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Abstract: The aim of this article is to develop and compare machine learning (ML) methods
with activated sludge models (ASM) for estimation of effluent nutrients in the Hias Process.
The Hias Process is a novel moving bed bioreactor with enhanced biological phosphorus removal
and simultaneous nitrification and denitrification (MBBR-EBPR-SND). As the main energy cost
of the nutrient removal process is aeration, it is necessary to design of energy-efficient control
strategies that ensure compliance with legal requirements for nutrient removal in real-time while
optimizing the aeration rates. The first step in control strategy design is development of models
that represent the main process dynamics.
The case study data set of four months was collected from a 192 000 PE municipal MBBR
process at Hias water resource recovery facility in Norway. The Hias Process consists of three
anaerobic and seven aerobic zones, where biomass carriers flow continuously submersed in the
used water and remove over 90 % of the phosphorus. The online measurements include used
water flowrate, aeration rates, dissolved oxygen, suspended solids, and soluble nutrients PO4,
COD, NO2 and NO3. Reduced ASM model, support vector regression (SVR) and long short-
term memory neural network (LSTM), with and without dynamic time-delay, were developed
to predict the effluent PO4 in the Hias process. The model prediction accuracies were compared
using correlation coefficients and trend figures. The SVR model with fine gaussian kernel gave
best results with strong R index of 0.9. The LSTM model reached a sufficient R index of 0.6 and
the reduced ASM2d model a weak R index of 0.2. Including the dynamic time-delay improved
the model accuracy. The machine learning models with dynamic time-delay will be developed
further for energy-efficient control strategy development.

Keywords: water resource recovery facility; activated sludge model; support vector regression;
long short-term memory network.

1. INTRODUCTION

As the water industry is responsible for approximately one
percent of the total energy consumption in the European
union, new legal requirements for energy neutrality are
underway EuropeanCommission (2021). Therefore, devel-
opment of energy-efficient control strategies is essential
to minimize the energy consumption and to meet the
strict nutrient recovery requirements at water resource
recovery facilities (WRRF). The Hias Process is a novel,
compact biological nutrient removal process that consists
of a continuous-flow moving bed bioreactor with enhanced
biological phosphorus removal and simultaneous nitrifica-
tion and denitrification (MBBR-EBPR-SND) Rudi et al.
(2019). As the main energy cost of the Hias Process
is aeration, energy-efficient control strategies need to be
developed to optimize the aeration rates and to ensure

⋆ RFF Innlandet, Norway, is gratefully acknowledged for funding
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compliance with legal requirements for nutrient removal
in real-time.

Development of energy-efficient control strategies requires
models that capture the main dynamic behaviour of the
nutrient removal phenomena. First principles models such
as the ASM2d model Henze et al. (1999) and its simplified
version the reduced ASM2d model Nair et al. (2019) can be
used as development and testing environment for control
strategies. However, it is time-consuming and sometimes
unfeasible to develop such models due to scarce instru-
mentation. Hence, machine learning models have gained
high research interest in the water industry, for example
for applications such as virtual/soft sensors Paepae et al.
(2021).

In our previous work, data-driven models were developed
to estimate the effluent nutrients in the Hias Process
Nermo (2023), Komulainen et al. (2023). Virtual sensors
were developed for estimation of PO4 and COD in the
Hias Process using additional electrical conductivity (EC)
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measurements Komulainen et al. (2024). In this work we
will use the virtual sensor estimating PO4 at inlet, develop
reduced ASM2d models, and refine two best performing
machine learning models from Baqeri (2024), Support
Vector Regression (SVR) and Long-Short Term Memory
(LSTM). In this study we answer the following research
questions: Can the reduced ASM2d model, SVR model
and LSTM model follow the dynamic trends of the effluent
PO4 data? Which model gives the highest prediction
accuracy?

2. MATERIALS AND METHODS

2.1 Software

Matlab software package version R2023a was used in the
work. The simulation method was ode23s with automatic
settings for the time step and error tolerance.

