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Abstract: Nonlinearities become essential in various systems when the operating area widens.
The linear models are special cases for narrow areas. The behaviour is often asymmetric and
can become gradually steeper or flatter depending on the case. These nonlinear effects can be
analysed from data distributions for chosen operating areas. Further extensions require recursive
analysis. The widely used Gaussian distribution is seldom valid for a wide area. The variable
specific scaling can be presented with two second order polynomial defined by five parameters
interpreted as the operating point and four corner points of the feasible range. These parameters
define the shape factors which may require adjusting to fill the only requirement that the
functions need to be monotonously increasing. Alternative constraints provide good solutions
for combining expert knowledge with the data-based analysis. If the nonlinear behaviour is
analysed correctly, only linear interactions are needed in the models. As the analysis is based on
the same methodology, different applications can be combined by using appropriate process data.
The smooth operation and high quality of products is the main goal of all these applications,
and this can be achieved by combining these indicators with process control in the same way as
it has been one for smaller indicators used in condition monitoring and process control. Different
parts of the methodology have been tested in versatile applications. The main benefit is that
the same structures can be used in various applications since the scaling functions take care of
linking to the nonlinear real world.
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1. INTRODUCTION

Pieces of the informative and reliable datasets are selected
in such a way that the data may contain measurement sets
from several experiment periods. The multiple-experiment
sets and selected data periods must be handled appropri-
ately, especially in dynamic modelling. Feedback effects,
narrow operating areas and unknown disturbances cause
problems in modelling. Designed experiments are needed
if the data material is not sufficient for modelling (Hinkel-
mann and Kempthorne, 2008). In industrial applications,
the primary goal is to extract the maximum amount of
unbiased information from as few (costly) observations as
possible.

Normalisation or scaling of the data is needed for mea-
surements with considerably different magnitudes. Widely
used min-max normalisation matches the values between
the minimum and maximum to the range [0, 1]. The
operating point cj is fixed in z-score,

pj =
xj − cj
∆cj

. (1)

which is calculated about the arithmetic mean, cj = xj ,
by using the standard deviation of the variable ∆cj = σj ,
transforms the values to a distribution with mean of 0 and
standard deviation 1. The arithmetic means and standard
deviations are optimal for normal distributions.

Data distributions should be taken into account in esti-
mating the centre point cj and developing the scaling
functions. The geometric mean and harmonic mean are
useful when the sample is distributed log-normal or heavily
skewed. The median and trimmed mean are two measures
that are resistant (robust) to outliers. The trimmed mean
ignores a small percentage of the highest and lowest values
of a sample when determining the centre of the sample.
Scaling with themedian andmedian absolute deviation, i.e.
cj = median(xj) and ∆cj = median(|xj −median(xj)|),
provides a solution, which is insensitive to outliers and the
points in the extreme tails of the distribution. Decimal
scaling, where the values are scaled by 10log10 max (xj),
suits for cases where the ranges of the variables vary by
a logarithmic factor. Minimum and maximum values are
very sensitive to outliers.

The outliers, which are unusually large disturbances
caused for example by temporary sensor or transmitter
failures, should be removed from the data. This can be
done by examining more thoroughly the data correspond-
ing to the unusually large residual values. An observation is
often considered as an outlier if the absolute value |pj | ob-
tained by (1) is greater than 3. The Joliffe method has been
introduced to detect observations that do not confirm with
the correlation structure of the data (Fortuna et al., 2007;
Warne et al., 2004). A survey of outlier detection methods
is reported in (Englund and Verikas, 2005). As statistical
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inspection of process data tend to remove peaks which
can carry precious information about system dynamics,
all available information, including expert knowledge and
input-output relationships, should be used (Fortuna et al.,
2007).

