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Abstract: This study conducts a sensitivity analysis to evaluate the influence of varying data
volumes on model performance within multi-product batch processes in the iron and steel
industry. Nine machine learning models, encompassing both ensemble and parametric methods,
were rigorously tested using a data withholding approach. The results demonstrate that
ensemble models, particularly Random Forest and Gradient Boosting, consistently outperformed
parametric models across different data volumes, showcasing superior generalisation and
robustness to outliers. These findings underscore the importance of careful model selection and
comprehensive data preprocessing in enhancing model performance and suggest that ensemble
methods are particularly well-suited for complex industrial applications where data quality and
volume are critical.
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1. INTRODUCTION

The iron and steel industry, a cornerstone of global indus-
trial development, is responsible for approximately 7.2% of
global Green House Gas (GHG) emissions, highlighting its
significant contribution to climate change (Ritchie et al.,
2020). With global steel production anticipated to rise by
approximately 30% by 2050, the demand for innovation
and sustainable practices in this sector has become in-
creasingly urgent (Yoro and Daramola, 2020). Thus, the
advancement of more efficient production methods is not
only an environmental imperative but also essential for the
industry’s long-term viability. Moreover, the development
of accurate and reliable models can significantly contribute
to reducing waste, facilitating process control, and improv-
ing overall product quality. By optimising the predictive
capabilities of these models, industries can enhance their
operational efficiency and sustainability, thereby achieving
better outcomes both economically and environmentally.

In recent years, significant interest has been directed to-
wards the application of Machine Learning (ML) tech-
niques in industrial processes, driven by advancements in
data acquisition technologies and the increasing complex-
ity and volume of industrial data. These advancements
have enabled the development of sophisticated models
capable of processing vast amounts of data, thereby im-
proving decision-making and operational efficiency within
industrial contexts.

⋆ The authors gratefully acknowledge Kanthal AB, Automation
Region Research Academy (ARRAY), and the Swedish Knowledge
Foundation (KKS) for their support.

This study aims to systematically evaluate the impact of
data volume and complexity on the performance of ML
models in multi-product batch processes within the iron
and steel industry. A sensitivity analysis is conducted to
provide insights that will guide future model development
and applications in industrial batch processes.

A rigorous and systematic approach has been adopted
in this study, wherein the effect of varying data volumes
on model accuracy and complexity is analysed to ensure
a comprehensive examination of these critical factors. A
diverse range of ML models, with varying degrees of
complexity, has been selected to assess their performance
across different scenarios. These models include traditional
machine learning algorithms, which are recognised for their
efficacy in handling tabular data. Neural networks were
excluded from this analysis due to the tabular nature of
the dataset, which does not inherently suit such models, as
evidenced by Shwartz-Ziv and Armon’s findings that en-
semble models generally outperform deep neural networks
on tabular data (Shwartz-Ziv and Armon, 2022).

To explore the relationship between data volume and
model performance, a data withholding approach has been
implemented, enabling an assessment of how error scores
fluctuate with varying data volumes. The data volume in
this study ranges from 10 to 10,000 samples, distributed
across 10 logarithmically spaced steps. These steps include
10, 22, 46, 100, 215, 464, 1,000, 2,154, 4,642, and 10,000
samples. This logarithmic progression ensures that the
analysis covers a broad range of data volumes, providing
a nuanced understanding of how data availability impacts
model performance.
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Previous studies have also examined the impact of data
volume on model performance, albeit with differing scopes
and methodologies. For instance, Bailly et al. (2022)
investigated the effect of data volume on model metrics
using artificially generated datasets with volumes of 1,000,
10,000, and 100,000 samples. Their findings indicated
that, within the specific setup employed, data volume
did not significantly influence model metrics, suggesting
that the relationship between data volume and model
performance may be context-dependent and influenced by
factors such as data characteristics and model selection.
In another study, Ramezan et al. (2021) explored the
effects of training sample size on the performance of six
supervised ML algorithms in classifying a large-area high-
spatial-resolution remotely sensed dataset. Their work
demonstrated that, while larger training sets generally led
to better performance, there was considerable variation in
how different classifiers responded to changes in sample
size. These variations underscore the complexity of the
relationship between data volume and model performance,
highlighting the need for context-specific analyses.

