winter
brings higher temperature gradients. On the other
hand, as expected the solar irradiation peaks during
summer and very low during winter.

3. RESULT AND DISCUSSION

3.1 Prerequisites

To estimate power generation from available wind and
solar resources, the wind turbine model described in Sec-
tion 4.2 and the solar PV model described in Section 5.2
are used. The hourly electricity generation from wind and
solar is calculated for the entire historical dataset of 21
years. The wind and solar park are sized such that it can
on average meet 20% of the load assumed to be 20 MW .
In reality, the load will be variable but for the sake of
simplicity, it is assumed to be constant here. Eventually,
six different cases as presented in table 1 are formulated
by considering different shares of solar and wind in the
renewable energy share. The wind turbine and solar mod-
ule specifications presented in table 2 and 3 are used for
the calculation. Accordingly, the wind farm and solar park
capacities are upscaled to fulfill the installed power needed
for each use case.

Fig. 3. Hourly (a) wind speed and (b) solar irradiation for
the year 2020.

Fig. 4. Hourly (a) wind speed and (b) solar irradiation for
the year 2011-2020.

3.2 Renewable Resource Reliability

In Figure 11 the wind and solar energy generation cor-
responding to the historical dataset for a given location
is visualized. To be able to include both wind and so-
lar energy case-2 was selected. As expected, the energy
generation from wind and solar follows the same trend as
available wind and solar resources. However, the variability
of available energy is something to note here. If we look
at the hourly mean as well as percentile values, wind has
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Fig. 5. Individual power generation from wind and solar
plant for case 2.

much larger variability than solar. Of course, the wind
speed variation is partly amplified due to the high share
of wind in case-2. However, variability in wind energy
generation comes from high wind speed variability. One
interesting fact is that wind generation cannot be more
than the total rated power of the wind park that is imposed
by the cumulative power curves. Another observation is
that over a year solar and wind can act as complementary
energy sources for this location. By using both solar and
wind energy together, it is possible to reduce the impact
of the yearly variability of each source and have a more
consistent supply of electricity.

Subsequently, the total energy produced combined by
the wind and solar is calculated by adding individual
generation. The cumulative power generation for each of
the cases is chronologically visualized in Fig. 6. By looking
at the average energy generated by each of the system
configurations, it is obvious that case-2 and case-3 provide
fairly stable average energy throughout the year. The
results are summarized in table 4. For better visualization,
the mean reliability for different cases is plotted in Fig. 7.
The mean reliability decreases as the system configuration

Table 1. Cases with different share of solar and
wind

Case no. Description

Case-1: 0% PV & 100% Wind
Case-2: 20% PV & 80% Wind
Case-3: 40% PV & 60% Wind
Case-4: 60% PV & 40% Wind
Case-5: 80% PV & 20% Wind
Case-6: 100% PV & 0% Wind

Table 2. WT (Enercon e-53/800) specification

Parameter Value Unit

Rated power: 810.0 [kW]
Cut-in wind speed: 3.0 [m/s]
Rated wind speed: 12.0 [m/s]
Cut-out wind speed: 26.0 [m/s]
Rotor Diameter: 52.9 [m]

Hub height: 60/73 [m]
Swept area: 2198 [m2]

Table 3. PV module specification

Parameter Value Unit

Module efficiency: 15 [%]
Performance ratio: 0.75 [-]

Life: 25 [years]

changes from “Case-1: 0% PV and 100% wind” to “Case-
6: 100% PV 0% wind”. Meaning, for this specific location
wind wind-heavy systems offer higher mean reliability. On
the other hand, the mean energy deficit and the oversupply
index increase with solar-heavy systems. However, one
must not get deceived by the facts or base their conclusion
entirely by looking at the mean values only. The local
variation must be considered as well. Mean value over such
a long timescale often doesn’t tell the whole story.

Table 4. Renewable Reliability at location-1 for
different cases

Case
Mean

reliability

Mean
P50

reliability

Mean
energy deficit

index

Mean
oversupply

index

1 19.8% 12.5% 12.5% 21.9%
2 19.2% 14.2% 10.8% 17.0%
3 18.5% 14.6% 10.8% 17.0%
4 17.9% 12.8% 11.3% 16.4%
5 17.3% 9.1% 11.7% 25.3%
6 16.6% 1.2% 14.5% 32.0%

Subsequently, the same calculation is performed for an-
other location in central Australia (Latitude: −22.5909
and Longitude: 133.4432, referred to as location-2). As can
be seen from table 5 and Fig. 8, the trends are reversed
as this location has relatively higher solar irradiation and
lower wind. This shows how renewable generation and
their reliability can be very much location-dependent and
thus the system configuration will vary based on renewable
resource availability.

