
Model Predictive Control for Integrated
Photovoltaic (PV) and Electrolyser

System ⋆

Ali Reza Pirouzfar, ∗ Sambeet Mishra, ∗ Gaurav Mirlekar, ∗

Koteswara Rao Putta ∗∗

∗ Department of Electrical Engineering, Information Technology and
Cybernetics, University of South-eastern Norway (USN), Porsgrunn

3918, Norway (e-mail: gaurav.mirlekar@usn.no).
∗∗ GCH2SOL AS, Trondheim 7028, Norway.

Abstract: This paper investigates the integration of photovoltaic (PV) systems and proton
exchange membrane (PEM) electrolysers to advance clean energy production and mitigate
carbon emissions. The integration of PEM electrolysers with PV systems presents a promising
solution for sustainable hydrogen production. This study utilizes Model Predictive Control
(MPC) algorithms to manage the temperature of PEM electrolysers, crucial for enhancing
performance and longevity. Temperature management is vital as lower temperatures increase
overpotential, reducing efficiency, while higher temperatures improve performance but can
accelerate membrane degradation. The paper simulates the PV-PEM electrolyser system using
existing models to identify key parameters affecting system performance, employing MPC for
efficient temperature regulation. The methodology involves modeling the integrated PV system,
which includes Maximum Power Point Tracke (MPPT) algorithms, a DC-DC converter, and
a PEM electrolyser. The MPPT algorithm ensures maximum power output from PV panels
under varying irradiance levels, while buck-boost converters regulate voltage to meet electrolyser
requirements. The electrolyser model considers mass and energy balance equations to understand
the dynamics of hydrogen production and temperature control. Results from simulations indicate
that the PV system’s power generation is directly influenced by solar radiation and temperature.
The study confirms that higher irradiance leads to greater power output, emphasizing the
need for feasibility studies. The implementation of MPC algorithms demonstrates effective
temperature control, ensuring stable operation and reduced membrane degradation. The
integration of PV systems with PEM electrolysers, coupled with advanced control strategies
like MPC, offers a viable pathway for enhancing renewable hydrogen production. This approach
addresses the intermittency challenges of renewable energy sources and optimizes system
performance.

Keywords: Advance process control, Process simulation, Renewable energy systems

1. INTRODUCTION

The transition to clean energy is critical for reducing fossil
fuel dependence and minimizing carbon emissions. The
International Energy Agency’s annual outlook highlights
various scenarios to address these challenges, notably the
NetZero Emissions by 2050 pathway, which aims to stabi-
lize global temperatures at 1.5°C and provide universal
modern energy access by 2030 World Energy Outlook
2023. Central to this effort are photovoltaic (PV) systems
and electrolysers, with solar PV projected to account for
over half of new renewable power capacity by 2030 World
Energy Outlook 2023. In 2022 alone, solar PV generation
surged by 26% to 1293 TWh, underscoring its pivotal role
in decarbonization World Energy Outlook 2023. In addi-
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tion to solar energy, hydrogen-based fuels are considered
a clean energy source for decarbonization. Hydrogen pro-
duction methods include both fossil fuels and renewable
sources. Conventional methods like steam reforming and
coal gasification dominate current production, accounting
for about 96% of the total Arsad et al. (2023) Hydrogen
forecast to 2050. Renewable-based methods, particularly
electrolysis, are gaining traction due to their clean energy
potential Arsad et al. (2023). Proton Exchange Membrane
(PEM) and Alkaline electrolysers are the most efficient
and commercially available technologies Hydrogen forecast
to 2050. Integrating PEM electrolysers with photovoltaic
(PV) systems presents a promising solution for reducing
emissions and achieving sustainability. However, electroly-
sers currently contribute only 4% to hydrogen production
from renewable energies, primarily due to their higher
average costs. Forecasts from DNV Hydrogen forecast to
2050 suggest that the average costs of electrolysers are
expected to decrease by 25% by 2030 and by 50% by 2050,
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based on current market insights. Water electrolysis stands
as a leading industrial method for producing nearly pure
hydrogen, highlighting its future significance. Moreover,
electrolysers play a pivotal role in converting energy into
gas within Power-to-Gas (P2G) systems, which transform
renewable energy sources such as wind, solar, geothermal,
and hydro into gas. Although currently underutilized, this
approach is projected to grow significantly, with hydro-
gen production via electrolysis expected to reach 22% by
2050Arsad et al. (2023).

