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Abstract: We developed the data connection via ROS (Robot Operating System) between a
mobile robot and its digital twin in a CARLA-based autonomous driving simulator, which sim-
ulates realistic arctic winter weather conditions for safer, faster and less expensive autonomous
vehicles testing. In our test setup we tested the hybrid case, where both robot twins were moving
in the simulation and the real-world test area at the same time. Verifying our digital twin in
regards to delays and applicability proved the communication via ROS to be occurring in almost
real-time and the digital testing ground to profit from additional inbuilt reference points.
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1. INTRODUCTION

Autonomously driving vehicles and robots that drive in
public environments need to be safe and reliable under
all weather conditions, including arctic winter conditions.
Digital twins provide an opportunity to test autonomous
vehicles in a safer, faster, and less expensive environment
than carrying out tests in real-life conditions.

To our knowledge, the CARLA simulator for autonomous
driving research is seldom, if at all, used for vehicles types
not commonly found on public streets and for mobile
robots other than autonomous cars. Mobile work robots,
for example for deliveries, cleaning the sidewalks or for
snow work, have to navigate public urban environments
with pedestrians, bicycles or occasional traffic and can
profit from digital twins that are capable to simulate those.

A data connection via ROS (Robot Operating System)
between a mobile robot and its digital twin was developed.
This allows for almost real-time exchange of commands, in-
formation, and sensor data between the twins. The digital
twins of the robot and the testing ground are constructed
in the WinterSIM, a CARLA-based autonomous driving
simulator, which adds realistic arctic winter weather con-
ditions to the simulation (Tepsa et al. (2021), Dosovitskiy
et al. (2017)).

The digital twin design was informed by the intended
future use cases: Testing, optimizing, controlling, and mon-
itoring autonomous driving and snow cleaning functions
first with the digital twin, then in hybrid approaches. We
explored the applicability of our digital twin for those use
cases in experiments assessing delays, verifying our digital
twin setup and trying a hybrid obstacle avoidance scenario.

The backdrop for this research is the idea to use one or
multiple mobile robots for autonomous snow cleaning of
⋆ Lapland Robotics and AI.R projects, Lapland University of Ap-
plied Sciences

the public outside areas of the campus. One of the robots
build from scratch for this purpose is the small mobile
robot called miniATV, shown in Fig. 1 with its sensors
and actuators. It has proven to be able to clean off freshly
fallen snow with a snow blower attachment on the front
while manually controlled.

Fig. 1. The equipment, sensors and actuators of the
miniATV

Automating the snow cleaning robot requires safe driving
in the public outdoor spaces of the campus based on
autonomous way-finding algorithms and robust obstacle
avoidance algorithms, which is safer and more efficient to
train within or in combination with a simulation. Simu-
lations specifically for training autonomous snow cleaning
robots have not been yet developed to our knowledge, so
we used a simulation for autonomous driving for our pur-
pose instead, which is described more in the next section
on related work.

2. RELATED WORK

In the development of intelligent and automated traffic, it
is particularly important to consider the impact of weather
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conditions, especially in Finland and northern conditions.
The goal of the WinterSIM project was to produce research
and data on the performance of the most common vehicle
sensors in winter conditions (FrostBit). In the WinterSIM
project, a virtual reality (VR) simulation environment
was implemented using a game engine, where weather
conditions can be changed to demonstrate the impact
of changing conditions on sensor data, particularly Lidar
(Tepsa et al. (2021)). Generally, the produced simulation
environments are utilized first, and then the driving data
is transferred to the real world (Hu et al. (2023)).

