
Integration of Optimization Methods into Simulation Technology for

Manufacturing via Warehouse Optimization

H. Hakalahti*. A. Ala-Huikku**. T. Luomanmäki***. J. Hirvonen****.

*Digital Factory research group, Seinäjoki University of Applied Sciences, Finland (e-mail:

hannu.hakalahti@seamk.fi).

 **Digital Factory research group, Seinäjoki University of Applied Sciences, Finland (e-mail:

alisa.ala-huikku@seamk.fi).

***Digital Factory research group, Seinäjoki University of Applied Sciences, Finland (e-mail:

toni.luomanmaki@seamk.fi).

****Digital Factory research group, Seinäjoki University of Applied Sciences, Finland (e-mail:

juha.hirvonen@seamk.fi).

Abstract: The manufacturing industry is in a strong transition towards digital, intelligent, and sustainable

manufacturing. However, small and medium-sized enterprises (SME) in the manufacturing industry often

lack the resources and know-how to utilize digital tools as part of their research and development (R&D)

activities. Thus, there is a need for concrete examples to show the benefits of these tools. This paper

discusses a demonstration of warehouse optimization where a genetic algorithm is applied to optimize pallet

transfers. The simulation model of a flexible manufacturing system (FMS) cell includes a warehouse with

nine Euro pallets and a stacker crane. Visual Components simulation software was used for the simulation

and an external Python application for the algorithm. As a result of the optimization, the total duration of

the transfers was reduced by approximately 20 seconds (8.1 %). The demonstration has been used to

showcase the integration of optimization methods into simulation technology and has ignited longer-term

collaboration with the local industry on the same theme.

Keywords: 3D simulation, genetic algorithms, high bay rack, optimization, discrete event simulation

1. INTRODUCTION

Simulation and optimization are useful tools to understand,

design, and develop production processes. For example,

simulation can be used to model and analyze processes before

they are implemented in the real production environment.

Production processes can be optimized based on real-time or

historical data. For example, several data analysis and

computation models can be used to quickly locate equipment

or quality problems and improve resource efficiency in

production.

The combination of simulation and optimization enables a

comprehensive analysis of production processes and efficient

production planning. They can save costs, reduce production

risks, and enhance product quality.

Bojic et al. (2023) did a case study using discrete-event

simulation (DES) and genetic algorithm (GA) to assist

operational production planning and optimization in the textile

industry. A simulation model was created using Tecnomatix

Plant Simulation software for a textile factory that produces

over 300,000 shirts per year. The simulation model considered

changes in customer demand, production times, available

resources, and batch sizes. GA optimization improved

production efficiency and reduced work in process (WIP)

inventory levels.

Ernst et al. (2017) developed an optimization tool called

Adv:ProcessOptimizer for multi-objective chemical process

optimization. A specific GA was customized and developed

for this tool. The tool integrates established methods with new

concepts that work with simulation tools like Aspen Plus and

ChemCad. The effectiveness of the tool was validated by

optimizing an industrial styrene process. The results showed a

well-distributed Pareto front, leading to savings in investment

and operating costs compared to traditional methods. This

confirmed the capability of Adv-tool to improve process

efficiency and its support for decision making in process

design.

Howard et al. (2023) developed a method to investigate energy

flexibility in process cooling systems. A case study was

performed on a Danish plant that uses process cooling for

canned meat production. They used a combination of multi-

agent, discrete-event, and system dynamics simulations to

model the process. The results showed that significant savings

in operational costs and reduction in CO2 emissions can be

achieved by optimizing the schedule of the refrigeration units

based on forecasts of weather conditions, electricity prices and

CO2 emissions. This method provided insights on how to

improve the energy performance of process cooling systems in

food production without compromising the product quality

and the production rate, through a weeklong simulation

scenario.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

407

mailto:hannu.hakalahti@seamk.fi
mailto:alisa.ala-huikku@seamk.fi
mailto:toni.luomanmaki@seamk.fi
mailto:juha.hirvonen@seamk.fi

Xie et al. (2015) used the genetic algorithm to schedule the

single overhead crane so that its transport and shuffling

operations are completed in the shortest possible time. The

study found that the developed genetic algorithm provided

good and quick solutions to the crane scheduling problem.

