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Abstract
For large-scale systems, the number of possible vari-
able combinations becomes very large. Variable group-
ing means finding feasible groups of variables for mod-
elling. Systems can be divided into subsystems but even
then the number of available variables is often impracti-
cally high to be used with the data-based methods. Inter-
active variable selection and grouping by comparing the
performance of the model alternatives is a good solution
if there are not too many variables. This paper describes
possibilities of variable selection in large-scale industrial
systems. It classifies the variable selection and grouping
into four categories: knowledge-based grouping, group-
ing with data analysis, decomposition, and model-based
grouping and selection. The data analysis part consists
of correlation analysis and handling of high dimension
data with principal components. These originally linear
methodologies were extended to nonlinear systems by us-
ing the nonlinear scaling approach. Decomposition can
be realised with various clustering methods or learning
with case-based reasoning. The multimodel systems are
handled with fuzzy set systems. Numerous studies based
on linear multivariate statistical modelling have been re-
ported in literature. The methodologies approaches have
been tested in several applications: bioprocesses, contin-
uous brewing, condition monitoring, web break sensitiv-
ity analysis and wastewater treatment. Industrial process
data, a pilot system and a test rig were used in the analysis.
Uncertainty handling is a part of the analysis method: un-
certainty is represented with the degrees of membership.
Keywords: variable selection and grouping, data analysis,
intelligent methods, data-driven modelling

1 Introduction
Data-driven modelling always requires variable grouping
and selection. In small systems, expert knowledge gives
a clear basis for the variable selection since possible in-
teractions and causal effects are known fairly well. For
these cases, few modelling alternatives can be compared
interactively. Variable selection becomes important when
the number of variables increases, especially when normal
process data is used. In large-scale systems, the number of
possible variable combinations becomes easily very large
(Figure 1), This rapidly increasing number of combina-

tions, known as the combinatorial explosion (Pyle, 1999),
can easily defeat even powerful computers.

In big data processing, the analysis is even more chal-
lenging (Hashem et al., 2015). The amount of different
types of data generated from different sources is increas-
ing fast. Discovering hidden values from these large het-
erogeneous datasets requires versatile methodologies (Ju-
uso, 2020a). Neural deep learning methods provide highly
complex structures (Schmidhuber, 2015) but because of a
huge set of parameters they are not easy to assess with
expert knowledge.

The model assessment becomes easier through the bet-
ter process insight provided by the modules based on ana-
lyzed variable groups. Already, the development and tun-
ing require that the models should not include too many
variables. In practical cases, variable selection is neces-
sary either because it is computationally infeasible to use
all available variables, or when limited data samples have
numerous variables. Finding feasible groups and com-
binations of variables for modelling is closely connected
with data clustering since the interactions can depend on
the operating area. Variable selection, also known as sub-
set selection or feature selection, is a process commonly
used in machine learning, wherein a subset of the features
available from the data are selected for application of a
learning algorithm.

Systems can be divided into subsystems but even the
number of available variables is often impractically high
to be used with the data-based methods. Interactive vari-
able selection and grouping by comparing the perfor-
mance of the model alternatives is a good solution if there
are not too many variables. This approach can be extended
to a wider set of variables by evolutionary computation.
As the number of variables becomes too big even for these
methods, the number of alternatives must be reduced be-
fore model development.

There is a lot of literature on both the model and data-
based techniques. Spectroscopic data, multi-sensor sys-
tems, multivariate analysis and modelling of large-scale
systems seem to require efficient methods for variable
selection. A large number of different methods have
also been used in process monitoring (Venkatasubrama-
nian et al., 2003). Commonly used data-based mon-
itoring methods are reviewed in (Vermasvuori, 2006).
Partitioning-based clustering algorithms are compared in
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Figure 1. Variable combinations (Juuso and Ahola, 2008).

(Äyrämö and Kärkkäinen, 2006). A literature review of
inference and decision making methods in fault diagnosis
is presented in (Cheng, 2006).

