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Abstract:
Energy storage can be charged when energy is cheap and discharged when it is expensive to make
an energy system more profitable or used to make the plant operation more efficient to reduce
CO2 emissions. To optimize long term energy storage with conventional methods a long time
horizon must be used. When the long term energy storage is combined with a complex energy
system the computational cost becomes large when using conventional methods. To reduce the
time horizon, an algorithm will be used to decide the state of charge of the long term energy
storage at the end of the day. This algorithm is trained using machine learning with data of the
optimal state of charge obtained by running computationally heavy long time mixed integer
linear programming ahead of time. Then a one-day or week mixed integer linear programming
optimization will be done for the production planning. The seasonal patterns of the long term
energy storage can then be captured while giving the plant operator a simple one-day or week
production plan. A case study will be done with a combined heat and power plant system with
4 boilers, a long-term thermal storage, and a hydrogen storage system. Using this method the
complexities of a multi energy system with long term energy storage can be captured while doing
day ahead production planning.

Keywords: Energy, Optimization, Energy Storage, Machine Learning, Unit Commitment,
Production Planning

1. INTRODUCTION

Energy storage is an important technology in the transi-
tion to more sustainable energy system since the energy
generated from variable renewable energy sources will not
match up with demand. This leads to energy having to
be stored to meet demand without oversizing the energy
generation and curtailing energy. Some types of renewable
energy generation such as solar or wind also have seasonal
patterns which can require long term energy storage (LTES)
for efficient operation of the energy system International
Energy Agency (2024). Because of this, the optimization of
LTES is important to help the efficient transition towards
a more sustainable energy system. For example, Brey et al.
investigate how hydrogen could be used as seasonal energy
storage in Spain and conclude that it could be used to
smooth out seasonal imbalances Brey (2021).
There are different kinds of electricity markets, in some of
these markets like Nordpool in northern Europe. Trading is
done with both electricity users and suppliers placing bids
and then a price is decided depending on where these bids
meet Nordpool (2024). In this system, the bidding period
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is 1 hour and because of this, there are requirements on
the computational speed of the optimization process for
electricity suppliers. To optimize LTES with conventional
methods like mixed integer linear programming (MILP)
a long time horizon must be used which can make the
optimization computationally expensive. This time can be
too long to make bids on the electricity market especially if
the optimization has to be run several times to run different
uncertainty scenarios.
Saletti et al. use linear programming (LP) for the long
time horizon (LTH) while MILP is used for the short time
horizon (STH) Saletti et al. (2022). This method has a
fast solution time, however, the solving time of the (LTH
still depends on system complexity. The objective of the
optimization is to meet the heat and electricity demand
of a hospital and not maximize profit by selling to the
electricity market. Marzi et al. use MILP to do day ahead
scheduling of a multi energy system with LTES considering
uncertainty Marzi et al. (2023). The computation time for
their method is, however, too long to do bidding in less
than one hour.
In a study by Bischi et al. a rolling horizon is used together
with typical weeks to optimize plant operation with MILP
considering the entire year. The goal of this optimization
is however not to consider how the state of charge (SOC)
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of the storage will change over the year but to make sure
that yearly emission constraints are met optimally.
Bruninx et al. optimize an energy system with energy
storage using unit commitment by considering reserve
capacity in a computationally efficient way Bruninx and
Delarue (2017). The time horizon in this study is however
24 hours so the focus is not on LTES. Optimization of a
compressed air energy storage is done by Ghaljehei et al.
by using using stochastic programming and mixed integer
nonlinear programming. Here the time horizon is also 24
hours so it is not fit for LTES Ghaljehei and Golkar (2017).
System states are used to optimize medium and long term
energy storage in a study by Worgin et al. Wogrin et al.
(2016). Here some states of the system are defined and
clustered and based on what cluster the system is in the
storage is operated accordingly.
A life cycle analysis with energy storage optimization is
done by Dong et al. where the energy storage is optimized
using a representative day for each season Dong et al. (2023).
This representative day is used to calculate how much the
storages will be charged or discharged during each season
to store energy over seasons. This method will however not
work when doing operational optimization since it will just
have the same operation every day and not ex discharge
the storages more for a day with high electricity prices
Mi et al. use multi timescale optimization to do generation
and expansion planning where the longest timescale is one
month Mi et al. (2021). Here the longer timescale is however
used to optimize capacity credits and not to optimize
LTES. Zhang et al. also use multi timescale optimization to
optimize the operation of an energy system with hydrogen
energy storage Zhang et al. (2023). Here a rolling horizon
optimization is used where different kinds of energy have
different time resolutions. Here two days ahead is used
to optimize the energy storage using MILP. Su et al. use
multiple timescales and add a flexibility requirement to
make the energy system more prepared for uncertain future
disruptions Su et al. (2023). Here a short, medium, and
long time horizon is used where the long time horizon is
one week.
In a study by Bahlawan et al. the design and operational
operation of an energy system with long term thermal
energy storage is optimized Bahlawan et al. (2022). Here
switch on priority is used to do the operational optimization
where one energy conversion technology is used first and
only if this technology can not supply the demand the next
conversion technology is used. This method will however
not work well for a system where the operational cost of
different technologies changes and there is no electricity
demand but instead electricity is sold to the grid.
Reinforcement learning is used by Alabi et al. to control
an energy system with energy storage and carbon capture
Alabi et al. (2023). Here reinforcement learning is used to
control the power output of the energy units and not to
optimize any kind of LTES. Sleptchenko et al. use LP to
optimize multiple different energy storage technologies as a
part of an energy system Sleptchenko and Sgouridis (2019).
In this study, the focus is not on computational speed but
on the seasonal patterns of the storage operation.

