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Abstract

Steel structures are light and durable, but in the build-
ing envelope they can transfer heat energy easily from the
building interior to outside and hinder the energy perfor-
mance of the building. In this study, we simulate the ther-
mal performance of cold-formed steel panels that can be
used as prefabricated units in building envelopes. More
precisely, the thermal performance of hollow cold-formed
steel elements filled with thermal insulation is studied with
varying panel geometry. The focus is on stainless steel but
also mild steel is briefly considered. Attention is paid es-
pecially to the thermal bridges associated to the relatively
high thermal conductivity of steel materials. The influence
of the width, depth and the height of the panel to thermal
bridging is assessed and panel geometries with reasonable
thermal performance are found. By considering also the
moisture transport, the overall hygrothermal performance
of the panels is then evaluated.

Keywords: cold-formed steel, hygrothermal simulation,
thermal bridge, stainless steel, prefabricated elements

1 Introduction

Cold-Formed Steel (CFS) cross-sections are used exten-
sively in the construction industry as secondary loads-
carrying members, such as roof purlins and girts in framed
walls. These sections are manufactured by bending flat
sheets with thickness ranging typically from 0.4 mm to 6.4
mm in Europe and North America (Dubina et al., 2012;
Hancock et al., 2001). Nowadays, CFS sections are em-
ployed increasingly also as primary structural elements in
framing systems of single-story industrial buildings with
short to intermediate spans.

Use of prefabricated wall panels provides an answer
to environmental and economic demands of sustainabil-
ity and quality by reducing mis-fabrication and time con-
sumption on building sites particularly regarding the ther-
mal insulation process in cold and humid as well as in
hot and moist weather conditions. Thin cold-formed steel
sheets are suitable for this purpose because they can be
formed in the shape of hollow sections and transported rel-
atively easily. When compared with traditional construc-
tion materials such as timber, or ordinary steel frames,
which use mineral wool as insulation material, the cold-
formed panels offer distinct benefits in construction pro-
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cess, quality control, cost-effectiveness as well and sus-
tainability.

However, the high thermal conductivity of steel means
that the heat flow must be carefully controlled with insula-
tion and that attention must be paid to thermal bridges, i.e.
areas where the heat flow is locally increased. If not con-
trolled properly, the thermal bridges may lead to higher
energy costs, moisture problems and thermal discomfort
of the building occupants.

The earlier study by Soares et al. reviews the main fea-
tures of steel-framed construction from the point of view
of life cycle energy consumption (Soares et al., 2017).
The overview indicates some strategies for reducing ther-
mal bridges and improving the thermal resistance of steel
structures in the building envelope. Furthermore, the ef-
fectiveness of insulation with respect to its position in the
steel-framed wall with CFS elements and non-structural
panels has been recently discussed in (Roque and Santos,
2017; Roque et al., 2020; Kapoor and Peterman, 2021).
By comparing CFS framing and hybrid-frame construc-
tion, the authors have observed that the location of the in-
sulation significantly affects thermal bridges and the over-
all thermal performance of the wall.

Hollow tubes and other shapes can be used as structural
elements in lightweight steel frames. Our study is focused
on prefabricated hollow CFS wall panels that

* can be easily insulated thermally and acoustically
due to the core space inside

* are easily recyclable

* have high mechanical strength combined with light
weight

* reduce the risk of moisture problems because of dry
construction environment

* can be transported economically
* are easy and fast to assemble

We present a family of such panels where the geometry
is varied parametrically and evaluate the thermal and hy-
grothermal performance of the building constructions in
northern conditions. It should be noted that due to their
large slenderness, i.e. width-to-thickness ratio, such ele-
ments are inherently susceptible to local, distortional and
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Figure 1. 3D sketch of the hollow CFS unit.

global buckling phenomena. We do not consider the struc-
tural integrity in this study but the insulation is expected
to help to prevent local buckling.

The structure of the paper is as follows. The proposed
wall element is introduced in the next section. Section 3
describes the models and the numerical simulation used
to analyze and optimize the thermal performance of the
wall element and contains the main results of the paper.
Moisture transport is then considered in Section 4 and the
paper ends with conclusions and remarks in Section 5.

2 Proposed Wall Element

The prefabricated wall element that we propose and an-
alyze consists of a hollow cold-formed section filled with
insulation as shown in Figure 1. Such prefabricated panels
can be easily assembled at the construction site, and they
form the main core of wall. This concept could be used
to substitute traditional construction techniques in heated
and non-heated buildings like the one shown in Figure 2.
The final assembly of such wall elements shall then in-
clude e.g. a gypsum board and a suitable weather protec-
tion or cladding on the inner and outer face of the core
wall respectively as shown in Figure 3.

Based on the practical demands and dimensional rec-
ommendations of the cold-formed steel industry, we
choose six different panel geometries for comparison by
simulation. The interior gypsum board and the weather
protection layer remain unchanged as they do not con-
tribute significantly to the overall assessment of the wall
element. The studied wall elements are labeled based on

Figure 2. Storage building in Oulu, Finland.
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Figure 3. Conceptual model of the corner of the building made
of CFS units and temperature boundary conditions.

their characteristic geometric information (width, depth,
and thickness) and are listed in Table 1.