The final selection and grouping step is based on mod-
elling. Multivariate statistical modelling and structural re-
lationships are widely used. In linguistic equation (LE)
models, nonlinear scaling is used together with one or
more linear equations (Juuso, 2004). Equations can be
generated for all the combinations, e.g. three-variable
combinations, or selected combinations. Selected com-
binations can be constructed also for several groups of
variables by generating all the combinations within each
variable group. The set of variable groups may also con-
tain groups with different number of variables. For small
systems, these groups can be defined manually. Non-
informative groups can be removed manually but the vari-
able selection need to be partially automated for large-
scale systems.

This paper focuses on the methodologies of variable
selection for large-scale modelling. The analysis starts
with knowledge-based methods (Section 2) before going
to data-based grouping (Section 3). Decomposition is
needed for more complex structures (Section 4). The se-
lection and grouping are finalized with modelling (Section
5). Several applications are discussed in Section 6. The
classification of methodologies is discussed in Section 7.
Conclusions and future studies are presented in Section 8.

2 Knowledge-based variable grouping
Knowledge-based information is essential for all types of
variable selection and grouping. For small systems, only
expert knowledge is needed. In large-scale systems, ex-
pertise is used for selecting variable combinations which
should be avoided, e.g. calculated variables should not be
used together with the variables used in calculating them.
This is important if indirect measurements are used. A
group containing a controlled variable and its set point is
not usually appropriate. These problems are avoided by
defining the inappropriate groups as non-groups, i.e. as
variable groups which should not be a part of any accept-
able variable group.

Figure 2. Variable selection (Juuso et al., 2008).

Too few variables mean that models cannot capture the
phenomena. Too many variables may cause overfitting
and models which are difficult to understand and evalu-
ate. This is especially important for frequency range anal-
ysis. Redundancy, i.e. practically the same measurement
is obtained by several sensors, the measurements can be
combined as a weighted sum. However, sensor failures
must be taken into account in real-time applications.

Knowledge-based information can effect in many ways
on the variable grouping, which reduces strongly the vari-
able combinations. For large-scale systems, some vari-
ables are suitable for the system decomposition and some
for developing specialized models. The working point
variables, which are used for defining different operating
areas, are not necessarily in the corresponding specialized
models. The specialized models can be totally different in
different operating conditions.

Each equation has normally from three to five variables,
and the FuzzEqu Toolbox (Juuso, 2000) is designed for
analyzing these variable groups (Figure 2). The generation
of the alternatives is based on three variable groups: one
variable is selected to be in all four variable groups, and
two variables are selected to be in all five variable groups.

The interactive variable grouping shown in Figure 2 can
be used as a tool in learning the system. Three variable
groups are the basic elements. The subsets of the variables
and the important variables in the four and five variable
groups can be based on process knowledge. This analysis
already reduces the number of alternatives with 70 percent
(Juuso et al., 2008).
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3 Grouping with data analysis
Correlation analysis provides methods for pruning vari-
ables. Principal component analysis (PCA) is a well-
known method for variable selection in large data sets.
PCA explains variations within one data set.

3.1 Correlation analysis
Correlation coefficients are indicators of the strength of
the linear relationship between two variables. The most
common coefficient is called Pearson’s product-moment
correlation coefficient (Ranta et al., 1999; Karttunen,
1994). Statistical correlations are not indications of real
causal interactions. Statistical reasoning based on corre-
lation coefficients presumes bivariate normal distribution
between variables (Ranta et al., 1999). This assumption is
fairly seldom true in process data.

Binary correlations and their combinations are used for
pruning the set of acceptable groups defined by domain
expertise (Section 2). For forecasting models, input vari-
ables should have high correlation to the output variable
but low correlation between each other. For case detec-
tion, this requirement is not necessary (Section 3.3).

Low correlation may be caused by noise and observa-
tion errors. The result is improved by using appropriate
filtering and correct time delays between the variables.
Moving averages, medians or value ranges have time de-
lays which depend on the calculation window and the ap-
plied methodology.

3.2 Correlations in nonlinear systems
For the nonlinear systems, basic correlation analysis and
rank correlation methods like Spearman rank correlation
coefficients and Kendall rank correlation coefficient do not
give reliable results although Spearman correlation coef-
ficient can sometimes identify also nonlinear interaction
between variables (Ranta et al., 1999).

