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Abstract: Increasing demand for critical raw materials and energy transition metals sets new targets for the 

mineral processing, also resulting as higher requirements for the simulation tools during process design and 

optimization. This study presents a framework for global uncertainty evaluation of modelled plant-wide 

processes, where the propagation of uncertainty sources is addressed. The uncertainties exist, for example 

in operational and design parameters and in material properties. The approach was demonstrated with a 

typical mineral processing flowsheet simulated with commercial software. First, domain knowledge was 

adopted to screen the parameter space and then Monte Carlo simulation was performed. After this, the 

generated data set was used to identify surrogate models between the uncertain inputs and process 

performance indicators. Finally, a global sensitivity analysis was conducted to identify the effects of 

uncertainties to the decision-making in process design. The results were particularly used to locate the 

process points where accurate information is needed for the robust process design, or where on-line 

measurements would be preferred to establish on-line optimization.  
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1. INTRODUCTION 

As critical minerals have become more crucial for the 

operation of societies, the necessity to maximize the efficiency 

of all processes throughout the lifecycle, namely mining, 

refining, and recycling, is even more important than before. 

Increase in the demand of critical minerals opens new demand 

for circular economy system, in which the maximum 

efficiency is achieved by minimizing losses in all parts of the 

cycle (Whitworth et al., 2022). These developments increase 

the number of processes, where multiple minerals are present 

in the separation processes, which in turn increases the 

complexity of simulation models, and uncertainty of 

simulation and model-based decision making in process 

design and in process operation. 

Mineral processes aim to extract valuable minerals from ore. 

The process usually consists of multiple stages, which all of 

them have their unique properties, and thus described with 

different mathematical models and uncertainties related to 

them. The uncertainties need to be attributed to their sources 

through simulations to facilitate the process optimization 

(Sepúlveda et al., 2014). 

The lack of understanding that exists around inspected system 

creates a need to model the system, which itself holds inherent 

uncertainty, for example assumptions, process randomness 

and measurement errors (Caers, 2011a). Precisely, the 

definition of uncertainty is tied to the model uncertainty when 

it is quantified by sensitivity analysis (Sepúlveda et al., 2014, 

Arnst et al., 2021, Puy et al., 2022), although uncertainty is a 

wider concept itself. According to Campolongo et al., (2000),

sensitivity analysis complements uncertainty analysis.

The goal of extracting valid information is to reduce

uncertainty in an influential decision-making process. Because

collecting more information does not necessarily reduce

uncertainty, it is important to find the parameters that best

describe uncertainty (Caers, 2011b).

Sensitivity analysis is a method that can be also applied to

identify how the uncertainty in model output is divided in its

inputs. There, a local sensitivity analysis provides changes one

input parameter at a time. Global Sensitivity Analysis (GSA)

is a more robust solution compared to local sensitivity analysis

(Cisternas and Lucay, 2020). It can overcome the limitations 

of inspecting one variable at a time, and thus enables to 

find relationships between the variables that would be 

otherwise left undiscovered (Sepulveda et al., 2013).

GSA has been applied in mineral processing, for example,

improving the milling operation by (Lucay et al., 2019) as they

considered both the operational (epistemic) uncertainties and

stochastic uncertainties related to feed properties. Further, a

framework of deterministic process design, elimination of

non-influential process variables and recognition of critical

parameters through GSA was used in (Lucay et al., 2015) for

a mineral concentration process. Ohenoja et al. (2023) used

GSA to identify and to weight the most important process

measurements in the model adaptation problem of a flotation

circuit. Arancibia-Bravo et al (2022) similarly used GSA to

identify critical model input parameters of copper flotation in

saline systems, while (Sitorus and Brito-Parada, 2020) 

applied
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GSA for the selection of optimal crushing equipment in

multiple criteria decision-making model.

As mentioned, mineral processes are characterized by a

combination of multiple processing stages making the overall

flowsheet complex. The input parameter effect on the

uncertainty of the global output parameters of each separation

unit can be analyzed by dividing the inspected flowsheet into

stages (Montenegro et al., 2015). By doing this, the

propagation of the uncertainty can be analyzed. One approach

to gain insight on uncertainty propagation is Monte Carlo

(MC) simulation (Albert, 2020).

