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Abstract: Gas turbines are vital in power generation and propulsion systems. However, these engines are 
exposed to complex and variable operating conditions, which makes early and accurate fault detection 
essential for predictive maintenance and minimizing unplanned downtime. This paper proposes a novel 
approach that combines convolutional neural networks (CNNs) with transformer architectures to address 
these challenges. The proposed Convolutional transformer model aims to enhance the accuracy and 
robustness of turbofan fault classification by integrating the feature extraction capabilities of CNNs with 
the contextual learning strengths of transformers. Through rigorous experiments, we seek to demonstrate 
our approach's performance in classification accuracy and generalization across different operating 
conditions. We utilize a comprehensive synthetic dataset, C- MAPSS, derived from multiple aircraft engine 
units as the benchmark for this study. The results for the proposed model show an accuracy of 99.6% on 
the test dataset. The outcome has the potential to be extended and fine-tuned for different types of gas 
turbines for diverse applications. 
Keywords: fault classification, gas turbine engines, attention mechanism, convolutional neural network, 
machine learning 

1. INTRODUCTION 

The reliable operation of turbofan gas turbines is crucial to 
ensuring the safety and efficiency of modern aviation. As these 
engines are exposed to complex and variable operating 
conditions, early and accurate fault detection is essential for 
predictive maintenance and minimizing unplanned downtime. 
Fault classification plays a pivotal role in identifying and 
rectifying potential issues before they become significant 
failures. 

The classification of faults in turbofan gas turbines is 
confronted with multiple significant challenges (Fentaye et al. 
(2019); X. Yang et al. (2023); Z. Yang et al. (2013)). Firstly, 
these engines are fitted with numerous sensors that monitor a 
range of parameters such as temperature, pressure, and 
vibration, leading to the generation of high-dimensional data 
streams that are challenging to process and analyze effectively. 
Secondly, the operational behavior of turbofan engines is 
characterized by complex temporal patterns, as faults often 
develop progressively over time, necessitating the capture of 
these temporal dependencies for accurate classification. 
Additionally, faults can progress at varying rates depending on 
operating conditions, complicating the development of models 
that can generalize across different scenarios. Moreover, many 
datasets exhibit an imbalance in fault classes, where some fault 
types are significantly more prevalent than others, potentially 
leading to biased classification models. Finally, for practical 
implementation, fault classification models must operate in 
real-time or near-real-time, necessitating the use of efficient 
algorithms capable of managing large volumes of streaming 
data. 

In recent years, various machine learning (ML) and deep 
learning approaches have been explored for turbofan gas 
turbine data exploration and fault classification. A study by 
Xie et al. (2023) shows that feature extraction is a vital step in 
the ML pipeline, involving the transformation of raw sensor 
readings into informative and discriminative features that can 
improve the performance of classification models. Barrera et 
al. (2022) combines gained information from clustering with 
an auto-encoder for anomaly detection. Traditional techniques 
like support vector machines (SVM) and random forests have 
been used with reasonable success. For instance, Zhou et al. 
(2015) applied SVMs to classify different fault conditions with 
reasonable accuracy. Losi et al. (2022) were utilized random 
forest (RF) to predict gas turbine trips based on the snapshot 
matrix of records. However, these methods often struggle to 
oversee the high dimensionality and complex temporal 
dependencies inherent in turbine data. 
The advent of deep learning has brought significant 
advancements in fault classification. CNNs have been highly 
effective due to their ability to extract hierarchical features 
from raw sensor data automatically Sateesh Babu et al. (2016) 
for remaining useful life (RUL) estimation. Long short-term 
memory (LSTM) networks have also been employed in 
research by Cao et al. (2021) to capture temporal 
dependencies, further improving classification performance. A 
study by Arpit et al. (2019)  suggests a variant of LSTM to 
overcome well-known limitations like the vanishing gradient 
discussed by Pascanu et al. (2012). Fentaye et al. (2021) 
implements a Deep CNN to detect and isolate multiple gas 
path faults with over 96% accuracy. Despite these advances, 
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existing models still face challenges balancing local feature 
extraction and capturing global dependencies within the data. 

