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Abstract: Our paper presents a two-stage algorithm designed to address year-round-coupled optimization 

problems encountered in energy system optimization, particularly relevant for scenarios involving seasonal 

storages or other conditions depending on annual integrals. We apply this algorithm to MILP and MIQCP 

models. The solution we propose aims to stay feasible with the original problem while getting close to 

optimal results. It also significantly reduces the computing time compared to solving the original problem 

alone. This is crucial because the original problem, when coupled, is very complex and sometimes 

impossible to solve. 
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1. INTRODUCTION 

For the best design and operation of energy systems, 

mathematical optimization methods are a well-established tool 

to increase efficiency, minimize costs, manage capacity 

restrictions/availabilities, and reduce ecological impact. In the 

context of energy systems for, e.g., industrial or municipal 

energy supply or the manufacturing sector, Mixed-Integer 

Linear Programming (MILP) represents the state of the art for 

achieving fast and satisfactory results. However, for individual 

problems or research purposes, nonlinear algorithms are also 

commonly applied. Especially the inclusion of bilinear terms 

can help in dealing with problems of temperature-dependence. 

It augments the problem to Mixed-Integer-Quadratically-

Constrained Programming (MIQCP). For optimal design and 

operation of heat pump and heat storage systems, previous 

publications (Hering et al., 2021; Hering et al., 2022) and our 

earlier work  (Powilleit et al., 2019; Wasserfall et al., 2019) 

worked with this subset of nonlinear optimization models.  

Energy system optimization is usually applied to quasi-

stationary models and therefore may not suffice for certain 

problems. One example of this is design optimization, which 

involves the optimal dimensioning of plants. In this scenario, 

the entire year needs to be considered as one coupled problem. 

Due to computational constraints, this can quickly become 

challenging for moderately complex systems. This challenge 

is addressed by calculating with aggregated time series (e.g., 

clustering time points or typical days), where the reduced 

model still yields highly accurate results (Bahl et al., 2017). 

More details and ideas about optimal time series aggregation 

give the publications of Hoffmann et al. (2020; 2022). An 

important aspect is that the sequence of the time steps is not 

kept in order with clustering aggregation techniques.  

In addition to the question of optimal plant size, other 

circumstances also necessitate the coupling of all time steps 

into a single optimization problem. These include: 

 optimizing the loading of seasonal storages, 

 integrating CO2 emission limitations over the course 

of a year, and 

 considering specific pricing models or regulatory 

conditions (such as CHP-remuneration). 

The integration of seasonal storages was addressed by Kotzur 

et al.  (2018b) through the inclusion of typical charging and 

discharging days into their aggregation method. Baumgärtner 

et al.  (2020) proposed an approach which decomposes the 

original problem into smaller subproblems. Kirschbaum et al.  

(2023) introduced an adapted rolling horizon technique with 

integer relaxation. 

In this work, we propose a two-stage algorithm similar to 

methods used for structural optimization. The first stage with 

downsampling and relaxation methods is simplified while 

maintaining the sequence of the time steps. The second stage 

is time-resolved in full detail. The crucial aspects include 

formulating the resulting boundary conditions and selecting 

the result variables to be transferred to the second stage. 

The second stage has to be feasible to the original problem 

while closely approaching optimality. Our aim is to develop a 

seamless algorithm capable of handling a broad range of 

models across both stages, making it suitable for engineering 

applications. This entails automating the aggregation, transfer, 

and formulation of the boundaries in the time-resolved stage. 

