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Abstract: The electrification of heavy vehicles and work machinery is developing rapidly. The main

motivators are green transition and requirements from the customers. In Finland, there are many high-

tech market-leading companies in this segment. Mass-produced equipment and machines are suitable

for general applications and thus tailoring design for specific conditions and/or needs results in better

productivity and efficiency. In heavy electric vehicle applications, the challenge is to make new

products economically viable and configure them to meet customer needs. In these applications, the

number of solutions is an order of magnitude higher than in traditional mechanical solutions. However,

electronic solutions enable new features and energy efficiency improvements to have measurable

benefits in the application. The research investigates the effects of electric axle solutions for

hybrid heavy duty vehicles. Modelling and simulations consider both the effects of engine and

usage of battery charge and surroundings of vehicle, for example road profile, traffic, outdoor

temperature, and friction. A system level model of a vehicle has been utilized to simulate its

longitudinal dynamics interacting with estimated surroundings followed by model-based control.

The planned route can be made further favorable by utilizing real-time model predictive control (MPC)

receiving online data from changing conditions. MPC gives new suggestions for optimal battery usage

based on deviations from the best matching model from a database. Control strategy is important when

considering economic benefits for a hybrid heavy duty vehicle with a high degree of freedom in system
design.

Keywords: Electrification, Green transition, Model Predictive Control, Model Based System Engineering,

Systematic Machine Design

1. INTRODUCTION

An example of promising solutions for pollution reduction

are electric and hybrid electric vehicles (EV/HEV), which

can be exploited for a safe environment and sustainable

transportation. Designing these vehicles requires different

optimization procedures, for example components,

systems, and controls (Ehsani et al. 2021). A review article

of path tracking strategies used in autonomous vehicle

control design discusses different elements of modelling

process including the criteria for evaluating the controller’s

performance (Ruslan et al. (2023). Extremely important

part for enabling the optimization of the battery usage

during the route is to have a competitive battery

management system. Advanced battery management,

which consists of three progressive layers. A

comprehensive overview of each layer is presented, and

future trends of next-generation battery management are

discussed (Dai et al. 2021). A broad review to optimize the

power flow in EV powertrains using multispeed discrete

transmission, continuously variable transmission and multi-

motor configurations. The potentials and challenges

regarding for example environmental issues are discussed. 

They can be applied to hybrid vehicles as well. As the 

overall development is proceeding rapidly, it is getting 

more and more challenging to be able to answer all 

demands. A key issue is to develop optimum vehicle 

fulfilling, for example tighter emission regulations. This 

leads to reduced emissions of new vehicles, more research 

of advanced materials for energy storage, better vehicle 

connectivity and more investments in autonomous 

technologies. However, it causes, for example 

sustainability issues in production and mining, higher 

electricity demand requires new electricity production and 

socio-economic issues on technology migration (Mazali et 

al. 2022). The EV vehicle inverse dynamics model was 

developed. Then vehicle states and kinematic constraints 

were used to formulate the servo constraints. Finally, a 

procedure for optimizing trajectories was developed. The 

results show that the optimal trajectory uses the least 

amount of energy (Min et al. 2023). Hybrid powertrains 

having two or more different energy sources, questions 

arise in terms of HEV structure selection, components 

sizing, and energy management control. Control variables 
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optimization is vital to find the set of optimal control rules 

for the minimum fuel consumption. The dynamic 

programming approach is a common method because of its 

unique ability to find the global optimum solution with a 

certain degree of precision. This computationally 

demanding optimization method combined with a gradient-

based optimization algorithm was used in a systematic way 

to reduce execution time and to increase the precision of the 

result (Cipek et al. 2020)/ The optimization of battery usage 

in a hybrid vehicle to minimize fuel consumption is a very 

complex problem. Basically, this means increasing the 

efficiency of the combustion engine efficiency and 

recovering electrical energy by charging the battery when 

driving or braking (Anselma 2022). In (Lei et al. 2018), four 

operating modes were used, and they were electric driving 

mode, driving and charging mode, combustion engine 

driving mode and hybrid driving mode. 

