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Abstract: Pyrolysis of biosolids aims to reduce solid volumes and improve energy recovery; however, the 

pyrolysis liquid (PL) is a by-product that has no good direct application. One idea is to link pyrolysis and 

anaerobic digestion (AD), in which PL can be valorized for methane production. PL contains various 

compounds that potentially threaten the stability of AD. This study, therefore, aims to extend the current 

Anaerobic Digestion Model No.1 (ADM1) and evaluate the influence of phenol, furfural, 5-

hydroxymethylfurfural (5-HMF), styrene, and ammonia from PL on AD. Two lab-scale AD reactors were 

simulated and compared with experimental data: one fed with hydrolyzed sludge and the other fed with an 

additional stream of PL. The simulation accurately predicts hydrolyzed sludge as substrate, while the 

simulation of the reactor co-digesting hydrolyzed sludge and PL overestimates methane production. 

Ammonia, phenol, and styrene were identified as the most significant inhibitors. However, based on the 

overestimation of methane production, it is clear that the PL has more inhibitors present than those 

implemented in the model. Simulations further showed that an additional stream of PL increased methane 

production by 4.3%, even with significant inhibition by the compounds. 

Keywords: Pyrolysis Liquid, Anaerobic Digestion, ADM1, Inhibition, Phenol, Ammonia, Styrene, 

Hydrolyzed Sludge, Biosolids 

1. INTRODUCTION 

There is a need for waste management systems which address 

the world's growing population's energy demand and treat the 

enormous amount of waste produced in both an efficient and 

sustainable way (Tayibi et al., 2021). In recent years, coupling 

pyrolysis and anaerobic digestion (AD) as a waste 

management system has gained attention due to its possibility 

for energy recovery and economic value (Feng and Lin, 2017). 

Pyrolysis is a thermochemical process where organic matter is 

heated in the absence of oxygen to yield biochar and pyrolysis 

gas, where pyrolysis liquid (PL) is a by-product. Meanwhile, 

AD is the biochemical process in which organics biologically 

degrade to biogas, a mixture of methane and carbon dioxide. 

Hydrolysis is a rate-limiting step in the AD process, where 

organic matter is solubilized. Pretreatment methods such as the 

thermal hydrolysis process (THP) improve hydrolysis with the 

additional benefits of pathogens removal and enhanced 

digestate dewaterability (Han et al., 2017).   

Pyrolysis coupled with AD offers numerous synergies such as 

increased resource use by feeding biosolid-PL (PL from dried 

digestate), biomethanation of pyrolysis gas, and biochar for 

inhibition control and increased methane production (Tayibi et 

al., 2021). PL is a by-product of pyrolysis with no direct 

application and is a complex mixture of more than 400 

organics and inorganics (Giwa et al., 2019). Valorization of PL 

might be possible with AD, but the compounds in PL, such as 

phenols, furans derivatives, styrene, and ammonia, can inhibit 

and pose a threat to AD stability (Seyedi et al., 2019). There 

have been a few attempts to add PL to AD with an increase in 

methane production at low PL loadings (Hubner and Mumme, 

2015; Seyedi et al., 2020).  

Anaerobic Digestion Model nr.1 (ADM1) is a valuable and 

cost-effective simulation model for predicting an AD system's 

robustness and efficiency (Batstone et al., 2002). A simulation 

allows one to anticipate challenges such as inhibition before 

they arise in the system and predict the outcomes and 

implications of substrates and substrate combinations. Some 

previous simulation studies have focused on adding PL to AD. 

Raya et al. (2021) presented a simulation focusing on how 

phenol, furfural, and 5-hydroxymethylfurfural (5-HMF) from 

aqueous-PL from softwood affected AD. Flatabø and Bergland 

(2022) simulated a full-scale reactor co-digesting sludge from 

THP, biosolids-PL, and pyrolysis gas. Some studies have 

focused on the simulation of furfural inhibition from steam 

explosion pulping wastewater (Li et al., 2023) and phenol 

simulation from olive mill waste in AD (Fezzani and Ben 

Cheikh, 2009).  