The algorithm should solve the problem faster than the original 

problem. 
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2. METHODOLOGY 

The methods presented in this work apply to energy system 

optimization models (ESOM) with the characteristics of being 

quasi-stationary and equipped with hourly resolved annual 

demand time series and containing 5 to 15 technical 

components. Each time step is formulated with a mixed-

integer objective function 𝐽 to minimize operating costs while 

up to 𝑘 constraints (e.g., energy balances, conversion terms, 

operational conditions) can either be mixed integer (MILP, if 

𝐶𝑖 = 0) or in addition bilinear (MIQCP). The continuous 

optimizing variables 𝑥 are usually converted power or energy 

flows. Integer variables 𝑦 are used to describe the minimum  

part load or piecewise linear part load behavior. 

min 𝐽(𝑥, 𝑦)  = 𝑎𝑇 ∙ 𝑥 + 𝑏𝑇 ∙ 𝑦 (1) 

s.t.  𝑥𝑇 ∙ 𝐶𝑖 ∙ 𝑥 +  𝑑𝑖
𝑇 ∙ 𝑥 +  𝑒𝑖

𝑇 ∙ 𝑦 ≤ 𝑏𝑖 (2) 

with 𝑥 ∈ ℝ𝑛,   𝑦 ∈ ℤ𝑚,   𝑖 = 1, … 𝑘 

These equations are often formulated for each time step and 

solved individually (quasi-stationary). However, when time-

coupling conditions are necessary, such as optimizing a daily 

storage, a rolling horizon method is employed (attributable to 

Bellman  (2021)). In this approach, multiple future time steps 

are linked within a control horizon (e.g., 48 h) to determine the 

optimal plant behavior. From this control horizon, only the 

first result is retained, and the process is repeated for the next 

step then. However, for saving computation time, it is also very 

common to keep a subset of the control horizon in a shorter 

write-back horizon (e.g., the first 4 h). The horizon 

continuously shifts forward throughout the year. 

 

 

 

 

However, some issues, such as the integration of seasonal 

storage units or regulatory constraints, cannot be addressed by 

breaking the simulation into smaller parts and prevent solving 

with conventional receding horizon methods. These require a 

fully coupled optimization process. This often results in very 

large and complex optimization problems, which can take a 

long time to compute or might not even reach a solution. To 

tackle these cases, we propose our two-stage algorithm. 

2.1  Two-stage algorithm: simplified first stage   

In the simplified first stage, all time series 𝑏𝑖  with the original 

time step width ∆𝑡 are downsampled into a coarser grid ∆𝑡𝑗 

using integral-preserving averaging.  

𝑏𝑖,𝑡𝑗

𝑑𝑜𝑤𝑛 =  
1

∆𝑡𝑗

∑ 𝑏𝑖,𝑡 ∙ ∆𝑡

∆𝑡𝑗∙𝑗+∆𝑡𝑗

𝑡=∆𝑡𝑗∙𝑗

 (3) 

Additional relaxation of the binary variables is possible: The 

originally binary variables 𝑦 ∈ ℤ𝑛 are defined continuously as 

𝑦 ∈ ℝ𝑛 in the bounds [0,1] to solve only an LP instead of an 

MILP. These simplifications allow to solve the optimization 

model of a moderately complex problem in which the whole 

time frame is coupled in one coupled problem. 

2.2 Two-stage algorithm: choosing transfer variables   

In an intermediate step of the algorithm, it must be determined 

which result variables from the first stage are to be retained. 

These should be the crucial, year-round variables, such as the 

filling level of a seasonal storage or the amount of CO2 

emitted.  These can be brought back to the original time grid 

through upsampling. The upsampling is optional because the 

results of the interpolated time steps are not intended to be used 

further. However, it can still be useful in special cases. The rest 

of the results are omitted. 

From the results, only the transfer variables are selected, which 

should become boundary conditions for the second stage.  

2.3 Two-stage algorithm: Fully-resolved second stage with 

boundary conditions 

In the second stage, the fully-resolved time series and original 

binary variables are solved with a rolling horizon method. The 

transfer variables are incorporated as boundary conditions. An 

intuitive idea is to simply equating the results from each time 

step from the first stage with the ones from the second, but this 

leads to infeasibilities and large deviations to optimality. 

Therefore, we incorporate the boundary conditions into the 

rolling horizon. 