Renewable energy sources, however, face intermittency
challenges due to varying climatic conditions. This in-
stability necessitates auxiliary energy systems to ensure
consistent hydrogen production, as electrolysers require
a minimum current density for safe operation Afshari
et al. (2021). A grid-connected setup, leveraging Maxi-
mum Power Point Tracker (MPPT) controllers, can op-
timize power from PV panels to electrolysers Gutiérrez-
Mart́ın et al. (2024). Enhancing system performance fur-
ther, buck-boost converters can regulate voltage from PV
arrays to meet electrolyser requirements Ruuskanen et al.
(2020). In this study, the simulation of PEM electrolysers
is conducted using existing models Abdin et al. (2015),
Marangio et al. (2009), Cavaliere (2023), and Falcão and
Pinto (2020) to identify and analyze the key parameters
affecting the system.

Furthermore, Model Predictive Control (MPC), offer effi-
cient temperature management, critical for enhancing sys-
tem performance and longevity Scheepers et al. (2021) Ma-
jumdar et al. (2023). Simplified control models, like those
using piece-wise affine and multi-parametric approaches,
have shown promise in minimizing hydrogen production
costs and managing operational constraints Flamm et al.
(2021) Ogumerem and Pistikopoulos (2020). This paper
utilizes an energy balance equation and a state-space
model for temperature control in PEM water electrolysers,
adapting MPC techniques for improved efficiency. It has
been done by regulating water flow rate in to the system
as the manipulating variable to stable the cell tempera-
ture and leads lower membrane degradation of the PEM
electrolyser.

2. PROCESS DESCRIPTION

The objective of this study is to model a PV system,
incorporating MPPT algorithms, a DC-DC converter, and
a PEM electrolyser, and to apply model predictive control
(MPC) algorithms to manage the electrolyser’s tempera-
ture. As illustrated in Fig.1, electricity generated by photo-
voltaic panels is regulated by DC-DC converters, primarily
buck-boost types, to stabilize the output current, which is
then supplied to the PEM electrolyser. This process splits
water into hydrogen and oxygen, which are collected in
separate containers for drying and further use or storage.
MPC are crucial due to the operational conditions of the
electrolysers. PEM electrolysers typically operate at tem-
peratures between 60-90°C and pressures around 30 bar
Arsad et al. (2023). In terms of temperature of the electrol-
yser, lower temperatures increase overpotential, reducing
efficiency, while higher temperatures enhance performance
by improving membrane ionic conductivity and reaction
kinetics, thus reducing overpotentials Cavaliere (2023).

Fig. 1. Process schematic of integrated PV and PEM
Electrolyser System.

However, higher temperatures can accelerate the degra-
dation of polymer membranes, primarily due to thermal,
chemical, and mechanical stresses, leading to thinning,
unzipping, loss of functional groups, or membrane rupture
Babic et al. (2017). Monitoring and controlling the tem-
perature is therefore essential to prevent degradation and
maintain efficiency.

The increase in electrolyser temperature results from en-
dothermic reactions during water electrolysis and Joule
heating, where electric current generates heat as it passes
through the conductor Ogumerem and Pistikopoulos
(2020). Sudden increases in hydrogen production can raise
temperatures, affecting membrane stability and lifespan.
Typical methods to maintain the desired temperature
range include cooling airflow or adjusting the cooling water
flow rate. In the system depicted in Fig.1, a water reser-
voir, temperature sensor, and heat exchanger keeps the
water temperature constant. Water is pumped through an
ion filter to reduce resistance and manage flow rates before
being directed to the electrolyser. Temperature sensors at
the inlet and outlet monitor changes. MPC algorithms,
based on Ogumerem and Pistikopoulos (2020), control
temperature fluctuations by adjusting the water flow rate,
acting as a coolant. The manipulated variable is the water
flow rate, and the state variable is the temperature derived
from the energy balance equation. The MPC algorithms
are based on a linear state-space model derived from solv-
ing the energy balance and mass balance equations for each
part of the electrolyser, simplifying system modeling.