 

A review of architectures and control strategies for the dual-

motor coupling propulsion system used in battery electric 

vehicles is presented in this article. The article describes 

different architectures, reviews the means of mechanical 

coupling and transmission, electromechanical 

configurations, and summarizes approaches to the control 

of this emerging class of battery electric vehicles. 

Discussion comparing the advantages and disadvantages of 

dual-motor coupling propulsion system technology for 

battery electric vehicles is presented, as well as research 

challenges and prospects being discussed. (Wang et al. 

2022)  

 

The integrated energy management and engine control 

system for HEV is introduced. The synergy of artificial 

intelligent control and prior information, for example about 

route, can be exploited to boost the control performance 

together, with the engine being optimally controlled. 

(Zhang et al. 2022)  

 

Having as an objective to decrease fuel consumption, the 

implementation of an adaptive, optimal neuro-fuzzy 

inference control was introduced (Saju et al. 2022). When 

evaluating fuel and electrical energy capabilities, it is 

usually assumed that the route and velocity profiles are 

known (Anselma 2022). By applying models, an optimal 

battery usage plan can be developed. For example, 

nonlinear programming, genetic algorithms and dynamic 

programming have been used in such optimization tasks. 

The problem, however, is that the overall driving power 

demand must be approximated accurately, which is very 

difficult in practical cases. For real-time control, the 

equivalent consumption minimization strategy and model 

predictive control (MPC) have been used. For MPC to be 

efficient, the model used must be accurate for future driving 

information estimation, which is not necessarily the case 

(Peng et al. 2017). Being capable of managing multi-

variable problems and to consider constraints on states and 

control actions, with capability to predict future behavior of 

the process, MPC is widely used for trajectory tracking. 

This literature review discusses the research conducted 

from 2015 until 2021 on model predictive path tracking 

control (Stano et al. 2023).  

 

The design of a path tracking controller for autonomous 

vehicles is addressed in this paper. The Reference Aware 

MPC is reformulated to guarantee closed-loop stability, 

while maintaining a safe and comfortable ride, and 

minimizing wear and tear of vehicle components. For 

usability in online operation, a novel model for the 

nonlinear curvature response of the vehicle is proposed by 

means of Kalman filtering. (Pereira et al. 2023) 

 

Different technologies’ potential for fuel consumption

improvement of heavy-duty vehicle has been investigated

in literature (Dünnebeil and Keller Heidelberg 2015); 

Schade (unpublished). According to high interaction 

between different technology packages system-level 

simulation should be implemented to overcome the 

complexity of powertrain design (Delgado et al. 2017). 

Developing a hybrid powertrain, system-level 

simulations enable the possibility to calculate vehicle 

fuel consumption and battery state of the charge for 

which are the main control strategy objectives (Enang 

and Bannister 2017). 

The aim of this research is to develop a tool which could 

give a good platform to scheme suitable structures for 

electric axle. The goal of this paper is to first discuss shortly 

the concept of the planning process and then more in detail 

those parts, which concern the control strategy of vehicle 

environment and main variables effecting on it. This paper 

considers an approach where an approximation of the 

overall driving power is made with the simple driving force 

equation. 

2. SYSTEM MODELLING FOR OPTIMIZATION 

The optimization of battery usage of a hybrid vehicle 

requires a couple of models. First, it needs a model for the 

resistive forces acting on a vehicle that must be overcome 

with the force provided by either the combustion engine or 

battery. This overall force is called the driving force in (Lei 

et al. 2017) and (Koch et al. 2021). The optimization 

scheme also needs a model of the vehicle including the 

battery model describing the usage and charging of the 

battery. This paper concentrates on the model of the driving 

force while the vehicle model is described in (Banagar et al.  

2024). 