 For integral variables (storage level, amount of CO2), 

in each MILP to solve, we only equate the variable 𝑥∗ 

to the results from the first stage 𝑥∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 at the 

last time step of the control horizon: 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ = 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (4) 

 For regular variables (e.g., the electrical power of a 

CHP), we equate the integral of all variables within 

the control horizon: 

∑ 𝑥𝑖
∗

𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡=𝑖

∙ ∆𝑡 = ∑ 𝑥𝑗
∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒

𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡=𝑗

∙ ∆𝑡𝑗 (5) 

 We optionally apply tolerances 𝜀 to equation (4) and 

analogously to (5): 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ ≥ (1 − 𝜀) ∙ 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (6) 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ ≤ (1 + 𝜀) ∙ 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (7) 

 We discovered that it is very beneficial to solvability 

to set the control horizon to a multiple 𝑛 of the prior 

downsampling rate ∆𝑡𝑗 and write the results back in 

the same length as the downsampling rate.  

∆𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  ∆𝑡𝑗 ∙ 𝑛,        𝑛 ∈ ℤ (8) 

∆𝑡𝑤𝑟𝑖𝑡𝑒−𝑏𝑎𝑐𝑘 =  ∆𝑡𝑗 (9) 

This way, the optimality loss accepted in the first stage due to 

simplification is balanced out to reach approximate optimality. 

The selection of the values for the downsampling rate, the 

rolling horizon frame, and the tolerance varied are discussed 

in Section 3.  

Step 1 Δt
control

 
Δt

write-back
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control

 
Δt

write-back
 . 

. 
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Fig. 1. Illustration of a rolling horizon optimization. 
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2.1 Demonstration of algorithm implementation   

Figure 2 shows the results of the algorithm in anticipation of 

the third case study, the optimal filling level of a seasonal 

storage. The final optimum filling level of the seasonal storage 

is marked in green. The grey line is the result of the first 

downsampled stage, with only a very coarse resolution. The 

comparison of the two plots shows the progress: In the left one, 

the red line describes the result of one MILP in the rolling 

horizon. It starts at 𝑡0. The filling level in the horizon meets 

the one from the first step (grey line) at 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛,0, which is 

exactly the defined boundary condition. In the second plot, the 

consideration starts after the write-back frame at 𝑡4. From 

there, an MILP with the actualized control horizon is solved 

and meets the boundary condition again at 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛_4. 

 

 

Fig. 2. Exemplary illustration to demonstrate the algorithm: first 

time step (left), second time step (right).  

3. OPTIMIZATION RESULTS 

The methodology applies to four different use cases, each of it 

considering different aspects. For all use cases, 

 the operating costs are minimized, 

 the demand profiles are extracted and adapted from 

real use cases or taken from published typical days 

and have a resolution of 8760 h, and 

 energy supply from grid is always depicted with 

realistic prices. 

Because the simulations contain many different combinations 

of parameters, the nomenclature for the results is standardized 

as follows.  

Table 1: Nomenclature of result diagrams 

  The big red dot marks the reference case (if 

solvable): the complete solution of the annual-

coupled fully-resolved problem. 

  Colored and shaped group of data points share the 

same simplified stage model. The legend gives 

the downsampling rate (“Down 4”) and adds 

binary relaxation if applied (“Relax”). 

  The data labels mark the boundary conditions in 

the second stage with the control horizon of data 

to write back in hours (“48/3”) and the applied 

tolerances ε in % (“Tol 0,1”). 

  The red circle marks simulations with an 

incomplete result set: For some time steps, no 

solution could be found (within the time limit). 

 

3.1 Software in use  

The models are built with the framework EnergyFrames, using 

libraries from the derivate TOP-Energy®. Both are proprietary 

in-house developments by the GFaI. As an optimization 

solver, Gurobi 11.0.1 is used. While striving for comparability, 

we calculated with a gap value of 0. However, for some 

simulations this was not possible in reasonable time. For 

illustrative purposes, we present computational times in the 

results, but internally validated them using the dimensionless 

measurement of Gurobi’s work-units. 

