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Abstract 
Carbon capture and storage may be applied to reduce the 

CO2 emissions from a cement plant. However, this often 

results in complex CO2 capture solutions. To simplify 

the capturing process, an alternative is to electrify the 

cement calciner. This study covers the feasibility of 

electrifying an existing calciner by inserting electrically 

heated rods in the calciner. An existing entrainment 

calciner in a Norwegian cement plant is used as a case 

study. 

A model is developed to quantify the aspects 

concerning the feasibility of the calciner. The model 

first estimates the possible area of inserted rods in the 

available space. A mass and energy balance is then 

performed to estimate the heat duty of the heating rods. 

Further, a radiation heat transfer model is included to 

identify the feasibility of transferring heat from the rods 

to the raw meal. Finally, the model includes the design 

of the heating rod to estimate the required number of 

heating elements.  

The results indicate that it is technically feasible to 

electrify the calciner. The total heat duty of the calciner 

is 77 MW, with 68 MW for meal preheating and 

calcining, and 9 MW for gas preheating. 2570 heating 

rods are required, operating at 1150 °C in the gas 

preheating zone and 1050 °C in the meal preheating and 

calcining zone. The feasible heat flux is 26-34 kW/m² 

for gas preheating, 35-80 kW/m² for meal preheating 

and 30-50 kW/m² for calcination. However, some 

challenges related to recuperating the heat from the gas 

and maintenance of the system must be studied further. 

 

Keywords: Calcination, Electrification, Heat transfer, 

Resistance heating 

1 Introduction 

The cement industry is responsible for around 7% of the 

global emission of CO2 and around 4% in the EU (IEA, 

2020). The primary sources of these emissions are the 

combustion of fossil fuels and the decomposition of 

limestone (CaCO3 → CaO + CO2). A modern cement 

kiln system couples these two processes, and this 

coupling gives a very efficient, direct-contact heat 

transfer. 

The CO2 emission from the system may be captured 

by using carbon capture and storage technologies. 

However, in this method, the CO2 must be separated 

from other components in the flue gas, making it a 

complex process. A simpler solution may be to electrify 

the calciner. An electrified calciner will have pure CO2 

generated from the decomposition reaction, thus the 

need for separation from flue gas may be avoided. This 

method has the potential to avoid around 72 % of the 

CO2 emission from the cement kiln system (Tokheim et 

al., 2019). However, for this to be an environmentally 

viable solution, the electricity must be produced from 

renewable sources, thereby avoiding indirect CO2 

emissions. 

A suitable calciner design must be selected to 

electrify a calciner. Different designs may be selected, 

such as rotary calciners, drop tube calciners, fluidized 

bed calciners and tunnel calciners. The literature 

available on electrified calciner is sparse, and no studies 

of an electrified entrainment calciner have been found. 

The Leilac project studied a drop tube calciner with 

indirect heating using natural gas (Hills et. al., 2017), 

and this drop tube calciner may be electrified by 

replacing natural gas with an electrical heater (Usterud 

et al., 2021). A fluidized bed calciner concept using 

binary particles has also been studied (Samani et. al., 

2020).  

In this study, electrification of an existing calciner 

operating in the entrainment mode is used in a case 

study. This will provide a reference case to which other 

potential calciner designs may be compared when it 

comes to electrification.  

This work aims to study the possibility of electrifying 

the entrainment calciner by inserting heating rods in it. 

Such a concept may make it easy for the cement industry 

to quickly transition to an electrically heated calciner 

without making significant changes to the existing 

calciner geometry. Such a study has not been published 

before to the best of authors’ knowledge. 

2 System description 

An entrainment calciner operating in a Norwegian 

cement plant, producing 1 Mt of clinker per year, is 

considered for electrification in this study. A 

comparison of the existing calciner and an electrified 

version of this calciner are shown in Figure 1. 
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The existing calciner (cf. the left-hand side of Figure 

1) has five main parts; a downdraft flash calciner with a 

burner, a mixing chamber, a tube calciner, a swirl 

chamber and gas duct connections to cyclone separators 

(Tokheim, 2006). 

