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Abstract: Energy efficiency, scalability, and reliability are increasingly important for sus-
tainable data centers. In this paper, we focus on forecasting real-world resource usage using
neural network time series models, specifically utilizing convolutional recurrent long short-term
Memory (LSTM) and gated recurrent unit (GRU) architectures. In our analysis, we compare
LSTM and GRU in terms of forecasting accuracy and computational complexity during model
training. We demonstrate that recurrent neural networks are more accurate and robust compared
to the traditional autoregressive integrated moving average (ARIMA) time series model in this
complex forecasting problem. GRU achieved a 9% reduction and LSTM a 5% reduction in
forecasting mean squared error (MSE) compared to ARIMA. Furthermore, the GRU architecture
with a 1D convolution layer outperforms LSTM architecture in both forecast accuracy and
training time. The proposed model can be effectively applied to load forecasting as part of a
data center computing cluster. In this application, the proposed GRU architecture has 25%
fewer trainable parameters in the recurrent layer than the commonly used LSTM.

Keywords: recurrent neural network, convolutional neural network, data center load
forecasting, energy efficiency, sustainability, control optimization, monitoring

1. INTRODUCTION

Energy consumption reduction and resource optimization
are becoming important in computational intensive data
center environments aiming towards more sustainable and
green systems (Bourhnane et al., 2020). World wide energy
consumption of data centers has been estimated rose to
205 TWh in 2018 from 153 TWh in 2005. This means
∼1% of global total electricity usage (Masanet et al., 2020;
Jones, 2018). The whole information and communications
ecosystem causes more than 2% of emissions. This is on
same level with aviation fuel emissions, and it is predicted
to be even higher in future (Jones, 2018).

Optimizing energy consumption of hardware in data cen-
ters is critical, as servers and other IT equipment can
typically take more than 40% of total energy-usage in data
center (Shehabi et al., 2016). To be able to optimize the
IT systems in proactive manner, intelligent and efficient
resource usage forecast is one subject to be solved. Several
different neural network architectures have been proposed
for the task, and many of the solutions use recurrent
neural network (RNN) based approaches (e.g in (Zhang
et al., 2016; Janardhanan and Barrett, 2017; Ouhame
et al., 2021; Yuan et al., 2024)) since it has been designed
to be used with sequential problems such as time series
forecasting. Also more traditional models such as autore-
gressive integrated moving average (ARIMA). ARIMA is
a common tool used by statisticians in time series fore-
casting (Hewamalage, 2020), and has been used to tackle
the problem, e.g. in (Kumar and Singh, 2020; Calheiros
et al., 2015). In this work, we are going to compare two

recurrent neural network architectures: long short-term
memory (LSTM) and gated recurrent unit (GRU) together
with traditional ARIMA model.

While several architectures leveraging recurrent neural
networks have emerged to address load forecasting, they
often overlook the critical attribute of efficiency. Notably,
many of these architectures do not utilize convolutional
or more efficient GRU recurrent layers. In a notable ad-
vancement, the architecture proposed by Ouhame et al.
(2021) focused on optimizing the convolutional layer of the
LSTM model for efficiency. Building upon this progress,
our work introduces a novel approach by integrating both
GRU and convolutional layers. This synergistic combina-
tion not only enhances forecast accuracy but also improves
model efficiency, a critical attribute essential for real-world
integration in data center scenarios.

Efficient and dependable resource usage forecasts are es-
sential for managing dynamic, scalable clusters, enabling
the adjustment of the number of powered-on physical
machines as needed. Such forecasts hold the potential to
significantly reduce energy consumption in data centers
(Bayati, 2018). Additionally, resource usage forecasts find
application in load balancing, particularly in virtual ma-
chine (VM)-based data centers where the allocation of
physical machines for VMs can be modified. This capabil-
ity facilitates the optimization of resource utilization and
enhances the overall efficiency of data center operations
(Shaw et al., 2017).
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2. METHODS FOR TIME SERIES FORECASTING

In this section, we explore the time series forecasting
methodologies employed in this study, with a focus on pre-
dicting data center resource usage efficiently. By leveraging
advanced predictive techniques, our aim is to provide a
robust and efficient framework for analyzing temporal data
patterns and enhancing the accuracy of our forecasts. The
forecasts can be used to optimize resource allocation and
improving operational adaptability in data centers.

2.1 Autoregressive Integrated Moving Average model

The autoregressive integrated moving average model is a
widely-used forecasting method that integrates autoregres-
sion, moving average, and differencing. In this study, we
employ the ARIMA model as a baseline for forecasting due
to its historical prevalence in data center resource usage
prediction tasks and its ability to effectively model various
types of time series data.

