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Abstract: Batteries are used in electric vehicles as well as in stationary applications. In electric vehicles,

high energy density, as kilowatt hour per kilogram (kWh/kg), is needed while stationary applications are

less sensitive to the energy density. Principally, it may be a good idea first to use batteries for transportation

applications and then when capacity has reached a certain level start using them for other applications in a

“second life”. Both for optimizing the performance of operations in 1st and 2nd life and for making fair

commercial agreements when selling used batteries for second life applications, there is a need to make

predictions of Remaining Useful Life (RUL) and State of Health (SoH). For this purpose, battery models

are needed. This paper presents a methodology for building a useful battery model based on our experiments

and literature data. Single cells and cells in series of  Nickel Manganese Cobalt (NMC) batteries and

Lithium Iron Phosphate (LFP) batteries have been cycled. Electrochemical Impedance Spectra (EIS) and

differential capacity (dQ/dV) have been measured for each cycle. These data were then used to develop

SoH and RUL models using various regression methods. The developed models are described and

discussed, and the results are presented in the paper.

Keywords:  Battery model, electric vehicles (EV), stationary applications, kilowatt hour per kilogram

(kWh/kg), Nickel Manganese Cobalt  (NMC), Lithium Iron Phosphate (LFP), Electrochemical Impedance

Spectra (EIS), differential capacity (dQ/dV), regression.

1. INTRODUCTION AND RELATED WORK

There is a strong interest in following the degradation of

batteries during the first life to give the possibility to predict

the remaining useful life (RUL) for the battery, especially for

the second-life use of batteries. By following the state of health

(SoH) continuously, correlating it to how the battery has been

used, and following it until it is totally wared out, reasonably

good prediction models can be determined and used. This

information can be utilized for 2nd life use of batteries

(Chirumalla et al., 2023, 2024).

In this paper, we want to extract experience from what has

been done earlier and add to it our own battery modeling

approach for the simulation of batteries used in Vehicles. For

second life use of batteries there is a high interest to use for

power grid balances as shown in e.g. Dahlquist et al. (2023).

Many researchers have modelled battery performance in

different ways. Pelletier et al. (2017) focused on modelling

cycle-life as a function to the depth of discharge (DOD) and

discharged rate relative to the battery maximum capacity (C-

rate). Ahmadiana et al. (2018) modeled battery resistance

growth versus state of charge (SoC) and battery degradation as

a function to DOD. Maheshwari et al. (2020) have modelled

cycling life vs C-rate using a non-linear model. O’Kane et al. 

(2022) have used the PyBaMM, an open source modelling 

environment for simulation of the effect of different variables 

important for degradation of Li-ion batteries. Four degradation 

mechanisms are coupled in PyBaMM. The most important 

ones are the loss of lithium inventory and the loss of active 

material. For the same cell, five different pathways have been 

evaluated. Lam and Bauer (2012) performed a lot of cycling of 

LFP batteries and from the experiments, an empirical model 

was constructed, which was capable of modeling the capacity 

fading in electric vehicles (EV) battery cells under most 

operating conditions. Ravali and Raju (2023) developed a 

Lithium-Ion Battery model for estimation of degradation 

capacity and SoC using Sigma Point Kalman filter. After one 

thousand cycles, the amount of capacity faded from 24Ah to 

20.5Ah at 25oC. 

de la Vega et al. (2023) have proposed to monitor battery 

performance by measuring instantaneous terminal cell voltage 

as a function to SoC during the first discharge cycle, as a 

reference cycle, and the nth cycle. The SoC interval [SoCmin, 

SoCmax] = [0.55, 0.75] was chosen to calculate the ΔVRMS 

indicator, which is terminal voltage difference between first 

and nth cycle at SoCmin and SoCmax. This is an interesting 
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approach to give the possibility to follow the degradation 

continuously if the values at SoCmin and SoCmax are stored 

continuously.  