These case studies demonstrate how the integration of

simulation and optimization tools works in various

manufacturing industries. They can be useful for different

kinds of applications, leading to more efficient, cost-effective,

and high-quality production. However, SMEs in the

manufacturing industry often lack resources and know-how to

utilize these tools as part of their R&D activities or even

information of their existence. Concrete pilots that

demonstrate solving common problems in manufacturing

industry are required to increase awareness of the possibilities

of new simulation and optimization tools, and their

integrations.

Warehouse operations provide an ideal demonstration

environment for manufacturing SMEs due to their complexity,

scalability, and the critical need for efficiency. It has been

estimated that approximately 55 % of warehouse operating

costs are caused by picking tasks (Bartholdi and Hackman,

2019, p. 25). Thus, increasing the picking and placing

efficiency can generate remarkable savings.

Genetic algorithms are often used in optimization problems

due to their robust search capabilities and flexibility as shown

by two of the examples mentioned earlier in this section. The

interest in genetic algorithms in the field of logistics has as

well increased in the recent years among the researchers, and

the number of publications has doubled between the years

2016 and 2020 (Grznár et al, 2021). In warehouse optimization

problems reported in the literature, the goal often is to improve

a forklift route in a warehouse described by a 2D layout

consisting of shelves and corridors (e.g. Avdekins and

Savrasovs, 2019; Kordos et al, 2020). Grznár et al (2021)

worked with a 3D simulation of a conveyor system with

workers sorting the goods coming to and leaving the

warehouse. However, this work did not involve the actual

warehouse structure.

This paper discusses optimizing an automated warehouse of a

flexible manufacturing cell by utilizing a genetic algorithm.

The high-bay rack and the stacker crane of the model add

complexity due to vertical space utilization and dynamic

movement, which are not typically addressed in simpler, 2D

warehouse models. Also, the 3D simulation provides a more

realistic and comprehensive testbed for evaluating the

performance of GAs. Moreover, the FMS cell as a sample

environment makes the demonstration interesting and

accessible for the metal industry companies that are locally

abundant. Finally, the demonstration involves cooperation of

simulation software and an external optimization library,

which gives a good example of the expansion potential of the

applicable tools.

The paper is organized as follows: Section 2 describes the

main methods applied in this study, discrete event-based

simulation and genetic algorithms, and the software used.

Section 3 discusses the experiments performed and the results

gained. The conclusion is drawn in the last section.

2. METHODS AND SOFTWARE

2.1 Discrete Event-Based Simulation

According to Banks et al (2019, p. 3) a simulation replicates

the functioning of a real-world process or system as it evolves

over time. Whether the simulation is conducted manually or

utilizing a computer, it entails creating an artificial history of

a system and observing that history to make inferences about

the real system’s operating characteristics. Shannon (1998, p.

1) defines simulation as a process of modeling a real system

and taking experiments with the model in order to gain insights

about the behavior of the real-world system and furthermore,

to evaluate different operational strategies for the system.

Banks et al (2019, p. 9) categorize systems as discrete or

continuous. Choi and Kang (2013, p. 8) adds quantum class

to enhance the system’s classification. They agree together

that rarely any process is purely a certain one, but more

of a combination of two or more, however, some class

describes more the system behavior than the other ones.

Banks et al (2019, p. 9) define the discrete system in a way

where state variable(s) change only at a discrete set of

points in time. Furthermore, Choi and Kang (2013, p. 9)

defines the discrete-event simulation as a computer

evaluation of a discrete-event dynamic system model. In

the model, the operation of the simulated system is

defined as a chronological sequence of events. As the pilot

case was a discrete manufacturing process, the simulation

method was chosen accordingly.

Fig. 1. Flowchart of the genetic algorithm.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

408

2.2 Genetic Algorithms

2.2.1 Basics

A genetic algorithm developed by John Holland (Holland,

1975) is an optimization and search technique that is based on

the principles of natural selection and genetics. In the genetic

algorithm, a population of chromosomes evolve towards a

better solution over each consecutive generation by using

parent selection, crossover, and mutation. The genetic

algorithms belong to the larger class of the evolutionary

algorithms (EA) (Townsend, 2003).

The basic flowchart of the genetic algorithm is presented in

Fig. 1.

2.2.2 Population

GA is an iterative process which starts with the creation of

randomly chosen initial population of individuals (solution

candidates for a given problem), which are represented by

finite linear string of symbols, known as chromosome. A gene

is an element in the chromosome, as shown in Fig. 2, and

the allele is the value of the gene (Townsend, 2003).

