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Abstract: Reconfigurable intelligent surfaces (RISs) have emerged as a promising solution
that can provide dynamic control over the propagation of electromagnetic waves. The RIS
technology is envisioned as a key enabler of sixth-generation networks by offering the ability
to adaptively manipulate signal propagation through the smart configuration of its phase
shift coefficients, thereby optimizing signal strength, coverage, and capacity. However, the
realization of this technology’s full potential hinges on the accurate acquisition of channel state
information (CSI). In this paper, we propose an efficient CSI prediction framework for a RIS-
assisted communication system based on the machine learning (ML) transformer architecture.
Architectural modifications are introduced to the vanilla transformer for multivariate time series
forecasting to achieve high prediction accuracy. The predicted channel coefficients are then
used to optimize the RIS phase shifts. Simulation results present a comprehensive analysis of
key performance metrics, including data rate and outage probability. Our results confirm the
effectiveness of the proposed ML approach and demonstrate its superiority over other baseline
ML-based CSI prediction schemes such as conventional deep neural networks and long short-
term memory architectures, albeit at the cost of slightly increased complexity.

Keywords: Channel prediction, deep neural network, machine learning, reconfigurable
intelligent surface, transformer.

1. INTRODUCTION

Sixth-generation (6G) wireless networks will have the abil-
ity to push beyond the limits of today’s wireless systems
with their groundbreaking expected features such as very
low latency, ultra-high reliable connectivity, enhanced data
security, and integrated intelligence that leverages ma-
chine learning (ML) capabilities (Chowdhury et al., 2020).
Within this framework, reconfigurable intelligent surface
(RIS) has emerged as a potential game-changer. RIS in-
troduces a new layer of intelligence into the physical layer,
allowing the stochastic wireless propagation environment
to be somewhat controlled (Mahmood et al., 2023). This
technology holds the promise of substantial improvements
in signal strength, signal coverage, and network capacity
by offering advanced control over the properties of electro-
magnetic waves (Basar et al., 2019). RISs are composed
of passive reflecting elements that can be dynamically
configured to manipulate the way wireless signals propa-
gate toward receivers, enabling the achievement of diverse
goals.
⋆ The research leading to this paper was supported by the Re-
search Council of Finland (former Academy of Finland) 6G Flag-
ship program (Grant Number: 346208), and Business Finland’s
6GBridge program through the projects Local 6G (Grant Number
8002/31/2022) and 6CORE (Grant Number 8410/31/2022).

Since RISs typically comprise only nearly passive com-
ponents with no data processing capabilities, acquiring
RIS-associated channel state information (CSI) is a funda-
mental challenge (Yuan et al., 2021). Classical methods of
CSI estimation such as least squares and minimum mean-
squared error, as in the work in (Ardah et al., 2021), rely
on pilot signals, which incurs significant signaling over-
head and channel acquisition delay, especially when the
number of RIS elements is large. It is further exacerbated
under dynamic wireless environments when the channel
coherence time is short, thus requiring frequent CSI ac-
quisition. These issues can be mitigated via learning-based
approaches as they harness the power of ML to learn the
optimal RIS phase shifts, thereby eliminating the require-
ment of complex mathematical modeling or overwhelming
pilot training (Hashemi et al., 2023). However, such an
approach suffers from slow convergence, large training
overhead, and poor generalizability. A deep unfolding ap-
proach, where ML-based techniques are used to learn par-
tial system blocks while adhering to conventional optimiza-
tion approaches for the overall system design (Balatsoukas-
Stimming and Studer, 2019) can be adopted to address
these limitations. This results in improved performance at
a much lower complexity. More specifically, we propose to
replace the pilot-based CSI estimation procedure with an
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ML-based CSI prediction method, which is then used to
mathematically optimize the RIS phase shifts.

ML-assisted solutions have the potential to adapt and
learn the dynamics of the CSI autonomously. By train-
ing ML models with large data sets, unforeseen channel
characteristics can be captured, even in complex com-
munications environments assisted by RISs. Conventional
deep neural network (DNN) and recurrent neural network
(RNN) architectures can provide, to some extent, sat-
isfactory prediction results (Gao et al., 2021). However,
both DNNs and RNNs have limitations such as the van-
ishing gradient phenomenon. This occurs when training
DNNs with a large number of layers, including activation
functions. In such cases, the gradients used to update
the network become extremely small or even vanish as
they are backpropagated. As a result, the convergence of
the algorithm is substantially slowed. (Glorot and Bengio,
2010). Long short-term memory (LSTM) networks are an
evolution of RNNs that have been proposed to prevent the
vanishing gradient problem (Hochreiter and Schmidhuber,
1997), which enables the processing of longer data se-
quences. A recent architecture named transformers pushes
the boundaries further. Transformers have excelled across
various domains due to their superior characteristic perfor-
mance (Tay et al., 2022), significantly outperforming most
of the previous deep learning approaches.