The fuel mix (coal, refused derived fuel, solid 

hazardous waste and animal meal) is fed into the 

downdraft burning-chamber where it is mixed with 

tertiary air and preheated meal. The fuel ignites and 

provides energy for calcination of the preheated meal. 

The meal swirls around the burner wall and protects it 

from too high temperature generated by the burning 

fuel. The meal is then transported to the mixing chamber 

where it mixes with high temperature kiln gas. The kiln 

gas provides additional energy needed for meal 

calcination and also enough energy to entrain the meal 

through the tubular calciner (the “Pyroclone”) towards 

the swirl chamber (the “Pyrotop”), which improves the 

burnout of fuel particles. The mixture of gas and meal is 

then transported to cyclone separators, where the 

calcined meal is sent to the rotary kiln for further 

processing, whereas the gas is used for preheating of 

meal in cyclone preheater tower (Tokheim, 2006). The 

dimensions of the reference calciner used for 

calculations are summarized in Table 1. 
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Figure 1: Existing (left) vs electrified entrainment 

calciner (right) 

 

Table 1. Dimensions of the reference calciner geometry 

Dimensions Symbol Value 

Diameter of the tubular 

calciner [m] 
𝐷𝐶 

3.74 

Length of the gas preheater 

section [m] 
𝐿𝐺𝑃 

7 

Length of the calciner section 

after meal feeding [m] 
𝐿𝐶 

50.2 

 

The existing calciner may be converted to an 

electrified calciner by making the following changes 

(Figure 1, right-hand side): 

 

1. Cutting the supply of kiln gas 

2. Cutting the supply of fuel, air and preheated meal 

in the burner  

3. Moving the meal inlets to a position right above the 

mixing chamber 

4. Feeding recycled CO2 (required for particle 

entrainment) at the top of the combustion chamber 

5. Inserting heating rods in the combustion chamber 

and the mixing chamber to provide energy for 

preheating of the recycled gas 

6. Inserting heating rods along the tube calciner 

geometry to provide energy for calcination 

 

The kiln gas and the tertiary air will bypass the 

electrified calciner (Figure 1, left-hand side) and will 

instead be mixed and lead to the preheater tower (not 

shown in the figure) for meal preheating, so that the rest 

of the kiln system is unaffected by the calciner 

modification. 

3 Model development 

The modelling combines a mass and energy balance of 

the calciner with a geometric model for insertion of 

heating rods, a model for heat transfer from the heating 

rods and design of an appropriate heating element. This 

section covers these four aspects of the modelling work. 

3.1 Heating element design 

Resistance heating is a relatively simple technology for 

electricity-based heating. The heat is produced when an 

electric current (𝐼) passes though a resistor (the heating 

element) with a certain resistance (𝑅). The produced 

heating rate (𝑞�̇�) may be quantified as, 

𝑞�̇� = 𝐼2𝑅 = 𝑉𝐼 (1) 

Here, 𝑉 is the voltage drop over the heating element. 

The resistance of the heating element (𝑅) is further 

given by, 

𝑅 = 𝜌𝑒
4𝑙𝑒

𝜋𝑑𝑒
2 (2) 

Here, 𝜌
𝑒
 is the resistivity of the heating element, 𝑙𝑒 is the 

length of the heating element and 𝑑𝑒 is its diameter 

(assuming it is a wire).  

The resistivity of the heating element is dependent on 

the resistor material. A range of materials is available in 

the market. They include metallic alloys such as 
nichrome, Kanthal wires, and non-metallic elements 

such as silicon carbide and molybdenum disilicide. 
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Metallic alloys are generally recommended for 

temperature ranges of 1200-1400 °C, whereas non-

metallic materials are recommended for higher 

temperatures, i.e. the range 1600-1900 °C (Lupi, 2017).  

The calciner will operate between 900 and 1000 °C. 

Hence, metallic alloys are considered in this work. The 

maximum operating temperature of some metal alloys 

are shown in Figure 2, whereas the resistivity as a 

function of temperature is shown in Figure 3. 

