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Abstract: This paper assesses the impact of increasing wind power production and energy storage 

systems on grid resilience in Sweden. Wind power currently makes up 17% of Sweden’s electricity mix, 

and this share is expected to rise significantly in the coming decades as Sweden aims for 100% renewable 

energy generation by 2040. However, the variable and intermitted output can negatively impact grid 

stability. A microgrid model is developed, incorporating a wind turbine, battery storage, power grid, and a 

representative demand profile. Wind speed data is analysed to select profiles representing high and low 

variability, with variance used as a metric for resilience. Planned production is constructed in 12-hour 

intervals based on wind speed forecasts. The model compares grid dependency and electricity delivery 

with and without battery storage of varying capacities. The results show that battery storage reduces grid 

interactions and grid dependency. Furthermore, it aligns actual wind power production with the planned 

production profile. Optimisation analyses find that minimising operational costs and battery usage 

increases grid reliance while minimising costs and grid supplies provides a more stable supply but 

overuses batteries. Sensitivity analysis demonstrates higher grid dependency in high-variance wind 

conditions. The paper contributes to understanding how to enhance wind power resilience through 

improved production planning and battery integration. It proposes using variance analysis in wind profile 

selection and identifies trade-offs between system stability, costs and battery lifespan under different 

optimisation strategies.
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1. INTRODUCTION 

Sweden primarily relies on hydropower and nuclear energy for 

domestic electricity production (The Swedish Energy Agency, 

2023). In 2020, renewable energy sources contributed to 92% 

of Sweden’s electricity production, with hydropower 

accounting for 45%, nuclear power for 29%, wind power for 

17% and solar power for 1%. The remaining 8% was generated 

through combined heat, power, and industrial processes. 

Globally, there has been a rapid increase in the adoption of 

wind power (Benitez, Benitez and van Kooten, 2008), a trend 

mirrored in Sweden. The installed capacity of wind power in 

Sweden increased from 3,487 GWh in 2010 to 27,536 GWh in 

2020, a growth attributed partly to supportive renewable 

electricity policies (IEA, 2019). Sweden aims to achieve 100% 

renewable energy production by 2040, while still retaining 

nuclear energy as an option (The Swedish Energy Agency, 

2023). However, this goal is complicated by the predicted rise 

in energy demand over the coming decades, driven by various 

factors including emissions reduction, industry growth, 

hydrogen production, and the electrification of transportation 

and the steel industry (Holmberg and Tangerås, 2023). To 

address this growing demand, it is expected that wind energy 

production will need to increase over the coming decades 

(Ministry of the Environment and Energy, 2018). Current 

projections indicate that the installed capacity of wind power, 

which stood at 12,100 MW, is expected to rise to 18,500 MW 

by 2030 and 33,300 MW by 2040 (Swedish Wind Energy 

Association, 2021). Integrating wind power into the electricity 

grid presents several challenges due to its inherent weather-

dependent nature, which results in variable and unstable power 

output (Zhao et al., 2015; Reddy, 2017). This variability may 

adversely affect the stability and performance of the electric 

power system, causing frequency and voltage disturbances that 

may lead to system shutdowns (Li et al., 2021). Additionally, 

the intermittency of wind power affects market mechanisms 

for electricity trading, as these mechanisms rely on accurate 

production planning forecasts. Inaccuracies can lead to price 

fluctuations in electricity prices, particularly as wind power 

penetration rises (Peizheng Xuan et al., 2019). The primary 

goal of grid operation is to meet electricity demand, however 

variable wind power output complicates this objective. 

Accurate forecasting of production and demand is crucial for 

determining the required amount of dispatchable electricity. 

Despite advancements in forecasting techniques, errors are 

inevitable, necessitating power reserves for grid operators 

(Michiorri et al., 2018), ultimately hindering the integration of 

wind power (Zhao et al., 2015). One proposed solution to 

mitigate these grid issues is combining wind power with 

energy storage systems (ESS). ESS can provide the necessary 

flexibility to smooth out the variability in wind power output 

(Zhao et al., 2015; Michiorri et al., 2018; Barra et al., 2021). 