This paper proposes a novel approach that combines CNNs 
with transformer architectures to address these challenges. 
Transformers, originally introduced by Vaswani et al. (2017) 
for natural language processing, have shown exceptional 
performance in capturing long-range dependencies and 
contextual information. By integrating the feature extraction 
capabilities of CNNs with the contextual learning strengths of 
transformers, our proposed convolutional transformer model 
aims to enhance the accuracy and robustness of turbofan gas 
turbine fault classification. 
We will conduct a comparative analysis of the Convolutional 
transformer model against other state-of-the-art models, 
including a feed-forward transformer and standalone CNN 
models. Through rigorous experiments, we seek to 
demonstrate our approach's superiority in classification 
accuracy and generalization across different operating 
conditions. The proposed model should be able to explore and 
learn imbalanced dataset with complex dynamics effectively. 
In addition, address common issues with recurrent neural 
networks and provide the possibility to extend into deep neural 
networks (DNNs). This research contributes to advancing fault 
classification methodologies and has significant implications 
for implementing predictive maintenance in real-world 
aviation scenarios. 

2. METHODOLOGY 

2.1 Data collection 

This study uses a comprehensive synthetic dataset published 
by Arias Chao et al. (2021) from multiple aircraft engine units, 
the NASA Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS). C-MAPSS is a turbofan engine 
degradation dataset which is a widely used dataset in the field 
of predictive maintenance and prognostics. 

It was developed to simulate realistic engine degradation 
scenarios under various operational conditions, providing 
researchers and practitioners with a valuable resource for 
developing and benchmarking fault detection and remaining 
useful life (RUL) prediction algorithms. The dataset comprises 
multiple sets of time-series data, capturing different 
degradation patterns across several turbofan engines. The C-
MAPSS dataset is instrumental for advancing ML and 
statistical methods in predictive maintenance, allowing for the 

creation and validation of models that can predict equipment 
failures, optimize maintenance schedules, and ultimately 
enhance the reliability and safety of aerospace systems. 
Nevertheless, there has been relatively limited research 
focused on fault diagnostics and classification in gas turbines, 
indicating a significant opportunity for further exploration of 
advanced ML methods in anomaly detection within this 
context. The variables in the dataset are categorized into 
scenario descriptors 𝜔𝜔, health parameters 𝜃𝜃, measurements 𝑥𝑥�𝑠𝑠, 
and virtual sensors 𝑥𝑥�𝑣𝑣. Figure 1 shows a schematic of turbofan 
engine gas turbine. 
This dataset consists of 9 units (2, 5, 10, 11, 14, 15, 16, 18, and 
20). The units 2, 5, and 10 are subject to degradation of the 
efficiency of the high-pressure turbine (HPT) (Fault 1). The 
units 11, 14, 15, 16, 18, and 20 are subject to the flow and 
efficiency of low-pressure turbine (LPT) in addition to HPT 
efficiency degradation (Fault 2). Figure 2 shows the health 
parameters corresponding to the faults occurring within the 
dataset. 

To eliminate the effects of ambient variables on the measure, 
the data goes through a correction process based on Volponi 
(2020). For example, the ambient temperature affects the 
system temperatures, pressure, and, consequently, shaft speed 
and fuel flow. Although the effect of the inlet temperature on 
the pressure is negligible, according to (1-3), the corrected 
values of temperatures, fuel flow, and shaft speed replaced the 
raw values to analyze the system's state during the operation. 

 𝜃𝜃 =
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
                 ,         𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 288.15 𝐾𝐾 (1) 

 𝑇𝑇𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑖𝑖/𝜃𝜃 (2) 

 𝑊𝑊𝑟𝑟
𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 =

𝑊𝑊𝑟𝑟

√𝜃𝜃
      ,        𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 =

𝑁𝑁𝑖𝑖
√𝜃𝜃

 (3) 

Figure 3 demonstrates the distribution of total pressure at LPT 
outlet pressure (P50) during cycles for different units in the 
dataset. 

 
Fig. 1. A schematic of a turbofan engine gas turbine 

  
Fig. 2. Health parameters for LPT and HPT during the cycles 
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Fig. 3. LPT outlet pressure distribution for the engine units in the 

dataset 

2.2 Attention mechanism 

The transformer model, initially introduced by Vaswani et al. 
(2017), has become a cornerstone in natural language 
processing and sequence modeling tasks. The standard 
transformer consists of an encoder and a decoder, comprising 
stacked self-attention and feedforward (FF) neural network 
layers. Self-attention layer takes key, query, and value as the 
input. On the other hand, convolutional neural networks 
(CNNs) are well-known for their ability to extract essential 
features effectively from local spatial hierarchies. This study 
proposes a combination of a multi-head attention (MHA) layer 
and a one-dimensional convolutional layer instead of FF for 
time-series data diagnostic. As the convolutional layer extracts 
essential features, the multi-head attention layer enhances the 
model's performance by directing each head to focus on 
distinct aspects of the data, thereby providing complementary 
information crucial for accurate fault classification. 