Water value is an optimization method to optimize how
hydropower resovoirs are used. Here a value of the water
in the reservoir is calculated and used to determine if the
reservoir should be discharged Helseth et al. (2017); Jahns
et al. (2020). This method is quite computationally costly
if used for daily production planning with the optimization
by Helseth et al. taking between 28 and 40 hours.

1.1 Current Work

In this paper day ahead planning will be done for an energy
system with LTES where the goal is to make as much profit
as possible by selling electricity to the grid while supplying
the required district heating (DH) demand. Instead of using
LP or MILP to optimize the long term behavior of the
system a machine learning (ML) model will be used to
predict the end of day SOC of storages and then MILP
will be used to optimize the daily operation with this SOC
as a constraint.
The contribution of this work will be (i) to develop a new
faster method to optimize LTES which allows for scenario
analysis in production planning or be used in studies where
the optimization has to be used many times. (ii) Analyze
the effect of system complexity and optimization horizon.
(iii) Test which input features give the best prediction.

2. METHODOLOGY

Because MILP is slow over long time horizons, a ML
algorithm is used to predict the SOC of the storage’s at
the end of the day or week so the MILP can run for one
day or week instead of a longer time. The ML algorithm is
trained using optimal SOC data obtained by running the
MILP on historical electricity price and DH demand data.
Because only a few years of DH demand data was available
some synthetic electricity price and DH demand data were
also generated for training. This was done by using the
probability density function (PDF) which can be seen in
Eq. (1) to decide how much the scenarios should deviate
from the real data like in Marzi et al. (2023) but with some
changes. These changes are, instead of using the PDF to
decide the deviation from the real data the PDF is used
to decide the change in deviation at each timestep. Some
of the spikes in the electricity price were also randomly
removed and new ones were added so the spikes in the
electricity price would not occur at the same time of year
in all the generated scenarios. This synthetic data was run
through the MILP to get optimal SOC data for training
the ML algorithm. A flowchart of how the training and
optimization are done can be seen in Fig. 1.

PDF (x) =
1

σ
√
2π

e−
(x− µ)2

2σ2
(1)

A case study based on the system seen in Fig. 2 where
the full system has four combined heat and power (CHP)
plants, one TES (thermal energy storage) which uses water
to store heat. There is also a hydrogen energy storage (HES)
with an electrolyzer to convert electricity to hydrogen, a
hydrogen storage tank, and then a fuel cell (FC) to convert
the hydrogen back to electricity For both the electrolyzer
and FC there are some losses in the form of heat which is
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Fig. 1. Flowchart of method
used to both charge the TES and provide heat to the DH
network. The system is used to provide the DH demand
to the district heating network and sell electricity to the
electricity grid. To evaluate how system complexity affects
the current methods performance some other cases were
also evaluated, these are one case with one boiler, the HES,
and the TES, one case with one boiler and the TES, and
one case with one boiler and the HES.