3. METHODOLOGY

Mathematical modeling and governing equation of the
integrated system including photovoltaic (PV) system
with MPPT, DC-DC converter, PEM electrolyser and
MPC algorithms has been presented in this section.

3.1 Photovoltaic system

In PV systems solar radiation, containing photons, excites
electrons upon contact with PV panels, creating a P-N
junction in semiconductors and generating current. The
more photons that hit the PV panels, the greater the
current produced. Therefore, irradiance information based

on the system’s location is critical for calculations. Fig.
2 demonstrates, the irradiance data for the University
of South-East Norway (USN) in Porsgrunn, Norway
(latitude 59.138, longitude 9.672) for June 2020.
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Fig. 2. Hourly solar irradiance W
m2 .

3.2 Modeling of photovoltaic Modules

The current voltage equation for modeling the PV system
can be represented as follows:

Ipv = Iph − I0

[
exp

(
q
Vpv + Ipv ·Rs

AKTj

)
− 1

]
(1)

Iph = Iph G · (1 + αsc ·∆T ) (2)

Iph G = Isc ·
(

G

Gref

)
(3)

∆T = Tj − Tj ref (4)

In which, Ipv(A) is the photovoltaic current, Iph (A) is
the photo-current, I0 (A) is the reverse saturation current
of the diode, q is the electron charge which is equal to
1.602 × 10−19 (C), K is the Botzman’s constant which is
equal to 1.381 × 10−23( J

K ), A is diode ideality factor, Tj

is junction temperature of the panels (◦)K, Rs is series of
resistance and Vpv is the voltage across PV cell (V). Also
in the Eq.2 to Eq.4, Iph G represent current depending on
short circuit current, reference irradiance of Gref = 1000
W
m2 and reference temperature of Tj ref = 25◦C. Also αsc

is the temperature coefficient of short-current (◦K) found
on the datasheet. For finding reverse saturation current at
any temperature (I0), the Eq.5 can be obtained as follow:

I0 =
Isc[

exp

(
Voc

Vth Tj ref

)
− 1

] ·

[
exp

(
−q · Eg

AK
1
Tj

− 1
Tj ref

)]
·
(

Tj

Tj ref

) 3
A

(5)

In which Eg represents the band gap energy considered
as 1.12 electron volt (eV)Chander et al. (2015). So by
substituting Eqs. 2 and 5 in the Eq.1, the final photovoltaic
current is obtained. Also in order to find Rs in the Eq.1,
term ”-1” added to the exponential equation:

Rs = −dVpv

dIpv

∣∣∣
Vpv=Voc

− 1

W
(6)

and:

W = q · Isc
AKTj

(7)

The term of −dVpv

dIpv
, obtained by experiment or by

Ipv − Vpvcharacteristic of the manufacturer mentioned on
datasheets. Also, for solving Eq.1, Newton’s method has
been used.

3.3 Maximum Power Point Tracker algorithm

According to Afshari et al. (2021), maintaining minimum
current density levels is crucial for safety at varying pres-
sures, as hydrogen concentration decreases relative to oxy-
gen at the anode at lower current densities. To address this,

the Maximum Power Point Tracking (MPPT) algorithm
ensures maximum power output from PV panels under
different irradiance levels. As defined by Zhou et al. (2010),
MPPT, combined with a DC-DC converter, allows a pho-
tovoltaic generator to produce optimal power consistently,
regardless of changes in irradiance and temperature, by
operating at the optimal voltage and current (Vopt, Iopt).
Various MPPT algorithms exist, with the Perturb and
Observe (P&O) method being used in this study. The P&O
method iteratively seeks the maximum power point by
continuously evaluating the PV module’s current and volt-
age. The MPPT algorithm based on the P&O method il-
lustrates how the algorithm identifies the maximum power
point and corresponding voltage under different hourly
irradiance conditions. This algorithm is repeated for each
hourly irradiance to maximize the daily power output.