MC requires a sufficiently big sample size to produce

sufficient resolution for the intended purposes (Helton 

and Davis, 2003). Thus, complex flowsheets or detailed 

models may set limitations to the applicability of MC. 

Therefore, surrogate models are also used in uncertainty 

evaluation. Analytical solutions to uncertainty have 

been inspected utilizing surrogate models, for example in 

(Liu et al., 2024), where the presence of two or more 

uncertainty factors is the source of complexity. Lu et al. 

(2018) showed that generalized linear models can be used to 

get accurate sensitivity indices, by utilizing polynomial 

approximations of the data.

This study presents and demonstrates a framework for global

uncertainty evaluation of plant-wide processes, where the

propagation of uncertainty sources is addressed. The

uncertainty propagation results in this publication give insight

of the uncertainty factors and sources, that would be used

during the model-based process design or in operational

optimization. Thus, this work aims to extend from previous

GSA studies, such as (Lucay et al., 2012), where focus was on

one separation process model. The uncertainty evaluation

framework is demonstrated utilizing a typical mineral

processing flowsheet simulated with a commercial software.

The following sections of the paper are distributed as follows;

Section 2 outlines the constructed framework, and the software

and mathematical methods used. Section 3 details the selected

mineral processing case study, the performance of the

surrogate models identified, and the sensitivity analysis

results. The evaluation of the case study results, and discussion

of the proposed framework is described along Section 4.

Finally, Section 5 summarizes the main findings of the

research.

2. MATERIAL AND METHODS

2.1 Framework

The framework is described in Fig. 1. As a starting point, the

mineral processing flowsheet model was established to a

simulation software. Then, the possible input and output

parameters from the software used were listed with domain

knowledge and inspected through a screening step. This was

performed as a local sensitivity analysis by directly inspecting

the variation caused by each input to one output individually.

As a result of the screening step, the number of possible input

parameters for the global sensitivity analysis were reduced.

This is typically necessary to facilitate the MC simulation of

complex flowsheets.

The final selection of parameters, and their ranges, were 

confirmed from the forementioned list based on domain 

knowledge. After the parameters had been chosen, a MC 

simulation was performed in the flowsheet simulation 

software. The resulting data set was then utilized to train the 

surrogate models and to perform GSA with the identified 

models. To improve the performance of surrogate models, and 

the sensitivity analysis based on them, the flowsheet was 

considered as blocks, where the surrogate models of previous 

blocks can act as inputs for the following modelled blocks. 

In the demonstration of this study, the simulation software 

used was USIM PAC (See Section 2.2). The screening step 

was analyzed using spreadsheets and interviewing the experts. 

The MC was conducted with the embedded MC tool in the 

simulation software. The MC data set was then exported to 

Matlab® to identify surrogate models (See Section 2.3) and to 

perform sensitivity analysis (See Section 2.4). The studied 

flowsheet is presented in Section 3.1. 

 

Fig. 1. Approach for estimating uncertainty propagation in 

flowsheet simulation.  

2.2 Simulation software 

In active development since 1986, USIM PAC has been 

created by the BRGM´s (French geological survey) Process 

Simulation Group. Since 2004, CASPEO, a spin-off of 

BRGM, has been the company behind its development and 

distribution. Although it has been used in several industries, 

USIM PAC is a process simulation software primarily 

intended for mineral processing and hydrometallurgical 

operations, where it can be used for design or optimization 

purposes. 

The Supervisor, which is one of the optimization algorithms 

available in USIM PAC (Guillaneau et al., 1995) was the main 

calculation tool used to generate the simulation results in this 

work. The Supervisor algorithm can be used either as a 

sensitivity analysis tool or for visual optimization. It calculates 

user-defined parameters (soft-sensors, outputs) when some 
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input parameters (actuators) vary. The variation of the 

actuators can be defined using different methods: (1) 

Scanning, which generates a set of vectors by the combination 

of different values of each parameter in a given research 

domain; (2) Sensitivity Analysis, which evaluates each 

parameter using a user-defined range and step; (3) Monte-

Carlo, which generates as many parameter values as required 

using a random procedure with the selected statistical 

distribution (Gauss, Uniform, or other) to constitute a point. 