Flatabø and Bergland (2022) only simulated ammonia toxicity, 

one of many inhibitors in the PL, but neglected the influence 

of other compounds. This study aims to extend the ADM1 

model to predict inhibition from multiple compounds in the PL 

and evaluate the effects of PL in AD. The objective of this 

study is to (i) establish an extended model with inhibiting 

compounds in PL co-digested with sludge from THP and 

compare the model data to experimental data, (ii) investigate 
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which compounds contribute to inhibition, and (iii) evaluate 

the effect of biosolid-PL in AD. 

2. METHODOLOGY 

2.1 Anaerobic Digestion System  

Substrate consisting of sewage sludge and food waste (60:40 

v/v) was collected after treatment in a THP at 155°C with a 

retention time of 20 minutes. The substrate is termed 

hydrolyzed sludge (HS) and is the substrate for two lab-scale 

mesophilic (38°C) semi-continuously stirred tank reactors 

(semi-CSTRs). Inoculum was sampled from an industrial 

mesophilic CSTR fed by the same substrate. One AD 

bioreactor was used as a control and fed HS termed "HS-

reactor", while the other was fed HS and PL termed "HSPL-

reactor". The PL was produced using the Biogreen® 

technology by VOW ASA, where dry pelletized biosolids 

from the industrial CSTR digestate were pyrolyzed at 600°C. 

More details about the pyrolysis process and PL sampling can 

be found in Flatabø et al. (2023). 

2.2 Analytical Characteristics 

Total COD (tCOD), soluble COD (sCOD), pH, alkalinity, total 

ammonia nitrogen (TAN), and volatile fatty acids (VFAs) 

were analyzed as previously described by Bergland et al. 

(2015). TAN, pH, and VFAs were analyzed in addition to 

elemental analysis for the PL; check Flatabø and Bergland 

(2022) for details. The concentration of phenols in the PL was 

determined with Supelco Phenol-Test Art.100856 after the 

sample was filtered (0.45 µm). 

2.3 Base Case Scenario and Data Collection 

The simulations of the lab-scale reactors were implemented in 

ADM1 in aquasim version 2.1. Both reactors were fed with the 

same amount of HS, but one was fed with an additional stream 

of PL. Digestate measurements and characterization were done 

1-2 times a week. Both reactors started with only HS as 

substrate, while the start of the simulation on day 0 was when 

the HSPL-reactor received PL. More details on the 

experimental part of the setup can be found in Flatabø et al. 

(2024). The HS reactor was simulated for 232 days (stopped 

early due to technical issues). The HSPL-reactor was 

simulated for 437 days, which was the entire period during 

which the reactor was fed PL. 

2.4 Hydrolyzed Sludge (HS) Composition 

Average experimental data and literature data were used to 

simulate both reactors. Both reactors experienced variations in 

inflow and concentration, and experimental effluent data was 

used to evaluate the accuracy of the model. The HSPL-reactor 

had a slightly higher inflow due to the addition of PL, resulting 

in a lower hydraulic retention time (HRT) than the HS-reactor.  

The COD concentration of HS was, on average, 101.1 kg 

tCOD/m3 and 21.6 kg sCOD/m3 at a TS of 5.5-10.8%; a more 

detailed composition is given in Tab. 1. VFAs were additional 

inputs and were based on experimental data. Sugars denotes 

the concentration of n-caproic acid, isocaproic acid and 

heptanoic acid. Amounts of soluble inert were estimated from 

effluent data (36.6% of sCOD), while the total inert was 

estimated on lab data (COD reduction) and data from the 

industrial plant (average yield), which on average estimates 

that 25% of tCOD is inert. For the HSPL-reactor, the total 

inerts were adjusted to 30% of tCOD after 248 days because 

of changes in the substrate. Protein composition was set to 9 

% of tCOD and lipids to 28% of tCOD based on data from 

Flatabø and Bergland (2022). Carbohydrates were used to 

achieve the summed total concentration of COD. The 

inorganic carbon was based on experimental data. To account 

for the high pH in the lab experiment, the cations were adjusted 

in the model by adding 0.15 M in the HS-reactor and 0.2 M in 

the HSPL-reactor to reach the targeted pH. 

