
GPU acceleration of average gradient
method for solving partial differential

equations

Touko Puro ∗ Aarne Pohjonen ∗∗

∗ Aalto University, Department of Computer Science, Konemiehentie
2, 02150 Espoo (e-mail: touko.puro@aalto.fi).

∗∗ University of Oulu, Materials and mechanical engineering
department, Pentti Kaiteran Katu 1 (e-mail: aarne.pohjonen@oulu.fi)

Abstract: Previously presented method of calculating local average gradients for solving
partial differential equations (PDEs) is enhanced by accelerating it with graphics processing
units (GPUs) and combining a previous technique of interpolating between grid points in the
calculation of the gradients instead of using interpolation to create a denser grid.
For accelerating the calculation with GPUs, we have ported the original naive Matlab
implementation to C++ and CUDA, and after optimizing the code we observe a speedup
factors more than two thousand, which is largely due to the original code not being optimized.

Keywords: GPU acceleration, scientific computing, numerical methods, partial differential
equations, deformable grids

1. INTRODUCTION

To intelligently control the formation of material mi-
crostructure in sub-micrometer level, modern computa-
tional tools are needed. The full field models, such as
the level set Hallberg (2013), phase field Steinbach and
Salama (2023) and cellular automata Seppälä et al. (2023),
offer capabilities to explicitly simulate the microstructure
formation Pohjonen (2023). Inclusion of the relevant phys-
ical phenomena and their numerical modelling requires the
solution of partial differential equations (PDEs).

There are several approaches to obtaining the numerical
solution, such as the finite elements, finite differences,
finite volume etc. The finite element method is perhaps the
most advanced, but it’s implementation is not straightfor-
ward. Finite differences in the standard implementation is
limited to structured grids, which grids would be capable
of solving the equations in Eulerian framework. There are
approaches to simulate solid mechanics in the Eulerian
meshes and they could provide certain advantages such as
capability of simulating material distortions without the
need of re-meshing, since the material flow through the
node points can be simulated. However, more often solid
mechanics simulations involving deformations are based in
Lagrangian approach, which naturally describes the flow
of the material and the material point dependent field
variables Basaran (2008).

To simulate the movement of material points within the
Lagrangian approach, and to solve the equations in the
deformed grid, a triangular two-grid method Pohjonen
(2024a) was previously proposed which achieved this pur-
pose in a way which is easy to implement.

In the current work we present enhancements made to
the previous version as well as the parallelization of the
solution with multi-GPU methods. These improvements
pave the way for numerically efficient models that can
incorporate the most important physical phenomena af-
fecting microstructure.

2. METHODOLOGY

2.1 Parallelization

For accelerating our PDE solver we have chosen to use MPI
(Message Passing Interface) for communication between
processes and CUDA for GPU acceleration. The technolo-
gies were chosen since previous codes Pekkilä et al. (2022)
built on top of MPI and CUDA have been able to achieve
impressive performance for multi-GPU stencil computa-
tions, with our PDE solver belonging to this family of
iterative stencil loop (ISL) -algorithms Li and Song (2004).
MPI and CUDA also work well together with MPI having
CUDA-aware implementations where the user can send
data directly from and to GPU memory. This is convenient
for the user and it also provides optimal performance for
the user by routing the GPU data through the fastest
interconnect Potluri et al. (2013) and pipelining the GPU
data movement with the communication.

Furthermore technologies that do not require handwritten
kernels to offload computation to GPUs are not competi-
tive in performance, especially at large data sizes Khalilov
and Timoveev (2021).

Parallelizing an ISL-algorithm with both MPI and CUDA
is conceptually straightforward. The whole domain is split
into local subdomains such that each process will process

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

488

its own subdomain that it is responsible for updating. In
order to compute the required stencil at each grid point
the processes communicate grid points that are part of
their subdomain to each other as required by the data
dependency of the stencil. These regions of points that are
communicated to other processes are called halo regions.
Locally on each processes the incoming halo regions com-
ing from other processes are stored to regions called ghost
zones that surround the local subdomain of the process.

