
Characterization of the Flow (Breakup) Regimes in a Twin-Fluid 

Atomizer based on Nozzle Vibrations and Multivariate Analysis 
Raghav Sikka1     Maths Halstensen2     Joachim Lundberg1 

1 Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Norway, 
Raghav.sikka@usn.no 

            2 Department of Electrical Engineering, IT and Cybernetics, University of South-Eastern Norway, Norway, 
Maths.Halstensen@usn.no 

 

 

 

 

Abstract 
In the study, a new non-intrusive approach based on 

acoustic chemometrics, which includes vibration signal 

collection using glued-on accelerometers, was assessed 

for the classification of the different flow (breakup) 

regimes spanning a whole range of fluids (water and air) 

flow rates in this twin-fluid atomizer (one-analyte 

system). This study aims to determine the flow regimes 

based on the dimensionless number (B), whose unique 

values correspond to different flow (breakup) regimes. 

The principal component analysis (PCA) was employed 

to visually classify the breakup regimes through cluster 

formation using score plots. The model prediction 

performance was studied using PLS-R, RMSEP values 

show error ranges within acceptable limit when tested 

on independent data. The present acoustic study can 

serve as a good alternative to the imaging methods 

employed for flow classification. 

Keywords: Multivariate Regression, Acoustic 

Chemometrics, Principal Component Analysis, Flow 
Regimes 

1 Introduction 

Twin-fluid atomizers have been widely used atomizers 

in various applications such as the aerospace industry, 

internal combustion engines, process industry, spray 

drying, etc. Classification of the flow regimes using a 

high-speed imaging setup is quite common, as 

mentioned in different twin-fluid studies (Choi, 1997; 

Leboucher et al., 2010). While it is a fairly convenient 

way to categorize flow regimes for a laboratory-scale 

test setup using imaging setup (Adzic et al., 2001; Li et 

al., 1999), it can be a greater concern for industrial-scale 

atomizers due to the significantly larger fluid flow rates. 

Acoustic chemometrics, thoroughly applied (Esbensen 

et al., 1999; Halstensen et al., 2000) lately has proved to 

be a decent approach for tackling fluid-related problems. 

The applications for acoustic chemometrics are 

multitude, ranging from qualitative analysis to process 

monitoring. The ambit of acoustic analysis lies in the 

fact that all flow processes comprise  

 

 

some form of energy output emission in the form of 

signals that can be tapped and analyzed. The flow in the 

nozzles gives rise to certain vibrations for a particular 

set of fluid flow rates. By recording those signals 

through a data acquisition device using sensors 

(accelerometers) and performing signal analysis, useful 

qualitative information can be extracted by multivariate 

analysis.  

To suffice the currently used imaging methods for 

flow regimes classification, an experimental setup, 

including novel twin-fluid atomizers, is investigated 

with real-time monitoring of the acoustic signal data. 

This study aims to assess the feasibility of the acoustic 

chemometrics approach for this air-assisted spray 

atomizer problem. The main objective is to determine 

the flow regimes based on the dimensionless number B, 

whose unique set of values corresponds to different flow 

(breakup) regimes. This analysis will further cater to 

whether the acoustics chemometrics approach, 

including both unsupervised learning technique (PCA) 

and supervised learning technique (PLS-R), is suitable 

for extracting valuable information through recorded 

vibration signals. 

2 Materials and Methods 

                    
 

Figure 1. Schematic of the novel atomizer attached at the 

end of the lance, along with the accelerometers (in red). 
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2.1 Experimental Method

       

Figure 2. Schematic of the experimental setup along with the acoustic chemometrics flow chart (in box). 

The experiments were carried out in a laboratory-scale 

experimental test rig in the process energy laboratory at 

the USN. The test rig consists of the lance, which is 

mounted at the traversing system, at whose end a twin-

fluid atomizer (Figure 1) with 3.0 mm orifice (throat) 

diameter for core air was attached. The sensors in the 

three-axis (x, y, and z) were glued onto the atomizer. 