Previous research has explored various aspects of ESS 

integration: Li et al. examined short-term “power-smoothing” 

applications utilising high-power ESS that rapidly respond to 
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high power outputs (Barra et al., 2021), Sperstad and Korpås 

et al. investigated the optimal scheduling of ESS in grids 

with large renewable energy shares, developing a 

framework to avoid suboptimal operations (Sperstad and 

Korpås, 2019). Additionally, M. Ghazipour and M. Abardeh 

et al. developed a stochastic optimisation approach for 

optimising the location and size of ESS in energy systems 

(M. Ghazipour and M. Abardeh, 2019). These studies 

collectively aim to enhance the understanding of ESS 

from various technological perspectives, addressing 

the volatile energy output of renewable energy sources 

(RES) and mitigating their adverse effects on the energy 

system. However, none of these studies specifically address 

ensuring a guaranteed electricity supply, a critical factor as 

the increase in wind power reduces the amount of 

controllable electricity supply. This aspect is vital in the 

broader context of energy system resilience.

Acknowledging resilience is increasingly crucial within the

ongoing energy transition, despite its varied definitions across

multiple disciplines. Fundamentally, resilience revolves

around the capacity to cope with disruptive events (Gasser et

al., 2021; Jasiūnas, Lund and Mikkola, 2021). One definition

of resilience involves minimising service disruptions by

anticipating, resisting, absorbing, adapting to and recovering

from disruptive events (Ahmadi, Saboohi and Vakili, 2021).

Gasser et al. define resilience as the capacity of systems to

withstand stress, pressure or disturbance without loss of

function (Gasser et al., 2021). This research aims to develop a

microgrid model that integrates wind power and battery energy

storage, assess the role of battery storage in mitigating wind

power variability, and analyse the system's resilience. By

evaluating performance during disruptive wind events, this

study aims to enhance the broader understanding of how ESS

can enhance the resilience of renewable energy systems,

ensuring a more stable and reliable electricity supply. The

central question addressed is: How can battery energy storage

mitigate volatility and increase the integration of wind

turbines?

2. METHODOLOGY

This research employs a case study representative of recent

developments in Eskilstuna, Sweden. The primary

components of the microgrid model include a wind turbine,

battery storage, a power grid and a representative demand

profile. Two configurations will be modelled, to assess the

value added by battery storage. These configurations are

modelled using Modelon Impact, a systems modelling and

simulation program. Modelon Impact utilises Modelica’s core

modelling and simulation capabilities. Modelica is an object-

oriented programming language. Modelica allows for a

detailed description of the behaviour of physical components

and their interactions within the system.

2.1 Components and controls

Figure 1 illustrates the microgrid model. The Wind and

Temperature blocks contain wind speed and air temperature

data, respectively. The Temperature block determines the air

density, directly affecting the wind power produced in the

Turbine block. By incorporating these data, the model

accounts for the impact of temperature-induced density

variations on wind power generation. The power generated by

Fig.  1. The microgrid model developed with Modelon Impact.

the wind turbine is then directed to the Converter block which

converts the alternative current (AC) to direct current (DC).

This DC power flows through the transformer- which converts

the high voltage to a lower voltage suitable for distribution

within the grid. The electricity is delivered to the Demand

block, representing a representative demand profile. The

Demand and Demand profile blocks represent the forecasted

power demand. The Grid block can provide and receive

unlimited electricity to balance the grid. This setup facilitates

analysis by comparing the actual power output against the

planned output. An important component of the microgrid

model is the Control unit. The operation of the battery is based

on the net amount of power denoted by Pnet, described in (1).

Pnet = Pwind - Pdemand (1)

 

The Control unit measures Pnet at each time point and 

operates according to the following control scheme.  

• If Pnet < 0, the required power is generated by 

discharging the battery, or bought from the grid 

• If Pnet > 0, the surplus is either used to charge the 

battery sold to the grid or both. 

2.2 Wind power  

The theoretical power that can be extracted from the wind by 

a wind turbine is proportional to the wind speed to the power 

of three (Kim, 2013). This relation is described in (2), where P 

represents the total wind power production by the turbine, 

measured in watts. The total area the turbine blades cover in 

one rotation is described by A, the swept area of the wind 

turbine in m², ρ is the density of the air in kg/m³ and v 

represents the velocity of the wind in m/s, Cp is the power 

coefficient, defined as the ratio of power extracted by the wind 

turbine from the energy available in the wind. 