Fig. 2. Full system layout

2.1 Mixed Integer Linear Programming (MILP)

The general MILP formulation can be seen in Eq. (2),
where x is a vector of the decision variables, c is a
vector with the relationship between the decision variables,
and A and b make the constraints where A is a matrix
and b a vector. When running the MILP the binary
constraints were relaxed to increase computational speed
since generating training data without relaxing binaries
was too computationally costly with the used hardware.
However, if the model is simple enough or there is enough
computing power the full model could be run with binary
constraints. Other methods could also be used to increase
the computational speed of the MILP.

min(cTx)
st. Ax <= b

(2)

The objective function can be seen in Eq. (3) where Ceco

is the economic cost and Cchange is a penalty to punish

uneven operation of the storages and boilers. In the results
when profit is referred to it refers to Ceco. The constraints
that are considered in the MILP model can be seen in
Table 1 with what constraints apply to each unit.

C = Ceco + Cchange (3)

Table 1. List of constraints for MILP model
Constraint CHP HES TES

Max/min power 3 3 3

Ramp up/down 3 3 3

SOC 5 3 3

Min up/down time 3 5 5

on/off status 3 3 3

electricity to heat ratio 3 5 5

SOC start and end of time horizon 5 3 3

Heat loss to enviroment 5 5 3

Startup status 3 5 5

DH demand met - - -
Transmission capacity out of plant - - -

The MILP was tested in three different ways, the first is to
just run the MILP for 1 year to get the optimal behaviour of
the system. The second way is to give the MILP a constraint
at the end of day SOC and then run the MILP for 36 hours
but only taking the operation from the first 24. The third
option is to use a rolling horizon optimization Bischi et al.
(2019); Marquant et al. (2015) where the optimization is
done daily with a one week time horizon. For this method
the constraint on the SOC on the storages was also set to
happen after one week. A optimality gap of 1% was used
for the MILP otpimization

2.2 Machine Learning (ML) Algorithm

Some different ML algorithms were tested these are deep
neural network (DNN), random forest (RF), historic
gradient boosting (HGB), and Gaussian regression (GR).
For all of these hyper parameter optimization was done and
for the DNN different architectures of the network were
also tested. The variables being predicted are the optimal
daily or weekly charge and discharge from the HES and
TES where training data is retrieved by running the MILP
with a long time horizon. Some different input features
were tested to get the lowest prediction error possible. The
training and testing data were split by having training
data be the data generated based on the first year and the
testing data be the real data from the second year.
Prepossessing of the data was done before passing it to the
ML algorithm. This prepossessing consisted of calculating
the mean, max, and minimum daily electricity price and
DH demand and monthly and weekly mean electricity
price and DH demand. The data was also scaled with the
electricity price, DH demand, SOC of the storages, day of
the year, and weekday being scaled between 0 and 1 and
the charge/discharge of the storages being scaled between
-1 and 1 where -1 is fully discharging and 1 is fully charging.
The loss metric used during the training of the ML models
is mean square error.
A lot of the charge and discharge data of the storages
is distributed around 0 to avoid any bias in the model
training weights were used in the loss function to make

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.006 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

43



all charge and discharge amounts be equally represented.
This was done using DenseWeight which applies weights to
different values of the training data based on kernel density
estimation Steininger et al. (2021).

3. RESULTS

3.1 Long term Mixed Integer Linear Programming MILP

Figure 3 shows how the SOC of the HES and TES change
when using MILP to optimize the system. The data used
for optimization is from 2017, the year the ML algorithm
makes its prediction. The storages does not start and end
at the same SOC since the MILP optimization was done
over 3 (2016-2018) with the SOC being constrained to be
the same at the beginning of 2016 and the end of 2018.

Fig. 3. SOC of storages based on MILP over predicted
year

3.2 Full System One Day Prediction Horizon

The MAE as a percentage of the maximum occured
charge/discharge of the storages for different ML algorithms
can be seen in Table 2. As can be seen, the MAE of HGB
is the lowest, however, this MAE is achieved by having the
charge/discharge around zero all the time which does not
lead to a good operation of the storages. The DNN on the
other hand makes predictions that are based on the features
and most of the time the decision to charge or discharge
the storage is correct. The amount charged or discharged is
however often wrong. This leads to the DNN operating the
storages in a better way than HGB even though the MAE
is higher. RF operates the storages in a similar way as
HGB in that it tries to keep the charge/discharge around
zero. GR operates the storages in a way that is somewhere
between the strategy of the DNN and HGB. Because of
this, the DNN is used as the ML algorithm for the rest of
the results.