A screenshot of the Supervisor tool is depicted in Fig. 2. The 

output of the Supervisor tool is a file displaying the list of the 

values of the user-defined soft-sensors resulting from the 

simulations performed for each random value of the actuator 

or combination of actuators. As this file can be exported as a 

spreadsheet, the results can be easily exploited using statistical 

analysis tools. 

 

Fig. 2. Selection of actuators in USIM PAC Supervisor. 

2.3 Surrogate modeling 

The data acquisition from USIM PAC to the surrogate 

modeling was performed using the MC simulation property in 

USIM PAC. The resulted *.csv was read in Matlab®, where the 

surrogate models were fitted using Regression Learner 

application. The selected modelling approach here was linear 

stepwise regression. The performance of the final model 

structure was evaluated with two different metrics: mean 

absolute percentage error (MAPE) and coefficient of 

determination (R2). 

2.4 Sensitivity analysis 

According to (Campolongo et al., 2000), sensitivity analysis is 

an integral part of the modeling process. As a quantitative 

method, it can decompose the variance of output variable Y. It 

can be used as a tool to identify noninfluential parameters, and 

thus be used to simplify and/or improve the uncertainty 

modeling. 

The total sensitivity index takes into consideration all the input 

parameters (Xi) and their possible combinations (Xij) and 

displays the average effect of the inspected input variable 

(Lucay et al., 2019). According to (Saltelli et al., 2007), the 

first order sensitivity being similar in magnitude to the total 

effect index, means that there is no interaction between the 

inspected parameter and the rest of the parameters. Otherwise, 

the first order sensitivity index is always smaller than the total 

order index, if there is even a small interaction between the 

inspected parameter and other parameters. 

The GSA approach was originally proposed in (Saltelli

and Homma, 1996). The refined method in (Saltelli, 2002),

gives a pathway to circumvent the curse of

dimensionality when dealing with high factor count

models, turning 𝑛2𝑘 into 𝑛(2𝑘 + 2), where k is a term of

order and n is the sample size used to estimate one

individual effect. They noted that the computation of the

sensitivity indices is more straightforward in the higher

order terms. The advantages of the method are the

flexibility concerning the utilized models in the sensitivity

analysis and the computational inexpensiveness. Thus, the

method from (Saltelli, 2002) is more attractive tool for

engineering applications, and was also selected to this study.

The total order index, STi, is formed by following formula

(Saltelli et al., 2007, p.164):

where i refers to the input parameter, V(Y) is the variance of

the inspected output Y, and E[Y|X~i] is the estimated

conditional mean of output Y in relation to input X~i.

V(E[Y|X~i]) is the conditional variance of output Y in relation

to input X~i.

The sensitivity analysis was done in Matlab® utilizing Latin

hypercube (LHS) sampled data based on the utilized parameter

ranges. The used functions for the sensitivity analysis can be

found in (Vandy, 2016).

3. RESULTS 

3.1 Input screening and the studied flowsheet 

The flowsheet used in simulations is presented in Fig. 3. The 

grinding circuit (GC) comprises a ball mill and a hydrocyclone 

classification with one recycle stream. The flotation circuit 

(FC) includes four flotation stages (Rougher, Scavenger, 

Cleaner 1, Cleaner 2) with two recycle streams. 

 

Fig

.

 3. Studied flowsheet. 
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In the studied flowsheet, the streams under interest were: 

• GC product,  

• Circulating load to the mill (hydrocyclone underflow),  

• Rougher feed,  

• Final tailings, and  

• Final concentrate. 

From these streams, several properties were monitored as 

outputs, namely: 

• Ore concentration,  

• Particle size,  

• Ore mass flowrate,  

• Total volumetric flowrate,  

• Solids concentration, and  

• Grade. 

These represent the outputs Y, that are modeled and subjected 

to GSA. 

For the screening step, a large number of input parameters 

were reduced to a smaller group of important input parameters 

with domain knowledge and simulations using the Scanning 

feature of USIM PAC. Table 1 presents the selected input 

parameters after the screening. For the grinding circuit, mill 

rotation speed and grinding media loading represent 

operational variables, whereas grindability is a material 

property. Similarly in flotation circuit, the pulp level and water 

content can be manipulated in an operational environment. The 

floatabilities can be considered either material properties 

(liberation, mineral properties) or operational variables 

(addition of flotation chemicals). The different flotation cells 

in the flowsheet, namely rougher, scavenger, and two cleaners, 

have unique parameters. As mentioned in Section 2.1., the 

surrogate model outputs from the grinding circuit also act as 

inputs for the flotation circuit surrogate models. 