Diverse ML-based strategies have been employed in the
literature to predict RIS-associated CSI. In (Elbir and Co-
leri, 2022), a federated learning strategy with distributed
convolution neural networks (CNNs) was used for channel
prediction in a RIS-assisted multi-antenna system em-
ploying orthogonal frequency-division multiplexing. A dis-
tributed CNN framework for downlink channel prediction
in a narrow-band multi-user system was proposed in (Dai
and Wei, 2022). A real-time reinforcement learning-aided
CSI measurement scheme for a RIS-assisted millimeter
wave (mmWave) system was considered in (Zhang et al.,
2022). The authors in (Zhang et al., 2021) developed
schemes based on CNNs and fully connected DNNs for
RIS channel extrapolation and beam searching in a single-
antenna system. A deep denoising CNN was used for aiding
RIS channel estimation in a mmWave system in (Liu et al.,
2020). In (Nguyen et al., 2023), a strategy based on CNNs
and LSTMs was proposed to predict the CSI of a RIS-
assisted system employing non-orthogonal multiple access,
and in (Xia et al., 2024), a transformer-aided scheme was
proposed for predicting the CSI of an uplink RIS-assisted
mmWave system.

To the best of our knowledge, only the work in (Xia
et al., 2024) has exploited the transformer architecture
for channel prediction in RIS-assisted networks. In this
paper, we propose a novel transformer-based approach to
predict the unknown CSI in a RIS-assisted communication
system. The predicted CSI is then used to optimize the RIS
phase shifts for downlink data transmission. We compare
our proposed prediction scheme with other state-of-the-art
learning-based approaches, evaluating the performance us-
ing metrics such as data rate and outage probability. Based
on the ML architectures we developed, it is shown that the
transformer outperforms LSTM and DNN architectures,
though the architecture is slightly more complex. Fur-
thermore, the DNN architecture shows the lowest perfor-

mance with the least complexity, while the LSTM method
demonstrates higher performance and greater complexity
than the DNN approach, yet lower performance and less
complexity compared to the transformer architecture.

The remainder of the article is organized as follows.
In Section 2, the system model is provided. Section 3
gives insights into the proposed ML-based CSI predictor.
Section 4 provides the results and discussion. Finally, the
conclusions are presented in Section 5.

2. SYSTEM MODEL

Consider a downlink RIS-aided single-input single-output
(SISO) communication system as in Fig. 1, where the
base station (BS) and the user equipment (UE) are each
equipped with a single antenna, and the RIS comprises
N reflecting elements. Let f ∈ C, h ∈ CN×1, g ∈
CN×1 be the fading channels between the BS and the
UE, the BS and the RIS, and the RIS and the UE,
respectively. The channel vectors h = [h1, . . . , hi, . . . , hN ]

T

and g = [g1, . . . , gi, . . . , gN ]
T , where hi (gi) is the channel

between the BS (UE) and ith RIS element. We assume
that the channel coefficients are Rayleigh distributed, i.e.,
f ∼ CN (0, LBS-UE), hi ∼ CN (0, LBS-RIS), and gi ∼
CN (0, LRIS-UE), for i = 1 · · · , N , where La denotes the
path loss coefficients in linear scale for the ath link with
a ∈ {BS-UE,BS-RIS,RIS-UE}. In this work, we consider
the log-distance path loss model, which can be given in dB
by

La,dB = L0,dB + 10ηa log10

(
da
d0

)
, (1)

where ηa and da represent the path loss exponent and
the distance for the link a respectively, and L0,dB is the
reference path loss in dB at a reference distance d0. Under
this model, the received signal at the UE can be expressed
as

y =
√
P
(
f + gTΦh

)
x+ n, (2)

where n ∼ CN (0, N0) is the additive white Gaussian
noise (AWGN), x is the transmitted symbol, P represents
the transmit power and Φ is the matrix comprising the
reflection coefficients of the RIS, which is a diagonal matrix
defined as (Basar et al., 2019)

Φ = diag(ϕϕϕ), (3)

where ϕϕϕ =
[
a1e

jϕ1 , a2e
jϕ2 , . . . , aNejϕN

]T is the RIS phase
shift vector, in which ai is the amplitude and, ϕi is the
adjustable phase induced by the the ith reflecting element.
Due to the passive nature of the RIS, we can assume
ai = 1,∀i = 1, · · · , N .

