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Abstract
Chemical absorption of carbon dioxide (CO2) using amine
solution is considered as the readiest technology avail-
able for capturing CO2 gas from industrial processes.
The well-known amine for this process is 2-aminoethanol
(MEA) which is normally mixed with water to a typical
concentration of 30 wt%. MEA degrades over time pro-
ducing non-reactive chemicals such as 2-oxazolidinone
(OZD) due to exposure to impurities and high process
temperature. It is thus important to find a suitable method
for OZD qualification and quantification. In this work, we
approach this challenge by means of Raman spectroscopy
and multivariate data analysis. We started by collecting
Raman spectra of 40 OZD samples and applying Principal
Component Analysis to study these samples.
Keywords: multivariate data analysis, MEA, Raman spec-
troscopy, CO2 capture, degradation

1 Introduction
Due to the economic development and the subsequent in-
crease in world population, the global demand for energy
will continue to rise in the following decades. The depen-
dence on fossil fuels, the primary source of energy, emit-
ting copious amount of CO2, is the main cause of global
warming. Even if large investments are underway to de-
carbonise the world energy production, renewable elec-
tricity may not be suitable for certain applications, such as
the cement, iron and steel, and chemical sectors.

Carbon capture and storage (CCS) and its ability to
avoid CO2 emissions at their source, represents a solution
in the fight against climate change. Among all the differ-
ent alternatives, post-combustion capture by using amine-
based solvent is considered to be the most advanced tech-
nology (Sexton and Rochelle, 2011). This process relies
on the ability of the amine solution to chemically reacts
with CO2 in the flue gas. The best absorbents are the ones
with high net cyclic capacity, fast reaction with CO2, low
heat of reaction, high chemical stability, low vapor pres-
sure and minimally corrosive (Hartono et al., 2017). Of

the many solvents tested, 2-aminoethanol (MEA) is the
most used due to its good operational properties and rela-
tively low price. The solvent used in operating plants sim-
ply consists of water and amines, whose concentration is
usually made based on operating experience (typical con-
centration range values goes from 12% wt to a maximum
of 32% wt (Kohl and Nielsen, 1997)).

A typical chemical absorption process for CO2 capture
plant is shown in Figure 1.

Figure 1. Schematic of a chemical absorption process for CO2
capture.

After a preliminary purification from NOX , SOX ,
and particulate matter, the flue gas enters the absorber.
Through contact with MEA solvent, part of CO2 in the
flue gas is absorbed into amine solution, forming a weakly
bonded and quite stable compound, carbamate. The
scrubbed gas is then washed with water to remove the
solvent and discharged into the atmosphere. Then, the
rich-loading solvent (with absorbed CO2) passed through
a cross-heat exchanger and pumped up to the head of the
stripper. In the stripper, the high temperature and pressure
generated by a reboiler cause the carbamate to dissociate
back to MEA and CO2. The obtained product stream with
high CO2 purity is conveyed to compression for trans-
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portation to storage sites. At the bottom of the stripper,
the high temperature lean-loading is conveyed to a heat
exchanger to decrease the temperature of the lean-loading
solution before entering the absorber again.

The entire process chemistry is complex, and the two
main reactions taking place in the absorber and the stripper
are:

CO2 absorption: 2R – NH2 + CO2 −−→ R – NH3
+ +

R – NH – COO–

MEA regeneration: R – NH – COO– + R – NH3
+ Heat−−→

CO2 + 2R – NH2

For simplicity, MEA is expressed by R-NH2, where R
stands for OH-CH2-CH2. The first reaction shows that
only half a mole of CO2 is absorbed per mole of MEA,
leading to the formation of carbamate. In the second equa-
tion, under the application of heat, the carbamate dissoci-
ates to give back CO2 and amine sorbent.

However, there is a main problem associated with this
process, which is degradation of the solvent caused by
heat exposure and impurities in the exhaust gas. This leads
to foaming, fouling, increased viscosity, corrosion and for-
mation of different degradation compounds that are unre-
active towards CO2. In the case of MEA, one of the main
degradation products is 2-oxazolidinone (OZD), a hetero-
cyclic five-membered ring organic compound, which for-
mation pathway is shown in Figure 2.

Figure 2. Oxazolidinones formation (R1, R2: H, alkyle) (Lep-
aumier et al., 2009).

