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Abstract: The manufacturing industry is in a strong transition towards digital, intelligent, and sustainable

manufacturing. However, small and medium-sized enterprises (SME) in the manufacturing industry often

lack the resources and know-how to utilize digital tools as part of their research and development (R&D)

activities. Thus, there is a need for concrete examples to show the benefits of these tools. This paper

discusses a demonstration of warehouse optimization where a genetic algorithm is applied to optimize pallet

transfers. The simulation model of a flexible manufacturing system (FMS) cell includes a warehouse with

nine Euro pallets and a stacker crane. Visual Components simulation software was used for the simulation

and an external Python application for the algorithm. As a result of the optimization, the total duration of

the transfers was reduced by approximately 20 seconds (8.1 %). The demonstration has been used to

showcase the integration of optimization methods into simulation technology and has ignited longer-term

collaboration with the local industry on the same theme.
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1. INTRODUCTION 

Simulation and optimization are useful tools to understand, 

design, and develop production processes. For example, 

simulation can be used to model and analyze processes before 

they are implemented in the real production environment. 

Production processes can be optimized based on real-time or 

historical data. For example, several data analysis and 

computation models can be used to quickly locate equipment 

or quality problems and improve resource efficiency in 

production.  

The combination of simulation and optimization enables a 

comprehensive analysis of production processes and efficient 

production planning. They can save costs, reduce production 

risks, and enhance product quality. 

 

Bojic et al. (2023) did a case study using discrete-event 

simulation (DES) and genetic algorithm (GA) to assist 

operational production planning and optimization in the textile 

industry. A simulation model was created using Tecnomatix 

Plant Simulation software for a textile factory that produces 

over 300,000 shirts per year. The simulation model considered 

changes in customer demand, production times, available 

resources, and batch sizes. GA optimization improved 

production efficiency and reduced work in process (WIP) 

inventory levels. 

 

Ernst et al. (2017) developed an optimization tool called 

Adv:ProcessOptimizer for multi-objective chemical process 

optimization. A specific GA was customized and developed 

for this tool. The tool integrates established methods with new 

concepts that work with simulation tools like Aspen Plus and 

ChemCad. The effectiveness of the tool was validated by 

optimizing an industrial styrene process. The results showed a 

well-distributed Pareto front, leading to savings in investment 

and operating costs compared to traditional methods. This 

confirmed the capability of Adv-tool to improve process 

efficiency and its support for decision making in process 

design. 

 

Howard et al. (2023) developed a method to investigate energy 

flexibility in process cooling systems. A case study was 

performed on a Danish plant that uses process cooling for 

canned meat production. They used a combination of multi-

agent, discrete-event, and system dynamics simulations to 

model the process. The results showed that significant savings 

in operational costs and reduction in CO2 emissions can be 

achieved by optimizing the schedule of the refrigeration units 

based on forecasts of weather conditions, electricity prices and 

CO2 emissions. This method provided insights on how to 

improve the energy performance of process cooling systems in 

food production without compromising the product quality 

and the production rate, through a weeklong simulation 

scenario. 
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Xie et al. (2015) used the genetic algorithm to schedule the 

single overhead crane so that its transport and shuffling 

operations are completed in the shortest possible time. The 

study found that the developed genetic algorithm provided 

good and quick solutions to the crane scheduling problem. 

 

These case studies demonstrate how the integration of 

simulation and optimization tools works in various 

manufacturing industries. They can be useful for different 

kinds of applications, leading to more efficient, cost-effective, 

and high-quality production. However, SMEs in the 

manufacturing industry often lack resources and know-how to 

utilize these tools as part of their R&D activities or even 

information of their existence. Concrete pilots that 

demonstrate solving common problems in manufacturing 

industry are required to increase awareness of the possibilities 

of new simulation and optimization tools, and their 

integrations. 

 

Warehouse operations provide an ideal demonstration 

environment for manufacturing SMEs due to their complexity, 

scalability, and the critical need for efficiency. It has been 

estimated that approximately 55 % of warehouse operating 

costs are caused by picking tasks (Bartholdi and Hackman, 

2019, p. 25). Thus, increasing the picking and placing 

efficiency can generate remarkable savings. 

