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Abstract: In this paper we apply Augmented Extended Kalman filters (AEKFs) to perform
parameter estimation in two different biological controller motifs under both noise-free and
noisy conditions. Based on measurements of the two states of the controller motifs, we show
that under both noise conditions it is possible to estimate all 5 and 6 parameters, respectively,
which is in accordance with previously published results that investigated the theoretical concept
of structural identifiability. We further investigate how the level of process/measurement noise
and the initial estimates of both the parameters and states in the AEKFs affect the estimation
performance, and the results indicate that the degree of non-linearity affects filter performance.
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1. INTRODUCTION

Mathematical models are widely used to understand and
predict the behavior of real-world systems, both human-
engineered and natural. Within the field of systems bi-
ology, complex models of metabolic pathways and entire
cells have been created in recent years. In this context,
controller motifs are simple biomolecular reaction net-
works that can explain how regulatory function is achieved
through negative feedback, see e.g. Thorsen et al. (2013);
Briat et al. (2016); Tang and McMillen (2016), and thus,
they are useful as building blocks in larger biological mod-
els as shown in Agafonov et al. (2016).

One of the main purposes of a mathematical model is to
make predictions of the modeled system’s behavior. The
accuracy of model predictions is heavily reliant on param-
eter values, and finding accurate parameter values is often
a difficult and time-consuming process that requires ex-
periments. Identifiability and observability are two closely
related concepts that are helpful tools when evaluating
the usefulness of a model, as they provide information
on whether the model can be parameterized with the
available measurements. Identifiability describes whether
unknown model parameters can be determined based on
knowledge of the input and output of the model. On the
other hand, observability implies that it is possible to infer
the values of unmeasured states by combining together the
measurements and the available model.

In practice, the estimation of unmeasured states is
achieved by designing a special type of dynamical system
called state observer. Among several possible structures
proposed for models described by nonlinear differential
equations, the extended Kalman filter (EKF) is the de
facto standard in many applications, such as navigation
systems and GPS, see e.g. Huang et al. (2009); Loron and
Laliberte (1993); Böhler et al. (2021); Narayanan et al.

(2020). The EKF merges two sources of information: the
mathematical model, used to compute future prediction of
the state based on the current estimate, and the measure-
ments, which introduce a feedback mechanism for address-
ing possible model-reality mismatch and the presence of
unmodeled disturbances. This information fusion is done
by weighting the different sources of information according
to their reliability (for example, a noisy measurement is
weighted less than the data coming from a precise sen-
sor). The EKF addresses the inherent nonlinearities of
the model by applying a linearization based on first-order
Taylor expansions, thus approximating the nonlinearities
as linear functions in small regions around the current
state estimate. Although this linearization introduces some
error, motivating the search for more efficient estimators
(see, e.g., Julier and Uhlmann (1997); Huang et al. (2020);
Sarmavuori and Sarkka (2011); Liu and Guo (2021); Ro-
tondo (2023)), the EKF is still considered to be effective
in many practical scenarios.

In Haus et al. (2023), the structural identifiability of a
set of controller motifs was investigated using a symbolic
approach. Structural identifiability is a theoretical concept
that is fully determined by the structure of the model
and the chosen outputs, and assumes that measurements
are noise-free and sufficiently informative, see e.g. Ljung
and Glad (1994); Villaverde et al. (2018). As it is well
known that available measurements from biological sys-
tems are limited, practical identifiability limitations may
occur for models that have been found to be structurally
identifiable. In this paper, we investigate identifiability of
controller motifs in a practical setting using Augmented
Extended Kalman filters (AEKFs) with varying degree of
process/measurement noise. We further investigate how
the initial conditions of the parameters and state variables
in the filters affect the performance.
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2. CONTROLLER MOTIFS

Controller motifs are simple molecular reaction networks
where negative feedback is achieved through signaling
between the species. In this paper, we consider motif 1 and
3, shown in Fig. 1, from the set of 8 basic two component
controller motifs presented in Drengstig et al. (2012).
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Fig. 1. Basic controller motif 1 and 3.

The general state equations for the motifs are given as:

Ȧ(t) = di(t)− do(t) + jc(t) (1)

Ė(t) = js(t)− jd(t), (2)

where A is the controlled species, E is the controller
species, di and do are input and output disturbances,
respectively, jc is the compensatory flow, and js and jd
are the synthesis and degradation flows of E, respectively.