The dataset employed in this study originates from the
production of thermocouple materials at Kanthal Hall-
stahammar, specifically from the key stages of melting
and hot rolling. Thermocouples are vital components in
temperature measurement and are among the most com-
mon methods used in industrial processes, including those
in the iron and steel industry. Their widespread use un-
derscores the practical significance of accurate and re-
liable temperature measurement in maintaining process
efficiency and product quality. The dataset comprises
measurements of chemical composition and Electromotive
Force (EMF), with the objective of predicting the final
properties after hot rolling based on initial measurements
taken after melting. A more detailed description of the
pre-processed dataset is provided in Section 3.1.

The overarching aim of this work is to enhance the mod-
elling of industrial processes by adhering to the principle
of Occam’s razor, which advocates for simplicity in model
design. While continuous advancements in research con-
tribute to increasingly complex models, it is crucial to
balance complexity with practical implementation. This
study builds upon previous work, such as Rendall et al.
(2019) and Mählkvist et al. (2023), which examines the
trade-offs between model complexity and performance.
Rendall et al. (2019) succinctly illustrated the relation-
ship between modelling complexity and implementation
challenges, providing a framework for assessing the practi-
cality of complex models in real-world applications. Simi-
larly, Mählkvist et al. (2023) evaluated the modelling com-
plexity of different classification models, including Logistic
Regression, Random Forest Classifier, and Support Vector
Classifier, to determine the most suitable model for the
specific data problem at hand. These studies underscore
the importance of balancing model sophistication with
practical considerations, such as ease of implementation
and computational efficiency.

Through a comparative analysis, it is intended to evaluate
whether models with specific characteristics offer superior
insights into the industrial processes under study. It is
hypothesised that some models will perform better with
larger data volumes and that a diverse range of model char-

acteristics will yield more comprehensive insights, particu-
larly under conditions of data saturation. Ultimately, this
research seeks to determine the optimal balance between
data volume and model performance within the context of
industrial batch process modelling.

2. METHODOLOGY

This section delineates the methodology employed in this
study, encompassing details about the development envi-
ronment, systematic data processing approaches, model
training, and evaluation techniques. The approach has
been designed to ensure robust and reproducible results
through meticulous dataset handling, model selection, and
hyperparameter tuning.

2.1 Coding and Dependencies

Python is the coding language used for this study. Besides
arbitrary dependencies on Pandas, NumPy, and other
common libraries, the package scikit-learn Pedregosa
et al. (2011) is employed for the implementation of the
ML models, as well as for hyperparameter tuning.

2.2 Systematic Approach for Datasets and Modelling

Dataset and Subset sampling

Dataset and Subset Sampling This study begins with the
product datasets, denoted as Px, where x ∈ LP and LP

represents a list of all product datasets, each identified by
a Greek letter, such as LP = [α, β, . . .].

A data withholding approach is employed to generate
increasingly larger datasets by sampling from the original
product datasets. These smaller datasets are referred to as
subsets. Each subset derived from a product dataset Px is
denoted by Sx

i,j , where Sx
i,j represents the i-th iteration of

sampling from the j-th subset of the x-th product dataset
Px.

In this notation, i varies from 1 to n, where n is the total
number of iterations performed for each subset size. This
allows the same volume to be sampled multiple times to
capture a more representative dataset. For instance, if the
sampling volume is 10 samples, n subsets of volume 10 are
generated by randomly selecting samples.

The index j corresponds to the position within a list of
predefined sampling sizes, denoted as LV = [v1, v2, . . . , vj ].
Each element vj in LV defines the size of the subset Sx

i,j ,
ensuring that Sx

i,j ⊆ Px.