Determining the size of the population is important

since choosing too small population might cause the GA to
converge prematurely to a local minimum instead of global
minimum due to lack of genetic variation in the population.
On the other hand, too large population will require more
computing time and thus makes the GA to run slower.
The population size remains constant during the running of
the genetic algorithm.

2.2.3 Genotype Representation

Genotype is a genetic composition of the chromosome (Haupt

and Haupt, 2004).

A binary representation, where the chromosomes are

represented as bits (a string of 1s and 0s), is the simplest and

widely used representation. A floating-point representation is

used for the continuous GA, and permutation representation is

used for the cases where the order of genes matters (Fig. 3).

Perhaps the most well-known use case of the permutation

representation is the traveling salesman problem (TSP), where

each city can be visited just once in some order.

Parent selection operator selects the chromosomes in the

population for reproduction. On every generation, the selected

chromosomes are collected to a list known as mating pool. The

better fitness value the chromosome has, the higher probability

it has for being selected for the mating pool. Thus, the selection

is based on the strategy of the survival-of-the-fittest

(Townsend, 2003).

There are several different selection methods used in the

genetic algorithms such as fitness-proportional selection,

ranked selection, stochastic universal sampling, roulette wheel

selection, truncation selection, and tournament selection

(Townsend, 2003).

2.2.6 Crossover

Crossover operator swaps the genetic material between two

parent chromosomes to create new offspring for the next

generation (Townsend, 2003).

The crossover between two good chromosomes does not

necessarily create as fit or better offspring. However, because

the parents are good, the probability of the offspring to be good

is high, If the offspring happens to be a poor solution

candidate, it will be removed from the population during the

next generation.

Fig. 2. Example of population, chromosome, and gene.

Fig. 3. Example of genotype representations in GA.

2.2.4 Fitness Function

At every evolutionary step, also known as generation, the

current population is evaluated according to a fitness function

set for a given problem. Because the fitness function calculates

the fitness value for every chromosome on every generation, it

greatly impacts the run time of the GA. Too computing heavy

fitness function increases the run time of the GA (Townsend,

2003).

2.2.5 Selection

Parent selection operator selects the chromosomes in the

population for reproduction. On every generation, the selected

chromosomes are collected to a list known as mating pool. The

better fitness value the chromosome has, the higher probability

it has for being selected for the mating pool. Thus, the selection

is based on the strategy of the survival-of-the-fittest

(Townsend, 2003).

There are several different selection methods used in the

genetic algorithms such as fitness-proportional selection,

ranked selection, stochastic universal sampling, roulette wheel

selection, truncation selection, and tournament selection

(Townsend, 2003).

In tournament selection, a random number of individuals are

selected from the population. Then, the best individual is

selected from this group to be as a parent. This process is

repeated until the mating pool is filled. Tournaments are often

held between pairs of individuals (Goldberg & Deb, 1991).

2.2.6 Crossover

Crossover operator swaps the genetic material between two

parent chromosomes to create new offspring for the next

generation (Townsend, 2003).

The crossover between two good chromosomes does not

necessarily create as fit or better offspring. However, because

the parents are good, the probability of the offspring to be good

is high, If the offspring happens to be a poor solution

candidate, it will be removed from the population during the

next generation.

In one-point or simple crossover, a random crossover point k

is selected uniformly between 1 and the length of the parent

chromosomes minus one [1, l – 1]. The genes after the

crossover point k are then swapped between the parent

chromosomes to create new offspring, as shown in Fig. 4

(Goldberg, 1989, p. 12).

In two-point crossover, two random crossover points are

selected uniformly among the length of the parent

chromosomes. The alternating segments of genes are then

swapped between the parent chromosomes, as shown in Fig. 5.

In general, the two-point crossover is better than one-point

crossover to find solution more quickly (Townsend, 2003).

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

409

In uniform crossover, a randomly generated crossover mask is

used to decide from which parent the offspring gets its genes.

If there is a value 1 or 0 in the mask, the gene is copied from

the first parent or second parent, respectively (Fig. 6). This

procedure is repeated for the second offspring (Townsend,

2003).

In permutation problems, standard crossover operators are not

appropriate since each gene should be represented once and

only once in the chromosome. One possible solution is to use

a partially matched crossover (PMX), Under PMX, two

random crossover points are chosen, and the genes are

exchanged between these two points. The exchanged genes

remain intact during the rest of the procedure. On the final step,

the doubles (marked as yellow color in Fig. 7) are

exchanged between the children to get correct permutations

(Haupt and Haupt, 2004). Each child chromosome

contains ordering information partially determined by

each of its parents.