 

Genetic algorithms are often used in optimization problems 

due to their robust search capabilities and flexibility as shown 

by two of the examples mentioned earlier in this section. The 

interest in genetic algorithms in the field of logistics has as 

well increased in the recent years among the researchers, and 

the number of publications has doubled between the years 

2016 and 2020 (Grznár et al, 2021). In warehouse optimization 

problems reported in the literature, the goal often is to improve 

a forklift route in a warehouse described by a 2D layout 

consisting of shelves and corridors (e.g. Avdekins and 

Savrasovs, 2019; Kordos et al, 2020). Grznár et al (2021) 

worked with a 3D simulation of a conveyor system with 

workers sorting the goods coming to and leaving the 

warehouse. However, this work did not involve the actual 

warehouse structure. 

 

This paper discusses optimizing an automated warehouse of a 

flexible manufacturing cell by utilizing a genetic algorithm. 

The high-bay rack and the stacker crane of the model add 

complexity due to vertical space utilization and dynamic 

movement, which are not typically addressed in simpler, 2D 

warehouse models. Also, the 3D simulation provides a more 

realistic and comprehensive testbed for evaluating the 

performance of GAs. Moreover, the FMS cell as a sample 

environment makes the demonstration interesting and 

accessible for the metal industry companies that are locally 

abundant. Finally, the demonstration involves cooperation of 

simulation software and an external optimization library, 

which gives a good example of the expansion potential of the  

applicable tools. 

 

The paper is organized as follows: Section 2 describes the 

main methods applied in this study, discrete event-based 

simulation and genetic algorithms, and the software used.  

Section 3 discusses the experiments performed and the results 

gained. The conclusion is drawn in the last section. 

 

2. METHODS AND SOFTWARE

2.1 Discrete Event-Based Simulation

According to Banks et al (2019, p. 3) a simulation replicates

the functioning of a real-world process or system as it evolves

over time. Whether the simulation is conducted manually or

utilizing a computer, it entails creating an artificial history of

a system and observing that history to make inferences about

the real system’s operating characteristics. Shannon (1998, p.

1) defines simulation as a process of modeling a real system

and taking experiments with the model in order to gain insights

about the behavior of the real-world system and furthermore,

to evaluate different operational strategies for the system.

Banks et al (2019, p. 9) categorize systems as discrete or

continuous. Choi and Kang (2013, p. 8) adds quantum class 

to enhance the system’s classification. They agree together 

that rarely any process is purely a certain one, but more 

of a combination of two or more, however, some class 

describes more the system behavior than the other ones.  

Banks et al (2019, p. 9) define the discrete system in a way 

where state variable(s) change only at a discrete set of 

points in time. Furthermore, Choi and Kang (2013, p. 9) 

defines the discrete-event simulation as a computer 

evaluation of a discrete-event dynamic system model. In 

the model, the operation of the simulated system is 

defined as a chronological sequence of events. As the pilot 

case was a discrete manufacturing process, the simulation 

method was chosen accordingly.

 

 

Fig. 1. Flowchart of the genetic algorithm. 
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2.2 Genetic Algorithms

2.2.1 Basics

A genetic algorithm developed by John Holland (Holland,

1975) is an optimization and search technique that is based on

the principles of natural selection and genetics. In the genetic

algorithm, a population of chromosomes evolve towards a

better solution over each consecutive generation by using

parent selection, crossover, and mutation. The genetic

algorithms belong to the larger class of the evolutionary

algorithms (EA) (Townsend, 2003).

The basic flowchart of the genetic algorithm is presented in

Fig. 1.

 

2.2.2 Population

 

GA is an iterative process which starts with the creation of

randomly chosen initial population of individuals (solution

candidates for a given problem), which are represented by

finite linear string of symbols, known as chromosome. A gene

is an element in the chromosome, as shown in Fig. 2, and

the allele is the value of the gene (Townsend, 2003).
 

Determining the size of the population is important 

since choosing too small population might cause the GA to 
converge prematurely to a local minimum instead of global 
minimum due to lack of genetic variation in the population. 
On the other hand, too large population will require more 
computing time and thus makes the GA to run slower. 
The population size remains constant during the running of 
the genetic algorithm. 