 

 

Figure 2: Maximum operating temperatures of some 

metal alloys used for resistance heating 

 

 

Figure 3: Variation of resistivity with temperature for 

some metal alloys 

The heating elements may be mounted into the 

furnace with various support systems. In this study, 

spiral winding of heating elements on a ceramic tube is 

considered, referred to as heating rods in the study. The 

schematic of this system is shown in Figure 4. 

 

Figure 4: Spiral-winding schematic (heating rod) 

The recommended value for the diameter of the 

heating element (𝑑𝑒) is 2.0 – 6 .5 mm and that of the 

ceramic tube diameter (𝐷𝑅) is 𝐷𝑅 = (12 − 14) × 𝑑𝑒 
(Kanthal, 2020). In this study, the diameter of the 

heating element (𝑑𝑒) is assumed to be 4 mm, and the 

ceramic tube diameter (𝐷𝑅) is assumed to be 50 mm. 

3.2 Heating rod insertion model 

A model is developed to predict the area occupied by the 

inserted heating rods (𝐴𝑅). In general, if this area is 

large, the contact between the heating surface and the 

meal will be large, leading to a higher heat transfer rate. 

However, if the area is too large, by inserting too many 

rods, then the space between the rods might be too small, 

which will affect the structural integrity of the calciner. 

A model is developed by assuming a defined heating rod 

arrangement and using the fraction of axial and radial 

length occupied by heating rods (𝑓𝐶) and the diameter of 

the heating rods (𝐷𝑅) as input parameters. The proposed 

heating rod arrangement is shown in Figure 5. 

 

Figure 5: Heating rod design pattern 

The fraction 𝑓𝐶  is directly related to the heating rod 

area. Increasing this fraction will provide more space for 

the placement of heating rods, which in turn will 

increase the total area of the heating rods. 

The total length occupied by the heating rods is given 

by, 

𝑓𝐶𝐿 = 𝐷𝑅𝑁𝑐𝑜𝑙 (3) 

Here, 𝐿 is the length of the section, equal to 𝐿𝐺𝑃 in 

the gas preheating section and equal to 𝐿𝐶 in the meal 

section. 𝑁𝑐𝑜𝑙 is the number of columns in the axial (gas 

flow) direction. Rearranging the equation, 

𝑁𝑐𝑜𝑙 =
𝑓𝐶𝐿

𝐷𝑅

 (4) 

To simplify calculations in the radial direction, one 

rod is assumed to go through the center of the calciner 

(the length of this rod is equal to calciner diameter, 𝐷𝐶), 

whereas the other rods are placed between the center rod 

and the wall in both directions, as shown in Figure 5. To 
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facilitate visualization, only a few rods are shown in the 

figure. 

The number of rods in each radial direction 

(𝑁𝑅,𝑟𝑜𝑤,𝑚) is given by, 

𝑁𝑅,𝑟𝑜𝑤,𝑚 =
𝑓𝐶𝑅𝐶
𝐷𝑅

 (5) 

Here, 𝑅𝐶  is the radius of calciner. The number of 

heating rods per rows is given by, 

𝑁𝑅,𝑟𝑜𝑤 = (2 × 𝑁𝑅,𝑟𝑜𝑤,𝑚) + 1 (6) 

The total number of rods is further be given by, 

𝑁𝑅 = 𝑁𝑅,𝑟𝑜𝑤 × 𝑁𝑐𝑜𝑙 (7) 

If the spacing between the rods in a row (𝑆𝑅,𝑟𝑜𝑤) is 

equal, it can be determined by, 

𝑆𝑅,𝑟𝑜𝑤 =
𝑅𝐶 − (𝑁𝑅,𝑟𝑜𝑤,𝑚 × 𝐷𝑅)

𝑁𝑅,𝑟𝑜𝑤,𝑚 + 1
 (8) 

The length of each rod (𝑙𝑅) in the radial direction is, 

however, different for each rod. This length can be 

derived from Pythagoras’ theorem as shown in Figure 5 

and is given by, 

𝑙𝑅 = 2 × √𝑅𝐶
2 − 𝑆𝑅,𝑟𝑜𝑤,𝑙

2 (9) 

Here 𝑆𝑅,𝑟𝑜𝑤,𝑙 is the actual spacing distance of each 

rod from the central rod (as also shown in Figure 5). 