Nonlinear activation functions, log-sigmoid and hyperbolic
tangent, are used to generate the neuron outputs from the
sum of the weighted inputs and the bias. These functions
have been modified to improve the normalisation of the
matching scores in multimodal biometric systems (Jain
et al., 2005; Snelick et al., 2005). The log-sigmoid function,
(1+ exp(−2pj))

−1, can be used for nonlinear scaling from
the z-score values pj to the range [0, 1]. The double sigmoid
function extends this with different linear characteristics
in the intervals [cj − ∆c−j , cj ] and [cj , cj + ∆c+j ]. The

operating point cj and the edges ∆c−j and ∆c+j are tuned.
The sigmoid function is related to the hyperbolic tangent
tanh( 12 pj), which scales to the range [−1, 1]. The functions
introduced by Snelick et al. (2005) are based on the scaling
of the min-max normalised values with two functions,
which are quadratic, logistic and combined linear and
quadratic: the inflection point is in the range [0, 1].

The clustering algorithms can be used for compressing
large datasets for modelling: the cluster centres will replace
the corresponding datapoints. Interpolation is needed if
measurements are not frequent enough or if the sampling
period is not constant, e.g. various laboratory measure-
ments are based on samples taken infrequently compared
to the on-line measurements. In practice, some measure-
ments are missing because of failures in sensors or in data
acquisition. These values are either reported as missing
or recognised as erroneous values. Missing data can be re-
placed by using imputation with constants, e.g. the feature
or class mean (Enders, 2010). Outliers are handled in the
same way but with extra care as their difference from the
acceptable values can be fairly small. For large data sets,
missing values are simply left out, since the imputation
may bias the data. Multiple solutions based on clustering
or model-based correction form a basis for iteration.

Quality control systems are developed

• to make quality control more effective and closer to
real time,

• to identify calibration, measurement and communi-
cation errors as close to the observation source as
possible,

• to focus on automatic quality control algorithms
development,

• to develop a comprehensive flagging system to indi-
cate data quality level,

• to make it easier for data users to identify suspicious
and erroneous data, and to highlight corrected values.

Numerous methods are used real-time and non real-time
for the spatial and temporal checks of meteorological data
(Vejen et al., 2002).

Nonlinear effects can be presented with various functions
but the large systems become highly complex combina-
tions of special modules. In fuzzy set systems, the mean-
ings of the variables are shown with a set of membership
functions and the interactions between labels are handled
with fuzzy rules.

This paper focus on nonlinearity analysis to find unified
solutions for modelling and control applications (Section
2). Proposed parametric methodologies are compared with
several statistical distributions (Section 3). The method-
ologies open new possibilities for different types of ap-
plications discussed in Section 5. Conclusions and future
research are presented in Section 6.

2. NONLINEARITY ANALYSIS

The nonlinearity analysis is based on the data distributions
in the operating area of the (sub)system. Data values
are transformed to dimensionless scaled values, also called
linguistic values, are set to be within a real-valued interval
[-2,2]. The basic scaling approach presented in (Juuso,
2004) has been improved later: a new constraint handling
was introduced in (Juuso, 2009), and a new skewness based
methodology was presented for signal processing in (Juuso
and Lahdelma, 2010).

The generalised data-driven analysis extends solutions
with dimensionless features and indicators. The resulting
nonlinear scaling functions are compact solutions for vari-
able specific nonlinearity handling.

2.1 Fuzzy systems

The origin in fuzzy set systems is seen variable specific
feasible ranges which are defined by membership functions.
Membership functions for finer partitions can be generated
with the scaling functions (Juuso et al., 1993). The support
area is defined by the minimum and maximum values of
the variable, i.e. the support area is [min (xj),max (xj)]
for each variable j, j = 1, . . . ,m. The central tendency
value, cj , divides the support area into two parts, and the
core area is defined by the central tendency values of the
lower and the upper part, (cl)j and (ch)j , correspondingly.
This means that the core area of the variable j defined by
[(cl)j , (ch)j ] is within the support area.

In early applications, the corner points were extracted
from existing rule-based fuzzy systems or defined manu-
ally. The fuzzy labels were understood as membership lo-
cations corresponding values of the membership definitions
within the range [-2,2].