2.2 The Hias Process and instrumentation

The Hias Process is a biological nutrient removal process at
a 192 000 PE municipal water resource recovery facility in
Hamar, Norway. The Hias Process with instrumentation is
illustrated in Fig. 1. The clarified used water (influent)
and the recirculated biofilm carriers (from zone 10 via
a conveyor belt) enter the anaerobic zone. The Hias
Process consists of three anaerobic and seven aerobic
zones, where biomass carriers flow continuously submersed
in the used water and remove over 90 % of the phosphorus.
The three anaerobic basins are mixed to ensure sufficient
distribution of biofilm carriers in the water. Aeration in the
following seven basins ensures sufficient dissolved oxygen
concentrations for aerobic nutrient removal. Used water
and submerged biofilm carriers float through the process
with gravity.

The Hias Process instrumentation includes continuous
online measurements of flowrate, temperature, aeration,
dissolved oxygen, suspended solids, and nutrient compo-
sitions of PO4, COD, NO2 and NO3. Additional online
measurements of electrical conductivity at inlet and in
zone 3 were installed during the PACBAL research project
2022-2023. Soluble COD, NO2 and NO3 are measured
continuously at inlet and zone 7. Suspended solids SS
are measured at zone 10 and in the effluent after the disc
filter. Effluent PO4 is measured using an online-analyzer
with 10 minutes sampling time. The Hias Process online
measurements utilized in this study are listed in Table 1.
Hias laboratory assesses nutrient composition of PO4 and
soluble COD at inlet, zones 3,4,7,10, and outlet, and NH3

at inlet and outlet from daily grab samples five days a
week. Hence, there are 5 samples from laboratory and 1008
samples of online data for each variable per week.

2.3 Data collection and pre-processing

The Industrial IoT platform KYB, developed by Digitread
Connect, was used for uploading and standardizing oper-
ational data from SCADA system of municipal Hias water
resource recovery facility at Hamar, Norway. The online
data set was collected in .csv format and the laboratory
data set in .xlsx format.

Table 1. Online measurements.

Symbol Description Unit

F Water flowrate inlet m3/h

T Temperature inlet oC

CODIN COD inlet g/m3

NOIN NO2 and NO3 inlet g/m3

ECIN El.conductivity inlet mS/cm

FOi Aeration rate zones 4,5,6,7,8,9,10 m3/h

DOi Dissolved oxygen zones 4,5,6,8,9 m3/h

PO PO4 effluent g/m3

The inter-quartiles method was chosen for outlier removal.
The outliers are identified as measurements more than 1.5
inter-quartile range above the upper quartile (75 percent)
or below the lower quartile (25 percent). Missing and
removed values were replaced with previous feasible values.
Prior to ML modeling, the data is normalized to zero mean
and standard deviation of one.

2.4 Modeling methods

The aim of this study is to develop and compare modeling
methods that enable energy-efficient control strategy de-
sign for nutrient removal in the Hias Process. International
Water Association has led work in developing Activated
Sludge Models (ASM) that represent biological nutrient
removal Henze et al. (1999). The ASM models were re-
duced and developed for a sequential MBBR pilot plant
by Nair et al. (2019). In this study, these models were to
be adapted for the continuous large-scale operation of the
municipal Hias WRRF.

In the literature, Long-Short Term Memory (LSTM) neu-
ral network and Support Vector Regression (SVR) have
gained lots of attention, and hence these two data-driven
modeling methods are applied in this study. LSTM is a re-
current neural network suitable for modeling dependencies
in and forecasting of sequential or time-series data. LSTM
architecture includes memory cells and gates that regulate
the flow of sequential data. These gates can learn which
data in a sequence is important to keep or discard, enabling
the network to maintain a longer context of information
as described in Hochreiter and Schmidhuber (1997).

