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Abstract: This research explores the feasibility of using excess heat from data centers for
biomass drying, enhancing the biomass energy value. A predictive model was developed to
estimate exhaust air humidity from the dryer, indirectly indicating biomass moisture. Machine
learning techniques, including linear regression model (LM), gradient boosting machines (GBM),
eXtreme gradient boosting (XGBoost), random forest (RF), and multilayer perceptron (MLP),
were used. Tree-based models GBM, RF, and XGBoost achieved a coefficient of determination
(R²) of 0.88–0.89. Methods were enhanced with transparency through explainable artificial
intelligence (XAI) techniques, which facilitated the analysis and visualization of humidity
fluctuations. Key factors affecting drying efficiency include weather conditions, supply air
humidity, and fan speed. The study provides actionable insights for optimizing the drying
process, improving system air tightness, and advancing sustainable energy utilization through
AI-driven solutions. The developed model enables future dynamic control of drying processes.

Keywords: process monitoring, explainable AI, predictive modeling, decision support, data
centers

1. INTRODUCTION

Excess heat utilization from data center is widely investi-
gated and is high interest of service provides as the climate
targets, questions and demands are also increasing around
the data center field. The utilization of data center excess
heat especially in Nordics is concentrated to utilization in
district heating (Wahlroos et al., 2018), as it is a well-
established heating method in the area. District heating
production in general still relays on fossil fuels and for
example in Finland largely also to wood-based bioenergy.
The use of wood-based bioenergy is increasing because of
climate actions and increased price of CO2 allowances. For
energy production the wood based raw materials like wood
chips are highly utilized. One option to utilize the waste
heat of data center could be drying of biomass. As very
even quality continuous heat flow is available from the
datacenter and the drying of biomass as such requires lots
of energy, but at the same time the energy value of the
dried material increase by drying. The biomass drying has
been considered earlier an option for waste utilization as
an external process (Wahlroos et al., 2018) and now it was
tested in the industrial scale.

In industrial settings, the challenges posed by demand-
ing measurement conditions can significantly impact on
quality of the data, and the data can come from several
different sources. This multi-source data, often varied in
format and structure, adds complexity to the analysis
process. Despite these challenges, machine learning (ML)

methods are widely employed to diagnose, optimize, and
enhance the quality and efficiency of complex manufactur-
ing processes. However, the volume of data generated in
industrial environments can be immense, further compli-
cating the analysis process. ML techniques offer a means
to extract valuable insights from these large and diverse
datasets, enabling the prediction of process outcomes and
the identification of relationships between different process
parameters (He et al., 2009).

Previously, wood drying processes have been successfully
optimized using ML methods across various applications.
Ascher et al. (2022) have shown that ML methods have
great potential towards modelling the biomass and waste
gasification and pyrolysis processes and predicting the
processes’ product yields and properties. Chai et al. (2019)
utilized feed forward neural network to simulate wood
moisture content during the high-frequency drying, while
Onsree and Tippayawong (2021) achieved accurate pre-
dictions of solid products yields from biomass torrefac-
tion processes using gradient boosting machines (GBM).
Studies have explored traditional physical methods in this
area as well. For example, Li et al. (2012) investigated
integrating a drying process into a power generation plant,
using waste energy from process industries. These sources
included low-grade heat, such as flue gas or hot cooling wa-
ter for superheated steam. Additionally, Gebreegziabher
et al. (2013) developed a physical model to determine the
optimum drying level of wood chips. Furthermore, Li et al.
(2022) examined using steel heat carriers for waste heat re-
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covery and drying of high-moisture biomass in direct-fired
power generation, achieving a 77.4% thermal efficiency in
waste heat recovery and reducing fuel moisture content.

To fully leverage data-driven process modeling, the model
results must be transparent to humans managing the
manufacturing process. Hence, employing explainable ma-
chine learning methods is advisable (Goebel et al., 2018).
Transparency should be increased, particularly when the
model structure fails to explain the root causes behind the
outcomes (Hagras, 2018). This transparency not only aids
in understanding but also facilitates the optimization of
the process, enabling humans to make informed decisions
based on the clear explanations.