ARIMA model can be defined as

y
′

t =α+ ϕ1y
′

t−1 + ...+ ϕpy
′

t−p

+ θ1ϵt−1 + ...+ θqϵt−q + ϵt,
(1)

where α is the optional intercept of the model. ϕi is the
coefficient for the autoregressive part of the model, and
θi is the coefficient for the moving average part of the
model. y

′

t is the value of the differenced time series at
timestep t, and ϵi is the past forecast error (Hyndman
and Athanasopoulos, 2019).

ARIMA model uses hyperparameters p, d, q, and following
conclusions about ARIMA model hyperparameters p and
q can now be derived from the Equation 1: p can be seen
as the order of the autoregressive part of the model, and
q is the order of moving average part of the model. The
hyperparameter d is the order of differencing in time series
(Hyndman and Athanasopoulos, 2019).

2.2 Convolution on Time Series Data

Convolution can be seen as sliding a window over the
data. Due to the success of convolutional neural networks
(CNNs) in image and natural language processing, convo-
lution layers has been applied to time series analysis as
well.

In CNNs processing image data, convolution involves a
two-dimensional filter sliding over the width and height of
the image (Goodfellow et al., 2016). In contrast, for time
series data, the only dimension to slide over is time, which
requires the use of one-dimensional convolution.

Two dimensional convolution starting from point (i, j) can
be defined as:

C(i, j) =

h∑
m=0

w∑
n=0

Ii+m,j+nKm,n, (2)

where I is the input data,K is the kernel of the convolution
with dimensions h×w. Kernel contains weights w for the
convolution. Here, h is the height, and w is the width of
the convolution window. (Goodfellow et al., 2016)

Since the 1D convolution can only slide through one
dimension, w is always same as number of features in
input. Definition for 1D convolution can be derived from
Equation 2:

C(i) =

h∑
m=0

w∑
n=0

Ii+m,nKm,n, (3)

where i is the row of input where the convolution starts
and w is the number of features in dataset. In time series
context, w can be seen as a number of features recorded in
each time point. Again, in time series context this means
that kernel is slided over the time dimension.

Use of the 1D convolution reduces the computational com-
plexity from ∼ O(N2K2) to ∼ O(NK) when comparing
to 2D convolution, when input dimensions are N ×N and
kernel dimensions K ×K (Kiranyaz et al., 2021).

2.3 Long Short-Term Memory

Long short-term memory is a recurrent neural network,
which uses LSTM units and tries to solve vanishing gra-
dient problem of recurrent neural networks (Hochreiter
and Schmidhuber, 1997). This means that the architecture
can find more efficiently long term dependencies from time
series.

LSTM network with forget gate and biases consists of
LSTM cells, where each cell has three gates:

• Forget gate

ft = S(Wfxt + Ufht−1 + bf ). (4)

• Input Gate

it = S(Wixt + Uiht−1 + bi). (5)

• Output gate

ot = S(Woxt + Uoht−1 + bo). (6)

In Equations 4-6 S is an activation function. Often S is
a sigmoid function, as proposed in the original version of
LSTM (Hochreiter and Schmidhuber, 1997; Hewamalage,
2020; Dey and Salem, 2017). Now output / hidden state
ht of cell at timestep t can be defined as:

ht = ot ⊙ T (ct), (7)

where

ct = ft ⊙ ct−1 + it ⊙ c̃t
c̃t = T (Wcxt + Ucht−1 + bc).

(8)

In Equations 7 and 8 T is an activation function, and often
tanh function is used as proposed in the original architec-
ture (Hochreiter and Schmidhuber, 1997). In Equations 4
- 8 xt is the input vector for LSTM cell at timestep t.
Wx, Ux and bx are weights and biases to be tuned in the
training process. The operation symbol ⊙ is an element-
wise Hadamard product. (Hochreiter and Schmidhuber,
1997; Hewamalage, 2020; Dey and Salem, 2017)
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From Equations 4-8 we get that LSTM has total of 4(n2+
nm+ n) optimizable parameters. Here n is the dimension
of hidden state and m is the dimension of input vector.
(Dey and Salem, 2017)

2.4 Gated Recurrent Unit

Gated recurrent unit has been motivated by LSTM unit,
but it has a simpler design (Cho et al., 2014). Unlike
LSTM units, GRUs do not have an output gate as shown
in Equations 9-11. This more streamlined architecture
provides efficiency in both training and forecasting tasks.
Since it has fewer gates, it also has fewer weights to op-
timize, making the backpropagation through time faster.
Additionally, using the trained model to yield forecasts is
more efficient due to the reduced number of calculations
required.