Townsend (2003) gives a following summary of crossover

methods: there is no more than 20 % difference in speed

among the one-point, two-point, and uniform crossover.

Uniform crossover or two-point crossover works better if the

population is small or large, respectively, compared to the

problem complexity.

2.2.7 Mutation

The mutation operator changes the value of one or more genes

at randomly selected position in the chromosome. Mutation

can take place at each position in the chromosome with some

pre-defined probability, known as mutation rate, which is

usually small. The mutation operator makes the GA to find a

near optimal solution to a given problem more easily by

maintaining the genetic diversity in the population (Townsend,

2003).

The most common mutation operators are binary mutation,

random resetting, swap mutation, scramble mutation, and

inversion mutation.

In binary mutation, the value of the one or more genes is

altered with a probability equal to the mutation rate

(Larranaga, 1999). For example, the value of the third gene is

changed from 1 to 0 in Fig. 8.

In swap mutation (Fig. 9), the values of two randomly selected

genes are interchanged. The swap mutation is commonly used

in permutation-based representations (Larranaga, 1999).

In scramble mutation (Fig. 10), a subset of the genes on the

chromosome are selected and scrambled randomly (Larranaga,

1999).

In inversion mutation, two random points are chosen along the

length of the chromosome. The genes between these points are

then inverted as shown in Figure 11 (Goldberg, 1989, p. 166).

2.2.8 Elitism

Elitism means that the most fit chromosomes of the current

generation are preserved for the next generation. Elitism

prevents the population from losing its best solution due to

crossover or mutation. The unwanted side effect is that there

might be a super fit chromosome that causes the GA to

converge prematurely (Townsend, 2003).

The elite size means the number of fit chromosomes preserved

for the next generation.

2.2.9 Termination Condition

The termination condition of a genetic algorithm defines when

to stop running the algorithm. Usually, the GA run is

terminated when one of the following conditions is met: there

is no improvement in the population for given number of

consecutive generations, the maximum number of generations

Fig. 4. Example of one-point crossover.

Fig. 5. Example of two-point crossover.

Fig. 6. Example of uniform crossover.

Fig. 7. Example of partially matched crossover (PMX).

Fig. 8. Example of binary mutation.

Fig. 9. Example of swap mutation.

Fig. 10. Example of scramble mutation.

Fig. 11. Example of inversion mutation.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

410

is reached, or the objective function has reached a certain pre-

defined value.

2.3 Visual Components

Visual Components is a 3D simulation and offline

programming software that can be used for layout planning,

feasibility analysis, virtual commissioning, and robot

programming. The software has an extensive library of 3D

models with 3000+ pre-defined and ready-to-use components

including robots, conveyors, machines, resources, robot tools,

factory facilities, and more. The user can also import self-made

3D models into the software (Visual Components, 2024).

Python programming language (version 2.7) can be utilized in

components scripts. It is possible to add 3rd party Python

package to the Visual Components, but this depends on the

package. Alternatively, the user can communicate with an

external application by using the TCP/IP sockets.

3. EXPERIMENTS AND RESULTS

3.1 Flexible Manufacturing Cell

There is a flexible manufacturing cell in the SeAMK’s

laboratory of the Machine and Production Technology. The

cell consists of two Fanuc R2000iB/165F industrial robots,

Kitamura HX500i machining center, workpiece positioner,

and the storage system made by Fastems. The storage system

has following components: high bay rack for storing Euro

pallets and machining pallets, stacker crane for moving the

pallets between storage shelves and workstations, material

station for inserting and retrieving pallets in and out of the

storage, loading station for moving the machining pallets

between the stacker crane and robot, and two pallet banks next

to the robots for holding the Euro pallets.

A simulation model (Figs. 12 and 13) of the FMS cell was

made during one of the research and development

projects. The robots, workpiece positioner, grill fences,

storage selves, and Euro pallets are from the component

library of the Visual Components. The stacker crane, pallet

banks, loading station, material station, machining center,

and machining pallet were designed in a 3D CAD software

and imported into the Visual Components as STL files.

The simulation model of the FMS cell works as its real-world

counterpart. The model does not, however, work together with

the Fastems Manufacturing Management Software (MMS)

that is used to control the real FMS cell. Instead, the simulation

model relies on the component scripts to function properly.