There are extensions of the analysis to nonlinear sys-
tems (Juuso et al., 2008). A nonlinear correlation of a bi-
nary relationship can be implemented for example by us-
ing time sequential joint transfer correlation (JTC), mor-
phological correlation (MC) and sliced orthogonal non-
linear generalized decomposition (SONG) (Oton et al.,
2005). A weighted SONG (WSONG) correlation has been
presented in (Garcia-Martinez et al., 2002). The WSONG
correlation is based on the sum of many linear correlations
between binary images.

The nonlinear scaling brings measurements and fea-
tures to the same scale by using monotonously increas-
ing scaling functions x j = f (X j) where x j is the vari-
able and X j the corresponding scaled variable. The func-
tion f () consist of two second order polynomials, one for
the negative values of X j and one for the positive val-
ues, respectively. The corresponding inverse functions
X j = f−1(x j) based on square root functions are used for
scaling to the range [-2, 2], denoted as linguistification.
The monotonous functions allow scaling back to the real

values by using the function f (). (Juuso, 2004)
The nonlinear scaling functions are developed by using

central tendencies, statistical dispersion and shape of the
data distribution. The data-based method for developing
the scaling functions is presented in (Juuso and Lahdelma,
2010). Nonlinear models can be developed by using these
scaled values and linear relationships. This approach ex-
tends the correlation analysis for curvilinear relationships.

3.3 Correlations in variable groups
For the multivariable correlation, Kendall’s coefficient of
concordance is a measure of agreement among raters is
often used (Ranta et al., 1999). It is based on the rank val-
ues of observations. In variable group correlation analysis,
the scaled values of variables are used and the evaluation
of interaction is based on multivariate regression.

Combinations of the binary correlation coefficients are
used in the FuzzEqu Toolbox. The methodology depends
on the model type. For forecasting models, the correla-
tions between the input variables should be low, and each
input variable and the output variable should have high
correlation. For detecting operating conditions, there are
not necessarily any output variable, i.e. also groups where
several variables have high correlation between each other
are acceptable. Both alternative approaches are used for
variable grouping for the detection of operating condi-
tions.

3.4 High-dimensional data
Principal component analysis (PCA) is a data reduction
method using mathematical techniques to identify patterns
in a data matrix. The principal components are a small set
of new orthogonal, i.e. non-correlated, variables derived
from a linear combination of the original variables. They
do not necessarily have any meaning as they are combina-
tions of initial variables. However, these new axes provide
the angles to see the data by representing the directions of
the data which explain a maximal amount of variance.

The main element of this approach consists of the con-
struction of PCAs which compres the data by reducing the
number of dimensions with minor losses of information.
Each principal component is a linear combination of the
original variables.

The full set is as large as the original set of variables
but it is common that the sum of the variances of the first
few principal components to exceed 80 percent of the total
variance of the original data. All the principal components
are orthogonal to each other so there is no redundant in-
formation. The plots of these new variables help to under-
stand the driving forces of the system.

Principal components can be used In data-based pro-
cess monitoring by tracking how well the data points are
explained with the PCA model (Vermasvuori, 2006).

Testing of loadings and their estimated standard uncer-
tainties are used to calculate significance on each variable
for each component (Westad et al., 2003). Variable se-
lection can also mean identifying a k-subset of a set of
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original variables that is optimal for a given criterion that
adequately approximates the whole data set (Cadima et al.,
2004).

The static PCA can be extended to dynamic systems
by using several past measurements. The number of the
lagged variables is selected in tuning (Ku et al., 1995; Li
and Qin, 2001; Vanhatalo et al., 2017). Another variant
is moving PCA developed by (Kano et al., 2001) for de-
tecting changes in operating conditions. A special multi-
way approach has been developed for analyzing variations
from the normal trajectories in batch processes (Nomikos
and MacGregor, 1994). Multiscale PCA combines PCA
with wavelet decompositions (Bakshi, 1998; Aminghafari
and Cheze, 2006).