GRU network consists of multiple GRU cells, where each
cell has two gates:

• Reset gate

rt = S(Wrxt + Urht−1 + br), (9)

• Update gate

ut = S(Wuxt + Uuht−1 + bu). (10)

By using these two gates the output / hidden state ht at
timestep t can be defined as:

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t

h̃t = T (Whxt + Uh(rt ⊙ ht−1) + bh),
(11)

where T is hyperbolic tangent and S is sigmoid activation
function.

All Wx are weight matrices, and all bx are bias vectors,
which constitute the learnable parameters of the model.
Again ⊙ is element-wise Hadamard product (Cho et al.,
2014; Hewamalage, 2020; Dey and Salem, 2017).

From Equations 9-11 we get that GRU has total of 3(n2+
nm+n) optimizable parameters. Again n is the dimension
of hidden state and m is the dimension of input vector as
in the LSTM. (Dey and Salem, 2017)

3. EXPERIMENTAL DESIGN

In this section, we present a detailed overview of the data,
the architecture of the model built using the methodologies
outlined in Section 2, and the comprehensive training
process. These elements form the foundation for the CPU
usage forecasting described in Section 4.

3.1 Dataset Description

The dataset contains resource usage traces of 1750 Virtual
Machines from Bitbrains distributed data center (Bit-
brains, 2013). The usage trace length is 1 month: from
August 12, 2013 to September 11, 2013. The dataset has
samples in 5 minute intervals. Bitbrains has customers
from various industries, resulting diverse use cases and
usage from one VM to another.

Table 1. Input variables from Bitbrains data

Name Description Unit

cpu usage Central processing unit usage %

memory usage Memory usage %

disk read Disk read throughput KB/s

disk write Disk write throughput KB/s

net receive Network received throughput KB/s

net transmit Network transmitted throughput KB/s

Dataset consists of two different sets. The first set contains
data for 1250 VMs in fast storage area network (SAN) and
second set contains data for 500 VMs from both SAN and
slower network attached storage devices. Only the traces
for VMs in fast storage area network were used in our
experiments.

Many of the VMs had low or nearly static load throughout
the trace period. This poses challenges for forecasting,
as static CPU usage is trivial to forecast and would not
accurately reflect the forecast accuracy. To address this
issue, a subset of machines which had average CPU usage
greater than 30% was selected. From this subset, five
random machines were chosen for model training and
forecasting to ensure a more representative evaluation of
the methods. The five selected machines were identified
by their ID numbers: 220, 242, 253, 269, and 283. All the
features together with descriptions which were used in the
forecasting models are defined in Table 1.

We also checked the correlations between all the variables
from the SAN dataset, excluding the five machines used for
forecasting to ensure no data leakage. These correlations
are shown in Fig. 1. The target variable, CPU usage,
had the strongest correlation with memory usage with
Pearson’s r = 0.69, while other input variables had
relatively low correlation values of r ≤ 0.12. There was
moderate correlation between some of the input variables:
Net transmit and net receive (r = 0.51), disk write
and disk read (r = 0.26), and net receive and disk
write (r = 0.27). These relationships are expected since
network traffic tends to happen in both directions when
communicating with the server, workloads can perform
writes followed by subsequent reads (or vice versa), and
in some applications, it makes sense to save the received
data on disk.

Although CPU usage did not exhibit strong correlation
with other input variables aside from memory usage, we
chose to include all available features in the model. This
decision was based on the understanding that correlations
only measure linear relationship between variables and do
not account for the time shifts essential in forecasting tasks
(Hyndman and Athanasopoulos, 2019). Additionally, while
there was some moderate correlation among a few input
variables (e.g., net transmit and net receive, disk write and
disk read), the level of multicollinearity was not substantial
enough to warrant feature exclusion.

The rationale for incorporating all available features as
input was to provide the model with diverse data, enabling
it to capture different workload patterns more effectively.
Consequently, we opted not to apply any feature selection
techniques (such as principal component analysis) to the
data. Instead, the correlation analysis served as an initial
sanity check to ensure the validity of the data.
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Fig. 1. Correlations between all input variables in the
Bitbrains fast storage area network data. Machines
used for forecasting have been excluded from the
correlation analysis.