3.2 CASE 1: OPERATIONAL OPTIMIZATION DUE TO 

REGULATORY RESTRICTIONS 

Case 1 is a combined heating, cooling, and power system (Fig. 

4), as found in small industrial systems. It has certain degrees 

of freedom: The heating demand of ~1 GWh/a can be met by 

a CHP (Combined Heat and Power system), a heat pump, or a 

boiler. The cooling demand of ~0.6 GWh/a can be met by an 

electric compression chiller or a heat-driven adsorption chiller. 

The electric grid can either supply power to the plants and 

other demands of ~1 GWh/a or receive fed-in electricity from 

the CHP.  

The objective function is to minimize the operation costs while 

complying with one condition: Due to reduction goals of the 

operator, the whole system should not emit more than 295 t 

CO2 per year.  

Time → thorizon,0 Time →t4

Fig. 3. Computation time vs. objective function results for the two-stage algorithm with varying parameters (Case 1). 
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Fig. 4. Scheme of the ESOM with combined heating, cooling and 

power, with CO2 emission restriction (Case 1). 

Figure 3 shows the results of the two-stage algorithm for 

different parameters of downsampling rate, tolerances, and 

horizon frame. The calculation times are compared with each 

other depending on the objective function values. The aim is 

to minimize the calculation time with the objective function 

being as close as possible to the reference solution.  

The transfer condition is the integral value of all emissions in 

each time step. This marks the boundary condition for the 

second stage. 

The main results can be summarized as following.  

 Best results can be reached with a downsampling of 

4 h and a rolling horizon of 24 h because they require 

low computation time and still offer a near-optimal 

objective function. 

 The influence of the tolerances in the boundary 

conditions is unambiguous, but usually, zero 

tolerance reduces calculation time because no 

additional degree of freedom is created. 

 Binary relaxation of the first step does not show good 

results (▲ and ◆): Even if the first step solves much 

faster (~8 s instead of 1670 s), solving the 

individual steps of the second stage drastically 

augments the total calculation time and does not even 

find a feasible solution (◯) for each time step.   

To understand the reasons for the weak performance of the 

binary relaxation, we examine the results of the first stage and 

look at the cumulated CO2 emissions. The deviation of the 

relaxed solution to the reference is five times higher than the 

one from the downsampling case. To disclose that behavior, 

we take a deeper look into the results of the relaxed binary 

variables and where they violate the binary condition. We find 

that the main issue with the violation concerns the operation of 

the absorption chiller: The minimum part load of 40 % or 

160 kW is violated during winter operations with loads around 

15 kW (Fig. 6). The resulting boundary condition for the 

second stage is challenging to meet because unrealistic 

behavior stems from the outcomes of the first stage. 

 

Fig. 6. Comparison of the operation of the AC (Case 1). 

3.3 CASE 2: OPTIMAL CHP OPERATION WITH 

ANNUALLY RESTRICTED REMUNERATION 

In this example (Fig. 7), we delve into a common question 

concerning the optimal operation of a small-scale CHP system 

that must effectively meet heat demands of ~1.2 GWh/a while 

also maximizing electricity sales. Under German law, 

remuneration is provided for every kilowatt hour of CHP 

electricity generated, but only for a total of 3,500 full load 

hours (FLH) per year. Consequently, it is not feasible to 

optimize each time step individually. Instead, a comprehensive 

approach spanning the entire year is necessary to determine the 

most advantageous times for distributing the load of the CHP 

system. 

The CHP is represented with a part load behavior, while a gas 

boiler and an emergency cooler serve as additional degrees of 

freedom within the heating grid. Operating costs are 

minimized as an objective function.  
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Fig. 5. Computation time vs. objective function results of the two-stage algorithm with varying parameters (Case 2). 
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The first stage is treated with the downsampling rate of 4 h and 

optional binary relaxation. In this case, we investigate the 

quality of two different transfer variables: First, the cumulated 

FLH (integral variable) is used as a transfer variable for the 

boundary condition. Unlike the previous case, the time-

resolved integral is not necessary because a constraining sum 

is enough. This allows the remuneration of the FLH to be 

limited in the first stage and the electricity generation of the 

CHP to be used as a transfer variable as a second option.  