Shamarova et al. (2022) have developed a method utilizing 

data from electrical circuit models (ECM) where dependency 

of ECM parameters on the electrochemical properties of the 

battery was examined in using a pseudo-two-dimensional 

(P2D) model. This is combining physical and statistical 

modelling approaches. Wildfeuer et al. (2023) made a set of 

experiments studying impact on SoH for capacity, resistance, 

Li-inventory, positive electrode losses, and negative electrode 

losses for SoC 10-100% and temp 20-60oC for NAC batteries. 

Panchal et al. (2017) did similar experimental studies for LFP 

batteries.  

Drive cycles with different modes like acceleration, constant 

speed, and deceleration in both highway and city driving were 

implemented at −6°C, 2°C, 10°C, and 23°C ambient 

temperatures with all accessories on. 4.6% capacity fade 

occurred over 3 months of driving. The empirical degradation 

model was fitted to these data, and an extrapolation estimated 

that 20% capacity fade would occur after nine hundred daily 

drive cycles. This is a high degradation rate, but experimental 

data and model were close for the 3 months test period. Zhang 

et al. (2023) have compared LFP and NMC batteries. 

Degradation characteristics during charging of LiFePO4 

(LFP)/Graphite batteries at voltages of 3.65–4.8V and 

Li(Ni0.5Co0.2Mn0.3)O2 (NCM)/Graphite batteries at 4.2–

4.8V at −10 °C with currents of 0.2–1A were determined. The 

loss of active material (LAM) causes the height of the highest 

IC peak (dQ/dV-V) to decrease for a given voltage, while the 

loss of Lithium inventory (LLI) shifts the DV curve (dV/dQ-

Q) toward lower capacities. 

It can also be interesting to see what measurements on real 

vehicles indicate with respect to capacity losses. Salazar and 

Bengoechea (2021) have summarized information reported by 

different Tesla Model 3 owners. One had a decrease of 

capacity by 4.8% during 136,000km operation, another 2.3% 

loss during 22,000km, when the vehicle was charged to 10% 

five days a week. A third had a 2.2% decrease during 

32,000km of SoH for 12 months operation. In this case all the 

cars had LFP batteries.  

Shen et al. (2019) tried to make RUL predictions. They were 

working with NASA data set and the CALCE data set. They 

compared their own model to another approach. Still, the value 

is to use common data sets for comparing different modelling 

approaches. Uddin et al. (2016) used an approach with 

identification and tracking of electrochemical battery model 

Parameters. This combines physical and statistical methods. 

The method was demonstrated on a 3.03Ah LiC6/NCA battery 

stored at 45°C with 50% SoC for 476 days.  

Rahbari et al. (2018) used another approach with an Adaptive 

Neuro-Fuzzy Inference System for SoH of real-life plug-in 

hybrid electric vehicles (PHEVs). The model was representing 

the experimental data in a good way. Dai et al. (2018) showed 

a SoH estimation method by using prior knowledge-based 

neural network (PKNN) and Markov chain for a single 

lithium-ion battery. Shi et al. (2019) used another method with 

estimation of the state of health (SoH) for a lithium-ion battery 

based on the ohm internal resistance R0. They were 

considering the variation of R0 with the state of charge (SoC), 

which was new. 

This overview covers a broad spectrum of methods, although 

many other techniques are also utilized. From all this, we 

developed a simplified battery degradation model that can be 

adapted to different types of batteries and with reasonable 

values for impact of different variables like temperature, C-

rate, DOD/DOC and calendric time. 

The paper is organized as follows. Section 2 presents the 

experiment setup while Section 3 presents the experimental 

data, both our data and other data from literature. In Sections 

4 and 5, we develop a battery degradation model and power 

demand model from vehicle, respectively. The paper ends with 

discussion and conclusions in Section 6. 

2. EXPERIMENTS SETUP 

2.1 Testing of battery cells 

Single cells can be tested with Electrochemical Impedance 

Spectroscopy (EIS). The spectra are made by measuring the 

current and the capacity as a function of voltage as the 

frequency of the supplied current is going from 1000Hz to 

0.001Hz. At high frequencies, we see the resistance in the 

electrolyte, at mid frequencies capacitance over the electrode 

surface, and at low frequencies the inner resistance of the cells 

as such. By following the EIS at the start and after a number 

of cycles, you can get both a quantitative measure of the 

overall degradation over time as well as an indication of what 

mechanisms in the battery cells are causing this. 