2.1 RIS Phase Shift Optimization

We wish to compute a phase shift matrix Φ that can
maximize the signal power propagating through the RIS at
the UE during downlink data transmission. To this end, we
assume that the direct link is non-dominant. This can be
the case when it is non-line of sight, while the BS-RIS and
RIS-UE links are in line of sight. Under this assumption,
we can recall the Cauchy-Schwartz inequality and achieved
(Björnson et al., 2024)
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Fig. 1. System model. An RIS comprising N elements
assists the communication between one single-antenna
BS and one single-antenna UE.

|gTΦh|2 = |(h⊙ g)Tϕϕϕ|2 ≤

(
N∑
i=1

|higie
jϕi |

)2

, (4)

where ⊙ denotes the Hadamard product. The inequality
in (4) provides an upper bound to the reflected power i.e.,
the maximum power that can be reflected by the RIS. The
equality can be achieved if and only if ϕi = −arg(higi). As
a result, the desired optimal RIS phase shift vector can be
given by

ϕϕϕ∗ = e−jarg(h⊙g). (5)
The optimum phase shift coefficients in (5) can be readily
computed after predicting the CSI through ML, as dis-
cussed in the subsequent sections.

2.2 Performance Metrics

In this subsection, we present the performance metrics
used to assess the effectiveness of the proposed ML-based
CSI prediction framework. To this end, we first provide
an expression for the signal-to-noise ratio (SNR). More
specifically, by using (2) and (4), the instantaneous SNR
observed at the UE, denoted as γ, can be computed by

γ =

∣∣(h⊙ g)Tϕϕϕ+ f
∣∣2 P

N0
. (6)

The outage probability, Pout, is the first important perfor-
mance metric used to assess the performance of the UE. It
is the probability of the instantaneous SNR falling below
a defined threshold γth, i.e.,

Pout = P(γ < γth), (7)
where P denotes probability.

Last, we consider the maximum data rate that can be
achieved when the BS is transmitting at a fixed rate Rth,
subject to a given outage probability Pout, which can be
obtained as

R = (1− Pout)Rth, (8)
where Rth represents the data rate threshold given by

Rth = log2(1 + γth). (9)

3. CSI PREDICTION AND DATA PREPARATION

This section presents the proposed architecture of our
transformer model which is used to make multivariate time

series predictions of the channel coefficients. Details on the
generation of the data sets used to train, validate, and test
the implemented ML models are also presented.

3.1 Transformer-Based CSI Prediction

In this subsection, we describe our proposed CSI predic-
tion approach based on the ML transformer architecture,
which we later exploit to optimize the RIS phase shifts.
Transformers are a deep learning architecture initially
introduced in (Vaswani et al., 2017) by a research group
in Google. The key feature of this architecture is its state-
of-the-art attention mechanism. The attention mechanism
is a computational method that focuses on specific parts
of the input data sequence, assigning varying degrees of
importance to the different parts. This mechanism helps
to inform the model where to pay attention when process-
ing data. The vanilla transformer architecture consists of
two parts, an encoder and a decoder, which consists of
a sequence-to-sequence architecture. In this method, the
model generates an output data sequence according to the
given input sequence.

In this work, we aim to predict the CSI at the next
time instance based on a given sequence of previous CSI
samples. Therefore, the original sequence-to-sequence ar-
chitecture is modified into a sequence-to-one architecture
using only one encoder. More specifically, the encoder
of our transformer model comprises an input embedding
module, a positional encoding module, and a transformer
encoder module, as shown in Fig. 2. The input embedding
module transforms the dimension of the input data to
the model dimension of the subsequent inner layer of
the transformer. Since the transformer lacks a recurrent
structure as in recurrent neural networks, it feeds the
positional information to the output of the embedding
layer separately. After that, using the acquired knowledge
from the input sequence, an abstract representation is gen-
erated by the transformer encoder. The encoder consists of
a multi-head attention block, layer normalization blocks,
and a feedforward layer, as illustrated in Fig. 2. Then,
the encoder output is sent through a fully connected (FC)
linear layer and an activation function. Figure 2 shows the
modified sequence-to-one transformer architecture used for
CSI prediction, where we feed samples of real and imag-
inary channel data separately to forecast the next time
instance of the channel coefficients as output.