The amount of communication needed for a single stencil
iteration depends on the radius of the stencil. The radius
of a stencil is defined as the maximum Chebyshev distance
from the central grid point to all neighbouring grid points
that are required for calculating the stencil at the central
grid point. N iterations of a stencil of radius R requires
rectangular halo regions of width N × R for the two-
dimensional case.

GPU acceleration is also straightforward since each up-
date at a grid point is independent from updates at each
other point. For achieving close to optimal performance
for memory-bound applications the GPU acceleration be-
comes considerably more complex since it becomes im-
portant to ensure good cache reuse to alleviate the bot-
tleneck of data movement from global memory. However
we observed our application being compute bound on the
hardware used, a single RTX A2000 8GB Laptop GPU, to
benchmark against the original Matlab implementation, so
we were able to achieve relatively good performance with
quite simple kernels.

2.2 Numerical method

Here we present the implemented numerical method,
which was in its initial form first presented in Pohjonen
(2024b) as well some optimizations to the equations that
now yield the results with less total compute. The opti-
mized algorithms were discovered during implementation
work required to accelerate the code.

Each grid point pi and its surrounding neighbours can be
grouped as triplets, which can be visualized as triangles
surrounding the areas Ai shown in in Fig. 1.

Fig. 1. Each grid point pi and its surrounding gridpoints
are grouped as triplets, which form triangular regions
Ai. Each triplet defines a plane whose coefficients
yield the average gradients of these regions.

Each triplet defines a plane, where the plane coefficients
are calculated based on the field values and the positions of
the grid points. The coefficients yield the average gradient
in each of the areas Ai. The average gradient in the
whole hexagonal region, composed from the surrounding
triangles, is then obtained as the weighted average of the
gradients by using the areas of the regions as weights.

The equations for the coefficients of the planes are:

a =
(u1 − u0)y2 + (u0 − u2)y1 + (u2 − u1)y0
(x1 − x0)y2 + (x2 − x0)y1 + (x2 − x1)y0

(1)

and

b =
(u1 − u0)x2 + (u0 − u2)x1 + (u2 − u1)x0

(x1 − x0)y2 + (x2 − x0)y1 + (x2 − x1)y0
(2)

The equations for the areas of the triangles are:

Ai =
|(pi − p0)× (pi+1 − p0)|

2
(3)

And finally the equations for the partial derivatives are:

∂xu|p0 =

∑i=5
i=0 Aiai∑i=5
i=0 Ai

(4)

∂yu|p0 =

∑i=5
i=0 Aibi∑i=5
i=0 Ai

(5)

.

The first simplification is that since the weighting coeffi-
cients are the ratios of the areas of the triangles to the the
sum of all of the areas the divisor of 2 cancels out in and
for the weights we can use the equation:

Wi = |(pi − p0)× (pi+1 − p0)|, (6)

where the divisor is now the sum of the weights.
Another simplification is that if one calculates the coeffi-
cients of the planes with the center grid point being the
origin we have x0 = y0 = u0 = 0, which allows us to
simplify some terms in the formula for the coefficients:

a =
u1y2 − u2y1
x1y2 − x2y1

(7)

b = −u1x2 − u2x1

x1y2 − x2y1
, (8)

where x1, x2, y1, y2 are coordinates in the coordinate frame
where the center grid point is the origin.

Now importantly, if one chooses the grid points in a
way that the cross product responding to the weights is
positive, the denominator terms for the equations for a
and b are equal to the weights. This means that one can
skip division and multiplication by the cross products since
they cancel out. With this insight the new formula for the
partial derivatives becomes:

∂xu|p0 =

∑i=5
i=0 ai∑i=5
i=0 Wi

(9)

∂yu|p0 =

∑i=5
i=0 bi∑i=5
i=0 Wi

, (10)

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

489

where ai and bi are computed without the division with the
cross product. Having to do less division gives a noticeable
performance improvement, since division is a more costly
operation than multiplication and addition.

2.3 Interpolation with plane equations

Previously a two-grid approach where a denser grid was
created out of the original grid by interpolating between
each grid point, was presented Pohjonen (2024a). During
each timestep the interpolated denser grid is used to cal-
culate the partial derivatives and the results are copied
back to the coarse grid, from which a new dense grid is
created for the next timestep. The two-grid interpolation
method was found to help with instability that was caused
near maxima and minima of the grid values. However the
two-grid interpolation method comes at a cost namely that
one has four as many grid points to compute the partial
derivatives compared to the original coarse grid.