3.4 DC-DC converters

The governing equation of the DC-DC converter is pre-
sented. Three main types of converters—boost, buck, and
buck-boost—are commonly employed in integrated photo-
voltaic and electrolyser systems to adjust the final voltage.
Average modeling methods are typically utilized for simu-
lating these converters. Ruuskanen et al. (2020) highlights
that current ripple reduces the efficiency of alkaline elec-
trolyzers, necessitating better power electronics control,
potentially applicable to PEM electrolyzers as well. Energy
suppliers using photovoltaic systems and batteries require
DC-DC converters to adjust voltage and current levels,
as these converters are essential for modifying electrical
voltage levels between generators and loads Mohan (2012).
Simulations show that solar power output and voltage fluc-
tuate throughout the day due to irradiance changes, while
electrolyzers require a steady 320V. Buck-Boost converters
adjust output voltage above or below the input based on
the switch duty ratio D. The output voltage of a Buck-
Boost converter, determined by the duty cycle D, is given
by Vout

Vin
= D

1−D Hart (2011). With D > 0.5, it operates
as a boost converter; with D < 0.5, as a buck converter.
This hybrid model combines boost behavior when the
IGBT is on and buck behavior when off. By implementing
average model methodologies, the final model representing
the converter is given by the following equations:

diL
dt

=
1

L
(DVin − (1−D)vC) (8)

dvC
dt

=
1

C

(
(1−D)iL − vC

R

)
(9)

3.5 Modeling of electrolyser system

The electrolyser cell consists of a pair of conductive elec-
trodes immersed in an electrolyte that facilitates ionic
conduction. Upon the application of voltage across these
electrodes, oxidative processes occur at the anode, while
reduction reactions occur at the cathode. The anode and
cathode are connected through the flow of current. In this
study, PEM electrolyser model is employed for simulation
purposes. A detailed explanation of operating character-
istics of PEM electrolysers presented in Table.1. To accu-
rately determine the total voltage of an electrolyzer, it is
essential to understand the governing equations derived
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from the mass balance in each part of the electrolyzer
(Rabascall and Mirlekar (2023)). Accordingly, three con-
trol volumes have been defined within the electrolyzer,
including the anode, cathode, and membrane sections.
The overall water flow across the membrane can be de-
scribed through three processes: diffusion, electro-osmotic
drag, and hydraulic pressure effects representing mem-
brane mass transfer dynamics. Additionally, energy bal-
ance equation is chosen from the literature to represent
electrolyser temperature (Ogumerem and Pistikopoulos
(2020)).

Table 1. Standard Characteristics of Polymer
Electrolyte Membrane (PEM).

PEM electrolyser characteristics

Technology

maturity

Commercial Anode IrO2, RuO2

Electrolyte Polymer

(Solid)

Cathode Pt, Pt-Pd

Cell temperature,
◦C

60 - 90 System energy

consumption,

kWh/Nm3

4.5 - 7.0

Operating

Pressure (bar)

15 - 30 H2 Capacity

(Nm3/h)

<40

Cell Voltage (V) 1.8 - 2.2 H2 purity 99.9

Current Density

(A/cm2)

0.6 - 2 Stack lifetime,

hr

<20,000

Power density

(W/cm2)

Up to 4.4 System

lifetime, yr

10 - 20

Voltage

Efficiency (%)

67 - 82 Charge carrier H+

The anode mass transfer module computes the flows of
oxygen and water, as well as their respective partial
pressures. At the anode, water undergoes oxidation to
yield oxygen, electrons, and protons. The cathode mass
transfer dynamics module computes the partial pressures
and flow rates of hydrogen and water at the cathode,
where protons undergo reduction. The objective of these
calculations is to determine the partial pressures of each
species at both the cathode and anode sides. It is essential
to note that the calculated partial pressures are utilized in
subsequent calculations to determine the total potential of
the electrolyzer and the energy balance equation.