3.2 Model Architecture

The model architecture is presented in Fig. 2. Input
consists of 90 timesteps of history data from 6 features
which are described in Table 1. The model’s output is
a forecast of CPU usage for the subsequent 6 timesteps,
which corresponds to a 30-minute forecast given the 5-
minute data collection intervals. The choice of a 30-minute
forecasting horizon was driven by a balance between oper-
ational practicality and predictive accuracy. In data center
management, it is crucial to have a sufficiently long fore-
casting period to enable proactive measures and resource
adjustments. A 30-minute horizon provides adequate lead
time to implement necessary actions such as load balancing
or resource allocation. Simultaneously, this period is short
enough to maintain a high level of forecast accuracy, which
tends to degrade over longer horizons. CPU usage was
selected as the resource to forecast because it is typically
regarded as the most critical resource in a data center due
to its limited availability and high demand (Zharikov et al.,
2020).

1D Convolution layer was used for enhanced temporal rep-
resentation of time series, thereby potentially enhancing
forecast accuracy. The convolution layer had kernel with
length of 6, and 35 filters. While employing a substantial
amount of filters can potentially diminish model efficiency,
it significantly aids in capturing diverse features inherent
in the time series data. This is discussed more in Section
4.2. Since kernel with length of 6 was used with 35 filters
and stride of 1 output of 1D convolution layer has dimen-
sions (85,35). This output is fed into the recurrent layer.

The recurrent layer in our model employs either GRU
or LSTM RNN units, both renowned for their ability to
capture temporal dependencies effectively. In both imple-
mentations the dimension of hidden state was deliberately
set to a relatively high value of 1024, and this is same as

the final output dimension of recurrent layer. This choice
ensures that a comprehensive comparison of efficiency
between the two RNN architectures can be conducted
accurately. The rationale behind this decision lies in the
understanding that a higher hidden state dimension neces-
sitates more calculations, thereby ensuring that the results
obtained are representative and robust. GRU implementa-
tion has less parameters to train than LSTM as described
in Sections 2.3 and 2.4. This should make the GRU archi-
tecture more efficient than LSTM and real training time
comparison between these two recurrent layers is presented
in Section 4.2.

The Dense layer within the architecture requires an equal
number of neurons as the desired forecast length. As
detailed at the outset of this section, the forecast is for
6 subsequent timesteps. This ensures that the output
dimensionality aligns precisely with the target forecast
length.

Since all the 6 features were fed into 1D convolutional layer
with kernel length of 6 it implies that each kernel had
6 × 6 = 36 weights to be optimized. 35 filters which each
had its own bias was used. This makes 36×35+35 = 1295
trainable parameters total in the 1D convolution layer.

The number of trainable parameters in recurrent layer
varies depending on the specific recurrent architecture
employed. As told in Section 2.3 the LSTM has 4(n2 +
nm+n) optimizable parameters. Again n is the dimension
of hidden state and m is the dimension of input vector. In

Fig. 2. Model architecture at timestep t. Dimension after
each layer is shown on the right side.
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this architecture this makes 4(10242+1024×35+1024) =
4341760 trainable parameters for the recurrent layer with
LSTM. Since Tensorflow’s CUDA implementation of GRU
uses two bias terms in the reset gate, the total number of
trainable parameters are 3(n2 + nm + 2n), which in this
architecture is 3(10242 +1024× 35+ 2× 1024) = 3259392
trainable parameters when using GRU on recurrent layer.

The dense layer of architecture has noutput(ninput + 1)
parameters to be optimized. In this architecture it means
6(1024 + 1) = 6150 trainable parameters.

All these layers combined makes ∼3.27M trainable param-
eters in architecture with GRU units in recurrent layer and
∼4.35M trainable parameters with LSTM units.

3.3 Model Training Process

All models (GRU, LSTM, and ARIMA) were trained on
data set consisting of the first 75% of data from each VM.
Example of train and test split can be seen in Fig. 3.

In the training process of RNN architectures TensorFlow
(Abadi et al., 2015) version 2.5 was used. 20% of the
training data was further split for the validation of model
and hyperparameter tuning during the training process.
The hyperparameter tuning for the RNN architectures
was conducted empirically through trial and error. We
experimented with various combinations of key hyperpa-
rameters, including the number of layers, number of units
per layer, and learning rate. The weights that yielded
the highest forecast accuracy on the validation set were
saved, and then later used to forecast the test in the model
comparison in Section 4.1.

For the RNN architectures, min-max normalization was
applied to scale all input variables to the [0, 1] range. Min-
imum and maximum values for each VM were calculated
from the training set, and these same values were used to
scale both training and test set.