 

𝑃 =
1

2
A 𝜌 𝑣3𝐶𝑝 (2) 

  

In addition to calculating the theoretical wind power, a suitable 

wind speed profile is required. Moreover, a thorough wind data 

analysis is needed to capture resilience in a wind speed profile. 

Rapid and large changes in wind speeds are identified as 

disruptive events. One example of such events is sudden drops 

in high wind speeds. These abrupt changes can be quantified 

through statistical measures such as variance. Variance 

assesses the spread of data points relative to their average in 

the data set. Specifically, in wind speed analysis, variance 

indicates the degree of variability in wind speeds over time. 

Greater variability, as indicated by a higher variance signifies 
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an increased need for system resilience. A timeframe of one 

week is selected for the modelling phase to calculate the 

variance of the wind speed of the dataset. Hence the variance 

will be calculated for each week of the dataset.  The formula 

for the variance is shown in (3). Where xi is each value in the 

data set, x is the mean of all values in the data set and N is the 

number of all values in the data set (Hui, 2018). 

𝜎2 =
(𝑥𝑖 − �̅�)2

𝑁
 (3) 

The selection of wind speed profiles in this research is based 

on several criteria. First data was sourced from a location of 

importance to the research region. Additionally, the profiles 

were chosen to represent a range of scenarios including 

average, low and high-wind conditions, to assess the system’s 

resilience under diverse operational conditions. 

2.3 Planned production 

Forecasting wind speed will become increasingly paramount 

as future wind farms function more like conventional power 

plants. This transition implies a shift towards more accurate 

planning of electricity production, leading to the development 

of guidelines focused on reliability to ensure the safe operation 

of wind farms. Several factors are driving the shift in the role 

of wind power. Firstly, wind power’s exposure to volatile 

wholesale electricity prices changes its economic dynamics. 

Given the relatively low marginal cost of producing wind 

power, increased wind power tends to decrease electricity 

prices. Secondly, governmental support schemes, such as feed-

in-tariffs (a guaranteed cost-based purchase price for 

electricity), are being replaced by auctioning systems, 

incentivising wind farm owners to prioritise profit 

maximisation over pure electricity production volume. This 

shift underscores the growing importance of accurate wind 

speed forecasts in optimising wind farm operations and 

maximising profitability (Kölle et al., 2022). Wind speed 

forecasts are constructed for various timeframes depending on 

the specific application. These include very short-term 

forecasts (a few seconds to 30 minutes), short-term forecasts 

(30 minutes to 6 hours ahead), mid-term forecasts (6 hours to 

a day ahead), and long-term forecasts (1 day to a week or 

more). Different methods, such as machine learning or 

statistical approaches are employed for generating these 

forecasts (Khosla and Aggarwal, 2022). In this research, a 

mid-term forecast for a half-day ahead is used, with wind 

speed predictions generated every 12 hours. The variables used 

in the planned production profile are depicted in (4) and (5), 

where vaverage represents the average wind speed, and 𝑉i 

represents the hourly wind speed values i = 1,2, …, 12. The 

choice of a 12-hour planning interval aligns with the timeframe 

of day-ahead wholesale electricity price data, ensuring 

coherence between the forecasting parameters and pricing 

data. 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

12
∑ 𝑣𝑖

12

𝑖=12
 (4) 

 

 

𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

12
∑ 𝜌𝑖

12

𝑖=12
 (5) 

2.4 Optimisation 

The optimiser minimises the total cost, as presented in (6). 

Where L(x,u,p) represents the integral cost depending on the 

process state x, the controls u, and the plant parameters p. State 

variables x denote the dynamic state over time, such as the 

state of charge (SOC) of the battery, the power output of the 

wind turbine or the electricity consumption of the grid. Control 

variables u are decision variables that can be adjusted to 

optimise the system performance, such as the charging and 

discharging rate of the battery or the import and export to and 

from the grid. Parameters p are fixed values for a system, 

including the power efficiency of the turbine, battery capacity, 

electricity prices, or demand profiles. The cost integrand 

𝐿(𝑥, 𝑢, 𝑝) can be further decomposed into two terms, presented 

in (7). Costy typically refers to the operational cost per unit 

time (OPEXsec), while costu penalises the controls u (du²/dt) to 

promote smoother and more stable operation. 