Each iteration i of a subset Sx
i,j not only represents a

random sampling from Px but also retains all elements
from the previous smaller subset Sx

i,j−1. Consequently, as
j increases (i.e., as the subset size grows within the same
iteration x), each new subset includes all samples from the
preceding smaller subset for the same product dataset.
This approach ensures that as the dataset increases in
volume, it maintains the same reference samples, thereby
preserving consistency across different subset sizes.

Modelling A list of machine learning models of arbitrary
size is utilised for training. Each element in the list (LM =
[m1,m2, . . . ,mk]) denotes a model mk indexed by k.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.057 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

416

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.057 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

416



Table 1. Characteristics of Machine Learning Models Evaluated in the Study

Models
(Abbreviations)

Parametric/
Non-Parametric

Regularization
(None/L1/L2)

Linearity
(Linear/Non-linear)

Sensitivity to
Scaling/Outliers

Ordinary Least Squares Linear Regression (OLS) Parametric None Linear Sensitive
Ridge Regression (Ridge) Parametric L2 Linear Sensitive
Least absolute shrinkage and selection operator (Lasso) Parametric L1 Linear Sensitive
Decision Tree Regression (DTR) Non-parametric None Non-linear Robust
Random Forest Regression (RFR) Non-parametric None Non-linear Robust
Gradient Boosting Regression (GBR) Non-parametric None Non-linear Robust
Linear Support Vector Regression (LIN) Parametric L2 Linear Sensitive
Polynomial Support Vector Regression (POLY) Parametric L2 Non-linear Sensitive
Radial Basis Function Support Vector Regression (RBF) Parametric L2 Non-linear Sensitive

Each model in the list LM is trained individually on each
subset Sx

i,j derived from the product datasets.

The naming convention for a model trained on a specific
subset follows the format Mx

i,j,k. This indicates that the
model indexed k from the list LM has been trained on
subset Sx

i,j , where x refers to the originating product
dataset, i to the iteration, and j to the specific subset
volume as defined by its position in the list of sampling
sizes LV .

2.3 Model Description and Parameter Range

This section outlines the models to be implemented, detail-
ing each model in the subsequent subsections. Addition-
ally, it includes the parameters and their respective ranges
used for hyperparameter estimation, where applicable.

The model list (LM ) consists of 9 ML models, as shown in
the first column of Table 1. Thus, the length of the list of
models is |LM | = 9.

A log-uniform distribution is used to define the hyperpa-
rameter range for many of the parameters. This distribu-
tion is particularly useful for parameters that span several
orders of magnitude, as it facilitates the exploration of a
wide range of scales effectively. The log-uniform distribu-
tion is defined as:

U(x, y) (1)

where U is the log-uniform distribution, and x and y are
the lower and upper bounds, respectively.

In addition, a random integer distribution is employed to
define the range for integer-valued hyperparameters, such
as the number of estimators in ensemble models or the
depth of decision trees. This distribution is particularly
useful when the hyperparameter must take discrete values
within a specified range. The random integer distribution
is defined as:

I(a, b) (2)

where I is the random integer distribution, and a and
b are the lower and upper bounds, respectively. This
distribution uniformly samples integer values between a
and b, inclusive.

Ordinary Least Squares Linear Regression (OLS) The
OLS is a widely used approach to linear modelling that fits
coefficients for all dimensions in the datasets to minimise

the residual sum of squares between the observed values
and the values predicted by the model (James et al., 2013).

Ridge Regression (Ridge) The Ridge model, also known
as Tikhonov regularisation, extends linear methods such as
OLS by incorporating regularisation. This model addresses
a regression problem using the l2-norm.

The method was introduced by Hoerl and Kennard (1970a)
in their 1970a; 1970b works.

The primary parameter for the Ridge model is the regular-
isation parameter for the l2-norm. Details of the parameter
and the range of values used are provided in Table 2.

Least absolute shrinkage and selection operator (Lasso)
The Lasso, similar to Ridge, is a linear model trained with
regularisation, but it uses the l1-norm instead. The term
was introduced by Tibshirani (1996).