2.2.3 Genotype Representation

Genotype is a genetic composition of the chromosome (Haupt

and Haupt, 2004).

A binary representation, where the chromosomes are

represented as bits (a string of 1s and 0s), is the simplest and

widely used representation. A floating-point representation is

used for the continuous GA, and permutation representation is

used for the cases where the order of genes matters (Fig. 3).

Perhaps the most well-known use case of the permutation

representation is the traveling salesman problem (TSP), where

each city can be visited just once in some order.

 

 

 
Parent selection operator selects the chromosomes in the 

population for reproduction. On every generation, the selected 

chromosomes are collected to a list known as mating pool. The 

better fitness value the chromosome has, the higher probability 

it has for being selected for the mating pool. Thus, the selection 

is based on the strategy of the survival-of-the-fittest 

(Townsend, 2003). 

 

There are several different selection methods used in the 

genetic algorithms such as fitness-proportional selection, 

ranked selection, stochastic universal sampling, roulette wheel 

selection, truncation selection, and tournament selection 

(Townsend, 2003). 

 

 

2.2.6 Crossover 

 

Crossover operator swaps the genetic material between two 

parent chromosomes to create new offspring for the next 

generation (Townsend, 2003). 

The crossover between two good chromosomes does not 

necessarily create as fit or better offspring. However, because 

the parents are good, the probability of the offspring to be good 

is high, If the offspring happens to be a poor solution 

candidate, it will be removed from the population during the 

next generation. 

 

Fig. 2. Example of population, chromosome, and gene.

Fig. 3. Example of genotype representations in GA. 

2.2.4 Fitness Function 

 

At every evolutionary step, also known as generation, the 

current population is evaluated according to a fitness function 

set for a given problem. Because the fitness function calculates 

the fitness value for every chromosome on every generation, it 

greatly impacts the run time of the GA. Too computing heavy 

fitness function increases the run time of the GA (Townsend, 

2003). 

 

2.2.5 Selection 

 

Parent selection operator selects the chromosomes in the 

population for reproduction. On every generation, the selected 

chromosomes are collected to a list known as mating pool. The 

better fitness value the chromosome has, the higher probability 

it has for being selected for the mating pool. Thus, the selection 

is based on the strategy of the survival-of-the-fittest 

(Townsend, 2003). 

 

There are several different selection methods used in the 

genetic algorithms such as fitness-proportional selection, 

ranked selection, stochastic universal sampling, roulette wheel 

selection, truncation selection, and tournament selection 

(Townsend, 2003). 

 

In tournament selection, a random number of individuals are 

selected from the population. Then, the best individual is 

selected from this group to be as a parent. This process is 

repeated until the mating pool is filled. Tournaments are often 

held between pairs of individuals (Goldberg & Deb, 1991). 

 

2.2.6 Crossover 

 

Crossover operator swaps the genetic material between two 

parent chromosomes to create new offspring for the next 

generation (Townsend, 2003). 

The crossover between two good chromosomes does not 

necessarily create as fit or better offspring. However, because 

the parents are good, the probability of the offspring to be good 

is high, If the offspring happens to be a poor solution 

candidate, it will be removed from the population during the 

next generation. 

 

In one-point or simple crossover, a random crossover point k

is selected uniformly between 1 and the length of the parent

chromosomes minus one [1, l – 1]. The genes after the

crossover point k are then swapped between the parent

chromosomes to create new offspring, as shown in Fig. 4

(Goldberg, 1989, p. 12).

In two-point crossover, two random crossover points are

selected uniformly among the length of the parent

chromosomes. The alternating segments of genes are then

swapped between the parent chromosomes, as shown in Fig. 5. 

In general, the two-point crossover is better than one-point

crossover to find solution more quickly (Townsend, 2003).
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In uniform crossover, a randomly generated crossover mask is 

used to decide from which parent the offspring gets its genes. 

If there is a value 1 or 0 in the mask, the gene is copied from 

the first parent or second parent, respectively (Fig. 6). This 

procedure is repeated for the second offspring (Townsend, 

2003). 