The Adam optimizer combined with mean square error
(MSE) loss function was used to update the weights of the
RNN during the training process. Adam was chosen as
optimizer because it is well suited for architectures with
large amount of optimizable parameters (Kingma and Ba,
2014). The loss in both training and validation set was
monitored through the training process. Example of the
learning curve for the machine ID 283 can be seen in Fig.
4.

ARIMA model was optimized and trained using the pm-
darima (Smith et al., 2017) Python package. ARIMA
model parameters (p, d, q) were initially optimized us-
ing the algorithm specified in Hyndman and Khandakar
(2008). Subsequently, the model was trained for each VM
using its training data. The maximum depth for param-
eters were set to the default settings of the pmdarima
package, specifically (5, 2, 5). The detailed ARIMA model
parameters used for each VM are provided in Table 2.

For both recurrent neural networks and ARIMA model, a
distinct model was trained for each machine. In Section
4.1, the forecast experiments and results of the trained
models are evaluated using the held-out test set of future
time series points, as illustrated in Fig. 3.

Table 2. ARIMA model parameters for each
machine

Machine
ID

Parameters

p d q

220 5 1 3

242 3 1 2

253 2 1 3

269 2 1 3

283 3 1 3

Source codes and demonstration for dataset selection,
ARIMA model parameter optimization and fitting, as well
as GRU architecture training and forecasting are publicly
available (Malin, 2024).

Fig. 4. Learning curve for machine ID 283.

4. RESULTS

In this section, we will evaluate the performance of the
methods introduced in Section 2 using resource usage data
from real-world scenarios and training proces introduced in
Section 3. This analysis aims to demonstrate the efficiency
and practical applicability of the forecasting techniques in
a data center environment.

4.1 Forecast Accuracy

In our experiments, held out test set containing last 25%
of data as described in Section 3.3 was forecasted. Root
mean square error (RMSE), Mean Square Error and 95th
percentile of the absolute error (AE) were calculated over
the forecast results for the entire test set. The results for
forecast accuracy are shown in Fig. 5 and Table 3.

Prior analysis of the data provided critical insights into
the problem. During this process, we discovered that some
CPU usage values slightly exceeded 100%. Based on this
observation, we decided to clip the forecasts of all models
within the [0, 105] interval to eliminate unreasonable
forecasts.

The forecast results for each VM are presented in Table 3.
Error metrics were calculated from the forecast of future
CPU usage in the held out test set. For every error metric,
the GRU architecture achieved the best average forecast
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Fig. 3. Data set split example with CPU data from machine ID 253. 75% of the data was used in the training process.
Last 20% of the training data was still used as a validation set to monitor metrics during training. Last 25 % of
the whole dataset was held out for test set as a comparison between LSTM, GRU, and ARIMA.

Table 3. Forecasting errors for the test set of each machine. The model with the best accuracy
(lowest error metric) is bolded, and the model with the lowest accuracy (highest error metric)

is italicized. The mean and standard deviation are highlighted in the same manner

Machine RMSE MSE 95th AE percentile

ID GRU LSTM ARIMA GRU LSTM ARIMA GRU LSTM ARIMA

220 28.72 29.09 30.80 825.05 846.21 948.46 66.38 71.95 84.16

242 25.49 26.74 26.81 650.11 714.90 718.69 62.75 65.16 71.29

253 23.14 23.42 24.92 535.55 548.49 621.13 64.84 62.63 71.60

269 20.04 19.37 19.78 401.71 375.11 391.31 48.21 44.48 47.13

283 20.06 21.00 20.34 402.47 441.01 413.75 48.94 49.14 53.30

Mean 23.49 23.92 24.53 562.98 585.14 618.67 58.22 58.67 65.50

Std 3.71 4.00 4.60 179.44 194.44 230.46 8.90 11.47 15.04

performance across all machines, with an RMSE of 23.49,
an MSE of 562.98 and a 95th percentile AE of 58.22.
Conversely, the ARIMA model had the worst average error
metrics, with an RMSE of 24.53, an MSE of 618.67 and
a 95th percentile AE of 65.50. The LSTM architecture’s
performance fell in between these two, with average error
metrics of 23.92, 585.14, and 58.67, respectively. Both
the LSTM and the GRU architectures outperformed the
baseline ARIMA model in forecast accuracy for every VM
and across all metrics, as shown in Table 3. Additionally,
when comparing the medians of the error metrics, the RNN
architectures outperform the baseline ARIMA model. This
can be seen from the boxplots of the error metrics in Fig.
5.