An effective rod length (𝑙𝑅,𝑒𝑓𝑓) is then calculated by 

taking the average over all possible lengths in the 

calciner. The total area occupied by the inserted rods 

(𝐴𝑅) can thus be given by, 

𝐴𝑅 = 𝑁𝑅 × 𝜋𝐷𝑅𝑙𝑅,𝑒𝑓𝑓 (10) 

3.3 Heat and mass balance 

To simplify the calculations, the modified calciner may 

be divided into three zones. 

1. Gas preheating zone: The gas is preheated to the 

calcination temperature in this zone.  

2. Meal preheating zone: The meal is preheated to 

the calcination temperature in this zone.  

3. Meal calcining zone: The meal gets calcined 

(CaCO3 → CaO + CO2) in this zone. 

The simplified reactor model is shown in Figure 6. 

 

Figure 6: Different zones used in the heat and mass

balance

The entrainment velocity in existing calciners may vary

between 10-20 m/s (Becker et al., 2016), while in 

some calciners, this gas velocity may be as low as 5-7 

m/s. In this study, the entrainment velocity is assumed 

to be 7 m/s. The impact of changing this is 

presented in the results. Other assumptions are 

summarized in Table 2.

The calcination temperature (𝑇𝑐𝑎𝑙𝑐) is relatively high 

(914 °C) compared to regular calciners. This is because 

the gas in the electrified calciner is pure CO2, so a higher 

temperature is required to generate a CO2 equilibrium 

pressure (Stanmore and Gilot, 2005) higher than the 

partial pressure in the calciner (~1 atm). The 

temperature of the recycled gas (𝑇𝑖𝑛,𝑔) is based on a 

previous study on CO2 heat utilization (Jacob, 2019). 

The other values in the table are based on a previous 

calciner electrification study applying the same kiln 

system as a design basis (Tokheim et al., 2019). 

Table 2: Assumptions for heat and mass balance 

Section Parameter Symbol Value 

General 
assumptions 

Entrainment 
velocity 

𝑣𝐶 7 m/s 

Calcination 
temperature 

𝑇𝑐𝑎𝑙𝑐 914oC 

Weight fraction 
of CaCO3 in raw 
meal 

𝑤𝐶𝑎𝐶𝑂3 0.77 

Gas 
preheating 

Inlet 
temperature of 
recycle gas 

𝑇𝑖𝑛,𝑔 470oC 

Outlet 
temperature of 
recycle gas 

𝑇𝑜𝑢𝑡,𝑔 914oC 

Meal 
preheating 

Mass flow rate 
of raw meal 

�̇�𝑃𝐻𝑀 210 ton/hr 

Inlet 
temperature of 
raw meal 

𝑇𝑖𝑛,𝑃𝐻𝑀 658oC 

Meal 
calcination 

Enthalpy of 
calcination 

𝐻𝑐𝑎𝑙𝑐 
-3.6 

MJ/kgCO2 

Enthalpy of 
other reactions 
in the calciner 

𝐻𝑐𝑎𝑙𝑐,𝑜𝑡ℎ𝑒𝑟 
0.3 

MJ/kgCO2 

Calcination 
degree 

𝑓𝑐𝑎𝑙𝑐 0.94 

 

The mass flow rate of CO2 (�̇�𝐶𝑂2,𝐶) inside the calciner 

may be calculated from entrainment velocity by, 

�̇�𝐶𝑂2,𝐶 = 𝜌𝐶𝑂2𝐴𝐶𝑣𝐶 (11) 