The purpose of the compensatory flow jc is to maintain
the level of A by adding A in the presence of a dominating
outflow disturbance do, and both motifs are therefore
called inflow controllers. Moreover, jc is for both motifs
activated by E as increased level of E results in increased
inflow through jc (indicated by a ⊕ sign). The difference
between the two motifs is the signaling from A to E, where
motif 1 is activating and motif 3 is inhibiting (higher level
of A results in lesser flow). We assume that activation is
modeled as first order kinetics and inhibition as saturable
kinetics. Furthermore, inflows (synthesis) are modeled as
zero order, while outflows (degradation) are modeled as
first order with respect to its own state variable. The state
equations for motifs 1 and 3 are given in Eqs. (3)–(6):

Motif 1:

Ȧ(t) = ki − ko·A(t) + kc·E(t) (3)

Ė(t) = ks − kd·A(t)·E(t), (4)

Motif 3:

Ȧ(t) = ki − ko·A(t) + kc·E(t) (5)

Ė(t) = ks·
KA

i

KA
i +A(t)

− kd·E(t), (6)

where ki, ko, kc, ks, and kd are rate constants, and KA
i is

an inhibition constant.

3. OBSERVABILITY AND IDENTIFIABILITY

In order to introduce the concepts of observability and
identifiability we consider a general nonlinear state space
model:

ẋ(t) = f(x(t), p, u(t)) (7)

y(t) = g(x(t), p) + v(t) (8)

x0 = x(t0, p), (9)

where x(t)∈Rnx is the state vector, u(t)∈Rnu is the input
vector, y(t)∈Rny is the output vector, v(t)∈Rny is the
measurement noise vector, and p∈Rnp is a vector of system
parameters assumed to be constant. Furthermore, x0∈Rnx

denotes the initial conditions, and the nonlinear functions
f(·) and g(·) define the state and output equation, respec-
tively.

3.1 Observability

Biological systems are typically only partially observable
due to experimental limitations, and the available sys-
tem outputs may be a function of several states and/or
parameters (Raue et al., 2009). Thus, to determine the
unmeasurable states they must be be inferred from the
available system outputs, which is possible only if the
system is observable (Kalman, 1960).

”Observability: Given an initial state x0 and an admissible
control u(t), if the current system state x(t) can be deter-
mined only through the system output y(t) in a finite time,
the system is said to be observable. (Miao et al., 2011)”

Observability is a theoretical concept determined by the
system structure and the chosen outputs and typically as-
sumes noise-free measurements of the system output y and
that the parameters p of the model are known. However,
the parameters of a biological system are rarely known,
as these typically represent biochemical processes inside
the cells that are impossible to measure directly. Thus,
the parameter values must be estimated, typically based
on experiments, which often is associated with high cost.
In order to minimize the potential cost of experiments,
identifiability analysis is a useful tool in finding which
measurements are necessary to fully parameterize a model.

3.2 Identifiability

Identifiability: The dynamic system given by Eqs. (7)–(9)
is identifiable if p can be uniquely determined from the
given system input u(t) and the measurable system output
y(t); otherwise, it is said to be unidentifiable, (Miao et al.,
2011).

If a model is identifiable, it is possible to uniquely de-
termine the value of all its system parameters based on
the chosen model structure and outputs. Thus, through
performing identifiability analysis for different measure-
ment combinations, the smallest, or easiest to perform, set
of measurements that allows the model to be accurately
parameterized can be found. However, identifiability is, as
observability, a theoretical concept, and practical identifia-
bility limitations such as noisy measurements, restrictions
on admissible inputs, or limited time resolution of outputs
may occur.

Observability and identifiability both imply a strong con-
nection between inputs, states and outputs, and identifi-
ability can be considered a particular case of observabil-
ity where system parameters are treated as states with
zero dynamics, see e.g. Villaverde et al. (2016); Villaverde
(2019). Consequently, the parameters p are included as
part of the state vector x and methods originally developed
for investigating observability can also be used for parame-
ter identifiability as shown in Villaverde et al. (2016). This
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approach is similar to an Augmented Kalman filter, which
we introduce in the next section.