3.6 Model predictive control

We utilize a derived model based on the energy balance
of the electrolyser, as discussed in previous section. This
model captures the temperature dynamics of the electrol-
yser and can be manipulated by adjusting the water flow
rate into the system. In MPC, the process of forecasting
future states and outputs, formulating, and solving an
optimization problem is iterated at each time step. This
iterative approach, known as a sliding horizon strategy,
ensures continuous feedback and control adaptation. A
linear state space model has been employed for MPC
algorithms. A brief description of the linear state space
model presented as follow. The general form of linear state
space model can be written as,

xk+1 = Axk +Buk + vk → State equation (10)

yk = Cxk +Duk + wk →Measurment equation (11)

Here, A, B, C, and D represent system matrices. A ∈
Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu .
Additionally, vk ∈ Rnx and wk ∈ Rny are zero-mean
random variables with specific variances. vk represents

process noise, while wk denotes measurement noise. It is
assumed that vk and wk are uncorrelated (stochastically
independent), i.e., corr[vk, wj ] = 0 for all k and j. This
implies that random disturbances affecting measurements
are unrelated to the randomness in the system states or
processes themselves.

For designing linear MPC, the nonlinear derived model is
linearized to obtain a continuous time linear state space
model, that is, the derivation of energy balance balance
equation on PEM electrolyser has been implemented. It is
important to note that the MPC algorithm has been im-
plemeted on electrolyser to control operating temperature
based on the energy balance equation as follows:

cpM
dT

dt
= ncellI(Voc−V0)+Ṁan

H2O,incpH2O (T−Tan
in )−Hrad (12)

Where cp is the specific heat capacity (J/kg.K), V0

is the thermoneutral voltage expressed as a function of
temperature anode pressure and Hrad is the the heat loss
from radiation.

Finally, MPC is designed using the discrete time linear
state space model. The initial step in linearizing a non-
linear model involves establishing an equilibrium point to
derive a linear model around it. It is assumed that the
actual system dynamics approximate the nominal trajec-
tories, that is, they are near the defined operating points.
Also the cost function can be used in order to implement
the optimization. So:

min
u

J =

N−1∑
k=1

(
(yk − yRk )TQR(yk − yRk )

)
+

M−1∑
k=0

(∆uT
k R∆uk) (13)

By understanding the MPC concepts and fundamentals,
the implementation of this algorithms on integrated sys-
tem has been done in Simulink by use of MPC block. While
the mpcDesigner command used to set the mentioned
values for the model. Finally, the MPC block used with
the designed plant of electrolyser to set the temperature
at the set point value. It is also of the essence to mention
that the reference value for the electrolyser operating point
considered as 63◦C while weighting matrices in the MPC
controller considered on the error between the actual alti-
tude and the target to be in the range of 5◦C and positive
water flow rate based on the pump operation.

4. SIMULATION RESULTS

In this section simulation results of an integrated dynamic
system, encompassing photovoltaic panels with an MPPT
algorithm, a DC-DC converter, a PEM electrolyser, and
MPC implementation are presented.

4.1 Photovoltaic system simulation results

Power generation is directly influenced by solar radiation
as discussed in Sections 2 and 3. The solar irradiance is
illustrated in Fig. 2. Additionally, temperature affects the
current-voltage produced by the PV system, with a stan-
dardized temperature of 25°C assumed for all simulations.
Fig. 3 illustrates the current-voltage and power-voltage
diagrams at a different radiation levels and a temperature
of 25°C, based on MATLAB mathematical simulations.

As depicted in Fig. 3, the maximum power output of
the PV system is approximately 200 watts, aligning with
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Fig. 3. Current-voltage and power-voltage simulation of
photovoltaic panel.

Fig. 4. Simulation of PV system‘s power during a day.

the findings of Ma et al. (2013) under similar
conditions of 1000 (m

W
2 ) and a temperature of 25(◦)C.

