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Abstract: To connect the molecular length scale phenomena to the macroscopic length scale in
diffusion controlled growth in solid state, there is need to consider the movement of individual
atoms in the crystal lattice and examine the length scale effect where the average density of the
atoms approaches to the continuum macro scale. For this purpose a lattice random walk model
has been constructed to represent the diffusion of atoms to form a precipitate. Once the atom
is in contact with the precipitate surface, the precipitate grows and the atom is not anymore
contributing to the random walk. Through the model, it is possible to evaluate the concentration
fluctuations at different length scales in diffusion controlled growth and connect the continuum
description of diffusion to the atomic level description. We connect the different length scales in
theoretical description from atomistic scale through random atom movements to macroscale. In
the current study, two-dimensional lattice random walks and growth are considered. The study
contributes to the modelling efforts of understanding diffusion controlled precipitate growth in
steels.

Keywords: Diffusion, random walk, scale bridging, atom level, continuum level, random
movement probability, neb method, saddle points.

1. INTRODUCTION

Diffusion is an important phenomenon, which affects dras-
tically the formation of several microstructural features
in materials, such as formation of precipitates (Pohjonen
et al., 2022), movement of phase boundaries (Pohjonen
2023), segregation of atoms to crystal defects (Cottrell

and Bilby, 1949; Macchi et al., 2024; Pohjonen et al.,
2022), etc. Therefore, it is of utmost practical importance
to obtain the highest possible level of thorough under-
standing of the phenomena that affects the diffusion in
atomic lattice in different conditions.

Traditionally, diffusion in macroscopic scales can be mod-
elled using the Fick’s laws of diffusion (Porter et al. ,
2022). The connection of the probability of molecular
movements and their macroscopic effects dates back to
Brownian motion and the theoretical explanation by Ein-
stein in ref. (Einstein (1905, 1906) and Smoluchowski
in ref. (von Smoluchowski 1906) as described in (Kac,
1947). Previously, the diffusional growth of a precipitate
in steels has been examined through random movements
of atoms in the atomic lattice. (Larsson and Ågren, 2003)
Also the activation energy that relates to the atomic
movement in steels has been calculated for austenitic and
ferritic/martensitic structures (Wang et al., 2021). In the
current study, we describe the theory connecting these
different length scales through the implementation of a

random walk algorithm for diffusional atom movement in
the atomic lattice. This approach provides initial step for
bridging the atomistic energy, length, and time scales to
macroscopic description, and it provides information on
the transition, where the inherent concentration fluctua-
tions in atomic scale diminish when increasing the length
scale.

2. THEORY

The basic connection between flux of atoms and the
random movement is reasonably straightforward. (Porter

et al., 2022) Consider neigbouring planes of atomic sites
containing diffusing atoms. If the diffusing atom on plane
1 has probability of px+ to move in positive x direction
to plane 2 and atom on plane 2 has probability px− to
move in the negative direction to plane 1, then the net
flux in x-direction fx = n̂x(px+n1 − px−n2)/A where n̂x

is the unit normal vector in x direction. For simplicity, let
us consider the movement of atoms in cubic lattice, where
the atom hops from one cube to another with probability
p. If the probability of the random atom movement is
independent of direction x, y, z, one obtains the Fick’s first
law of diffusion:

J = −D∇C (1)
where C is the concentration of atoms, and the tempera-
ture dependent diffusion coefficient D has the connection
to the atomic level probability of movement p through
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D =
1

2N
Γa2 (2)

where N is the dimension (for 2 dimensional diffusion
N = 2 and 3 dimensional diffusion N = 3) a is the lattice
constant and Γ is the frequency of atom movement, which
is related to the direction-independent probability p for
atom to move per unit time, and the number of dimensions

the atom can move during time-step.(Porter et al., 2022)
For example consider k timesteps. If atom has probability
px to move in x direction and probability py to move in
y-direction during one time-step ∆t, then the frequency of
the atom movement is Γ = pxk/(k∆t)+pyk/(k∆t) = (px+
py)/∆t. If probability px = py = p, then Γ = Np/∆t.
The equations (1) and (2) provide the connection between
average random atomic movement in bulk material and
the flux of atoms. The time evolution of the concentration
field can be obtained from the continuity equation by the
divergence of the flux, which yields the Fick’s 2nd law:

∂C

∂t
= −∇ · J = ∇ · (D∇C) (3)

At the atomistic scale, there is considerable fluctuation of
concentration about the average value due to the random
movement of atoms, which can be examined with random
walk simulations for different cases.