In this research, first, a simple linear regression model
is trained to predict biomass moisture after the dry-
ing process using a small dataset. Then, a model for
predicting the absolute humidity of the air exhausted
from the dryer is developed using LM (James et al.,
2013), eXtreme gradient boosting (XGBoost) (Chen and
Guestrin, 2016), GBM (Hastie et al., 2001), random forest
(RF) (Breiman, 2001), and multilayer perceptron (MLP)
(Rosenblatt, 1958; Bishop, 1995) modeling methods, and
the root causes behind the undesirable humidity levels are
identified. The modeling results have been analysed and
visualized using XAI methods.

This study represents a pioneering effort in the field, to
our knowledge, being the first to utilize waste heat from
data centers for biomass drying and optimize the process
through exhaust air humidity prediction. The article is or-
ganized as follows: In Section 2, the biomass drying process
is described. Section 3 explains the data collection process.
The modeling and visualization methods are introduced
in Section 4, while Section 5 presents model training and
results. Finally, the discussion and conclusion are found in
Sections 6 and 7, respectively.

2. BIOMASS DRYING PROCESS

The biomass drying using waste heat from a small data
center, the Boden Type Data Center (BTDC) located
in Boden, Sweden, was tested by installing an industrial
scale dryer unit, ModHeat®, at the data center site. The
biomass drying test setup is depicted in Fig. 1. The drying
air, in this case waste heat from data center was taken
straight from the BTDC (from area of 60 m2) to the drier.
The dryer´s fan was used to suck the warm air from the
data center to the dryer. The dried test material was a
normal energy wood chip.

The wet wood chips were fed to the hopper where the
material was then fed by conveyer belt to the dryer´s
materials feeder. From the material feeder the biomass was
fed to dryer. Inside the dryer material was circulated from
drying level to another, as the dryer consist of five drying
levels. The drying air from the data center was in contact
with the material inside the dryer and was circulated in
the opposite direction with the material flow. The drying
air was circulated by the exhaust fan of the dryer and the
moist exhaust air was directed to atmosphere after drying.
The dried material discharged from the bottom level of the
dry to the conveyer and unloaded to the skip.

The main feature of the drying test campaign at the
data center end was the hot aisle temperature (30/42°C)
representing a traditional and high-performance comput-
ing data center, which was achieved by the varying the
operation modes for the cooling equipment. At the dryer
end, the main features were the air flow rate at inlet
(50/100%), which was adjusted with the dryer´s fan speed
and the material feeding rate (50/75/100 %), which was
adjusted to control the material flow volume to the dryer.
The material flow rates were 2, 2.7, and 3 m3/h.

Fig. 1. The layout of the biomass drying test setup.

3. DATA COLLECTION

The test campaign lasted about two weeks from September
14th to 24th, 2020, during which the test setup was
instrumented for a data collection. The data collection
consists of data from four different systems, of which three
were inputs. One of the systems was the internal system of
the data center (provided by EcoCooling), which collected
environmental data from the computer room evaporation
units (CREC). The CREC handles the server cooling and
kept the data center aisles at target temperatures. The
second data collection system was the ModHeat® dryer
data collection system gathering the information about
temperature, relative humidity, and air speed going in
and out of the dryer. The third system (provided by
RISE Research Institutes of Sweden) gathered the data
about temperature, relative humidity, air volume flows
entering and exhausting the dryer. As the inlet and outlet
temperatures and relative humidity of air were the main
data points for dryer´s efficiency evaluation both data
loggers were used to avoid data loss. The fourth system
collected the data related to electric power usage data of
the servers, the dryer, the CREC units and local weather
data at the datacenter site. The sensor placement of data
collection is depicted in Fig. 2. In addition to monitored
data, the moisture content of the material, initial moisture
content as wet and after drying, was measured sample
based manually in intervals during the test campaign.
However, the dataset was limited, comprising only 15 pairs
of values before and after drying.

4. METHODS

Several different machine learning methods have been used
in this research to find insights from the data. In addition,
to interpret these models, methods of XAI are used.

4.1 Machine learning models

In this research, first, a linear regression model based on
ordinary least square regression was used in biomass mois-
ture prediction and the model’s ability to generalize new
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Fig. 2. The data collection points and placement of the
sensors at the test site.

data have been inspected based on leave-one-out-cross-
validation (LOOCV) (Hastie et al., 2001). Subsequently,
five predictive ML methods - LM, GBM, RF, XGBoost
and MLP - were employed to predict the absolute humid-
ity of exhaust air, utilizing 10-fold cross-validation dur-
ing training. For each model except LM, hyperparameter
tuning was conducted using a grid-based approach. The
tuning process aimed to optimize the models’ performance
metrics, such as root mean squared error (RMSE), using
a cross-validation.