Another measure is to follow dQ/dV or dV/dQ, as a function 

of V, where Q is cell capacity (Ah) and V voltage. By 

measuring and plotting this over cell cycles a battery 

performance pattern is achieved. This can be measured 

continuously during the use of the cell, which is not possible 

with the EIS, and thus can be a good complement. Figure 1 

depicts a system for prediction of RUL, SoH and SoC. 

There is a correlation between DoD (depth of discharge)/DoC 

(depth of charge) and degradation rate. Figure 2 shows this 

correlation presented by Qadrdan et al. (2018). Real operation 

with Tesla cars still indicates that this curve is not relevant for 

NAC batteries in “real life” operations. 
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𝐷𝑜𝐷=𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎r𝑔𝑒/𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒=𝑄𝑑/𝐶∗100 [%] 
The SoH can be shown in an EIS, Electrochemical impedance 

spectrum. In Fig. 3, we see how the pattern in a Zreal vs Zim is 

looking like when a frequency scan is made from 1000Hz to 

0.001Hz. Higher frequency is to the right. Closest to y-axis we 

have ohmic resistance (Rohm): 

𝑍(𝜔) = 𝑉 ̃(𝜔)�̃�(𝜔) 

         =|�̃�(𝜔)�̃�(𝜔)|(cos𝜙(𝜔)+𝑗sin𝜙(𝜔)) 

        = 𝑍𝑟+𝑗𝑍𝑗 

 

 

 

 

 

 

 

 

 

 

 

The impedance spectrum can also be represented as an 

equivalent electric circuit model as shown in Fig. 4. 

 

 

According to Xiong et al. (2020), the model in Fig. 4 is the 

most common ECM, which is composed of three parts:  

• Part 1: a series of  ROHM and L. 
     

 
  

 

            

                    

                                        

    

 

        

  

Fig. 1. Experimental setup to collect data that will be used to

develop algorithms for prediction of SoH, RUL, and SoC.

Fig. 2. Battery cycle life as a function to depth of discharge.

Adapted from Qadrdan et al. (2018).

Fig. 3. Analysis of EIS in a Nyquist plot inspired by Li et al.

(2020), and Iurilli et al. (2021).

Fig. 4. Common equivalent circuit model inspired by Xiong et al.

(2020).

• Part 2: a parallel of CPESEI and RSEI. 

• Part 3: a parallel of CPEdl and series of RCHT and ZW
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. 
Part 1 indicates the ohmic resistance increase, where ROHM 

incorporates the ohmic resistance of electrolytes, electrode, 

binder and current collector. It can be acquired by resolving 

the intersection among the impedance spectrum and high 

frequency region of the Nyquist plot. The inductance 

incorporated the high frequency phenomena occurring in the 

collector, can be acquired by the impedance positive imaginary 

part. Part 2 describes the formation, decomposition and growth 

of SEI film, where the RSEI is calculated from the first semi 

arch span at mid-frequency. Part 3, RCHT the charge transfer 

resistance attained by a second semiarch at low frequency, 

CPEdl simulates the double-layer affect that occurs during 

battery discharge for the shape of electrode according to Xiong 

et al. (2020). 

In our cycling tests we have collected spectra with dQ/dV as a 

function of voltage and number of cycles. Here we can see how 

the spectrum for the same battery is changing pattern. In this 

case we cycled NMC batteries model 18650 up to four hundred 

cycles from 3.3 to 4.2 Volt. The results are shown in Fig. 5. 

 

 

The shift in pattern during cycling is shown as a few arrows. 

This information can be used to predict the performance of the 

batteries. It can also be used for prediction of remaining useful 

life, RUL, if cycling proceeds until the capacity has faded to 

below 70-80% of the original SoH. 

In Fig. 6, we see how the EIS changes during cycling. The 

diagram to the left is for fresh batteries while the others are 

after several cycles. The higher the cycle number, the further 

to the right. 

From experimental data, regressions and prediction models 

have been developed using different AI-algorithms. Results 

from these are exemplified in Fig. 7. 