 Table 1: Average input data for the hydrolyzed sludge (HS) 

with a tCOD of 101.1 kg COD/m3 and sCOD of 21.6 kg 

COD/m3. Lipids, carbohydrates, and proteins were based on 

data from Flatabø and Bergland (2022), while the other input 

data were estimated on experimental data. 

Input Unit Value 

Lipids kg COD/m3 28.6 

Carbohydrates kg COD/m3 16.6 

Protein kg COD/m3 9.1 

Sugars kg COD/m3 0.44 

Acetic acid kg COD/m3 1.35 

Propionic acid kg COD/m3 0.43 

Butyric acid kg COD/m3 0.85 

Valeric acid kg COD/m3 1.1 

Inert soluble kg COD/m3 7.9 

Inert particulate kg COD/m3 26.8 

TAN kmol N/m3 0.09 

Inorganic carbon kmol HCO3
-/m3 0.03 

2.4 Pyrolysis Liquid (PL) Composition

The PL composition was obtained from experimental data and

literature (see Tab. 2). tCOD and sCOD add up to 355 kg/m3

and 164 kg/m3, respectively. 60% of tCOD is totally inert, in

accordance with what Flatabø and Bergland (2022) estimated.

The concentration of phenols, 5-HMF, furfural, and styrene are

assumed to be soluble in the liquid phase and account for a part

of the inert concentration. The 5-HMF and furfural

concentrations were found in Hubner and Mumme (2015).

Meanwhile, the styrene concentration (0.06 wt.%) is found in

Seyedi et al. (2019).

2.5 Parameters in the modified ADM1

The hydrolysis constant, khyd, was determined to be 1 d-1 for

carbohydrates, lipids, and proteins for HS, which is in

accordance with Flatabø and Bergland (2022) and  Souza 

et al., 2013b). For the PL, the hydrolysis constant was

determined to be 0.3 d-1, as described by Flatabø and Bergland

(2022). The disintegration constant was kept at 0.5 d-1 in
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accordance with Montecchio et al. (2017) and Flatabø and 

Bergland (2022). 

Table 2: Input data for biosolid pyrolysis liquid obtained at a 

process temperature of 600 °C. The concentrations are 355 kg 

tCOD/m3 and 164 kg sCOD/m3. 

Input Unit Value 

Lipids kg COD/m3 37.4a 

Carbohydrates kg COD/m3 9.53a 

Protein kg COD/m3 7.66a 

Sugars kg COD/m3 18.1a 

Acetic acid kg COD/m3 40.6a 

Propionic acid kg COD/m3 9.45a 

Butyric acid kg COD/m3 10.3a 

Valeric acid kg COD/m3 8.23a 

Inert soluble kg COD/m3 64.8a 

Inert particulate kg COD/m3 136a 

Phenols kg COD/m3 10.2b 

HMF kg COD/m3 0.003c 

Furfural kg COD/m3 0.375 

Styrene kg COD/m3 1.84d 

TAN kmol N/m3 1.09a 

Inorganic carbon kmol HCO3
-/m3 0.313b 

 

Phenol, furfural, 5-HMF, and styrene were extended in the 

ADM1 to describe the inhibition of PL in AD by using a non-

competitive form of inhibition control. Kinetic growth 

parameters of the phenol in AD were collected from Fezzani 

and Ben Cheikh (2009), where it is assumed that phenols 

degrade to hydrogen and benzoate. Inhibition data of phenol 

was taken from Raya et al. (2021). Phenol and benzoate are 

included in the charge balance equation to determine pH, as 

Fezzani and Ben Cheikh (2009) described. Kinetic parameters 

and inhibition data for furfural degradation are taken from 

Raya et al. (2021) and Li et al. (2023), where the latter made 

an extended ADM1 model which took account of the 

intermediate product furoic acid. Furoic acid is less inhibitory 

than its precursor, and therefore, inhibition from furoic acid 

was neglected. Data for growth kinetics and inhibition of 5-

HMF in AD was collected from Raya et al. (2021) and B. Liu 

et al. (2017). For styrene, the inhibition constant, Ki, on 

anaerobic mix culture was 145 mg/L (Araya et al., 2000). 