PCA is a linear method, which does not produce ac-
curate results for nonlinear processes. Linguistic princi-
pal component analysis (LPC) extends the linear combi-
nations for nonlinear systems by combining the nonlinear
scaling with PCA. In the FuzzEqu Toolbox, the scaling
functions can be used also for the normal principal com-
ponents.

4 Decomposition
A modelling problem can be divided into smaller parts by
developing separate models for independent subprocesses.
In addition to spatial or logical blocks decomposed mod-
elling can be based on different frequency ranges. Dif-
ferent operating conditions can be detected with cluster
analysis, model-based reasoning, rule-based reasoning, or
learned with case-based reasoning. Fuzzy set systems pro-
vide feasible techniques for handling the resulting par-
tially overlapping models.

4.1 Clustering
Clustering consists of partitioning a data set into subsets
(clusters), so that the data in each subset share common
similarities or proximities for some defined distance mea-
sures. Cluster analysis, also called segmentation analysis
or taxonomy analysis, is a way to create groups of objects,
or clusters, in such a way that the profiles of objects in the
same cluster are very similar and the profiles of objects in
different clusters are quite distinct. Similarity criteria (dis-
tance based, associative, correlative, probabilistic) among
the several clusters facilitate the recognition of patterns
and reveal otherwise hidden structures.

• Hierarchical clustering groups data, simultaneously
over a variety of scales, by creating a cluster tree.
The tree is not a single set of clusters, but rather a
multi-level hierarchy, where clusters at one level are
joined as clusters at the next higher level. Hierarchi-
cal clustering produce a set of solutions with differ-
ent numbers of clusters. The level or scale of cluster-
ing is chosen according to the application.

• Partitioning-based clustering algorithms minimize a
given clustering criterion by iteratively relocating

data points between clusters until a (locally) opti-
mal partition is attained. In a basic iterative algo-
rithm, such as K-means- or K-medoids, convergence
is local and the globally optimal solution can not be
guaranteed. (Äyrämö and Kärkkäinen, 2006) The
fuzzy c-means algorithm imposes a spherical shape
on the clusters, regardless of the actual data distribu-
tion (Babuška, 1998).

• Fuzzy clustering -based clustering algorithms mini-
mize a given clustering criterion by iteratively relo-
cating data points between clusters until a (locally)
optimal partition is attained (Bezdek, 1981). In a
basic iterative algorithm, such as K-means- or K-
medoids, convergence is local and the globally op-
timal solution can not be guaranteed. (Äyrämö and
Kärkkäinen, 2006)

• Neural computing can be used for clustering. Self-
organising maps (SOM) (Kohonen, 1995) can be
used for finding operating conditions or simply for
clustering. Also radial basis networks (Chen et al.,
1991) combine clustering with models.

• Nonlinear clustering is aimed to detect clusters of
different geometrical shapes. (Gustafson and Kessel,
1979) extended the standard fuzzy c-means algo-
rithm for this. The nonlinear scaling extends the
clustering methods to different shapes.

• Robust clustering uses spatial medians to reduce ef-
fects of erroneous and missing values (Äyrämö and
Kärkkäinen, 2006).

4.2 Reasoning
Decision making between different operating conditions is
based on different types of reasoning. These methods can
also be considered as inference fault diagnosis methods
(Cheng, 2006).

Model-based reasoning. Causal directed graphs rep-
resent physical cause-effect relations between variables.
Fault tree analysis provides graphical models of the path-
ways within a system that interconnect the basic cause
events and conditions using standard symbols, and lead
to a foreseeable, critical event. Bayesian networks repre-
sents probability relations among random variables as a
graphical model to be used in probability inference.