2.2 Data-driven analysis

All the parameters are defined together in the data-
driven approach. The analysis of the corner points and the
centre point were earlier based on the arithmetic means or
medians of the corresponding data sets (Juuso, 2004).

The nonlinearity analysis has been later extended to
generalised norms defined by

||τMp
j ||p = (τMp

j )
1/p = [

1

N

N∑
i=1

(xj)
p
i ]

1/p, (2)

where p ̸= 0, is calculated from N values of a sample, τ is
the sample time. With a real-valued order p ∈ ℜ this norm
can be used as a central tendency value if ||τMp

j ||p ∈ ℜ, i.e.
xj > 0 when p < 0, and xj ≥ 0 when p > 0. The norm (2)
is calculated about the origin, and it combines two trends:
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a strong increase caused by the power p and a decrease
with the power 1/p. All the norms have same dimensions
as xj . The norm (2) is a Hölder mean, also known as the
power mean. The generalised norm for absolute values |xj |
was introduced for signal analysis in (Lahdelma and Juuso,
2008a).

For variables with only negative values, the norm is the
opposite of the norm obtained for the absolute values.
If a variable has both positive and negative values, each
norm is an average of two norms obtained where the data
sets are made positive and negative by subtracting a value
xL < min((xj)) and a value xH > max(xj)), respectively.
(Juuso, 2011b)

The generalised norm values increase with increasing or-
der, i.e.

(τMp
j )

1/p ≤ (τMq
j )

1/q, (3)

if p < q. The increase is monotonous if all the signals
are not equal. The arithmetic mean, the harmonic mean
and the root-mean-square (rms) are special cases where
the order p is 1, -1 and 2, respectively. Norms from
the minimum to the maximum corresponding the orders
−∞ ≤ p < ∞ are presented by (2), i.e. the definition
includes the lp norms defined for 1 ≤ p < ∞. The
geometric mean is obtain from (2) when the order p → 0.

The computation of the norms can be divided into the
computation of equal sized sub-blocks, i.e. the norm for
several samples can be obtained as the norm of the norms
of the individual samples:

||KsτMp
j ||p = { 1

Ks

Ks∑
i=1

[(τMp
j )

1/p
i ]p}1/p (4)

whereKs is the number of samples {xj}Ni=1. In automation
and data collection systems, the sub-blocks are normally
used for arithmetic mean (p = 1).

2.3 Dimensionless features

Distributions of the data can be analysed with dimension-
less features obtained by normalising the moments Mk

j ,
for example by standard deviation σj :

γk =
τMk

j

σk
j

=
1

Nσk
j

N∑
i=1

[(xj)i − cj ]
k, (5)

where the moment Mk
j is obtained about some central

value, usually arithmetic mean. Variance σ2
j is the second

moment M2
j . The feature γ3 is called the coefficient of

skewness, or briefly skewness, and the feature γ4 as the
coefficient of kurtosis. The skewness is a measure of
asymmetry: γ3 = 0 for a symmetric distribution. If
γ3 > 0, the skewness is called positive skewness and the
distribution has a long tail to the right, and vice versa if
γ3 < 0. The kurtosis is a measure of the concentration of
the distribution near its mean. The generalised moment
for absolute values |xj | was introduced for signal analysis
in (Lahdelma and Juuso, 2008b).

The normalised moments (5) are generalised by using the
generalised norm (2) as the central value. The standard

deviation σj , which is calculated about the origin, is used
to obtain a dimensionless feature. Juuso and Lahdelma
(2010) introduced a new approach based on using the
generalised skewness γp

3 for defining the central tendency
value and the core area. The central tendency value is
chosen by the point where the skewness changes from
positive to negative, i.e. γp

3 = 0. Then the data set is
divided into two parts: a lower part and an upper part.