 
Fig. 4. A schematic of the transformer neural network structure 

including convolutional layers 

Figure 4 represents a schematic of the proposed transformer 
neural network. A SoftMax activation layer is implemented at 
the output layer to yield a probability that each fault occurs 
within the system. 

 

2.3 Training methodology 

CNNs are more likely to experience overfitting than traditional 
ML models or simpler neural network architectures. One way 
to tackle this issue is to include dropout layers in the CNN 
structure. This will disable some of the connections between 
layers in the training process to achieve a generalized model.  
Another way is to define loss value criteria to terminate the 
training if the model has not improved in multiple consequence 
epochs. This research applies a dropout rate of 10-20% to the 
neural network structure. The loss was calculated using the 
categorical cross-entropy function, as shown in (4). 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦,𝑦𝑦� ) =  −
1
𝑁𝑁
��𝑦𝑦𝑖𝑖,𝑗𝑗 log�𝑦𝑦�𝑖𝑖,𝑗𝑗�

𝐶𝐶

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (4) 

Where N is the number of samples, C is the number of classes, 
𝑦𝑦 is a Boolean to show if the sample 𝑖𝑖 belongs to class 𝑗𝑗, and 
𝑦𝑦� is the predicted probability that the sample 𝑖𝑖 belongs to class 
𝑗𝑗. 

Classification accuracy, a fundamental performance metric in 
supervised learning, is calculated as the ratio of correctly 
predicted instances to the total number of instances evaluated. 
Formally, accuracy (𝐴𝐴) is defined as: 

 𝐴𝐴 =
1
𝑁𝑁
�𝑙𝑙(𝑦𝑦𝑖𝑖 = 𝑦𝑦�𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (5) 

Where in (5),  𝑁𝑁 denotes the total number of predicted class 
labels, and 𝑙𝑙(∙) is an indicator function that returns 1 if the 
argument is true and 0 otherwise. This metric effectively 
quantifies the proportion of correct predictions made by the 
model, providing an intuitive measure of its performance. 

A batch size of 256 was selected to gain consistent training, 
testing, and validation results. Considering the batch size, a 
learning rate of 𝜂𝜂 =5e-5 is assumed for the training. The input 
data of the neural network is a window of input variables with 
the size 𝑤𝑤 = 10 and created using past and present records of 
measured values. 

Starting from epoch 70, an early stopping condition on the 
validation loss was applied to terminate the training process 
after 5-20 consecutive epochs without any improvement. The 
models were optimized by Adam optimizer. The Adam 
optimizer offers adaptive learning rates and efficient 
computation, which makes it suitable for large datasets and 
models with sparse gradients. Its bias correction, robustness to 
noisy gradients, and user-friendly hyperparameters ensure fast 
convergence and broad applicability in deep learning. 

A summary of the model structures studied in this research is 
shown in Table 1. 

 

 

 

CNN

CNN

CNN
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Table 1. Summary of the model structures of Vanilla CNN, CNN, FF Transformer, and Convolutional Transformer 

1. Vanilla CNN  2. CNN  3. FF Transformer  4. Convolutional Transformer 
# layer type unit/

filter 
activation 
function  # layer type unit/

filter 
activation 
function 

 # layer type unit/
filter 

activation 
function  # layer type unit/

filter 
activation 
function 

1 Conv1D 100 ReLU  1 Conv1D 100 ReLU  1 MHA 4 -  1 MHA 4 - 
2 Avg Pooling - -  2 Conv1D 100 ReLU  2 Dense** 100 ReLU  2 Conv1D 100 ReLU 
3 Dropout* 10% -  3 Dropout 10% -  3 Dropout 10% -  3 Dropout 20% - 
4 Conv1D 100 ReLU  4 Dense** 2 SoftMax  4 MHA 4 -  4 MHN 4 - 
5 Avg Pooling - -      5 Dense** 100 ReLU  5 Conv1D 100 ReLU 
6 Dense** 2 SoftMax       6 Dense 100 ReLU  6 Dense** 2 SoftMax 
          7 Dense 2 SoftMax      

* Dropout rate                
** A flattened layer is applied before the 
dense layer                

Table 2 provides an overview of the data split into train, 
validation, and test sets. The test data set uses units 10 and 16 
to ensure that the model evaluates with a balanced data set and 
that there is no data leakage between train/validation and test 
splits. Of the remaining units, 80% and 20% were utilized for 
training and validation, respectively. 