3.2 Goal

The goal of the experiment was to utilize the genetic algorithm

in the simulation model of the flexible manufacturing cell to

minimize the time it takes to reshuffle the warehouse. In other

words, the goal was to find the best permutation of Euro pallet

transfers so that the stacker crane could move the pallets in the

least amount of time. This kind of storage reshuffle process is

common in the warehouses.

As the number of transfers increases, the number of different

combinations of transfers also increases. For example, in the

case of just nine transfers, the number of different

combinations is 9! = 362 880.

Although the genetic algorithm can explore multiple solution

candidates in parallel, it is not possible to compute the duration

of every possible combination of transfers in a reasonable time

frame. With the genetic algorithm, however, there is no need

to go through every possible combination of transfers.

3.3 Pallet Transfers

The storage reshuffle process consists of nine transfers of Euro

pallets. The transfers are randomly generated to eliminate the

human bias for choosing transfers that one knows will benefit

strongly from the optimization.

In the simulation model, the transfer of the Euro pallet is

represented by a dictionary which contains the pallet ID, stock

keeping unit (SKU) of the pallet, and source and destination

shelf positions. For example, {“pid”: 1, “sku”: “epallet”, “src”:

3, “dst”: 20}, represents the transfer of the Euro pallet with id

= 1 from a shelf position 3 to a shelf position 20. In the GA,

these pallet transfers are represented as integers from 1 to 9, so

when the fitness values are computed, one needs to decode the

genes of the chromosomes into dictionaries.

In this experiment, the fitness function computes the total

duration of the nine pallet transfers. Because the goal is to find

the minimum duration, a shorter duration yields to smaller

fitness value.

Fig. 12. Front view of the simulation model.

Fig. 13. Back view of the simulation model.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

411

To speed up the computation of the fitness function, the

transfer time from any given shelf position to any other shelf

position was measured programmatically by computing the

time difference between the moment when the pallet was

picked up from the shelf and the moment when the pallet was

placed onto the shelf. The transfer times were then hard coded

into the component script of the stacker crane.

The process of measuring the transfer times was quite a tedious

task. Alternatively, one could have made the simulation model

so that the fitness value of the chromosome is computed by

simulation. Based on some testing, the computation of fitness

values by simulation took at least 30 minutes so it was decided

to use hard coded transfer times instead.

The Euro pallet components are created to the source positions

of the pallet transfers when the user starts the simulation.

3.4 Utilizing the GA in the Simulation Model

The Python code for the genetic algorithm was written into the

PythonScript object of the stacker crane component in the

simulation model. The genetic algorithm was implemented as

a Python class whose input arguments are the direction of the

optimization as an integer (0 for minimum and 1 for

maximum), genes as a list of pallet IDs from 1 to 9, size of the

population as integer, number of generations as integer, fitness

function as a callable function, size of elite parents in the

population as integer, and the mutation rate as a float.

The minimum direction was used since the goal was to find the

order of the transfers in which the transfers are performed as

quickly as possible, i.e. in minimum time. Based on some

testing the population size was set to 1000 since with larger

sizes the simulation ran significantly longer times without any

major reduction in total transfer times of the pallets. The

number of generations was set to 40 and the elite size to 10.

According to Townsend (2003, p. 43) the probability of

mutation is set to be inversely proportional to the size of the

chromosome. Since each chromosome has 9 genes, the

mutation rate was set to 11 % (1/9 = 0.111). The parents of the

next generation were selected using a tournament selection of

3 chromosomes. Because the goal was to find the best

permutation of pallet transfers, PMX was used for the

crossover operator. Finally, the swap mutation was used for

the mutation operator. Below is a list of the values of the

operators and input arguments of the GA.

• Direction: minimum

• Genes: [1, 2, 3, 4, 5, 6, 7, 8, 9]

• Population size: 1000

• Number of generations: 40

• Elite size: 10

• Mutation rate: 11 %

• Selection: tournament of 3 chromosomes

• Crossover: partially matched crossover (PMX)

• Mutation: swap.

3.5 Results

The simulation was run 50 times with and without the genetic

algorithm to see how much the genetic algorithm reduces the

total transfer time.

When the order of the transfers was optimized with the genetic

algorithm, the total duration of the transfers was reduced by

circa 20.5 seconds on average. This represents about an 8.1 %

reduction in transfer time. The time reduction achieved with

the GA in each run is shown in Fig. 14.