In case the probability of the random atomic movement p
is independent of the position x, the time evolution of the
concentration field is only affected by the gradient ∇C.
However, if the probability p(x) is function of position,
the drift (i.e. advection) of atoms occurs according to the
following equation:

∂C

∂t
= ∇ · (D∇C) = ∇D · ∇C +D∇2C (4)

which is the advection-diffusion equation, where the ad-

vection velocity v = −∇D = −∇Γa2

2N = −∇ pa2

2∆t . Consid-
ering the position dependent probability for random atom
movements p(x) and compression/tension of the lattice, it
becomes possible to link the atomistic phenomena to the
emergent macroscopic diffusion and advection phenomena

(Cottrell and Bilby, 1949).

An analytical solution is available for diffusion from point

concentration (MIT, 2024), which serves as a useful test
case for diffusion models (Pohjonen, 2024b,a), which
we shall compare to also in the current study. For two-
dimensions, the analytical solution is described by

C(x, y, t) =
M

4πDt
exp

(
−x2 + y2

4Dt

)
(5)

where M is the number of atoms.

The atom movement is thermally activated process, which
is caused by the random vibrations of atoms. If the
diffusing atom gains enough energy, it has high probability
of moving in the lattice. The probability for the atom
movement from a stable lattice site to another stable site
can be obtained from Arrhenius type equation:

p = Aexp

(
−EA

RT

)
(6)

where the activation energy barrier EA can be calculated
using atomistic simulations using the nudged elastic band

method (NEB) (Wang et al., 2021). NEB method is a
powerful tool to identify the microstructural evolution of a

system in which defects or impurity atoms are present and

they evolve interactively (Jónsson et al., 1998; Henkelman

et al.. 2000, 2002) The atomic scale information such as
the energies of the initial, final and transition states, can be
used to identify the energy barriers and can serve as inputs
to the description of mesoscale phenomena. Basically NEB
method can provide a minimum energy path that describe
the energy variaton of the atomic movement from an initial
to final state. It is a chain of states method, to determine
the minimum energy path on the potential energy surface.
Each atomic configuration will be at a potential energy of
0 K, represented by a point in the configuration space, and
can be determined either by empirical potentials or first
principles calculations. In the NEB method the initial and
final configurations will be calculated by minimizing the
energy and then a linear interpolation will be carried our
between the two end states to generate a finite number of
replicas. Two nearby replicas will be connected by a spring,
resembling an elastic band made of beads and springs.
To solve the corner cutting and sliding that can arise,
a force projection, such as ”nudging” is employed. This
procedure followed by proper optimization ensures that
the elastic band converges to the minimum energy path.
Further, after optimization, both the position and energy
information of the configurations can be obtained. There
are different variations of the basic NEB method, adapted
to suit the needs of the system in use, such as extended
three dimensional defects which requires a large model
system with a long reaction path. This is to ensure that
enough replicas are included to map the long trajectory

between the saddle point and final state (Zhu et al., 2007).

The effect of elastic lattice distortions can bias the ran-
dom movement of the atoms and give rise to net drift
of interstitial atoms towards tensile stress and away from
compression. The dependence of the random movement
probability on the local strain can be quantitatively exam-
ined with ab-initio based NEB methods, and the emerging
flux and the random fluctuations can be examined with
the random walk simulations.

In certain temperature range, it is energetically favourable
for the atoms to coalesce and form a precipitate, which
then grows due to diffusion of more atoms to the surface
of the precipitate (Larsson and Ågren, 2003; Pohjonen

et al., 2022).