SVR is frequently used to predict relationship between
continuous input and output variables. SVR minimizes
error between the model prediction and the data by fitting
a hyperplane in a high-dimensional space of the input
variables and the output variables . The kernel trick
converts the dataset to higher dimensions by combining
the features using for example linear, quadratic, cubic,
or Gaussian functions as described in Cortes and Vapnik
(1995).

2.5 Model comparison

The Hias Process effluent PO4 measurements were used
as the output variable for the models. Both R2 index
and correlation coefficient R were used to compare the
modeling accuracy of the different methods. The model
prediction of the real data points is weak for index between
0-0.3, moderate for index between 0.3-0.5, sufficient for
index between 0.5-0.7, and strong for index between 0.7-1.
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Fig. 1. The Hias Process with instrumentation.

3. RESULTS

3.1 Data selection and pre-processing

The online data and laboratory data were collected for a
period of 21.3.-31.7.2023. During period of 1.4.-15.5.2023
many online measurements were missing, hence, the online
data set is for period 15.5.2023-31.7.2023. Period of 21.3.-
31.7.2023 is used for the laboratory data set.

The outliers in the data set were using inter-quartiles
method. The missing values were filled in with previous
feasible values. Prior to the machine learning model devel-
opment, the online data was normalized.

3.2 Dynamic time delay

The time delay through the ten zones of the Hias Process
has a mean of 6 hours (36 samples), a standard deviation
of 1 hour (6 samples), a minimum of 4.8 hours (29 samples)
and a maximum of 15 hours (90 samples). Hence, in
this study the effect of dynamic time delay on model
accuracy was analysed. For the reduced ASM2d models,
the varying time delay td is calculated for a lumped volume
V combining three real process zones (3 · 215m3) and
continuous measurement of used water flowrate F (t) in
[m3/h] according to Equation 1:

td(t) = V/F (t) = 645m3/F (t) (1)

As the sharp variations and small oscillations in the time
delay can cause numerical challenges in simulation, the
time-delay was smoothed with a moving-mean approach.
Time windows of 6 samples (1h), 12 samples (2h) and
18 samples (3h) were plotted against the calculated time-
delay. Varying time-delay with moving mean of 12 samples
(2h) was chosen for this study as it removes the fast
oscillations that are present in moving mean of 6 samples,
but follows the main trends more closely than moving
mean of 18 samples.

3.3 Virtual measurements of inlet PO4 and NH3

As the online data set does not include online measure-
ments of inlet PO4 and NH3, these were estimated from

the laboratory data and online measurements of electrical
conductivity and COD. In Komulainen et al. (2024) virtual
sensors were developed for estimation of PO4 at the Hias
Process inlet using additional electrical conductivity (EC)
measurement. Based on 32 unique laboratory data points,
a linear regression was fitted between ECIN , POIN and
CODIN , given in Equation 2. The parameter values were
c1 = 0.3488 and c2 = 0.6138 with strong modeling accu-
racy of R2 = 0.86.

ECIN = c1POIN + c2CODIN (2)

In this work we developed a simple estimation of NH at
the inlet. Based on 28 unique laboratory data points, a
linear regression was fitted between NHIN and CODIN ,
given in Equation 3. The parameter values were c3 =
0.1211 with strong modeling accuracy of R2 = 0.97.

NHIN = c3CODIN (3)

3.4 Reduced ASM2d model development

The activated sludge models (ASM) describe the dynamic
changes in the nutrient concentrations and dissolved oxy-
gen in the process zones. The simplified ASM2d models
developed for a pilot scale batch-MBBR process by Nair
et al. (2019) were further modified to fit the available mea-
surements in the continuous large-scale municipal WRRF
process that is the subject of this study. Significant simpli-
fications are necessary to match the model variables with
the available online measurements in the Hias process.
The simplified models included nutrient uptake and release
by the microbes in the biomass carriers. The following
assumptions were applied:

• Phosphate PO4, soluble organic substrate COD, am-
monia NH3, sum of nitrate NO2 and nitrite NO3,
and dissolved oxygen DO2 are the components in the
simplified models.