Here, 𝜌𝐶𝑂2 is the density of gas calculated from the 

ideal gas law, 𝐴𝐶 is the cross-sectional area of the 

calciner and 𝑣𝐶 is the velocity of gas inside the 

calciner (entrainment velocity). The mass flow of CO2 

(�̇�𝐶𝑂2,𝑐𝑎𝑙𝑐) produced from calcination reaction is 

calculated by, 

�̇�𝐶𝑂2,𝑐𝑎𝑙𝑐 = �̇�𝑃𝐻𝑀𝑤𝐶𝑎𝐶𝑂3

𝑀𝐶𝑂2

𝑀𝐶𝑎𝐶𝑂3

1

𝑓𝑐𝑎𝑙𝑐
 (12) 

Here, 𝑀𝐶𝑂2 is the molecular mass of CO2 and 𝑀𝐶𝑎𝐶𝑂3 

is the molecular mass of CaCO3.  
The mass flow rate of recycling CO2 (�̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐) 

can thus be determined by, 
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�̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐 = �̇�𝐶𝑂2,𝐶 − �̇�𝐶𝑂2,𝑐𝑎𝑙𝑐 (13) 

The heat required to heat the CO2 (𝑞𝐺𝑃) in the gas 

preheater section is given by, 

𝑞𝐺𝑃 = �̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐𝐶𝑝,𝐶𝑂2(𝑇𝑖𝑛,𝑔 − 𝑇𝑜𝑢𝑡,𝑔) (14) 

Here 𝐶𝑝,𝐶𝑂2 is the heat capacity of the gas given by a 

polynomial equation (Green, Perry, 2008), 

𝐶𝑝,𝐶𝑂2 = 𝐶1 + 𝐶2 [
𝐶3 𝑇⁄

𝑠𝑖𝑛ℎ(𝐶3 𝑇⁄ )
]

2

+ 𝐶4 [
𝐶5 𝑇⁄

𝑐𝑜𝑠ℎ(𝐶5 𝑇⁄ )
]

2

×
𝑀𝐶𝑂2

1000
𝐽/𝑘𝑔. 𝐾 

(15) 

Here, C1 = 29370, C2 = 34540, C3 = 1428, C4 = 26400 

and C5 = 588 (units are skipped here for simplicity). 

The heat required in the meal preheating section 

(𝑞𝑀𝑃) is given by, 

𝑞𝑀𝑃 = �̇�𝑃𝐻𝑀𝐶𝑝,𝑃𝐻𝑀(𝑇𝑖𝑛,𝑃𝐻𝑀 − 𝑇𝑐𝑎𝑙𝑐) (16) 

Here 𝐶𝑝,𝑃𝐻𝑀 is the heat capacity of preheated meal 

and is equal to 1260 J/(kg·K) (Samani, 2020).  
The heat required in the meal calcination (𝑞𝑀𝐶) is 

given by, 

𝑞𝑀𝐶 = 𝑞𝑀𝐶,𝑜𝑢𝑡 − 𝑞𝑀𝐶,𝑖𝑛 − 𝑞𝑐𝑎𝑙 − 𝑞𝑐𝑎𝑙,𝑜𝑡ℎ𝑒𝑟 (17) 

Here, 𝑞𝑀𝐶,𝑜𝑢𝑡 is the outlet heat from calcination section, 

which is given by the sum of heat in the calcined meal 

and the outlet gas. 𝑞𝑀𝐶,𝑖𝑛 is the heat in the inlet raw meal 

after meal heating and the heat in the inlet gas. 𝑞𝑐𝑎𝑙 is 

the heat required to calcine the meal and 𝑞𝑐𝑎𝑙,𝑜𝑡ℎ𝑒𝑟 is 

the heat from other meal reactions (Samani, 2020). 

3.4 Heat transfer coefficient 

Convection and radiation are the main heat transfer 

modes in an entrainment calciner. However, at 

temperatures higher than 600 °C, the heat transfer by 

radiation is much more dominant than the heat transfer 

by convection (Lupi, 2017). Since heat transfer from 

radiation is dominant, this study covers radiation only, 

and a network modelling approach is applied. 