The liquid (water) was flowing in an annular manner 

through a slit of 280 µm along with the high-speed air 

core with the aid of hoses and pipes attached to the lance 

(Figure 2). 

The high-speed imaging performed using the 

CMOS Photron camera SA-Z and two 250 W each 

Halogen lights from Dedocool Dedolight renders the 

different flow regimes visible at certain different fluid 

flow rates (Figure 3). Certain breakup regimes or modes 

were found at specific air-to-liquid mass ratios (ALR) 

and Weber number (We) based on liquid sheet velocity.  

ALR  is defined as: 

 

     𝐴𝐿𝑅 =
𝑚𝑎𝑖𝑟

𝑚𝑙𝑖𝑞𝑢𝑖𝑑
                                                        (1) 

 where mass flow rate in kg/hr. 

 

Weber number is defined as:  

 

    𝑊𝑒 =  
𝜌 𝑈2𝑡

𝜎
                                                                (2) 

Where 𝜌 is liquid density (1000 kg/m3), U is sheet 

velocity calculated through mass flow rate, 𝜎 is surface 

tension, and t is sheet thickness (280 µm). 

A new dimensionless number (B) (depicted in Table 

1) was employed, which is defined as: 

 

 𝐵 = 𝑊𝑒 ⋅ 𝐴𝐿𝑅                                                         (3) 

 

                
                  

Figure 3. Different breakup regimes based on different 

fluid mass flow rates. 
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Table 1. Breakup regimes and the corresponding non-dimensional number values  

Breakup Regimes B  ALR We 

Annular sheet disintegration 2.586 0.150 17.24 

Ligament type breakup 6.035 0.350 17.24 

Wavy sheet breakup 9.052 0.0428 211.2 

Pure-pulsating breakup 21.12 0.10 211.2 

Both fluid flow rates were measured and monitored 

using Coriolis flowmeters. Two air flow rates (15 kg/hr 

and 35 kg/hr) were employed as per the visualization 

study and manually operated through the pressure 

regulator. 100 kg/hr corresponds to Weber number (We) 

of 17.24, whereas 350 kg/hr corresponds to Weber 

number (We) value of 211.2. The liquid (water) flow 

rates taken were low flow rate (100 kg/hr) and high flow 

rate (350 kg/hr), which were altered through a 

frequency-based flow rate controller. The air-to-liquid 

ratio varied from 0.0428 to 0.35, depending on the 

combination of fluid flow rates as depicted in Table 1. 

At lower flow rates, annular sheet disintegration was 

visualized, whereas it reached pure-pulsating breakup 

mode at higher flow rates for both air and water. 

Ligament type breakup corresponds to high airflow rates 

& low liquid flow rates, whereas wavy sheet breakup 

corresponds to high airflow rates & low liquid flow 

rates, as mentioned in Figure 3. 

 

2.2 Acoustic chemometrics  

 

 
 

Figure 4. Block diagram of the acoustic analysis in-flow 

process from the vibration data collection. 

The name acoustic chemometrics (Esbensen et al., 

1998) implies that the information extraction from the 

data recorded in vibrational energy is measured using 

some acoustic sensors (say, accelerometers). Some 

inherent advantages related to acoustic chemometrics 

are: 

• Non-intrusive technology system  

• Real-time monitoring of signals 

• Easy sensor deployment (glued-on) 

• Relatively inexpensive technology 

• Prediction of several parameters from the same 

acoustic spectrum 

The acoustic measurements in this study were taken 

using sensors (accelerometer, which is a piezoelectric 

type 4518) from Bruel & Kjær, Denmark. Three sensors 

are utilized in the test experiments to tap the 

noise/vibration data from all three axes (x, y, and z), as 

depicted in Figure 1. The fluid flow ejected out of the 

atomizer outlet forces the atomizer a sudden backward 

blow, recorded in an electrical signal proportional to the 

vibration acceleration. A signal amplification unit, a 

data acquisition device (NI USB-6363) from National 

Instruments and a personal laptop were employed. NI 

USB-6363 data acquisition device (DAQ) was utilized 

to acquire the signal, where the signal converted from 

analog to digital. A digital signal is required for the 

signal amplification unit for further processing. The 

frequency range used for this study is (0 - 200 kHz).   