• Ready biodegradable substrate (SF ) and volatile
fatty acids (SA) presented in Nair et al. (2019) are
lumped together as soluble substrate (SS). In this
study, interpreted as the measured variable, soluble
COD.
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• Particulate biodegradable components (XS) are omit-
ted due to missing online measurement of influent
total suspended solids.

• The biomass variables of stored poly-phosphate
(XPP ) and stored organic compounds COD (XPHA)
are omitted to simplify the equations.

• Temperature effect is neglected, as it varies very little
between days. It increases slowly from 8.8 oC to 13.6
oC during the four months period.

• Plug flow is assumed for water movement between
zones. The time delay is dynamically time-delayed td.

• To match the model variables and real measurements,
the process volume is divided to three parts: one
lumped anaerobic volume, where V1 includes zones
1-3, two lumped aerobic volumes where V2 includes
zones 4-6 and V3 includes zones 7-9 as illustrated in
Figure 2. Zone 10, representing 10% of total process
volume is omitted to simplify the calculations.

Fig. 2. Above: The Hias Process with 10 zones. Below:
Modeling approach with 3 lumped zones.

Anaerobic volume V1 In anaerobic zones i, the biomass
consumes soluble COD and the component balance follows
Equation 4.

dCODi(t)

dt
=

F (t)

V
(CODi−1(t− td)− CODi(t))

− r3
CODi(t)

KA + CODi(t)

(4)

Simultaneously, the biomass releases PO to water with
stoichiometric relation YPO to COD uptake following
Equation 5.

dPOi(t)

dt
=

F (t)

V
(POi−1(t− td)− POi(t))

+ YPOr3
CODi(t)

KA + CODi(t)

(5)

It is assumed that concentrations of ammonia dNH(t)/dt =
0, nitrate/nitrite dNO(t)/dt = 0 and dissolved oxygen
dDO(t)/dt = 0 remain unchanged through the anaerobic
zone.

Aerobic volumes V2 and V3 In aerobic zones j, the
biomass takes up soluble COD and consume oxygen DO,
the component balance follows Equation 6.

dCODj(t)

dt
=

F (t)

V
(CODj−1(t− 3td)− CODj(t))

− r1
CODj(t)

KS + CODj(t)

DOj(t)

KO +DOj(t)

(6)

In aerobic zones, the biomass takes up phosphate PO
and consume oxygen DO, the component balance follows
Equation 7.

dPOj(t)

dt
=

F (t)

V
(POj−1(t− 3td)− POj(t))

− r4
POj(t)

KPS + POj(t)

DOj(t)

KO +DOj(t)

(7)

In aerobic zones, the biomass convert ammonia NH to
nitrite and nitrate NO, and consume oxygen DO. The
component balance follows Equation 8.

dNHj(t)

dt
=

F (t)

V
(NHj−1(t− 3td)−NHj(t))

− r5
NHj(t)

KNH +NHj(t)

DOj(t)

KOAOB +DOj(t)

(8)

Simultaneously in deeper layers of biofilm, biomass con-
verts nitrite and nitrate NO into nitrogen gas. The com-
ponent balance follows Equation 9.

dNOj(t)

dt
=

F (t)

V
(NOj−1(t− 3td)−NOj(t))

+ r5
NHj(t)

KNH +NHj(t)

DOj(t)

KOAOB +DOj(t)

− r6
NOj(t)

KNO +NOj(t)

KO(t)

KO +DOj(t)

(9)

In aerobic zones, the dissolved oxygen DO component
balance consists of mass transfer in and out of the zone,
mass transfer from aeration FO, the biomass consuming
oxygen for nutrient uptake. The oxygen component bal-
ance follows Equation 10.

dDOj(t)

dt
=

F (t)

V
(DOj−1(t− 3td)−DOj(t))

+KL
FO(t)

V
(DO∗

max(t)−DOj(t))

− r1
CODj(t)

KS + CODj(t)