It was noticed that the fitness value did not improve that much

between the first and last generation of the genetic algorithm.

Figure 15 shows a typical progress of the fitness value during

the generations of the GA.

In many cases, the fitness value, i.e. the duration of the

transfers, improved mere few seconds. The different

combinations of input parameters of the genetic algorithm

were tested but the results remained the same.

One possible explanation is the small population size which

covers about 0.002 % of all possible solutions (362 880).

Increasing the population size would, however, make the

simulation to run significantly longer. Thus, the population

size of 1000 was chosen.

Fig. 14. Histogram of the time reduction achieved with the GA.

Fig. 15. The progress of the fitness value.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

412

Other optimization methods than genetic algorithm were not

tested in this experiment so it is hard to say if some of them

could perform better than GA.

4. CONCLUSIONS

Manufacturing systems are complex environments with many

interacting parts and variables in dynamic processess. These

complexities often lead to challenges that are difficult to solve

with traditional methods, especially as the demand for

efficiency grows. To address these issues, combining

optimization techniques with 3D simulation has proven to be

highly effective. This approach allows us to explore a wide

range of potential solutions, helping to find the best ways to

improve system performance. By integrating these methods,

we can make manufacturing processes more efficient and

better equipped to handle the complexities of modern

production.

This paper showed how to use an optimization method

together with a simulation tool to find a solution that saves

time and resources in production. The total time saving of 20

seconds (8.1 %) that was achieved in the demonstration is a

significant improvement to the process. The automated

warehouse that was utilized as the testbed is a practical and

familiar example of a suitable scale for SMEs and thus makes

the demonstration more illustrative and easier to catch. The 3D

environment is a descriptive surrounding that facilitates

showing the process in practice and makes the simulation more

realistic. In addition, the high-bay rack and the stacker crane

increase complexity because they involve using vertical space

and dynamic movement, aspects usually not considered in

basic, two-dimensional warehouse models.

The demonstration has been presented in one regional

technology event and several smaller workshops for selected

SMEs from the manufacturing industry. The reception has

been good, and a closer collaboration on the same theme has

started with one of the companies. Thus, the methods

presented in this paper will be applied in other warehouses in

real manufacturing surroundings shortly. Furthermore, the

longer-term aim is to promote the integration possibilities of

optimization methods and simulation technology from the

product level to the development of production-level solutions.

This supports the green transition as unnecessary work can be

eliminated and processes can be streamlined.

ACKNOWLEDGEMENTS

This paper was written as a part of the project OPLITE

(A80151), and the funding from the Regional Council of South

Ostrobothnia is greatly appreciated.

REFERENCES

Avdekins, A. and Savrasovs, M. (2019). Making warehouse

logistics smart by effective placement strategy based

on genetic algorithms. Transport and

Telecommunication Journal 20(4):318-324.

doi:10.2478/ttj-2019-0026.

Banks, J. (2005). Discrete-event system simulation. 4th ed.

Upper Saddle River, N.J: Pearson Prentice Hall.

Bartholdi, J.J. and Hackman, S.T. (2019). Warehouse

and Distribution Science, Georgia Institute of

Tehcnology. https://www.warehouse-science.com/book/

index.html (accessed on 22 May 2024).

Bojic, S., Maslaric, M., Mircetic, D., Nikolicic, S., and

Todorovic, V. (2023). Simulation and Genetic

Algorithm-based approach for multi-objective

optimization of production planning: A case study in

industry. Advances in Production Engineering &

Management, 18(2), 250-262. doi:

10.14743/apem2023.2.471.

Choi, B. K. and Kang, D. (2013). Modeling and simulation

of discrete-event systems. Hoboken, N.J.: John Wiley

& Sons Inc.

Ernst, P., Zimmermann, K., and Fieg, G. (2017). Multi-

Objective Optimization-Tool for the Universal

Application in Chemical Process Design. Chemical

Engineering & Technology, 40(10), 1867–1875.

doi: 10.1002/ceat.201600734.

Goldberg, D. and Deb, K. (1991). A comparative analysis of

selection schemes used in genetic algorithms, in

Foundations of Genetic Algorithms, pp. 69-93, Morgan

Kaufmann, San Francisco, Calif.

Goldberg, D. (1989). Genetic Algorithms in Search,

Optimization & Machine Learning. Addison Wesley.