Rule-based reasoning. Rule-based systems use IF-
THEN rules representing domain expertise. Inference
methods are data-driven forward chaining and goal-driven
backward chaining. Conflict resolution is applied to select
one rule out of the active ones. Preferences and priori-
ties may be utilized in the conflict resolution. Fuzzy logic
provides feasible solutions for resolving the conflicts and
handling the uncertainty.
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Case-based reasoning. Case-based reasoning (CBR) is
a problem solving paradigm for finding out the solution
to a new problem by remembering previous similar sit-
uations and by reusing information and knowledge of
that situation (Aamodt and Plaza, 1994). The solutions
are maintained in carefully indexed memory. The case
base containing the previous cases with possible general
knowledge of the problem area and the problem solving
starts with the identification of the current problem situa-
tion (Figure 3). With information on new cases, the most
similar case is retrieved from the case base. The retrieved
case is reused to solve the current problem. During the
revise step the suggested solution is evaluated to get the
confirmed solution. Finally, the useful solutions with re-
lated case information are retained as new learned cases to
the case base.

Figure 3. Case-based reasoning (CBR) (Aamodt and Plaza,
1994).

5 Model-based selection and grouping
Multivariate statistical tools are used for analyzing data
matrices with regression and/or pattern recognition tech-
niques. These methodologies are primarily linear. Non-
linear systems can be handled with fuzzy set systems, ar-
tificial neural networks or their combinations. In LE mod-
els, linear methodologies are combined with the nonlinear
scaling discussed in Section 3.2.

Multivariate statistical modelling. The application of
principal component regression (PCR) to the trajecto-
ries of the process variables (block-wise PCR) has given
straightforward results without requiring a deep knowl-
edge of the process (Zarzo and Ferrer, 2004). Partial

least squares (PLS), also known as projection to latent
structures, is a robust multivariate generalized regression
method using projections to summarize multitudes of po-
tentially collinear variables (Gerlach et al., 1979).

Fuzzy set systems. Different types of fuzzy set sys-
tems have been compared in (Juuso, 2004). Prior knowl-
edge can be used in constructing rule-based fuzzy models:
qualitative knowledge can be incorporated in linguistic
fuzzy models (Driankov et al., 1993), or in fuzzy relational
models if there are several alternative rules (Pedrycz,
1984); locally valid linear models can be collected by
Takagi-Sugeno (TS) fuzzy models (Takagi and Sugeno,
1985).

Artificial neural networks. Artificial neural networks
(ANNs) are commonly used in modelling of large scale
systems. ANNs are nonlinear and aimed for strongly non-
linear systems. Multilayer perceptrons (MLPs) are super-
vised feedforward networks, which are mainly used for
approximating nonlinear behaviour. Another popular net-
work, the self-organising map (SOM) (Kohonen, 1995)
based on unsupervised competitive learning, can be con-
sidered as a clustering method (Section 4.1). Radial basis
networks (Chen et al., 1991) provide an interesting alter-
native as they can be used both as a clustering tool and a
modelling tool.

Neurofuzzy methods. Neurofuzzy methods provide
various techniques for generating fuzzy set systems, e.g.
ANFIS method (Adaptive-Network-based Fuzzy Infer-
ence Systems) is a well-known neurofuzzy method which
is suitable for tuning of membership functions (Jang,
1993). Partitioning clustering is used in this tuning (Sec-
tion 4.1).

Linguistic equations. The nonlinear scaling transforms
the nonlinear problem to a linear one. A LE model with
several equations is represented as a matrix equation

AX +B = 0, (1)

where the interaction matrix A contains all coefficients Ai j
and the bias vector B all bias terms Bi. Each equation has
from two to five variables.

6 Application cases
The variable selection and grouping methods described
above have been tested in several applications.

Bioprocesses. Batch bioprocesses are difficult to model
due to strong nonlinearities, dynamic behaviour, lack of
complete understanding and unpredictable disturbances.
The fed-batch fermentation model has three growth
phases, each including three interactive models.A decision
system based on fuzzy logic to provide smooth gradual
changes between phases. (Juuso, 2019)

Continuous brewing. Brewing is based on ethanol fer-
mentation but the most important aim is a balanced flavour
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Figure 4. Subprocesses with interactions (Juuso, 2008).

not the highest possible ethanol yield. The desired tra-
ditional flavour is based on a balance of numerous com-
pounds. Experiments with immobilized yeast were carried
out in a pilot scale. The LE models were generated for five
variable groups, each group contains two of the three con-
trol variables (air, CO2 and flow) and three flavour com-
pounds or attenuation. Fluctuations from the normal op-
eration are detected to warn process operators. (Juuso and
Kronlöf, 2005).