4. KALMAN FILTERING

Let us consider the discrete-time nonlinear system:

z(k + 1) = ϕ (z(k), u(k)) + w(k) (10)

y(k) = γ (z(k)) + v(k) (11)

where z(k)∈Rnz denotes the (unknown) state vector,
u(k)∈Rnu denotes the (known) input vector, y(k)∈Rny

denotes the (known) output vector, w(k)∈Rnx is the (un-
known) process noise, v(k)∈Rnv is the (unknown) mea-
surement noise, and ϕ(·) and γ(·) denote known functions
assumed to be differentiable with respect to z. It is also
assumed that w(k) and v(k) are zero mean multivariate
Gaussian noise with (known) covariance matrices Q∈Snz

and R∈Snh , respectively, where Sn denotes (real) symmet-
ric matrices of order n.

4.1 Extended Kalman filter (EKF)

The EKF comprises alternating phases of model-based
prediction and measurement-based update, forming an on-
going (theoretically infinite) cycle involving the following
variables and matrices, which are internal to the EKF:

• the a priori estimate z̄(k)∈Rnz ;
• the a priori covariance matrix

M(k) = E
[
(z(k)− z̄(k)) (z(k)− z̄(k))

T
]
∈Snz ;

• the a posteriori estimate ẑ(k)∈Rnz ;
• the a posteriori covariance matrix

P (k) = E
[
(z(k)− ẑ(k)) (z(k)− ẑ(k))

T
]
∈Snz ;

During the model-based prediction, the EKF computes the
a priori estimate based on the state equation, as follows:

z̄(k) = ϕ (ẑ(k − 1), u(k − 1)) (12)

At the same time, the a priori covariance matrix is
updated according to the following equation:

M(k) = A(k)P (k − 1)A(k)T +Q (13)

where the matrix A(k) is obtained through a first-order
Taylor approximation of the nonlinear function ϕ at the
most recent state estimate:

A(k) =
∂ϕ

∂z

∣∣∣∣
ẑ(k−1),u(k−1)

(14)

where the operator ∂/∂ is meant in the Jacobian matrix
sense.

During the measurement-based update, the EKF com-
putes the Kalman gain K(k) to be used to account for
the so-called innovation, i.e., the measurement-estimate
mismatch, according to:

K(k) = M(k)C(k)T
[
C(k)M(k)C(k)T +R

]−1
(15)

where the matrix C(k) is obtained through a first-order
Taylor approximation of the nonlinear function γ at the
most recent state estimate:

C(k) = ∂γ

∂z

∣∣∣∣
z̄(k)

(16)

The Kalman gain essentially determines how much weight
is given to the current measurement, and helps strike a

balance between trusting the model and incorporating new
measurements y(k), according to the following equation:

ẑ(k) = z̄(k) +K(k) [y(k)− γ (z̄(k))] (17)

Finally, the current value of the a posteriori covariance
matrix is computed using:

P (k) = [I −K(k)C(k)]M(k) (18)

4.2 Augmented Extended Kalman filter (AEKF)

Following an approach that is well consolidated in the field
of fault diagnosis, see e.g. Patton and Klinkhieo (2009);
Zhang et al. (2020); Rotondo et al. (2021), it is possible
to use state observers, such as the above described EKF,
to obtain a real-time estimate of the unknown parameter
vector p appearing in Eq. (7). The first required step is
a discretization of Eq. (7), which can be done using a
variety of methods (Franklin et al., 1998), with forward-
Euler being the most common due to its simplicity, thus
obtaining:

x(k + 1) = x(k) + Ts·f(x(k), p, u(k)) (19)

y(k) = g(x(k), p) + v(k) (20)

x0 = x(k0, p), (21)

where Ts denotes the sampling time. Then, a description of
the dynamical behavior of the parameters to be estimated
is introduced, which in the case of constant parameters
reads as follows:

p(k + 1) = p(k) (22)

At this point, it is possible to define an augmented state

vector as z(k) =
[
x(k)T , p(k)T

]T
=

[
z1(k)

T , z2(k)
T
]T

and, by combining together Eqs. (19)–(22), obtain an aug-
mented state-space model that fits the form of Eqs. (10)–
(11), with:

ϕ (z(k), u(k)) =

[
z1(k) + f (z1(k), z2(k), u(k))

z2(k)

]
(23)

γ (z(k)) = g (z1(k), z2(k)) (24)

Clearly, an EKF implemented on the augmented model
would return estimates z̄(k) and ẑ(k) which correspond to
the joint state-parameter estimates x̄(k), p̄(k) and x̂(k),
p̂(k), respectively.

To this end, one can define the matrix Q to account
for disturbances acting on the state x, the possible time-
varyingness of p, or to incorporate information about the
model uncertainty into the estimation.