The same analysis is done for these two data sets. The
estimates of the corner points, (cl)j and (ch)j , are the
points where γp

3 = 0 for the lower and upper data sets,
respectively. Since the search of these points is performed
by using the order of the moment, the resulting orders
(pl)j , (p0)j and (ph)j are good estimates when additional
data sets are used. The norm values can be recursively
updated with (4), and a new search for the orders is done
only if the values change considerably (Juuso, 2011b).

In practical applications, the data points do not always
cover the whole area of operation, e.g. only the close
neighbourhood of the normal operation point may be
covered, or we would like to extend the model of upper
part later to the lower part. Only one part may be in use
in fault diagnosis. Expert knowledge is used in extending
the feasible range or selecting the methodologies.

Process data often contains outliers, which must be re-
moved before generating the feasible area, because the
procedure described above is sensitive to them. This is the
idea in medians and trimmed means, which are used for the
data samples containing outliers. A good estimate for the
support area can be obtained with the generalised norms
(2) with large negative and large positive orders since these
features are less sensitive to the outliers than the minimum
and maximum values. Discarding values at the high and
low end can be used together with the generalised norms
if there are obvious outliers. Trimming does not need to
be the same for the low and high values.

The operating area of each variable is defined by a feasible
range represented with a trapezoidal membership function
whose corner points are min (xj), (cl)j , (ch)j and max (xj).
Warnings and alarms can be generated directly from the
degrees of membership of the complement.

2.4 Nonlinear scaling functions

A nonlinear scaling function is defined as a (nonlinear)
mapping of variable values inside its range to a range
[−2, 2], denoted as linguistic range. It more or less de-
scribes the distribution of variable values over its range
which includes the normal operation in the range [−1, 1]
and the areas with warnings and alarms. The values Xj

are called linguistic values since the scaling idea originates
from the fuzzy set systems: values -2, -1, 0, 1 and 2 can be
associated to the linguistic labels, e.g.

{very low, low, normal, high, very high} (6)

are defined with membership functions The number of
membership functions is not limited to five: the values
between these integers correspond to finer partitions of the
fuzzy set system. The early applications of the linguistic
equations used only integer values (Juuso, 1999).
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In present systems, membership definitions are used in a
continuous form consisting of two second order polynomi-
als:

xj = f−
j (Xj), Xj ∈ [−2, 0),

xj = f+
j (Xj), Xj ∈ [0, 2].

(7)

The functions should be monotonous, increasing functions
in order to result in realisable systems. The lower part
function is defined by values corresponding linguistic levels
-2, -1 and 0, and the upper part function by values
corresponding linguistic levels 0, 1 and 2. The upper and
lower parts should overlap at the linguistic value 0. (Juuso,
2004)

Five parameters define the coefficients of the second order
polynomials,

f−
j (Xj) = a−j X

2
j + b−j Xj + cj , Xj ∈ [−2, 0),

f+
j (Xj) = a+j X

2
j + b+j Xj + cj , Xj ∈ [0, 2].

(8)

The scaling function is asymmetrical when the coefficients
in the upper and lower part are different. The centre point,
cj , defines the operating point. Four linear equations are
needed for solving the other coefficients:

4a−j − 2b−j + cj = min (xj),

a−j − b−j + cj = (cl)j ,

a+j + b+j + cj = (ch)j ,

4a+j + 2b+j + cj = max (xj).

(9)

In order to keep the functions monotonous and increasing,
the derivatives of functions f−

j and f+
j should always be

positive (Fig. 1). As a second order polynomial has either a
minimum or a maximum point, this requirement is fulfilled
only if these points are outside the ranges (−2, 0) and (0, 2)
for functions f−

j and f+
j , respectively. The derivatives,

D−
j = 2 a−j Xj + b−j , Xj ∈ [−2, 0),

D+
j = 2 a+j Xj + b+j , Xj ∈ [0, 2],

(10)

are corrected to positive in the areas (−2, 0) and (0, 2), re-
spectively, by changing the coefficients of the polynomials
(Juuso, 2004). The membership definitions are continuous
functions but derivatives can have discontinuities in the
centre point.