3. NUMERICAL ALGORITHM

A random walk algorithm was implemented to simulate
the random movements of atoms in two-dimensional lat-
tice, and their coalescence to a precipitate, which is lo-
cated in the center of the simulation domain. When the
atom coalesces to the precipitate surface, the precipitate
radius will grow and the coalescing atoms are removed
from the random walk simulation. As a result of this, the
concentration is lowered near the precipitate, which then
implicitly causes net flux of atoms towards the negative
of the concentration gradient. Periodic boundaries were
applied in the simulation.

The random walk algorithm has two main stages. First,
it moves the atoms based on the random probability of
movement, and secondly, it will remove the atoms from
calculation when they are within the precipitate radius,
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Fig. 1. Flow chart depicting the operation of the random
walk and precipitate growth algorithm.

which grows each time an atom is located there within.
A flow chart depicting the operation of the algorithm is
shown in Fig. 1.

The local density of atoms was calculated by dividing
the simulation domain to rectangular subdomains and
calculating the number of atoms within each subdomain,
and dividing the number of atoms by the size of the
subdomain (area in 2D).

To speedup the simulations we accelerated the random
walk algorithm to run on GPUs by writing our algorithm
directly in CUDA. In the following, we refer readers
unfamiliar with CUDA and GPU terminology to

(NVIDIA, 2024). The random walk algorithm is
straightforward to parallelize and accelerate, because
except for growing the precipitate radius the atoms do
not affect each others. In the performed simulations it
was found that atoms coalescing to the precipitate
surface is rare enough that performance-wise the radius
expansion can be performed with GPU atomic
operations.

Atomic operations guarantee that no other atomic oper-
ations happen while the atomic operation is being per-
formed. Thus they prevent race conditions that would
otherwise happen when multiple threads try to write to
the same variable. Naturally atomic operations are more
costly than normal operations, especially if many of them
are being performed on the same memory address, since
the operations have to be synchronized in some manner.

To minimize the costs of the atomic operations we use a
common technique of first combining all atomic updates

inside a threadblock into a variable in shared memory and
make a single atomic update from the threadblock into
the variable in global memory that is shared across all
threads. This cuts down the amount of atomic operations
to variables in global memory significantly and atomic
operations to variables in shared memory are significantly
faster due to them being closer in memory and due to
the need of synchronizing only between the threads in the
current threadblock.

Due to this optimization and the radius updates being rare
we found the atomic operations to be a solution that is
easy to implement for growing the radius. This implemen-
tation did not have measurable effect on the performance
of the kernels. The rarity of the coalescing motivated
optimization, where instead of synchronizing between a
single update of each atom, we update each atom n steps
and then synchronize. This cuts down memory traffic by
a factor of n since we can reuse the values loaded to
local memory. The only difference between synchronizing
between each step and every n steps is that the radius size
lags after the first update done after synchronizing in the
second scheme, but if the number of radius updates is small
enough this difference is negligible. We found that on the
tested hardware, a single RTX A2000 8GB Laptop GPU,
synchronizing after every second step gave a performance
improvement of 30 percent.