Anaerobes release 4 units acetic acid and 4 units of hydrogen 

 
a Flatabø and Bergland (2022) 
b Experimental data 

for each unit of styrene; thus, the yield of each compound is 

calculated by (1) and (2). 

𝑓𝑎𝑐,𝑠𝑡𝑦𝑟 = (1 − 𝑌𝑠𝑡𝑦𝑟) ∙
𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4

𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4 + 𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4
    (1) 

𝑓ℎ2,𝑠𝑡𝑦𝑟 = (1 − 𝑌𝑠𝑡𝑦𝑟) ∙
𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4

𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4 + 𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4
    (2) 

Growth kinetics of styrene degradation under anaerobic 

conditions is scarce; however, some microbes have been 

identified to degrade styrene, such as Pseudomonas sp. E-

934846, which can survive in both anaerobic and aerobic 

environments (Arnold et al., 1997). Growth kinetics of 

Pseudomonas sp. E-934846 on styrene degradation in 

Gąszczak et al. (2012), where km and KS were measured to be 

3.96 d-1 and 0.018 kg CODs/m3. Y and Kdec are assumed to be 

0.01 and 0.02.  

Tab. 3 summarizes the kinetics and values of phenol, benzoate, 

styrene, 5-HMF, furfural, and furoic acid degradation. For 

ammonia, default data from ADM1 are used, where Ki is 0.018 

M. 

3. RESULTS AND DISCUSSION 

3.1 Hydrolyzed Sludge Reactor 

The experimental and simulated methane productions are 

shown in Fig. 1. 

 

Fig. 1. Experimental (blue dots) and simulated (red line) methane

production of reactor only treating hydrolyzed sludge (HS).

Experimental methane production is based on an average COD

reduction of 1 week. The model follows experimental values

well but overestimates methane production from day 37 to 56

due to changes in inflow in the experiment. After those days,

the model predicts methane production well until day 181. The

reason for this overestimation after day 181 is unclear.

However, according to experimental data, the methane yield

c Hubner and Mumme (2015) 
d Seyedi et al. (2019) 
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showed a decreasing trend, which is due to the substrate

variations that were not accounted for in the model.

The methane partial pressure in the biogas is 63.3% based on

simulated values, the same as the previously reported data

from Flatabø and Bergland (2022). The pH was slightly lower

in the simulation (7.6) than in the experimental results, an

average of 7.73. Moreover, the inhibition and inorganic

nitrogen concentration are shown in Fig. 2. Simulated TAN

and free ammonia (NH3) are well predicted compared to

experimental data; besides the first 40 days, the simulated

values are slightly overestimated. Overestimations of TAN can

be due to variations in the substrate composition or the fact that

the model is not robust enough to compute accurate data for

the first days (Souza et al., 2013b). The main

contributor to inhibition is NH3, which is 0.3 on average on a

scale where 0 is full inhibition and 1 is no inhibition. In the

initial days, NH3 was higher in experimental data compared to

simulated data. Thus, the simulated methane production 

should probably be more inhibited by NH3 than what the 

simulation shows.  

3.2 Hydrolyzed Sludge and Pyrolysis Liquid Reactor 

Simulated and experimental data (based on an average COD 

reduction for one week) for methane production and PL 

loading are plotted in Fig. 3. Methane production was 

underestimated from day 24 to 34 and was overestimated in 

the next 30 days when the reactor was fed with a reduced flow 

rate due to operational issues. The simulated values predict the 

experimental values much better after 266 days, where the PL 

loading is less than 0.01 L/d (0.14 kg tCOD/m3/d) and with 

long HRTs of 48.6 days compared to the 16.2 and 32.4 days in 

other periods.  