Condition monitoring. Reliability of operation, high
quality, safety and environmental issues are increasingly
important and machine condition monitoring enables re-
liable and economical way of action. Overhaul before a
breakdown is in many cases more effective than run to
failure. The earlier model-based approach discussed in
(Juuso et al., 2008) was an interesting case for variable se-
lection and grouping. New features and indicators have
completely changed in this application. The methodolo-
gies have been tested in test rigs and industrial processes.
(Juuso, 2017).

Paper machine. The ambition to increase the produc-
tion of paper has made the paper machine runnability im-
portant. The paper web breaks when the strain on it is
greater than the strength of paper. The machine can be
run at the desired speed with the least possible number of
breaks if the runnability is good. The web break sensitivity
indicator was developed as a CBR application which com-
bines LE models and fuzzy logic (Juuso et al., 1998; Ahola
et al., 2003). The analyses are based on the online process
data. There are several runnability categories, each includ-
ing several case models defined by several equations based
on up to five scaled variables. The final selection of the
active cases, corresponding categories and the value of the
break sensitivity are obtained by fuzzy logic (Juuso and
Ahola, 2008).

Wastewater treatment. In the biological wastewater
treatment, the model consists of three interactive models
(Figure 5): the biomass quality obtained in Model B has a

Figure 5. Subprocesses with interactions (Juuso, 2009).

Figure 6. Multimodel LE system with a fuzzy decision module
(Juuso, 2020b).

strong effect on the treatment (Model C). In Model A, the
effects of the incoming wastewater and return sludge are
combined. The chemical oxygen demand (COD) and sus-
pended solids are used in the calculations. Nutrients, oxy-
gen and temperature effect on both the biomass (Model
B) and operating conditions Model C. The condition of the
biomass has a key effect on the treatment performance (Ju-
uso, 2009). Long periods of high load reduce the biomass
quality which deteriorates the treatment performance and
it takes time to get the good performance back.

7 Discussion
Variable selection was in all cases started with manual
methods, continued with data analysis, and the final vari-
able selection is based on generated alternative interac-
tions assessed with domain expertise. The automatic anal-
ysis has several phases and alternative approaches. Cor-
relation analysis is used for selecting interesting groups
from the acceptable groups and principal components ex-
tend this analysis to the high dimensional systems. Several
clustering methods are used for dividing the data sets into
different operating areas. The nonlinear scaling provides
new possibilities for these analysis methods as an essential
part of the model-based analysis of interactions.

In these cases, the submodels are based on LE models
Smooth operation and high quality products are the main
goals of all these applications, and this can be achieved
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by combining the LE models with fuzzy logic. Paramet-
ric LE models can make the model structure very compact
(Figure 6). For diagnostics, the degree of membership cal-
culated for the normal operation is a good indicator. This
was used for the brewing case. The memberships of dif-
ferent faults are used in the condition monitoring. In the
paper machine case, the case structure is highly compli-
cated.

The data-based grouping provide high performance so-
lutions but the phases, cases and interactions between
models reduce the automatic analysis to the submodels.
Also, the indirect measurements based on a set of mea-
surements needs to be analyzed separately. New indica-
tors can combine several measurements and several new
features can be developed from individual signals. These
case types which require decomposition are challenging
for machine learning.

8 Conclusions and future studies
Variable selection and grouping are an essential part in the
developing model-based applications. Domain expertise
is used for removing useless combinations of variables.
Data-based methods are divided into three classes: data
analysis, decomposition and modelling. The model-based
analysis is the final step. The originally linear method-
ologies were extended to nonlinear systems by using the
nonlinear scaling approach. Applications are based on
integrated approaches which combine all the techniques.
The presented classification of methodologies was suc-
cessfully used in the case studies.

Future studies are needed for applying these method-
ologies iteratively for the expanding heterogeneous data
available in big data.
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