The formation of OZD starts with a reaction between
MEA and CO2, which leads to the formation of carbamate
complex, as shown in the first equation above. Elimination
of a water molecule from the carbamate complex during a
ring closure reaction yields an OZD molecule. The forma-
tion of OZD is a problem because it is unstable and will
react giving other degradation products (namely HEEDA,
HEIA, AEHEIA, BHEI (Gouedard et al., 2012)) that must
be purged from the system to prevent their build-up.

For this purpose, it is essential to find a procedure for
the conversion of the molecule to its precursor amine.
This requires a preliminary identification and quantifica-
tion step.

Raman spectroscopy is a valuable technique for quali-
tative and quantitative analyses, since there is a relation-
ship between intensity of the Raman band, chemical infor-
mation and the concentration of a sample being analyzed
(Larkin, 2011). Raman spectrums are generally plotted
as intensity against Raman Shift (or wavenumber). Vi-
brations of functional groups of a molecule appear in a
Raman spectrum at characteristic Raman shift, which is
similar for all molecules containing the same functional
group.

Chemometric multivariate analysis is an advanced sta-
tistical method that can be used to extract this huge infor-
mation by building specific model for specific chemical
species.

The approach in this paper started with the analysis
of OZD samples at different concentrations using Raman
spectrometer. Principal component analysis (PCA) was
then performed on these samples to check for any outliers,
relevant peaks for OZD, and monitor changes in the OZD
at different concentrations.

2 Materials & Methods
2.1 Sample preparation and Raman analysis
The first big part of this work consisted of sample prepa-
ration. Stock solution of OZD was prepared dissolving 2-
Oxazolidinone (Sigma-Aldrich, purity 98%) in Milli-Q ®

water (18.2 MΩ ·cm at 25°C). Samples of increasing con-
centration from 5 to 815 mM were then prepared by dilut-
ing the stock solution in ditilled water.

The amount of OZD and water needed were weighted
using a Mettler-Toledo MS 105 balance.

The Raman scans were taken using a Kaiser Raman
Rxn2 analyzer of 785 nm laser wavelength, 400 mW laser
power and 150-3425 cm−1 spectral range. In a typical ex-
periment, a vial containing OZD solution was placed in-
side a black sample holder to avoid light disturbance and
the top part of the sample holder was also covered with
aluminum foil to further reduce any possible disturbance
from fluorescence of external light sources. A fiber-optic
immersion probe (optic of ¼ inch) from Kaiser Optical
Systems Inc. was used for the measurement. To avoid
contamination, the probe was first washed with deion-
ized water followed by acetone before each measurement
to remove any possible impurities/leftovers on the probe
tip. The Raman probe was kept at the same depth and
same temperature (20 °C) for all the measurements to en-
sure consistency and to avoid changes of acquisition back-
ground. In order to improve sample sensitivity for off-
line analysis of each measurement, maximum laser power
(400 W) was used with exposure time of 30 seconds and
an average of six scans. iC Raman software from Kaiser
Optical Systems Inc. was used for the acquisition of the
spectra.

2.2 Principal Component Analysis (PCA)
PCA is a data simplification technique used in multivariate
statistics. The aim of the technique is to reduce the high
number of variables describing a set of data to a smaller
number of compressed variables, called Principal Compo-
nents, PCs, which describe the variation and structure of
the data. The PCs can then be plotted to visualize the re-
lationship between samples and variables through the use
of scores (which describe the relationship between obser-
vations) and loading plots (which show the relationship of
the variables) (Wold et al., 1987).

The data is seen as a matrix, called data matrix or X
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matrix, composed by n objects (samples) and p variables
(the measurement for each object) (Esbensen, 2012). This
data matrix can be represented in a Cartesian co-ordinate
system of dimension p. Considering the first variable, X1,
its entries can be plotted along a 1-dimensional axis. This
approach can be extended considering the next variable,
X2, resulting in a 2-dimensional plot and so on, until all
p variables are covered. This p-dimensional co-ordinate
system is the variable space.

To better understand, it is assumed an X matrix with n
objects and 3 variables. Its variable space will be com-
posed by 3 axes: one for each variable. And for each
object in the variable space, its x-value will be plotted,
meaning that all the objects can be as a point in the vari-
able space. When all the points are plotted, the result is
a swarm of points. It is then possible to recognize a lin-
ear behaviour, which can be described by a line that lies
along the direction of maximum variance in the data set,
called the first Principal Component, PC1. Further PCs
can be plotted; the second principal component will lie
along the direction of the second largest variance, and it
will be orthogonal to the first PC. The third PC will be or-
thogonal to both PC1 and PC2, lying along the direction
of the third largest variance and so on for the subsequent
PCs. This PCs system will constitute a new coordinate
system, where each PC will represent successively smaller
and smaller variances. The PCs are uncorrelated with each
other since they are mutually orthogonal.