Table 2. Prediction performance of ML algo-
rithms

ML method MAE HES MAE TES
DNN 25% 20%
RF 22% 19%
HGB 14% 16%
GR 23% 19%

The ML algorithm predicts the optimal SOC of the storages
at the end of the day or week based on the features that

can be seen in Table 3. Different combinations of features
were tested but these were chosen since they gave the
lowest mean absolute error (MAE). The data from the long
term MILP and ML prediction using a DNN (deep neaural
network) can be seen in Figs. 4 and 5, here a one-
day prediction horizon was used. As can be seen, the
prediction error is evenly spread except for predicting too
low values when the HES is charged at maximum
power. The HES has a MAE of 4500 kWh and the TES
has a MAE of 332 000 kWh. This MAE is quite high,
around 25% and 20% of the maximum daily charge/
discharge power that occurred for the HES and TES. This
error is however not important as long as the ML
algorithm can give predictions that have a good
operation of the storages in the daily MILP
optimization.
In future research, this error could be reduced either by
using a more complicated method such as first classifying
if the storage will be charged, discharged, or not used, and
then after that having 2 different specialized models for
charging and discharging for each of the storages. Different
ML models could also be used for different periods of the
year. Another way to improve the results could be to use
reinforcement learning and a one-day or week MILP model
to more directly optimize based on the objective function.

Fig. 4. Correlation between predicted and real charge/
dis-charge for HES using DNN with a one-day
prediction horizon

Fig. 5. Correlation between predicted and real charge/
dis-charge for TES using DNN with a one-day
prediction horizon
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Table 3. Features used for ML
Feature HES TES
Current day mean electricity
price and DH heat demand 3 3

Current day max electricity price
and DH heat demand 3 3

Current day min electricity price
and DH heat demand 3 3

Two weeks of mean electricity
price 3 3

Two weeks of mean DH demand 5 3

Two months of mean electricity
price and DH demand 3 3

Time of year 3 3

Day of week 3 3

SOC of storages 3 3

The DNN performs better in some parts of the year and
worse in others as can be seen in Figs. 6 and 7. The
accuracy might be able to be improved if multiple ML
models were trained for different parts of the year. The
algorithm does however still mostly charge and discharge
the storages at the correct time but the amount charged
or discharged is often wrong. For both figures the DNN
was trained using data generated based on data from
2016 and then tested using real real data from 2017.
The optimality gap used for the MILP for both training
and testing is 1%.

Fig. 6. Comparison charge/discharge HES MILP and
DNN

Fig. 7. Comparison charge/discharge TES MILP and
DNN

The SOC of the HES for MILP and with constraints from
the ML model can be seen in Fig. 8 and the same for
the TES in Fig. 9. Both the HES and TES SOC are
quite different between using MILP and using DNN model
constraints. The important thing here however is not that
the SOC of the storages are the same but how profitable the
operation of the entire energy system is in both scenarios.
This will be discussed in the next section. The SOC pattern
for the TES is however similar between the MILP and DNN
model constraint with it discharging during the winter and
charging during the summer. There is a difference in when
the storages is being charged/discharged between the MILP
and DNN. The reason for this could be that the DNN gets
a low electricity price as an input and therefore charges the
storage while the MILP does not charge the storage since
it has all the data and knows that there will be an even
cheaper electricity price in the future. In reality, a forecast
for the electricity price would have to be used to operate
the MILP in this way which could make the results of the
MILP and DNN more similar.

Fig. 8. Comparison SOC HES MILP and DNN

Fig. 9. Comparison SOC TES MILP and DNN

3.3 Comparison Cases

Table 4 compares the profitability of the daily MILP
model with the ML constraints and when constraints are
taken from the optimal operation of the previous year. The
comparison is made as a ratio profitability compared to
the long time MILP optimization results. When a one day
time horizon is used the daily MILP model with constraints
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from DNN outperforms the other models with constraints
from the optimal operation of the last year and other ML
methods. All of them are also close to the long time horizon
MILP optimization being 1, 4, and 6 percent away. Of note
here is that the energy storages is only one part of the
system so it is not the only factor effecting profitability.
When a one week time horizon is used, both the models with
constraints from ML algorithms and last year’s optimal
operation have the same profitability as the long time MILP
optimization. This is because a rolling time horizon is used
with the constraint placed at the end of the week but only
the operation from the first day is used, then the next day
the optimization is run again. This means that even if there
is some error in the prediction the operation of the first
day can be good since there is no constraint for the SOC
at the end of the first day.
Even though the MAE of the prediction is high the
profitability is not greatly impacted. This is because the
prediction is based on the electricity price DH demand
and time of year. This gives a good operation even if the
prediction is different from the value from the long time
MILP.
Another benefit to using ML to give constraints to the
MILP compared to using values from last year is that if a
change in the electricity price or DH demand were to occur
the operational plan can change. This makes the constraints
given by the ML model more robust. The diversity and
amount of training data generated and the number of years
used to generate training data will also affect how robust
the optimization is.
One thing to note when looking at Table 4 is that the
SOC the storages is not constrained to be the same at the
end of the year which affects the profitability. The final
SOC with the DNN constraints can be seen in Figs. 8
and 9. The final SOC when using the optimal results
from the last year can be seen in the same figures but
looking at the beginning of the year.