Considering all the calculated forecast error metrics in
Table 3, the GRU architecture provided the lowest error in
11 out of 15 cases. In the remaining four cases where the
GRU did not achieve the lowest forecasting error, the best-
performing model was still an RNN architecture, specifi-
cally the LSTM. This highlights the superior performance
of RNN-based models in our forecasting task.

4.2 Computational Efficiency

Both RNN architectures (GRU and LSTM) were trained
using the NVIDIA Tesla V100-SXM2-32GB in the super-
computer Puhti at CSC – IT Center for Science. Models
with architectures as described in Section 3.2 were trained
for 100 epochs.

Both RNN models were trained on the same data set from
machine id 357. 80% of the data was allocated for the
training process, while the remaining 20% was reserved
for calculating validation metrics. Although the results
gathered during validation were not applied in this setting,
the validation step was performed to accurately simulate
the real training process of neural networks.

The total training time for the architecture with GRU
units in the recurrent layer was 380.27 seconds, whereas for
the architecture with LSTM units in the recurrent layer, it
took 461.38 seconds. This observation supports the theory
presented in Section 2.4 that GRU should be more efficient
to train than LSTM.

Further improvements in efficiency could be achieved by
further optimizing the convolution layer of the architec-
ture. Methods such as max pooling in the convolution
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Fig. 5. Boxplot of all error metrics for the test set forecasts
across different model architectures. The boxplot data
holds results from all five machines used in the exper-
iments.

layer can significantly reduce the dimensionality between
the input and recurrent layers, thereby decreasing the
number of weights to be tuned in the recurrent layer.
However, despite initial optimization efforts, experimen-
tation revealed that additional dimensionality reduction
techniques resulted in a noticeable decrease in forecast
accuracy. Therefore, while acknowledging the potential
for further optimization, we decided not to pursue these
techniques in this study.

Employing computationally efficient models, such as GRU,
is crucial in data center load prediction. One key objective
in this setting is to reduce the overall energy consump-
tion of the computing cluster. Given that the forecasting
models themselves are integral components of the system,

using efficient models helps minimize their computational
overhead, thereby contributing to energy savings.

4.3 Combining Accuracy and Efficiency

Table 4.3 presents a summary of the accuracy and effi-
ciency results. The GRU model achieved a 9% reduction
in forecast error, as measured by MSE, compared to the
baseline ARIMAmodel. Additionally, the GRUmodel out-
performed the LSTM model in terms of accuracy, despite
having 25% fewer trainable parameters.

Table 4. Summary of all results. Average MSE
and computational complexity is compared to
the baseline ARIMA model. Rank takes both
accuracy and computational complexity into

account

Architecture
Average MSE

Computational
Complexity

Rank

ARIMA 618.67 (Baseline) Low 3.

LSTM 585.14 (-5.42%) High 2.

GRU 562.98 (-9.00%) Medium 1.

5. CONCLUSIONS

We have shown practical and accurate approach for fore-
casting IT resource usage in data centers using recurrent
neural networks. In our experiments, both the LSTM
and GRU architectures outperformed the baseline ARIMA
model in terms of forecast accuracy.

The architecture with GRU units in the recurrent layer
provided the best forecasting accuracy, as evidenced by the
lowest mean and median error metrics. The LSTM units
in the recurrent layer achieved the second-best forecast
accuracy based on mean error metrics for the test set.

Considering that the GRU architecture not only delivered
superior forecasting accuracy but also demonstrated ef-
ficient training times, we propose the use of GRU units
in the recurrent layer of neural network architectures for
resource usage forecasting. Reducing computational com-
plexity in data center operations has significant practical
implications. Improved forecasting accuracy and efficiency
can enhance resource management, reduce energy con-
sumption, allow dynamic scalability, and improve overall
operational efficiency. These advancements can lead to cost
savings and a lower environmental footprint, which are
critical considerations in the field of sustainable comput-
ing.

This study provides valuable insights into forecasting
data center load using RNN architectures. However, it is
important to note that this work is based on the dataset
from a single data center. Although the Bitbrains dataset
has diverse use cases, this may limit the generalizability
of the results. Future research should consider testing the
models on datasets from multiple data centers to validate
and potentially extend the applicability of the findings.

All the source codes for this work are publicly available
(Malin, 2024), ensuring that all results can be reproduced.
This will also enable future improvements to be built upon
this base convolution and RNN architecture.
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