Grznár, P., Krajčovič, M., Gola, A., Dulina, Ľ., Furmannová,

B., Mozol, Š., Plinta, D., Burganová, N., Danilczuk, W.,

and Svitek, R. (2021). The Use of a Genetic

Algorithm for Sorting Warehouse Optimisation.

Processes, 9(7), 1197. doi: 10.3390/pr9071197

Haupt, R. L. and Haupt, S. E. Practical Genetic Algorithms,

Second Edition. John Wiley & Sons, Inc. (2004).

Holland, J. Adaptation in Natural and Artificial Systems. MI:

University of Michigan Press. (1975).

Howard, D. A., Jørgensen, B. N., and Ma, Z. (2023). Multi-

Method Simulation and Multi-Objective Optimization

for Energy-Flexibility-Potential Assessment of Food-

Production Process Cooling. Energies, 16(3), 1514.

doi: 10.3390/en16031514.

Kordos, M., Boryczko, J., Blachnik, M., and Golak,

S. (2020). Optimization of Warehouse Operations

with Genetic Algorithms. Applied Sciences, 10(14),

4817. doi: 10.3390/app10144817

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

413

Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I.,

and Dizdarevic, S. (1999). Genetic algorithms for

the travelling salesman problem: A review

of representations and operators. Artificial

intelligence review, 13, 129-170.

Shannon, R. E. Introduction to the art and science of

simulation. 1998 Winter Simulation Conference.

Proceedings (Cat. No.98CH36274), Washington, DC,

USA, (1998), pp. 7-14 vol.1, doi:

10.1109/WSC.1998.744892.

Townsend, A. A. R. (2003). Genetic Algorithm–A Tutorial.

Av.: www-course. cs. york. ac.

uk/evo/SupportingDocs/TutorialGAs. pdf, 8.

Visual Components. (2024). Visual Components - 3D

manufacturing simulation software.

https://www.visualcomponents.com/

Xie, X., Zheng, Y., Li, Y. (2015). Genetic Algorithm and Its

Performance Analysis for Scheduling a Single Crane.

doi: 10.1155/2015/618436

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.056 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

414

	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Material Acquisition Stage
	2.2 Manufacturing Stage
	2.3 End of life Stage
	2.4 Transportation and shipping
	2.5 Model and calculations

	3. RESULTS AND DISCUSSION
	4. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Introduction
	Geometries and correlations
	Optimization procedure
	CFD model
	Governing equations
	Geometry and discretization
	Boundary conditions
	Post-processing
	Thermophysical properties
	Grid refinement study

	Results and Discussion
	Results from optimisation
	Results from CFD simulations

	Conclusions
	Introduction
	Numerical methods
	Thermodynamic optimization
	Geometric optimization
	Transient modelling

	Results
	Thermodynamic results
	Geometric results
	Transient results

	Conclusion
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	3. VALIDATION OF THE NEW MECHANISM
	3.1 IDT and LBV simulations
	3.2 Simulation of RCCI NG/diesel fueled engines
	3.4 3-D CFD simulation
	3.5 Quasi-dimensional simulation

	4. CONCLUSION
	REFERENCES
	1. INTRODUCTION
	2. MULTISEGMENT WELL MODEL
	3. FLOW CONTROL TECHNOLOGY
	3.1 Inflow control device (ICD)
	3.2 Autonomous inflow control device (AICD)
	3.3 Autonomous inflow control valve (AICV)

	4. RESERVOIR MODEL IN ECLIPSE
	4.1 Reservoir fluid and rock properties
	4.2 Reservoir grid
	4.3 Reservoir permeability
	4.4 Initial conditions

	5. WELL MODEL IN OLGA
	5.1 Compositional settings
	5.3 Flow component settings

	6. RESULTS AND DISCUSSION
	6.1 Oil production
	6.2 Water production
	6.3 Total liquid production
	6.4 Water cut variations
	6.5 Fluid saturations
	6.6 Chocking Effects of FCDs

	7. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Data collection
	2.2 Attention mechanism
	2.3 Training methodology

	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	REFERENCES
	Appendix A: Confusion matrix and training/validation loss curves for Vanilla CNN, CNN, and FF transformer
	Introduction
	Methodology
	Parallelization
	Numerical method
	Interpolation with plane equations
	Rectangular grid
	Reusing partial results
	Communication

	Results
	Comparison to analytical solution
	Benchmarks
	Scaling

	Conclusion
	Acknowledgements