DOj(t)

KO +DOj(t)

− YPAr4
POj(t)

KPS + POj(t)

DOj(t)

KO +DOj(t)

− YNHr5
NHj(t)

KNH +NHj(t)

DOj(t)

KAOB +DOj(t)

(10)

The saturation coefficients, stochiometric constants and
rate constants from Nair et al. (2019) were used in this
work, presented in Table 2. The initial conditions for
simulation models are calculated for aggregated laboratory
and online data set, presented in Table 3. The models were
implemented in Matlab and Simulink. The parameters
from Nair et al. (2019) did not give a reasonable fit
to Hias Process data, hence, the reaction rates r and
stoichiometric constant YPO were optimized further using
the Hias data set. The parameters were fitted to the initial
steady state data 3 by setting the ordinary differential
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equations 4 - 10 to zero. The tuned reaction rates r and
constant YPO together with correlation coefficient R for
model fitness are presented in Table 4.

Table 2. Reduced ASM2d model parameter
values for saturation coefficients K, rate con-

stants r, and stochiometric constants Y .

Symbol Description Value Unit

KA COD anaerobic 2.20 gCOD/m3

KS COD aerobic 0.11 gCOD/m3

KPS PO aerobic 0.2 gP/m3

KO DO aerobic 2.96 gO2/m3

KOAOB DO aerobic 1.57 gO2/m3

nitrifiers

KNH NH aerobic 1 gN/m3

KNO NO aerobic 1.02 gN/m3

KL Aeration 38 gN/m3

r3 COD anaerobic 112 gCOD/(m3h)

r1 COD aerobic 20.8 gCOD/(m3h)

r4 PO aerobic 171 gP/(m3h)

r5 NH aerobic 17.9 gN/(m3h)

r6 NOX aerobic 12.9 gN/(m3h)

YPO P/COD anaerobic 0.577 gP/gCOD
P release

YPA DO/P aerobic 1.496 gO2/gP
P storage

YNH DO/NH aerobic 4.32 gO2/gNH
nitrification

Table 3. Initial conditions for nutrients,
flowrates and temperature dated 12.05.2023
at 12:00. Values marked with * are assumed

values.

Nutrient IN V1 V2 V3 unit

PO 5.56 36.4 3.83 0.14 gP/m3

COD 450 202 72 67.5 gCOD/m3

NH 53 53* 49* 45 gN/m3

NOX 3.63 3.63* 0.698 0.5* gN/m3

DO 0* 0* 8.75 5.92 gO2/m3

F 417.6 m3/h

T 8.3 oC

FOV 2 9571 m3/h

FOV 3 2897 m3/h

Table 4. Tuning of of the reduced ASM2d
model parameters and resulting correlation

coefficient R.

Param. Nair Tuned

KL 38 5.80 &0.18

r3 112 162

r1 20.8 113 & 4.34

r4 171 20.8& 6.09

r5 17.9 3.11&0.31

r6 12.9 72.7&48.4

YPO 0.577 0.125

R -0.0079 0.0735

3.5 Machine learning model results

The input variables were first dynamically time-delayed
using Simulink block ”variable time delay”. The variables
at inlet, including flow (F ), temperature (T ), sum of
nitrates and nitrites (NOXIN), soluble organic matter

(CODIN) and estimated phosphorus (POIN) in were
delayed using dynamic time delay Td3. The total aeration
rate in the lumped zone V2 (FOV 2) was delayed using
dynamic time delay Td2, and the total aeration rate in
lumped zone V3 (FOV 3) was delayed using dynamic time
delay Td1. The dynamically time-delayed input variables
were collected from Simulink. Both input variables and
the output variables were normalized and the data set was
divided into two, 50% training and 50% testing.