 
 

 

 

 

 

 

 

In permutation problems, standard crossover operators are not

appropriate since each gene should be represented once and

only once in the chromosome. One possible solution is to use

a partially matched crossover (PMX), Under PMX, two

random crossover points are chosen, and the genes are

exchanged between these two points. The exchanged genes

remain intact during the rest of the procedure. On the final step,

the doubles (marked as yellow color in Fig. 7) are

exchanged between the children to get correct permutations

(Haupt and Haupt, 2004). Each child chromosome 

contains ordering information partially determined by 

each of its parents.

 

 

 

 

 

 

 

 

Townsend (2003) gives a following summary of crossover 

methods: there is no more than 20 % difference in speed 

among the one-point, two-point, and uniform crossover. 

Uniform crossover or two-point crossover works better if the 

population is small or large, respectively, compared to the 

problem complexity. 

2.2.7 Mutation 

The mutation operator changes the value of one or more genes 

at randomly selected position in the chromosome. Mutation 

can take place at each position in the chromosome with some 

pre-defined probability, known as mutation rate, which is 

usually small. The mutation operator makes the GA to find a 

near optimal solution to a given problem more easily by 

maintaining the genetic diversity in the population (Townsend, 

2003). 

 

The most common mutation operators are binary mutation, 

random resetting, swap mutation, scramble mutation, and 

inversion mutation. 

 

In binary mutation, the value of the one or more genes is

altered with a probability equal to the mutation rate

(Larranaga, 1999). For example, the value of the third gene is

changed from 1 to 0 in Fig. 8.

 

 

In swap mutation (Fig. 9), the values of two randomly selected 

genes are interchanged. The swap mutation is commonly used 

in permutation-based representations (Larranaga, 1999). 

 

 

In scramble mutation (Fig. 10), a subset of the genes on the 

chromosome are selected and scrambled randomly (Larranaga, 

1999). 

 

 

In inversion mutation, two random points are chosen along the 

length of the chromosome. The genes between these points are 

then inverted as shown in Figure 11 (Goldberg, 1989, p. 166). 

 

 

 

2.2.8 Elitism 

 

Elitism means that the most fit chromosomes of the current 

generation are preserved for the next generation. Elitism 

prevents the population from losing its best solution due to 

crossover or mutation. The unwanted side effect is that there 

might be a super fit chromosome that causes the GA to 

converge prematurely (Townsend, 2003). 

 

The elite size means the number of fit chromosomes preserved 

for the next generation. 

 

2.2.9 Termination Condition 

 

The termination condition of a genetic algorithm defines when 

to stop running the algorithm. Usually, the GA run is 

terminated when one of the following conditions is met: there 

is no improvement in the population for given number of 

consecutive generations, the maximum number of generations 

Fig. 4. Example of one-point crossover. 

Fig. 5. Example of  two-point crossover. 

Fig. 6. Example of  uniform crossover. 

Fig. 7. Example of partially matched crossover (PMX). 

Fig. 8. Example of binary mutation. 

Fig. 9. Example of swap mutation. 

Fig. 10. Example of scramble mutation. 

Fig. 11. Example of inversion mutation. 
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is reached, or the objective function has reached a certain pre-

defined value. 

2.3 Visual Components 

Visual Components is a 3D simulation and offline 

programming software that can be used for layout planning, 

feasibility analysis, virtual commissioning, and robot 

programming. The software has an extensive library of 3D 

models with 3000+ pre-defined and ready-to-use components 

including robots, conveyors, machines, resources, robot tools, 

factory facilities, and more. The user can also import self-made 

3D models into the software (Visual Components, 2024). 

Python programming language (version 2.7) can be utilized in 

components scripts. It is possible to add 3rd party Python 

package to the Visual Components, but this depends on the 

package. Alternatively, the user can communicate with an 

external application by using the TCP/IP sockets. 