Table 4. Profitability comparison with con-
straints from ML models and taking SOC values

from last year MILP optimization
hhhhhhhhhhhhMethod

Time horizon 1 day 1 week

DNN 0.97 1
Last year MILP 0.96 1

GR 0.94 1
HGB 0.94 1
RF 0.94 1

In Table 5 the MAE and computational speed of the
method using daily and weekly MILP with DNN constraints
and the long term MILP model can be seen. Here the MAE
is a percentage of the maximum occured charge/discharge
of the storages. As can be seen, the optimization is fast
both for the one day and one week time horizon when
using constraints from the DNN. When running the MILP
for a year with the full model the optimization time is
over 30 hours which does not allow for day ahead planning.
Another problem when running the model in this way is
that a forecast for electricity price and DH demand is
needed for the entire year. When using the ML algorithm

only a forecast for the average electricity price for the next
2 weeks and next 2 months is needed. Even this can be
removed with some increase in the prediction error.
The MAE of the HES prediction increases when doing a
one week prediction while the MAE of the TES prediction
decreases. This is likley because the seasonal patterns of
the TES are stronger which makes a one week prediction
easier since any irregular spikes in temperature will have
a lower effect. The HES is more driven by the electricity
price which has a less seasonal pattern so in this case the
increase in features for the DNN only increase the MAE.

Table 5. MAE for different time resolutions and
horizons

Time horizon MAE HES MAE TES Computational time
1 day 25% 20% 1.78 s
1 week 30% 18% 12.33 s

Long term MILP - - 180.2 s*
*With binary constraints relaxed, the full model takes over 30 hours

to run

Table 6 shows the error when doing predictions based
on data from a simpler system. The prediction is slightly
better for the system with only one boiler. The prediction is
better on simpler systems since the behavior of the system
becomes less complex and therefore easier to predict.

Table 6. Comparison different systems

System MAE HES MAE TES
One boiler only TES - 20%
One boiler only HES 22% -

One boiler HES and TES 22% 18%
Four boiler HES and TES 25% 20%

4. DISCUSSION

This method is fast enough to implement in real-time, when
doing so retraining of the ML model should be done to
catch any new patterns in electricity price or DH demand.
The period between retraining will have to be decided based
on testing different periods. When retraining the algorithm
data could be generated again to increase the training data
since the generated data is created based on real data and
will therefore have some similar patterns.
Some things are required for it to be possible to use this
method, the first is some historical data that can be used for
training and creation of synthetic data or a way of creating
realistic synthetic data without any real data. Some long-
term energy storage is also needed for this method to be
effective, if no long-term energy storage exists conventional
methods are more suitable for optimization.
The use case for this kind of optimization method is in
cases where the optimization has to be done in a short time
or where the optimization has to be done a lot of times, for
both of these cases LTES should also be a part of the energy
system. For the case where optimization has to be done
fast it could be at a powerplant where the MILP model is
too complex to optimize over a long time horizon, then this
method can be used to speed up the optimization. For a
case where optimization has to be done many times, there
could be a case where the MILP optimization is part of an
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inner loop where it has to run many times per iteration of
some other optimization layer.
Since the synthetic data is only used for training the ML
algorithms and is generated without using any of the testing
data the use of synthetic data should not have any negative
impact on the results. The use of synthetic data might also
not be needed if enough historical data is available, other
methods of generating synthetic data could also be used.

5. CONCLUSIONS

Using ML to reduce the time horizon of a MILP model by
constraining the SOC of LTES gives a similar economic
operation to letting the MILP run over a long time horizon.
The MAE of the prediction is large but the economic
operation is still good with this method. This method
outperforms using the past years storage operation when
running the MILP daily and has an equal performance
when running the MILP weekly.
The ML method that gives the best operation of the
storages is a DNN.
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