The behavior of these curves closely mirrors those

presented in the cited study. Due to the inherent
characteristics of photovoltaic systems, the current-
voltage and power-voltage profiles vary with different
levels of irradiance. It is typical for manufacturers to
display these curves at various standard irradiances such
as 200, 400, 600, 800, and 1000 (m

W
2 ). The KC200GT PV

module, utilized in the study by Ma et al. (2013),
demonstrates how PV characteristics are impacted under
various irradiance levels, maintaining a constant
temperature of 25◦C. Fig.3 shows that the behavior of
these curves is consistent with those found in PV pan-
eldatasheet 1 , further validating the model’s accuracy.

As shown in Fig. 3, higher solar irradiance results in
greater power output from photovoltaic panels due to
increased photon absorption. As this study primarily fo-
cuses on the electrolyser and the implementation of MPC
algorithms for temperature control, the photovoltaic sys-
tem is treated solely as a renewable energy source, with
simulation and modeling efforts emphasizing accurate rep-
resentation and validation against existing literature.

From Fig. 3, it is evident that the system yields maximum
power output around 25 volts per radiation level. To
achieve this maximum power, the Maximum Power Point

1 https://www.energymatters.com.au/images/kyocera/KC200GT.pdf

Fig. 5. Simulation of buck-boost converter with output
voltage of 320(V).

algorithm is integrated into the PV system, ensuring
that the output is optimized for peak power generation.
Simulation of the system over 24 hours, based on hourly
irradiance data (Fig. 2), reveals a correlation between
power production and irradiance fluctuations, as shown
in Fig. 4. However, since the location lacks a radiation
level of 1000 W

m2 , the system operates below its maximum
potential, peaking at approximately 148 W at noon.

The power generated by the PV system needs to be
transmitted to the electrolyser to meet the energy demand.
This necessitates the use of a DC-DC converter to regulate
the fluctuating power output from the PV panels, ensuring
stable energy supply to the system.

4.2 DC-DC converter simulation results

The simulations of buck-boost converters are conducted to
validate the methodology employed in this study against
existing literature. A buck-boost converter, ideal for re-
newable energy systems with inherent power fluctuations,
ensures a stable 320-volt supply to the electrolyser, as
demonstrated in simulations based on Eqs. 8 and 9, is
depicted in Fig. 5. The design parameters, including induc-
tor, resistor, and capacitor values are calculated accord-
ingly to achieve desired output voltage, operating at the
lowest irradiance. This was accomplished with a frequency
of 20kHz and a voltage deviation of ∆Vout = 0.05 · Vin to
reach the final voltage of 320V. The decision to design the
buck-boost converter to achieve an output voltage of 320
volts was driven primarily by the need to align with grid
specifications (for the scenarios where can be combined
PV system with the grid), particularly the root mean
square voltage typical in many grid systems. This voltage
level ensures that the power produced by the PV system
is compatible with the grid infrastructure, facilitating a
seamless integration of the renewable energy source with
the existing power network. Ensuring compatibility with
the grid voltage is crucial for efficient energy transfer, min-
imizing losses, and ensuring stability in the power system,
which ultimately enhances the reliability and effectiveness
of both the renewable integration and the grid operation.

The simulation of a single input voltage from the PV

panels is shown in Fig. 5. We now proceed to depict
the
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Fig. 6. Simulation of buck-boost converter with an inlet
capacitor.

(a) (b)

(c) (d)

Fig. 7. Hydrogen, oxygen and water produced flow rate
from cathode and anode part of electrolyser with
different inlet water flow rate.

the comprehensive simulation and modeling of a DC-DC
converter, which adjusts various hourly changing voltage
ar-rays from the PV panels to a desired voltage level.
It is crucial to highlight that in this mathematical
simulation, the duty cycle is adjusted on an hourly basis in
response to changes in solar radiation. This adjustment
ensures that the output voltage from the PV system
aligns with the required 320V for the DC bus.
Adjustments in the duty cycle are managed by an
appropriate controller within the circuit, as discussed in
Safari and Mekhilef (2010). Over-shooting fluctuations
can be mitigated by integrating a capacitor at the
input of the buck-boost converter circuit. This capacitor
functions by storing excess voltage and charging, thus
smoothing out the overshoots in the circuit. Xiao (2017)
have provided models that demonstrate this effect.
Implementation of these models shows that initial
fluctuations are effectively eliminated from the system, as
illustrated in Fig.6 under the same conditions mentioned
in Fig.5.