3. EXPERIMENTS AND RESULTS 

3.1 Flexible Manufacturing Cell 

There is a flexible manufacturing cell in the SeAMK’s 

laboratory of the Machine and Production Technology. The 

cell consists of two Fanuc R2000iB/165F industrial robots, 

Kitamura HX500i machining center, workpiece positioner, 

and the storage system made by Fastems. The storage system 

has following components: high bay rack for storing Euro 

pallets and machining pallets, stacker crane for moving the 

pallets between storage shelves and workstations, material 

station for inserting and retrieving pallets in and out of the 

storage, loading station for moving the machining pallets 

between the stacker crane and robot, and two pallet banks next 

to the robots for holding the Euro pallets. 

 

A simulation model (Figs. 12 and 13) of the FMS cell was 

made during one of the research and development 

projects. The robots, workpiece positioner, grill fences, 

storage selves, and Euro pallets are from the component 

library of the Visual Components. The stacker crane, pallet 

banks, loading station, material station, machining center, 

and machining pallet were designed in a 3D CAD software 

and imported into the Visual Components as STL files.

 

 
 

 

The simulation model of the FMS cell works as its real-world 

counterpart. The model does not, however, work together with 

the Fastems Manufacturing Management Software (MMS) 

that is used to control the real FMS cell. Instead, the simulation 

model relies on the component scripts to function properly. 

3.2 Goal 

The goal of the experiment was to utilize the genetic algorithm 

in the simulation model of the flexible manufacturing cell to 

minimize the time it takes to reshuffle the warehouse. In other 

words, the goal was to find the best permutation of Euro pallet 

transfers so that the stacker crane could move the pallets in the 

least amount of time. This kind of storage reshuffle process is 

common in the warehouses. 

 

As the number of transfers increases, the number of different 

combinations of transfers also increases. For example, in the 

case of just nine transfers, the number of different 

combinations is 9! = 362 880. 

 

Although the genetic algorithm can explore multiple solution 

candidates in parallel, it is not possible to compute the duration 

of every possible combination of transfers in a reasonable time 

frame. With the genetic algorithm, however, there is no need 

to go through every possible combination of transfers. 

3.3 Pallet Transfers 

The storage reshuffle process consists of nine transfers of Euro 

pallets. The transfers are randomly generated to eliminate the 

human bias for choosing transfers that one knows will benefit 

strongly from the optimization. 

In the simulation model, the transfer of the Euro pallet is 

represented by a dictionary which contains the pallet ID, stock 

keeping unit (SKU) of the pallet, and source and destination 

shelf positions. For example, {“pid”: 1, “sku”: “epallet”, “src”: 

3, “dst”: 20}, represents the transfer of the Euro pallet with id 

= 1 from a shelf position 3 to a shelf position 20. In the GA, 

these pallet transfers are represented as integers from 1 to 9, so 

when the fitness values are computed, one needs to decode the 

genes of the chromosomes into dictionaries. 

 

In this experiment, the fitness function computes the total 

duration of the nine pallet transfers. Because the goal is to find 

the minimum duration, a shorter duration yields to smaller 

fitness value. 

Fig. 12. Front view of the simulation model. 

Fig. 13. Back view of the simulation model. 
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To speed up the computation of the fitness function, the 

transfer time from any given shelf position to any other shelf 

position was measured programmatically by computing the 

time difference between the moment when the pallet was 

picked up from the shelf and the moment when the pallet was 

placed onto the shelf. The transfer times were then hard coded 

into the component script of the stacker crane. 

 

The process of measuring the transfer times was quite a tedious 

task. Alternatively, one could have made the simulation model 

so that the fitness value of the chromosome is computed by 

simulation. Based on some testing, the computation of fitness 

values by simulation took at least 30 minutes so it was decided 

to use hard coded transfer times instead. 

 

The Euro pallet components are created to the source positions 

of the pallet transfers when the user starts the simulation. 

3.4 Utilizing the GA in the Simulation Model 

The Python code for the genetic algorithm was written into the 

PythonScript object of the stacker crane component in the 

simulation model. The genetic algorithm was implemented as 

a Python class whose input arguments are the direction of the 

optimization as an integer (0 for minimum and 1 for 

maximum), genes as a list of pallet IDs from 1 to 9, size of the 

population as integer, number of generations as integer, fitness 

function as a callable function, size of elite parents in the 

population as integer, and the mutation rate as a float. 