4.3 Implementation

The models in Eqs. (3)–(4) and Eqs. (5)–(6), respectively,
are the basis for both the process and the AEKF for motif 1
and 3, where the augmented state vectors are given as

motif 1: z(k) = [A,E, ki, ko, kc, ks, kd] (25)

motif 3: z(k) = [A,E, ki, ko, kc, ks, kd,K
A
i ]. (26)

For easier reference to the parameters, we refer to them as

[ki, ko, kc, ks, kd,K
A
i ] = [k1, k2, k3, k4, k5, k6], (27)

or generally as kn∀ n∈{1, . . . , N} where N=5 for motif 1
and N=6 for motif 3. As there is no external input u(k),
the motifs are autonomous systems (Haus et al., 2023),
and the estimation is solely based on measurements of the
state variables.
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5. RESULTS

One of the main findings in Haus et al. (2023) was that
noise free measurements of the state variables A and E of
motif 1 and 3 proved sufficient for structural identifiability,
i.e. in theory it is possible to uniquely estimate all the
parameters. Hence, the results presented here are focused
on reproducing these results using AEKF, and also to
investigate the robustness with respect to noise level and
initial filter conditions of parameters and state variables.

5.1 Simulation setup

For simplicity, the values of all the parameters in the
process are set to 1, and we term these parameters as
kn,process. The steady state values of A and E for each
motif are calculated using Eqs. (3)–(4) and Eqs. (5)–(6),
respectively. As there are no external input to provide
excitation, the initial conditions of A and E in both the
process and the AEKF are increased with 30% from the
calculated steady state values. The initial conditions of
the unknown parameters in the AEKF are assigned a
uniformly distributed random number within 1% deviation
from the value of kn,process=1. This small deviation is
considered sufficient to demonstrate whether the AEKF
produce similar results as the structural identifiability
from Haus et al. (2023).

For the noisy conditions, both the process noise w(k) and
the measurement noise v(k) are modeled as bandwidth
limited zero mean white noise. Simulations are run for
10 seconds with a stepsize of Ts=0.0002 seconds. As the
AEKFs typically converge within 2 seconds, only the first
3 seconds are shown in Figs. 2–4. In order to quantitatively
compare the Kalman filter performances, we calculate
the following parameter error measure for each individual
parameter kn,

∆en =
1

5000

50000∑
i=45000

∣∣kn,process(i)− kn,est(i)
∣∣ (28)

where kn,est is the estimated parameter value. Thus, ∆en
is the mean of the difference between the process value
and the estimated value of parameter kn during the last
second of the simulation, i.e. the last 5000 samples. To get
a performance measure for the entire motif, we calculate
an overall motif error measure as follows,

∆emotif =
1

N

N∑
n=1

∆en (29)

where N=5 for motif 1 and N=6 for motif 3.

All state and parameter values are either in arbitrary units
or without units.

5.2 Motif 1

The simulation results for the noise free motif 1 are
shown in Fig. 2, where we observe that all parameters
quickly converge with an overall motif error measure of
∆emotif=0.0002. These results are in accordance with the
findings in Haus et al. (2023). In order to investigate the
effect of noise, we added both process and measurement
noise to A and E, and increased the noise power gradually.
A simulation example of this is shown in Fig. 3, where the

Fig. 2. Simulation results for motif 1 with no noise. The
upper panel shows the states A and E, whereas the
lower panel shows the parameter estimates.

noise power is 1·10−6 for both w(k) and v(k), and where
all parameters converge fairly quickly with an overall motif
error measure of ∆emotif=0.059.

Fig. 3. Simulation results for motif 1 with process and mea-
surement noise. The upper panel shows the states A
and E, whereas the lower panel shows the parameter
estimates.

The upper panel of Fig. 3 shows that the noise is quite sub-
stantial, whereas the lower panel demonstrate that even
though several parameters deviate up to 500% from the
initial condition during the first 0.5 seconds, all parameters
still converge to within 10% of the process value at steady
state. Note that negative parameter values implies that
the species flow in the motif is reversed. To summarize, we
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conclude that the AEKF for motif 1 is quite robust against
process and measurement noise.