𝑚𝑖𝑛𝑢(𝑡),𝑝𝑐𝑜𝑠𝑡 = ∫ 𝐿(𝑥, 𝑢, 𝑝) 𝑑𝑡
𝑇𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

0

 (6) 

Costu can be defined as minimising the battery’s aggressive 

charging and discharging behaviour, thus extending its 

technical lifetime. Generally, the penalty of costu is much 

lower than the operational cost costy. Dynamic optimisation 

aims to find the optimal trajectory u(t) while satisfying the 

system constraints. Modelon Impact utilises the Interior Point 

OPTimiser (IPOPT) to determine the best next step. IPOPT 

gradually narrows down search barriers within a feasible 

region to approach an optimal solution without reaching the 

boundary until close to finding it.  

𝐿(𝑥, 𝑢, 𝑝) =  𝑐𝑜𝑠𝑡𝑦 + 𝑐𝑜𝑠𝑡𝑢  (7) 

  

In this research, different objectives are chosen to be 

minimised. The first scenario combines operational cost and 

battery controls to minimise total cost while minimising 

battery operation to extend the technical lifetime. The second 

scenario considers operational cost and the power output of the 

grid, aiming to minimise grid dependency. In Table 1 the 

optimisation scenarios are presented. 

Table 1: Optimisation scenarios 

Scenario Costy Costu 

OPEXsec, controls OPEXsec 
Battery(Power charge * 

Power discharge) 

OPEXsec, power grid OPEXsec Grid power 

2.5 Data 

This section outlines the key properties and sources of the time 

series data used in the research, which include air temperature, 

wind speed, electricity prices, and demand profiles. The 

following tables provide a summary of the data.   
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Table 2: Demand profile data 

Parameter Resolution Period Unit 

Demand 

profile 

12 hour 

interval 
Weekly [MW] 

 

Table 3: Time series data 

 
Parameter Unit Range Period Source 

Air 

temperature 
[K] 

01/01/2010 – 

01/10/2023 
Hourly 

(SMHI, 

2023) 

Wind speed [m/s] 
01/01/2010 – 

01/10/2023 
Hourly 

(SMHI, 

2023) 

Electricity 

price 

[€/M

Whe] 

01/01/2015  

– 01/12/2023 
Hourly 

(ENTSO-E, 

2023) 

2.6 Modelling assumptions

The battery capacity is assumed to remain constant, meaning

that the battery’s efficiency does not degrade over the

simulation period of one week. This assumption is reasonable

given the short simulation period, where the number of

charging cycles during this time is insufficient to cause the

battery capacity to degrade. Additionally, unlimited import

and export from and to the grid is assumed. However, in real-

life, the grid may encounter congestion, where the

transmission network cannot meet the demand. In such cases,

assets like wind farms may receive compensation from

Svenska kräftnat (Transmission System Operator) to adjust

production or decrease consumption accordingly (Holmberg

and Tangerås, 2022). The total installed cost of batteries

decreases as the capacity increases. Most costs are calculated

for a battery system with a 2-hour duration, meaning the time

it can deliver its full power capacity in MW. For example, a

battery with 2 MW and a 2-hour duration has a capacity of 4

MWh. In the case study, the battery system has a 1:1 power

ratio  (MW:MWh). Data on batteries with a 1-hour duration is

limited, therefore it is assumed that the cost of batteries for

different capacities is based on 2-hour duration systems.

Although the transmission capacity of the power grid is

assumed to be unlimited in this research, in reality, exceeding

transmission capacity can result in penalties for wind farm

owners. For example, if the 220 kV transmission line

connecting the wind farm to the grid is exceeded, penalties

may be imposed on the wind farm owner for not meeting

planned production. To mitigate this, batteries with longer

durations and different power ratios could enable more

effective operating strategies. A 1:1 power ratio is selected,

allowing the battery to discharge completely within one hour.