Some other approaches using different type of models is e.g. 

capacity degradation estimation using sigma point Kalman 

filter (Gaddipati and Kuthuri, 2023) and Lin et al (2023) using 

a data driven approach. 

2.2 Testing of battery packs 

For many cells in series and parallel, it is difficult to perform 

EIS, while dQ/dV or dV/dQ is possible to measure. By 

comparing this for packs as well as single cells, and 
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Fig. 5. Results of the incremental capacity analysis over the cell’s

cycling (a) NMC cell from Biltema and (b) NMC cell from

Samsung.

Fig. 6. Electrochemical impedance spectra (EIS) for a NMC

battery from Samsung after Nyquist plot for battery cell (marked

16): cycle 200, 207 and 300. Experiments performed at MDU.

Fig. 7. Battery capacity estimation using different deep-learning

algorithms as a function of cycle number

(FNN10,FNN40,CNN1,CNN2 and LSTM). Rojas Vazquez

(2023).
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performing EIS as well for the single cells, we can create data 

that can be used to make AI models for different types of 

performance numbers. These can be state of charge (SoC), 

state of health (SoH), remaining useful life (RUL), and similar. 

By measuring full cycles for batteries and packs when fresh 

and after different numbers of cycles, prediction models can 

be developed. Also the depth of discharge (DoD), that is how 

close to 0% charge you go, is of interest to monitor. C-rate for 

both charge and discharge as well as temperature in the cell 

packs are other factors. 

3. EXPERIMENTAL DATA 

3.1 Our experimental data 

Previously we presented data from NMC battery cycling 

performed at our lab. We also have done testing with LFP 

batteries, or more correct Lithium Iron Manganese Phosphate 

batteries with 20Ah capacity. The latter are prismatic, while 

the first ones are cylindrical with a 2.9Ah capacity. 

As seen above, the degradation during fifty cycles of a NMC 

battery was 1.8% or 0.035% per cycle, when cycling between 

2.5V and 4.2V. Another cell was cycled 325 cycles between 

2.5V and 4.2V with 1.5A charging current (C-rate= 0.52) and 

3A discharge current (C-rate =1.04). The decrease in capacity 

went from 2.91Ah to 2.73Ah, or 0.18Ah. This means 6.2% 

during 325 cycles or a decrease of 0.019% per cycle. If we just 

look at the first fifty cycles of the same battery (S20), the 

decrease was from 2.91Ah to 2.81Ah, or 3.4%, or 0.069% per 

cycle. There is a faster degradation in the beginning, but it is 

reduced with time. 

For the LFP batteries, we had a degradation of 0.12% per cycle 

at C-rate 0.15 during thirty-nine cycles, when cycling between 

2.5V and 3.7V at 3A for the 20Ah batteries. It was the same 

for charging and discharging. 

We did the same cycle for LFP batteries but with four cells in 

series with 10A and 40A respectively. This corresponds to a 

C-rate of 0.5 and 2 respectively. For the reference case with C-

rate 0.5 and cycling only between 12.6V to 13.7V for four 

batteries, corresponding to 3.15-3.4V per cell. We could not 

see any degradation at all after one hundred cycles with this 

mild cycling. For C-rate 2, 40A, we saw a small degradation 

by 0.0079% per cycle during 102 cycles. When running at C-

rate 0.5, the temperature increase was around 2-3oC but for C-

rate two it was 55-65oC measuring between the cells at various 

positions. The lower temperature was at the entrance and outlet 

from the series, while the higher temperature was between the 

cells. 

A problem with these measurements is that we get slightly 

non-linear degradation. The degradation is higher in the first 

fifty cycles compared to later. This also will depend on 

temperature, C-rate, and other factors. To get more insights, 

we have collected data from the literature as explained in the 

next subsection. 

3.2 Other experimental data 

Tests with different Tesla cars with NAC batteries were made 

with fast charging 90% of the time (Tesla 3 and Tesla Y) and 

compared to Tesla models with only 10% fast charging. This 

was followed 1000- 2000 days. What they found was that the 

degradation was very similar in both cases (SOH from 99% to 

91% for 1000 days and 89% for 2000 days. The % is the 

percent of the SOH measured as original distance with fully 

charged batteries after use compared to fresh batteries). Still, 

here the temperature control has been good, and a charging 

pattern with low power close to full charge (around 80-90%). 