The minimum direction was used since the goal was to find the 

order of the transfers in which the transfers are performed as 

quickly as possible, i.e. in minimum time. Based on some 

testing the population size was set to 1000 since with larger 

sizes the simulation ran significantly longer times without any 

major reduction in total transfer times of the pallets. The 

number of generations was set to 40 and the elite size to 10. 

According to Townsend (2003, p. 43) the probability of 

mutation is set to be inversely proportional to the size of the 

chromosome. Since each chromosome has 9 genes, the 

mutation rate was set to 11 % (1/9 = 0.111). The parents of the 

next generation were selected using a tournament selection of 

3 chromosomes. Because the goal was to find the best 

permutation of pallet transfers, PMX was used for the 

crossover operator. Finally, the swap mutation was used for 

the mutation operator. Below is a list of the values of the 

operators and input arguments of the GA. 

 

• Direction: minimum 

• Genes: [1, 2, 3, 4, 5, 6, 7, 8, 9]  

• Population size: 1000  

• Number of generations: 40  

• Elite size: 10  

• Mutation rate: 11 %  

• Selection: tournament of 3 chromosomes  

• Crossover: partially matched crossover (PMX)  

• Mutation: swap. 

3.5 Results 

The simulation was run 50 times with and without the genetic 

algorithm to see how much the genetic algorithm reduces the 

total transfer time. 

 

When the order of the transfers was optimized with the genetic

algorithm, the total duration of the transfers was reduced by

circa 20.5 seconds on average. This represents about an 8.1 %

reduction in transfer time. The time reduction achieved with

the GA in each run is shown in Fig. 14.

It was noticed that the fitness value did not improve that much 

between the first and last generation of the genetic algorithm. 

Figure 15 shows a typical progress of the fitness value during 

the generations of the GA. 

In many cases, the fitness value, i.e. the duration of the 

transfers, improved mere few seconds. The different 

combinations of input parameters of the genetic algorithm 

were tested but the results remained the same. 

 

One possible explanation is the small population size which 

covers about 0.002 % of all possible solutions (362 880). 

Increasing the population size would, however, make the 

simulation to run significantly longer. Thus, the population 

size of 1000 was chosen. 

 

Fig. 14. Histogram of the time reduction achieved with the GA. 

Fig. 15. The progress of the fitness value. 
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Other optimization methods than genetic algorithm were not 

tested in this experiment so it is hard to say if some of them 

could perform better than GA. 

4.  CONCLUSIONS 

Manufacturing systems are complex environments with many 

interacting parts and variables in dynamic processess. These 

complexities often lead to challenges that are difficult to solve 

with traditional methods, especially as the demand for 

efficiency grows. To address these issues, combining 

optimization techniques with 3D simulation has proven to be 

highly effective. This approach allows us to explore a wide 

range of potential solutions, helping to find the best ways to 

improve system performance. By integrating these methods, 

we can make manufacturing processes more efficient and 

better equipped to handle the complexities of modern 

production. 

 

This paper showed how to use an optimization method 

together with a simulation tool to find a solution that saves 

time and resources in production. The total time saving of 20 

seconds (8.1 %) that was achieved in the demonstration is a 

significant improvement to the process. The automated 

warehouse that was utilized as the testbed is a practical and 

familiar example of a suitable scale for SMEs and thus makes 

the demonstration more illustrative and easier to catch. The 3D 

environment is a descriptive surrounding that facilitates 

showing the process in practice and makes the simulation more 

realistic. In addition, the high-bay rack and the stacker crane 

increase complexity because they involve using vertical space 

and dynamic movement, aspects usually not considered in 

basic, two-dimensional warehouse models. 

 

The demonstration has been presented in one regional 

technology event and several smaller workshops for selected 

SMEs from the manufacturing industry. The reception has 

been good, and a closer collaboration on the same theme has 

started with one of the companies. Thus, the methods 

presented in this paper will be applied in other warehouses in 

real manufacturing surroundings shortly. Furthermore, the 

longer-term aim is to promote the integration possibilities of 

optimization methods and simulation technology from the 

product level to the development of production-level solutions. 

This supports the green transition as unnecessary work can be 

eliminated and processes can be streamlined. 
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