3. RESULTS

3.1 Wind profile selection

The wind speed variance at hub height is calculated from 2010

to 2023, plotted in Fig. 2. Each bar in Fig 2. represents a

week and its corresponding variance value. A higher variance

indicates greater variability in wind speed, while a lower value

suggests more stable wind conditions. The highest and lowest

variances are 51 and 0, respectively. It is important to note that

the variance is rounded up towards the nearest integer. The

variance is calculated at hub height, as the wind speed at this

height determines the wind turbine's power output.

3.2 Planned production

It is essential to establish a baseline by examining the wind

power output generated solely by the wind farm, without any

battery storage. This baseline gives insight into how accurate

the actual production of the wind turbine is compared to the

planned production. Furthermore, the interaction between the

wind turbine, power grid, and planned production will be

visible. In Fig. 3 the produced power of the wind turbine is

presented. The planned power production and the actual power

production are not balanced most of the time. During periods

of imbalance, the electricity grid functions as a source and sink

of electricity. Analysis indicates that 65% of the total

exchanged electricity flows into the systems and 35% is

delivered to the grid. Integrating battery storage aims to

decrease grid interactions, especially the delivered electricity

to increase power system autonomy. Battery integration with

a wind turbine increases power output. This influences the

total amount of electrical energy the grid has to provide. The

total electricity delivered is presented in Fig. 4. The blue bar

represents the delivered electricity in the scenario when only

the wind turbine operates, and the yellow bars indicate the

scenario in which both the wind turbine and battery are in

operation. With increasing battery capacity, there is a notable

decrease in the total energy demand from the grid. For

instance, in the wind turbine-only scenario, the grid delivers

430 MWh. However, with 1 MW of installed battery capacity,

the grid delivers 37 MWh less. At 30 MW installed capacity,

the grid provides a total of 183 MWh.

3.3 Battery storage

The straightforward observation of decreased electricity

delivered by the grid with increased battery capacity can be

further analysed when looking at capacity efficiency. Capacity

efficiency is defined as the difference between the delivered

electricity by the grid in a scenario with only wind turbines and

the electricity delivered by the grid when batteries are

installed, divided by the total battery capacity. It measures how

effectively the battery is utilised. For example, in Fig. 4, the

total electricity delivered by the grid in the wind turbine

scenario is 430 MWh, and the delivered electricity for a 2 MW

battery is 382 MWh, resulting in a capacity efficiency of

430−382= 24 MWh/MW. In Fig. 5 the capacity efficiency

 

Fig.  2. Variance of the wind speed at hub height, from 2010 until

2023. The chosen wind profile is indicated in red.
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for each battery size is plotted against the battery capacity. It

can be observed that as battery capacity increases the capacity

efficiency goes down. This implies that increasing battery

capacity has diminishing returns in terms of its effectiveness

in reducing grid dependency.

3.4 Optimisation

The results of the two optimisation scenarios in Table 1 are

presented in Fig. 6 and compared with the main scenario

from Fig. 4, which involves the simulation with the microgrid

controller. The control strategy of the microgrid controller, as

outlined in (1) focuses on maintaining grid balance by

prioritising maximum utilising the battery while minimising

reliance on the grid. Unlike optimisation strategies, this

method does not involve optimising specific variables but

rather adopts a more direct approach to grid management. The

optimisation analysis reveals that integrating 1 MW of battery

capacity reduces grid-supplied electricity when minimising

operational cost and battery controls. Grid-delivered

electricity shows a steep increase after installing 10 MW

battery capacity. This observation suggests a trade-off,

wherein efforts to smooth battery controls to extend battery life

elevate the reliance on the grid. In the scenario aimed at

minimising the operational cost and grid power output, the

dependency on grid-supplied electricity remains relatively

stable for each additional battery capacity. However,

exceptions are noted with the installation of 2 MW and 30 MW

battery capacities, where an increase in grid dependency is

observed. Figure 7 presents the operational cost across all

scenarios. In each scenario, the operational cost of the wind

turbine and the battery are constant as they incur fixed

operational expenses. Conversely, the grid’s operational costs

 
Fig. 5. The impact of battery capacity on the total amount

of the grid’s delivered electricity.