All of these methods are types of supervised machine
learning, where the algorithms are trained on labeled
data to predict the desired variable. These methods were
employed with the goal of identifying the factors that
affect biomass end moisture and predicting accurately the
exhaust air humidity after one and half hour, which can
aid in optimizing the initial settings for the drying process.

GBM, RF, and XGBoost are tree-based ensemble methods
(Zhou, 2014). They work by combining the predictions of
multiple individual models (trees in the case of RF and
GBM, and boosted trees in the case of XGBoost) to make
a final prediction. In RF, each tree is built independently
using a random subset of features and samples, and the
final prediction is made by averaging or voting over the
predictions of all trees (Breiman, 2001). In GBM and
XGBoost, trees are built sequentially, with each new
tree trained to correct the errors made by the previous
trees.(Hastie et al., 2001; Chen and Guestrin, 2016) MLP
is a type of artificial neural network (ANN) that consists
of multiple layers of interconnected neurons, including an
input layer, one or more hidden layers, and an output layer.
Each neuron in an MLP is connected to every neuron in the
adjacent layers, allowing for complex non-linear mappings
between input and output features (Bishop, 1995).

4.2 Visualization with XAI

Explainable artificial intelligence (XAI) methods have
been used to enhance the understandability of the model-
ing results (Goebel et al., 2018). With XAI methods, the
interpretation of the black box models can be increased
(Apley and Zhu, 2019). MLPs are generally considered to
be less interpretable compared to tree-based models like
RF, GBM, and XGBoost. This is because the internal
workings of a neural network are highly complex and
opaque, making it difficult to understand how individual
features contribute to the model’s predictions. In contrast,

decision trees are more transparent and can provide in-
sights into which features are important for making pre-
dictions.

Transparency can be increased by providing information
about the strength of the importance of each feature of
the model regardless of the modeling method used. In this
study, model-independent SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) and Accumulated Lo-
cal Effects Plots (ALE) (Friedman, 2002) techniques are
used. SHAP based on the concept of Shapley values from
cooperative game theory to provide a unified approach for
explaining the predictions of any machine learning model.
They quantify the contribution of each feature by system-
atically varying its value while keeping others constant and
comparing the model’s prediction to a baseline. With ALE,
the average effect of features on the predictions of ML
model can be visualized. The interactions between features
are also important, and the strength of interactions can be
estimated.

5. RESULTS

In this research, there are two study cases, each with its
own dataset. The first study case focuses on predicting
biomass moisture, while the second study case focuses on
predicting the humidity of the exhaust air.

5.1 Dataset

In these two cases, about two weeks’ dataset were avail-
able, although with some limitations. In the biomass mois-
ture study case, the dataset comprises 15 pairs of biomass
moisture measurements, recorded manually as spot checks.
The pairs were selected with a minimum one-hour delay
between start and end moisture readings during the period
of time.

In the absolute humidity of exhaust air study case, the
data is divided iteratively into training and test sets using
10-fold cross-validation. The independent features used for
model training, are 5-minute average values and there are
12 features each containing 140 values. Features are listed
in Table 1. The dependent variable, exhaust air absolute
humidity, represents the absolute humidity after one and a
half hours, relative to the starting state, which corresponds
to the drying time of one portion of the biomass.

5.2 Study case: Biomass moisture

Rather than predicting end moisture directly, a linear
regression model was employed to predict the difference
between start and end moisture. Variable selection dur-
ing modeling resulted in a final model with 9 variables
predicting this moisture difference. Figure 3 displays the
actual versus predicted moisture differences, while Figure 4
provides detailed model results. Despite an 89% expla-
nation of variance (R2), the adjusted R2 (0.69) suggests
the presence of non-significant variables, notably POD2
supply temperature (p = 0.01), supply flow (p = 0.01), and
outdoor absolute humidity (p = 0.02), identified as signif-
icant based on p-values. The coefficient plot, with 95%
confidence intervals, indicates considerable uncertainty in
variables, with some intersecting the reference line at 0,
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Table 1. Description of the independent variables