The functions are monotonous and increasing if the ratios,

α−
j =

(cl)j −min (xj)

cj − (cl)j
,

α+
j =

max (xj)− (ch)j
(ch)j − cj

,
(11)

are both in the range [ 13 , 3], see (Juuso, 2009). If
needed, the ratios are corrected by modifying the core
[(cl)j , (ch)j ] and/or the support [min (xj),max (xj)]. Er-
rors are checked independently for f−

j and f+
j : each error

can always be corrected either by moving the corner of
the core or the support In some cases, good results can
also be obtained by moving cj in the range defined by If
these constraints allow a non-empty range, the maximum
of the lower limits and the minimum of the upper limit are
chosen to define the limits for continuous definitions (Fig.
2).
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Fig. 1. Feasible shapes of the membership definitions
fj and corresponding derivatives Dj : coefficients ad-
justed with the core (left) and the support (right).
Derivatives are presented in three groups: (1) de-
creasing and increasing, (2) linear and linear, and (3)
increasing and decreasing. (Juuso, 2009).

The coefficients of the polynomials can be represented by

a−j =
1

2
(1− α−

j ) ∆c−j ,

b−j =
1

2
(3− α−

j ) ∆c−j ,

a+j =
1

2
(α+

j − 1) ∆c+j ,

b+j =
1

2
(3− α+

j ) ∆c+j ,

(12)

where ∆c−j = cj−(cl)j and ∆c+j = (ch)j−cj . Membership

definitions may contain linear parts if some coefficients α−
j

or α+
j equals to one (Fig. 1).
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Continuous derivative

Fig. 2. Membership definitions in the core: coefficients
adjusted with the centre point cj .

The centre point is not known if the feasible range is
defined manually. It can be calculated by defuzzifying the
feasible range with the centre of gravity: For strongly
asymmetrical feasible ranges, this value may be outside
the core (Juuso, 2004). The requirement can be fulfilled
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by modifying the corner points. Additional constraints can
be taken into account, e.g. a good solution can be to use a
locally linear function in the neighbourhood of the centre
point. Then a continuous derivative is chosen at the centre
point. This can be achieved by modifying the centre point
or the corner points of the feasible range. There can be
several acceptable modifications, for which the ratios (11)
remain in the range [ 13 , 3].

Monotonously increasing membership definitions can be
constructed by adjusting the centre point cj , the core
[(cl)j , (ch)j ] and the support [min (xj), max (xj)]. An
easier way for manual approach was introduced in (Juuso,
2009): first define the centre point cj , then the core by
choosing the ratios (11) from the range [ 13 , 3], and finally
calculate the support [min (xj), max (xj)]. The norms are
used together with the generalised skewness in the data-
driven approach to define the centre and corner points.
The ratios (11), which are checked in all data-driven
cases, are also guiding the manual construction of the
membership definitions.

For each variable, the membership definitions are config-
ured with five parameters, which can be presented with
three consistent sets. The working point (centre point) cj
belongs to all these sets, where the other parameters are:

• the corner points {min (xj), (cl)j , (ch)j ,max (xj)} are
good for visualisation;

• the parameters {α−
j , ∆c−j , α

+
j , ∆c+j } suit for tuning;

• the coefficients {a−j , b−j , a+j , b+j } are used in the
calculations.

The upper and lower parts of the scaling functions can
be convex or concave independently. Also, simplified func-
tions can be used: a linear membership definition needs
only two parameters: cj and bj = b+j = b−j or ∆cj =

∆c+j = ∆c−j , since α+
j = α−

j = 1 and a+j = a−j = 0;

an asymmetrical linear definition has ∆c+j ̸= ∆c−j and

b+j ̸= b−j . Local linear functions defined by are used if
appropriate.