 

vary and depend on the power output and electricity price. The

optimisation analysis reveals that incorporating up to 2 MW

of battery storage leads to a small decrease in operational cost.

Compared to the main scenario, incorporating 10 MW, 20 MW

and 30 MW of battery storage leads to higher operational costs.

The SOC of the battery is presented in Fig. 8. In the

optimisation scenario aimed at minimising the operational cost

and grid supply, the SOC begins at 0.9 and gradually decreases

until 0.1 over the simulation period. Although continuous

charge and discharging cycles occur, they constitute only a

small fraction of the total battery capacity. In the optimisation

scenario of the operational cost and battery controls, the SOC

exhibits different patterns of battery utilisation. A more regular

pattern is observed in the SOC of the battery, especially in the

first two days of the simulation. The small operational cycle

during day six indicates a degree of flexibility in deviating

from the optimised battery controls to minimise operational

costs. Compared to battery controls a higher penalty is

associated with optimising operational costs. In contrast, the

SOC during the simulation with the microgrid controller

indicates a more frequent utilisation of the battery, aligning

with the result of Fig. 6, which suggests reduced grid

dependency. Specifically, the microgrid controller simulation

experiences a total of fourteen operational cycles, whereas the

battery controls optimisation scenario only experiences a total

of eleven operational cycles. This indicates a trade-off wherein

the grid can be stabilised at the expense of potentially

overusing the battery, or reducing stress on the battery by

increasing dependency on the grid.

 
Fig. 3. The actual and planned power production of the wind

farm.

 
Fig. 4. The total electricity delivered by the grid with and without

battery storage.
Fig 6. Delivered power grid electricity for the main and

Optimisation scenarios.
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3.5 Sensitivity analysis

To measure the impact of variance on the results, different

wind speed profiles and their 12-hour interval average are

presented in Fig. 9. What can be observed from this analysis is 

that the high variance profile exhibits more pronounced

peaks and troughs in wind speed throughout the week. High

peaks are observed on the first and third days of the simulation.

The low-variance profile demonstrates a more stable pattern

and gradually increases from 0 m/s on the first day to

approximately 5 m/s by the end of the week. Quantitatively,

the high variance profile has a variance of 16.01 and the low

variance has a value of 2.27. Figure 10 presents the electricity

delivered by the grid in the high and low-variance scenarios,

showcasing a similar trend to that of the main scenario. In the

high variance scenario, more electricity is delivered by the grid

in both the wind turbine-only simulation and the incorporation

of each additional battery storage capacity. This observation

can be attributed to the deviations between planned and actual

production caused by the high variance in wind speed. The grid

intervenes to align the actual with planned production,

resulting in an increased demand for electricity from the grid.

Conversely, in the low variance scenario, less electricity is

required from the grid as the actual production closely aligns

with the planned production due to lower variance in wind

speed. Consequently, there is a reduced need for the grid to

 
Fig. 9. The selected wind speed profiles and their average wind

speeds.

 

intervene to align the two. For instance, in the wind turbine-

only simulation, the electricity delivered by the grid is 116 

MWh in the low variance scenario but decreases to 0 MWh 

when 30 MW of battery capacity is installed, this indicates the 

significant impact of variance on grid dependency and the 

effectiveness of battery storage mitigating it. In addition to 

analysing variations in wind speed, it is essential to consider 

the potential effects of model prediction uncertainties on the 

system’s performance. Prediction errors, whether in wind 

speed or demand can lead to imbalances in supply and demand, 

compromising grid stability. Errors in forecasting can lead to 

inefficient dispatch resulting in increased operational costs and 

can reduce system efficiency. Storage sizing depends on 

accurate forecasts, if errors are not accounted for, resilience 

strategies may be underutilized.     

 

 
Fig. 7. The operational cost of the simulation and Optimisation

scenarios for every battery size.