The difference between the real world and its virtual
counterpart is described by the concept of the ”reality
gap” (RG). This has been addressed in the publication
by Hu et al. (2023). The study presents three different
ways to reduce this gap: 1) transferring knowledge from
simulation to reality, 2) learning in digital twins, and 3)
learning by parallel intelligence technologies. (Hu et al.
(2023)). The publication presents typical sim2real models
for autonomous driving. In connection with the CARLA
simulator, the KITTI vision benchmark suite is commonly
used to bring features such as Lidar sensor data into
the VR implementation. The KITTI benchmark suite was
produced at the Karlsruhe Institute of Technology (KIT)
and is freely available under a CC license. The problem
of images produced by depth cameras in mixed-reality
environments is particularly addressed by Argui et al. in
their two publications (Argui et al. (2023) and Imane
et al. (2023)). These publications present a method for
combining depth camera images from the virtual world
and the real world into a single view. The final conclusion
of the publications is that this combination is potentially
useful, but issues such as delays in combining camera data
with the virtual world realistically could be problematic.

Bai et al. (2023) present an article on the Cyber mobility
mirror architecture (CMM) to support Cooperative Driv-
ing Automation (CDA) research and development, and de-
velop a CARLA-based co-simulation platform prototype.
Additionally, it provides CARLA-based 3D object detec-
tion data and presents a case study demonstrating the
necessity and functionality of lidar-based vehicle detection
for CDA algorithm development.

The problem of accurately perceiving the environment is
a very essential part of autonomous vehicles moving on
public roads and in traffic systems. Cooperative perception
(CP) and Vehicle-to-Everything (V2X) involve the sharing
of data between autonomous vehicles and other road users,
thereby extending traffic awareness beyond the sensory
range of a single vehicle. This improves traffic flow and
safety. Development towards this goal has been rapid in
recent years, and a good overview can be found in the
publication by Huang et al. (2024).

Deep and machine learning for decision-making and route
planning in autonomous vehicles have benefited from de-
velopments in mapping and sensor technology. Exam-
ples of demanding decision-making include lane changing,
where location data and lane markings, as well as tracking
the movements of other vehicles, are utilized. Wang et al.
(2023) present in their publication a deep learning method
that improves the average success rate of lane changes
compared to traditional planning control algorithms and

reinforcement learning methods. Practical tests were con-
ducted using the CARLA simulator. The reinforcement
learning method and its decision-making architecture are
addressed by Al-Sharman et al. (2023) in their publication.

The unreliability of simulators in Autonomous Driving
Systems (ADS) can lead to inconsistent test results. This
is addressed by Amini et al. (2024) in their publication.
The publication seeks to answer two research questions:
(1) How do flaky ADS simulations affect automated test-
ing based on random algorithms? and (2) Can machine
learning (ML) effectively identify flaky ADS tests while
reducing the number of required test repetitions? The pub-
lication concludes that unreliability is common and poses
a real problem, but the presented method can effectively
identify flaky ADS tests.

To minimize the influence of the reality gap in testing
of autonomous vehicles and to take their real-life physics
better into account, X-in-the-Loop testing as presented
by Moten et al. (2018) is now considered state of the
art. Drechsler et al. (2022) propose a similar approach
called Dynamic Vehicle-in-the-Loop for testing automated
driving functions. They feed a automated vehicle on a test
track with simulated sensor information from the same
track in the CARLA simulator that includes obstacles and
pedestrians crossing the street. Our future robot testing
use case is inspired by those approaches and lead is to
explore the suitability of our digital twin setup for such
robot testing approaches in an experiment described in
the next section.

3. METHODOLOGY

3.1 Software Architecture

The software architecture connects the digital and phys-
ical twins via ROS and in consequence ensuring updates
from both sides fast enough for safety and to allow for
deployment in use cases where both twins are used in
parallel. Figure 2 shows the components of the software
architecture and their interaction.

Fig. 2. Software architecture of the connection between the
WinterSIM (in the PC or laptop) and the physical
miniATV. The figure is explained from left to right.

Due to constraints in computation power, the simulation
does not run on the robot itself, but on a separate

machine, depicted in Fig. 2 as two black frames. Also
any path-finding algorithm, object detection or test script
is operating on the PC. This separation allows for cheaper,
more compact and lightweight hardware architecture of
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the robot, makes the robot easily interchangeable and the
setup scalable to multiple robots.