This motivated investigation to whether the added accu-
racy of the two-grid interpolation grid could be achieved
without the need for a coarser grid. Since the interpolation
points always lie between points in the original grid one
can calculate the partial derivative values that would be
at the interpolation points using the coarser mesh. One
creates the interpolated points and triangles locally but
they are only used locally to calculate the partial deriva-
tives and are not stored anywhere. A visualization of the
formed triangles can be seen in Fig. 2.

Fig. 2. The interpolated triangles drawn out. Triangles
from A0 − A5 follow the same indexing scheme as in
the non-interpolated scheme. The rest of the triangles
are indexed in reverse clockwise order. p0 − p6 are
the original grid points with i1 − i6 being the inter-
polated points where the first partial derivatives are
calculated.

Now as an example ∂xu|i1 would be the sum of the
coefficients coming from planes: A0, A5, A6, A7, A8 and A9.
One can similarly also calculate the first order partial
derivatives at the interpolated points i2, i3, i4, i5, i6. This
approach works, but it adds significantly more compute
since now there are four times more planes to calculate.

Thus an important observation is that all of the added
planes are copies of the innermost six planes, which are
copies of the original planes between the non-interpolated
points. This is because a linearly interpolated point be-
tween two points on a plane stays on the same plane as
the original points.

Similarly the area of the interpolated triangles is exactly
one fourth of the original triangles so one can use the
original areas to calculate the weights since the common
factor anyway cancels out. Taking all of this into account
the equation for partial derivatives at the interpolated
points simplifies, after cancelling another common factor
of three out, to:

∂xu|ij+1 =
aj + aj+1

Wj +Wj+1
(11)

∂yu|ij+1 =
bj + bj+1

Wj +Wi+j
, (12)

where the indexing j ∈ {0, 1, 2, 3, 4, 5} forms a periodic
sequence such that a6 = a0, b6 = b0 and W6 = W0.

Thus one can calculate the first order partial derivatives
at the interpolated points with a modest number of added
compute. This is a worthwhile trade-off for being able to
use a four times smaller grid and eight times smaller grid in
two- and three- dimensions respectively. Also, since second
order derivatives are only needed at the original coarse grid
points one can now calculate second order partial deriva-
tives during the same iteration in which the first order par-
tial derivatives are calculated. This effectively halves the
amount of needed memory traffic since the coordinates and
field derivatives do not have to be refetched from global
memory but can be directly acccessed from local memory,
either being stored in registers or cache. One also saves
compute since the second order partial derivatives are not
unnecessarily computed at the interpolation points.

For computing the second order partial derivatives one
would in general need the interpolated coordinates because
the innermost planes are not anymore the same since they
depend on the values at the interpolated points. However,
one can show that using the original coordinates gives
exactly half of the correct results so instead of calculating
the interpolated points one can simply scale up the result
computed with the original grid points by a factor of two.

2.4 Rectangular grid

The numerical method was originally implemented using
a regular rectangular grid Pohjonen (2024b). The regions
and grid points for a rectangular grid are visualized in
Fig. 3. The equations are exactly the same except now
we calculate and add up plane coefficients for four planes
instead of six.

The motivation for using a hexagonal grid came from the
fact that with a hexagonal grid each interpolation point
can be uniquely identified with linear interpolation be-
tween two grid points. This is not possible for a rectangular

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

490

Fig. 3. Visualization of the local regions and grid points
for a rectangular grid.

grid and requires for example bilinear interpolation of the
surrounding four points for some interpolation points.

The rectangular grid has the advantages that it requires
less computation and results in simpler memory access
patterns. The rectangular grid requires less compute sim-
ply because it requires calculating plane coefficients for
four planes instead of the six required for the hexagonal
one. The memory access pattern of the hexagonal grid is
more complex since technically it requires the use of two
different stencils or the union of these stencils and the
stencil used depends on the central grid point, whereas
the rectangular grid requires only a single stencil that is
used for all grid points. A union of two stencils contains all
neighbouring grid points that are included in either stencil.