Name Description

container supply hum incoming air humidity measured in the end of air pipe (%)
container supply temp incoming air temperature measured in the end of air pipe (°C)
dryier fan speed incoming air flow rate to dryer(%)
dryier feed rate material feeding rate to the dryer (%)
humidity outdoor absolute the absolute value of outdoor air humidity (g/m3)
humidity outdoor relative the relative value of outdoor air humidity (%)
POD2 supply hum incoming air humidity from the data center to air pipe (%)
POD2 supply temp incoming air temperature from the data center to air pipe (°C)
precipitation quantity absolute the absolute quantity of half on hour cumulative precipitation (mm)
Supply air temp incoming air temperature from pipe to dryer (°C)
Supply air relative humidity incoming relative air humidity from pipe to dryer (%)
supply flow Air flow from data center to dryer measured in the middle of the pipe (m3/s)

signifying insignificance in Fig. 5. Notably, absolute pre-
cipitation quantity and relative exhaust air humidity were
non-significant, while others influenced biomass moisture
differences. The model performance was evaluated using
LOOCV, yielding an R2 value of only 0.57. The general-
ization of this model appears to be quite poor.

Fig. 3. A comparison between observed and predicted
biomass moisture differences with LM.

Fig. 4. LM performance evaluation.

5.3 Study case: Absolute humidity of exhaust air

In this study, the absolute humidity of exhaust air is
predicted using five ML models: LM, GBM, RF, XGBoost,
and MLP. Each model was trained and evaluated using 10-
fold cross-validation, and all models except LM underwent
hyperparameter tuning via grid search. The LM achieved
an average RMSE of 0.468 and average R2 of 0.799. GBM

Fig. 5. A coefficient plot of LM with 95% confidence inter-
vals showing the significance of independent features.

Table 2. Comparison of modeling results.
Higher R2 values and smaller RMSE values

indicate higher predictive accuracy

Model R2 Mean ↑ (sd ↓) RMSE Mean ↓ (sd ↓)
LM 0.799 (0.079) 0.468 (0.113)
GBM 0.880 (0.070) 0.359 (0.107)
RF 0.894 (0.074) 0.345 (0.110)

XGBoost 0.894 (0.075) 0.345 (0.101)
MLP 0.726 (0.005) 0.738 (0.003)

showed the best results with a shrinkage of 0.1, interaction
depth of 6, and 200 trees, yielding an average RMSE of
0.359 and an average R2 of 0.880. RF achieved optimal
performance with the number of variables to randomly
sample as candidates at each split (mtry) of 4, resulting in
an average RMSE of 0.345 and an average R2 of 0.894.
XGBoost performed optimally with a learning rate of
0.3, maximum depth of 3, and 200 rounds, achieving an
average RMSE of 0.345 and an average R2 of 0.894. MLP
demonstrated its best performance with a single hidden
layer size of 10 and weight decay of 0.01, achieving an
average RMSE of 0.738 and an average R2 of 0.726. All the
modeling results, including mean and standard deviation
values of R2 and RMSE for each of five models, are shown
in Table 2. As can be seen, the most accurate models are
RF and XGBoost based on the RMSE and R2 values.

The SHAP feature importance plots for both models are
presented in Fig. 6 and Fig. 7. In the RF plot, the X-axis
values indicate the average absolute SHAP value across all
samples, representing the average impact of each feature
has on the model’s output across different data points. A
higher absolute SHAP value suggests that the feature has
a stronger influence on the model’s prediction. Conversely,
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In XGBoost, the X-axis labeled ”Gain” denotes the gain in
model performance achieved by splitting on each feature
during the training process. This gain is calculated based
on various metrics such as information gain or reduction
in impurity. Features with higher gain values indicate that
splitting on those features leads to greater improvements in
the model’s predictive accuracy. In both plots, the top four
features are the same but in a different order. The most im-
portant features are the amount of humidity expelled from
the data center (POD2 supply hum), absolute humidity
of outdoor (humidity outdoor absolute), absolute quantity
of precipitation (precipitation quantity absolute), and the
speed of the dryer fan (dryer fan speed). In other worlds,
these features exhibit the most significant influence on the
target variable, the exhaust air humidity from the dryer.

The correlation between features has been calculated and
is shown as a heatmap in Fig. 8. It can be seen that
the most correlated feature pairs are those measuring
the supply air humidity and temperature. Additionally,
the speed of the fan correlates quite strongly (0.80) with
the amount of humidity expelled from the data center
(POD2 supply hum), the relative outdoor humidity (0.89),
and the absolute precipitation quantity (0.87). The RF
model will be interpreted in more detail next.