Central to the software architecture is themultimaster fkie
ROS package developed by the Fraunhofer FKIE (Tiderko
et al. (2016)), here depicted in green. It allows to run
separate ROS masters on each machine while being able to
publish and subscribe to the topics of the other machine.
The more common approach to run one ROS master for
both machines was discouraged by the robot’s rosserial
not transmitting and receiving messages on the ROS
simulation time the simulation requires.

In the PC, the carla ros bridge (CARLA Simulator) al-
lows the two-way communication of the CARLA-based
WinterSIM simulation with ROS over ROS topics. The
WinterSIM contains a model of the robot and a map of the
campus area which is used as digital and physical testing
ground. On top of the weather simulated in carla, it offers
a simulation of realistic arctic winter conditions and its
influence on the sensor output (Tepsa et al. (2021)).

The mobile robot ”miniATV” runs its own ROS master to
which the sensor data of the robots sensors is published.
Any incoming command is first filtered through the robot’s
lidar based emergency stop which checks if any obstacle
is closer than a threshold. If an obstacle is detected, the
original command is replaced with a stop command, if
no obstacle is detected too close, the steering command
is waved through. This improves safety in testing of the
physical robot. Over rosserial, the command is sent to
a micro controller controlling the motors for driving and
steering.

Since the software architecture consists of a variety of
different components, it was necessary to automate the
startup of those in the right order.

Fig. 3. The order of starting the software components for
the digital twin

The components often rely on other software to be already
running and cause errors if that is not the case. Especially
for testing the setup it is important to have reliability
and consistency in the startup process to minimize the
human error. The startup script in the PC triggers the
mobile robot’s own startup sequence and starts first the
WinterSIM and the carla ros bridge which also starts a
roscore. Only after a ROS master is running in both the
robot and the PC, the multimaster fkie can be started on
each, discover the other rosmaster in the same network
and synchronize the topics between both machines. In

the robot, the sensors and functionally necessary scripts
are started then. After those are running and the data
exchange via the multimaster fkie is established between
the physical robot and the simulation, any testing scripts
or path-finding algorithms can be started.

3.2 Experiments

Delays: The usability of the setup as a digital twin for
testing the digital and physical twins in parallel testing
scenarios like Dynamic Vehicle-in-the Loop testing (Drech-
sler et al. (2022)) depends highly on the communication
happening in almost real-time.

In a test, both the real and the digital mobile robot
receive the same steering commands. The ROS topics are
recorded and then the time of arrival of the command in
the robots’ steering command topic and the reaction time
of the robots are tracked. The rosbag time is the point
in time, when the ROS node for the recording became
aware of a ROS message and recorded it. It can vary from
the individual timestamp that is solidified when the ROS
message is sent out. Since the rosmaster in the PC is
running on ROS simulation time and the robot on non-
simulation time due to the rosserial connection to the
motor controlling micro controller, using the rosbag time
instead simplifies the timestamp evaluation. To identify if
the network connection quality has a noticeable influence
on delays in the system, the connection was changed from
a mobile phone hotspot to a WiFi router after half the
test runs. Measurements on the network speed were taken
before each half with iperf3.

A testing script was developed to give the same commands
to both twins at the same points in time in each test
run, see Fig. 4. First, a zero speed command is sent
for 30 seconds to both the physical and the digital twin.
The long initial standstill was meant to improve the
GNSS positioning on the initial position, but since the
GNSS suffered from electric interference from the Lidar,
the GNSS data could not be evaluated. After the initial
standstill, a maximum speed command was given to both
twins for 10 seconds, followed again by a 30 seconds stop
command. This results in over 10 seconds where the speed
is greater than zero, since accelerating and decelerating are
both included. The measurement of delays utilizes those
points in time where the speed measurement in the ROS
messages of the robot’s status topic changes from or back
to zero.

Fourteen test runs have been conducted, each orchestrated
by the same commands from the test script. The net-
work connection was changed after half the test runs as
described above. Each test run was recorded as a ros-
bag recording with all ROS topics and messages. The
evaluation relies on the rosbag recording timestamps to
detect delays and their magnitude, since the robot and the
machine running the simulation require different clocks.