The parameters for the Lasso are similar to those of Ridge,
focusing on the regularisation parameter. However, in the
case of Lasso, the parameter regulates the l1-norm. Details
of the parameter and the range of values used are provided
in Table 2.

Table 2. Parameters for Ridge and Lasso Re-
gression Models

Model Parameter Scope

Ridge Alphaa U(0.01, 100)

Lasso Alphaa U(0.01, 100)

a The alpha parameter regulates the
regularisation strength of the model.

Decision Tree Regression (DTR) The DTR is the first of
the non-parametric methods and it infers simple decision
rules from the data James et al. (2013).

The key parameter for the DTR is the maximum number
of features, which determines the number of features
to consider when finding the best split. Selecting the
appropriate maximum number of features is crucial for
controlling the diversity of features considered at each
split. Refer to Table 3 for details.

Random Forest Regression (RFR) RFR, also known as
random decision forests, is an ensemble learning method
used for regression tasks. This technique constructs a
multitude of decision trees during the training phase. Each
tree in the forest relies on the values of a random vector,
which is sampled independently and follows the same
distribution across all trees (Breiman, 2001).

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.057 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

417

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.057 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

417



The parameters for the RFR include the maximum num-
ber of features (as with DTR) and the number of estima-
tors, which represents the number of trees in the forest.
The choice of the number of trees is critical, as it impacts
both the model’s performance and the risk of over-fitting.

Refer to Table 3 for details.

Gradient Boosting Regression (GBR) GBR is an en-
semble learning method used for regression tasks. This
technique builds a series of decision trees sequentially, with
each tree aiming to correct the errors made by its predeces-
sor. The process involves fitting new models to the residual
errors of the previous models, thereby improving accuracy
with each iteration. The final model is a weighted sum
of all individual models, resulting in a robust predictive
model that minimises the overall prediction error (Hastie
et al., 2009).

The primary distinction between GBR and RFR lies in
their construction strategy: random forests build trees
independently and combine their results, whereas gradient
boosting builds trees iteratively, with each tree focused on
correcting the errors of the previous ones.

The parameters that GBR shares with the previous tree-
based models include the maximum number of features,
the number of estimators, and the maximum depth, which
defines how deep each tree can grow.

Refer to Table 3 for details.

Table 3. Parameters for Decision Tree, Ran-
dom Forest, and Gradient Boosting Models

Model Parameter Scope

Decision Tree Max Featuresa I(1, 100)

Random Max Featuresa I(1, 100)
Forest # Estimatorsb I(100, 1000)

Gradient Max Featuresa I(1, 100)
Boosting # Estimatorsb I(100, 1000)

Max Depthc I(1, 100)
a Max features determine the number of features

considered for each split.
b Number of estimators specifies the total number

of trees in the ensemble.
c Max depth controls the maximum depth of each

tree.

Linear Support Vector Regression (LIN) SVM enhances
the traditional support vector machine regressor by em-
ploying kernels to expand the feature space, thereby ac-
commodating non-linear characteristics (Boser et al., 1992;
James et al., 2013). Three different kernels are utilised:
linear (discussed in this section), polynomial, and Radial
Basis Function Support Vector Regression (RBF), which
are presented in the subsequent sections.

The linear kernel is the simplest form of kernel function.
It maps the input features directly without any trans-
formation, making it suitable for linearly separable data.
The decision boundary is a straight line (or hyperplane in
higher dimensions), which simplifies the computation and
interpretation.

The parameters for the LIN model include the choice of
kernel (in this case, linear), the regularisation parameter
C, and epsilon.

For details on the parameters and their ranges, see Table 4.

Polynomial Support Vector Regression (POLY) The
polynomial kernel maps the input features into a higher-
dimensional space using polynomial functions. This allows
it to capture non-linear relationships between the features.
The degree of the polynomial determines the model’s com-
plexity, enabling it to fit more intricate patterns in the
data (James et al., 2013).

For details on the parameters and their ranges, see Table 4.