A pure CO2 environment is expected inside the 

calciner due to recycled CO2 and CO2 formed in the 

calcination reaction. CO2 emits and absorbs radiation 

over a wide temperature range, as it is a polar gas 

(Incropera et. al., 2017). The radiating property of CO2 

complicates the radiation modelling as it participates in 

radiation heat transfer along with the particles, the 

calciner wall and the heating rods. This is handled by 

using a network modelling approach in this work, as 

described below. 

The total radiation heat transfer (𝑞𝑟𝑎𝑑) from surface 

𝑖 to 𝑁 surfaces (each surface denoted by 𝑗), and 

assuming the surfaces to be grey, is given by 

(Incropera et. al., 2017), 

𝑞𝑟𝑎𝑑 =∑𝑞𝑖𝑗

𝑁

𝑗=1

=
𝐸𝑏,𝑖 − 𝐽𝑖

(1 − 𝜀𝑖) 𝜀𝑖𝐴𝑖⁄

=∑
𝐽𝑖 − 𝐽𝑗

(𝐴𝑖𝐹𝑖𝑗)
−1

𝑁

𝑗=1

 

(18) 

Here, 𝑞𝑖𝑗 is the heat transferred from surface 𝑖 to 

another surface denoted by 𝑗 subscript, 𝐸𝑏,𝑖 is the total 

emissive power for a black surface 𝑖, 𝐽𝑖 is the radiosity 

which accounts for all radiant energy leaving the 

surface 𝑖, 𝜀𝑖 is the emissivity of the surface 𝑖, 𝐴𝑖 is the 

area of surface 𝑖 and 𝐹𝑖𝑗 is the view factor from 

surface 𝑖 to surface 𝑗. The formulated network equation 

is visualized in Figure 7. 

 

Figure 7: Schematic of a network model with total 

radiative heat transfer from surface 𝒊 to other surfaces 

3.4.1 Gas preheating 

In the gas preheating section, the heat is exchanged 

between the gas (subscript 𝑔), the heating rods 

(subscript 𝑅) and the calciner wall (subscript 𝑤). The 

wall is well insulated, so heat loss is neglected. Then the 

wall can be assumed to be a re-radiating surface, i.e., it 

re-radiates all the incident heat. The resulting network 

of this system is shown in Figure 8. Approximate values 

of emissivities and view factors are given in Table 3. 

 

Figure 8: Network model of radiative heat transfer in 

the gas preheating zone 
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Table 3: Assumed parameters in the network model 

for radiation heat transfer in the gas preheating zone 

Parameter Symbol Value 

Emissivity of CO2 𝜀𝑔 0.15 

Emissivity of heating rod 𝜀𝑅 0.7 

View factor from rod to wall 𝐹𝑤,𝑅 0.5 

View factor from rod to gas 𝐹𝑅,𝑔 1 

View factor from wall to gas 𝐹𝑤,𝑔 1 

 

The emissivity of CO2 (𝜀𝑔) is dependent on the partial 

pressure of CO2, the mean beam length and the gas 

temperature (Hottel and Egbert, 1940). An approximate 

emissivity of CO2 is read from Hottel’s chart, which 

correlates these factors to the emissivity of the gas. 

The emissivity of the heating rod (𝜀𝑅) was 

approximated based on literature (Kanthal, 2020). There 

are some uncertainties related to the rod-wall view 

factor between (𝐹𝑅,𝑤). This factor may lie between 0 and 

1. An approximate value of 0.5 is chosen, and a 

sensitivity study on this parameter is presented in the 

results. The rod-gas and wall-gas view factors should be 

1 as the gas is fully visible to these surfaces. 

3.4.2 Meal preheating and calcining 

In the preheating and calcination section, the heat is 

exchanged between the gas (subscript 𝑔), the heating 

rods (subscript 𝑅), the raw meal particles (subscript 𝑝) 

and the calciner wall (subscript 𝑤). The wall can be 

assumed to be re-radiating if no heat loss present. The 

gas is also assumed to be re-radiating as the gas has 

already been heated to the calcination temperature, and 

now, it is just re-radiating all the incident heat directly 

to the raw meal particles, the wall and the heating rods. 