Alignment A pre-existing map of the testing area on
campus was used in the WinterSIM. It was created for
sensor research in the area of the campus where the
physical robot testing ground is located. Around the
robot testing area, the buildings and details are modeled
precisely because the sensor research also took place in
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Fig. 4. Timing and course of each test run

that area. Further from this area used in testing, the map
is sparse with details that were not conductive to the
original purpose. The map was created based on a scan by
a Leica BLK360 imaging laser scanner in winter and the
surface height, which was offset due to snow covering, was
later corrected with height data from the National Land
Survey of Finland (NLS). Still, inconsistencies between
the surface height of the real testing ground and the map
were noted. The spatial relationship between buildings and
details such as lampposts however is modeled realistically
for the original sensor research purpose of the map. This
test verifies the surface height of the digital map utilizing
pre-existing GNSS reference points as ground truth in
the physical space. Four exemplary points were chosen
where the mobile robots would be driving later during
tests. Since those reference points are not modeled in
the map, triangulation to landmarks consisting of the
precisely modeled details and buildings present in both
the physical space and the digital map of the space was
undertaken. Due to that, the number of reference points
is chosen that small because the overlap between the map
area detailed enough for triangulation, the area in which
the robots would be roaming and the available reference
points did not allow for more. The reference points are
not modeled in the map of the robot testing area. To
display them in the WinterSIM map, the coordinates of
the reference points are transformed from the ETRS-
TM35FIN/N2000 reference coordinate system to geodetic
coordinates with the Paikkatietoikkuna portal maintained
by the National Land Survey of Finland (NLS). The
geodetic coordinates are then translated into CARLA’s
own coordinate system and made visible in the map of
the CARLA-based WinterSIM with spawing a mark at
this location. The marks consist of three axis in x, y,
and z direction intersecting at the marked point for easy
visibility of the reference point and precise placement of
the mark at the landmarks’ locations.

Any discrepancy in surface level height is measured by
placing another mark on the projection of the reference
point onto the surface and calculating the distance. To
judge the alignment by triangulation, if the reference point
coordinate is located at a similar spot in the digital map
then in the real robot testing ground, the distance to the
chosen landmarks in the digital map is measured with a
mark similarly. Three landmarks were chosen per reference
point out of prominent details and structures existing both
in the digital and real map nearby the reference points.
In the real testing ground, the distance between reference
points and their landmarks was measured with a mea-
suring tape. Unevenness of the surface, overgrown edges

and even the grass on the lawn however added imprecision
that suggests that the millimeter accuracies that scans can
achieve will not be reflected in the comparison between the
tape measurements and the distances in the map.

Object Avoidance The digital twin was created for robot
testing and one of the intended use cases is a Robot-
in-the-Loop test after the Dynamic Vehicle-in-the-Loop
approach Drechsler et al. (2022) proposed. The digital
twin we created would be fit for application in such a way
if the real robot’s reactions can be made dependent on
the sensor input from the digital twin. If the sensors of
the digital twin show an obstacle being too close, both
the real robot and its digital twin should take action
not to hit the object only present in the simulation. A
prerequisite is a functioning communication between the
twins in almost real-time, which was tested in the first
experiment on delays above. This experiment examines
the applicability of our setup for hybrid Robot-in-the-Loop
testing scenarios.

Figure 5 shows the data flow for this experiment. In
order not to interfere with the mobile robot’s own internal
lidar-based emergency stop in case of unexpected physical
obstacles in the test area of the physical twin, the physical
twin is not using the digital sensor data directly instead
of its own sensor data. Instead, a similar lidar based
emergency stop is created which receives the only the
digital lidar data from the simulation and forwards the
steering commands only if no digital obstacle is too close
and otherwise sends a stop command. This forwarded
steering command is then input to both the digital and
physical robots. The physical robot then first checks in
its emergency stop if no real physical obstacle is too close
and only then puts this incoming command to action. The
experiment on delays examines if this extra step can cause
a delay.