5.3 Motif 3

Similarly to motif 1, we performed simulations with and
without noise for motif 3. The noise free simulations
(not shown) revealed slightly slower dynamics compared
to motif 1, but with the same overall motif error mea-
sure of ∆emotif=0.0002. On the other hand, when both
process noise and measurement noise were added, the
AEKF showed poor performance already at a noise power
level of 1·10−11, and estimation breaks down at a noise
power of 1·10−10 with an overall motif error measure of
∆emotif=0.5, see Fig. 4. Thus, the AEKF is more sensitive
to noise for motif 3 compared to motif 1, and we attribute
this to the increased non-linearity from the saturable in-

hibition term
KA

i

KA
i
+A

in Eq. (6).

Fig. 4. Simulation results for motif 3 with process and mea-
surement noise. The upper panel shows the states A
and E, whereas the lower panel shows the parameter
estimates.

5.4 Noise and initial condition of parameters

To investigate the effect of noise in the performance
of the AEKF in more detail, we simulated both motifs
while the noise power level was increased from 1·10−15

to 1·10−3, in steps of factor 10. To compensate for the
randomly chosen initial conditions for the parameters
(still within 1% deviation of kn,process), we averaged the
results over 10 simulations for each noise power value. We
performed simulations with i) only process noise, ii) only
measurement noise, and iii) both types of noise. As it
turned out that the results were more or less similar for
all three cases, we present in Fig. 5 the results for case iii)
only.

Panels A and B show the averaged parameter error mea-
sure for motif 1 and 3, respectively, calculated as

∆en =
1

10

10∑
i=1

∆en,i (30)

where ∆en,i ∀ i∈1, . . . , 10 is based on the parameter
error measure from Eq. (28) calculated during the 10
simulations. The results clearly show that motif 3 is more
sensitive to noise than motif 1. Moreover, the profile of
each ∆en curve (for each parameter) is more consistent for
motif 1, whereas the profiles for motif 3 are more diverse
where we see that the parameters ks, kd, and KA

i are more
prone to low noise levels, while kc and ko are more prone
to high noise levels.

We also investigated how the initial conditions of the pa-
rameter values in the AEKF affected the overall motif er-
ror measure∆emotif from Eq. (29) in noise free simulations.
Thus, we performed simulations where the initial condition
for each parameter kn in the AEKF were increased in steps
from the true value of 1 up to 10. These results are shown
in panels C and D in Fig. 5 for motif 1 and motif 3, respec-
tively, and we see that the AEKF for motif 1 is relatively
unaffected by the increasing initial conditions. Actually, an
initial condition 10 times the real parameter value results
in ∆en≈10−2 for most of the parameters. Interestingly, the
curve for parameter kc have a surprisingly odd shape where
∆en have a distinct decreased value for an initial condition
of 5 times the real parameter value. On the other hand,
and in accordance with panel B, the results for motif 3
show relatively poor performance for increased initial con-
ditions. The performance drops significantly already at a
small deviation of only a few percent from the real value
and becomes increasingly worse as the initial conditions
increase.

To summarize, the AEKF show better performance for
motif 1 compared to motif 3, both for increasing noise
levels and increasing initial conditions for the parameters.
The cause of this is likely that motif 3 is more non-linear
than motif 1, as although the added noise is initially zero-
mean white noise, it is not guaranteed to be zero-mean
after being processed through the nonlinear system. Thus,
the noise creates a bias which increases with the degree of
non-linearity. Furthermore, as the AEKF use a linearized
A(k) matrix based on the current state estimate together
with the parameter values with initial conditions far away
from the real values, it is most likely to introduce a bias
which the Kalman filter is unable to compensate for.

5.5 Initial conditions of A and E

Finally, we examined how the level of excitation of the
process affected the performance of the AEKF, i.e. the
level of the initial conditions of the states A and E in
both the process and the filter. We adjusted the initial
conditions for both states simultaneously with a factor
α between 0.2<α<2, and simulated both without noise
and with a noise power of 1·10−6 in both the process and
measurement noise. The results are shown in Fig. 6 for
motif 1, where ∆emotif is plotted as a function of α for
both noise free and noisy conditions.

The blue curve in Fig. 6 show that under noise-free
conditions only a small excitation in the initial conditions
of A and E is necessary to reduce the value of ∆emotif.
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Initial k  values in AEKFn Initial k  values in AEKFn

Averaged parameter error measure, motif 1 Averaged parameter error measure, motif 3 

Parameter error measure, motif 1 Parameter error measure, motif 3

Fig. 5. Panels A/B show the averaged parameter error measure∆en from Eq. (30) as a function of noise power for motif 1
/ motif 3. Panels C/D show the parameter error measure ∆en from Eq. (28) as a function of initial conditions for
the parameters in the AEKFs for motif 1 / motif 3.