Table 1. Geometric parameters of the wall assemblies.

Label Width  Depth  Thickness
[cm] [cm] [cm]
W100-30-0.1 100 30 0.1
W100-30-0.2 100 30 0.2
W100-30-0.3 100 30 0.3
W100-15-0.2 100 15 0.2
WO050-30-0.1 50 30 0.2
W150-30-0.1 150 30 0.2

Assuming a density of 7500 kg/m?> for steel and a den-
sity of 30kg/m?> for the insulation, the unit masses of the
different assemblies per square meter of building envelope
are shown in Table 2 to demonstrate their practicality.

Table 2. Unit masses of the wall assemblies.

Label Unit Mass
[kg/mz]

W100-30-0.1 39
W100-30-0.2 58.4
W100-30-0.3 77.8
W100-15-0.2 442
WO050-30-0.1 67.4
W150-30-0.1 554

3 Heat Transfer Analysis

The thermal analysis is based on a steady-state heat trans-
fer simulation of the selected wall assemblies using the
COMSOL software. The basic model takes into account
only heat conduction so that the governing partial differ-
ential equation is elliptic. Then the finite element method
produces the best approximation of the exact temperature
distribution on a given mesh. Two-dimensional models of
the wall assembly were created near a rectangular corner
which is the critical area concerning heat transfer in build-
ings and the finite element mesh was refined enough so
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that the thin structural components of the assembly can be
analyzed.

The main quantity of interest and optimization criterion
in the thermal analysis is the linear thermal transmittance
[W/(m?K)] defined typically in the building codes as

w:LQD*ZUJ"l.]‘, (1)
J

where Uj is the thermal transmittance [W/(m?K)], [ jis the
length [m] over which U; applies and Lyp is the thermal
coupling coefficient [W/(m?K)].

In our study, the thermal coupling coefficient Lyp is ob-
tained by integrating the heat flow rate obtained from the
numerical simulation over the interior surface including
the corner and the thermal transmittances U; and U, are
determined similarly as the average heat flow rate of the
straight periodic wall segments. Because of symmetry,
U, =U, =U in our case.

3.1 Material Properties and Boundary Condi-

tions

One of the key elements in the present analysis is the ther-
mal transmittance due to the relatively high thermal con-
ductivity of steel. However, there is a considerable differ-
ence between the thermal conductivities of stainless and
mild steels. We use the value the value 15W/(mK) for
stainless steel and the value SOW /(mK) for mild steel.

The thermal conductivities of the gypsum board and the
weather protection layer are taken as 0.21 W/(mK) and
0.06 W/(mK), respectively. Furthermore, the convective
heat flux boundary conditions are used on the external and
internal sides of the wall by taking 1/0.04 and 1/0.13 as
the external and internal heat transfer coefficients, respec-
tively (Hopkin et al., 2011).

3.2 Results

Figure 4 shows as an example the steady-state temperature
distribution and the finite element mesh for the assembly
W100-30-0.2 with stainless steel. The thermal bridges at
the corner as well as near the junction of two neighboring
steel sections lead to slightly cooler temperatures at the
interior surface of the wall.

As expected, the temperature distribution is influenced
by the steel elements that have a very high thermal con-
ductivity as compared with the insulation. The phe-
nomenon becomes even more clear, if we look at the dis-
tribution of the heat flow rate over the interior surface of
the wall assembly. Figure 5 shows the heat flow rates cal-
culated along the interior wall surface for the wall assem-
blies W100-30-0.1, W150-30-0.2, and W100-15-0.2, re-
spectively. The geometry affects somewhat significantly
the heat flow rate near the corner as well as its overall dis-
tribution along the wall assembly.

The different wall element geometries are then com-
pared in Table 3 in terms of their U-value and the thermal
transmittance Y at the corner according to Equation (1).
The comparison of the assemblies shows that increasing

Table 3. Comparison of thermal characteristics of different wall
assemblies.

Label U 174
[W/m?] [W/(mK)]]

W100-30-0.1 0.18 0.03
W100-30-0.2 0.21 0.09
W100-30-0.3 0.26 0.06
W100-15-0.2 0.39 0.05
W050-30-0.2 0.30 0.03
W150-30-0.2 0.19 0.01

the thickness of the steel sheet strengthens the thermal
bridges between neighboring elements and hence the av-
erage U-value of the wall. Increasing the width of the wall
unit reduces the U-value but it cannot be increased exces-
sively because of practical reasons regarding economy and
transport. On the other hand, the relationship between the
geometric parameters and the thermal admittance at the
corner is more complex and the performance assessment
requires engineering judgement.

The influence of the specific steel type to the overall
thermal characteristics of the wall assembly is addressed
in Table 4 showing the thermal characteristics of the panel
W100-30-0.1 made of mild steel with thermal conductiv-
ity 50W/(mK). Comparing these values with the first line
of Table 3 shows that the higher thermal conductivity is
reflected in the average U-value of the wall assembly and
especially in the thermal bridge at the corner.