The hexagonal grid requires two stencils since as an
example the x-index offset to get the upper left grid point
p6 of the local hexagon depends on the y-index of the
center point. Of course our treatment of x- and y -indexes
are arbitrary and one can interchange how they are used.
The rectangular grid requires only a single stencil since
the offsets from index of the central grid point are always
the same. Visualizations of the different used stencils can
be seen in Fig. 4.

For a code specifically designed for our numerical approach
the added complexity of which stencil to use does not really
matter but it makes it harder to implement the numerical
method optimally in GPU-computing libraries like Pekkilä
(2019), where it would otherwise be simple.

Importantly, the communication for both meshes is the
same since the union of the two stencils for the hexagonal
mesh and the single stencil for rectangular mesh both have
a radius of one.

The new improved algorithm motivated us to test could it
be used with the original rectangular grid to achieve the
improved accuracy of the two-grid approach.

The new algorithm works exactly the same as for the
hexagonal grid. Due to cancellation of common terms the

Fig. 4. Visualizations of the different stencils. The updated
grid point is located at the origin. The upper stencils
are the two stencils required for the hexagonal grid,
the lower left stencil their union and the lower right
stencil the one required for a rectangular mesh.

equations (11) and (12) can be used to compute the partial
derivatives at the interpolated points j ∈ 0, 1, 2, 3, where
the periodic sequence naturally is now that a4 = a3, b4 =
b3 and W4 = W3. The interpolated points and regions can
be see in Fig. 5

Fig. 5. Interpolated points i1−4 and interpolated regions
drawn out.

Even though the equations are the same for using the
rectangular grid the method is subtly different in the sense
that now the computed gradient values at the interpolated
points are different between neighbouring grid points,
whereas they are the same with the hexagonal grid. We
did not find this discrepancy causing problems when using
the new algorithm with the rectangular grid.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

491

2.5 Reusing partial results

Since on the tested hardware the GPU kernels were found
to be compute bound we investigated approaches that can
reuse partially computed results. The observation that
the planes A2, A3 at grid point x, y are the same as the
planes A0, A5 at x + 1, y motivated the idea of a single
thread computing multiple contiguous results in the x-
direction. Thus we implemented a kernel where each nx, ny
thread block computes nx × BlockSize, ny results with
thread i, j calculating the results at points i, j, i+1, j..., i+
BlockSize, j, where BlockSize is a tunable parameter. In
order to avoid non-contiguous memory accesses between
threads in a warp, the whole thread block first loads all
needed nx×BlockSize+1, ny+1 input values into shared
memory in a contiguous manner from which threads can
access the values in a non-contiguous pattern without a
performance penalty. Similar to the planes the interpola-
tion point i4 at grid point x, y corresponds to i1 at the
grid point x+ 1, y so the computed gradient values at the
interpolation point can be also reused. A visualization of
the algorithm for a 2×2 thread block with BlockSize = 4
can be seen in Fig. 6.

Fig. 6. Visualization of the algorithm for a 2 × 2 thread
block with BlockSize = 4. Blue regions are those
that are only loaded and read from shared memory.
Green, yellow, red and orange points are computed by
threads (0, 0),(0, 1),(1, 0) and (1, 1) respectively.

One could also reuse partial results also in the y-direction,
but we leave answering whether reusing partial results in
both dimensions increases performance to future work.

2.6 Communication

For optimizing the communication of the halo regions
between the processes we use the important technique of
overlapping computation and communication. MPI sup-
ports an asynchronous API where one can immediately
continue execution after the sending of a message has
started and wait later for the arrival of the message. This
allows us to compute the update at those grid points
that do not depend on the ghost zones at the same time
as the ghost zones are being received. Finally when the
ghost zones are received we can compute the update at
the outer regions that depend on the ghost zones. This
overlaps most of the computation with the communication,
which makes the runtime of a grid update be max(W,C)
instead of the naive W + C, where W is the time needed
for the computation and C is the time needed for the
communication. In Fig. 7 one can see a visualization of
the different subdomain regions of a stencil of radius one.