 

Fig. 7. Scheme of the ESOM with a CHP and annual full load hour 

restriction of remuneration (Case 2). 

The main aspects of the results are:  

 As in the previous case, the binary relaxed cases do 

not improve the total computation time for related 

reasons as Case 1.  

 The other solutions are close to the objective function 

and reduce the calculation time by around 70 %. 

 A larger rolling horizon frame serves a better 

objective function but increases the calculation time. 

 Using the electric power as a transfer variable instead 

of the cumulated FLH seems to be a better option. 

 The tolerance’s influence is less clear than in Case 1. 

3.4 CASE 3: OPTIMAL LOADING STRATEGY OF A 

SEASONAL HYDROGEN STORAGE 

At the core of the fourth use case is a seasonal hydrogen 

storage system, which serves as a year-round coupling element 

to increase the use of renewable energy (Fig. 9). During the 

summer, 1.8 MWp Photovoltaic (PV) and electrolysis can 

charge it, while a fuel cell can reconvert the stored energy into 

electricity to partially cover a demand of ~1.5  MWh/a. A 

small daily electricity storage system can compensate for 

short-term fluctuations. In combination with a heat pump, the 

waste heat from the fuel cell and electrolysis can meet the 

~1 GWh/a heat demand, which otherwise would be satisfied 

by a natural gas boiler. 

 

Fig. 9. Scheme of the ESOM with a seasonal storage (Case 3). 

As before, the first stage is simplified by downsampling and 

optional binary relaxation. The transfer condition is initially 

intuitively the energy level of the seasonal storage (in an 

integral variable). However, an alternative approach is to 

define the charging and discharging capacity of the seasonal 

storage system as a transfer variable. Summarizing the results: 

 Good results are achieved by transferring the filling 

level, employing a downsampling rate of 4 and a 

rolling horizon of 24 hours. The objective function 

closely approximates the reference case, while 

computation times decrease by 20 %. 

 Selecting a rolling horizon frame that is too small is 

problematic because of increased computation times, 

reduced optimality, and infeasibilities at some time 

steps.  

 Similar to previous cases, the binary relaxation 

method yields unsatisfying results: With computation 

time intervals between 200 and 1,800 seconds (not all 

plotted), the second stage requires too much time for 

the solution. In addition, it cannot find a solution for 
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all time steps in the maximum time allowed for 

solving. This leads to an incomplete solution set. 

 Coupling the charging and discharging power instead 

of the integral variable yields highly unfavorable 

outcomes: Calculation times extend up to 13 hours, 

consistently resulting in an incomplete solution set. 

For reasons of clarity, these results are omitted from 

the plot. It is advisable to refrain from this 

formulation. Because the integral variable must be 

computed temporally resolved, no advantage to the 

previous case study can be expected in the first stage.  

 The calculation times of the two-stage algorithm in 

the downsampling scenario can even exceed those of 

the reference case (previously observed only when 

binary relaxation is applied). The solution of 

individual time steps within a rolling horizon 

becomes significantly more complex in this scenario. 

In addition to the coupling condition, the inclusion of 

a daily storage further enlarges the problem size. 

Therefore, it is important to carefully choose the 

horizon frame: To avoid unnecessary complexity, it 

must not be too large, but must be long enough to 

effectively operate the daily storage. 

3.5 CASE 4: OPTIMAL INTEGRATION OF A SEASONAL 

HEAT STORAGE TO SUPPLY HEATING OR COOLING 

COMPRESSION 

The fourth model represents a simplified approach to a heating 

and cooling supply as might be implemented in municipal heat 

planning (Fig. 11). The core of this model is a 190 MWh 

seasonal heat storage that stores water at variable 

temperatures. On the one hand, heat can be extracted as drive 

heat for an electric heat pump, which raises the temperature 

level to satisfy the heat demand. As a degree of freedom, a gas-

driven boiler can also cover the heat demand. On the other 

hand, a compression chiller that satisfies a cooling demand can 

regenerate the storage with its exhaust heat. An additional 

cooling unit can alternatively fulfill the cooling demand. 