The vanilla transformer architecture, originally introduced
for natural language processing applications, contains two
FC layers in the feedforward block and uses the rectified
linear unit (ReLU) as the activation function (Vaswani
et al., 2017). This setup is effective for capturing long-
term variations in the multi-head attention output. How-
ever, given the relatively small window size, our problem
requires observing and capturing short-term variations.
Therefore, as shown in Fig. 3, we modified the original
architecture by implementing two one-dimensional (1D)
CNN layers instead of the two FC layers, as CNNs effec-
tively capture local temporal patterns crucial for accurate
forecasting. Additionally, we replaced the ReLU activation
function with a hyperbolic tangent (Tanh) function. These
modifications result in better performance in our time
series forecasting problem.
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Fig. 2. Sequence-to-one transformer architecture with input and output.

Fig. 3. Feedforward layer in the vanilla transformer archi-
tecture (right) and the proposed model (left).

3.2 Data Preparation

Most of the cited works on CSI prediction assume inde-
pendent/uncorrelated fading, whereas real-world scenar-
ios often exhibit correlation. We incorporate this impor-
tant property in our work by considering time-correlated
Rayleigh-distributed fading channel coefficients. We first
generate uncorrelated Rayleigh-fading samples through
simulation with zero mean and unit variance, which are
then convoluted with a finite impulse response filter rep-
resenting the correlation function. Before feeding time-
correlated channel data to the ML models, the data is
normalized for efficient convergence. Out of the 2550 time-
correlated data samples, 80% is allocated for training,
while the remaining 20% are allocated for validation.
Another 50 samples are taken for testing per Monte Carlo
iteration. In all the architectures, a moving window is
deployed for iterative training, validation, and testing pro-
cesses. To learn the temporal patterns, consecutive 10 sam-
ples are taken. Using this learned knowledge, 11th sample
is predicted. A perfect CSI assumption is made for the
training data. Though this is a strong assumption, it helps
us to obtain useful information about the performance
upper bound.

4. RESULTS AND DISCUSSIONS

This section presents comprehensive simulation results
to verify the effectiveness of our proposed transformer-

based CSI prediction framework. The number of parame-
ters and other architectural details used by different ML
strategies are also put into perspective. To demonstrate
the performance advantages of our approach, we consider
two baseline ML architectures, namely DNN and LSTM,
where metrics such as data rate and outage probability are
compared.

We consider the path loss exponent for the BS-RIS and
the RIS-UE links to be 2.2, whereas the exponent for the
direct BS-UE link is assumed to be 4.2. The reference
path loss value and noise power are taken as −30 dB and
−100 dB, respectively. The distances from the transmitter
to the RIS, the RIS to the receiver, and the transmitter to
the receiver are set to 38m, 5m, and 40m. Here, the SNR
threshold γth = 1, correspondingly Rth = 1 too. Unless
stated otherwise, an RIS with eight elements is considered
and the transmit power is set to 0dB.

4.1 Comparison with ML Baseline Architectures

In this section, the performance of the proposed trans-
former approach is compared with the conventional DNN
and the LSTM baseline ML architectures. All ML models
are trained for 100 epochs employed with the Adam op-
timizer alongside the root mean square error (RMSE) as
the loss function. ReLU is used as the activation function
for DNN and LSTM architectures while Tanh is used for
the transformers. Architectures in all the models used a
window size of 10. In each encoder layer, four attention
heads and 20 feedforward layer dimensions are used across
all transformer models.

Variation of Transmit Power with Fixed RIS Elements

Let us consider the system model as mentioned in Fig. 1
with the number of RIS elements set to N = 8. There are
16 channels associated with the RIS model, eight each for
the BS-RIS and RIS-UE link, respectively. Since we are
predicting real and imaginary channel values separately,
32 features are required to predict at once. Since the
number of RIS elements remains constant in this scenario,
we can employ a single model for each architecture to
make predictions, as the input to each model remains
unchanged.
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Table 1. Optimized hyperparameters of DNN, LSTM, and Transformer models.