2.1 The driving force model 

The driving force model is described in literature for example 

in (Lei et al. 2017), (Koch et al. 2021), (Anselma 2022) and 

(Chu et al. 2022). The references use different notations and 

thus the notations in (Koch et al. 2021) are adopted here. The 

driving force denoted by 𝐹𝑊 is the sum of four forces which 

are functions of vehicle velocity (𝑣) or acceleration (𝑎). These 

forces are the resistance due to road slope with angle 𝛼, rolling 

friction, aerodynamic drag and the force to overcome vehicle  
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Fig. 2. The overall MPC-based control concept. 

inertia. The driving force is calculated in equation (1) from 

(Chu et al. 2022):  

 

𝐹𝑊 = 𝑚𝑔sin(𝛼) +𝑚𝑔𝑓𝑟cos(𝛼) +
𝑐𝑤𝐴𝑓𝑣

2

21.15
+𝑚𝑒𝑖𝑎.  (1) 

 

Above in equation (1), 𝑚 is the vehicle mass, 𝑔 is the 

gravitational constant, 𝑓𝑟 is the friction coefficient, 𝑐𝑤 is the 

drag coefficient, 𝐴𝑓 is the vehicle frontal area and 𝑒𝑖 is an 

equivalence factor. The torque required at wheels is given by 

equation (2):  

 

𝑇𝑊 = 𝐹𝑊𝑟𝑊.       (2) 

 

Above, 𝑟𝑊 is the radius of the wheels. 

2.2 Vehicle model 

The target vehicle is a rigid chassis heavy-duty truck with 

an 8x4 axle configuration and a gross weight of 33 tons. 

The plan is to replace one axle with an e-axle. The e-axle 

system includes for example a 15-kwh battery and an 

electric motor with a rated torque capacity of 880 N.m. The 

longitudinal dynamic model of the vehicle has been 

developed by implementing the AVL Cruise M vehicle 

module. AVL Cruise M /AVL Cruise M/ is a dedicated tool 

for vehicle and powertrain components simulation. 

Different powertrain components of the targeted vehicle 

have been modeled using an available dataset from the 

vehicle. A map-based model has been selected for the 

internal combustion engine and electric motor. The battery 

pack has been simulated implementing an Equivalent 

Circuit Model (ECM) component of AVL Cruise M. More 

detail about the parameters and simulation set up has been 

provided in (Banagar et al. 2024). The schematic of the 

vehicle powertrain architecture and the simulation set-up 

have been depicted in Fig

.

 1

.

 

 

Fig. 1. The schematic of the vehicle’s powertrain 

architecture. 

2.3 Definition of control concept 

The aim of this research is to develop a general approach to 

optimally use HEV’s electric axle and thus reduce fuel 

consumption. The approach is based on two models which 

describe the energy consumption and battery usage of HEV. 

This paper introduces the model for energy consumption 

and compares its results to real measured data. The overall 

control concept is presented in Fig. 2. The main idea is to 

plan the route beforehand. However, no model can describe 

that perfectly. Thus, a simple model that can capture the 

main trends is used here but the battery usage plan is 

updated online as the route proceeds. Also, the models can 
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be updated online because there are a lot of variables that 

are not considered with models. 

3. RESULTS AND DISCUSSION 

3.1 Data description 

The data used was from a real truck that drove a route from 

Tornio to Rovaniemi in Finland. The most important 

variables used for calculating the driving force according to 

(1) were speed and altitude. The data included also 

information about actual engine torque that was used for 

comparison to see if (1) and (2) can describe the torque 

needed with adequate accuracy. At this point, it is already 

worth mentioning that (1) and (2) give purely theoretical 

power requirement and thus a perfect correlation is neither 

expected nor needed. Instead, a rough estimate is enough 

because control actions are aimed to be updated 

continuously.   