Our approach for overlapping communication and compu-
tation is equivalent to the one in Pekkilä et al. (2022),

Fig. 7. Regions of a single stencil update for a stencil
of radius one. Grid points in green do not depend
on the blue ghost zones coming from other processes
and their computation can be overlapped with the
communication of the blue ghost zones. The yellow
outer regions depend on the blue ghost zones and their
update has to wait for the arrival of the ghost zones.

except we have a two dimensional simulation instead of
a three dimensional one. For performing the original al-
gorithm that requires two iterations of the grid to com-
pute second-order derivatives is also suboptimal from the
viewpoint of communication, because it needs halo regions
of width two since the grid is iterated twice for a single
update. Being able to calculate the update in a single
iteration means we can use halo regions of width one,
which halves the amount of communication needed.

3. RESULTS

3.1 Comparison to analytical solution

To make sure the accelerated version and the new al-
gorithm have the same accuracy as the original code
we tested the numerical solution similarly to Pohjonen
(2024b) and Pohjonen (2024a).

More specifically we solved the diffusion equation (13)
from an initial point concentration and compared it to
the analytical solution (14) MIT (2024).

∂tu = D(∂xxu+ ∂yyu) (13)

u(x, y, t) =
M

4πtD
exp(− (x− xc)

2 + (y − yc)
2

4Dt
), (14)

with xc, yc being the origin of the initial point concentra-
tion. Values of D = 1 and M = 0.1 were used.

To make sure the code works on a deformed grid we ran-
domly perturbed each grid points coordinates by 0.16(r−

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

492

0.5)·a, 0.16(r−0.5)·h, where r is a random number between
0 and 1 and a is the x-distance between neighbouring grid
points and h is the y-distance between neighbouring grid
points. Comparison of the analytical solution to the result
of the simulation can be seen in Fig. 8.

Fig. 8. Simulation result compared to the analytical result.
The plotted values are a one-dimensional slice along
the x-dimension in the middle of the grid.

We also tested the new algorithm using the rectangular
grid and found it to give as precise answers as the hexag-
onal grid for this simple test case.

3.2 Benchmarks

We present timings of the different GPU kernels in Fig. 9.
The benchmarks were performed on a single RTX A2000

Fig. 9. Timings of different kernels. Integration time is
measured as the log seconds taken to integrate 200
timesteps and grid size is measured as the log amount
of grid points.

8GB Laptop GPU for easy comparison of our accelerated
implementation with the original one.

We observe that the difference between computing with
the coarse and dense grid is close to the factor of four one
would assume from the grid sizes. A benefit of using the
smaller grid and not having to store the calculated first
order derivatives means that one needs less memory for
the simulation and one is able to simulate larger grids.
As an example in the benchmark results one can simulate
64 · 160 × 64 · 160 grid with the coarse grid but with the
dense grid one runs out of memory. Also there is quite
a constant performance increase of ten percent between

the coarse grid kernel and the coarse grid kernel reusing
partial results. BlockSize of 11 was found to give optimal
performance on the tested hardware.
We do not present detailed timings for the original Matlab
implementation but see it adequate to mention that the
best benchmark results for the Matlab implementation
were when it was more than 2000 times slower. Thus it is
clear the the performance increase made possible with the
accelerated version makes significantly larger simulations
possible. We also do not compare the performance of the
GPU implementation against the CPU implementation
because we have spent considerably more effort on opti-
mizing the GPU implementation, which would make the
comparison unfair and misleading.

3.3 Scaling

Not only is the single GPU performance important, but it
is important that we get good scaling when increasing the
amount of GPUs we use. The theoretical optimal scaling
is that when we increase the number of devices by a factor
of N we get a speedup factor of N also.

The reported scaling benchmarks were performed on the
CSC supercomputer Puhti, which has four Xeon Gold 6230
Nvidia V100 -GPUs per node with peak bandwidth of 200
Gpbs between nodes.

For ISL-algorithms the scaling starts to deviate from the
theoretical optimum when the network bandwidth be-
comes the performance limiter Pekkilä et al. (2022). Since
the amount of needed compute scales as O(N2) and the
amount of needed communication scales as O(N) for a
subdomain of size N × N , we can get good scaling by
keeping the subdomain sizes large enough.