For the acoustic chemometrics signal collection and 

signal conditioning, the LabVIEW-based in-house 

created interface (Halstensen et al., 2019) was used. The 

signal processing was carried out in few steps. Firstly, 

time series of 4096 samples were recorded from the 

sensor. The time-series signal was multiplied by a 

window (Blackman Harris), which cancels the end of 

the series to avoid spectral leakage in the acoustic 

spectrum. This signal is finally transformed into the 

frequency domain using Discrete Fourier Transform 

(DFT). The Discrete Fourier Transform transforms a 

sequence of N complex numbers {xn}:= x0,x1,...,xn-1 into 

another sequence of complex numbers, {Xk}:= 

X0,X1,...,XN-1, which is defined by equation: 

 

𝑋𝑘 =  ∑ 𝑥𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑛−1
𝑛=0  𝑘 = 0, … , 𝑁 − 1               (4) 

 

A more advanced and efficient form of the DFT is 

the Fast Fourier Transform (FFT) (Ifeachor et al., 1993), 

which was implemented in the LabVIEW interface for 

fast real-time calculation. The whole in-flow acoustic 

analysis process from signal conditioning to domain 

transformation from time to frequency and then 

supervised (PLS-R) and unsupervised (PCA) 
multivariate analysis techniques are mentioned in a 

block diagram (Figure 4).   
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2.3 Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) analyses 

multivariate data by examining the common variances. 

Large multivariate data sets can be noisy and difficult to 

interpret. PCA projects mean-centred data (X) 

consisting of variables (columns) and samples (rows) 

onto a new plane. The new plane is represented by 

scores (T) and loadings (P). E is the notation of the data 

not explained by the model, the residuals, given by the 

equation: 

𝑋 = 𝑇 𝑃𝑇 + 𝐸                                                            (5) 

PCA uses an orthogonal transformation to convert 

correlated variables into few linearly uncorrelated 

variables called principal components. The method is 

called the unsupervised method due to no guidance to 

the singular value decomposition from the data. The 

nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm developed earlier (Wold et al., 1987) was used 

because of its many advantages. It works on matrices 

with moderate amounts of randomly distributed missing 

observations. The other advantage of NIPALS is that it 

is less time-consuming than Singular value 

decomposition (SVD), as the former allows defining the 

number of components to calculate. 

2.4 Partial Least Squares Regression 

 

Partial least squares regression (PLS-R) is a supervised 

method used for calibrating the predicting models, 

which is well explained in (Geladi et al., 1986). 

PLS-R is a good alternative to other regression 

techniques due to its robustness. The model parameters 

do not change much even when new calibration samples 

are taken from the population. It relies on representing 

training data for two-variable blocks X and Y, 

respectively. In the present work, the X data matrix 

contains the acoustic frequency spectra, and Y is a 

vector containing the non-dimensional number B values 

that define the breakup regimes. 

The NIPALS algorithm is the most widely used in 

the PLS regression technique. In this algorithm, PLS-R 

allows modelling both the X and Y simultaneously, 

which might raise orthogonality issues. For low 

precision data, PLS-R gives more accurate results than 

other regression methods. A simplified version of the 

NIPALS algorithm is presented in earlier studies (Ergon 

et al., 2001), where A is an optimal number of 

components. A step-wise NIPALS algorithm is 

described in some detail (Halstensen, 2020). 