Support Vector Regression Different regression models
were fitted to the dynamically time-delayed training data
in Matlab Regression Learner toolbox. The models were
compared using the dynamically time-delayed test data
set. The results are presented in Table 5 with R2 model
accuracy index obtained from the toolbox. The best results
were achieved with support vector regression and gaussian
process regression with R2 values up to 0.9 indicating
excellent model fitness. In comparison, linear regression
and support vector regression with linear kernel function
results in R2 values around 0.4 indicating insufficient
model fitness. The models without time delay were also
developed, but these resulted in poorer model accuracy
as given in Table 5. On average the model accuracy
reduction was 5% for the best performing models, SVR
with fine gaussian kernel function and gaussian process.
The support vector regression model with fine gaussian
kernel function was chosen further for comparison with
other models.

Table 5. Regression model type, R2 model
accuracy for train and test data sets with and

without (w/o) dynamic time-delay.

Time delay with with w/o w/o

Model train test train test

SVR fine gaussian 0.87 0.86 0.80 0.83

SVR medium gaussian 0.62 0.59 0.58 0.56

SVR cubic 0.54 0.50 0.52 0.48

SVR quadratic 0.50 0.47 0.46 0.43

SVR linear 0.39 0.35 0.40 0.38

Linear regression 0.42 0.38 0.42 0.39

Gaussian process 0.92 0.92 0.86 0.87

quadratic

Long-short term memory network The LSTM neural
network was implemented in Matlab. The network archi-
tecture included: a sequence input layer with 7 features (in-
puts), 3 LSTM layers with different number of nodes, fully
connected layer with 1 response (output) and a regression
layer. The initial plant options of the model were chosen as
follows: optimizer-Adam, MaxEpochs-40, Mini Batch Size
of 1008, Sequence Length of 144, Gradient Threshold of 1,
Initial Learn Rate of 0.001, Learn Rate Schedule piecewise,
Learn Rate Drop Factor of 0.001, Learn Rate Drop Period
of 10. The LSTM model architecture was tested with 3
to 5 LSTM layers with 7-14-28-14-7 nodes. Increasing the
depth of the network from 3 LSTM layers to 4 and to 5
LSTM layers decreased the model fit. Increasing the depth
of an LSTM network, such as here, from 3 to 5 layers,
can lead to issues like overfitting, where the model learns
noise and details specific to the training data but fails to
generalize. Thus explaining, why the output prediction of
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the 5 layer LSTM gave a limited response in the trend
figure.

Further, the architecture with 3 LSTM layers was used
for testing of the number of nodes. Increasing the number
of nodes from 7-14-7 to 14-28-14 and futher to 28-56-28
improved the model fitness both numerically and visually
in the trend figure. However, increasing the size to 56-
112-56 and 112-224-112 decreased the modeling accuracy.
This is because as the model complexity increases, each
additional unit of complexity (in this case, more nodes)
contributes less to capturing useful, generalizable patterns,
and more to fitting random fluctuations in the data. Batch
and sequence size were chosen using the daily and weekly
patterns of the combined domestic and industrial used
water flowrate and nutrient composition. The measure-
ment interval was 6 samples per hour. The batch size
was chosen to represent the weekly pattern including 1008
samples and the sequence size was chosen to represent
the daily pattern including 144 samples. The batch size
was changed from 1008 down to 144 and sequence size
was changed from 144 down to 72 which did not improve
the results. Decreasing the sequence size further to 144-
36 showed limiting the predicted output values in the
trend figure. Increasing the learning rate from 0.001 to
0.1 decreased the model accuracy and predicted values
in the trend figures were limited over 0. Decreasing the
learning rate from 0.001 to 0.0001 decreased the model
accuracy. Role of dynamically time-delayed input variables
is significant. The model accuracy decreases from 0.71 to
0.49 for training data set and from 0.61 to 0.46 for test data
set when input variables are not delayed. This can indicate
that the LSTM model with the current architecture does
not manage to compensate for the time delays.

Table 6. LSTM parameters: Nodes per layer,
Mini Batch Size MBS, Sequence Lenght SL,
Initial Learning Rate ILR, correlation coeffi-
cients for train and test Rtrain and Rtest. B

bad fit to trend data.