There are two main parameters used in PCA: loadings
and scores. The loadings are coefficient of linear combi-
nation for each PC, namely pka, where k is the index for
p variables and a is the index for principal component di-
rection coefficients. All the loadings constitute a matrix,
P, which expresses the transformation between the ini-
tial variable space and the new space formed by the PCs.
These loading vectors, namely the columns in P, are or-
thogonal. In synthesis, loadings describe the relationship
between the initial p variables and the PCs.

The score is the distance between the object and its pro-
jection into the PC, and it is called score for object i, ti1, if
it refers to PC1. The projection of object i onto PC2 will
give the score ti2, and so on. The projected object i will
correspond to a point in the new co-ordinate system, an
A-dimensional surface. Each object will thus have its own
set of scores in this dimensionality-reduced subspace. The
NIPALS (Nonlinear Iterative Partial Least Squares) algo-
rithm (Wold, 1966) is one of the several methods used
to find the score and loading vectors. In this study, NI-
PALS algorithm was applied when using PLS toolbox
with MATLAB ® software.

3 Results & Discussion
3.1 Pre-processing of raw spectra
Raw spectra from 40 different OZD samples in water at
different concentration are shown in Figure 3.

The raw spectra contain important information on

Figure 3. Raman raw data of the 40 analysed samples.

chemical fingerprints of the samples but also noise from
background and instrument. Pre-processing of the raw
spectra can be applied to extract useful information and
to remove offset and irrelevant signals.

The raw spectra were subjected to a baseline correc-
tion technique by applying Automatic Whittaker filter
with lambda equals to 100 and P equals to 0.001. The
Whittaker filter used is an extended version of Eilers,
2003, available in the PLS toolbox in MATLAB, where a
weighted least square method was applied to remove base-
line variations and background noise. The factor lambda
controls the curvature allowed for the baseline, while the
P factor governs the extent of asymmetry required of the
fit (Eilers, 2003).

Baseline corrected spectra of OZD samples are shown
in Figure 4. As can be seen, as the concentration of OZD
increases, the intensity values of some peaks also increase,
suggesting that OZD concentration is proportional to the
peak intensity, according to the Beer-Lambert law.

Figure 4. Baseline corrected Raman spectra of the 40 analysed
samples.

The peaks that change according to changes in the OZD
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concentration are now easily identified and their signals
and band assignments are listed in Table 1.

Observed frequency [cm−1] Vibrational mode
719 C-C stretch
928 C-C stretch
1083 C-H2 rock
1216 C-H2 twist

1333, 1261 C-H2 wag
1436 C-H2 scissor
1495 C’-N stretch; C=O stretch
1733 C=O stretch
2932 C-H2 symetric stretch
3003 C-H2 asymetric stretch

Table 1. Vibrational assignments of OZD (McDermott, 1986)
(C’= carbonyl carbon).

All the band assignments were referenced to earlier
work from McDermott (1986) from the spectra of γ-
butyrolactone and 2-pyrrolidinones, which are cyclic es-
ters, like 2-oxazolidinone.

There are also strong peaks at wavelengths 418, 577,
and 750 cm−1 that do not change according to the changes
in OZD concentration and these peaks can be assigned to
the noise from the Raman instrument. These peaks were
also seen previously in earlier publication from Jinadasa
(2019).

Concerning water, its characteristic peaks are cut off
from the range of interest, since it usually shows bands be-
low 300 cm−1 corresponding to the hydrogen bond bend-
ing and stretching motions and strong bands above 3000
cm−1 typical of the O-H stretching region; the low in-
tensity peak at 1650 cm−1 arises from the intramolecular
bending motion (Franks, 1972).