 

Data included about 116000 data points sampled at 0.05 

second intervals. A moving average filtering without 

overlap was applied to lower the sampling time to 1 s. The 

computations are carried out with this data while for model 

validation the data is further filtered with a 2 min moving 

median filter. The altitude and speed measured are shown 

in Figs. 3 and 4, respectively.   

 

 
Fig. 3. The measured altitude.  

 

 
Fig. 4. The measured speed. 

 

Fig. 5. Simulink® implementation of the driving force model. 
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3.2 The Simulink model of the driving force 

The model described in 2.1 is implemented in Simulink® 

environment. The parameter values are taken from 

/Kinnunen (2023)/ and they are given in Table 1. The model 

is shown in Fig. 2. Also, the driving force is a function of 

distance. Thus, the overall driving force required is 

obtained as the sum of the model output in Fig. 5.  
 

Table 1. The parameter values used.  

𝑚 𝑓𝑟 𝑐𝑊 𝐴𝑓 𝑒𝑖 

33000 kg 0.014 1.055 9.96 m2 14.9 

 

3.3 Driving force model results 

Driving force was computed according to (1) with the 

simulator in Fig. 5. The 2 min median filter was applied to 

obtain the driving force shown in Fig. 6. The high peaks of 

the driving force are associated with accelerations while the 

low peaks are associated with decelerations observed in 

Fig. 4.   

 

 
Fig. 6. The simulated driving force.  

 

Figure 7 shows the driving force computed as a function of 

the actual engine percentage torque measured. The 

correlation between these is calculated to be 0.67. As 

expected, the theoretical model cannot explain the actual 

measurement data perfectly but only the trend is captured. 

This is, however, expected to be enough because the control 

actions will be continuously updated with MPC in the 

overall concept presented in Fig. 2. 

 

Figure 8 shows the fuel consumption as a function of actual 

engine percentage torque. The figure shows that they are 

highly correlated. This means that high fuel consumption is 

associated with high torque. This observation combined 

with the relationship in Fig. 7 tells us that driving force 

peaks observed in Fig. 6 should be avoided. This 

knowledge can be used when defining the optimal battery 

consumption trajectory for MPC. 

 

 
Fig. 7. The driving force computed as a function of actual 

engine percentage torque.   

 

 
Fig. 8. The fuel consumption as a function of actual engine 

percentage torque.   

use the e-axle for reducing the fuel consumption of the 

vehicle. In the future, the driving force model is further 

studied and further validated with more data. Of especial 

interest are the parameters of the model which are aimed to 

be defined automatically from the actual data. The driving 

force model is also complemented with the vehicle model 

to gain the information needed for making the battery usage 

plan. 

 

When the models mentioned above are linked to each other, 

MPC will be implemented into the control approach. It will 

first be tested in a simulator environment with the collected 

data. First implementations use constant model parameters, 

but the alternative to continuously update them and thus 

adapt the models to current situation will be studied. This is 

because many variables have an influence on the vehicle’s 

energy consumption and battery operation, and these are 

not readily included in the models. Such variables are for 

example the purpose of transport, constraints of battery 

usage, environmental temperature, tires, road conditions, 

speed limits, traffic and so on. 

3.4 Control concept 

The first steps towards the control concept introduced in 

Fig. 2 are presented in this paper. The driving force model 

is based on physics, and it is expected to give adequate 

information for identifying the most promising instances to 

4. CONCLUSIONS 

In this work the concept of planning process for e-axle used 

in heavy-duty vehicle was presented. The control approach 

using driving force and vehicle models was introduced. By 

choosing to use a widely accepted driving force model for 
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The data used in this study was from a real truck. Future

includes the usage of data collected from a truck in which a

prototype of an e-axle is implemented to validate the model. A

more distant goal for the future is the implementation of

MPC to the prototype truck. As the model will be utilizing

online data, the approach is going towards digital twin. This

kind of tool can also be seen as a useful asset for several parties

of industry branch in question to render the digitalization and

green transition.
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