3. STATISTICAL DISTRIBUTIONS

In data-based analysis, the nonlinear scaling functions
are based on data samples. The parameters obtained
by statistical analysis depend strongly on the statistical
distribution. The functions extend the normalisation and
scaling solutions from the symmetric special case defined
by the z-score (1), where cj = ||τM1

j ||1 and ∆cj = σj =

||τM2
j ||2, i.e. generalised norms (2) with orders p = 1

and p = 2, respectively. Other special cases, geometric
mean (p = 0) and harmonic mean (p = −1), are used in
defining the centre of the sample for log-normal or heavily
skewed data. Trimmed or truncated means, medians and
median absolute deviations are generally recommended
for the cases with outliers. The generalised norms can
also be trimmed by discarding values at the high and
low end. For heavily skewed data, the discarding limits
are defined by the norms with high positive and negative
orders, respectively.

In the skewness based approach presented above, all the
parameters are analysed from the data. As expected, the cj
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Fig. 4. Orders of the norms (Weibull, λW = 2).

is close to the arithmetic mean (p = 1) when the sample is
taken from a normal distribution. Normalisation with the
z-score is the first phase since the core is symmetrical, i.e.
∆c+j = ∆c−j = 1

2 ||τM2
j ||2. The resulting shape factors

are equal, α−
j = α+

j = 3, and the support is [cj −
2σj , cj + 2σj ]. The size of the random sample effects on
the analysis: the centre point is correctly obtained from
a small sample (N = 1000), and also the core is fairly
accurate. The limits of the support area and the shape
factors require larger samples, e.g. 10000 points provides
fairly good estimate, but 50000 points are required for
highly accurate estimates. Only a slight adjustment of the
core or preferably the support is needed for these samples.

The scaling functions become asymmetrical about the
centre cj in random samples of Poisson and Weibull
distributions. Orders of the norms, {(pl)j , (p0)j , (ph)j},
and shape factors, {α−

j , α+
j }, show strong variations in

these asymmetrical distributions (Figs. 3 - 6). For the
Poisson distribution, the order (p0)j is almost constant,
1.68 ± 0.03 when the expectation number λP ≥ 2, and
(p0)j = 1.73 when λP = 1 (Fig. 3). For the Weibull
distribution, the order (p0)j decreases smoothly from 2.8
to −1.85 when the shape parameter increases from one to
ten (Fig. 4). The order range [(cl)j , (ch)j ] increases for
both: from [1, 4.34] to [−1.15, 6.05] for Poisson and from
[2.2, 3.2] to [−4.75, 6.15] for Weibull distributions whose
scale parameter λW = 3.
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Poisson distributions have the same shape factor α+
j as the

normal distributions, but the shape factor α−
j increases

from 0.6 to almost 3 when the expectation number λP

increases from one to ten (Fig. 5). The core also is
asymmetrical: ∆c+j > ∆c−j . The difference is high, when

λP is small, and becomes negligible, when λP > 10 (Fig.
5). Weibull distributions are very asymmetrical when the
shape parameter κ is small: ∆c+j ≫ ∆c−j , α−

j ≈ 1
3

and α+
j = 3, when κ = 0.5 (Fig. 6). This exponential

distribution becomes more symmetrical when κ increases,
but becomes again asymmetrical for higher κ values (Fig.
6). The Poisson distributions have only integer values,
which causes irregular changes in orders (cl)j and α−

j

obtained from random samples.

For all these distributions, the core area becomes wider
than in the previous approaches where the mean or the
median were used. Higher sensitivity around the centre
point was already detected in (Juuso and Lahdelma,
2010). High positive and negative orders are used in
selecting the limits for the core area if small deviations
are not important. Asymmetrical scaling functions can
be obtained by analysing the upper and the lower part
separately.

The scaling functions consisting of two second order poly-
nomials operate well for versatile distributions, and vari-
ous sigmoid functions can be interpreted as special cases.
The centre points, which define the operating point of

the model, can be defined manually. For the error, the
derivative of error, the sum of error, the original error and
the change of control, the centre point is zero. Also, the
core and support areas can be defined manually for any
membership definition. Monotonous increase needs to be
checked for the manually defined functions.