The resulting network is shown in Figure 9. 

 

Figure 9: Network model of radiative heat transfer in 

meal preheating and calcining 

Approximate input values are given in Table 4. There 

are some uncertainties related to the area of the particles 
and the view factors. The higher the area of particles, the 

higher is the heat transfer. To be on a conservative side, 

the smalles probable particle area is estimated

qualitatively, and then a sensitivity study is done using

higher values. Assuming a void fraction (𝜀𝑚) of 0.99,

the bulk density (𝜌𝑏𝑢𝑙𝑘) of the particle inside the calciner

is given by,

𝜌𝑏𝑢𝑙𝑘 = 𝜌𝑃 × (1 − 𝜀𝑚) (19)

Here, 𝜌𝑃 is the particle density and is assumed to be

2700 kg/m3. The calciner is assumed to be a cylinder and

the volume of the calciner is calculated using the

calciner dimensions (Table 1). The mass of particles

inside the calciner is calcuted using bulk density and the

volume of calciner. The specific surface area of

traditional limestone is 1 – 10 m²/g (Stanmore and Gilot,

2005). Using the mass of particles and the specific area

of a traditional limestone, the total particle area (𝐴𝑝) is

higher than 106 m2. This value is taken as a base case,

and a sensitivity study is later performed with a higher

particle area. The rod-particle view factor (𝐹𝑤,𝑝) and the

wall-particle view factor (𝐹𝑤,𝑝) should both be close to

1 as in case of dusty flow inside the calciner, the

particles are fully visible to the rod and the wall. Due to

the presence of this dust, the rod-wall view factor should

be low (close to 0). Based on these arguments,

approximate values are selected, and a sensitivity

analysis is done on the results.

Table 4: Assumed parameters in the network model

for radiation in the preheating and calcining zone

Parameter Symbol Value

Emissivity of CO2 𝜀𝑔 0.15

Emissivity of heating rod 𝜀𝑅 0.7

Emissivity of particles 𝜀𝑝 0.7

Area of particles 𝐴𝑝 106

View factor from rod to wall 𝐹𝑅,𝑤 0.1

View factor from rod to particle 𝐹𝑅,𝑝 0.8

View factor from wall to particle 𝐹𝑤,𝑝 0.8

View factor from particle to gas 𝐹𝑝,𝑔 1

View factor from rod to gas 𝐹𝑅,𝑔 1

View factor from wall to gas 𝐹𝑤,𝑔 1

4 Results and discussions

Simulations are performed with the model described in

Section 3. The results from the heating rod insertion

model are presented in Figure 10. The results show the

boundary limits of the rod area of in the gas preheating

zone (𝐴𝑅,𝐺𝑃), the meal preheating zone (𝐴𝑅,𝑀𝑃) and the

meal calcination zone (𝐴𝑅,𝑀𝐶). The minimum area of

the rod should be at least the area of calciner geometry

(𝐴𝐺𝑃/𝐴𝑀𝑃/𝐴𝑀𝐶). The maximum area is the area at

which the minimum possible spacing between the

heating rod is reached in each zone

(𝐴𝐺𝑃,𝑆𝑚𝑖𝑛/𝐴𝑀𝑃,𝑆𝑚𝑖𝑛/𝐴𝑀𝐶,𝑆𝑚𝑖𝑛). The minimum

spacing between rods is assumed to be 2.5 times the
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rod diameter. This information is used to estimate the 

heat transfer from radiation. 
The heat transfer results from the heat and mass 

balance in each zone are shown in Figure 11. 8.7 MW 

of heat is required to preheat the recycled CO2. This heat 

might be difficult to recuperate and may result in 

significant heat losses from the system (Jacob, 2019). If 

the entrainment velocity is higher than the assumed 

value (7 m/s), the heat loss will be even higher. A 

sensitivity analysis of this heat duty by varying the 

entrainment velocity is shown in Figure 12. The results 

clearly show the importance of minimizing the gas 

recycling. 