Still, it is not known how degradation affects the long-term 

capacity like 10-20 years. 

Later the Tesla user’s organization compared LFP batteries. 

Salazar and Bengoechea (2021) have summarized information 

reported by different Tesla Model 3 owners, who have LFP 

batteries. One had a decrease of capacity by 4.8% during 

136,000 km operation; another 2.3% loss during 22,000 km, 

when the vehicle was charged to 100% five days a week. A 

third had 2.2% decrease in SOH during 32,000 km and 12 

months of operation. In this case, all the cars had LFP batteries. 

The second Tesla owner says he was charging to 100% five 

days a week, which is higher DOC than recommended. Also, 

the others said they often charged to 100%. A Tesla model 3 

consumes 1.4-1.7kWh/10km which means 136,000 km 

corresponds to some 19,000 – 23,100kWh total charging. The 

battery capacity is some 55-77kWh depending on the model, 

so it corresponds to 250- 420 full battery cycles. 4.8% total 

degradation then corresponds to 0.011-0.019% per cycle. The 

second had a loss of 2.3% during 2,000 km or 3080–3740kWh. 

This means forty -68 full cycles, or 0.058- 0.034% per cycle. 

Zhang et al. (2023) studied the degradation of both LFP and 

NMC batteries as a function of temperature and C-rate. The 

LFP batteries were charged to 3.65V while the NMC batteries 

were charged to 4.2V. The degradation is seen in Table 1. 

Table 1. Degradation of LFP and NMC batteries as a function 

of C-rate and Temperature according to Zhang et al. (2023) 

 % degradation per cycle 

C-rate 0.2  0.5  1  

Temp 25oC -10oC 25oC -10oC 25oC -10oC 

NMC 0.02  0.07  0.05  

NMC   0.0375 1.16 0.4125 3.6 

LFP 0.03  0.25  0.36  

LFP   0.0233 0.26   

 

Lin et al. (2023) have studied SoH in relation to internal 

resistance. They found a degradation of SoH by 8% during 

three hundred cycles while the inner resistance increased from 

0.18 to 0.213 Ohm. The SoH decrease per cycle was 0.027%.  

Shabani et al. (2023) have shown that DOD/DOC has an 

impact on degradation, but also where in the span charge and 

discharge occur. With the same total cycle depth but with 

different spans you see different degradation. With DOC 

=50%, we can see that the degradation rate goes from 12 to 
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14.5% for 10 years when having a cycle of 40-90% SoC 

compared to 10-60% SoC. When we increase the DOC above 

this span of 50%, we also see an increased fade. How much 

this is depends on temperature, battery type, and C-rate? 

3.3  Summary of degradation data 

If we try to summarize the data, both our own and others’ data, 

we get a high variation as % per cycle, but still, we can see 

some trends. An increased C-rate above 0.5-1 usually 

increases the fade of SoH. When the temperature is below 0-

10oC and above 30oC, we also see an increased degradation 

rate. The difference between LFP and NMC batteries is not 

clear from these data. What can be seen is that the value for 

the same condition varies significantly at the same temperature 

and C-rate. We can see that the C-rate above 0.2 is increasing 

the degradation rate as well as -10oC compared to +25oC. This 

is for both LFP and NMC batteries. It is usually said that LFP 

should not get that hot as energy per kg is lower, but we saw a 

very high increase to 65oC at 40A with four cells in series, with 

each 20Ah, or C-rate 2. This led to the swelling of the batteries 

significantly. Concerning DOC/DOD many authors report that 

this is important, like Shabani et al. (2023), but in absolute 

numbers, it is not that easy to get a reliable figure.  

What we have done with our simulation model is to set some 

average values on degradation rate and from these estimate 

parameter values. Adjustment is made for large changes in 

DOC, temperature, and C-rate. We have made these 

adjustments for each cycle assuming a full cycle. When the 

cycle is not full, we assume degradation in SOH is a share of 

the full cycle. 