The COPs of both plants vary with their inlet temperature, 

which is reflected as the storage temperature itself. The heat 

demand is very high in winter, whereas summer season is 

dominated by cooling demand. The question is how to control 

the storage temperature throughout the year.  

 
Fig. 11. Scheme of the ESOM with a seasonal heat storage and 

temperature dependencies (Case 4). 

Even if the model is kept simple, the temperature-dependent 

COP introduces bilinearity into the problem and leads to a non-

convex nonlinear optimization problem. That significantly 

increases its complexity and computational time. The most 

important bilinear equations are caused by the 𝑖 enthalpy flows 

in every energy balance (with 𝑐𝑝 being constant) and each of 

the both COP-dependencies with 𝛼 being a constant 

temperature correction factor. Storage mass 𝑚 and heat 

capacity 𝑐𝑝 are also assumed to be constant. 

�̇�𝑖 = �̇�𝑖 ∙ 𝑐𝑝 ∙ ∆𝑇𝑖 (10) 

∆𝑈 = 𝑚𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∙ 𝑐𝑝 ∙ (𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 𝑇𝑟𝑒𝑓) (11) 

 ∆𝑈 = ∆�̇�𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + ∆�̇�𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (12) 

𝑃𝑒𝑙,𝑗 = 𝐶𝑂𝑃𝑗 ∙ ∆�̇�𝑗 (13) 

𝐶𝑂𝑃𝑗 = 𝐶𝑂𝑃𝑗,𝑛𝑜𝑚 + 𝛼 ∙ (𝑇𝑖𝑛,𝑗 − 𝑇𝑖𝑛,𝑛𝑜𝑚) (14) 

In contrary to the other cases, even a coarse downsampling up 

to 168 h cannot solve the simplified stage to gap zero, but 

remains at gap values between 5 and 8 %. A quite reasonable 

gap of around 10 % is reached even in short calculation times, 

e.g., of 10 minutes. 

Even if we could not generate a reference solution from the 

year-coupled original problem, the algorithm can still compare 

the different boundary conditions concerning the absolute 

value of the objective function. Figure 10 gives an overview 

of the results and the main aspects are summarized:  

 With a downsampling of 24 h and a rolling horizon of 

48 or 72 h, calculation times of less than 100 min can 
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Fig. 10. Computation time vs. objective function results for the two-stage algorithm with varying parameters (Case 4). 
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be reached to find a feasible solution. The shortest 

calculation times are reached with a downsampling of 

8 h, and a rolling horizon of 32 h. For example, part 

loads were not modeled in this simple model. 

 The objective function values and filling levels do not 

differ significantly.  

 In this case, small tolerances are recommended for 

the transfer variables in the boundary conditions 

because most cases with 0 tolerance include time 

steps for which no solution was found.  

 Although in this case the binary relaxation provides 

advantages, we would not recommend it respecting 

the experiences of the other use cases.  

Even if the model is not very sophisticated (few plants, no heat 

transfer laws, no part load behavior or runtime conditions), the 

MIQCP takes much more computation time due to the 

temperature dependency.  

The optimal plant behavior is not only influenced by the 

energy prices but subsequently also by the temperature-

dependent COPs. Three differently efficient heat pumps are 

compared for illustration (the compression chiller remains 

unchanged). The algorithm is applied to each heat pump 

configuration. Figure 12 shows the results of the storage 

temperatures: The higher the nominal COP, the colder the 

storage gets in the summer. The highly efficient heat pump can 

operate economically even with a low driving temperature, 

whereas the low efficient heat pump requires the storage to 

keep a higher temperature and hence lowers the full load hours 

of both compression chiller and heat pump by about 19 % resp. 