Ten test runs have been conducted for this experiment
orchestrated by a test script. Both the digital and the
real robot are placed at the same location in the digital
and real testing ground at the start of each test run.
A digital obstacle is spawned at the same location for
each test run only in the simulation in the digital robot’s
way. No obstacle is in the physical robot’s way. The
initial command that is then filtered through the robots’
emergency stops according to Fig. 5 is then send out, the
command is for maximum speed for ten seconds. During
the execution of the command the simulated lidar data
in the digital twin will then show the obstacle that soon
is closer as the chosen threshold of 1.2 m. The digital
twins emergency stop should then send a stop command
instead of forwarding the maximum speed command to
itself and the physical robot. Both twins stop propelling
themselves forward and roll to a standstill since neither
twin has brakes.

4. RESULTS

4.1 Experiment on Delays

Table 1 shows the measured network connection band-
widths between the command giving machine where the
simulation and the test scripts were running and the real
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Fig. 5. How the cmd runs through the setup

Table 1. Bandwidth acquired with iperf3 for
both the phone hotspot and the WiFi box

Network From →To
Bandwidth
sender
[Mbits/sec]

Retry
Bandwidth
receiver
[Mbits/sec]

Phone hotspot PC →miniATV 21.0 7 18.2
Phone hotspot miniATV →PC 18.9 0 18.4
WiFi box PC →miniATV 66.6 74 63.8
WiFi box miniATV →PC 31.5 0 29.9

mobile robot after completing the automated startup se-
quence and before each half of the test runs. As expected,
the WiFi has a better bandwidth compared to the phone
hotspot, but an unexpected high number of retries of send-
ing data packages. The quality of the network connection
does not seem to have any noticeable influence on the
delays though.

Figure 6 depicts the average delays in the command flow,
both for the maximum speed command and the zero speed
command combined. Only in the last step the depiction of
the delays was divided since starting to drive after the
first maximum speed commands and rolling to a standstill
after the zero speed command are mechanically different
and produced different delays.

Fig. 6. Average over the delays in the command flow

The differences between the timestamps for each step in
the flow of commands has been computed for each of
the two commands (maximum speed and zero speed) for
each of the fourteen test runs and then averaged. The
only exception is delay number two (see Fig. 6). Only
when sending the maximum speed command, never the
zero speed command, the delay was up to 3.4 s. But the
next delay in the flow, delay number three then showed
a delay of over -3 s. This suggests that the delay was

not in the command flow itself, but in the recording of
the topic. The command on which the computation of
delay two is based has been recorded in the rosbag sooner
than the previous command. The delay calculation is based
not on the timestamp when the ROS message originated
since the simulation and the robot require vastly different
clocks, but on the timestamp of when the message became
available for the recording ROS node.

As a side note, no worsening of the delays has been found
over the course of the fourteen test runs, which indicates
that exposure of the equipment to temperatures around 0
°Celsius did not influence the delays.

4.2 Experiment on Alingment

Table 2. Difference in distances between the
reference points and the landmarks between

the digital and the physical twin

Reference
Point

Landmark
Absolute
difference
[m]

Landmark1 0.349
Landmark2 1.8521
Landmark3 0.151

Landmark1 3.195
Landmark2 5.2412
Landmark3 1.010

Landmark1 0.475
Landmark2 0.6893
Landmark3 2.132

Landmark1 1.533
Landmark2 0.8234
Landmark3 0.031

The surface height of 3 out of 4 reference points is aligning
within 10 cm. On the other reference point, the difference
between the map surface and the coordinates of the
reference point translated into a map position is 78 cm.
This occurs in an especially uneven area of the testing
ground.

For the x and y axis, the distances between the reference
points and the landmarks varies greatly between the real
testing ground and the digital map of the same area
and does not reflect the millimeter or centimeter level
accuracies that could be possible for a map based on a
scan with this technique and equipment. Only half of the
differences in distances to the 12 landmarks lie under one
meter with 0.031 m as the lowest difference and only one
under 10 cm. The highest difference is 5.241 m, suggesting
that either the detail used as landmark was placed wrongly
or a wrong detail has been taken for the landmark in the
evaluation.