Strong scaling, meaning how well does the code scale when
we add more GPUs to a simulation of fixed size, results of
the simulation can be seen in Fig. 10. From the figure one

Fig. 10. Strong scaling of 60 ·160×60 ·160 grid. Integration
time is measured as the time taken to integrate 200
timesteps relative to the time taken on a single GPU.

can see that we have good strong scaling up to 8 GPUs,
with the required time going down linearly as expected.

Weak scaling, meaning how well does the code scale when
we add more GPUs with a fixed subdomain size, results
of the simulation can be seen in Fig. 11. From the plot

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

493

one can see that we get good weak scaling with the time
required staying effectively constant.

Fig. 11. Weak scaling for subdomains of size 60 · 160× 60 ·
160. Integration time is measured as the time taken
to integrate 200 timesteps relative to the time taken
on a single GPU.

4. CONCLUSIONS

We have presented optimizations of the original code
and the used numerical method from the viewpoints of
GPU acceleration, algorithmic improvements and how the
method is mathematically formulated. Together these op-
timizations achieve an impressive speedup factor of over
2000. This enables more accurate simulations of material
microstructure, for example simulations of three dimen-
sional cases, that were previously too prohibitive due to
the needed additional computation required. Additionally
our implementation scales well to multiple GPUs which
enables larger simulations, where more computational re-
sources are needed.

We also investigated the use of a simpler rectangular
mesh which would be easier to use and would require less
compute. The accuracy of the rectangular mesh has to be
studied in harder test cases.

In future studies we plan to conduct larger simulations of
material microstructure. After the original implementation
work we have reimplemented the algorithm and the solver
in the aforementioned GPU-computing library Astaroth.

Because in the new implementation the numerical algo-
rithm is more separated from the rest of code it is more
suitable to be the reference implementation. The reference
implementation, which can be accessed from this link, also
includes preliminary 3d implementation of the method
that will be expanded on future publications.

ACKNOWLEDGEMENTS

We acknowledge Matthias Rheinhardt for useful discus-
sions that clarified the tradeoffs of using a Lagrangian
compared to an Eulerian mesh for material simulations
involving displacements. Aarne Pohjonen acknowledges fi-
nancial support from the AID4GREENEST project (AI
powered characterization and modelling for green steel
technology) funded by Horizon Europe Research and In-
novation Program, Grant Agreement No. 101091912

REFERENCES

Basaran, S. (2008). Lagrangian and Eulerian descriptions
in solid mechanics and their numerical solutions in hpk
framework. Ph.D. thesis, University of Kansas.

Hallberg, H. (2013). A modified level set approach
to 2D modeling of dynamic recrystallization. Mod-
elling and Simulation in Materials Science and En-
gineering, 21(8), 085012. doi:10.1088/0965-0393/

21/8/085012. doi:10.1088/ 0965-0393/21/8/085012.
Khalilov, M. and Timoveev, A. (2021). Performance anal-

ysis of CUDA, OpenACC and OpenMP programming
models on TESLA V100 GPU. In Journal of Physics:
Conference Series, volume 1740, 012056. IOP Publish-
ing.

Li, Z. and Song, Y. (2004). Automatic tiling of iterative
stencil loops. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 26(6), 975–1028.

MIT (2024). Lecture Notes on diffusion, accessed
10.6.2024, Massachusets Institute of Technology.
URL http://web.mit.edu/1.061/www/dream/THREE/
THREETHEORY.PDF.

Pekkilä, J. (2019). Astaroth: A library for stencil com-
putations on graphics processing units. URL https://
aaltodoc.aalto.fi/server/api/core/bitstreams/
c73ad7b3-47a2-4c23-b802-7721366fb961/content.

Pekkilä, J., Väisälä, M.S., Käpylä, M.J., Rheinhardt, M.,
and Lappi, O. (2022). Scalable communication for high-
order stencil computations using CUDA-aware MPI.
Parallel Computing, 111, 102904.

Pohjonen, A. (2023). Full field model describing
phase front propagation, transformation strains,
chemical partitioning, and diffusion in solid–solid phase
transformations. Advanced Theory and Simulations,
6(3), 2200771. doi:10.1002/adts.202200771. URL
https://onlinelibrary.wiley.com/doi/abs/10.
1002/adts.202200771.