Table 3: Summary of kinetic parameters of phenol, benzoate, styrene, 5-HMF, furfural, and furoic acid degradation. CODs and 

CODx denoted substrate COD and biomass COD, respectively. f indicates the fraction of the compound that converts to another 

compound.  

Parameter Description Unit Phenol Benzonate Furfural Furoic 

acid 

5-

HMF 

Styrene Value 

C Carbon 

content 

kmole/kg 

COD 

0.0268a 0.0324a 0.0284a 0.0347a 0.0312a 0.025a  

km Maximum 

uptake rate 

d-1 15b 8 b 20.53d 3.71d 10e 3.96h  

Ks Half 

saturation 

constant for 

uptake 

kg 

CODs/m3 

30b 15.5b 9.59d 18.24d 10e 0.018h  

Y Yield of 

biomass 

uptake 

kg CODx/ 

kg CODs 

0.01b 0.013b 0.08g 0.08a 0.1e 0.01a  

Ki Inhibition on 

methanogens  

 1.12c  2.47d  2.05c 0.45f  

Kdec Biomass 

decay rate  

 0.02b  0.02c,g 0.02a 0.01e 0.02a  

Ki_bnz_h2 Inhibition on 

benzoate 

degraders 

  9.5∙10-5 c      

f_bnz_phe         0.87b 

f_h2_phe         0.13b 

f_ac_bnz         0.51b 

f_h2_bnz         0.49b 

f_ac_fua         0.82d 

f_h2_fua         0.10d 

f_ac_HMF         0.88e 

f_h2_HMF         0.12e 

________________ 
a Calculated/Estimated  c Raya et al. (2021) e  B. Liu et al. (2017) g Brune et al. (1983) 
b Fezzani and Ben Cheikh (2009) d Li et al. (2023)  f Araya et al. (2000) h Gąszczak et al. (2012) 
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Fig. 2. Simulated total ammonia nitrogen (TAN) (red line) and free

ammonia, NH3, (green line) are plotted against experimental data

(dots) for the HS-reactor. The inhibition of NH3 is also plotted,

(purple line) where 0 = full inhibition and 1 = no inhibition.

Moreover, the model had difficulty when there were sharp

changes in inflow. Simulated methane concentration is, on

average, 67.3% in the last 100 days, close to the experimental

methane concentration of 67.8% analyzed in that period.

 

Fig. 3. Simulated (red line) and experimental methane production

(black dots) of reactor treating hydrolyzed sludge (HS) and

biosolid pyrolysis liquid (PL). The PL loading (green line) is

added to visualize substrate load changes during the experiment.

Inorganic nitrogen and inhibitions of the HSPL-reactor are

plotted in Fig. 4, where the main contributor to inhibition is

NH3. TAN is underestimated in the model until day 65;

however, it is comparable to the experimental value until day

350, when the reactor effluent had an increase in TAN

concentration. This effect might be due to substrate variations,

such as more proteins entering the reactor or accumulation

inside the reactor. Inhibition from NH3 was 0.14, 0.85 for

phenol, and 0.93 for styrene, while furfural and HMF had no

significant contribution (0 – 0.1%). Also, in this case, NH3 is

underestimated in the first days, so inhibition was lower during

that period. NH3 is correlated to pH, where ammonium and

NH3 are in equilibrium, and an increase in pH shifts the

equilibrium toward NH3. pH was simulated to be 7.85, which

is slightly higher than the average experimental pH (7.7).

 

 

Fig. 4. (Top figure) Simulated total ammonia nitrogen (TAN) (red)

and free ammonia (NH3) (purple) are plotted against experimental

data (dots) for the HSPL-reactor. (Bottom figure) The inhibition

of NH3, styrene, phenol, furfural, and 5-HMF are plotted where

0=full inhibition and 1= no inhibition.