Table 2. An overview of the training, validation, and test datasets 

Dataset Unit Fault Mode 

training and 
validation 

2 HPT 5 
11 

HPT + LPT 
14 
15 
18 
20 

test 10 HPT 
16 HPT + LPT 

Data were normalized from 0 to 1 using a Min-Max scaler to 
avoid saturation in the activation function and achieve faster 
convergence. We used TensorFlow 2.13 for the 
implementation of our neural network models, running on a 
system with an AMD Ryzen 9 5950X CPU (16 cores, 32 
threads), an NVIDIA GeForce RTX 3090 GPU (24 GB of 
GDDR6X memory), and 128 GB of DDR4 RAM at 3200 
MHz. 

 

3. RESULTS AND DISCUSSION 

The K-Best feature selection was implemented to analyze the 
effect of each variable on fault classification. The K-Best score 
for each variable and the cumulative score are presented in Fig. 
5. The results indicate that P50 contributes the most to 
capturing the variance of the output, and the LPT outlet 
temperature (T50) has the most negligible effect on capturing 
the output. In other words, the impact of T50 on fault 
classification is insignificant, and 13 variables are enough to 
predict the output. Notably, 14 out of 45 variables were 
selected as the model's input. In this case, the effect of 
degradation on T50 was not considerable and resulted in a 
lower K-Best score. However, based on the physics of the 
problem, we decided to keep T50 as the model's input.  

 

Fig. 5. K-Best feature selection results: variable scores (left) 
and cumulative score (right) 

Figure 6 shows the result of the K-Means clustering. The 
optimal number of clusters was identified by the knee method. 
As shown, the input variables can be classified into 4 clusters. 
The variables in each cluster are expected to have a similar 
dynamic behavior. For example, the HPT outlet temperature 
(T48) and the T50 have similar dynamic behavior and can be 
assumed to be a cluster. Table 3 shows the selected features 
for the classification problem. 

 
Fig. 6. K-Means inertia value based on the number of clusters 

(left) and K-Means for 𝑛𝑛𝑐𝑐 = 4 (right) 

Figure 7 presents training and validation loss curves. Reducing 
the learning rate resulted in smoother training curves and 
stable results. The model reaches the best accuracy around 
epoch 120. Starting from epoch 90, the training loss starts to 
fluctuate around the local minimum. No significant 
improvements were observed after 120 epochs, and the 
training was terminated to avoid overfitting. In the presence of 
a dropout layer, a lower validation loss is expected compared 
to the training loss. 
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Table 3. Description and notation of variables within the dataset 
based on Arias Chao et al. (2021) 

# Symbol Description Units 
1 Wf Fuel flow kg/s 
2 Nf Physical fan speed rpm 
3 Nc Physical core speed rpm 
4 T24 Total temperature at LPC outlet K 
5 T30 Total temperature at HPC outlet K 
6 T48 Total temperature at HPT outlet K 
7 T50 Total temperature at LPT outlet K 
8 P15 Total pressure in bypass-duct kPa 
9 P21 Total pressure at fan outlet kPa 
10 P24 Total pressure at LPC outlet kPa 
11 Ps30 Statics pressure at HPC outlet kPa 
12 P40 Total pressure at burner outlet kPa 
13 P50 Total pressure at LPT outlet kPa 
14 P45 Total pressure at HPT outlet kPa 

 

 

 
Fig. 7. Convolutional Transformer loss (a) and accuracy (b) curves 

for the training and validation datasets 

Imbalanced classes in the training dataset cause a temporary 
increase in the validation loss at the preliminary stages of the 
training. The prediction results at the beginning are biased 
toward the class with a higher population. On the other hand, 
the categorical cross-entropy loss is sensitive to the 
probabilities assigned to the correct classes. If the model’s 
confidence in its predictions fluctuates (even if predictions are 
mostly correct), the loss can increase while accuracy improves. 
This behavior was observed across all the models studied 
during this research. Training and validation loss/accuracy 

curves for Vanilla CNN, CNN, and FF Transformer are 
presented in Appendix A. 