 

4. DISCUSSION

4.1 Battery optimisation

Michiorrit et al. researched strategies to minimise power errors

in wind turbines and optimise battery storage sizing in a 9 MW

wind farm. The wind farm owner provided to the transmission

system operator with 30-minute interval power predictions. A

5 MW power-rated battery, resulted in high penalties and

periods of disconnection. To address this, a sizing

methodology was developed that generated error time series

characterised by their autocorrelation. This led to an optimal

capacity. A smaller-sized battery performed better because it

effectively absorbed prediction errors correlated over

timescales of around 6 hours, rather than compensating for all

the differences between actual and predicted output over time.

Consequently, a smaller battery reduced penalties while still

achieving the target level of allowable errors, allowing it to be

utilised to its full technical potential (Michiorri et al., 2018).

In this research, no error range is employed for the operational

strategy, resulting in immediate battery utilisation whenever

there is a misalignment between predicted and actual power.

This complicates the comparison between the study of

Michiorri et al and the current research. However, both studies

agree that a smaller battery can better utilise its full potential.

This is demonstrated in the present research, where the battery

capacity increases and the capacity efficiency decreases.

4.2 Production planning interval

This research shows that a 12-hour interval accumulates

production planning errors in a high-variance scenario,

resulting in increased electricity from the grid. As the variance

decreases, the forecast error also decreases, suggesting that a

12-hour forecast interval is more suitable for low-variance
Fig. 8. The battery SOC during the simulation run with the wind profiles. In contrast, high-variance wind profiles could

microgrid controller and the optimisation runs. 
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benefit from a narrower interval. Y et al. investigated the

optimisation of a self-disciplined interval of a wind farm.  This

interval is calculated assuming an error distribution around the

mean of the predicted power output. An estimation technique

models the historical error distribution shape between the

actual and predicted wind power output. This interval width is

optimised using the IPOPT. A case study analyses a 10-minute

simulation interval to validate this method. Optimised battery

storage technology supplies the necessary power to maintain

this interval. It was found that the optimised method can

effectively improve the self-disciplined level. Showing shorter

intervals is an effective way of constructing robust production

planning. A limitation of this research is the exclusion of

battery degradation. Furthermore, only one case study is used

and the method does not consider any error in actual wind

power production (Yu et al., 2020).

4.3 Policy decisions

Policy decisions should focus on resilient energy

infrastructure, with investments made in battery optimisation

to achieve cost-effective grid independence. Furthermore,

policies should address grid congestion and provide

compensation mechanisms for energy producers. Increase

penalties for overproduction to encourage efficient energy

management. Furthermore, high upfront costs and varying

electricity prices are barriers to large-scale deployment of

battery storage. Governments can provide subsidies for stable

pricing mechanisms and long-term contracts to ensure

financial security.

5. CONCLUSIONS

This research aims to investigate how battery storage can

mitigate the volatility of wind power and its implications for

the resilience of the Swedish energy system upon integration

into the power grid. Given the growing trend of wind power

with battery storage in Sweden, this study contributes to our

understanding of improving wind turbine resilience through

better production planning. Presented below are the main

findings stemming from this research:

 

• Incorporating battery storage significantly reduces 

dependency on the power grid, especially in the 

lower-variance wind profiles.  

• Enhanced utilisation of batteries is observed as 

battery capacity decreases. 

• The research introduces a method for selecting wind 

speed profiles based on variance analysis, which 

captures the dynamic nature of wind behaviour. This 

approach identifies disruptive events through 

variance, providing a nuanced understanding of wind 

variability and system resilience.  

• Enhancing system resilience by reducing grid 

dependency can increase capital and operational 

costs. Consequently, this leads to a higher variability 

in the SOC of the battery while smoothing the power 

grid supply. This creates a trade-off between 

stabilising the grid by heavily using the battery and 

protecting battery life by relying more on the grid. 

• High-variance wind speed profiles lead to greater 

discrepancies between planned and actual 

production, requiring more grid intervention. In 

contrast, low-variance profiles aligned better with 

forecasts, reducing grid dependency.  

 

The research identifies a clear trade-off between battery usage

and grid dependency. While battery integration reduces grid

reliance, it also necessitates careful consideration of battery

control strategies to prevent increased operational costs and

ensure battery longevity. This insight is crucial for optimising

microgrid performance and achieving a more autonomous,

cost-effective, resilient power system.
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