3.3 Discussion

Previous studies simulating digesters fed with HS in ADM1

showed good fits with experimental data, but VFAs were the

only parameter challenging to simulate (Donoso-Bravo et al.,

2020; Flatabø and Bergland, 2022). Similar problems occurred

in this simulation, where the experimental acetic acid

concentration was 170% higher than the simulated values.

Another study has shown that effluent COD has been

accurately predicted while methane production has been

overestimated (Souza et al., 2013a). The current study 

indicates that simulated methane production was

accurately predicted for HS-reactors with an average 10.1%

overestimation and sCOD concentrations (not shown) in the

effluent was 3.7% overestimated) while the tCOD

concentration (not shown) in the effluent was 12.6%

underestimated. For the HSPL-reactor, the methane

production in the period after 266 days is 14.8% higher, but

with significant deviations in the simulation, the simulated

tCOD in the effluent (not shown) had an underestimation of

30.4%, and sCOD (not shown) had an underestimation of

26.5%. A previous study of HS in continuous systems with an

over/underestimation of 15% was acceptable due to

operational variability (Souza et al., 2013b). This study, 

therefore, shows that the simulation predicts methane

production with acceptable accuracy for HS. For the

simulation of HS-PL, methane production was better predicted

at the end of the period but was not well predicted at high

loadings. Souza et al. (2013a) previously reported that 

methane production deviates in response to low HRTs and

consequent load changes. In this study, simulated methane

production was not well predicted at low (16.2 days) HRTs,
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the first 34 days and between 158 and 245 days, as seen in Fig. 

5. However, at high HRT (low mass loadings), the simulation 

predicts the methane production accurately.  

 

Fig. 5. Simulated (red) and experimental (blue) methane production

compared to hydraulic retention time (HRT) (black line).

Considering the operating variability, the simulation's

overestimation of 10.1% methane production for the HS-

reactor is acceptable. The difference between simulated and

experimental values is significantly higher for the HSPL-

reactor. Methane production is still overestimated in the stable

period with high HRT and low PL loading. The reason might

be that the PL consists of more inhibitors than those accounted

for in the modelling or that the inhibiting compounds have

higher concentrations than the literature has suggested.

3.4 Inhibition

Phenols are found in agricultural and industrial wastes and are

known to inhibit biodegradation, which makes biological

processes difficult to occur (Hernandez and Edyvean, 2008).

In AD, it has been indicated that the phenolic compounds

interfere with the chain of reactions prior to methanogenesis.

Therefore, hydrolysis and acetogenesis are inhibited more than

methanogenesis (Hernandez and Edyvean, 2008). Literature

suggests that there is some uncertainty regarding phenol

methanization where data varies considerably, and some also

report that methanization was not achieved (Hernandez and

Edyvean, 2008). Another concern is the inhibition constant,

which has varying data from 1.12 to 5 kg COD/m3 (Blum and

Speece, 1991; Hernandez and Edyvean, 2008; Raya et al.,

2021). Therefore, there is some uncertainty regarding the

inhibition constant (Ki) and phenols degradation to methane.

Styrene in typical AD reactors usually comes from synthetic

monomers for plastic production. Fractions of styrene will

volatilize, but some will be present in the liquid phase, which

can inhibit microbes (Araya et al., 2000). Previous studies

have reported styrene in PL (Kessas et al., 2021; Z. Liu et al.,

2017); however, the current study's concentration is unknown,

and data from the literature was used. Furfural and 5-HMF

inhibition were not significant, which was expected because

these inhibitors are mainly found in lignocellulosic material or

low-temperature pyrolysis (Leng et al., 2021). Phenols and

inorganic nitrogen were expected to be high because of the 

lignin and protein content (Leng et al., 2021).  