4.3 Electrolyser simulation results

The simulation results of the PEM electrolyser are pre-
sented in the following section. Figure 7 presents the
simulation modeling results of the different water flow
rate into the cathode side of the electrolyser. Notably,
increasing the water flow rate does not enhance hydrogen
production, which is primarily dependent on the amount
of electric current supplied to the electrolyser. According
to Ogumerem and Pistikopoulos (2020), increasing the
current flow directly boosts hydrogen output. While the
water flow rate may not influence hydrogen production, as
illustrated in Figure 7, it plays a critical role in cooling the
electrolyser. Figure 7 uses water flow rates of 70×10−4 and
70 × 10−3 moles per second for comparison. The analysis
shows that hydrogen production remains unaffected by
changes in the water flow rate but is expected to increase
with higher current. Additionally, the study indicates that
a water flow rate below 50×10−4 mole per second can lead
to abnormal outcomes, such as negative water production
at the anode with simulated specifications. The system
also can be faced with upper limits on the water flow
rate due to the capacities of the pump and ion filter
components.

Temperature and pressure significantly influence electrol-
yser performance, making their accurate measurement and
control crucial for effective system modeling. To accurately
model these systems, it is essential to understand the
pressures at the anode and cathode, which influence sev-
eral critical parameters. Additionally, the differential pres-
sure (∆P ) across the membrane (used for pressure effect
based on the Darcy’s law) is fundamental for accurately
predicting water transport through it. The dependency
of the electro-osmotic drag coefficient (nd) on pressure
underscores the complexity of electrolyser dynamics un-
der varying operational pressures. The thermal sensitiv-
ity of the electrolyser also poses significant challenges.
Fluctuations in temperature can compromise membrane
integrity and, in extreme cases, could lead to hazardous
conditions if hydrogen and oxygen mix explosively. This
study, therefore, adheres to operating temperatures for
PEM electrolysers typically between 60°C and 90°C with
the pressure of 30 bar, aligning with industry standards to
minimize risks and optimize performance. The membrane,
assumed fully hydrated, exhibits conductivity solely de-
pendent on temperature. The polarisation curve comprises
various potentials, including Voc, Vact, Vcon, and Vohm. The
contribution of each potential to the polarisation curve is
depicted in Fig. 8. Simulations conducted at a symmetric
pressure of 1 bar for the cell demonstrate that higher
temperatures correlate with reduced overpotential in the
electrolyser (Fig. 9(a)). Conversely, as depicted in Fig.
9(b), maintaining a constant temperature of 60°C while
increasing pressure leads to heightened overpotential in
the electrolyser. Understanding these dynamics is essential
for optimizing electrolyser performance and guiding design
decisions.

4.4 Model predictive control implementation results

The system description of the PEM electrolyser has been
elucidated thus far. Modeling is a crucial precursor to
implementing advanced control systems like MPC algo-
rithms, as they rely heavily on accurate simulation models.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.050 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

367



Fig. 8. Share of each potential to the final polarisation
curve of the PEM electrolyser.

(a) Influence of cell temperature. (b) Influence of cell pressure.

Fig. 9. Influence of cell temperature and pressure on the
electrolyser.

Commencing with MPC algorithms, as discussed in Sec-
tion 3.6, it is crucial to comprehend the model governing
the system, derived from the energy balance equation
elucidated by Ogumerem and Pistikopoulos (2020). To
maintain consistency with the referenced study, a linear
state-space form was chosen. To determine matrices A and
B, it is essential to derive the derivation form of the energy
balance formula based on the states and control variables.
The state variable considered as the temperature in the
Eq.12 while the control variable is the water flow rate
into the system by which the cell temperature can be con-
trolled. This involves selecting state, control, and output
parameters, with the electrolyser temperature chosen as
the state variable to be controlled by the water flow rate.
Additionally, the temperature difference from the set point
temperature could serve as the output variable. Choosing
an operating point around 60°C for the electrolyser facili-
tates the derivation of A and B matrices as follows which
will be gain as the derivation form of Eq.12 based on state
variable wich is temperature and control variable that is
water flow rate effecting in reducing cell temperature with
following equation form:

A =


(

d(ncellI(Voc−V0)+Ṁan
H2O,incpH2O

(T−Tan
in )−Hrad)

dT

)
CpMH2O

 (14)

B =


(

d(ncellI(Voc−V0)+Ṁan
H2O,incpH2O

(T−Tan
in )−Hrad)

dṀan
H2O,in

)
CpMH2O

 (15)

To determine the A matrix, it is essential to define the
control operating point. This parameter can be determined
by setting the energy balance equation to zero and substi-
tuting the set temperature of the operating point.

Fig. 10. Simulink result of simulated energy balance model
of the PEM electrolyser.

Fig. 11. MPC block implementation in Simulink.

Ṁan
H2O,in =

1

cpH2O (Top − Tan
in )

(−ncellI(Voc − V0) +Hrad) (16)

To simulate the model in state space form, a sampling
time of 0.1 seconds was specified, and the system was
named ’plant’ using the ’ss’ function in MATLAB. Addi-
tionally, the model was discretized using the ’c2d’ function.
Following the implementation of the state space model,
simulation was conducted using the Simulink environment
in MATLAB. Fig. 10 highlights the need for implement-
ing MPC algorithms to regulate the setpoint temperature
within the range of 60-65◦C. To achieve this, the MPC
block was integrated into the Simulink diagram alongside
the designed system labeled ’plant.’ Fig. 11 illustrates the
schematic of the interconnected blocks within the Simulink
environment, including the MPC block.

In Fig. 11, the output of the simulation generated by the
linear state space model is fed back to the MPC block
for comparison with the predetermined reference setpoint.
This feedback loop enables the system to dynamically
adjust the flow rate to regulate the temperature at the
desired value. Expanding upon this concept, the MPC
block continuously receives feedback from the simulation
results and compares it with the target setpoint tempera-
ture of 63◦C. By analyzing this feedback, the MPC algo-
rithm calculates the necessary adjustments to the control
inputs, ensuring that the system maintains the tempera-
ture within the specified range. Moreover, the simulation
output, depicted in Fig.10, provides a visual representa-
tion of how effectively the MPC algorithm controls the
system. It showcases the temperature response over time,
demonstrating the system’s ability to track and stabilize
the temperature around the desired setpoint. Utilizing the
‘mpcDesigner‘ tool in the MATLAB workspace enables
users to configure and fine-tune the controller settings ef-
fectively. In summary, the simulation results encapsulated
in the series of figures, indicate successful temperature reg-
ulation by the MPC algorithm. This was achieved through
system modeling, controller design, and feedback mecha-
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nisms that adjust the flow rate to stabilize temperature.
The results validate the robustness and precision of the
designed MPC system in achieving and maintaining the
desired operational conditions within the electrolyser.

5. CONCLUSIONS

The study reviewed extensive literature on hydrogen pro-
duction, particularly focusing on solar-powered proton ex-
change membrane (PEM) electrolysers, which were iden-
tified as effective but requiring stable operation. Model
Predictive Control (MPC) was chosen for its capabil-
ity to regulate electrolyser temperature, enhancing op-
erational efficiency. Simulations were performed for in-
tegrated system, including photovoltaic (PV) panels and
PEM electrolysers. MPC was tested, proving successful in
maintaining desired electrolyser temperatures. The system
incorporated Maximum Power Point Tracking (MPPT)
to optimize power output from PV panels, and DC-DC
converters were evaluated, with the buck-boost converter
providing stable power adjustments suitable for renewable
energies. The simulations, which also considered various
operational parameters, demonstrated the potential for
high efficiency and detailed system behavior under varying
conditions. The study achieved successful system modeling
and simulation, demonstrating a stable adjustment time
that was approximately 10 minutes faster to the selected
set point with MPC algorithms compared to without. Ad-
ditionally, the findings suggest that more detailed models
are necessary for practical application and scaling up the
project.
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