Table 1. Selected process parameters for MC simulation and 

surrogate modeling. 

Grinding circuit 

 

Flotation circuit 

Grinding media loading Pulp level in cell    

Mill speed Pulp water content in cell 

Ore grindability Ore floatability in cell 

Gangue grindability Gangue floatability in cell 

Hydrocyclone feed 

diameter 

Surrogate model outputs 

from the grinding circuit 

Hydrocyclone overflow 

diameter 

 

Hydrocyclone underflow 

diameter 

 

 

3.2 Monte Carlo simulation 

MC simulation was performed utilizing uniform distribution 

for the input parameters. The used range of the input 

parameters varied from ±5% to ±10% in USIM PAC 

supervisor. The variation amplitude was based on domain 

knowledge. The number of MC simulations done in USIM 

PAC was 10,000. The generated data was used to fit surrogate 

models for the GSA. In GSA, MC was used in generating 

sample inputs for the surrogate models utilizing LHS design. 

The input range was extrapolated to ±10% for all inputs. The 

sample data consisted of 10,000,000 points. 

3.3 Surrogate modeling 

In total, 30 surrogate models, representing the outputs Y, were 

identified using the MC data set from USIM PAC. The model 

performance, in terms of MAPE, for the GC outputs and FC 

outputs are presented in Fig. 4 and Fig. 5, respectively. 

Overall, the low MAPE values (< 1.8%) indicate that the GC 

stream properties from the flowsheet simulation can be 

accurately described with surrogate models. The solids 

concentration in Fig. 5 lacks modeling error values for Final 

concentrate or Rougher feed streams, as the MC data set 

indicated constant output values. 

 

Fig. 4. Model performance (MAPE) of the identified surrogate 

models for GC. 

 

Fig. 5. Model performance (MAPE) of the identified surrogate 

modes for FC. 

The scatter plots of the worst performing surrogate models 

(Circulating load to the mill and ore mass flowrate in final 

tailings) are presented in Fig. 6 and Fig. 7, respectively. The 

MAPE values inspected together with R2 give a more 

comprehensive understanding of the model performance. The 

figure shows that the R2 values are also at acceptable levels 
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(greater than 0.70) in this case. For the ore mass flowrate in 

Fig. 6, the surrogate model seems to systemically 

underestimate some of the values above 11.8 t/h. Thus, for this 

variable, another model structure could be studied to improve 

the modeling performance further. 

 

Fig. 6. Scatter plot of ore mass flowrate in the Circulating load to 

the mill. The scale in both axes begins at 9. 

 

Fig. 7. Scatter plot of ore mass flowrate in the Final tailings. The 

scale in both axes begins at 0.8. 

3.4 Global sensitivity analysis 

The GSA was performed using identified surrogate models. In 

GSA, the results are interpreted individually to different 

flowsheet sections in order to understand the propagation 

routes of the uncertainties. 

Grinding circuit 

The utilized input parameters for GC were listed in Table 1. 

From the GSA results, some essential outputs, such as in PSD 

(Particle size distribution), ore concentration and grade were 

inspected in detail and are discussed below. 

PSD is usually the key process quality parameter in grinding 

circuits. According to the results, PSD of the Grinding circuit 

product is mainly affected by the hydrocyclone parameters (STi 

from 0.51 to 0.06), whilst mill and ore parameters had very 

small sensitivity (STi <0.04) to the PSD. However, for 

Circulating load to the mill, the gangue grindability (0.41), 

mill speed (0.32) and the grinding media loading (0.25) 

explain the PSD variation according to the GSA.   

Grinding circuit product concentration variation is best 

explained by gangue grindability (1st, 0.55), ore grindability 

(2nd, 0.45) and hydro cyclone underflow (3rd, 0.11). The same 

finding applies to the concentration in Circulating load to the 

mill, and to the grade variation in both streams.   