Radial Basis Function Support Vector Regression (RBF)
The RBF kernel, also known as the Gaussian kernel,

maps the input features into an infinite-dimensional space.
It measures the similarity between data points based on
their distance, allowing it to capture complex, non-linear
relationships. The RBF kernel is particularly powerful for
handling data that is not linearly separable (James et al.,
2013).

For details on the parameters and their ranges, see Table 4.

Table 4. Parameters for SVM Models with
Different Kernels

Model Parameter Scope

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.01, 1)
(Linear)

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.01, 1)
(Polynomial) Gamma3 U(0.01, 100)

Degree4 I(1, 2)
Coef05 U(0.01, 10)

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.1, 1)

(RBF*) Gamma3 U(0.01, 100)

1 Regularisation Parameter for SVM applies
uniformly across other SVM models to ensure
consistency in regularisation and sensitivity.

2 The epsilon parameter defines a margin of
tolerance around the regression line within
which no penalty is assigned for prediction
errors.

3 The gamma parameter controls the influence
of a single training example and determines
the spread of the kernel. This affects the
smoothness of the decision boundary; lower
values imply a broader spread, while higher
values imply a narrower spread.

4 The degree parameter specifies the degree of
the polynomial function used to transform
the data, determining the flexibility of the
decision boundary by defining the highest
power of the input features.

5 The coef0 parameter represents the indepen-
dent term in the kernel function and adjusts
the influence of higher-order versus lower-
order terms.
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Fig. 1. Modelling Result for an Element of Px Showing RMSE for All Models Over the LV
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2.4 Data Pre-processing

In this work, two product datasets were compiled, Pα and
Pβ , each representing different stages in the production
process. The goal during pre-processing was to maintain
at least 10,000 samples, which influenced the configuration
of pre-processing steps. The pre-processing involved two
key steps: feature selection and outlier removal.

Feature selection was conducted to identify and retain the
most relevant variables by discriminating against those
with low variance and high inter-correlation. A variance
and correlation threshold was carefully estimated to ensure
that the sample volume remained above 10,000, thus
preserving the dataset’s integrity while enhancing model
performance.

Outlier removal was performed using the Interquartile
Range (IQR) method. This method involved several steps:

1. Calculating the first quartile (Q1) and the third quartile
(Q3). 2. Computing the IQR as IQR = Q3−Q1. 3. Defining
the lower bound as Q1 − 1.5× IQR. 4. Defining the upper
bound as Q3 + 1.5 × IQR. 5. Removing any data points
that fell below the lower bound or above the upper bound.

Following the outlier removal, the dataset was scaled to
standardise the features, ensuring that all variables con-
tribute equally to the model’s performance. Standardis-
ation involved adjusting the features to have a mean of
zero and a standard deviation of one, which is particularly
important for machine learning models that are sensitive
to the scale of the input data.

After these pre-processing steps, the dataset was split into
training and testing sets for model evaluation. The sep-
aration between the training and test datasets effectively
prevents overfitting, as is standard practice. To address un-
derfitting, model parameters were allowed sufficient flexi-
bility, managed through a trial-and-error approach. This
approach was supported by a baseline guess informed by
experience and conventional practices, ensuring that the
models could adequately capture the underlying patterns
in the data. The training set was used to fit the models,
while the testing set was reserved for assessing the model’s
predictive performance on unseen data, thereby enhancing
the model’s ability to generalise and ensuring robust and
reliable predictions.

2.5 Hyperparameter Estimation

A train-test split is implemented to ensure that the train-
ing process is conducted without any data leakage. Hyper-
parameter estimation is performed using a random grid
search approach.

As demonstrated by Bergstra and Bengio (2012), the
random search method offers significant advantages over
conventional exhaustive grid search, particularly in terms
of computational efficiency. It achieves comparable or
even superior results while requiring fewer computational
resources.

In a random grid search, hyperparameters are randomly
sampled from a predefined list or distribution across a
set number of iterations. This approach allows for a more

effective exploration of the parameter space, increasing the
likelihood of identifying optimal hyperparameters.