4. NUMERICAL TEST CASES

4.1 Diffusion from initial point source

To test the connection between the random movements
and the macroscopic diffusion equation, we compared the
random walk simulation from initial point concentration
to corresponding diffusion calculation. Consider a two-
dimensional case where all atoms are initially located at
the origin. The random movement is assumed to occur in
two dimensional square lattice with lattice constant a = 1.
Also, timestep is chosen as ∆t = 1, i.e. dimensionless
units were used, as this is mathematical study, not directly
connected with physical properties. The atoms have 50
% probability to move within time-step in x-direction,
and the same probability for y-direction. If they move,
they have equal probability to move either in positive
or negative direction. Since the diffusing atom can move
both x and y direction within timestep with 50% chance
in each direction, the frequency for the atom movement
during timestep is Γ = (0.5 + 0.5)/∆t = 1/∆t, and
according to equation (2) the diffusion coefficient in this
case becomes D = Γ/(2N) = 1/4. The simulation results
and comparison to analytical continuum solution, equation
(5), are shown in Fig. 2. To see the effect of the random
fluctuations, the simulation was repeated ten times and the
standard deviation for each plotted datapoint was calcu-
lated. The standard deviations are indicated as error bars
in the figure. The small difference between the simulated
results and the analytical solution arises because of the dif-
ferences between the analytical continuum description and
the discrete random walk results, and also due to chosen
area where the atoms are averaged over when calculating
the results from the simulations.
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Fig. 2. Diffusion from initial point concentration. The lines show the simulation results averaged over 10 separate
simulations and the error bars indicate the standard deviation. The markers show the corresponding analytical
solution described by equation (5).

4.2 Concentration fluctuations as function of system size

Fluctuations in small systems are inherent due to random
movement of discrete particles. It was examined how the
concentration fluctuations in a two dimensional system
depend on the system size. To achieve this, the length
of the square domain and the number of atoms were
both scaled by scaling factor sf , which was altered in
the simulations. The atoms were initialized to random
positions and the random walk simulation was ran for 1000
timesteps. In each simulation the domain was divided in
to 40x40 square subdomains. The 2d concentration was
calculated as number of atoms/area for each subdomain.
Then standard deviation of the subdomain concentrations
was calculated. The standard deviation as function of
the scaling factor is shown in Fig. 3. The result shows
that the standard deviation depends on the scaling factor
approximately proportional to 1/sf . Increasing the system
size in the random walk simulations up to sf = 12 still
showed noticeable fluctuations, and was not much different
from the case sf = 6.

4.3 Diffusion controlled growth of precipitate

To test the random walk simulation in a more interesting
case, a coupled precipitate growth and diffusion simulation
was performed. The atoms, which were initially located
randomly at the domain, were moved randomly similar
to the previous case, but if they arrived within a radius,
the precipitate radius grew and the atom was removed
from the random walk. The simulation results from small
scale simulations are shown in Fig. 4, where a) shows
the concentration of atoms in the whole simulated two
dimensional domain and b) shows the plot of concentration
of atoms along the horizontal line which passes throught
the origin, where the growing precipitate is located. The
area increase of preciptate due to attachment of atom was
set as Aat = π(a/6)2.

Fig. 3. The standard deviation sd of the concentrations
of 40 by 40 subdomains as function of system scaling
factor sf

The result shows that the concentration near the precip-
itate becomes depleted as atoms are being removed from
the diffusion to increase the precipitate radius, which is a

realistic effect (Porter et al., 2022).
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Fig. 4. a) The concentration of atoms per subdomain area after 3 000 000 timesteps, b) Plot of concentration along

the horizontal line which passes the origin at several different time-steps.
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5. CONCLUSIONS

A theory linking random movement (i.e. random walk)
of atoms in crystalline material to the activation barrier
of atom hopping from stable lattice cite to another was
described and also the link between the diffusion equation
and the random movement probability was presented.
The random random walk model describing diffusional
movement of atoms in a lattice was constructed and
parallelized using GPU. The model was compared to a
continuum analytical solution for diffusion from an initial
point concentration, and it was applied for mathematical
calculation of diffusion controlled growth of a precipitate.

In future studies, the probabilities and their dependence
on different factors, such as local stress/strain state, can
be obtained from nudged elastic band (NEB) calculations
and the model can be parameterized using physical data.
The NEB calculations combined with atomistic ab-initio
density functional theory simulations have the capability
for providing the energy barriers for atomic mobility, and
hence they could be used in future for theoretic prediction
of the of atomic scale effects of diffusion, precipitation and
partitioning phenomena. Such effects are very difficult to
observe directly experimentally, which makes phenomeno-
logical parameterization of models difficult. The theoret-
ical calculations can also provide explanations connected
with these practically very important metallurgical phe-
nomena.
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