Overall, the operational variables show only moderate 

sensitivity to the studied outputs in GC; Grinding media 

loading affects the total volumetric flowrate of GC product and 

PSD of circulating load. Mill speed affects the GC product 

solids concentration and PSD of circulating load. One 

explanation could be that the selected ranges of the other input 

parameters mask the effect of mill operational parameters in 

most of the studied outputs. One way to overcome this problem 

in sensitivity analysis would be to narrow down the parameter 

ranges of feed characteristics, or to sample the parameter 

values from different types of probability distributions as done 

in (Lucay et al. 2019). 

Flotation circuit 

The utilized input parameters for FC are listed in Table 1. In 

addition to these parameters, the outputs from the GC 

surrogate models are used as surrogate model inputs, and thus, 

in GSA. Three of those were identified to be very significant 

inputs parameters for all FC outputs. 

In all three FC streams, the concentration in the GC product 

stream shows significant sensitivity to the ore concentration 

(or grade), and particle size (STi between 0.47 and 0.29). This 

is an expected result, as variation in flotation fresh feed 

properties determine the flotation performance. According to 

the GSA results, the gangue floatability in rougher and pulp 

water content in cleaner 1 are also sensitive parameters (STi 

between 0.10 and 0.16) to the rougher feed and final 

concentrate concentrations, respectively.   

Interestingly, the ore concentration and particle size in 

Circulating load to the mill seems to explain some variation in 

flotation streams’ properties (STi up to 0.30 and 0.32, 

respectively). This might be contributed by the fact that the 

circulating load affects the water addition rates in the 

flowsheet model, which then propagates into a variation in 

flotation circuit. Another explanation could be that the 

mentioned circulating load properties are affected by mill 

speed, grinding media loading, and hydrocyclone parameters, 

which were also seen in the GSA results for the grinding 

circuit.  

Regarding the solids concentration in final concentrate, the 

GSA shows that the total pulp water content in cleaner 2 is the 

most influencing variable (STi 0.85). This is natural, as the 

higher water content in the final flotation cell corresponds to 

the lower solids concentration of the product. Otherwise, the 

flotation circuit operational parameters are not among the most 

sensitive parameters in the simulated data set, again 

highlighting the need to carefully determine the input’s 

probability distributions for the sensitivity study. Another 

observation from these results is that there can be limited 

possibilities for the operational parameters to mitigate the 

effect of the disturbances entering to the FC from upstream 

process steps. 

Summary of GSA results 

The GC circulating load parameters have a high effect (STi 

>0.10) to the flotation circuit variation. This is due to the mill 

being unable to process the feed (and recycle) fast enough,  

thus increasing the amount of water and decreasing the solids 
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concentration in the feed to the FC. This is observable from 

the parameters with influential STi in the circulating load being 

ore grindability, mill speed and mill grinding media loading.  

In Fig. 8, the occurrence of the most sensitive inputs for the 

rougher feed properties is depicted. The frequency 

corresponds how often the input parameter was among the 

three most significant input parameters based on GSA. 

Similarly, Figure 9 shows the result for final tailings properties 

and Figure 10 for the final concentrate properties. 

 

Fig. 8. Occurrence of the most sensitive inputs for rougher feed 

properties. 

 

Fig. 9. Occurrence of the most sensitive inputs for FC final tailings 

properties. 

From Fig. 8, it can be observed that the rougher feed properties 

are naturally sensitive to the parameters in GC product. 

According to the results, the input parameters that describe the 

ore concentration, grade and particle size thus describe the 

flotation circuit performance and the final concentrate 

variation.  

The ore feed characteristics and the ability of the GC to 

categorize the feed into set particle size similarly most describe 

the variation in the final concentrate and final tailings (See Fig. 

9 and Fig. 10), which is an expected result after the rougher 

feed results. An outlier to this statement is the Pulp water 

content in cleaner 2, which is an operational input parameter 

in FC. As the fresh feed characteristics can’t be affected by the 

operation of the GC, the only thing left to do is to minimize 

the variation in the ore size distribution by GC operation.

 

Fig. 10. Occurrence of the most sensitive inputs for FC final 

concentrate properties.  