2.6 Evaluation

The Root Mean Squared Error (RMSE) is employed to
evaluate the performance of each subset model mx

i,j,k

on both training and test datasets. The RMSE depends
on various factors, including the production database,
iteration, volume, and model (m(x, i, j, k)). The RMSE is
defined by Equation 3:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

where n is the number of observations, yi represents the
actual values, and ŷi represents the predicted values.

This metric provides a robust measure of the model’s
predictive accuracy, with lower RMSE values indicating
better model performance.

Grid-plot Evaluation To effectively interpret the com-
plex system created by multiple layers of iterations, a
structured framework for evaluating the results is neces-
sary. The following approach is implemented in this work.

For each product dataset, a grid plot is created, containing
one subplot for each model. Given that the number of
models is 9, a 3 by 3 grid plot is used.

Each subplot, representing a specific model, displays how
the train and test scores vary across the list of volumes.
The y-axis shows the training and test error scores, while
the x-axis represents the sampling volume. To enhance
clarity, the x-axis is displayed on a logarithmic scale.

Additionally, each subplot shows the result scores for
all iterations of the random grid search. The results are
depicted as an area plot, with the mean indicated by a line
(solid red for train data and dashed blue for test data).

To facilitate the comparison of model results within the
same product dataset, faint but discernible lines are drawn
in the background to represent other models. These back-
drop lines correspond to the score type. Consequently, the
x- and y-axes of all subplots are synchronised and shared.

Model Result Ranking To provide a comprehensive
overview of model performance, a heat map ranking plot
is created. This heat map shows which models achieve the
best test scores (lowest RMSE) for each volume.

Each model in LM is represented by an individual row on
the y-axis.

Each volume in LV has a corresponding column on the
x-axis, increasing incrementally. Each cell in the heat map
displays the rank of the model, ranging from 1 to |LM |.
The top three models are colour-coded individually, while
the remaining models share a single colour, as indicated
by the colour bar on the right.
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3. RESULTS AND DISCUSSION

The results and corresponding discussion are presented in
this section. First, the outcomes of the data pre-processing
stage are detailed in Section 3.1. This is followed by a
description of the subset sampling process in Section 3.2.
Next, the details of the hyperparameter search are pro-
vided in Section 3.3. The modelling scores are then pre-
sented in Section 3.4, followed by the analysis of the model
rankings in Section 3.5.

3.1 Preprocessing

The pre-processing stage resulted in two datasets, Pα

and Pβ , each ultimately containing an equal number of
features. However, only half of these features were shared
between the two datasets. During the feature selection
process, different subsets of features were identified as
relevant or superfluous for each dataset, leading to the
retention of distinct feature sets in Pα and Pβ . Given that
both datasets are derived from the same processes, it is
expected that they share some underlying characteristics,
which is reflected in the final selection of features.

The features retained after pre-processing for both Pα

and Pβ are summarised in Tables 5 and 6. To ensure
consistency in subsequent analyses, the features shared
between Pα and Pβ were ordered and enumerated in a
manner that aligns corresponding features representing the
same properties. Each feature was assigned a consistent
subscript across both datasets, allowing for direct com-
parison and facilitating the interpretation of the model
results.

Table 5. Features Selection Outcome for α and
β

Features α β

Initial 22 22
Removed 14 14
Kept 8 8
Missing Value Ratio* 0.96 0.95
* Constant value what ratio dictat-

ing the threshold for feature re-
moval due to missing values.

Table 6. Outlier Removal Results for α and β

Samples α β

Initial 12072 13597
Removed 1667 1543
Kept 10405 12054

3.2 Subset Sampling

Subsets Sx
i,j were extracted for each volume in the list LV

and sampled A times, resulting in |LV | ×A permutations
per product dataset. The process begins with 10 samples
and progresses to 10,000 samples in 10 steps, with the
sampling volumes defined as LV = [v1 = 10, v2 = 22, v3 =
46, v4 = 100, v5 = 215, v6 = 464, v7 = 1000, v8 =
2154, v9 = 4642, v10 = 10000].