3.2 Initial PCA Analysis
Using the whole spectra as a starting point, the pre-
processed OZD spectra were then subjected to initial PCA
analysis. Figure 5 illustrates the cumulative variance of
the PCA model. PC1 is defined as the first principal com-
ponent which relates to the maximum variance of the data,
while PC2 is the second principal component which corre-
sponds to the second largest variance. The number of PCs
corresponds to the number of orthogonal variables in the
spectral data set. As can be seen, PC1 explains 92.58%
of the total variance, while PC2 describes an additional
6.88%. These two PCs make up 99.46% of the variation
in the model, suggesting that they are probably sufficient
to determine the most important variables for the descrip-
tion of OZD samples.

In Figure 6, a score plot of PC1 versus PC2 for the pre-
processed OZD spectra is shown. The dotted circle rep-
resents a 95% confidence level. As can be seen, one of
the samples is outside the area of interest meaning that
this sample is most likely an outlier. By checking the raw
spectra of OZD samples, this sample is confirmed to be an

Figure 5. Cumulated percentage variation explained.

outlier and it is probably coming from an error when using
the Raman instrument. The outlier was thus removed.

The pre-processed OZD spectra as shown in Figure 4
also show some noise in the region of >3000 cm−1 Raman
shift and this region was also removed in the next PCA
analysis.

Figure 6. PCA analysis for preprocessed Raman data, first score
plot of PC1 vs PC2.

The loading plot for PC 1 for the PCA model is shown
in Figure 7. As mentioned by Wold et al. (1987), loading
plots define what a principal component represents. The
higher the loading value, the higher the contribution of the
variable to the PC. In the case of this work, these plots
will represent OZD concentrations in the samples. Figure
7 indicates that significant contribution comes from peaks
at 418, 577, and 750 cm−1. These peaks however do not
correspond to OZD or water, and thus most likely coming
from the instrument. The fact that these peaks have higher
loading values even though they do not really represent
the actual components in the samples necessitates further
correction to the PCA model. These peaks were therefore
excluded from the model.
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Figure 7. Loading plot for PC1.

3.3 Optimized PCA with Variable Selection
Based on earlier considerations, the PCA model was re-
calibrated, and Figure 8 displays the new cumulative vari-
ance of the model. PCA model was recalibrated by select-
ing the variable range of OZD to optimize the PC1, which
mainly describes the OZD concentration variation.

Figure 8. Cumulated percentage variation for different principal
components.

The new score plot is shown in Figure 9. Based on the
figure, PC1 and PC2 account for 99.78 and 0.17% of the
model variance, respectively. These two principal compo-
nents already make up 99.95% of the cumulative variance
for the model suggesting that it is very likely that the OZD
changes are sufficiently described by PC1.

With the elimination of outliers, all samples are now at
95% confidence level. Values of PC1 are always positive,
whilst values of PC2 change from positive to negative for
all the samples. The samples also show a linear trend sug-
gesting that there is a linear trend between Raman inten-
sity and OZD concentration and that the PCA model can
be used to classify OZD.

The loading plot for PC1 is illustrated in Figure 10.
According to the plot, the sharp OZD peak at 928 cm−1

Figure 9. PCA analysis for preprocessed Raman data, score plot
of PC1 vs PC2 after removal of variables below 650 cm−1.

gives the highest contribution to PC1. This indicates that
this peak can be used as an indicator for the presence
or changes in OZD concentration in a sample. Other
peaks that positively contribute to PC1 loading plot in-
clude 3003, 2933, 1736, 1496, and 720 cm−1 and these
peaks are observed as relevant functional group peaks for
OZD, as shown in Table 1.

Figure 10. Loading plot for PC1 with variable selection.

4 Conclusion
This paper aims to analyze Raman spectra of 2-
oxazolidinone samples by using Principal Component
Analysis to detect relevant peaks, monitor changes in the
samples at different concentrations and remove outliers.

After spectra acquisition and a preliminary baseline
correction, the data were subjected to PCA analysis. The
first two PCs, which made up 99.46% of the variation in
the model, were considered for the analysis. After that,
outlier removal was performed and the PCA model was
recalibrated by selecting relevant variable range of OZD
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to optimize PC1, which describes the OZD concentration
variation. With these considerations, the two PCs made
up 99.95% of the cumulative variance, an increase of 0.49
percentage point.

Finally, according to the loading plot for PC1, it was
found out that the sharp OZD peak at 928 cm−1 gave the
highest contribution to PC1, indicating that this peak can
be used as an indicator for the presence or changes in OZD
concentration in a sample.

By using PCA, we have shown in this work that we can
systematically identify with precision any outliers, rele-
vant peaks for OZD, and monitor changes in the OZD at
different concentrations.
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