4. BATTERY DEGRADATION MODEL 

The battery degradation will depend on several factors like 

time, temperature, Depth of Discharge (DOD), Depth of 

Charge (DoC), number of cycles, and C-rate as well as the 

calendric time as such. It is of interest to define some key 

numbers to follow that integrate these different factors.  

The algorithm we use for the battery simulation is shown in 

Table 2 (input data), Table 3 (calculations) and Table 4 

(calculations for first 21 timesteps during charging) below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Input data to battery simulator. In this case a single 
LFP cell. 

 

 
 
The calculations in the simulator are chosen as constant 

voltage, constant current or constant power. In Table 3 
below we see calculations for the constant power case 
during charging. For discharge the calculation of SoC is 
slightly different compared to during charging. 

 
Table 3. Calculation for constant power (kW) during charge 

and discharge 
 

 
 

Principally we calculate an update of SoC for each time step 

depending on the kW discharge or charge. Calculations are 

done for a single cell, but several cells in parallel and series are 

configured to get the correct current, voltage, and energy 

content (kWh). 

 
 

Input LFP Sort

Cell

Emax,cell 64 Wh

E0,cell 3.2 Wh

E100,cell 60.8 Wh

Umax,cell 3.7 V

Ulow,cutoff 2.5 V

U0,cell 2.5 V

U100,cell 3.515 V

I0,cell 15 A

I100,cell 2 A

Unormal 3.2 V

Pcell 48 W
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Table 4. Calculation of first 10 time-steps during charge of 15 cells in series 
 

If we look at the degradation due to different factors, we can 

see that cycling conditions can be accounted for with a number 

of adjustment factors or KPIs: 

1. DoD/DoC is calculated as SoCin when a cycle starts 

minus SoCout when we switch from charging to 

discharging or the opposite. When DoD/DoC is larger 

than 60% the amount between actual value and 60% 

is calculated and multiplied by KPIdoc.  

2. The temperature is assumed normal between 10oC 

and 30oC, but increased degradation in proportion to 

temperature difference higher or lower than this. 

KPItemp = Toperational – (> 30 oC or <10oC) * Ctemp. 

3. Adjustment for C-rate is KPI c-rate =  C-rate^Cc-rate. 
4. Calendric time influence KPIcal = number of hours 

since manufacture of battery * Ccal. 

Degradation now becomes average degradation when 

DOD/DOC is <60%, temperature 10-30oC and C-rate < 0.5. 

We then add degradation rate as add-ons to this average value. 

Degradation of SoH equals to: 

SoHdeg = SoHaverage + (SOC-60)*KPIdoc + (Temp – >30 

or<10)*KPItemp + C-rate*KPIc-rate 

The SOHaverage is calculated from the measured values when 

conditions are stated as above. For fifty cycles we have eight 

test sets giving an average of 0.045%/cycle. For 325 and 435 

cycles we have used two data sets, giving 0.015%/cycle. These 

are the base values under “normal conditions”. So SOHaverage,50 

= 0.045% and SOHaverage,400 = 0.015%. We assume the same 

for both NMC and LFP batteries. 

When the temperature went down to -10oC, the degradation 

rate for NMC batteries was 1.16%/cycle at C-rate 0.5 and 

3.6%/cycle at C-rate one. For C-rate going from 0.5 to 2 the 

degradation rate went from 0.001 to 0.0079 for LFP battery 

and from 0.038 to 0.41 for a NMC battery in one set but from 

0.07 to 0.05 in another! The tests unfortunately give quite 

diverse measures! At extreme temperatures we normally see 

significant degradation of SOH, but sometimes less than 

expected. We thus have chosen to use conservative values. The 

plan is to use future measurements to make these factors better 

by time, including both measurements done in lab as well as 

including module and pack data from different vehicles. The 

following values have been set as our initial estimates: KPIdoc 

= 0.002,  KPItemp = 0.005, KPI C-rate = 0.01. This would give for 

DOD=90, temperature 0oC and C-rate 2 a SoHdeg,400 = 0.015 + 

(90-60)*0.002 + 10*0.005 + 2*0.01 = 0.145%. 