4. DISCUSSION 

In addition to the surrogate models presented, the FC outputs 

were also modelled using only the MC data without GC 

surrogates. The performance of the FC surrogates, in this case, 

was slightly worse (>0.05 lower R2). This alternative would 

also make it more difficult to inspect the propagation of 

uncertainties as GC models do not act as inputs for the FC. 

Production of outliers by the GSA method, or volatility, is due 

to its non-additive nature. Non-additivity in this context 

means, that the generated STi value is not equal to the sum of 

the values of the component parts. This is a cost caused by the 

computational and straightforward nature of the used Saltelli’s 

approach over the original Sobol’s method (Saltelli et al., 

2007). This limits the interpretation of the lower magnitude STi. 

Thus, mainly the three most significant STi were discussed in 

this study. Naturally, a more thorough GSA interpretation 

could involve inputs with lower influences into the analysis of 

uncertainty, if the volatility issue can be solved. 

Like (Puy et al., 2022) concludes in their publication, Saltelli’s 

total order method becomes inaccurate with higher 

dimensionality (k>10). The exponential growth in input 
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parameters of more complex flowsheets is an issue that needs

to be addressed thoroughly, utilizing similar design of

experiments and domain knowledge methods that were shown

in this study. Domain knowledge gives insight on what

parameters are influential based on previous experiences and

the local sensitivity analyses on the possible unknown

sensitivities in the analyzed setup.

The proposed approach for the uncertainty analysis with

surrogate models resulted in a lower computational load and

made it possible to use large sample size in GSA. This

decreases the inherent volatility of Saltelli’s method. The

accuracy of Saltelli’s method for the most important

parameters can be improved by repeating the GSA with

multiple LHS designs (Puy et al., 2022). Alternative methods

for calculating total order sensitivity indices, such as Jansen,

Razavi and Gupta, Janon/Monod and Azzini and 

Rosati, suggested by (Puy et al., 2022) could also be 

considered.

The results in this study suggested that the most influential STi

are related to the feed characteristics and the mill performance.

Thus, for more robust operational decisions, the focus could

be shifted to better measure the feed properties in on-line to

minimize the effect of stochastic (inherent) uncertainty. For

process design purposes, the results highlight the emphasis

needed for GC design and its flexibility to tackle and decrease

the uncertainties, that will otherwise strongly propagate

downstream to FC streams. If stochastic uncertainties remain,

only the epistemic uncertainties can be affected, and thus the

focus needs to be on lesser magnitude, operational sensitive

indices. To achieve the best design and operational reduction

of uncertainty, maximum range of uncertainties (all STi > 0.10)

need to be considered.

The proposed framework could benefit from the development

of software interfaces establishing more automated data

transfer. Dividing the process into parts is beneficial for

understanding the propagation of uncertainty through the

different parts of the process. At the same time, more data is

generated that needs to be handled efficiently between the

different software tools. Further, the interface between the

sensitivity analysis results and decision-making in process

design or on-line operation requires further development.

5. CONCLUSIONS

In this work, an uncertainty propagation evaluation framework

was established to be used in model-based decision making.

The proposed methods were chosen to enable rapid inspection

of complex systems typically seen in flowsheet simulators.

The results in this paper demonstrated that this framework can

be used to identify the most influential parameters throughout

the whole inspected process chain. This allows to focus further

analyses to the propagation of uncertainty attributed to these

identified parameters.

Regarding the case study, the propagation of uncertainty

within the studied flowsheet was observed through dividing

the flowsheet into the grinding circuit (GC) and to the flotation

circuit (FC). By doing this, the changes in the GC were seen to

have strong influence on the flotation circuit model output

variation. The GC inputs were the top three most influential

inputs for all observed output parameters in the FC. The most

sensitive operational FC input parameters were not found

among the top three most influential input parameters but were

still considered influential (total sensitivity index values

>0.10). Those parameters were gangue floatability in rougher

and pulp level in cleaner.

Final sensitivity indices indicating the most sensitive

parameters in the whole process were found in the fresh feed

characteristics (ore concentration/grade and particle size

distribution), and the ability of the mill to reduce the particle

size distribution to the desired range. The operational input

parameters had a lower influence in general, but that result

might be due to the small range of changes applied in

simulation, so further studies are required.
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