TAN (ammonium + NH3) is regarded as a nutrient for 

microbes, but too high concentrations (over 1700 mg/L) can 

lead to reactor failure (Yenigün and Demirel, 2013). However, 

microbes can acclimate to high TAN-concentrations when 

gradually exposed to higher loading over a long period. NH3 is 

a potent inhibitor and is in equilibrium with ammonium which 

increases with a rise in either temperature or pH. According to 

a previous study of HS-PL, the inhibition from NH3 was 0.19 

at an organic loading rate PL of 0.41 kg tCOD/m3/d (Flatabø 

and Bergland, 2022). In this study, the average inhibition 

(0.14) is slightly higher than what Flatabø and Bergland (2022) 

reported but is in the range (0.126-0.268). However, the 

inhibition of NH3 is correlated to the inflow of TAN, PL 

loading, HRT, and pH. Regarding pH, it was relatively stable 

during the entire period which means that pH did not 

significantly shift the equilibrium between ammonium and 

NH3. Therefore, this is not considered a major contributor to 

this simulation compared to the actual TAN concentration 

loaded. From day 143 to 246, there is less inhibition (see Fig. 

4), which can be explained by the lower TAN inflow (average 

0.067 M) and the low HRT. However, in the initial period, 

there was a high TAN (0.1464 M) with low HRT and less 

inhibition. Based on those findings, it can be seen that low 

HRT is beneficial for reducing the inhibition of NH3. A higher 

HRT allows more proteins to degrade to TAN. Another 

possibility is that a low HRT restrains the contact time between 

microbes and compounds, making the inhibitor less potent. 

Moreover, the lower HRT gives a more unstable digestion.   

Moreover, this article does not take into account the adsorption 

mechanisms of the different compounds onto the sludge. 

Phenols can adsorb onto the sludge with a saturation level of 

800-1600 mg/L (Hernandez and Edyvean, 2008). Also, 

microbial adaptation can reduce the effect inhibitors have on 

methane production over time, which is not taken into account 

in the model (Donoso-Bravo et al., 2022). Microbes will be 

selected in continuous reactors based on their adaptability to 

the substrate, making microbial adaptation an essential factor 

in the model. The inhibition data also differ from a batch 

reactor to a CSTR; for this study, the data is not calibrated to 

a semi-continuous system. Previously, Li et al. (2023) found 

that Ki was 2.47 kg COD/m3 for batch and 6.05 kg COD/m3 for 

a continuous system where some microbial kinetics were also 

changed. This suggests that inhibition and kinetic parameters 

could be calibrated for a better fit in the model. 

3.5 Effect of Pyrolysis Liquid addition 

The effects of PL addition were evaluated on the methane 

production of the simulated reactor with HS-PL and the reactor 

with the same inflow of HS but without PL (see Fig. 6). The 

difference is noticed as the additional methane production 

from PL. Based on the results, PL has a positive contribution 

even though it brings several inhibitors. However, at high PL 

loadings, it looks like the increased inhibition may lead to 

reduced methane production.  
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Fig. 6. Simulation of methane production of hydrolyzed sludge with

(blue line) or without PL (orange line). The green line shows the

difference in methane production between HS with or without PL.

Tab. 4 summarizes the most important parameters and how PL

affected them. According to the simulation, PL enhances

inhibition but also increases methane production. The methane

partial pressure in the biogas and the reactor pH also increased

slightly.

Table 4: Average data on PL's influence on AD.

Parameter PL's influence on AD 
St. dev

(%)

Methane production +4.3% 3.0

Inhibition +31.2% 7.2

pH +0.8 % 0.9

Methane partial pressure +1.3% 0.6

3. CONCLUSIONS

This study aimed to investigate the effect of PL in co-digestion

with HS in an extended ADM1 simulation. The results showed

that the model predicted AD of HS with a 10.1%

overestimation and that the model did not respond well to

sharp load changes. For the HS-PL simulation, the model

overpredicts methane production significantly, and the results

suggest that there are more inhibitors in the PL than those

implemented in the model. According to simulation results,

ammonia, phenol, and styrene contributed to most inhibition

and increased inhibition by 31%. However, due to the

additional COD in the PL, there was additional methane

production of 4.3%. Results showed that PL has a positive

impact at low loadings. For future work, it is recommended

that more studies be conducted on the inhibitor and

implementation of microbial adaptation in modelling.
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