Thus, |LV | = 10, states that the length of the list of
sampling volumes is 10.
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Fig. 2. Feature Distributions

3.3 Hyperparameter Estimation

For each element in the model list LM , the best fit was
determined for every dataset in S. Table 7 presents the
mean values of the hyperparameters selected by the search
process for the estimators.

3.4 Modelling Score

This subsection presents and discusses the variation in
model scores as the volume of data in the production
datasets increases. Figure 1 contains two sub-figures, 1a
and 1b, which illustrate how the scores of all models
change with increased data volume (see subsection 2.6.1
for details) for Pα and Pβ , respectively. In general, the
initial data volumes exhibit considerable volatility and
are not given significant weight in the overall analysis
of results. This volatility is reflected in the variation of
the scores. Unless explicitly stated, both Pα and Pβ are
discussed collectively in the following analysis.

Most models show convergence between training and test-
ing scores as data volume increases, with Lasso being a
notable exception. Thus, it can be concluded that gener-
alisation improves with an increase in data volume. How-
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Table 7. Hyperparameter Result

Model Parameter α β

101 102 103 104 101 102 103 104

Ridge Alpha 5.130 5.190 3.393 7.206 16.470 7.628 2.797 5.435

Lasso Alpha 0.026 0.017 0.012 0.033 0.171 0.018 0.018 0.019

Decision Tree Max Features 36.0 35.0 43.0 46.5 47.5 73.5 57.0 66.5

Random Forest Max Features 45.0 61.0 54.0 27.0 49.5 39.5 59.0 44.5

# Estimators 327.0 269.0 490.0 636.5 291.5 657.5 604.0 257.0

Gradient Boosting Max Depth 34.5 37.5 10.5 23.0 56.0 63.5 15.0 25.5

Max Features 39.5 6.5 25.5 50.5 42.5 4.5 34.0 61.5

# Estimators 563.5 599.5 513.5 215.0 605.0 579.0 588.0 693.5

Support Vector (Linear) C 0.047 0.032 0.071 0.154 0.082 0.088 0.057 0.101

Epsilon 0.024 0.016 0.022 0.028 0.049 0.022 0.029 0.027

Support Vector (Polynomial) C 0.614 0.281 0.254 0.443 0.145 0.346 0.208 0.289

Epsilon 0.512 0.119 0.114 0.123 0.636 0.117 0.107 0.130

Gamma 0.867 0.519 0.263 5.295 0.637 0.852 0.094 0.132

Degree 2.0 3.0 2.0 2.0 2.0 3.0 2.0 2.0

Coef0 0.187 0.197 1.117 0.607 0.091 0.644 0.570 0.461

Support Vector (RBF) C 0.145 0.134 0.168 0.185 0.028 0.103 0.477 0.166

Epsilon 0.017 0.021 0.024 0.019 0.034 0.031 0.033 0.017

Gamma 0.300 0.182 0.082 2.177 0.260 0.077 0.136 0.979

ever, a point of diminishing returns in generalisation is
discernible at different volumes and to varying degrees.

Lasso exhibits interesting behaviour, where training and
testing scores converge quickly but then fluctuate as data
volume increases, resulting in subpar overall performance.
To explain this atypical behaviour, it is worth considering
Table 1, which highlights Lasso’s unique use of l1 regular-
isation. Furthermore, as shown in Table 7, the Lasso hy-
perparameter (Alpha) remains relatively static as volume
increases, indicating that the method may be incompatible
with this data or that the parameter ranges need revision.

The training score generally increases monotonically for all
models except Lasso and RBF. The previous explanation
for Lasso is insufficient when considering RBF, but since
RBF shows significant improvement with larger volumes,
this is not a major concern.

Examining the score spread, it is clear that ensemble mod-
els outperform the other models. A noteworthy runner-
up is RBF, which, at larger volumes, approaches the
performance of the ensemble models. This suggests that
the data is well-suited for a non-parametric approach.
Additionally, since all non-linear models, except POLY,
show strong performance, it implies that the data has a
non-linear nature. Alternatively, it may also indicate that
the hyperparameter estimation and parameter ranges are
insufficient to fully capture the underlying data patterns.