Experiment on Obstacle Avoidance Out of the ten test
runs, the digital robot stopped propelling itself forward
in all of them once the obstacle came closer than the
threshold. Unfortunately, since neither the real nor the
digital robot possess breaks, the digital robot did not roll
to a standstill in time not to collide with the obstacle.
This behavior warrants an adjustment in parameters of the
digital twin model of the robot. CARLA offers a variety
of parameters to adjust a simulated vehicles behavior,
but they are tailored to vehicles typically found in public
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traffic, not to self-build smaller mobile robots. Therefore,
the adjustment is not something that could be done on
the fly once the problem became apparent in the test, but
needs multiple rounds of try and error.

The physical robot in the real testing ground only stopped
in eight out of ten test runs. In one of those, the real robot
stopped only after approximately ten seconds of driving
with maximum speed, in the other the real robot did not
even move from the starting position. Since the digital
robot drove and reacted to the obstacle in those two test
runs. One explanation for the first case would be that
the physical robot lost connection and regained it after
those approximately ten seconds. The test script would
have ended after ten seconds as well, but it is probably
a coincidence that the robot regained connection around
the same time. If the real robot had not regained the
connection to receive a stop command, it’s own emergency
stop would have prevented it from crashing into any
obstacles. In the second case, when the physical robot
would not start, the most likely explanation is that the
startup sequence was not yet fully finished and that the
test script was started by the experimenter before the
respective components were ready in the physical robot.
In the eight out of ten test runs in which the physical
robot stopped due to the digital obstacle perceived by its
digital twin, it almost immediately came to a standstill
without crashing into the digital object.

5. SUMMARY AND DISCUSSIONS

The Experiment on delays finds that the communication
via ROS between the digital twins is indeed in almost
real-time with delays under 0.4 seconds both for command
transmission and maximal speed changes, with the excep-
tion of the rolling to a standstill behaviour of the digital
robot that has to be adjusted to be realistic. Therefore
the setup is suitable for application in the intended robot
training and testing scenarios. This experiment also uncov-
ered a steep discrepancy between the rolling to a standstill
behaviour between the digital and physical robot twins,
which was discovered in the experiment on obstacles as
well.

The Alignment experiment shows that the surface height
of the map in the simulation is within 10 cm for three of
the four reference points. The triangulation to verify the
position of the reference points however did not provide
clear indications if the alignment in the x and y axis
is sufficient, half of the distances to landmarks differ
more than one meter from the measurements in the real
testing ground. Uneven ground, vegetation and differences
in the level of detail likely added to inaccuracies in the
measurement. Adding GNSS reference points to such maps
in the simulation in future, for example by using targets
measured with a GNSS total station on reference points,
would not just improve the accuracies of the simulation
but also make the verification process easier.

The Experiment on avoiding obstacles that exist only in
the simulation suggests adjustment of the rolling parame-
ters of the digital robot twin, so that the digital robot also
rolls to a standstill almost immediately like the physical
robot. Otherwise this difference in behavior could cause a

worsening of the reality gap between training algorithms
in the digital twin compared to the physical twin.

The physical robots behaviour during the test suggests
adding a check to the startup sequence if all required
components are running and responding before giving a
clear for starting further scripts. Also monitoring if the
connection to the command giving machine is still intact
(and stopping if the connection is lost) would prevent the
need to rely on the real robot’s emergency stop and thus
increasing safety in testing if the connection is lost.

With the described adjustments to the digital twin setup
and model parameters, the digital twin is ready to be
deployed in the intended robot training and testing sce-
narios. We will also introduce other robot into the digital
twin for testing, such as an autonomous car or robots for
heavier snow work. The testing ground will be equipped
with 5G for a faster and more stable connection. Following
the doubts about the sufficient accuracy of the map of the
campus area that our tests showed, the map is currently
remade from a drone scan with 1 - 2 cm accuracy and
GNSS data. Additionally, a second test ground has been
scanned with a Leica BLK 360 laser scanner and GNSS
reference points to create a map for robots to train in
an industrial environment with an overall accuracy of 5
mm. Since ROS 2 offers new features that are interesting
for autonomous vehicles, we are currently moving our
platforms to away from ROS 1.