Hyperparameters
Values

DNN LSTM Transformer
Number of RIS elements 4 8 12 16 20 4 8 12 16 20 4 8 12 16 20

Input and Output features 16 32 48 64 80 16 32 48 64 80 16 32 48 64 80

Neurons in LSTM layer - - - - - 22 44 60 76 100 - - - - -
Neurons in FC layer 1 20 36 52 68 88 18 36 56 68 90 16 32 48 64 80

Neurons in FC layer 2 24 40 56 72 92 - - - - - - - - - -
Neurons in FC layer 3 24 44 56 68 94 - - - - - - - - - -
Neurons in FC layer 4 20 36 52 68 88 - - - - - - - - - -
Transformer model dimensions - - - - - - - - - - 24 48 60 80 120

Table 2. Summary of metrics associated with
DNN, LSTM, and Transformer models.

RIS Architecture Train Test P
Elements RMSE RMSE

DNN 0.0335 0.0271 2, 280

4 LSTM 0.0149 0.0172 3, 796

Transformer 0.0134 0.0158 6, 838

DNN 0.0364 0.023 6, 968

8 LSTM 0.0282 0.0191 16, 532

Transformer 0.0131 0.0142 26, 702

DNN 0.0413 0.0259 14, 216

12 LSTM 0.0329 0.0219 32, 552

Transformer 0.0159 0.0157 46, 818

DNN 0.0535 0.0317 24, 024

16 LSTM 0.0425 0.0266 52, 820

Transformer 0.0177 0.0165 82, 894

DNN 0.0555 0.0322 39, 538

20 LSTM 0.036 0.0228 89, 170

Transformer 0.0182 0.0166 164, 630

The transmit power is varied from 0 dBm to 50 dBm by
keeping other initial model parameters of the RIS the
same. Optimized hyperparameters of the ML models only
used for this scenario are tabulated under the columns
where the number of RIS elements is eight for each ap-
proach as in Table 1. To measure the effectiveness of the
architectures, a performance evaluation should be car-
ried out. In this study, we use RMSE as the prediction
evaluation criterion. It measures the RMSE between the
predicted feature sequence and the actual sequence values
in the test and training data sets separately. Apart from
that, we have obtained the number of model parameters P
associated with models which are calculated using weights
and biases. Metrics obtained through the above model
simulations are organized in Table 2. Moreover, when N is
fixed at 8 it is evident that the proposed transformer-based
approach significantly outperforms LSTM and DNN ar-
chitectures, thereby reducing the training RMSE approxi-
mately by 115% and 177% and test RMSE approximately
by 34% and 62%, respectively.

Variation of RIS Elements with Fixed Transmit Power

In this scenario, number of RIS elements is the variable.
Let us consider instances where the number of RIS ele-
ments is 4, 8, 12, 16, and 20 by keeping other initial model
parameters of the RIS the same. Therefore, the number of
channels associated with the RIS are 8, 16, 24, 32, and 40,
respectively. Then, according to our model configuration
(considering real and imaginary values separately as fea-

tures), the number of features we need to handle would be
16, 32, 48, 64, and 80, respectively. For each case, we need
to optimize the ML models separately since the number
of input features is changing. The optimized hyperparam-
eters for each architecture are summarized in Table 1. It
shows the number of neurons available in each layer of
the respective architecture, the number of neurons in the
LSTM layer, and the transformer model dimensions.

Table 2 presents the summary of metrics associated with
all three ML architectures such as the train RMSE, the test
RMSE, and the number of model parameters. According to
the observations, it is clear that the transformer architec-
ture has outperformed the DNN and LSTM architectures
in terms of performance when compared with both the
train and test RMSE values. This shows that the trans-
former architecture can significantly outperform the state-
of-the-art ML architectures, albeit at the cost of higher
complexity. Hence, the transformer architecture is prefer-
able in scenarios where the prediction accuracy is to be
prioritized over computational complexity. However, the
increased computational complexity can be easily handled
by using optimized hardware such as tensor processing
units.

4.2 RIS Phase Optimization with Predicted CSI

Using the prediction values obtained from the ML models,
we can calculate the optimal phase shift vector of the RIS
model as mentioned in (5). Then plugging the test data
(actual) channel values and the calculated RIS optimal
phase shift vector to (6), we can obtain the maximized
SNR values. From there onwards, (7) and (8) can be
obtained with respect to the maximized SNR values.
Therefore, we have shown that RIS could be optimized
by predicting the CSI in a RIS-assisted communication
system. Let us focus on the two major scenarios of our
research output. The generated results shown in Fig. 4 and
Fig. 5 compare key scenarios, including the outputs with
optimized-phase RIS, fixed-phase RIS, without the RIS,
and the integrated outputs predicted by the transformer,
LSTM, and DNN models. Additionally, in the fixed-phase
RIS scenario, Φ is set as an identity matrix.