Table 4. Thermal characteristics of a wall assembly made of
mild steel.

Label U v

[W/m?] [W/(mk)]]
W100-30-0.1 0.26 0.13
(mild)

4 Hygrothermal Analysis

A time-dependent heat and moisture transport simulation
of the wall assembly was carried out again by the COM-
SOL software. The outdoor boundary conditions for the
temperature and the relative humidity were taken from the
values recorded by the Finnish Meteorological Institute in
Oulu, Finland for the year 2020. Indoor conditions were
represented by temperature and relative humidity derived
from the outdoor conditions according to the guidelines
by the Finnish Association of Civil Engineers (Suomen
Rakennusinsinddrien Liitto RIL ry, 2012). The simulation
was performed for a period of two years by replicating the
same boundary condition data. The reason for this is to ne-
glect any impact of the initial conditions on the obtained
results. Material properties required for coupled heat and
moisture transfer analysis are thermal conductivity, heat
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Figure 5. Temperature distribution for the assemblies W100-
30-0.1 (top), W150-30-0.2 (middle), and W100-15-0.2 (bottom)
with stainless steel.

L
200 0

capacity, density, water vapor resistance factor, and mois-
ture isotherm. These were determined according to the
ISO 14056:2007 standard (International Organization for
Standardization, 2007).
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1 Figure 6. Distribution of the relative humidity over the wall

cross section at the first day of each month.

Figure 6 shows the distribution of relative humidity

5 computed across the cross section at the center of a wall
1 element at the first day of each month. The relative hu-
{ midity has a tendency to decrease towards the interior of
1 the building. This is caused by diffusion that is mostly

transporting humidity from inside to outside, because the
indoor temperature exceeds the outdoor temperature for
most of the time. The distribution of the humidity in the
cross-section does not indicate humidity levels that might
lead to excessive condensation. However, humidity lev-
els around 90% are detected on the interior surface of the
outside metal sheet. This is natural since the steel sheet
cannot absorb moisture.

To investigate this phenomenon in more detail, we show
in Figure 7 the temperature and relative humidity on the
inner surface of outer metal sheet during one full year.
The relative humidity remains below 90 % for most of the
time so that the risk of condensation seems to be relatively
small.
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Figure 7. Temperature and relative humidity at the inner surface
of the outside metal sheet during one year simulation.
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Figure 8. Relative humidity distribution in cross-section
1 (through joint between two elements) and cross-section 2
(through middle of an element).

A more detailed assessment of the hygrothermal per-
formance of the wall was carried out by using a two-
dimensional simulation model. In this case, a steady-state
simulation was performed to detect whether there is a risk
of excessive humidity at the joint between two elements.
The boundary conditions were specified identically to the
dynamic approach except that temperature and relative hu-
midity which were set to 20°C and 50% for the inside and
to 0°C and 90% for the outside, respectively.

As in the dynamic 1D case, the relative humidity does
not seem to reach condensation levels under the defined
conditions. However, as Figure 8 shows, higher relative
humidity is found at the joint between two elements near
the indoor wall. One possible reason for the humidity
accumulation is the contact of permeable thermal insula-
tion and the metal sheet. However, because the high level
of relative humidity (>90%) is located near the indoor
and the temperature should never drop below the freez-
ing point there, the risk of freezing will remain small at
this location.

S Concluding Remarks

Cold-formed steel members in the building envelope can
form thermal bridges that may affect the overall hy-
grothermal performance of the building quite consider-
ably. We have introduced and studied a family of hol-
low cold-formed steel panels filled with insulation and
parametrized with respect to their main structural dimen-
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sions. Thermal performance of six unique panel geome-
tries was examined computationally by using the COM-
SOL software while keeping the insulation properties
fixed. The heat transfer analysis was based on well-
established 2D steady state finite element analysis with
typical boundary conditions.

The thermal analysis revealed a clear correlation be-
tween the thickness of the hollow section and the thermal
bridging at the panel intersections. On the other hand, it
is more difficult to assess fairly the influence of the panel
thickness, width and depth to thermal bridging at build-
ing corners because the overall performance is influenced
by the internal thermal bridges. We also showed that the
notable difference between the thermal conductivities of
stainless and mild steels is clearly reflected in the thermal
performance of the corresponding wall assemblies.

We also performed time-dependent and steady-state hy-
grothermal analyses of the panels based on recent meteo-
rological data from Oulu, Finland. The results showed that
the hygrothermal conditions inside the studied elements
do not give raise to a significant risk for excessive humid-
ity and/or water condensation. However, it is of high im-
portance to avoid any surface condensation on the interior
surface of the wall, especially in the vicinity of thermal
bridges e.g. by providing well-ventilated indoor environ-
ment and/or by adding thermal insulation on the exterior
side of the wall assembly.

Our work provides the foundations for a further para-
metric optimization study of the structural elements where
also local and global buckling phenomena of the thin
sheets are considered. Further optimization of thermal
and hygrothermal performance can also be carried out by
refining the parametric space and developing novel opti-
mization algorithms.
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