ACKNOWLEDGEMENTS

This paper was made possible by the Lapland Robotics
and AI.R projects of the Lapland University of Applied
Sciences. Many thanks also to the creators of the Win-
terSIM (by the FrostBit Software Lab of the Lapland
University of Applied Sciences) and especially Tuomas
Herranen.

REFERENCES

Al-Sharman, M., Dempster, R., Daoud, M.A., Nasr, M.,
Rayside, D., and Melek, W. (2023). Self-learned
autonomous driving at unsignalized intersections: A
hierarchical reinforced learning approach for feasible
decision-making. IEEE Transactions on Intelligent
Transportation Systems, 24(11), 12345–12356. doi:10.
1109/TITS.2023.3285440.

Amini, M.H., Naseri, S., and Nejati, S. (2024). Evaluating
the impact of flaky simulators on testing autonomous
driving systems. Empirical Software Engineering, 29(2),
47. doi:10.1007/s10664-023-10433-5.

Argui, I., Guériau, M., and Ainouz, S. (2023). A mixed-
reality framework based on depth camera for safety test-
ing of autonomous navigation systems. In 2023 IEEE
26th International Conference on Intelligent Trans-
portation Systems (ITSC), 2050–2055. doi:10.1109/
ITSC57777.2023.10421982.

Bai, Z., Wu, G., Qi, X., Liu, Y., Oguchi, K., and Barth,
M.J. (2023). Cyber mobility mirror for enabling co-
operative driving automation in mixed traffic: A co-
simulation platform. IEEE Intelligent Transportation
Systems Magazine, 15(2), 251–265. doi:10.1109/mits.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.052 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

383



2022.3203662. doi:10.1109/ MITS.2022.3203662.
CARLA Simulator, ROS Bridge Documentation.
URL https://carla.readthedocs.io/projects/
ros-bridge/en/latest/. Online. Accessed on
12.12.2023.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, 1–16.

Drechsler, M., Sharma, V., Reway, F., Sch¨

Huber, W. (2022). Dynamic vehicle-in-the-loop: A
novel method for testing automated driving functions.
SAE International Journal of Connected and Automated
Vehicles, 5, 1–14. doi:10.4271/12-05-04-0029.

FrostBit, WinterSIM. URL https://www.frostbit.fi/
en/portfolio/wintersim-2/. Accessed on 10.06.2024.

Hu, X., Li, S., Huang, T., Tang, B., Huai, R., and Chen, L.
(2023). How simulation helps autonomous driving:a sur-
vey of sim2real, digital twins, and parallel intelligence.

Huang, T., Liu, J., Zhou, X., Nguyen, D.C., Azghadi,
M.R., Xia, Y., Han, Q.L., and Sun, S. (2024). V2x
cooperative perception for autonomous driving: Recent
advances and challenges.

Imane, A., Guériau, M., and Ainouz, S. (2023). Build-
ing a vision-based mixed-reality framework for au-
tonomous driving navigation. doi:10.1109/CoDIT58514.
2023.10284251.

Moten, S., Celiberti, F., Grottoli, M., van der Heide,
A., and Lemmens, Y. (2018). X-in-the-loop advanced
driving simulation platform for the design,development,
testing and validation of adas. In 2018 IEEE Intelligent
Vehicles Symposium (IV), 1–6. doi:10.1109/IVS.2018.
8500409.

Tepsa, T., Korhonen, M., Paananen, R., Narkilahti, A.,
and Herranen, T. (2021). Towards autonomous vehicle
winter simulations utilising carla and real-world sensor
data. In 27th ITS World Congress, Hamburg, Germany,
11-15 October 2021. Paper ID 895., 2330 – 2338.

Tiderko, A., Hoeller, F., and Röhling, T. (2016). The
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