26 %.     

 
Fig. 12. Influence of nominal COPs on the seasonal storage 

temperature (Case 4). 

4. RESULTS AND DISCUSSION 

For all use cases, the two-stage algorithm demonstrates 

promising results, yielding solutions close to optimal while 

also achieving significant reductions in computation time 

(from 15 to 90 %). In instances where the reference solution 

fails to solve entirely (e.g., due to memory constraints with 

Gurobi), a feasible solution may still be attained, although 

without certainty regarding its proximity to the optimum. 

Generally, the selection of downsampling rates and horizon 

windows requires careful consideration: while coarse 

downsampling accelerates the solution of the first stage, 

ensuring compliance with boundary conditions in the second 

stage may require more time. An overview about the achieved 

computation time saving vs. objective function losses shows 

Figure 13, where two of the most appropriate parameter 

settings where chosen. With a too high resolution, the 

computation time for Case 3 with the seasonal storage in 

combination with a daily storage may exceed the reference 

time. Given the absence of a reference for the MIQCP seasonal 

storage in Case 4, a direct comparison is not possible. 

However, obtaining a plausible and feasible solution in 

approximately 16 minutes is a promising outcome. The 

consistency of the similar storage charging results across 

different algorithm settings is also promising. 

 

Fig. 13. Comparison of effectiveness of the two-stage algorithm. 

Binary relaxation yields unsatisfactory results in this study. 

While the first stage solves rapidly even without 

downsampling, the second stage entails long computation 

times. It is important to note that we did not explore context-

specific relaxation methods. There are likely opportunities for 

improvement by treating specific descriptions for which 

binary variables are intended differently (e.g., piecewise linear 

characteristics, minimal part loads or to flow direction 

decisions), for more details see Özbeg  (2022). In cases where 

downsampling is impossible (e.g., due to critical importance 

of peak power capabilities or peak power prices), revisiting 

this method may be warranted. 

In this work, a highly capable commercial solver was utilized, 

allowing even the reference solution to be solved in a 

reasonable amount of time. However, if using open-source 

solvers, the parameters found here would need to be adjusted. 

The pure solution times were taken into account in this study. 

When utilized within a comprehensive program, other factors 

such as data handling and LP creation will inevitably come 

into play. Moreover, it is worth noting the advantage of 

managing smaller MILP files, particularly in scenarios where 

memory resources may be limited. 

The downsampling process itself can be reconsidered: 

Currently, equidistant integral averaging is applied, but a more 

intelligent segmentation of the time series could be 

implemented, focusing on a higher resolution at important data 

points while preserving the chronological order, as discussed 
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by Kotzur et al. (2018a). This approach could provide a means

to address issues related to peak loads or power pricing better.

5. CONCLUSIONS

Though the models considered here are not extensively

complex (to allow a comparison with the reference solution),

they nevertheless quickly escalate in complexity with the

addition of a few more binary variables or constraints. At this

point, year-round coupling can become unfeasible,

necessitating the application of multi-stage methods.

Our aim was to develop a highly generic method capable of

solving a variety of year-round coupled models within

acceptable computation times, yielding feasible solutions.

While it is possible to fine-tune each individual model with

parameters, we believe that these results allow us to offer a

general solution for MILP models in this domain. A coarser

and faster solution could be achieved with a downsampling

rate of 7 h and a rolling horizon of 28 h, whereas a better

solution could be achieved with a downsampling rate of 4 h

and a rolling horizon of 24 h. However, expressing this

generality for the MIQCP case is more challenging: Here, it is

advisable to examine the results of the first stage and assess

their plausibility with engineering insight. Nonetheless, by

doing so, very good results were achieved in this case as well.

In this work, we only addressed operational optimization

problems. The method can easily be adapted to questions

combined with design optimization as well when considering

the aforementioned issue of peak levelling.

The formulation of MILP models is well-established in

research and application, but there is room for further

refinement in formulating MIQCPs to enhance their

efficiency.
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