The shape factors define the type of the feasible range:
narrow and wide cores correspond to high and low shape
factors, respectively. Also, an asymmetric core, i.e. the
core can be narrow on one side of the centre point cj
and wide on the other side, is allowed. The support can
depend strongly on the number of points as seen in the
comparisons of different statistical distributions. Expert
knowledge and physical limitations can be used in selecting
the shape factors α−

j and α+
j . The factors can be set

to three if the data set is fairly limited and there is no
specific additional knowledge. Linear scaling functions, i.e.
α−
j = α+

j = 1 are used if the material is very limited.

4. NATURAL LANGUAGE

The values within the range [-2, 2] obtained by the nonlin-
ear scaling are also called as linguistic values since they can
be interpreted with linguistic terms. The linguistic terms
can be interpreted as fuzzy numbers: for example values
-2, -1, 0, 1 and 2 can be associated to the linguistic labels
(6) which can be made sharper or wider with powering
modifiers ’extremely’, ‘very’, ‘more or less’ and ‘roughly’,
and then processed with the conjunction, disjunction and
negation. Applications can have specific labels to make
understanding easier, and the number of labels are not
limited to these examples. The labels are only for infor-
mation, the calculations are done with the numbers.

5. TYPES OF APPLICATIONS

The nonlinear scaling approach expands the operating ar-
eas in many applications. The following areas are examples
where compact solutions have been developed. Severity
criteria are checked with the scaled values are the same
for all variables. Indicators, models and control can be
combined in applications (Juuso, 2018).

Intelligent indicators are the first applications of the com-
binations of the generalised norms and nonlinear scaling.
Even single norms or indicators can replace and outper-
form large rule-based systems. Several indicators can be
combined as a weighted sum. The severity criteria are the
same for these combined indicators as well. (Juuso and
Lahdelma, 2010)

Statistical process control (SPC) is an important area in
utilizing data. The generalised SPC introduced in (Juuso,
2015) expands the SPC from Gaussian to non-Gaussian
data sets. The analysis methods are suitable for a large
set of statistical distributions. Categorical information
can be studied with the same approach by using manual
definitions, which means that also mixed cases can be
handled. The limits can be updated in short run SPC
since they are defined by the nonlinear scaling approach.
The limits can even change gradually. The GSPC does not
need any interruptions and even recursive approaches are
possible. In these systems, the control levels are defined
uniformly for the scaled values.
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Modelling and simulation is extended to nonlinear systems
by combining the nonlinear scaling and linear equations.
The models can be adapted to different operating condi-
tions by changing the parameters of the scaling functions
(Juuso, 2020).

Intelligent LE controllers can use linear controller struc-
tures in nonlinear systems, The controllers can be adapted
to different operating conditions by changing the parame-
ters of the scaling functions. (Juuso, 2011b)

Temporal analysis provides indirect measurements and
detection of trend episodes for high level control. For any
variable, a trend index is calculated as a difference of
the means of the scaled values obtained for a short and
a long time period, respectively. The index value is in
the linguistic range [−2, 2] representing the strength of
both decrease and increase of the variable xj . The same
analysis can be used for detecting temporal changes of any
indicators (Juuso, 2011a).

6. CONCLUSIONS AND FUTURE RESEARCH

This paper summarizes the main parts of the nonlinear
scaling approach. Highly nonlinear asymmetrical data can
be utilized in appropriate way. There is no need to assume
Gaussian data outside its operating area. Different parts
of the methodology has been tested in versatile applica-
tions. The main benefit is the analysis of the nonlinear
behaviour. Different applications can extend the use of
linear structures by enhancing them with the nonlinear
scaling to take care about linking to the nonlinear real
world. Future research continues this with more detailed
analysis of applicability.
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