Table 5. Renewable Reliability at location-2 for
different cases

Case
Mean

reliability

Mean
P50

reliability

Mean
energy deficit

index

Mean
oversupply

index

1 14.5% 12.0% 8.7% 11.5%
2 19.8% 17.9% 9.2% 11.6%
3 25.1% 16.6% 14.2% 24.4%
4 30.4% 12.7% 21.5% 37.6%
5 35.7% 12.7% 21.5% 50.6%
6 41.1% 2.2% 37.1% 63.8%

3.3 PoE for AEP

Once the preferred share of wind and solar for a specific
location is known, the AEP of the system is calculated at
different PoE levels. To do so, individual AEP with PoE
for wind and solar PV is computed for location-1. For a fair
comparison between wind and solar case-3 with 60% wind
and 40% solar is selected for this analysis. For wind, the
spread between P99 and P1 for AEP is around 19.5 GWh
to 34.5 GWh. Subsequently, the spread between P99 and
P1 for AEP is around 10.6 GWh to 12.8 GWh for solar
park. For a combined system, the AEP values are just
added together as presented in Fig. 9. Now, this graph
can be used as the basis of financial calculation when a
P − value is given. As mentioned earlier, typically a P50
AEP is used for such calculation. For a more conservative
calculation, a higher P − value can be used.
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Fig. 6. Combined power generation from wind and solar
plant for different cases.

Fig. 7. Renewable reliability of different cases for a
location-1.

Fig. 8. Renewable reliability of different cases for a
location-2.

Fig. 9. AEP with PoE for case-3 at location-1.

3.4 Renewable Risk Mitigation with BESS

To get a further understanding of renewable energy vari-
ability, the energy deficit (or power shortage) and over-
supply for case-3 over a year is visualized in Figs. 23
to 25. It is important to note here, a constant load is
considered to calculate the energy deficit and the
oversupply.

Fig. 10(a) shows, that the energy deficit and

oversupply are spread out over the entire year
except for some parts, which is preferable when
considering a BESS. While analyzing the monthly
trends, it was found that there are months where the
energy deficit and oversupply are equally distributed (as
in Fig. 10(b) and months where that is not the case (Fig.
10(c). The argument here is that a BESS needs to be
designed to cover a month where the renewable
generation was particularly low. In that case, the BESS
needs to be oversized and that is associated with high
capital cost.
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Fig. 10. Energy deficit and oversupply for (a) 2001, (b)
June 2001, and (c)December 2001, (case-3, location-
1)

Fig. 11. Average energy deficit index for BESS with Solar
and Wind system (case-3, location-1)

To analyze how the BESS can help mitigate some of
the variability introduced by renewable energy, the BESS
model described earlier is used. Subsequently, different
battery size is used to calculate the corresponding average
energy deficit index for systems with BESS, solar and
wind (case-3). The results are visualized in Fig. 11
where the BESS capacities are represented as hours of
storage. Here, “1 hour of storage” corresponds to a
BESS size that can cover the entire load by an hour.
As can be seen from Fig. 11, initially the average
energy deficit index reduces sharply with increasing
battery sizes. The slope of the curve diminishes as the
BESS size increases.

To analyze how different shares of solar and wind change
the energy deficit versus the BESS size graph, the calcula-
tions are repeated for different cases (case-1 to case-6). The
result is summarized in Fig. 12. “Case-2: 20% PV and 80%
wind” can have a lower energy deficit index than “case-
1: 0% PV and 100% wind”. Interestingly, with further
increase in PV share in the system results in a higher
energy deficit index. Overall, the case-2 with BESS can
provide the lowest energy deficit index.

Fig. 12. Average energy deficit index for BESS with Solar
and Wind system (case-1 to 6, location-1)

4. CONCLUSIONS

The mining industry has huge potential for renewable
energy to meet its energy needs while reducing environ-
mental footprint and overall cost. Freely available solar
and meteorological data sources provide a good starting
point for the assessment of renewable energy potential,
allowing for a fairly accurate and efficient evaluation of
the feasibility of different renewable energy projects for
mines. These datasets can provide information on factors
such as solar radiation levels, wind speeds, and tempera-
ture, which are all important for determining the potential
output of renewable energy systems. Indeed, the renewable
energy generation potential of mines will vary depending
on the onsite availability of renewable resources. Accord-
ingly, the preferred share of different renewable sources,
here solar and wind, in a mining energy grid will differ
significantly at different sites. The reliability of renewable
energy generation from the same solar-wind combination
can be utterly different in different locations. Interestingly,
the reliability trend can reverse for two different locations,
meaning increasing the share of solar in a wind-solar mix
can result in both decreasing or increasing reliability based
on the location. Additionally, using both solar and wind
energy together, it is possible to reduce the impact of
yearly variability of each source and have a more consistent
supply of energy. For financial calculation, annual energy
production with the probability of exceedance can act as
a better indicator. When it comes to the battery energy
storage sizing, the benefit diminishes with increasing size.
Meaning, the reduction in overall energy deficit from a
solar-wind-battery system decreases exponentially with
increasing battery energy storage size. Additionally, the
lowest possible energy deficit is also heavily dependent on
the share of solar and wind in the system.
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