The system performance for a fixed number of RIS ele-
ments with varying transmit power is illustrated in Fig. 4.
Specifically, Figure 4(a) demonstrates the variation in out-
age probability, while Figure 4(b) shows the variation in
average rate. As the transmit power increases, the outage
probability decreases, and the average rate increases. In
Fig. 4(a), the lowest outage probability is observed when
the RIS is optimized. It is the optimum scenario when
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Fig. 4. System performance for a fixed number of RIS reflecting elements (N = 8) in terms of (a) outage probability,
and (b) average rate, when the transmit power is varied.
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Fig. 5. System performance for fixed transmit power (30 dBm) in terms of (a) outage probability, and (b) average rate
when the number of RIS reflecting elements is varied.

the CSI is accurately known at the transmitter. This is
the performance upper/lower bound and is not possible
in practice. The transformer model closely approaches the
performance of the optimized RIS, outperforming both the
LSTM and DNN models. Furthermore, to achieve an out-
age probability of 0.01, the optimized RIS scenario requires
a transmit power of 39.79 dBm, compared to 46.66 dBm
for the scenario without RIS. In addition, to achieve the
same outage probability, the required transmit powers for
the transformer, LSTM, and DNN models are 40.67 dBm,
41.13 dBm, and 41.85 dBm, respectively. In Fig. 4(b), the
average rate is maximized when the RIS is optimized
and the transformer model gets very close to the upper
bound established by the optimized RIS. Moreover, it can
be observed that when the transmit power is 25 dBm,
the performance gap between the scenarios where the
transformer model and the system without RIS is approx-
imately 0.4 bits/s/Hz. The LSTM and DNN models also
demonstrate notable performance improvements, although
they fall short of the transformer model’s performance.

The system performance for a fixed transmit power, while
varying the number of RIS elements, is presented in Fig.

5. Figure 5(a) illustrates the variation in outage proba-
bility, whereas Figure 5(b) depicts the variation in av-
erage rate. Generally, as the number of RIS elements
increases, the outage probability decreases, and the aver-
age rate increases for scenarios incorporating RIS. Figure
5(a) shows that the outage probability is minimized when
the RIS is optimized. The transformer architecture yields
the closest results to the optimized RIS, followed by the
LSTM and DNN architectures. As per the observations,
for a 12-element RIS system, the optimized RIS scenario
achieves an outage probability of 0.03, while the trans-
former, LSTM, and DNN scenarios result in outage prob-
abilities of 0.037, 0.05, and 0.06, respectively. In Fig. 5(b),
the average rate is maximized when the RIS is optimized
and the transformer architecture again demonstrates the
closest prediction to the average rate achieved with the
optimized RIS. When the number of RIS elements reaches
eight, the performance gap between the scenario with
the transformer model and the scenario without RIS is
approximately 0.3 bits/s/Hz.

From the results, it is evident that the application of RIS
has increased the overall system performance noticeably
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and the best results are given when the phase is optimized.
In every graph, prediction curves lie between the optimum
phase and the system without RIS. Out of the three pre-
diction curves, the transformer prediction curve goes very
closely with the optimum phase RIS output showing that
the transformers have provided the most convincing results
compared to both the DNN and LSTM architectures.

5. CONCLUSIONS

Harnessing the full potential of RIS technology hinges
on accurate CSI estimation/prediction since the optimum
RIS phase shifts are a function of the corresponding com-
posite channel’s CSI. In this study, we proposed a novel
sequence-to-one transformer architecture to predict the
RIS-associated CSI, enabling the efficient and accurate op-
timization of the RIS phase shifts. For the CSI prediction
task, three architectures namely DNN, LSTM, and trans-
formers were utilized. For the time series channel sample
data set created, the transformer architecture provided
the lowest RMSE value outperforming DNN and LSTM
methods in the scenarios discussed above. After that, the
predicted CSI from ML models was fed into the RIS model
for phase optimization. According to the results obtained,
the transformer was the better multivariate time series
prediction architecture out of the three architectures in
terms of performance but at the cost of higher complexity.
Optimizing the RIS phase shift based on transformer-
predicted CSI was found to perform very close to the
optimum case when the CSI was assumed to be accu-
rately known. Conversely, the DNN architecture yielded
the lowest performance and was also the least complex
architecture. The LSTM architecture was positioned in
between the other two architectures, offering a middle
ground in terms of both performance and complexity.
Finally, this study concluded that the proposed sequence-
to-one transformer architecture provided promising results
for channel prediction regarding RIS phase optimization.
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