Fig. 6. The SHAP feature importance for RF.

The effect of each feature on the dependent variable is
visualized with Accumulated Local Effects (ALE) plots.
Figure 9 presents the ALE plot illustrating the influence
of the input feature ’POD2 supply hum’ on the exhaust
air absolute humidity. ALE shows the main effect of the
feature at a certain value compared to the average pre-
diction of the exhaust air absolute humidity of RF and
also the distribution of data points. As can be seen, the
predicted exhaust air absolute humidity is higher when the
POD2 supply humidity is below 12.8%. Similarly, a clear
boundary can be observed where the feature begins to have
a negative effect on the exhaust air absolute humidity in

Figs. 10 to 13. These plots show that the exhaust air
absolute humidity is higher when the absolute humidity

of outdoor (humidity outdoor absolute) is below 6.7g/m3,
the container supply humidity is below

Fig. 7. The SHAP feature importance for XGBoost.

Fig. 8. Correlation heatmap of the independent features.

15.3%, the absolute quantity of precipitation is below
139mm (precipitation quantity absolute), and the speed
of the dryer fan (dryer fan speed) should be 50% instead
of 100%. The modeling results are influenced not only

Fig. 9. ALE of the POD2 supply humidity (%) on the
predicted humidity of RF (black solid line) are shown
on the Y-axis, with the distribution of data points
represented by black bars along the X-axis.

by individual features but also by their interactions. In
addition to analyzing features independently, it’s essential
to study their interactions. These interactions are depicted
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Fig. 10. ALE of the absolute humidity of outdoor (g/m3)
on the predicted humidity of RF.

Fig. 11. ALE of the container supply humidity (%) on the
predicted humidity of RF.

Fig. 12. ALE of the absolute quantity of precipitation
(mm) on the predicted humidity of RF.

in Fig. 14, illustrating the strength of interplay between
features. Each feature is assigned an interaction strength
value, ranging from 0 to 1, indicating the proportion of
explained variance of f(x). A value of zero denotes no
interaction, while one indicates complete dependence on
the interaction of the given feature. Notably, POD2 supply
humidity, container supply humidity, relative and absolute
humidity of outdoor, and absolute precipitation quantity
exhibit the highest interaction strengths. Moreover, Fig-
ure 15 visually identifies the strongest interaction partners
for each feature. For instance, the POD2 supply humidity’s
primary interaction partner is the absolute humidity of
outdoor. Furthermore, interactions between absolute pre-

Fig. 13. ALE of the speed of the fan (%) on the predicted
humidity of RF.

cipitation quantity, relative humidity of outdoor, container
supply air humidity, and the speed of fan are also observed.
But overall, the interaction rates are quite low, indicating
a relatively low interaction between the features.

Fig. 14. Overall interaction strengths for each feature
independently analyzed, derived from the RF model.

Fig. 15. The 2-way interaction strengths between the most
important feature, POD2 supply humidity, and the
other features, as determined by the RF model.

For individual predictions, SHAP summary plots provide
a visualization of the SHAP values for each feature. A
summary of SHAP values illustrates the impact of each
feature on the predicted exhaust air absolute humidity in
Fig. 16. A positive SHAP value for a feature indicates
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that its presence increases the prediction, while a nega-
tive SHAP value indicates that its presence decreases the
prediction. The length of the bar shows the magnitude
of the impact. Longer bars mean a greater impact on
the prediction. It’s evident that lower POD2 supply hu-
midity, absolute humidity outdoors, and container supply
humidity values correspond to higher predicted exhaust
air absolute humidity. Conversely, higher values result in
lower predicted humidity. As can be seen, with the low
POD2 supply humidity, absolute humidity of outdoors and
container supply humidity values, the predicted exhaust
air absolute humidity is higher. Similarly, with higher
values, the predicted humidity is lower.

Fig. 16. Summary of SHAP values illustrating the impact
of each feature on RF model predictions.