In evaluating the regression model, the root mean 

squared error of prediction RMSEP offset, slope and 

correlation coefficient are commonly used. Besides  

 

 

these, visual evaluation of the relevant T-U score plots, 

loading weights plots, explained variance plots also 

provide useful information for calibrating and 

developing the prediction model. The root mean square 

is given by: 

RMSEP = 
√𝛴𝑖=1

𝑛  (�̂�𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
2

𝑛
                     (6) 

Where,  i = sample index number  

             n = total number of samples  

      RMSEP = Root Mean Squared Error of Prediction. 

 

3 Results and Discussion 

 

3.1 PCA results  

 
Figure 5. Score plot t1-t2 for both atomizer. 

 

 

Figure 6. 3-D Score plot t1-t2 for both atomizers. 
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PCA score-plots depicts how the acoustic spectrum and 

different breakup regimes are correlated based on the 

tests carried out at various flow rates. A colour indicates 

each breakup regime in the data-centred score plot. The 

score plots show a cluster of points for a particular type 

of breakup regime/mode for principal component 1. The 

score plot shows a trend in the data from low airflow 

rates on the left side (blue) to the high air flow rates on 

the right side (pink).  

The score plots were obtained with the whole 

frequency spectrum for all three sensors deployed. The 

score plots depicting two different atomizer type- 

converging and converging-diverging (CD) atomizer. 

To avoid repeatability, both converging and converging-

diverging (CD) atomizer are shown in a single score plot 

as a 2-D plot (Figure 5) and for better visualization as in 

a 3-D plot (Figure 6). The loading plot (Figure 7) shows 

that the information based on the frequencies recorded 

from sensor 2 is different from the other two sensors, 

provided that sensor 2 is located opposite to the fluid 

flow direction, which is relevant in this case. 

 

 

Figure 7. Loadings plot for all three sensors. 

 

3.2 PLS-R prediction for the breakup 

regimes 

PLS-R was employed to do model prediction based on 

the acquired acoustic spectra. The non-dimensional 

number (B) values were used as the reference values 

(Figure 8). The acoustic spectra used to calibrate the 

PLS-R model was a 240x2048 matrix containing 240 

frequency spectra for each sensor. The test set validation 

was performed for alternate data matrix values, 50 % 

(120) of the total column set. Each spectrum consisted 

of 2048 frequencies ranging from 0 to 200 kHz. The 

statistical parameters that evaluate the model prediction 

are slope and RMSEP. Both slope and RMSEP define 

the model's quality fitting the reference data; in this 

case, their value is reasonably within permissible limits.  

 

 

Figure 8. Predicted Vs. Reference (B) value. The target 

line (black) and regression line (red) are indicated. 

 

Figure 9. Residual validation variance plot. 

Based on the residual validation variance plot 

(Figure 9), six components can be fixed as optimal for 

model prediction. The same results can be plotted as 

samples taken in time (Figure 10). The green line is the 

reference line for non-dimensional number (B), and the 

blue line is the prediction line. 

         

Figure 10. Predicted and Reference (B) values for 

samples taken in time. 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118522 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

26



4 Conclusions  

To corroborate the visualization study performed for 

breakup regimes identification, the non-invasive 

acoustic/vibrations study incorporating sensors 

(accelerometer) with an appropriate signal processing 

system was performed, allowing the estimation of the 

flow breakup modes. The feasibility of this approach for 

fluid flow classification is the main objective of this 

study, rendering relevant information about the flow 

breakup regimes for various fluid flow rates. The 

acoustic measurements provide valuable insight into the 

regime classification based on a derived dimensionless 

number (B) from other fluid-based non-dimensional 

numbers. The pattern study using principal component 

analysis provides relevant information through the 

clusters formed for each breakup regime. The 

chemometric method provided sufficiently good model 

prediction with slope and RMSEP values within 

acceptability limits. The main advantage of this non-

invasive acoustic method is that it renders the 

visualization study for different breakup modes optional 

for industrial-scale atomizers for flow regime prediction 

which can be implemented on the industrial-scale setup.  
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