The validation and test accuracies prove these claims since 
both show remarkable results in fault classification. Figure 8 
shows the confusion matrix for the transformer model with 
convolutional layers. As shown, imbalanced data for fault 
classes resulted in a considerable gap between Fault 1 and 2 
accuracies for models 1-3. These models can identify Fault 1 
with higher accuracy despite a higher population of classes 
with Fault 2. As mentioned, it has simple features and only 
corresponds to HPT fault, while Fault 2 is a combination of 
HPT and LPT failures. 

Hence, a convolutional transformer (model 4) shows 
significant improvement in finding the complex correlation in 
the data considering the imbalance training/validation dataset. 
It is good to note that Fault 2 is a combination of Fault 1 and 
other faults and distinguishing one from another is 
challenging. 

 
Fig. 8. Convolutional transformer confusion matrix for training, 

validation, testing, and total dataset 

Interestingly, the accuracy gained from the test dataset is 
promising and higher than both training and validation in some 
cases. Considering that the test dataset is from separate 
turbofan engine units and was never used during the training 
season, it is another clue for the quality of training and 
evaluation. Implementing the dropout layer avoids overfitting 
and makes the model learn the pattern instead of overfitting the 
current dataset. In this case, the final model performs better in 
predicting the test dataset.  

Figure 9 summarizes the overall accuracy of the evaluated 
modes in this study. CNN model lacks MaxPooling layers and 
has higher parameters compared to Vanilla CNN. In this case, 
the CNN model performs slightly better in accuracy. The 
transformer model with feed-forward layers improved overall 
accuracy by 0.8%. 
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Fig. 9. Overall fault classification accuracy of Vanilla CNN, CNN, 

FF Transformer, and Convolutional Transformer neural networks 

What is interesting here is the accuracy of 98.89% achieved by 
substituting convolutional layers by feed-forward and adding 
the attention mechanism. A combination of multi-head 
attention and convolutional layers improves spatial pattern 
recognition and results in around 99.5% overall accuracy in 
fault classification. Despite the highest accuracy in the 
Convolutional transformer model, the FF transformer offers a 
simple model structure with fewer parameters and respectful 
accuracy. However, compared to the Convolutional 
transformer, this structure fails to handle an imbalanced 
dataset. 

 

4. CONCLUSIONS 

Gas turbines play a vital role in transportation and energy 
systems. Modern engineering considers optimal design, 
efficient operation, sustainability, and safety simultaneously 
when manufacturing turbofan engines, with the progress of 
ML and artificial intelligence process optimization and 
maintenance going toward automation to balance safety and 
diagnostics costs. This research investigated the application of 
recent developments in NLP and adopted a minimal structure 
to provide a fault classifier for the gas turbine. The final 
platform fulfills the needs of AI assistants to identify the faults 
within the turbofan engines based on a snapshot of measured 
data in real-time. The transformer takes advantage of the 
multi-head attention mechanism and convolutional layers to 
investigate a horizon of information and capture the essential 
information. The results for the proposed model show an 
accuracy of 99.6% on the test dataset. In future work, a 
complete dataset of faults will be investigated to analyze the 
effect of each measurement on anomaly detection. While 
proposing a general model for the gas turbine diagnostic is 
challenging, providing more information will help the model 
recognize more patterns and distinguish the system behavior 
under different conditions. The outcome can be fine-tuned for 
distinct types of gas turbines for various kinds of applications. 
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Appendix A: Confusion matrix and training/validation loss 
curves for Vanilla CNN, CNN, and FF transformer  

 
Fig. A1. Vanilla CNN confusion matrix for training, validation, 

testing, and total dataset 

  
Fig. A2. CNN confusion matrix for training, validation, testing, 

and total dataset 

 
Fig. A3. FF transformer confusion matrix for training, validation, 

testing, and total dataset 
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Fig. A4. Vanilla CNN loss (a) and accuracy (b) curves for the 

training and validation datasets 

 

 
Fig. A5. CNN loss (a) and accuracy (b) curves for the training and 

validation datasets 

 
Fig. A6. FF Transformer loss (a) and accuracy (b) curves for the 

training and validation datasets 
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