 

Figure 10: Result from the heating rod insertion model  

 

 

 

Figure 11: Results from the heat and mass balance

calculations

The heat transfer results for each calciner section are

shown in Figure 13. The results are plotted for three

different heating rod temperatures in each case. The

band represents the sensitivity to the uncertainties

discussed in Section 3.4. Monte-Carlo simulations are

performed on the uncertainties to find the maximum

and minimum values of heat transfer given the

uncertainties. The dotted line in Figure 13 represents

the required heat duty in each section of the calciner
calculated from the heat and mass transfer calculations
(cf. Figure 11).

 

Figure 12: Sensitivity analysis on gas preheating duty

(potential heat loss)

The results in Figure 13 show that it is technically

feasible to transfer heat through the radiation

mechanism. The total number of rods required can be

read by combining Figure 10 and Figure 13. In the gas

preheating section, the temperature of the rod should

be 1150 °C, and the number of required heating rods

required at the feasibility point will be around 450. In

the meal preheating section, the heat may be

transferred at 1050 °C with around 420 rods at the

feasibility point. In the meal calcining section, the heat

can also be transferred at 1050 °C with around 1700

heating rods at the feasibility point. The total number

of required heating rods is around 2570.

 

Figure 13: Heat transfer results from each calciner 

section 
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A range of feasible heat fluxes are obtained by dividing

heat rate with rod area. This result is then utilized to

find a heating element design and estimate the mass of

the heating element required. The mass of heating

elements in the feasible range of heat fluxes in different 

calciner zones is shown in Figure 14. The lowest mass 

required in the feasible range of operating calciner is 

found by using Kanthal APM heating elements.

 

Figure 14: Mass of elements required in the feasible

range of operating calciner

5 Conclusion

Electrification of the existing calciner appears to be

technically feasible. There is sufficient volume available

in the calciner, and there is enough calciner shell surface

area available, to insert the number of heating rods that

are required to provide the heat and calcine the meal,

i.e., about 2570 heating elements operating with surface

temperature of 1150 °C in gas preheating zone and

1050 °C in meal preheating and calcining zone.

The total heat transferred from the electrical heating

elements to the meal is 69 MW and the total heat

transferred is 78 MW. The gas preheating section may

operate feasibly with a heat flux of 26-34 kW/m². The

meal preheating section may operate feasibly with a heat

flux of 35-80 kW/m², and the meal calcining section

should feasibly operate with heat flux of 30-50 kW/m².

At higher heat fluxes, the heat transfer from radiation

will not be enough to transfer the heat to the gas or the

raw meal. At lower heat fluxes, the spacing between the

heating rods will be so small that it will affect the

structural integrity of the calciner. Moreover, a lower
heat flux also means a higher heating element cost as the

mass of the elements will increase. The mass of Kanthal
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elements, which have the highest heat flux, is 

around 5 tons, and the mass of the elements with the 

lowest heat flux is around 15 tons. 

The results, however, also indicate some challenges. 

The gas flow rate required to entrain the raw meal may 

lead to high flow of energy out of the calciner, and it 

may be a challenge to recuperate all the heat from this 

One may think of adding a fan operating at high 

temperature to recycle the gas at 900 °C, thereby 

avoiding the heat exchange. However, additional studies 

must be performed to check the feasibility of this. The 

results also indicate that a large number (at least 2120) 

of rods and a high mass of heating elements (at least 4 

are required. The particles may flow at a high 

velocity in this region which may cause abrasion, 

erosion, and element breakage. So, maintenance may 

become a challenge logistically due to a large number of 

heating rods (finding the damaged heating rod), and 

economically due to the high mass of heating elements 

(erosion of elements). Additional studies on these 

aspects must be performed to find detailed economic 

and logistic challenges. 

Thus, the results indicate that electrification of an 

entrainment calciner is theoretically possible. However, 

there are some challenges to address with this concept. 

One way to address the challenge may be to study other 

calciner systems where it is easier to avoid these 

challenges. 
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