Battery degradation could be modelled as U=I*R where R is 

increased as a function of degradation of SoH. The correlation 

between inner resistance and SoH is that a decrease of R by 

0.18 to 0.213Ohm correspond to a decrease in SoH by 8% 

during three hundred cycles according to Wang et al. (2023). 

This means 0.027% per cycle. This is a reasonable value if we 

assume 25oC and C-rate 0.2-0.5. We also assume DOC/DOD 

to be 60% (SoC 20-80%).  

The actual power then could be calculated as Pactual= P*( 

Roriginal/Rpresent). When we demand P= 980W, we only get 

P*(Roriginal/Rpresent) which is lower than demanded, assuming 

that total resistance is increasing. 

In our simulation model though we are using the SoH 

degradation depending on temperature, DOC/DOD and C-rate 

as stated previously. From this we can calculate battery 

degradation giving RUL and SoH from running with different 

scenarios with respect to the different conditions. 

5.  POWER DEMAND FROM VEHICLE 

The power demand for each time step is given from a model 

over e.g. a train line going from one station to the next. There 

is a time schedule that must be followed given the limitations 

with respect to acceleration, deceleration, and average 

Constant power 15 cells

t 1 2 3 4 5 6 7 8 9 10

dt 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667

E0 48 48 48 48 48 48 48 48 48 48

E100 912 912 912 912 912 912 912 912 912 912

U0 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5

U100 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275

P 720 720 720 720 720 720 720 720 720 720

I0 15 15 15 15 15 15 15 15 15 15

It 19.2 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861

Et 48 60.0024 72.0048 84.0072 96.0096 108.012 120.0144 132.0168 144.0192 156.0216

Ut 37.5 37.70525 37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724

Et+1 60.0024 72.0048 84.0072 96.0096 108.012 120.0144 132.0168 144.0192 156.0216 168.024

SoC 0.013892 0.027783 0.041675 0.055567 0.069458 0.08335 0.097242 0.111133 0.125025 0.138917

Ut+1 37.70525 37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724 39.55249

It+1 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861 18.20366
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velocity. When passing sensitive areas there are speed

limitations e.g. 80 km/h to reduce the impact of noise. The

power demand for a train line is seen in Fig. 8 below. The

power demand is calculated from the weight of the train,

distance, inclination, velocity limitations, acceleration, friction

due to bearings, and wind. The results are shown in Fig. 9. The

power demand is in kW. Positive values are discharging

batteries and negative values charging the batteries due to

“motor breaking”.

 

 

From the data in Fig. 8 power demand for each zone is 

calculated and sent to the battery simulator. In Fig. 9 we see 

the speed of the train in each zone, or more precisely the 

velocity of the train when it enters and leaves the zone. 

Thereafter we see the power demand as kW in each zone, the 

energy output or input to the battery as kWh and finally the 

state of charge, SoC, calculated for each zone. In this case 

there were just seven zones, but where there are major 

accelerations/decelerations each zone may be divided into 

several zones. 

 

  

For each full cycle, we do a calculation on degradation of SoH 

due to calendric time, temperature, DOD/DOC and C-rate. For 

part of a full cycle, that is how much of a full cycle before 

changing from charging to discharge or vice versa, we do this 

calculation as percent of a full cycle, so as a function of total 

Ah stored and used. 

6. DISCUSSION AND CONCLUSIONS 

From the experimental results, we have made prediction 

models for RUL and SoH. Concerning the battery simulator, 

we have formulated the equations for constant power during 

each section of the distance of a vehicle, or during a certain 

time period. By running scenarios like a train line as above or 

some other driving cycle for another type of vehicle, we can 

simulate future degradation and from this calculate RUL and 

SoH at certain times, or for “end of life” (EOL). Also 

calculations can be made on when SoH has reached e.g. 80%, 

where a second life use would be recommended. From the 

intensity of the drive cycle, we also can recommend suitable 

use of the batteries for this second life use. In case of harsh 

cycles, it may be better to use the batteries for only energy 

storage like in photovoltaic (PV) cell applications. If low 

DOD/DOC has been applied generally, a power application, 

like for example frequency control, can be possible, where 

high power may be demanded. 
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