Pohjonen, A. (2024a). Application of two-grid interpo-
lation to enhance average gradient method for solving
partial differential equations. The Journal of Physics:
Conference series, 2701(2), 97–111.

Pohjonen, A. (2024b). Solving partial differential equa-
tions in deformed grids by estimating local average gra-
dients with planes. The Journal of Physics: Conference
series, 2701(2), 97–111.

Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D.,
and Panda, D.K. (2013). Efficient inter-node MPI
communication using GPUDirect RDMA for InfiniBand
clusters with NVIDIA GPUs. In 2013 42nd Interna-
tional Conference on Parallel Processing, 80–89. IEEE.

Seppälä, O., Pohjonen, A., Mendon, V., Podor, R.,
Singh, H., and Larkiola, J. (2023). In-situ SEM
characterization and numerical mod-elling of
bainite formation and impingement of a
medium- carbon, low-alloy steel. Materials &
Design, 230, 111956. doi:10.1016/j.matdes.2023.
111956. URL https://www.sciencedirect.com/
science/article/pii/S0264127523003714.

Steinbach, I. and Salama, H. (2023). Lectures on phase
field. Springer Nature.

science/article/pii/S0264127523003714.
Steinbach, I. and Salama, H. (2023). Lectures on phase
field. Springer Nature.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

494

https://bitbucket.org/jpekkila/astaroth/src/424ace54884158a3dda8d708b52b79a4e9d0c892/?at=planes_reference_implementation
https://dx.doi.org/10.1088/0965-0393/21/8/085012
https://dx.doi.org/10.1088/0965-0393/21/8/085012
http://web.mit.edu/1.061/www/dream/THREE/THREETHEORY.PDF
http://web.mit.edu/1.061/www/dream/THREE/THREETHEORY.PDF
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202200771
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202200771
https://www.sciencedirect.com/science/article/pii/S0264127523003714
https://www.sciencedirect.com/science/article/pii/S0264127523003714

	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Material Acquisition Stage
	2.2 Manufacturing Stage
	2.3 End of life Stage
	2.4 Transportation and shipping
	2.5 Model and calculations

	3. RESULTS AND DISCUSSION
	4. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Introduction
	Geometries and correlations
	Optimization procedure
	CFD model
	Governing equations
	Geometry and discretization
	Boundary conditions
	Post-processing
	Thermophysical properties
	Grid refinement study

	Results and Discussion
	Results from optimisation
	Results from CFD simulations

	Conclusions
	Introduction
	Numerical methods
	Thermodynamic optimization
	Geometric optimization
	Transient modelling

	Results
	Thermodynamic results
	Geometric results
	Transient results

	Conclusion
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	3. VALIDATION OF THE NEW MECHANISM
	3.1 IDT and LBV simulations
	3.2 Simulation of RCCI NG/diesel fueled engines
	3.4 3-D CFD simulation
	3.5 Quasi-dimensional simulation

	4. CONCLUSION
	REFERENCES
	1. INTRODUCTION
	2. MULTISEGMENT WELL MODEL
	3. FLOW CONTROL TECHNOLOGY
	3.1 Inflow control device (ICD)
	3.2 Autonomous inflow control device (AICD)
	3.3 Autonomous inflow control valve (AICV)

	4. RESERVOIR MODEL IN ECLIPSE
	4.1 Reservoir fluid and rock properties
	4.2 Reservoir grid
	4.3 Reservoir permeability
	4.4 Initial conditions

	5. WELL MODEL IN OLGA
	5.1 Compositional settings
	5.3 Flow component settings

	6. RESULTS AND DISCUSSION
	6.1 Oil production
	6.2 Water production
	6.3 Total liquid production
	6.4 Water cut variations
	6.5 Fluid saturations
	6.6 Chocking Effects of FCDs

	7. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Data collection
	2.2 Attention mechanism
	2.3 Training methodology

	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	REFERENCES
	Appendix A: Confusion matrix and training/validation loss curves for Vanilla CNN, CNN, and FF transformer
	Introduction
	Methodology
	Parallelization
	Numerical method
	Interpolation with plane equations
	Rectangular grid
	Reusing partial results
	Communication

	Results
	Comparison to analytical solution
	Benchmarks
	Scaling

	Conclusion
	Acknowledgements