6. DISCUSSION

The prediction of biomass end moisture poses a significant
challenge due to the inherent difficulty indirectly mea-
suring this target variable. In this study, a small set of
initial measurements was measured both before and after
the drying process. However, the small size of the dataset
and the quality issues associated with the measurements
contribute to the overall low modeling accuracy. Conse-
quently, an alternative approach focusing on the exhaust
absolute humidity was adopted, as it proves to be more
easily measurable. To mitigate the challenges posed by the
limited datasets, cross-validation techniques were utilized
to enhance the robustness of model evaluation and mini-
mize the potential for overfitting.

The relationship between exhaust air humidity and mois-
ture captured from the material reveals valuable insights
in to the drying process. Specifically, in the absolute hu-
midity of exhaust air study case, it was assumed that
higher humidity levels in the exhaust air corresponded to
greater moisture extraction from the biomass, resulting in
a drier biomass output. Root cause analysis of exhaust air
humidity reveals underlying root causes affecting biomass
moisture, as well.

The most important factor behind the humidity expelled
from the dryer is the amount of humidity expelled from the

data center (referred to as the POD2 supply humidity), as
indicated by the RF feature importance analysis. Addi-
tionally, the absolute quantity of precipitation (referred
to as precipitation quantity absolute) emerges as another
crucial factor, as identified by the XGBoost analysis. Both
features rank in the top four in both analyses. Variations
in air humidity along the path from the data center to the
dryer, as well as the initial supply humidity (referred to
as the container supply humidity) at the onset of drying,
play significant roles in both feature analyses. In both
analyses, the top two most important features include the
absolute outdoor humidity and the absolute quantity of
precipitation, which are quite strongly correlated based on
the heatmap. Therefore, weather conditions, particularly
rainy weather, are found to reduce the effectiveness of the
biomass drying process due to alterations in the quality of
leaked air.

The SHAP summary plots provided valuable insights into
the impact of each feature on predicted exhaust air abso-
lute humidity. The analysis revealed that lower POD2 sup-
ply humidity, absolute humidity outdoors, and container
supply humidity were associated with higher predicted
exhaust air absolute humidity, as indicated by positive
SHAP values. Conversely, higher values of these features
were linked to lower predicted humidity, as evidenced
by negative SHAP values. These findings highlight the
significance of controlling and optimizing factors such as
POD2 supply humidity and outdoor humidity to manage
and regulate exhaust air absolute humidity levels during
the drying process.

Through data analysis, three threshold values were iden-
tified to increase the exhaust absolute humidity: POD2
supply humidity below 12.8%, container supply humidity
below 15.3%, and the speed of the dryer fan set at 50%
instead of 100%. Additionally, favorable weather condi-
tions related to air humidity were identified: the absolute
humidity outdoors should be below 6.7 g/m3, and the
absolute quantity of precipitation should be below 139
mm. If these thresholds are exceeded, process settings can
be adjusted to optimize biomass drying, resulting in a drier
biomass output.

Moreover, weather conditions interact with other indepen-
dent features, highlighting the importance of improving
system air tightness to enhance drying efficiency. Shorter
and more airtight pipes between the data center and dryer,
along with airtight design of air entry and output for the
dryer, can mitigate the adverse effects of humid weather
conditions, further optimizing biomass drying effective-
ness.

The developed model accurately predicts exhaust air ab-
solute humidity for one hour and a half into future with
present settings. Additionally, both the RF and XGBoost
models demonstrate strong generalization capabilities, as
evidenced by the metrics calculated on an independent
test dataset obtained through 10-fold cross-validation.
These models explain 89% of the variation in exhaust
air absolute humidity using the selected independent fea-
tures. Nonetheless, further research is needed to refine the
model’s ability to indirectly predict biomass end moisture.
With access to more data for model training, testing,
and validation, dynamic modeling could enable long-term
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predictions of end moisture and adaptive system control,
further optimizing the entire biomass drying process.

7. CONCLUSION

It has been shown that the developed models, even with a
small dataset, showcased the potential of ML and its ca-
pabilities in developing process control for biomass drying,
particularly through tree-based ML methods. As the test
campaign showed the ambient conditions effect strongly
to the dryer´s efficiency especially when low temperature
drying is done. And when operating a multivariant system
like drying in a changing environment there needs to be
possibilities to measure and react to the changes. The
machine learning could provide a tool for handling these
changes by predicting the upcoming changes based on the
history data or forecast data e.g. of weather conditions
or material initial moisture content changes. More exact
evaluation of process parameters variations enables more
accurate prediction of e.g., production capacities.
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