No noise
10-6 power noise

Motif error measure, motif 1 

Initial condition factor, α

Fig. 6. Plot of the overall motif error measure ∆emotif as
a function of initial condition factor α for both noise
free and noisy conditions.

In fact, an increase in α from α=1 to α=1.02 reduces
∆emotif from 0.007 to approximately 0.0002. The noisy
situation illustrated by the red curve show the same un-
derlying mechanisms where increased excitation in initial
conditions of A and E reduces the value of ∆emotif, but the
decrease is not as prominent and the overall level is higher
than for the noise free situation. The results are reasonable
since decreased excitation decreases the dynamics of A and
E, leading to an increased noise-to-signal ratio. Thus, at
low degrees of excitation the information provided to the
Kalman filter by the measurements is predominantly noise.

6. CONCLUSIONS

We have implemented an Augmented and Extended
Kalman filter (AEKF) able to estimate all unknown pa-
rameters for the basic controller motifs 1 and 3 when both
states are measured. Under noise free conditions all the
parameters were accurately estimated, which corresponds
well with previous results showing that these motifs are
structurally identifiable with the same measurements. We

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.053 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

390



also investigated the performance of the AEKF with re-
spect to noise in both the process and measurements,
initial conditions of the unknown parameters of AEKF,
and finally, the initial conditions of the states A and E. We
found that the Kalman filter generally performed better
on motif 1 than on the more nonlinear motif 3. This
suggests that a state observer better suited for nonlinear
models, such as the Unscented Kalman Filter (Julier and
Uhlmann, 1997), may be more appropriate to use for the
more nonlinear controller motifs.
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Zhang, W., Wang, Z., Räıssi, T., Wang, Y., and Shen, Y.
(2020). A state augmentation approach to interval fault
estimation for descriptor systems. European Journal of
Control, 51, 19–29.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.053 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

391


	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Material Acquisition Stage
	2.2 Manufacturing Stage
	2.3 End of life Stage
	2.4 Transportation and shipping
	2.5 Model and calculations

	3. RESULTS AND DISCUSSION
	4. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Introduction
	Geometries and correlations
	Optimization procedure
	CFD model
	Governing equations
	Geometry and discretization
	Boundary conditions
	Post-processing
	Thermophysical properties
	Grid refinement study

	Results and Discussion
	Results from optimisation
	Results from CFD simulations

	Conclusions
	Introduction
	Numerical methods
	Thermodynamic optimization
	Geometric optimization
	Transient modelling

	Results
	Thermodynamic results
	Geometric results
	Transient results

	Conclusion
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	3. VALIDATION OF THE NEW MECHANISM
	3.1 IDT and LBV simulations
	3.2 Simulation of RCCI NG/diesel fueled engines
	3.4 3-D CFD simulation
	3.5 Quasi-dimensional simulation

	4. CONCLUSION
	REFERENCES
	1. INTRODUCTION
	2. MULTISEGMENT WELL MODEL
	3. FLOW CONTROL TECHNOLOGY
	3.1 Inflow control device (ICD)
	3.2 Autonomous inflow control device (AICD)
	3.3 Autonomous inflow control valve (AICV)

	4. RESERVOIR MODEL IN ECLIPSE
	4.1 Reservoir fluid and rock properties
	4.2 Reservoir grid
	4.3 Reservoir permeability
	4.4 Initial conditions

	5. WELL MODEL IN OLGA
	5.1 Compositional settings
	5.3 Flow component settings

	6. RESULTS AND DISCUSSION
	6.1 Oil production
	6.2 Water production
	6.3 Total liquid production
	6.4 Water cut variations
	6.5 Fluid saturations
	6.6 Chocking Effects of FCDs

	7. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Data collection
	2.2 Attention mechanism
	2.3 Training methodology

	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	REFERENCES
	Appendix A: Confusion matrix and training/validation loss curves for Vanilla CNN, CNN, and FF transformer
	Introduction
	Methodology
	Parallelization
	Numerical method
	Interpolation with plane equations
	Rectangular grid
	Reusing partial results
	Communication

	Results
	Comparison to analytical solution
	Benchmarks
	Scaling

	Conclusion
	Acknowledgements