Nodes MBS SL ILR R train R test

7-14-7 1008 144 0.001 0.61 0.52

7-14-28 1008 144 0.001 0.57B 0.48B
-14-7

7-14 1008 144 0.001 0.61 0.51
-14-7

14-28-14 1008 144 0.001 0.65 0.56

56-112 1008 144 0.001 0.66 0.48
-56

112-224 1008 144 0.001 0.61 0.49
-112

28-56-28 1008 144 0.001 0.71 0.61

28-56-28 1008 144 0.01 0.62 B 0.43 B

28-56-28 1008 144 0.0001 0.61 0.58

28-56-28 144 72 0.001 0.67 0.49B

28-56-28 144 36 0.001 0.68 0.47B

28-56-28 1008 144 0.001 0.49 0.46
w/o Td

3.6 Summary of results

The models are compared visually for training and test-
ing data sets in Figs. 3 and 4, and using the corre-
lation coefficient between the real data and the model
predictions in Table 7. The SVR model with highest

number of parameters and very little modeling efforts (1
hour) provided excellent modeling accuracy. The LSTM
model development and tuning required 10 hours of tuning
and provided satisfactory modeling accuracy. The reduced
ASM2d model development took over 100 hours of work
and resulted in inadequate modeling accuracy. While the
SVR model predictions very accurately follow the dynamic
trends in the data, the LSTM model gives conservative
predictions for a limited output range. SVR often provides
more accurate predictions than LSTM when working with
small datasets due to its ability to find a hyperplane in a
high-dimensional space that best fits the data, minimizing
overfitting. LSTMs, which are good in capturing long-
range dependencies within large datasets, may struggle
with overfitting and underperformance in scenarios with
limited data due to their complex architectures. Thus,
SVR is typically more suitable and reliable for small-scale
data modeling where the primary goal is generalization
over capturing sequential patterns.

Likewise, the reduced ASM2d model suffers from large os-
cillations related to the flowrate term in the mass-balance
equation of the nutrient removal. When time-delayed data
was used, both ML models improved prediction accuracy,
the LSTM for training data 22% and testing data 15%, the
SVR for training data 2% and testing data 0%. The ML
model prediction accuracy increased when time-delayed
data was used.

Table 7. Time consumption and correlation
coefficient R for different models.

Model Development R R

type time [h] Train Test

SVR fine gaussian 1 0.94 0.95

SVR f.g. w/o Td 1 0.92 0.95

LSTM 10 0.71 0.61

LSTM w/o Td 10 0.49 0.46

rASM2d 100+ 0.07 0.07

4. CONCLUSIONS AND FURTHER WORK

Answers to the research questions conclude the results of
this study: Can the reduced ASM2d model, SVR model
and LSTM model follow the dynamic trends of the effluent
PO4 data? The support vector regression with time de-
layed variables was very accurate in matching the dynamic
trends in the data. The LSTM model had a sufficient fit.
The time-delayed variables increased the ML model accu-
racy.The reduced ASM2d models require more tuning and
development to be able to match the dynamic trends in the
data. Which model gave the highest prediction accuracy?
The SVR model with fine gaussian kernel function and
dynamic time-delay gave the best modeling results.

Further work is suggested on control strategy design. The
next step is comparison of the unit step responses of the
reduced ASM2d model and ML models. If the dynamic
responses are similar, the SVR model with highest model
accuracy should be used further. If the ML model step
responses are not similar to the reduced ASM2d model, a
method of online-adaptation of the reduced ASM2d model
parameters is suggested to make the model more accurate
and suitable for control studies.
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Fig. 3. Training data set. Outlet PO4 data in black dots, and model predictions with SVR in green, LSTM in red and
rASM2d in blue. Time in samples.

Fig. 4. Testing data set. Outlet PO4 data in black dots, and model predictions with SVR in green, LSTM in red and
rASM2d in blue.Time in samples.
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