Referencing Table 1, it is possible that the robustness of
ensemble methods to outliers gives them an advantage,
suggesting that the pre-processing approach may have
been inadequate for models sensitive to outliers.

3.5 Model Ranking

To make the overall performance of the models more
discernible, their rankings across different data volumes
are presented in Figs. 3 and 4 for Pα and Pβ ,
respectively (see subsection 2.6.2 for details).

The ranking for Pβ shows convergence earlier than for Pα,
meaning it stabilizes at a lower data volume. Specifically,
Pβ reaches saturation at a volume of approximately 102.3,
while Pα does not reach saturation until a volume of
around 103.

The differences between Pα and Pβ can be attributed to
the distinct sets of features retained after pre-processing,
even though both datasets originate from the same un-
derlying processes. Although each dataset contains ap-
proximately 10,000 samples and initially had an equal
number of features, the final set of features for Pα and Pβ

differs. This suggests that the selected features contribute
differently to the modelling process, with certain features
being more relevant or informative for one dataset than
the other.

The divergence in feature selection underscores the varying
impact of these features on the predictive models. Some
features may offer greater predictive power or relevance
depending on the specific context of each dataset, which
in turn influences the point at which the model rankings
stabilise

4. CONCLUSION

This study has demonstrated that most machine learning
models show consistent improvement in predictive per-
formance, as evidenced by a reduction in test RMSE,
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Fig. 3. Model Rank for Pα
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Fig. 4. Model Rank for Pβ

with increasing data volume. This finding underscores the
importance of larger datasets in enhancing model general-
isation, which is crucial in the context of industrial batch
process modelling.

Among the models evaluated, ensemble models such as
RFR and GBR consistently outperformed other models
across various data volumes. Their robustness to outliers
and ability to capture complex, non-linear relationships
make them particularly effective for the datasets used in
this study.

In contrast, non-ensemble models, especially those sen-
sitive to outliers, generally underperformed relative to
ensemble methods. Models employing L1 regularisation,
such as Lasso, exhibited less stability and improvement
in performance, suggesting that the chosen regularisation
method may not be optimal for this data.

The disparity in performance between ensemble and non-
ensemble models may be attributed to the latter’s greater
sensitivity to outliers. While stricter outlier removal could
potentially enhance the performance of non-ensemble
models, it would also reduce the number of available data
samples, potentially limiting the study’s scope.

The analysis of model rankings revealed a notable differ-
ence in the convergence times between models trained on

the Pβ and Pα datasets, despite both being derived from
the same type of product and processes. This disparity
illuminates the effectiveness of the introduced framework
in detecting subtle variations in dataset complexity, par-
ticularly in terms of the variation of selected features,
which significantly impacts the amount of data required
for models to achieve saturation.

These findings highlight the importance of careful model
selection and robust data pre-processing in industrial ap-
plications. Given the superior performance of ensemble
models, they should be prioritised in future research within
similar contexts. However, non-ensemble models may re-
quire more sophisticated pre-processing and parameter
tuning to achieve comparable performance. These con-
clusions provide a foundation for further work aimed at
improving model accuracy and robustness in industrial
settings, potentially through enhanced data handling tech-
niques and the inclusion of more complex models.

The findings of this study have broader implications be-
yond the iron and steel industry, extending to other sec-
tors that rely on industrial batch processes, such as the
chemical, pharmaceutical, and food processing industries.
These industries share common challenges in managing
complex, multi-product operations where model perfor-
mance is heavily influenced by data volume and qual-
ity. The demonstrated superiority of ensemble models in
handling non-linear relationships and their robustness to
outliers suggests that similar approaches could be highly
effective in these related industries. Moreover, the insights
gained from addressing model sensitivity to outliers and
the impact of dataset complexity can inform best practices
in these sectors, where optimising process efficiency and
product quality is equally critical. By adopting the strate-
gies outlined in this study, industries with comparable
batch processing challenges can enhance their predictive
modelling capabilities, leading to more sustainable and
efficient operations.
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